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Abstract

This paper develops the basics of the theory of involutive categories and shows that
such categories provide the natural setting in which to describe involutive monoids.
It is shown how categories of Eilenberg-Moore algebras of involutive monads are in-
volutive, with conjugation for modules and vector spaces as special case. The core
of the so-called Gelfand-Naimark-Segal (GNS) construction is identified as a bijective
correspondence between states on involutive monoids and inner products. This corre-
spondence exists in arbitrary involutive symmetric monoidal categories.

1 Introduction

In general an involution is a certain endomap i for which i ◦ i is the identity. The inverse
operation of a group is a special example. But there are also monoids with such an in-
volution, such as for instance the free monoid of lists over some set, with list reversal as
involution.

An involution can also be defined on a category. It then consists of an endofunctor

C → C, which is typically written as X 7→ X. It should satisfy X ∼= X . Involutive
categories occur in the literature, for instance in [6, 1], but have not been studied very
extensively. This paper will develop the basic elements of such a theory of involutive
categories. Its main technical contribution is a bijective correspondence between states
M → I on an involutive monoid M and inner products M⊗M → I , relating fundamental
notions in the mathematical modeling of quantum phenomena.

We should note that involutive categories as we understand them here are different from
dagger categories (which have an identity-on-objects functor (−)† : C

op

→ C with f †† =
f ) and also from ∗-autonomous categories (which have a duality (−)∗ : C

op

→ C given
by a dualising object D as in X∗ = X ( D). In both these cases one has contravariant
functors, whereas involution (−) : C → C is a covariant functor. The relation between
involution, dagger and duality for Hilbert spaces is described in [2, §§4.1, 4.2]: each can be
defined in terms of the other two.
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Involutive categories and involutive monoids are related: just like the notion of a monoid
is formulated in a monoidal category, the notion of involutive monoid requires an appropri-
ate notion of involutive monoidal category. This is in line with the “microcosm principle”,
formulated by Baez and Dolan [4], and elaborated in [12, 11, 10]: it involves “outer” struc-
ture (like monoidal structure 1

I
→ C

⊗
← C×C on a category C) that enables the definition

of “inner” structure (like a monoid I
0
→M

+
←M ⊗M in C). We briefly illustrate how this

connection between involutive monoids and involutive categories arises.
Consider for instance the additive group Z of integers with minus − as involution. In

the category Sets of ordinary sets and functions between them we can describe minus as
an ordinary endomap − : Z → Z. The integers form a partially ordered set, so we may
wish to consider Z also as involutive monoid in the category PoSets of partially ordered
sets and monotone functions. The problem is that minus reverses the order: i ≤ j ⇒ −i ≥
−j, and is thus not a map Z → Z in PoSets. However, we can describe it as a map
(Z,≥) → (Z,≤) in PoSets, using the reversed order (≥ instead of ≤) on the integers.
This order reversal forms an involution (−) : PoSets→ PoSets on the “outer” category,
which allows us to describe the involution “internally” as − : Z→ Z in PoSets.

As said, this paper introduces the basic steps of the theory of involutive categories. It
introduces the category of “self-conjugate” objects, and shows how involutions arise on
categories of Eilenberg-Moore algebras of an “involutive” monad. This general construc-
tion includes the important example of conjugation on modules and vector spaces, for the
multiset monad associated with an involutive semiring. It allows us to describe abstractly
an involutive monoid in such categories of algebras. Pre C∗-algebras (without norm) are
such monoids.

Once this setting has been established we take a special look at the famous Gelfand-
Naimark-Segal (GNS) construction [3]. It relates C∗-algebras and Hilbert spaces, and
shows in particular how a state A → C on a C∗-algebra gives rise to an inner product on
A. Using conjugation as involution, the latter can be described as a map A ⊗ A → C that
incorporates the sesquilinearity requirements in its type (including conjugate linearity in
its first argument). The final section of this paper gives the essence of this construction in
the form of a non-trivial bijective correspondence between such states and inner products
in categorical terms, using the language of involutive categories and monoids.

2 Involutive categories

Definition 2.1 A category C will be called involutive if it comes with a ‘involution’ functor

C→ C, written as X 7→ X, and a natural isomorphism ι : X
∼=−→ X satisfying

X
ι
X //

X

X
ιX //

X

(1)

Each category is trivially involutive via the identity functor. This trivial involution is
certainly useful. The category PoSets is involutive via order reversal. This applies also
to categories of, for instance, distributive lattices or Boolean algebras. The category Cat
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of (small) categories and functors is also involutive, by taking opposites of categories.
Next, consider the category VectC of vector spaces over the complex numbers C. It is an
involutive category via conjugation. For a vector space V ∈ VectC we define V ∈ VectC
with the same vectors as V , but with adapted scalar multiplication s ·V v = s ·V v, for s ∈ C

and v ∈ V , where s = a− ib is the conjugate of the complex number s = a + ib ∈ C.
The following is the first of a series of basic observations.

