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Abstract
We propose a new approach towards the question of whether the equational the-

ory of ortholattices related to Quantum Mechanics is decidable or not: By determin-
ing the growth of the algorithmic complexity of the word problem over d-dimensional
Hilbert lattices for d = 1, 2, 3, . . . In case d = 1, the (complement of the) word prob-
lem amounts to the Boolean satisfiability problem underlying the millennium ques-
tion “P = NP?” We show the case d = 2 to be NP-complete as well. For fixed
d ≥ 3 and building on Hagge et.al (2005,2007,2009), we reveal quantum satisfiabil-
ity as polytime-equivalent to the real feasibility of a multivariate quartic polynomial
equation: a problem well-known complete for the counterpart of NP in the Blum-
Shub-Smale model of computation lying (probably strictly) between classical NP and
PSPACE. We finally address the problem over indefinite finite dimensions.

1 Introduction

Quantum logic has been motivated by the physical effects exhibited by elementary particles
and their mathematical description on Hilbert space whose closed subspaces correspond to
0/1-observables [BiVN36, Mack63]. The goal is to capture the underlying hard functional
analysis into algebraic properties to be studied in the concrete geometric setting [Maye98,
Maye07, Wilc09] or to be explored in an axiomatic setting [Megi09] known as synthetic
approach.

Computer science has been introduced to the quantum world by FEYNMAN and grown
into a flourishing and ambitious field: a quantum computer is considered essentially the
very kind of abstract device that can execute SHOR’s famous ‘algorithm’ for factoring
integers in polynomial time. However, other means of harnessing operations on quantum
states [CDS01, ACP04, Kieu03, Zieg05] and observables [Pyka00, Ying05, PM07a] for
computational purposes have been suggested as well.

1.1 Motivation

The word problem for free algebraic structures in an equationally defined class is the ques-
tion of whether two terms f, g are equivalent modulo the defining laws. In other words,
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given a class S of structures, one asks whether there is a decision procedure for the equa-
tional theory of S, i.e. deciding which identities f = g hold in all members of S under
all substitutions. If so, terms can be simplified; and detecting and applying such simpli-
fications automatically is at the core of computer algebra systems. The first structures to
be related to quantum logic were the ortholattices Gr(H) of closed subspaces of Hilbert
spaces: in the modular finite dimensional version Gr(Fd) [BiVN36] and the non-modular
but orthomodular infinite dimensional version [Mack63]. Here, identities may be reduced
to the form f = 0. In the synthetic context, decidability is known for the word problem for
free ortholattices [BrKa73] but remains an open challenge in the orthomodular [Herr87] as
well as in the modular-ortho case (cf. [HMR05]). In the geometric context of (modular)
projection lattices of finite von Neumann algebra factors, decidability has been shown in
[Herr10].

For each fixed-dimensional ortholattice Gr(Fd), the first-order theory is decidable
[DHMW05, SECTION 3]; but over the class of all Gr(Fd), d ∈ N, it is not [Lips74].
The present work starts exploring more closely the algorithmic properties and obstacles
(in the sense of computational complexity) of the finite-dimensional case; in particular the
interplay of the two natural ‘negations’ of “f = 0 identically”: f > 0 for some substitution
resp. f = 1 identically. We hope that this will gain new insights that eventually permit to
attack the infinite-dimensional case as well.

1.2 The Theory of Computation

studies the capabilities and limitations of digital computers. More precisely, complexity
theory explores the problems solvable within given bounds on the time/memory asymp-
totically granted for their algorithmic solution; and computability theory investigates the
case without (or ‘infinite’) such bounds. Formally, a set L of finite (w.l.o.g. binary)
strings amounts to the decision problem of determining, for any given finite binary string
x̄ ∈ {0, 1}∗ :=

⋃

n∈N
{0, 1}n, whether it belongs to L or not; and this problem is con-

sidered decidable (in asymptotic time t(n) and space s(n), where s, t : N → N denote
functions) if some Turing machine can, for every x̄ ∈ {0, 1}n and every n ∈ N and after
O

(

t(n)
)

steps and using at most O
(

s(n)
)

bits of memory, correctly report which of x̄ ∈ L
or x̄ 6∈ L holds. Note that there are at most countably many algorithms but uncountably
many subsets L of {0, 1}∗; hence most problems are in fact undecidable.

