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Abstract

SHORT: We expose the information flow capabilities of quantum entanglement.

LONG: This paper contains several components:

e We prove a general characterization theorem on information flow through bi-
partite entanglement. This theorem will enable us to provide a unified view on
protocols such as quantum teleportation [9], quantum logic gate teleportation
[33] and entanglement swapping [61].

e We accomplish the extension of the above to multipartite entanglement which
exposes the necessity of logical tools such as typing [22, 53]. Also the need for
linear logic connectives [29] and polarities [45] arises naturally.

e We expose a methodology emerging from our information flow based reason-
ing about entanglement which yields a two-way compilation scheme enabling
design of computational and communicational protocols. This tool allows evi-
dent reconstruction of the above mentioned protocols of quantum information
processing and also the design of new ones in terms of a classical travelling
token-interpretation. We use this methodology to realize a passage from se-
quential to parallel composition for quantum logic gates. This mechanism also
yields a fault-tolerant methodology to prepare multipartite entangled states.

e At a more advanced level this methodology allows to accommodate classical
functional programming features such as Currying [12], A-calculi [7], geometry
of interaction in the sense of [1, 3] and other high-level specification logics.

e Finally, the information flow capabilities of entanglement exposed in this pa-
per yield a canonical family of entanglement measures for multipartite systems.
They also provide an interpretation in terms of information flow capabilities for
non-local untary operations.

The basic idea goes as follows. Consider a network containing specification of bipar-
tite entanglement in terms of bipartite projectors on one-dimensional subspaces. We
show that we can apply classical functional reasoning on a virtual information flow:

e The virtual information flow is manifestly acausal. It seems to flow from one
Hilbert space to the other via EPR-bridges, however, it does that as if:

“Time goes backward at the other side of the EPR-bridge”.

e The functions involved are not the projectors themselves. When considering
the isomorphism between the tensor product H; ® Hs and the vector space of
linear maps Hi — Ha, the function involved will be in the isomorphic image in
‘Hi — Ha of the projector’s range in Hi @ Ha.

The passage from bipartite entanglement to multipartite entanglement goes with the
passage of a network with a virtual flow to one with virtual function boxes. We
show that in this way we can realize any network with (linear) functional actions of
any order. The compilation scheme then translates such entanglement specification
networks in an ordinary quantum computational setting of measurements, unitary
transformations and classical communication.
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Some conventions

We will be liberal about the use of the words map, function, operator and transformation
when talking about (anti-)linear and (anti-)unitary maps. We will use the words projector
and projection as equivalent when referring to linear maps.

We will use entangled state as a generic term for any element of the tensor product of
two Hilbert spaces. If we want to make clear that such an element is a pure tensor we
will say so or refer to it as being disentangled.

We completely ignore normalization constants for quantum states. Writing those redun-
dancies might have added some ten extra pages to this paper. We preferred to use that
space for some beautiful clarifying pictures.
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1 Introduction

In classical functional programming, pre- and post- specification refer to properties im-
posed on the input and the output of a function:

e Pre-specification of a property A stands for the assertion that the input should
satisfy A. Post-specification of a property B stands for the assertion that the
output should satisfy B.

In pictures, given a functional action f : X — Y (which we represent as a box) we can
put specifications at the input and the output of the box

A X B:Y

where A : X and B : Y express the fact that the input is of type X and the output is of type
Y. In physical terms X is the state space describing the possible input states accepted
by f and Y is the state space in which the output states live. It is then reasonable to
assume that we can express each such property as the subset of the state space consisting
of those states which satisfy that property i.e. A C X and B C Y. Taking the perspective
of a token carrier of state traveling through the network one can think of the information
which it carries as first being subjected to pre-specification A, then to the functional
action f, and finally being subjected to the post-specification B:

A f
-

Specification, of course, is non-physical, it is merely the statement that a certain property
should be satisfied (= assertion). It does have an operational content in the sense that
one can only know for sure that specifications are satisfied if one verifies them i.e. read
the state of the system before and after effectuating f.

Quantum information processing is to be conceived as a physical carrier of state
traveling through a network such that the interaction between this carrier and the network
obeys the laws of quantum mechanics. In practice it might be the case that the carrier of
state is stationary and subjected to operations. In fact this is the case for most current
attempts to implement quantum computation. But it requires little imagination to pass
from such a passive perspective to an active one in which one considers the physical
carrier of state as moving and the network as stationary.

The implicit passive nature of the verificational feature of pre- and post-specificational
assertions obstructs straightforward translation of classical process semantics and its spec-
ification logics to quantum information processing. Indeed, in quantum theory verifica-
tion changes the state of the system due to von Neumann’s projection postulate [Postulate
B.2]. This means that specification of a quantum property is itself some kind of function
box. A language designed for quantum information processing should take this feature



into account. In this paper we will develop a high-level functional perspective on quan-
tum information processing which takes this feature into account. And we do even more.
In physical terms:

1]

We provide an interpretation of the behavior of entanglement both in the bipartite
and the multipartite cases. In particular is the behavioral structure of multipartite
entanglement an essentially open problem. We claim to provide an account of it in
classical logical terms.