Lemma 2.1 The involution functor of an involutive category is self-adjoint: (−) a (−).
As a result, involution preserves all limits and colimits that exist in the category.

Definition 2.2 A functor F : C→ D between two involutive categories is called involutive
if it comes with a natural transformation (or distributive law) ν with components F (X)→

F (X) commuting appropriately with the isomorphisms X ∼= X, as on the left below.

F (X)

F (ιX) ∼=��

F (X)

ιF (X)∼= ��

F (X)
σ

X //

νF

��

G(X)

νG

��

F (X)
ν

X // F (X)
νX // F (X) F (X)

σX // G(X)

(2)

A natural transformation σ : F ⇒ G between two involutive functors F, G : C ⇒ D is
called involutive if it commutes with the associated ν’s, as on the right above. This yields
a 2-category ICat of involutive categories, functors and natural transformations.

This 2-categorical perspective is useful, for instance because it allows us to see imme-
diately what an involutive adjunction or monad is, namely one in which the functors and
natural transformations involved are all involutive.

Lemma 2.2 If F is an involutive functor via ν : F (X) → F (X), then this ν is automati-
cally an isomorphism.

3 Self-conjugates

Definition 3.1 For an involutive category C, let SC(C) be the category of self-conjugates
in C. Its objects are maps j : X → X making the triangle below commute.

X
j //

ι
−1
X

$$I

I

I

I

I

I

X
j

��

X
jX ��

f // Y
jY��

X X
f // Y

It is not hard to see that such a map is j is necessarily an isomorphism, with inverse

j ◦ ιX : X → X → X.
A morphism f : (X, jX) → (Y, jY ) in SC(C) is a map f : X → Y in C making the

above rectangle commute. There is thus an obvious forgetful functor SC(C)→ C.
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What we call a self-conjugate object is called a star object in [6]. By the self-adjointness
of Lemma 2.1 a self-conjugate X → X may also be described as X → X . Sometimes
we call an object X a self-conjugate when the map X

∼=→ X involved is obvious from the
context. In linear algebra, with X given by conjugation (see before Lemma 2.1), a map of
the form X → Y is called an ‘antilinear’ or ‘conjugate linear’ map.

Lemma 3.1 For an involutive category C, the category SC(C) of self-conjugates is again
involutive, via:

(
X X

)j //
def

(
X

j // X
)
. (3)

and the forgetful functor SC(C) → C is an involutive functor, via the identity natural
transformation (as ‘ν’ in Definition 2.2).

Example 3.1 Recall that the category PoSets of posets and monotone functions is in-
volutive via the reversed (opposite) order: (X,≤) = (X,≥). The integers Z are then
self-conjugate, via minus − : Z

∼=→ Z. Also the positive rational and real numbers Q>0

and R>0 are self-conjugates in PoSets, via x 7→ 1
x

. Similarly, for a Boolean algebra B,

negation ¬ yields a self-conjugate ¬ : B
∼=→ B in the category of Boolean algebras. There

are similar self-conjugates via orthosupplements (−)⊥ in orthomodular lattices [13] and
effect algebras [9].

In Cat a self-conjugate is given by a self-dual category C
op ∼= C.

Recall the conjugation on vector spaces. Suppose V ∈ VectC has a basis (vi)i∈I . Then
we can define a self-conjugate V

∼=→ V by x =
( ∑

i xivi

)
7−→

( ∑
i xivi

)
.

Finally, if a category C is considered with trivial involution X = X , then SC(C)
contains the self-inverse endomaps j : X → X , with j ◦ j = idX .

We first take a closer look at these trivial involutions.

Lemma 3.2 Let C be an ordinary category, considered as involutive with trivial involution
X = X . Assuming binary coproducts + and products× exist in C, there are left and right
adjoints to the forgetful functor:

SC(C)

a a
��

C

X 7→2×X=X+X

BB
X 7→X2=X×X

\\

using the swap maps [κ2, κ1] : X + X
∼=→ X + X and 〈π2, π1〉 : X × X

∼=→ X × X as
self-conjugates.

Lemma 3.3 Let C be an involutive category; SC(C) inherits all limits and colimits that
exist in C, and the forgetful functor SC(C)→ C preserves them.

For the record we note the following (see [18, 7] for background).

