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Abstract

A set of qubit channels has a classical representation when it is isomorphic to
the convex closure of a group of classical channels. From [5], we know that up to
isomorphism there are five such sets, each corresponding to either a subgroup of the
alternating group on four letters, or a subgroup of the symmetric group on three letters.
In this paper, we show that the classical representation of a qubit channel also carries
its information theoretic data – in particular, both the Holevo capacity and the scope of
a unital qubit channel can be completely calculated from a systematically determined
classical channel.

1 Introduction

In [5], the sets of qubit channels with classical representations were completely character-
ized up to isomorphism: they are 〈G〉, where G is a subgroup of either A4, the alternating
group on four letters, or S3, the symmetric group on three letters. This permits one to rea-
son about such qubit channels as though they were classical channels, at least as far as their
algebraic structure is concerned. But what about their information theoretic properties? For
instance, can we determine the Holevo capacity of a qubit channel solely from its classical
representation? Or its scope? Surprisingly, in this paper, we shall see that the answer to
questions along this line is yes.

The underlying reason for why is that the isomorphisms associated to the five groups
are all defined by conjugation, so practically any property of a qubit channel is also shared
by its classical representation, including eigenvalues and singular values. This raises the
question of which types of qubit channels have a classical representation, and we shall
prove that the following all do: projective measurements, teleportation with a pure entan-
gled state, the symmetric and skew-symmetric channels. In particular, this implies that
both the Holevo capacity and the scope of any unital qubit channel can be calculated from
a systematically determined classical channel.
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2 Classical representations

Let (m, n) denote the set of stochastic matrices with m rows and n columns, the classical
channels with m inputs and n outputs. The set of qubit channels Q consists of all affine
transformations of the unit ball in R

3 which arise as the Bloch representations of the convex
linear, completely positive, trace preserving maps on 2 × 2 density matrices. The convex
closure of X is 〈X〉.

All subgroups of matrices are assumed to have the identity matrix I as the group identity
and to be nontrivial.

Definition 2.1 Let G be a subgroup of (m, n). An embedding of 〈G〉 into Q is a function
ϕ : 〈G〉 → Q such that for all x, y ∈ 〈G〉,

• ϕ(I) = I ,

• ϕ(xy) = ϕ(x)ϕ(y),

• ϕ(px + (1 − p)y) = pϕ(x) + (1 − p)ϕ(y) whenever p ∈ [0, 1], and

• ϕ(x) = ϕ(y) ⇒ x = y.

That is, an embedding is an injective, convex-linear homomorphism. The set of qubit
channels ϕ(〈G〉) is then said to have a classical representation.

From [5], let us first recall the collections of qubit channels that have a classical repre-
sentation: there are five of them, each one being either a subgroup of A4 or a subgroup of
S3, where one must use the unorthodox copy of S3 ⊆ (5, 5) given by

S3 =























I, ā =

(

I 0
0 a

)

, ā2 =

(

I 0
0 a2

)

b̄ =

(

f 0
0 b

)

, c̄ =

(

f 0
0 c

)

, d̄ =

(

f 0
0 d

)























with {I, a, a2, b, c, d} ⊆ (3, 3) the natural copy of the symmetric group on three letters and

f = flip =

(

0 1
1 0

)

∈ (2, 2).

Theorem 2.2 ([5]) Let A4 ⊆ (4, 4) denote the alternating group on four letters and S3 ⊆
(5, 5) denote the unorthodox copy of the symmetric group on three letters. Then

(i) For each subgroup G of A4, there is an embedding ϕ : 〈G〉 → Q.

(ii) For each subgroup G of S3, there is an embedding ϕ : 〈G〉 → Q.

(iii) If G ⊆ (m, n) is a group for which such an embedding exists, then G is either a
subgroup of A4 or a subgroup of S3. That is, G must be isomorphic to either Z2, Z3,
Z

2

2
, S3 or A4.

We will now see that such isomorphisms are much more than isomorphisms: they not
only preserve algebraic structure, they also preserve information theoretic data.
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3 An information theoretic representation

The function ϕ : 〈A4〉 → Q given by

ϕ(f) =





e + x − y − z −a − b + c + d −a2 + b2 + c2 − d2

−a2 − b2 + c2 + d2 e − x + y − z a − b + c − d
−a + b + c − d a2 − b2 + c2 − d2 e − x − y + z



 .

where f ∈ 〈A4〉 is written

f =









e + c + c2 x + b + d2 y + d + a2 z + a + b2

x + d + b2 e + a + a2 z + c + d2 y + b + c2

y + a + d2 z + d + c2 e + b + b2 x + c + a2

z + b + a2 y + c + b2 x + a + c2 e + d + d2









.

is an embedding [5].