P is by definition the class of polynomial-time decision problems i.e. those solvable
within time O(nk) for some k ∈ N; similarly EXP for problems solvable in time 2O(nk),
k ∈ N. PSPACE denotes the class of those solvable within polynomial space. And NP
consists of those decision problems admitting a polynomial-time verification, i.e. problems
of the form

L =
{

~x ∈ {0, 1}n
∣

∣ n ∈ N, ∃~y ∈ {0, 1}nk

: (~x, ~y) ∈ P
}

with k ∈ N and P ∈ P . Obviously, P ⊆ NP ; and NP ⊆ PSPACE ⊆ EXP are not too
hard to see as well. It remains a big open challenge which equalities holds. In any case, the
Cook-Levin Theorem shows the Boolean satisfiability problem to be a hardest one in the
class NP : SAT =
{

〈ϕ〉
∣

∣ m ∈ N, ϕ m-variate Boolean formula, ∃y1, . . . , ym ∈ {0, 1} : ϕ(y1, . . . , ym) = 1
}
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is easily verified in time polynomial in the length of the binary encoding 〈ϕ〉 ofϕ; and every
other problem L ∈ NP can be reduced in polynomial-time to SAT (written “L � SAT”)
in the following sense: There exists a function f : {0, 1}∗ → {0, 1}∗ computable in
polynomial time such that it holds: ~x ∈ L ⇔ f(~x) ∈ SAT. In particular if SAT ∈ NP
turns out decidable in polynomial time, then so does entire NP . For further reading, we
refer to [Papa94].

1.3 Satisfiability in Geometric Quantum Logic

As opposed to the synthetic view, we focus on the explicit modular ortholattices of sub-
spaces of Rd and Cd, respectively (and are thus perhaps even closer to the origins of quan-
tum logic).

Definition 1 Fix d ∈ N and let F ⊆ C denote a field (popular cases being e.g. F = C

itself, F = A algebraic numbers, F = R real numbers, F = Q rationals, and F = A ∩ R

algebraic reals).

a) The quantum logic of Fd consists of the set Gr(Fd) :=
⋃d

i=0 Gri(F
d) of all sub-

spaces of Fd of dimension† 0 ≤ i ≤ d (i.e. the Grassmannian) equipped with the
connectives

¬ : Gri(F
d) → Grd−i(F

d), P 7→ P⊥ := {~y ∈ Fd : 0
!
= 〈~y, ~x〉 :=

∑

j

y∗j · xj ∀~x ∈ p}

∧,∨ : Gr(Fd) × Gr(Fd) → Gr(Fd), ∧ : (P,Q) 7→ P ∩Q, ∨ : (P,Q) 7→ P +Q.

b) A quantum logic formula f over variables X1, . . . , Xn is a well-formed term over
Xi, ¬, ∧, and ∨. (We sometimes write f( ~X) to emphasize the role of the variables
(X1, . . . , Xn) =: ~X .)

c) For a fixed ortholattice L, a formula f(X1, . . . , Xn) gives rise to a mapping f :

Ln → L via (Y1, . . . , Yn) 7→ f(Y1, . . . , Yn). In case f(~Y ) = 1, we say that f(~Y )

evaluates to true (over L); f(~Y ) 6= 0 means that f(~Y ) is weakly true (i.e. not
false).

d) A formula f(X1, . . . , Xn) is (strongly) satisfiable over L if there exist Y1, . . . , Yn ∈

L such that f(~Y ) = 1. It is weakly satisfiable if f(~Y ) 6= 0 for some Y1, . . . , Yn ∈ L.