Lemma 3.4 The mapping C 7→ SC(C) is a 2-functor ICat → ICat, and even a 2-
comonad.
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4 Involutive monoidal categories

Definition 4.1 An involutive monoidal category or an involutive symmetric monoidal cat-
egory, abbreviated as IMC or ISMC, is a category C which is both involutive and (sym-
metric) monoidal in which involution (−) : C→ C is a (symmetric) monoidal functor and

ι : id ⇒ (−) is a monoidal natural transformation.

The fact that involution is a (symmetric) monoidal functor means that there are (natural)
maps ζ : I → I and ξ : X ⊗ Y → X ⊗ Y commuting with the monoidal isomorphisms
α : X ⊗ (Y ⊗ Z)

∼=→ (X ⊗ Y ) ⊗ Z, λ : I ⊗X
∼=→ X , ρ : X ⊗ I → X , and also with the

swap map γ : X⊗Y
∼=→ Y ⊗X in the symmetric case. That the isomorphism ι is monoidal

means that we have commuting diagrams:

I I

ι��

X ⊗ Y

ι⊗ι ��

X ⊗ Y

ι��
I

ζ // I
ζ //

I X ⊗ Y
ξ //

X ⊗ Y
ξ //

X ⊗ Y

(4)

Like in Lemma 2.2 we get isomorphism for free.

Lemma 4.1 In an IMC the involution functor (−) is automatically strong monoidal: the
maps ζ : I → I and ξ : X ⊗ Y → X ⊗ Y are necessarily isomorphisms.

In the category VectC of vector spaces over the complex number the tensor unit I is
C ∈ VectC. The above map ζ : C

∼=
→ C is simply conjugation of complex numbers.

Remark 4.2 The notion of ‘bar category’ introduced in [6] is similar to the above notion
of IMC (or ISMC), but is subtly different: by definition, bar categories have isomorphisms
X ⊗ Y

∼=
→ Y ⊗X. The object reversal involved makes sense in a non-symmetric setting.

But in the present context all our examples are symmetric, and many results rely on sym-
metry, so we often assume it and thus have no difference with [6].

In order to be complete we also have to define the following.

Definition 4.3 A functor F : C → D between IMC’s is called involutive monoidal if
it is both involutive, via ν : F (X) → F (X), and monoidal, via ζF : I → F (I) and
ξF : F (X) ⊗ F (Y ) → F (X ⊗ Y ), and these natural transformations ν, ζF , ξF interact
appropriately with ζ, ξ from(4), as in:

I
ζF

// F (I)
F (ζ) // F (I)

ν��

F (X)⊗ F (Y )
ξF

//

ν⊗ν ��

F (X ⊗ Y )
F (ξ) // F (X ⊗ Y )

ν��
I

ζ // I
ζF

// F (I) F (X)⊗ F (Y )
ξ // F (X)⊗ F (Y )

ξF

// F (X ⊗ Y )

It should then be obvious what an involutive symmetric monoidal functor is.
An involutive monoidal natural transformation σ : F ⇒ G between two involutive

monoidal functors is both involutive and monoidal.
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Hence also in this case we have 2-categories IMCat and IMSCat of involutive (sym-
metric) monoidal categories. The following is the main result of this section.

Proposition 4.2 A category SC(C) inherits (symmetric) monoidal structure from C. As a
result, the forgetful functor SC(C) → C is an involutive (symmetric) monoidal functor. In
case C is monoidal closed, then so is SC(C) and SC(C)→ C preserves the exponent (.

5 Involutive Monoids

Now that we have the notion of involutive category as ambient category, we can define the
notion of involutive monoid in this setting, in the style of [12, 11, 10].

We start with some preliminary observations. Let M = (M, ·, 1) be an arbitrary
monoid (in Sets), not necessarily commutative. An involution on M is a special endo-
function M →M which we shall write as superscript negation x−, for x ∈M . It satisfies
x−− = x and 1− = 1. The interaction of involution and multiplication may happen in two
ways: either in a “reversing” manner, as in (x · y)− = y− · x−, or in a “non-reversing”
manner: (x · y)− = x− · y−. Obviously, in a commutative monoid there is no difference
between a reversing or non-reversing involution.

As we have argued in the first section via the example of integers in PoSets, a proper
formulation of the notion of involutive monoid requires an involutive category, so that the
monoid involution can be described as a map M →M .

