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Abstract. We outline the motivation, discuss the conceptual significance, and point to available literature,
on a research program which aims to equip quantum physics with a tensorial axiomatics, a genuine logic,
an intuitive diagrammatic calculus, and where structural elements should represent empirical facts.

1 Yet another axiomatization of quantum theory?
A major difference between our approach to axiomatize quantum mechanics [1, 5, 6, 8, 10, 11, 13, 16, 17, 18,
19] and the other ones which have been around is our choice of primitive concepts:

• We aim to axiomatize the tensor product structure, that is, how two quantum entities make up one whole.
Most other approaches start from measurement-related concepts, be it either spaces of observables,
spaces of probability measures, or collections of properties attributed to physical systems [72, 77, 79, 75,
84]. The fact that an axiomatics for quantum theory with ‘conceiving two systems as one’ as a primitive
concept hasn’t been proposed before is somewhat surprising: even in the early days of quantum theory
Schrödinger was very aware of the key role which the Hilbert space tensor product played in the theory.
Moreover, the inability to produce a canonical description for joint systems has been a major stumbling
block for many of the approaches based on measurement-related concepts.

• At the same time we also axiomatize the compositional structure of operations/processes i.e. we aim at
an a priori dynamical theory. The phenomena associated with the particular structure of the tensor prod-
uct are of an essentially dynamical nature involving multiple processes. Also, recent progress in quantum
informatics has exposed the need to conceive measurements as processes involving both classical and
quantum information-flow e.g. measurement-based computational schemes [53, 71, 59, 66, 65, 62]. All
of these point at the existence of an important structural ingredient of quantum theory involving both
parallel (' tensorial) and sequential composition of processes, which has not yet been unveiled.

Basic structure. The mathematical structure capturing ‘composing systems’ and ‘composing operations’ ac-
tually already existed, but was not build for this purpose: symmetric monoidal categories [31]. The first people
to conceive this mathematical structure as the canonical way to describe sequential and parallel composition
of processes were computer scientists. Here are the structural ingredients from a physics perspective:

• We represent types of systems (or ‘kinds’ if you prefer), be it physical systems such as photons and
electrons, or classical data types, or combinations thereof (e.g. the pair consisting of a quantum systems
together with the observed data), by their names A,B,C, ...

• We represent operations/processes, be it evolution of a systems between time t1 and time t2, or the
preparation of a system in a certain state, or a computation which takes data of type A as input and
produces data of typeB, or a measurement taking a quantum systemA as input, destroys it, and produces
an outcome of data type B, by arrows A→ B where A is the input type and B is the output type.

• We represent the composite of two operations/processes g : B → C and f : A → B, which are
performed/happening one after the other, by g ◦ f : A → C. Doing nothing, or if you prefer, nothing
happens, induces an ‘identity’ 1A : A→ A for each system.

• The joint system of A and B is denoted by A ⊗ B, ‘nothing’ is denoted by I, and the joint pro-
cess/operation of processes/operations f : A→ C and g : B → D is denoted f ⊗ g : A⊗B → C ⊗D.

All these pieces of data, together with the obvious structural rules which mainly control how sequential and
parallel composition interact, canonically make up a symmetric monoidal category [7, 12].
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Graphical calculus. Rather than stating these rules we will rely on a really nice feature about this particular
mathematical structure: it can be equivalently presented as a purely graphical calculus. This calculus traces
back to Penrose’s work in the 1970’s [44] but it took 20 more years to settle its precise algebraic and topological
significance [35, 38, 47]. Currently it is significantly used in mathematical physics [30, 42], knot theory [48]
and quantum group theory [46] — see in particular Baez’ weekly finds [29]. Our variant emphasises the
connection with Dirac notation. Processes/operations are represented by boxes, types of systems by wires,
composition by connecting outputs and inputs by wires, and tensor by locating wires or boxes side by side e.g.

