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Abstract

Gel’fand duality is one of the central mathematical insights of the last century [7].
Each abelian C

∗-algebra A gives rise to a compact or locally compact Hausdorff space,
the Gel’fand spectrum ΣA. Conversely, each compact or locally compact Hausdorff
space X determines an abelian C

∗-algebra C(X) of continuous functions. In quantum
theory, noncommutative C

∗-algebras play a central rôle, but we are still lacking a good
notion of spectrum for these algebras. Such a spectrum would be a suitable noncommu-
tative space and would provide quantum theory with a geometrical underpinning that is
absent so far. In previous work [5, 6], it was shown that the spectral presheaf ΣA asso-
ciated with an arbitrary unital C

∗- or von Neumann algebra A has many properties of a
spectrum. Here we show that the assignment A 7→ ΣA is functorial in a suitable sense
and can be seen as the first half of a noncommutative version of Gel’fand duality. We
show that for abelian algebras, our construction reduces to ordinary Gel’fand duality.
Moreover, it is shown how the group of unitary operators in a von Neumann algebra
is faithfully represented by automorphisms of the (set of subobjects of the) spectral
presheaf.

1 Introduction

There is a well-developed strand of research aiming to describe the spectra of nonabelian
C∗-algebras in terms of noncommutative topology. This approach has first been developed
in functional analysis by Akemann [1, 2], Giles and Kummer [8] in the late 1960s and early
1970s, and later on in the form of quantales by Mulvey [9], Borceux, Rosický [3, 4] and
others. On the other hand, the topos approach to the formulation of physical theories [6]
has led to the consideration of certain spaces without points associated with nonabelian
C∗- and von Neumann algebras. The object in question is the spectral presheaf. Let A be a
C∗-algebra, and let ΣA be its spectral presheaf (see definition below). Here, we show that
this assignment is functorial in a suitable sense and prove some consequences. We consider
arbitrary ∗-homomorphisms between unital C∗-algebras.
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2 The spectral presheaf

Let A be an arbitrary unital C∗-algebra, and let V(A) be the set of commutative, unital
C∗-subalgebras of A such that the unit element in each C ∈ V(A) is the unit element
in A. V(A) is partially ordered under inclusion. The spectral presheaf ΣA of A is the
contravariant, Set-valued functor on V(A) defined

(a) on objects: for all C ∈ V(A), let ΣA
C be the Gel’fand spectrum of C, i.e., the space

of characters of C, equipped with the Gel’fand topology;

(b) on arrows: for all inclusions iC′C , let ΣA(iC′C) : ΣA
C → ΣA

C′ be the function that
sends each character λ to its restriction λ|C′ to the smaller algebra. This function is
well-known to be continuous and surjective.

An analogous definition exists for arbitrary von Neumann algebras N . In this case,
we consider the poset V(N ) of abelian, counital von Neumann subalgebras and define the
spectral presheaf ΣN over this category.

3 The main result

In fact, we want to assign to a given C∗-algebra A not just its spectral presheaf, but the
topos Set

V(A)op of presheaves over the context category V(A), together with the distin-
guished object ΣA ∈ Ob(Set

V(A)op). (Analogously for von Neumann algebras N .) The
reason is the following:

Theorem 1 Each ∗-homomorphism φ : A → B between unital C∗-algebras induces a
geometric morphism Φ : Set

V(A)op → Set
V(B)op between the associated topoi such that

the inverse image functor Φ∗ : Set
V(B)op → Set

V(A)op maps the spectral presheaf ΣB of
B to an object Φ∗(ΣB) in the topos Set

V(A)op . Using Gel’fand duality at each stage, we
obtain a subobject (G ◦ Φ∗)(ΣB) of the spectral presheaf ΣA of A.

This shows that each morphism φ of C∗-algebras induces a morphism in the opposite di-
rection between the associated spectral presheaves. Hence, the assignment A 7→ ΣA is
functorial. The map from ΣB to ΣA constructed in the proof below is the generalisation
of the continuous map ΣB → ΣA, λ → λ ◦ ϕ between the Gel’fand spectra induced by
a ∗-homomorphism ϕ : A → B between abelian C∗-algebras. (Note that we have con-
travariance.)

