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1 Introduction

The development of quantum information theory has rekindled interest in the possibility of
characterizing quantum theory in operational or information-theoretic terms. It has become
clear that many properties of quantum systems, e.g., the existence and basic properties
of entangled states, are much better understood as generically non-classical, rather than
specifically quantum, phenomena, in the sense that they arise in arbitrary non-classical
probabilistic theories [8, 2, 3, 4, 10, 14, 15, 20]. There is therefore a premium on identifying
operationally meaningful properties of bipartite quantum states that are not generic in this
way.

A property of entangled quantum states that struck Schrödinger as especially pecu-
liar and “discomforting” [18] is the fact that an observer controlling one component of
such a state can steer the other system into any statistical ensemble for its (necessarily,
mixed) marginal state, simply by choosing to measure a suitable observable [18, 12]. What
Schrödinger found discomforting is now understood to be an important information the-
oretic feature of quantum mechanics. This became clear when Bennett and Brassard [9],
in the same paper that introduced quantum key distribution, considered a natural quantum
scheme for another important cryptographic primitive, bit commitment, and showed that
ensemble steering can be used to break it. In this paper, we connect the possibility of en-
semble steering with two very special geometric properties shared by finite-dimensional
classical and quantum state spaces. First, such state spaces are self-dual: their cones of
(un-normalized) effects are canonically isomorphic to their dual cones of (un-normalized)
effects, meaning that the isomorphism defines an inner product. Secondly, they are homoge-
neous: their groups of order-isomorphisms act transitively on the interiors of their positive
cones. These two properties come close to characterizing finite-dimensional quantum and
classical state spaces: by a theorem of Koecher [16] and Vinberg [19], finite-dimensional
homogeneous, self-dual cones are precisely the cones of positive elements of formally real
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Jordan algebras. Given this, two further assumptions—local tomography and the existence
of qubits—give QM uniquely. Here, we establish that in any probabilistic theory in which
universal self-steering is possible (meaning that for each system in the theory, every state
is the marginal of a state of two copies of the system, that steers it) state spaces must be
homogeneous and weakly self-dual, meaning that the cones of un-normalized states and un-
normalized effects must be isomorphic, but perhaps not not canonically so. This reduces
the gap between the generic “self-steering” theory and quantum mechanics, largely to that
between weak and strong self-duality.

The full version of the work summarized in this abstract is available on the quant-ph
e-print archive at http://arxiv.org/abs/0912.5532 .

2 Ordered linear spaces formalism for theories

All vector spaces in what follows are finite dimensional. This allows us to identify a vector
space V with its double dual V ∗∗. An ordered linear space (OLS) is a real vector space
V equipped with a partial ordering compatible with the linear structure (i.e., x ≤ y ⇒
x + z ≤ y + z and x ≤ y =⇒ tx ≤ ty for all x, y, z ∈ V, t ∈ R+) Any such ordering
is determined by the the pointed convex cone1 V+, called the positive cone, of vectors x

with 0 ≤ x, since x ≤ y iff y − x ∈ V+; conversely, any pointed convex cone induces an
ordering on V in this way.

If a pointed convex cone is also generating (i.e., spans V , so that V = V+ − V+) and
closed, it is called regular. Henceforth, we mean by “ordered linear space” one whose
positive cone is regular.

A linear map ϕ : V → W is positive iff it is order-preserving, equivalently ϕ(V+) ⊆
ϕ(W+). An order isomorphism is a linear map such that ϕ(V+) = W+. An order-
isomorphism from an OLS to itself is an order-automorphism. The set L+(V, W ) of posi-
tive linear mappings from V to W is a pointed, closed convex cone in the space L(V, W )
of all linear maps from V to W ; where V and W are finite-dimensional, this cone is also
generating. When W = R, we write L+(V, R) as V ∗

+, called the dual cone to V . An order
unit in an ordered linear space V is a vector u ∈ V+ such that for every x ∈ V+ there is
some positive scalar t with x ≤ tu; equivalently in finite dimensions, an interior element
of A+. An order unit on V is an order unit in V ∗.

If A and B are ordered linear spaces, there is a natural ordering on their direct sum,
namely, (A ⊕B)+ = {x + y|x ∈ A+, y ∈ B+}. An ordered linear space is irreducible iff
it has no non-trivial decomposition as an ordered direct sum. Every OLS in finite dimension
is a direct sum of irreducible ones.