1A f g ◦ f f ⊗ g f ⊗ 1C (f ⊗ g) ◦ h
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Typical axioms of the symmetric monoidal structure such as commutation of
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i.e. we are allowed to ‘slide’ boxes along the wires, and also along crossings. The void type I, i.e. ‘nothing’, is
represented by ‘no wire’, which gives rise to triangles and diamonds:

ψ : I→ A π : A→ I π ◦ ψ : I→ I
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Note that this precisely captures Dirac’s ket’s, bra’s and bra-ket’s:

The adjoint, which turns kets into bras is captured by reversal of the picture:

ff †

A B

AB

Quantum structure. We will now adjoin additional structure to this basic setting in order to build more
specific theories. In conceptual terms this means that want will assert the existence of particular opera-
tions/processes which are characteristic for the specific theory we aim to capture axiomatically. The game
to play is to add as little as possible, both formally and in terms of conceptual compromise, in order to express
and prove as much as possible about that theory. For quantum theory, we will assert the existence of Bell-
states (or the ability to prepare them if you wish) and their ability to realise phenomena such as teleportation.
Explicitly we require quantum systems A to come with a ‘Bell-state’ Bell : I→ A⊗A, that is, a ‘triangle’

=

A

A

A

A
A A

satisfying

However, when rather than as a triangle we represent this quantum structure as a wire
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satisfying
A A =

A

A

A

A

the axiom takes a more lucid form which boils down to ‘yanking a piece of rope’. This seemingly tiny bit of
structure is already enough to abstractly capture transposition and complex conjugation respectively as [1, 28]:

f *
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for which, in particular, we have (f∗)] = (f])

] = f †. We can use asymmetry to depict all of these [17]:
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as reflections of f , and it immediately also follows that we can now ‘slide’ boxes along wires:

=

f f *

=

f

— to prove this just substitute f∗ by its definition and then apply ‘yanking’. Funny things also follow [4, 5]:
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— notice in particular the ‘apparent’ acausal reversal of colours. Here’s quantum teleportation:
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where we require f to be unitary, that is, f † ◦ f = 1A and f ◦ f † = 1B . The required classical information
flow is implicit in the dependency of the correction f † on the effect Bell† ◦ (1A ⊗ f∗). How we can make this
classical information flow explicit in the picture will be discussed in Section 3.

2 Yet another quantum ‘non-logic’?
By ‘true’ logic we mean a symbolic systems which support automated reasoning. This requires some sort
of deductive mechanism which enables to ‘resolve’ logical expressions. It is well-known that Birkhoff-von
Neumann style quantum logic did not have such a mechanism. Even more so, the identification ‘quantum
vs. classical’ as ‘non-distributive vs. distributive’ can equally be stated as ‘no deduction vs. deduction’, since
the semantic counterpart to a deduction mechanism is always some sort of distributive law. It seems to me
that capturing the spirit of quantum theory should be in terms of ‘true quantum features’ and not in terms of
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‘classical features which fail to be true in the quantum realm’. In categorical logic a deductive mechanism
typically means that ‘morphisms’ f : A → B internalise as ‘elements’ ψf : I → A ⇒ B. This is usually
referred to as closedness of a category. In our categorical quantum structures we in fact have even more:

f f f
† †

A

B A

A B

B

That is, morphisms internalise both as elements and as co-elements. In a sense we have a ‘hyper-logic’ [2, 16].
Physically this closedness boils down to the Hilbert-Schmidt and Jamiolkowsi dualities between states and
operations [1, 17]. Passing from kets to bras then also involves the effects in a similar manner.