Definition 5.1 Let C be an involutive symmetric monoidal category. An involutive monoid
in C consists of a monoid I

u
→M

m
←M ⊗M in C together with an involution map

M
j
→M satisfying j ◦ u ◦ ζ = u and j ◦ j = ι−1, and, one of the following diagrams:

“reversing” “non-reversing”

M ⊗M
j⊗j ��

ξ // M ⊗M
m // M

j
��

M ⊗M
γ

∼=
// M ⊗M

m // M

M ⊗M
j⊗j ��

ξ // M ⊗M
m // M

j
��

M ⊗M
m // M

One may call M a simple involutive monoid if C’s involution (−) is the identity.
A morphism of involutive monoids M → M ′ is a morphism of monoids f : M → M ′

satisfying f ◦ j = j′ ◦ f . This yields two subcategories rIMon(C) ↪→ Mon(C) and
IMon(C) ↪→Mon(C) of reversing and non-reversing involutive monoids. There is also
a commutative version, forming a (full) subcategory. ICMon(C) ↪→ IMon(C).

The involution map j : M →M of an involutive monoid is of course a self-conjugate—
see Definition 3.1—and thus an isomorphism. In fact, we have the following result.

Lemma 5.1 Involutive monoids (of the non-reversing kind) are ordinary monoids in the
category of self-conjugates: the categories IMon(C) and Mon(SC(C)) are the same.
Similarly in the commutative case, ICMon(C) = CMon(SC(C)).

This lemma suggests a pattern for defining an involutive variant of certain categorical
structure, namely by defining this structure in the category of self-conjugates.



Involutive categories and monoids, with a GNS-correspondence 85

Example 5.1 As we have observed before, the category PoSets of posets and monotone
functions is involutive, via order-reversal (X,≤) = (X,≥). The poset Z of integers forms
an involutive monoid in PoSets, with minus − : Z → Z as involution. Also, the positive
rationals Q>0 or reals R>0 with multiplication ·, unit 1, and inverse (−)−1 form involutive
monoids in PoSets.

In the category Cat of categories, with finite products as monoidal structure, a monoid
is a strictly monoidal category. If such a category C has a dagger † : C

op

→ C that
commutes with these tensors (in the sense that (f ⊗ g)† = f † ⊗ g†, see e.g. [2]) then C is
an involutive monoid in Cat.

Inside such a dagger symmetric (not necessarily strict) monoidal category C with dag-
ger (−)† : C

op

→ C the homset of scalars I → I is a commutative involutive monoid, with
involution s− = s†.

The tensor unit I ∈ C in an arbitrary involutive category C is a commutative involutive
monoid object, with involution ζ−1 : I → I .

Free involutive monoids on a set V are given by the set (2 × V )? of lists of “signed”
elements from V . The involution of the non-reversing version changes signs, whereas the
reversing version also reverses the lists.

6 Involutions and algebras

This section briefly discusses involutions on monads and will focus on algebras of such
monads. Familiarity with the basics of the theory of monads is assumed, see e.g. [5, 17, 16].
An involutive monad is a monad in the 2-category ICat of involutive categories. It thus
involves an ordinary monad (T, η, µ) together with a distributive law ν : T (X)→ T (X).

We start with the main example, namely the “multiset” monad. Let S be an involutive
commutative semiring, i.e. a commutative semiring with an endomap (−)− : S → S that
is a semiring homomorphism with s−− = s. An obvious example is the set C of complex
numbers with conjugation a + ib = a− ib. Similarly, the Gaussian rational numbers (with
a, b ∈ Q in a + ib) form an involutive semiring, albeit not a complete one. The multiset
monadMS : Sets→ Sets associated with S is defined on a set X as:

MS(X) = {ϕ : X → S | supp(ϕ) is finite},

see e.g. [8]. The category of algebras of this monad is the category ModS of modules over
S. This monad is monoidal / commutative, because S is commutative. It is involutive, with
involution ν : MS(X) → MS(X) given by ν(

∑
i sixi) =

∑
i s−i xi. Here we use Sets

as trivial involutive category, with the identity as involution.
For an involutive monad T on an involutive category C we can consider two liftings,

namely of the monad T to self-dualities SC(C) following Lemma 3.4, or of C’s involution
(−) to algebras Alg(T ), as in the following two diagrams.

SC(C)

��

SC(T ) // SC(C)

��

Alg(T )

��

(−) // Alg(T )

��
C

T // C C
(−) // C

(5)
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The lifting on the left yields a new monad SC(T ) because lifting in Lemma 3.4 is 2-
functorial. The lifting on the right arises because an involutive monad involves a distribu-
tive law commuting with unit and multiplication. Explicitly, it is given by:

(
T (X) X

)a //
def

(
T (X)

νX // T (X)
a // X

)
. (6)

Proposition 6.1 Suppose T is an involutive monad on an involutive category C. The cat-
egory Alg(T ) is then also involutive via (6), and:

1. Alg(SC(T )) = SC(Alg(T )), for which we sometimes write IAlg(T );

2. the canonical adjunction Alg(T ) � C is an involutive one.