Definition 2.1. An abstract state space is a pair (A, uA) where A is an ordered linear
space and uA is a distinguished order-unit on A. We refer to a positive element of A with
uA(α) = 1 as a normalized state. The set of all normalized states is a compact convex
subset of A+, which we denote by ΩA. 2

1A convex cone in a real vector space V is a convex set K ⊆ V closed under multiplication by non-negative
scalars. If K ∩−K = {0}, the cone is said to be pointed.

2The set ΩA is a base for the positive cone A+: a convex set S such that every non-zero α ∈ A+ is a positive
scalar multiple of a unique vector in S. In the case S = ΩA), the vector is α/uA(α). Indeed, what we are calling
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We also need some way to describe the results of measurements performed on a system.

Definition 2.2. An effect on an abstract state space (A, uA) is a positive functional a ∈ A∗

such that a ≤ uA—equivalently, a ∈ A∗ is an effect iff 0 ≤ a(α) ≤ 1 for every normalized
state α ∈ ΩA.

Every measurement outcome will correspond to an effect on A. We make the further
assumption here that every effect represents a measurement outcome. Accordingly, a
discrete observable on A is a family {ax}x∈X of effects, indexed by a finite set X (a
“value space”), with

∑
x∈X ax(α) = 1 for all α ∈ Ω, i.e., with

∑
x ax = uA.

The formalism sketched above accommodates composite systems. Let A and B be
abstract state spaces, with order-units uA ∈ A∗, uB ∈ B∗ and normalized state spaces ΩA

and ΩB . We write A ⊗max B for the space of bilinear forms on A∗ × B∗, ordered by the
cone of forms nonnegative on products a ⊗ b of positive elements (i.e. a ∈ A∗

+, b ∈ B∗

+),
with order unit uA⊗uB . We write A⊗minB for the same space, ordered by the (generally,
much smaller) cone generated by the product states α ⊗ β, where α ∈ A+ and β ∈ B+.

States in A ⊗max B satisfy a natural no-signaling condition, that the marginal states
of A and B are well-defined. Moreover [15, 20] the maximal tensor product captures all
non-signaling states—at least, insofar as we regard bipartite states as determined by joint
probability assignments to pairs of local measurement outcomes. This last assumption
is called local tomography or local observability. We shall adopt it here as a working
assumption.

More generally, we can consider the space (A∗ ⊗ B∗)∗ of bilinear forms on A∗ × B∗,
equipped with any cone lying between the minimal and maximal ones, as “a tensor product”
of A and B. In what follows, we shall write AB, generically, for such a composite.

For present purposes we understand by the term physical theory a class of abstract state
spaces, closed under the formation of such a product, so as to allow the representation of
composite systems. A more complete treatment of this idea might take a theory to be a
category of abstract state spaces, with morphisms corresponding to the processes allowed
by the theory; see [5], [6] and [7], the latter of which is abstracted in the present prepro-
ceedings.

3 Weak self-duality

A bipartite state on a composite system AB, represented by a positive bilinear form ω :
A∗ × B∗ → R, can also be represented by a positive map ω̂ : A∗ → B = B∗∗ defined
by ω̂(a)(b) = ω(a, b). We have ω̂(uA) = ωB , the B marginal of ω. Also the adjoint
map ω̂∗ : B∗ → A∗∗ = A represents the same state, evaluated in the opposite order, i.e,
ω̂∗(b)(a) = ω̂(a)(b) = ω(a, b). Hence, ω̂∗(uB) = ωA.

Definition 3.1. An abstract state space A is weakly self-dual iff there exists an order-
isomorphism η : A∗ ' A.

Definition 3.2. A bipartite state ω in A ⊗max B is an isomorphism state iff ω̂ : A∗ → B

is an order isomorphism.

an abstract state space is essentially the same thing as a ordered vector space with a distinguished cone-base, i.e.,
what we might call a (finite-dimensional) cone-base space.
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The existence of a composite containing isomorphism states is far from guaranteeing
the weak self-duality of A or B; indeed, for any state space B, there is a state space A

whose positive cone is isomorphic to the dual of B’s, hence for which A⊗max B contains
isomorphism states. But the existence of an isomorphism state in A ⊗ A obviously does
imply that A is weakly self-dual. We call such a state an automorphism state.

