Some steps towards noncommutative Gel'fand duality

Andreas Döring*

University of Oxford

Abstract

Gel'fand duality is one of the central mathematical insights of the last century [7]. Each abelian C^* -algebra \mathcal{A} gives rise to a compact or locally compact Hausdorff space, the Gel'fand spectrum $\Sigma^{\mathcal{A}}$. Conversely, each compact or locally compact Hausdorff space X determines an abelian C^* -algebra C(X) of continuous functions. In quantum theory, *noncommutative* C^* -algebras play a central rôle, but we are still lacking a good notion of spectrum for these algebras. Such a spectrum would be a suitable noncommutative space and would provide quantum theory with a geometrical underpinning that is absent so far. In previous work [5, 6], it was shown that the spectral presheaf $\Sigma^{\mathcal{A}}$ associated with an arbitrary unital C^* - or von Neumann algebra \mathcal{A} has many properties of a spectrum. Here we show that the assignment $\mathcal{A} \mapsto \Sigma^{\mathcal{A}}$ is functorial in a suitable sense and can be seen as the first half of a noncommutative version of Gel'fand duality. We show that for abelian algebras, our construction reduces to ordinary Gel'fand duality. Moreover, it is shown how the group of unitary operators in a von Neumann algebra is faithfully represented by automorphisms of the (set of subobjects of the) spectral presheaf.

1 Introduction

There is a well-developed strand of research aiming to describe the spectra of nonabelian C^* -algebras in terms of noncommutative topology. This approach has first been developed in functional analysis by Akemann [1, 2], Giles and Kummer [8] in the late 1960s and early 1970s, and later on in the form of quantales by Mulvey [9], Borceux, Rosický [3, 4] and others. On the other hand, the topos approach to the formulation of physical theories [6] has led to the consideration of certain spaces without points associated with nonabelian C^* - and von Neumann algebras. The object in question is the spectral presheaf. Let \mathcal{A} be a C^* -algebra, and let $\Sigma^{\mathcal{A}}$ be its spectral presheaf (see definition below). Here, we show that this assignment is functorial in a suitable sense and prove some consequences. We consider arbitrary *-homomorphisms between unital C^* -algebras.

^{*}andreas.doering@comlab.ox.ac.uk

2 The spectral presheaf

Let \mathcal{A} be an arbitrary unital C^* -algebra, and let $\mathcal{V}(\mathcal{A})$ be the set of commutative, unital C^* -subalgebras of \mathcal{A} such that the unit element in each $C \in \mathcal{V}(\mathcal{A})$ is the unit element in \mathcal{A} . $\mathcal{V}(\mathcal{A})$ is partially ordered under inclusion. The *spectral presheaf* $\Sigma^{\mathcal{A}}$ of \mathcal{A} is the contravariant, Set-valued functor on $\mathcal{V}(\mathcal{A})$ defined

- (a) on objects: for all $C \in \mathcal{V}(\mathcal{A})$, let $\underline{\Sigma}_{C}^{\mathcal{A}}$ be the Gel'fand spectrum of C, i.e., the space of characters of C, equipped with the Gel'fand topology;
- (b) on arrows: for all inclusions i_{C'C}, let Σ^A(i_{C'C}) : Σ^A_C → Σ^A_{C'} be the function that sends each character λ to its restriction λ|_{C'} to the smaller algebra. This function is well-known to be continuous and surjective.

An analogous definition exists for arbitrary von Neumann algebras \mathcal{N} . In this case, we consider the poset $\mathcal{V}(\mathcal{N})$ of abelian, counital *von Neumann* subalgebras and define the spectral presheaf $\underline{\Sigma}^{\mathcal{N}}$ over this category.

3 The main result

In fact, we want to assign to a given C^* -algebra \mathcal{A} not just its spectral presheaf, but the *topos* $\mathbf{Set}^{\mathcal{V}(\mathcal{A})^{\mathrm{op}}}$ of presheaves over the context category $\mathcal{V}(\mathcal{A})$, together with the distinguished object $\underline{\Sigma}^{\mathcal{A}} \in Ob(\mathbf{Set}^{\mathcal{V}(\mathcal{A})^{\mathrm{op}}})$. (Analogously for von Neumann algebras \mathcal{N} .) The reason is the following:

Theorem 1 Each *-homomorphism $\phi : \mathcal{A} \to \mathcal{B}$ between unital C^* -algebras induces a geometric morphism $\Phi : \mathbf{Set}^{\mathcal{V}(\mathcal{A})^{\mathrm{op}}} \to \mathbf{Set}^{\mathcal{V}(\mathcal{B})^{\mathrm{op}}}$ between the associated topoi such that the inverse image functor $\Phi^* : \mathbf{Set}^{\mathcal{V}(\mathcal{B})^{\mathrm{op}}} \to \mathbf{Set}^{\mathcal{V}(\mathcal{A})^{\mathrm{op}}}$ maps the spectral presheaf $\underline{\Sigma}^{\mathcal{B}}$ of \mathcal{B} to an object $\Phi^*(\underline{\Sigma}^{\mathcal{B}})$ in the topos $\mathbf{Set}^{\mathcal{V}(\mathcal{A})^{\mathrm{op}}}$. Using Gel'fand duality at each stage, we obtain a subobject $(\mathcal{G} \circ \Phi^*)(\underline{\Sigma}^{\mathcal{B}})$ of the spectral presheaf $\underline{\Sigma}^{\mathcal{A}}$ of \mathcal{A} .

This shows that each morphism ϕ of C^* -algebras induces a morphism in the opposite direction between the associated spectral presheaves. Hence, the assignment $\mathcal{A} \mapsto \underline{\Sigma}^{\mathcal{A}}$ is functorial. The map from $\underline{\Sigma}^{\mathcal{B}}$ to $\underline{\Sigma}^{\mathcal{A}}$ constructed in the proof below is the generalisation of the continuous map $\underline{\Sigma}^{\mathcal{B}} \to \underline{\Sigma}^{\mathcal{A}}, \lambda \to \lambda \circ \varphi$ between the Gel'fand spectra induced by a *-homomorphism $\varphi : \mathcal{A} \to \mathcal{B}$ between abelian C^* -algebras. (Note that we have contravariance.)

Proof. Let $C \in \mathcal{V}(\mathcal{A})$ be an abelian subalgebra of \mathcal{A} . It is straightforward to show that $\phi(C)$ is an abelian C^* -subalgebra of \mathcal{B} . Clearly, if $C' \subset C$, then $\phi(C') \subseteq \phi(C)$, hence ϕ induces a morphism

$$\tilde{\phi}: \mathcal{V}(\mathcal{A}) \longrightarrow \mathcal{V}(\mathcal{B})$$
$$C \longmapsto \phi(C)$$

of posets, i.e., an order-preserving map. The posets $\mathcal{V}(\mathcal{A})$ and $\mathcal{V}(\mathcal{B})$ are the base categories of the topoi $\mathbf{Set}^{\mathcal{V}(\mathcal{A})^{\mathrm{op}}}$ and $\mathbf{Set}^{\mathcal{V}(\mathcal{B})^{\mathrm{op}}}$, so $\tilde{\phi}$ induces a geometric morphism Φ : $\mathbf{Set}^{\mathcal{V}(\mathcal{A})^{\mathrm{op}}} \to \mathbf{Set}^{\mathcal{V}(\mathcal{B})^{\mathrm{op}}}$. The inverse image functor Φ^* is given by

$$\Phi^*: \mathbf{Set}^{\mathcal{V}(\mathcal{B})^{\mathrm{op}}} \longrightarrow \mathbf{Set}^{\mathcal{V}(\mathcal{A})^{\mathrm{op}}}$$
$$P \longmapsto P \circ \tilde{\phi}$$

In particular, $\Phi^*(\underline{\Sigma}^{\mathcal{B}}) = \underline{\Sigma}^{\mathcal{B}} \circ \tilde{\phi}$, and we obtain

$$\forall C \in \mathcal{V}(\mathcal{A}) : \Phi^*(\underline{\Sigma}^{\mathcal{B}})_C = (\underline{\Sigma}^{\mathcal{B}} \circ \tilde{\phi})_C = \underline{\Sigma}^{\mathcal{B}}_{\tilde{\phi}(C)}.$$

Now we can apply ordinary Gel'fand duality: for each $C \in \mathcal{V}(\mathcal{A})$, we have an arrow $\phi|_C : C \to \phi(C)$ between abelian C^* -algebras, which determines a continuous function $\mathcal{G}_{\phi|_C} : \Sigma_{\phi(C)} \to \Sigma_C$ given by $\lambda \mapsto \lambda \circ \phi|_C$. Using the fact that $\underline{\Sigma}^{\mathcal{B}}_{\phi(C)} = \Sigma_{\phi(C)}$ and $\underline{\Sigma}^{\mathcal{A}}_{C} = \Sigma_{C}$, we define

$$\forall C \in \mathcal{V}(\mathcal{A}) : \mathcal{G}_{\phi|_C}(\Phi^*(\underline{\Sigma}^{\mathcal{B}})_C) = \mathcal{G}_{\phi|_C}(\underline{\Sigma}^{\mathcal{B}}_{\phi|_C}) = \{\lambda \circ \phi|_C \mid \lambda \in \underline{\Sigma}^{\mathcal{B}}_{\phi}(C)\} \subseteq \underline{\Sigma}^{\mathcal{A}}_C.$$