1.4 Blum-Shub-Smale (BSS) Model of Real Number Computation

Note that the Turing machine is inherently limited to computability and complexity consid-
erations over discrete structures like {0, 1}∗ or, encoded in binary, integers N and fractions
thereof: Q. For investigations involving algebraic numbers, BLUM, SHUB, and SMALE

have proposed a generalized abstract machine (which had, independently and under the
name real-RAM, been underlying most algorithms in Computational Geometry) capable

†We adopt the affine notion of dimension because it coincides with the height of the induced lattice in contrast
to the projective dimension
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of reading, storing, comparing, and arithmetically operating on real numbers exactly and
in on step each [BSS89]. This gives rise to the class P0

R
of real problems—i.e. subsets

of R∗ =
⋃

n∈N
Rn—decidable by a BSS machine in time polynomial in n. (Super-

script ”0” indicates that, as opposed to the prevalent convention, our BSS programs may
use no pre-stored constants other than 0 and 1.) Now NP0

R
is defined as above as the

class of real problems polynomial-time verifiable in the sense that they are of the form
{

~x ∈ Rn
∣

∣ n ∈ N, ∃~y ∈ Rnk

: (~x, ~y) ∈ P
}

with k ∈ N and P ∈ P0
R

. And the ques-
tion “P0

R
= NP0

R
?” has turned out as as notorious as its original [FoKo00]. Note that,

as opposed to the discrete case, the BSS-decidability of all problems in NP0
R is not ob-

vious: Naively, there are uncountably many putative witnesses ~y to check for (~x, ~y) ∈ P.
In fact an effectivization of TARSKI’s quantifier elimination comes into play here; and the
stronger statement “NP0

R ⊆ EXP0
R” requires even more sophisticated arguments. For later

reference, we record here the following

Fact 2 a) Given (the entries of) real n × n-matrices A,B, a BSS machine executing
Gaußian elimination can in time O(n3) calculate matrices C∧, C∨, C¬ ∈ Rn×n

with range(C∧) = range(A)∧ range(B), range(C∨) = range(A)∨ range(B), and
range(C¬) = ¬ range(A).

b) The following problem is a BSS-counterpart to SAT in the sense that it is BP(NP0
R)-

complete: Given a multivariate polynomial of total degree 4 with coefficients from
{0,±1,±2}, does it admit a real root?

Here BP(NP0
R
) :=

{

L ∩ {0, 1}∗ : L ∈ NP0
R

}

denotes the restriction of complexity class
NP0

R
to languages over (i.e. to inputs being) bit strings.

The computational problem in Item b) is denoted 4FEAS in [BCSS98]. For a proof cf. e.g.
[MeMi97].

It is easy to see that BP(NP0
R) contains the classical NP ; moreover, a collection

of highly celebrated results has established BP(NP0
R
) ⊆ PSPACE [Grig88, Cann88,

HRS90, Rene92]. As of today, this remains the best known upper bound—although it
is believed far from optimal regarding that both the Turing and BSS polynomial hierarchy
lie within PSPACE as well [CuGr97].

2 Results

Since Gr(F1) = {0, 1}, the classical (i.e. Boolean) satisfiability problem amounts to (weak
or, equivalently, strong) satisfiability over 1D quantum logic. We extend the Cook-Levin
Theorem (“SAT is NP-complete”) to the 2D case:

Theorem 3 Let F2 denote any 2-dimensional inner product space.

a) [Weak] satisfiability over Gr(F2) of a given formula f is in NP , i.e. can be verified
in polynomial time.

b) Boolean satisfiability is polynomial-time reducible to [weak] 2D satisfiability, i.e. is
NP-hard.
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Naively, there are infinitely many putative witnesses Y1, . . . , Yn ∈ Gr(F2) to make f eval-
uate to true [non-false] in Claim a). However in the 2D case, the sub-ortholattice
spanned by any such an assignment is embeddable into MOn, the height 2 ortholattice
with 2n atoms; hence it suffices to verify satisfiability of f over this linear-size lattice.
For Claim b), we encode Booleans into MOn by requiring Yi, Yj to pairwise commute:
formula f(Y1, . . . , Yn) is satisfiable over {0, 1} iff f(Y1, . . . , Yn) ∧

∧

j<j C(Yi, Yj) is
satisfiable over Gr(Fd), independent of d.