In computational terms:

2]

3]

[2+3]

Thus

We show that entanglement specification only (by “only” we mean without the
presence of any other kind of function boxes) suffices for the design of arbitrary
chains of concatenated linear functions, tensoring, currying and so on. Conversely,
distributed interacting entanglement specifications can at there turn be interpreted
in terms of arbitrary chains of concatenated linear functions.

We provide a two-way compilation scheme for arbitrary networks of (i) non-local
quantum measurements [Definition B.3], (ii) local unitary operations and (iii) clas-
sical communication as networks in which only entanglement specification appears.

Combining the above results provides a powerful tool for network and protocol
design. We will demonstrate how this procedure simplifies re-designing the quantum
teleportation protocol [9], the quantum logic gate teleportation protocol [33] and
the entanglement swapping protocol [61]. And we produce some new ones including
the passage from sequential to parallel composition for quantum logic gates.

we encourage both computer scientists and physicists to read this paper:

For the practicing physicists it will provide insight in why protocols like teleporta-
tion and entanglement swapping actually work the way they do. It will moreover
enable them to produce much more sophisticated ones.

For computer scientists it provides a way to do quantum information processing in
terms of their usual functional way of reasoning and writing using their high-level
specification languages without having to think all the time in terms of Hilbert
spaces, self-adjoint operators and other beasts of that kind.

For the conceptually minded physicist, the philosopher and the logician it will
provide insight in how information (seems to) flow(s) through entanglement. Hence
we expose a new insight in quantum behavior, namely the existence of a logic
governing its information flow capabilities.

We will make some vague references to category theory [5, 22, 26] but the subject is not
at all a prerequisite for understanding this paper. The categorical development of the

ideas

exposed in this paper is a non-trivial research project in itself which is currently in

full development [4].



2 Entanglement specification

Before we introduce the notion of entanglement specification we will clarify how speci-
fication occurs naturally within quantum mechanics and in particular how it relates to
quantum measurements. Next we introduce entanglement specification as functionally
labeled operations on a system. Then we show how this notion of entanglement speci-
fication naturally yields the teleportation protocol. This example is a paradigmatic case
for the rest of the paper.

2.1 Quantum measurements as specifications

Appendix B provides a minimal overview of elementary quantum theory. Appendix A
does the same on Hilbert spaces and projectors. Although in quantum theory states
correspond to one-dimensional subspaces of a Hilbert space H we will represent a state
by any non-zero vector 1) € H contained in the corresponding subspace ray(1)).

i. Projectors from measurements. In terms of its spectral decomposition [Theorem A.8]
a general finitary non-degenerated quantum measurement [Definition B.1] looks like

M:1-P1+2-P2+3-P3+...+H-Pn

where each P; : H — H is a projector [Definition A.6] which is orthogonal [Definition
A.7] to all the other ones appearing in the sum, and where, in benefit of transparency, we
assumed that the spectrum o(M) of this measurement is an integer enumeration. The
actual measurement process constitutes two correlated events:

1. A value i is delivered to the observer;
2. The state of the system undergoes a transition P; : H — H :: ¢ — Pi(¢).

Hence the state of the system changes from its initial state 1 to a terminal state P;(1))
while the observer gets informed about this change by receiving the value i. The actual
values of the probabilities with which these transitions take place are of no crucial im-
portance in this paper. Also of no importance is the actual value of ¢ itself since in the
eye of the observer the delivered value is merely a token witness to the change the system
has undergone. Thus, more abstractly, one could conceive a finitary non-degenerated
quantum measurement M as a list

(P13P23P33"'3Pn) (1)

of mutually orthogonal projectors (with n the dimension of the Hilbert space) where the
actual process then consists of one of the transitions Py, Py, P53 ..., P, taking place and
the observer getting informed on which one happened. Every projector on ‘H with a
one-dimensional space of fixed points arises as an element in such a list. It will be these
one-dimensional projectors that play a central role in this paper.



ii. Specification as projectors. On the other hand any projector P on H (and thus also
any one-dimensional one) defines itself a unique dichotomic measurement since

P=1-P+0.-Pt

where P+ is P’s orthocomplement [Definition A.7]. A projector “seen as a measurement”
is the closest one gets to a verificational process in quantum theory. After the action P
the system is in a state contained in the set of P’s fixed points

Ap :={p € H|P(¢) = ¢}

and this linear subspace of H represents the projector faithfully. We moreover have the
following behavior of a system subjected to consecutive measurements.

1. If we perform measurement 1-P 4 0 - P+ immediately after the system has been
subjected to the action P then we will obtain outcome 1 in that measurement and
consequently the system will be again subjected to the action P [Postulate B.2].