Theorem 3.1 The embedding ϕ : 〈A4〉 → Q is conjugation by

H =
1

2









1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1









.

That is, if we conjugate the classical channel

f =









e + c + c2 x + b + d2 y + d + a2 z + a + b2

x + d + b2 e + a + a2 z + c + d2 y + b + c2

y + a + d2 z + d + c2 e + b + b2 x + c + a2

z + b + a2 y + c + b2 x + a + c2 e + d + d2









by the Hadamard matrix H we obtain

HfHt =

(

1 0
0 ϕ(f)

)

.

As a consequence, f and ϕ(f) have the same singular values, and since the singular values
of ϕ(f) determine its Holevo capacity, this quantity can also be calculated from f . In a
related way, the scope of ϕ(f) is also determined by f . The function ϕ : 〈S3〉 → Q
defined by

ϕ(f) =





x0 − x3 x1 − x5 x2 − x4

x2 − x5 x0 − x4 x1 − x3

x1 − x4 x2 − x3 x0 − x5



 .

where f ∈ 〈S3〉 is written

f =













x0 + x1 + x2 x3 + x4 + x5 0 0 0
x3 + x4 + x5 x0 + x1 + x2 0 0 0

0 0 x0 + x3 x1 + x5 x2 + x4

0 0 x2 + x5 x0 + x4 x1 + x3

0 0 x1 + x4 x2 + x3 x0 + x5













,
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is an embedding [5]. Just as was the case with A4, it is not at all obvious that the information
theoretic properties of ϕ(f) can be determined from f , but once again, they can be:

Theorem 3.2 The embedding ϕ : 〈S3〉 → Q is conjugation by

T =


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








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1
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1
√
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√
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√

6
− 1

√

6

0 1
√

3
0 1

√

3
− 1

√

3

0 1
√

3
− 1

√

3
0 1

√

3

0 1
√

3

1
√

3
− 1

√

3
0















.

That is, if we conjugate the classical channel

f =













x0 + x1 + x2 x3 + x4 + x5 0 0 0
x3 + x4 + x5 x0 + x1 + x2 0 0 0

0 0 x0 + x3 x1 + x5 x2 + x4

0 0 x2 + x5 x0 + x4 x1 + x3

0 0 x1 + x4 x2 + x3 x0 + x5













,

by T , we obtain

TfT t =

(

I2 0
0 ϕ(f)

)

.

4 Type

In an effort to better understand 〈A4〉 and 〈S3〉 as forms of quantum structure, we now take
a closer look at the kinds of channels they contain.

Definition 4.1 A qubit channel f is said to be of type G when it belongs to 〈G〉 for some
finite subgroup G ⊆ SO(3).

This definition does not depend on the particular representation of the group used: if
F and G are finite isomorphic subgroups of SO(3), then they are conjugate [1], and thus
〈F 〉 ' 〈G〉. In particular, such an isomorphism preserves both scope and Holevo capacity.

Theorem 4.2 Let f be a unital qubit channel.

• If f = f2 is idempotent, then f is of type A4.

• If f = f t is symmetric, then f is of type A4.

• If f = −f t is skew-symmetric, then f is of type A4.

Any rotation f ∈ SO(3) of order four has neither type A4 nor type S3.
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In order then, the following all have type A4: (i) projective measurements, (ii) the chan-
nels that determine Holevo capacity and scope, (iii) the nonzero skew symmetric channels,
which are precisely those with scope [0, 0] but positive Holevo capacity. Notice that

f =





0 a b
−a 0 c
−b −c 0





is a skew-symmetric qubit channel iff a2 + b2 + c2 ≤ 1/4. Thus, A4 contains a wide
range of behavior, including the teleportation channels that arise when one uses a source of
entanglement that is not necessarily maximal [7].

5 Closing

A major goal is to try and determine the physical significance of the five groups. For
instance, we can think of 〈Z2〉 as being a “bit flip” or a “phase flip,” while 〈Z2×Z2〉 can be
thought of as the process of teleportation [7]. We know less about 〈Z3〉 and 〈A4〉 in general
and almost nothing about 〈S3〉, except that it is the free affine monoid over the symmetric
group on three letters.
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