2.1 Three and Higher (but fixed) Dimension

Here, quantum satisfiability turns out as BP(NP0
R
)-complete:

Theorem 4 Fix d ≥ 3 and let F denote one of the fields C,R,A, or A ∩ R.

a) [Weak] satisfiability over Gr(Fd) of a given formula f can be verified by a BSS
machine in polynomial time, i.e. is in BP(NP0

R).

b) 4FEAS is BP(NP0
R
)-complete, i.e. polynomial-time reducible to [weak] satisfiabil-

ity over Gr(Fd).

Item a) is an improvement over The mere decidability observed in [DHMW05, SECTION 3]
based on Tarski’s quantifier elimination. The authors there also applied Tarski-Seidenberg
to conclude that [weak] satisfiability over Gr(Cd) is equivalent to [weak] satisfiability over
Gr(Ad); similarly for Gr(Rd) and Gr

(

(A ∩ R)d
)

.
Claim a) now follows from Fact 2a), i.e., by verifying f

(

range(A1), . . . , range(An)
)

= 1 [6= 0] for appropriate (real and imaginary parts of) d× d-matrices A1, . . . , An.
For Item b) we combine Fact 2b) with the well-known von Staudt embedding of the

regular ring F into the continuous geometry Gr(F3) [Neum60]. In case F = C, com-
plex conjugation—and in particular the condition for the sought root to be real—can be
expressed as quantum logic formula as well.

The equivalence (in the sense of mutual polynomial-time reducibility) between weak
and strong satisfiability in fixed dimension is based on techniques from [DHMW05, Hagg07,
Hagg09], collected in the following

Fact 5 For an n-variate formula f , let

maxdimF(f, d) := max
{

dim f( ~X) : X1, . . . , Xn ∈ Gr(Fd)
}

.

a) If formulas f and g have no variables in common, then

maxdimF(f ∨ g, d) = max
{

d,maxdimF(f, d) + maxdimF(g, d)
}

.

b) For formulas f( ~X) and g(~Y ) let the restriction f( ~X)|
g(~Y ) be defined by replacing

in f each Xi with Xi ∧ g(~Y ) and each ¬Xi with ¬
(

Xi ∧ g(~Y )
)

∧ g(~Y ), where

w.l.o.g. f( ~X,¬ ~X) is presumed free of negations (de Morgan).
Then it holds maxdimF

(

f |g , d
)

= maxdimF

(

f,maxdimF(g, d)
)

.

c) To any k ∈ N, there exists a formula ψk( ~X) with maxdimF(ψk , d) = bd/kc.
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An alternative approach can build on the fact that, given a von Neumann d-frame in Gr(Fd),
one can define a discriminator [HMR05].

From Theorem 4 we conclude

Corollary 6 Fix d, k ≥ 3. Every formula f can in polynomial time be converted into an-
other formula g such that f is [weakly] satisfiable over Gr(Fd) iff g is [weakly] satisfiable
over Gr(Fk).

2.2 Indefinitely-finite Dimensions

As common in computer science, we use the wildcard ∗ to denote an indefinite but finite
dimension:

Theorem 7 Let F be as in Theorem 4. Call formula f [weakly] satisfiable over Gr(F∗∗∗)
iff it is [weakly] satisfiable over Gr(Fd) for some d ∈ N.

a) Weak satisfiability over Gr(F∗) of a given formula is in BP(NP0
R
)

and in particular decidable in PSPACE.

b) Strong satisfiability over Gr(F∗) of a given formula is BP(NP0
R
)-hard.

c) Strong satisfiability over Gr(F∗) of a given formula is semi-decidable.