Theorem 3.3. Let A be an irreducible ordered linear space. Then automorphisms of A lie
on extremal rays of the cone L+(A, A) of positive maps from A to A.

Simple examples show that automorphisms need not be extremal in reducible cones.

Corollary 3.4. If A is an irreducible abstract state space, then isomorphism states (if any
exist) are pure in A ⊗max B.

4 Purification

An important fact about quantum states is that they can be purified: any state is the marginal
of a pure bipartite state. One would like to know to what extent this is true more generally.

Given an abstract state space (A, u), we can turn A∗ into an abstract state space by
using any interior state αo ∈ A+ as the order unit. We shall write A�, generically, for such
a state space (A∗, αo), leaving the (non-canonical) choice of αo tacit. Then the identity
map A → A can be interpreted as an isomorphism (hence, by Theorem 3.3, pure if A is
irreducible) state in A� ⊗max A having αo as its A-marginal. In this sense, every state
interior to A has a purification. In general, however, the “ancilla” A� in terms of which
αo ∈ A is purified, depends on αo.

Theorem 4.1. The following are equivalent:

(a) A is homogeneous;

(b) Every normalized state in the interior of A+ is the A-marginal of an isomorphism
state in B ⊗max A, where B is any (fixed) state space order-isomorphic to A∗.

This gives us a physical interpretation of homogeneity: first, that the various “dual”
abstract state spaces A� = (A∗, αo) are all isomorphic, not only as ordered linear spaces
but as abstract state spaces , and second, as telling us that in the irreducible case, all interior
states of A can be purified to isomorphism states using a fixed ancilla, namely, any choice
of A�.

Corollary 4.2. For any irreducible state space A, the following are equivalent:

(a) A is weakly self-dual and homogeneous;

(b) Every normalized state in the interior of A+ is the marginal of an isomorphism state
in A ⊗max A.
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5 Steering

By an ensemble for a state β ∈ B, we mean a finite set of βi ∈ B+ such that
∑

i βi =
β. Note that we defined ensembles not as lists of probabilities and associated normalized
states, but as lists of unnormalized states; the two definitions are equivalent, as the norms
uB(βi) of the βi encode the probabilities. If instead

∑
i βi ≤ ωB is required, we have a

subensemble for ωB.

Definition 5.1. A bipartite state ω ∈ A⊗max B is steering for its B marginal iff, for every
ensemble (convex decomposition) ωB =

∑
i βi, where βi are un-normalized states of B,

there exists an observable E = {xi} on A with βi = ω̂(xi). We say that ω is bisteering iff
it’s steering for both marginals.

Note that a state steering for its B marginal is not necessarily pure. It follows almost
immediately from the definition, that if ω is steering for its B-marginal, ω̂(A+) is a face of
B+. Indeed, we have

Lemma 5.2. If ω is steering, then ω̂(A+) = Face(ωB); the converse, however, does not
hold.

The condition that ω be steering for its B-marginal places a very strong and subtle
constraint on ω̂. If X and Y are partially ordered sets, an order-preserving surjection
p : X → Y is a quotient map iff, for all y1, y2 ∈ X , y1 ≤ y2 iff yi = p(xi) for some
x1 ≤ x2 in X . We shall say that p is a strong quotient map iff it has the property that every
chain y1 ≤ y2 ≤ · · · ≤ yn in Y is the image of some chain x1 ≤ x2 ≤ · · · ≤ xn in X , i.e.,
y1 = p(x1), y2 = p(x2), ..., yn = p(xn). A strong quotient map is a quotient map, but the
converse is, in general, false.

Theorem 5.3. Let ω be a bipartite state in AB. Then ω is steering for its B marginal iff
ω̂ : [0, uA] → [0, ωB] is a strong quotient map of ordered sets.

We suspect, but so far have been unable to prove, that a quotient map of order-intervals
[0, u] → [0, v] is necessarily a strong quotient. An obvious sufficient condition for ω̂ :
[0, uA] → [0, ωB ] to be a quotient map of ordered sets is for there to exist an affine section
σ : [0, ωB] → [0, uA]. However, examples show that this is not necessary for steering.