Proof. Let C ∈ V(A) be an abelian subalgebra of A. It is straightforward to show that
φ(C) is an abelian C∗-subalgebra of B. Clearly, if C ′ ⊂ C, then φ(C ′) ⊆ φ(C), hence φ

induces a morphism

φ̃ : V(A) −→ V(B)

C 7−→ φ(C)
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of posets, i.e., an order-preserving map. The posets V(A) and V(B) are the base cate-
gories of the topoi Set

V(A)op and Set
V(B)op , so φ̃ induces a geometric morphism Φ :

Set
V(A)op → Set

V(B)op . The inverse image functor Φ∗ is given by

Φ∗ : Set
V(B)op −→ Set

V(A)op

P 7−→ P ◦ φ̃.

In particular, Φ∗(ΣB) = ΣB ◦ φ̃, and we obtain

∀C ∈ V(A) : Φ∗(ΣB)C = (ΣB ◦ φ̃)C = ΣB
φ̃(C)

.

Now we can apply ordinary Gel’fand duality: for each C ∈ V(A), we have an arrow
φ|C : C → φ(C) between abelian C∗-algebras, which determines a continuous function
Gφ|C : Σφ(C) → ΣC given by λ 7→ λ ◦ φ|C . Using the fact that ΣB

φ̃(C)
= Σφ(C) and

ΣA
C = ΣC , we define

∀C ∈ V(A) : Gφ|C (Φ∗(ΣB)C) = Gφ|C (ΣB
φ̃(C)

) = {λ ◦ φ|C | λ ∈ ΣB
φ(C)} ⊆ ΣA

C .

It is easy to check that the components Gφ|C (C ∈ V(A)) assemble into a natural transfor-
mation G : Φ∗(ΣB) → ΣA and that the image of Φ∗(ΣB) under G is a subobject of ΣA.
We write this subobject as (G ◦ Φ∗)(ΣB).

For von Neumann algebras M,N , the appropriate morphisms are weakly continuous
∗-homomorphisms φ : M → N . Such a φ induces an order-preserving map φ̃ : V(M) →
V(N ) between the posets of abelian von Neumann subalgebras, which in turn determines
a geometric morphism Φ : Set

V(M)op → Set
V(N )op . The composite G ◦ Φ∗ maps ΣN to

ΣM.

The mapping G ◦Φ∗ is a composite of the inverse image part of a geometric morphism,
i.e., and arrow between from the topos Set

V(B)op to the topos Set
V(A)op , and an arrow G

in the topos Set
V(A)op . As matters stand, G is not yet a functor from Set

V(A)op to itself,
because it is only defined by its action on Φ∗(ΣB). Since this is all we need here (and G is
not applied to any other object in Set

V(A)op), we are at liberty to extend the definition of G
to other objects and arrows in Set

V(A)op such that it becomes a functor. Another option is
to consider the spectral presheaves ΣA and ΣB topos-externally as locales in Set. By very
similar arguments, a ∗-homomorphism φ : A → B induces a morphism from ΣB to ΣA.

The map Gφ : ΣB → ΣA between the Gel’fand spectra of abelian C∗-algebras A,B
induced by a ∗-homomorphism φ : A → B is continuous. It remains to be worked out how
the notion of continuity generalises to the nonabelian situation: in which sense, if any, can
the composite G ◦Φ∗ : ΣB → ΣA be regarded as continuous? (It is known that the spectral
presheaves each carry a distinguished family of subobjects that can be seen as opens.)