It is easy to check that the components $\mathcal{G}_{\phi|_{C}}$ ($C \in \mathcal{V}(\mathcal{A})$) assemble into a natural transformation $\mathcal{G} : \Phi^{*}(\underline{\Sigma}^{\mathcal{B}}) \to \underline{\Sigma}^{\mathcal{A}}$ and that the image of $\Phi^{*}(\underline{\Sigma}^{\mathcal{B}})$ under \mathcal{G} is a subobject of $\underline{\Sigma}^{\mathcal{A}}$. We write this subobject as $(\mathcal{G} \circ \Phi^{*})(\underline{\Sigma}^{\mathcal{B}})$.

For von Neumann algebras \mathcal{M}, \mathcal{N} , the appropriate morphisms are weakly continuous *-homomorphisms $\phi : \mathcal{M} \to \mathcal{N}$. Such a ϕ induces an order-preserving map $\tilde{\phi} : \mathcal{V}(\mathcal{M}) \to \mathcal{V}(\mathcal{N})$ between the posets of abelian von Neumann subalgebras, which in turn determines a geometric morphism $\Phi : \mathbf{Set}^{\mathcal{V}(\mathcal{M})^{\mathrm{op}}} \to \mathbf{Set}^{\mathcal{V}(\mathcal{N})^{\mathrm{op}}}$. The composite $\mathcal{G} \circ \Phi^*$ maps $\underline{\Sigma}^{\mathcal{N}}$ to $\underline{\Sigma}^{\mathcal{M}}$.

The mapping $\mathcal{G} \circ \Phi^*$ is a composite of the inverse image part of a geometric morphism, i.e., and arrow between from the topos $\mathbf{Set}^{\mathcal{V}(\mathcal{B})^{\mathrm{op}}}$ to the topos $\mathbf{Set}^{\mathcal{V}(\mathcal{A})^{\mathrm{op}}}$, and an arrow \mathcal{G} in the topos $\mathbf{Set}^{\mathcal{V}(\mathcal{A})^{\mathrm{op}}}$. As matters stand, \mathcal{G} is not yet a functor from $\mathbf{Set}^{\mathcal{V}(\mathcal{A})^{\mathrm{op}}}$ to itself, because it is only defined by its action on $\Phi^*(\underline{\Sigma}^{\mathcal{B}})$. Since this is all we need here (and \mathcal{G} is not applied to any other object in $\mathbf{Set}^{\mathcal{V}(\mathcal{A})^{\mathrm{op}}}$), we are at liberty to extend the definition of \mathcal{G} to other objects and arrows in $\mathbf{Set}^{\mathcal{V}(\mathcal{A})^{\mathrm{op}}}$ such that it becomes a functor. Another option is to consider the spectral presheaves $\underline{\Sigma}^{\mathcal{A}}$ and $\underline{\Sigma}^{\mathcal{B}}$ topos-externally as locales in \mathbf{Set} . By very similar arguments, a *-homomorphism $\phi : \mathcal{A} \to \mathcal{B}$ induces a morphism from $\underline{\Sigma}^{\mathcal{B}}$ to $\underline{\Sigma}^{\mathcal{A}}$.

The map $\mathcal{G}_{\phi} : \Sigma^{\mathcal{B}} \to \Sigma^{\mathcal{A}}$ between the Gel'fand spectra of abelian C^* -algebras \mathcal{A}, \mathcal{B} induced by a *-homomorphism $\phi : \mathcal{A} \to \mathcal{B}$ is continuous. It remains to be worked out how the notion of continuity generalises to the nonabelian situation: in which sense, if any, can the composite $\mathcal{G} \circ \Phi^* : \underline{\Sigma}^{\mathcal{B}} \to \underline{\Sigma}^{\mathcal{A}}$ be regarded as continuous? (It is known that the spectral presheaves each carry a distinguished family of subobjects that can be seen as opens.)