It follows from Theorem 5.3 that the ordering of Face(ωB) = ω̂(A+) is exactly the
quotient linear ordering induced by the linear surjection ω̂, i.e., β1 ≤ β2 in Face(ωB) iff
βi = ω̂(ai) for some a1, a2 ∈ A with a1 ≤ a2. We also have:

Corollary 5.4. Let ω be steering for ωB , where ωB is interior to B+, so that Face(ωB) =
B+. If ω̂ is injective (non-singular), then ω̂ is an order isomorphism. If B+ (and therefore
A+) is irreducible, therefore, by Theorem 3.3, it is pure in A ⊗max B.

In other words, if A and B have the same dimension, then the states that are steering
for an interior marginal are precisely the isomorphism states (and hence steering for both
marginals). We are now in a position to make good on the claim made in the introduction.

Definition 5.5. A probabilistic theory supports universal steering if, for every system B

in the theory and every state β ∈ B, there exists a system Aβ and a bipartite state ω in
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Aβ⊗B that steers its B-marginal ωB = β. A theory supports uniform universal steering if,
for every system B in the theory, there exists a system AB such that for every state β ∈ A,
there exists a state ω in AB ⊗ B that steers its B-marginal β. A probabilistic theory
supports universal self-steering if, for every system A in the theory, every state α ∈ A can
be represented as a marginal of some bipartite state on two copies of A—that is, some state
ω ∈ AA—steering for that marginal. (That is, it supports uniform universal steering with
AB ' A.)

Corollary 5.4, combined with Theorem 4.1, establish

Proposition 5.6. In any theory that supports universal uniform steering, every irreducible,
finite-dimensional state space in the theory is homogeneous.

In light of Corollary 4.2, we also have

Proposition 5.7. In any theory that supports universal self-steering, every irreducible,
finite-dimensional state space in the theory is homogeneous and weakly self-dual.

If a theory supports universal self-steering, and also has the property that every direct
summand of a state space is again a state space belonging to the theory (a reasonable re-
quirement, at least in finite dimensional settings), then every finite-dimensional state space
in the theory is a direct sum of homogeneous, weakly self-dual factors, hence, homoge-
neous and weakly self-dual.3

An interesting question is to what extent the gap between universal steering and uniform
universal steering is a genuine one. One might investigate this question by looking for
examples of state spaces for which each state can be steered, but that are not homogeneous.

6 Conclusion

We have shown that the state spaces of any probabilistic theory that allows for uniform
universal ensemble steering, in the sense that for every system A in the theory, there’s
another system B such that every state on system A can be steered by some state in the
composite BA, are homogeneous. We say that system B steers system A, in this case. If
we require systems to be self -steering (i.e., that each system A steer itself ), they must be
homogeneous and weakly self-dual. If one could motivate the stronger assumption that
these state spaces are strongly self-dual, then by the Koecher–Vinberg theorem [16, 19],
these state spaces would be those of formally real Jordan algebras. Then by the Jordan–
von Neumann–Wigner classification theorem [13] their normalized state spaces must be
convex direct sums of sets affinely isomorphic to the unit-trace elements in the cones of
positive semidefinite matrices in a real, complex, or quaternionic full matrix algebra, or to
Euclidean balls, or to the unit-trace 3×3 positive semidefinite matrices over the octonions.

From here, our standing assumption of local tomography (that bipartite states are deter-
mined by the probabilities they assign to product effects) restricts the possibilities further.
A theorem of Hanche-Olsen [11] asserts that any JB-algebra A whose vector-space tensor

3It is easily seen that direct sums of homogeneous or weakly self-dual cones are, respectively, homogeneous
or weakly self-dual.
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product with the self-adjoint part of M2(C)—can be made into a JB tensor product, is iso-
morphic to the self-adjoint part of a (complex) C∗-algebra. In other words, it is essentially
quantum-mechanical. As we will establish elsewhere, Hanche-Olsen’s requirements for
a JB tensor product impose on the cones associated with the three JB-algebras in ques-
tion, exactly the operational requirements we’ve imposed on a composite of state spaces.
Therefore Hanche-Olsen’s result implies that if a homogeneous, self-dual state space has
a locally tomographic homogeneous, self-dual composite with a three-dimensional ball—
i.e., the state space of a qubit, then it is the state space of a C∗-algebra — so, a direct sum
of the state spaces of standard quantum theory.
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