4 Reduction to ordinary Gel’fand duality

If A is an abelian C∗-algebra, we expect to get back ordinary Gel’fand duality. This does
not quite happen, though: the poset V(A) contains all abelian C∗-subalgebras of A, so A
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itself is the top element of V(A) (if A is abelian), but is not the only element. Accordingly,
the spectral presheaf ΣA will contain the Gel’fand spectrum of A, but also the spectra of
all its subalgebras. This can easily be remedied if we consider the poset VZ(A) of those
abelian subalgebras that contain the center Z of A: for A abelian, Z = A, and the poset

VZ(A) contains only A. Hence, Set
VZ(A)op = Set, and we are in the usual situation that

the spectrum of the abelian algebra A is an object in Set, i.e., it is a set (with additional
structure).

The choice of VZ(A) as the poset of abelian subalgebras and base category of the
topos still makes sense if A is nonabelian. Then VZ(A) of course contains more than one
element, and the spectral presheaf lives in a topos different from Set.

5 The action of the unitary group

Let Û ∈ A be a unitary operator. Then

l
Û

: A −→ A

Â 7−→ Û ÂÛ−1

is a ∗-homomorphism from A to itself. Of course, unitary operators are of central impor-
tance in quantum theory, both for the description of time evolution and to express covari-
ance properties. l

Û
induces an automorphism

l̃
Û

: V(A) −→ V(A)

C 7−→ ÛCÛ−1

of the poset of abelian subalgebras and hence a geometric automorphismL
Û

: Set
V(A)op →

Set
V(A)op of the topos associated with A. The inverse image functor L∗

Û
acts on the spec-

tral presheaf ΣA in the following way:

∀C ∈ V(A) : L∗
Û
(ΣA)C = (ΣA ◦ l̃

Û
)C = ΣA

l̃
Û

(C)
.

We apply the same trick as before and use Gel’fand duality: the morphism l
Û
|C : C →

l
Û
(C) of abelian C∗-algebras induces a function Gl

Û
: Σφ(C) → ΣC , which allows us to

define
Gl

Û
(L∗

Û
(ΣA)C) = Gl

Û
(ΣA

l̃
Û

)C = {λ ◦ l
Û
|C | λ ∈ ΣA

l̃
Û

(C)
}

Clearly, Gl
Û
(L∗

Û
(ΣA)C) can be identified with ΣA

C . This may seem trivial: we have just

mapped each component ΣA
C of the spectral presheaf to itself. Yet, this is not actually a

problem, since subobjects of ΣA are not left invariant, they are ‘rotated’ by the action of
Gl

Û
◦ L∗

Û
in the appropriate way, as we will show now.

Let S be a subobject of ΣA. In particular, for each component SC , we have SC ⊆ ΣA
C .

Then
Gl

Û
(L∗

Û
(S)C) = {λ ◦ l

Û
|C | λ ∈ S l̃

Û
(C)}.
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Intuitively, this means that the application of Gl
Û
◦ L∗

Û
to S gives a subobject that has the

same ‘shape’ as S, but is rotated by Û . For each C ∈ V(A), the component Sl
Û

(C) at
l
Û
(C) is moved to become the new component at C.

The inverse transformation is the geometric morphism L
Û−1 induced by the unitary

Û−1, composed with the arrow Gl
Û−1

. It is clear that two different unitaries Û1, Û2 induce
two different geometric morphisms L

Û1
, L

Û2
. We have shown:

Proposition 2 There is a faithful representation of the unitary group U(A) of the algebra
A by automorphisms of Sub(ΣA), the set of subobjects of the spectral presheaf ΣA .

For a von Neumann algebra N , we can consider the automorphisms l
Û

: N → N

(Û ∈ U(N )) as well, since they are weakly continuous. Hence, we also get a faithful
representation of the unitary group U(N ) by automorphisms of Sub(ΣN ).

6 Future work

There are many interesting open questions. The first one is if and how the map G ◦ Φ∗ :
ΣB → ΣA defined above can be seen as continuous. Of course, it is of great interest to
see whether there is a functor from spectral presheaves (and the topoi in which they lie) to
C∗-algebras, giving the other half of a noncommutative Gel’fand duality. Clearly, this is a
highly non-trivial problem and will require new ideas.
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