4 Reduction to ordinary Gel'fand duality

If \mathcal{A} is an abelian C^* -algebra, we expect to get back ordinary Gel'fand duality. This does not quite happen, though: the poset $\mathcal{V}(\mathcal{A})$ contains all abelian C^* -subalgebras of \mathcal{A} , so \mathcal{A} itself is the top element of $\mathcal{V}(\mathcal{A})$ (if \mathcal{A} is abelian), but is not the only element. Accordingly, the spectral presheaf $\underline{\Sigma}^{\mathcal{A}}$ will contain the Gel'fand spectrum of \mathcal{A} , but also the spectra of all its subalgebras. This can easily be remedied if we consider the poset $\mathcal{V}^{Z}(\mathcal{A})$ of those abelian subalgebras that contain the center Z of \mathcal{A} : for \mathcal{A} abelian, $Z = \mathcal{A}$, and the poset $\mathcal{V}^{Z}(\mathcal{A})$ contains only \mathcal{A} . Hence, $\mathbf{Set}^{\mathcal{V}^{Z}(\mathcal{A})^{\mathrm{op}}} = \mathbf{Set}$, and we are in the usual situation that the spectrum of the abelian algebra \mathcal{A} is an object in \mathbf{Set} , i.e., it is a set (with additional structure).

The choice of $\mathcal{V}^{\mathbb{Z}}(\mathcal{A})$ as the poset of abelian subalgebras and base category of the topos still makes sense if \mathcal{A} is nonabelian. Then $\mathcal{V}^{\mathbb{Z}}(\mathcal{A})$ of course contains more than one element, and the spectral presheaf lives in a topos different from **Set**.

5 The action of the unitary group

Let $\hat{U} \in \mathcal{A}$ be a unitary operator. Then

$$\begin{split} l_{\hat{U}} &: \mathcal{A} \longrightarrow \mathcal{A} \\ \hat{A} &\longmapsto \hat{U} \hat{A} \hat{U}^{-1} \end{split}$$

is a *-homomorphism from A to itself. Of course, unitary operators are of central importance in quantum theory, both for the description of time evolution and to express covariance properties. $l_{\hat{U}}$ induces an automorphism

$$l_{\hat{U}}: \mathcal{V}(\mathcal{A}) \longrightarrow \mathcal{V}(\mathcal{A})$$
$$C \longmapsto \hat{U}C\hat{U}^{-1}$$

of the poset of abelian subalgebras and hence a geometric automorphism $L_{\hat{U}} : \mathbf{Set}^{\mathcal{V}(\mathcal{A})^{\mathrm{op}}} \to \mathbf{Set}^{\mathcal{V}(\mathcal{A})^{\mathrm{op}}}$ of the topos associated with \mathcal{A} . The inverse image functor $L_{\hat{U}}^*$ acts on the spectral presheaf $\underline{\Sigma}^{\mathcal{A}}$ in the following way:

$$\forall C \in \mathcal{V}(\mathcal{A}) : L^*_{\hat{U}}(\underline{\Sigma}^{\mathcal{A}})_C = (\underline{\Sigma}^{\mathcal{A}} \circ \tilde{l}_{\hat{U}})_C = \underline{\Sigma}^{\mathcal{A}}_{\tilde{l}_{\hat{U}}(C)}$$

We apply the same trick as before and use Gel'fand duality: the morphism $l_{\hat{U}}|_C : C \to l_{\hat{U}}(C)$ of abelian C^* -algebras induces a function $\mathcal{G}_{l_{\hat{U}}} : \Sigma_{\phi(C)} \to \Sigma_C$, which allows us to define

$$\mathcal{G}_{l_{\hat{U}}}(L^*_{\hat{U}}(\underline{\Sigma}^{\mathcal{A}})_C) = \mathcal{G}_{l_{\hat{U}}}(\underline{\Sigma}^{\mathcal{A}}_{\tilde{l}_{\hat{U}}})_C = \{\lambda \circ l_{\hat{U}}|_C \mid \lambda \in \underline{\Sigma}^{\mathcal{A}}_{\tilde{l}_{\hat{U}}(C)}\}$$

Clearly, $\mathcal{G}_{l_{\hat{U}}}(L^*_{\hat{U}}(\underline{\Sigma}^{\mathcal{A}})_C)$ can be identified with $\underline{\Sigma}^{\mathcal{A}}_C$. This may seem trivial: we have just mapped each component $\underline{\Sigma}^{\mathcal{A}}_C$ of the spectral presheaf to itself. Yet, this is not actually a problem, since subobjects of $\underline{\Sigma}^{\mathcal{A}}$ are not left invariant, they are 'rotated' by the action of $\mathcal{G}_{l_{\hat{U}}} \circ L^*_{\hat{U}}$ in the appropriate way, as we will show now.