We have the following

Lemma 8 Let formula f(X1, . . . , Xn) be weakly satisfiable over Gr(F∗). Then it is also
weakly satisfiable over Gr(Fn`) where ` = |f | denotes the syntactic length of f .

In particular, the proof of Theorem 4a) carries over to matrices of size d×dwith d := n·|f |
polynomial in the input size, thus yielding Theorem 7a). For Theorem 7b) we extend the
proof of Theorem 4b) to embed the matrix ring Fd×d with adjunction as involution into
Gr(F3d); and then encode the additional requirement of all matrices to be symmetric and
pairwise commuting: By the spectral theorem, any satisfying assignment in some dimen-
sion 3d to the thus obtained quantum logic formula corresponds to a d-fold direct product of
roots to the original polynomial. Theorem 7c) follows from iteratively trying d = 1, 2, 3 . . .
and applying Theorem 4b) each.

Question 9 a) Is weak satisfiability over Gr(F∗) NP-hard or even BP(NP0
R
)-hard?

b) Is strong satisfiability over Gr(F∗) decidable?

2.3 First-Order Quantum Logic

In dimensions> 1, the connective “∨” behaves like Boolean disjunction for weak truth; but
“∧” is different from Boolean conjunction: X ∧ Y 6= 0 may well fail for both X,Y 6= 0.
Dually, “∧” behaves in a Boolean way for strong truth but “∨” does not. Furthermore,
Boolean negation is different from complement: X 6= 0⇐6⇒¬X = 0.

Using Fact 5, Boolean semantics can be expressed in existentially quantified quantum
formulas over any fixed dimension; but over indefinitely finite dimensions, the expressive-
ness of quantum logic becomes skew to that of Boolean logic:
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Example 10 a) For every d ∈ N and every X ∈ Gr(Fd), it holds: X ∈ {0, 1}
iff C(X,Y ) = 1 for all Y ∈ Gr(Fd).

b) There is no formula f(X, ~Y ) such that for all d ∈ N it holds: X ∈ {0, 1} ⇔

∃~Y ∈ Gr(Fd) : f(X ; ~Y ) = 1; similarly for f(X ; ~Y ) 6= 0.

In other words: universal quantification strictly adds to the expressiveness of quantum logic
over Gr(F∗); in particular, not every formula is equivalent to a positive primitive one.

This example suggests to study first-order quantum logic, that is, quantum logic for-
mulas with both existential and universal quantifiers ranging over Gr(F∗):

Definition 11 a) Let f( ~X1, . . . , ~Xk) denote a formula in n1 + · · ·+nk variables. Then
the expression

∃ ~X1 ∀ ~X2 ∃ ~X3 . . . Qk
~Xk : f( ~X1, . . . , ~Xk)

is called a Σk-formula, where Qk denotes “∀” for k even and “∃” in case k is odd.
Similarly, a Πk-formula starts with a universal quantifier followed by k−1 alternat-
ing quantifiers.

b) We say that this Σk-formula is true (strongly valid) over Gr(Fd) if there exist
X1,1, . . . , X1,n1

∈ Gr(Fd) such that for all X2,1, . . . , X2,n2
∈ Gr(Fd) there ex-

ist · · · · · · such that f( ~X1, . . . , ~Xk) = 1. Similarly for Πk formulas and for weak
validity.

c) A Σk-formula is strongly/weakly valid over Gr(F∗) if it is over Gr(Fd) for some
d ∈ N. A Πk-formula is strongly/weakly valid over Gr(F∗) if it is over Gr(Fd) for
every d ∈ N.

Note that the negation of a weakly valid Σk formula is a strongly valid Πk formula; and the
negation of a weakly valid Πk formula is a strongly valid Σk formula. Based on [Lips74],
we obtain

Theorem 12 Strong validity over Gr(C∗) of a given Σ4-formula is generally undecidable
to a Turing machine.
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