3 What about the classical world?
Resource-sensitivity has been an important topic in logic, proof theory and computer science during the past
few decennia. A new kind of logic named linear logic arises when one drops the structural rules which allow
one to freely copy and delete premisses [36]. In practice this means that every time one relies on a premise
one consumes it, and hence repeated use requires several copies of that premise. Linear logic is subject to a
beautiful purely diagrammatic proof theory for which there is no counterpart in traditional logic. We obtain
traditional logic from linear logic by adjoining structure which witnesses the ability to copy and delete data:

Traditional Logic = Linear Logic + (copying, deleting)

In physics, resource-sensitivity has also become a key paradigm within quantum information science due to
the observation that no physical operation can clone a pure quantum state [70], that is, produce two copies of
that state. Also, while classical probabilistic data is broadcast-able, that is, the information it comprises can
be made available to two (or more) parties, this is not the case for quantum data [52]. Therefore:

Classicality = Quantumness + (copying/broadcasting, deleting)

In fact, the distinction between copying and broadcasting will enable us to both extract classical deterministic
and classical probabilistic structure from the quantum structure [13]. Hence rather than quantizing a classical
theory, we do the dual, namely classicizing a quantum theory. If one has a quantum system represented by a
Hilbert space H then specifying a non-degenerate classical context means choosing a base {ei}i. Hence the
resulting classical structure is the pair (H, {ei}i) i.e. a Hilbert space with additional structure. One should note
that this perspective is not that unfamiliar to quantum structures research. Indeed, given the lattice L(H) of
subspaces of H, specifying a classical context means picking some Boolean algebra B and a monomorphism
ξ : B → L(H) of ortholattices, resulting in a pair (L(H), ξ). For us a classical context for a quantum structure
will consist of two operations, copy : X → X ⊗X and del : X → I, respectively depicted as: [10, 13]:

X X

X X
which ‘refine’ the Bell-state in the sense that we ‘chop’ a big triangle into a small one and a trapezoid:

The structural requirements we impose on them are all conceptually very reasonable and translate in mathe-
matical terms as a †-Frobenius algebra [10]. In diagrammatic terms these rules boil down to the fact that any
connected network involving copying, deleting, Bell-states, and their adjoints is equal to a spider-shape [11]:

....

....

which is obtained by fusing dots together. This structure is powerful enough to extract categories of functions,
relations, stochastic maps and permutations from any given category which we conceive to consist of quantum
processes which come equipped with a classical context [13]. We can now ‘define’ measurements [10]:
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= ==

where the reader might recognise the first requirement to be von Neumann’s projection postulate. The second
one relates eigenstates to resulting states, and slightly more surprising, the last one asserts in the presence of
the two other ones that measurements cannot be used for faster-than-light-communication:

BOBALICE

= ====

BOBALICE

=

All this together provides a diagrammatic language for interacting quantum and classical information flows.

4 What more can we do? Some examples, ...
CPMs, decoherence, POVMs & Naimark’s dilatation theorem. Please consult [17, 9], [13] and [11].

Structural resources for quantum informatic tasks. By diagrammatic ‘reverse engineering’ we discover
which structural components are required for certain tasks. Please consult [10, 14]. E.g., for teleportation and
dense coding, with very little work, we recover matching abstract counterparts to Werner’s general teleportation
and dense coding schemes [69]. It also follows that Perdrix’ measurement based computational scheme [65]
requires the presence of classical structure in order to describe the quantum information flow [14].

Mutually unbiased observables. We define mutually unbiased observables such as spin X and spin Z or
position and momentum as particular pairs of bases, respectively depicted in green and red, which satisfy [15]:

From these laws we can for example derive that cnot ◦ cnotσ◦ cnot = swap :

Measurement-based quantum Computing. To achieve more expressiveness we can decorate these dots
with phases [15]. One can show that the spider-theorem still holds provided we add up all phases occurring
in the network. This provides us with enough power to show that the one-way quantum computational model
[66] enables to simulate arbitrary unitary operations on multiple qubits. The network to simulate an arbitrary
qubit unitary is:

Measurements:

CZ-gates:

qubits in |+>:

which indeed simulates arbitrary qubit gates in terms of their Euler angles on the Poincaré-sphere:

Quantum algorithms. With the same structure we can also compute the quantum Fourier transform [15]
which is the key ingredient of Shor’s factoring algorithm. Whether this calculus is complete in the model-
theoretic sense, that is, whether every statement that can be proved in Hilbert space terms can be proved in our
graphical calculus, remains an open question, but we have reasons to belief that this might actually be true.
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