Let <u>S</u> be a subobject of $\underline{\Sigma}^{\mathcal{A}}$. In particular, for each component <u>S</u>_C, we have <u>S</u>_C $\subseteq \underline{\Sigma}_{C}^{\mathcal{A}}$. Then

$$\mathcal{G}_{l_{\hat{U}}}(L^*_{\hat{U}}(\underline{S})_C) = \{\lambda \circ l_{\hat{U}}|_C \mid \lambda \in \underline{S}_{\tilde{l}_{\hat{U}}(C)}\}.$$

Intuitively, this means that the application of $\mathcal{G}_{l_{\hat{U}}} \circ L^*_{\hat{U}}$ to \underline{S} gives a subobject that has the same 'shape' as \underline{S} , but is rotated by \hat{U} . For each $C \in \mathcal{V}(\mathcal{A})$, the component $\underline{S}_{l_{\hat{U}}(C)}$ at $l_{\hat{U}}(C)$ is moved to become the new component at C.

The inverse transformation is the geometric morphism $L_{\hat{U}^{-1}}$ induced by the unitary \hat{U}^{-1} , composed with the arrow $\mathcal{G}_{l_{\hat{U}^{-1}}}$. It is clear that two different unitaries \hat{U}_1, \hat{U}_2 induce two different geometric morphisms $L_{\hat{U}_1}, L_{\hat{U}_2}$. We have shown:

Proposition 2 There is a faithful representation of the unitary group $\mathcal{U}(\mathcal{A})$ of the algebra \mathcal{A} by automorphisms of $\operatorname{Sub}(\underline{\Sigma}^{\mathcal{A}})$, the set of subobjects of the spectral presheaf $\underline{\Sigma}^{\mathcal{A}}$.

For a von Neumann algebra \mathcal{N} , we can consider the automorphisms $l_{\hat{U}} : \mathcal{N} \to \mathcal{N}$ $(\hat{U} \in \mathcal{U}(\mathcal{N}))$ as well, since they are weakly continuous. Hence, we also get a faithful representation of the unitary group $\mathcal{U}(\mathcal{N})$ by automorphisms of $\mathrm{Sub}(\underline{\Sigma}^{\mathcal{N}})$.

6 Future work

There are many interesting open questions. The first one is if and how the map $\mathcal{G} \circ \Phi^*$: $\underline{\Sigma}^{\mathcal{B}} \to \underline{\Sigma}^{\mathcal{A}}$ defined above can be seen as continuous. Of course, it is of great interest to see whether there is a functor from spectral presheaves (and the topoi in which they lie) to C^* -algebras, giving the other half of a noncommutative Gel'fand duality. Clearly, this is a highly non-trivial problem and will require new ideas.

References

- C.A. Akemann, *The General Stone-Weierstrass Problem*, J. Functional Analysis 4, 277–294 (1969).
- [2] C.A. Akemann, Left Ideal Structure of C*-Algebras, J. Functional Analysis 6, 305– 317 (1970).
- [3] F. Borceux, G. van den Bossche, An essay on noncommutative topology, Topology and its Applications 31, 203–223 (1989).
- [4] F. Borceux, J. Rosický, G. van den Bossche, *Quantales and C*-algebras*, Journal of the London Mathematical Society 40, 398–404 (1989).
- [5] A. D'oring, C.J. Isham, A topos foundation for theories of physics: II. Daseinisation and the liberation of quantum theory, J. Mathematical Physics 49, 053516 (2008).
- [6] A. D'oring, C.J. Isham, 'What is a Thing?': Topos Theory in the Foundations of Physics, arXiv:0803.0417, to appear in New Structures in Physics, ed. Bob Coecke, Springer (2010).
- [7] I. Gelfand and M. Neumark, On the imbedding of normed rings into the ring of operators in Hilbert space, Rec. Math. [Mat. Sbornik] N.S. 12(54):2, 197–217 (1943).
- [8] R. Giles, H. Kummer, A non-commutative generalization of topology, Indiana University Mathematics Journal **21**, no. 1, 91–102 (1971).
- [9] C.J. Mulvey, &, Suppl. Rend. Circ. Mat. Palermo Ser. II, 12, 99–104 (1986).