In a next step we would like to show that these categories of algebras of an involutive
monoidal monad are also involutive monoidal categories. The monoidal structure is given
by the standard construction of Anders Kock [15, 14]. Tensors of algebras exist in case
certain colimits exist. This is always the case with monads on sets, due to a result of
Linton’s, see [5, § 9.3, Prop. 4].

Theorem 6.2 Suppose T is an involutive monoidal monad on an involutive monoidal cat-
egory C; assume the category Alg(T ) of algebras has enough coequalisers to make it
monoidal. The category Alg(T ) is then also involutive monoidal, and the canonical ad-
junction Alg(T ) � C is an involutive monoidal one. This result extends to symmetric
monoidal structure, and also to closure (with exponents ().

The construction (6) gives for an involutive commutative semiring S an involution on
the category ModS of S-modules, which maps a module X to its conjugate space X, with
the same vectors but with scalar multiplication in X given by: s ·X x = s− ·X x.

Conjugate modules often occur in the context of Hilbert spaces. The category Hilb is
indeed an involutive category, via this conjugation. Hence one can consider for instance
involutive monoids in Hilb. They are sometimes called (unital) H∗-algebras.

7 The core of the GNS-construction

In this final section we wish to apply the theory developed so far to obtain what can be
considered as the core of the (unital version of the) Gelfand-Naimark-Segal (GNS) con-
struction [3], giving a bijective correspondence between states on C∗-algebras and certain
sesquilinear maps. Roughly, for an involutive monoid A in the category ModS of modules,
a state f : A→ S gives rise to an inner product 〈− |−〉 : A⊗A→ S by 〈a | b〉 = f(a− ·b),
where · is the multiplication of the monoid A. Notice that using the involution (−) in the
domain A⊗A of the inner product gives a neat way of handling conjugation in the condi-
tion 〈s · a | b〉 = s− · 〈a | b〉, where this last · is the (scalar) multiplication of the semiring S

(which is the tensor unit in ModS).
This induced inner product 〈a | b〉 = f(a− · b) satisfies two special properties that we

capture abstractly below, namely: 〈u | −〉 = 〈− |u〉 and 〈a · b | c〉 = 〈a | b− · c〉. These
two properties appear as conditions (a) and (b) in the following result. Most commonly the
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inner product is described as a map p : M ⊗M → I with the tensor unit I as codomain,
but the correspondence in the next result holds for an arbitrary self-conjugate X instead of
I . Thus is will be formulated more generally.

Theorem 7.1 Let M = (M, m, u, j) be a reversing involutive monoid in an involutive
symmetric monoidal category (ISMC) C and let jX : X → X be a self-conjugate. Con-
sider the following two properties of a map p : M ⊗M → X .

(a) Sameness when restricted to units:

M
j

��

ρ−1

∼=
// M ⊗ I

id⊗u // M ⊗M
p // X

M
λ−1

∼=
// I ⊗M

ζ⊗id // I ⊗M
u⊗id // M ⊗M

p

OO

(b) Shifting of multiplications:

(M ⊗M)⊗M

γ⊗id ∼=��

ξ⊗id // (M ⊗M)⊗M
m⊗id // M ⊗M

p // X

(M ⊗M)⊗M
α−1

∼=
// M ⊗ (M ⊗M)

id⊗(j⊗id)// M ⊗ (M ⊗M)
id⊗m // M ⊗M

p

OO

Then there is a bijective correspondence between maps in SC(C),

M
f // X

==============================
M ⊗M p

// X satisfying (a) and (b)
(7)

where M ⊗M is provided with the “twist” conjugate t defined as:

t
def
=

(
M ⊗M

id⊗ιM //
M ⊗M

ξ //
M ⊗M

ι−1
// M ⊗M

γ // M ⊗M
)
.

Proof Verification of this correspondence involves many details, but here we present only
the correspondence (7). Given f : M → X in SC(C), we define

f̂
def
=

(
M ⊗M

j⊗id // M ⊗M
m // M

f // X
)
.

Conversely, given p : M ⊗M → X in SC(C) we take:

p̂ =
(
M

λ−1
// I ⊗M

ζ⊗id // I ⊗M
e⊗id // M ⊗M

p // X
)
. �

As said, this result only captures the heart of the GNS construction [3]; it ignores the
analytic aspects. The whole construction additionally involves suitable quotients, in order
to identify points a, b with 〈a | b〉 = 0, and completions, in order to get a complete metric
space, and thus a Hilbert space.
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