2. Every projector P is idempotent, that is, P o P = P [Definition A.6].

Hence it is fair to say that after the system has been subjected to the action P the system
satisfies a “property” Ap, explicitly, Ap:=

“If we perform 1-P +0-P' immediately after the system has been subjected
to the action P then we will obtain outcome 1.”

This motivates the following definition.

Definition 2.1 We refer to the process of imposing a property Ap on a system by sub-
jecting it to the corresponding action P as specification of Ap.

However, imposing P on a system by means of a measurement is a probabilistic process.
Thus a particular specification might fail. But we can read these specifications condi-
tionally, assuming that the system has been subjected to it. An example of this kind of
conditioning is the process of preparing a system in a certain state. This view will be
very helpful when reasoning about networks involving entanglement specification.

iii. Non-probabilistic implementation of specifications. The probabilistic feature of “ap-
plying a projector” will not obstruct us to design protocols such as the teleportation
protocol which are globally non-probabilistic. Assume that we want to specify the state
of a system in terms of a one-dimensional projector P. We can complete such a projector
into a non-degenerated measurement by adjoining it with n — 1 other one-dimensional
projectors such that we obtain a list of type (1) of n mutually orthogonal projectors. In
terms of specification this means that whenever we effectuate that measurement and re-
ceive outcome 7 we have specified that the system is in state ¢; € A; := P;[A4;]. We don’t
know in advance which ; it will be but it will always be one in the list (11,...,1,). 4
strategy to design networks should then be such that when effectuating a measurement,



whatever state gets specified in the list (¢1,...,1,), ultimately, we always end up with
the desired result by making later actions depend on the measurement outcome. In Sub-
section 2.3 we illustrate how this strategy enables to design the teleportation protocol
and in Subsection 3.3 how it enables the design of the logic gate teleportation protocol.
In Subsection 6.2 we do the same for entanglement swapping. In Subsection 3.4 we realize
the passage from sequential to parallel composition for quantum logic gates.

2.2 Functional labeling of bipartite projectors

Bellow all Hilbert spaces Hy,...,H, will be finite dimensional. Let {e(ofi)}ai be a base of
the Hilbert space H;.

Definition 2.2 Entanglement specification consists of specifying the state

Z fal am "€ al ®€( )€H1® . Hm

a1...0m

of a compound quantum system by means of the projector
v H1I®. ... OHm > HI1®...QHpy :: P> (V| D) - T
where we assume |¥| = 1.
In the case m = 2 we obtain bipartite entanglement specification
Py :Hi1®@Hs > H1Q@Ho :: @ (V| D) U

with
U _Zfaﬁ el ®e[3 €eHi®@Hs.

By H1—Ho we denote the set of linear functions between two Hilbert spaces H1 and Ho.
This set Hq, — Ho is itself a vector space over C. Thus we can read

vt ®@Hy = H1 @ Ho
as a representation of the states in H;®Ho within a Hilbert space of linear maps, explicitly
P_:H{QHs — (H1®H2 —>H1®H2) U — Py.

This correspondence is itself not linear. But we can represent the bipartite states of
H1 ® Ho in a vector space of linear functions of a smaller dimension than the above one

via a correspondence which is linear. Let {e&l)}a and {e,(;)}g be bases respectively of H
and Ho. By identifying the bases

(D@ as ¢ [l -) e }as



respectively of

M, ®Hy = {Z fop eV ® eg) ‘ (fap)ap € (Cnxn}

and

Hi — Ho = {Z fap (V) ‘ (faB)ap € (C”X”}

it follows that these vector spaces have the same dimension and thus that there exists a
linear isomorphism

H1Q Ho ~ Hi— Ho.

An explicit correspondence is

Zfaﬁ eV @ed 5 3 fasleld | )€
aff

It however depends on the choice of {e&l)}a e.g. passage to another base {c- 6&1)}a yields

(c-e)@ef) =c- (e @ef)) o e (el |2 eff) = (e el | =) -ef

There is no unique base independent canonical isomorphism between Hi; — Ho and Hi ®
Ho. This can easily be seen as follows. The dual of H, that is, the Hilbert space

H =H—>C
of linear functionals is presentable as
{(|=):H=>ClypeH]}.

The canonical correspondence between the Hilbert spaces H* and #H is not linear but
anti-linear [Definition A.9] since

Zz/)a ea—¢<—> (| -)= <Z@ba ea‘—>221/;a-<ea|—>.

This forces any canonical correspondence between Hq — Ho and ‘Hq ® Hs to behave linear
with respect to Ho and anti-linear with respect to 1, which is impossible since for the
tensor product we have

c-P)@dp=c-(p@¢) =9 (c-¢).
But this does indicate that there exists a canonical isomorphism
HI @ Ho ~ Hi— Ho

explicitly given by

S fas (€D [y @el) o Y fag el | ) e
af af



where {(ea | =)} is now a base for H}. This isomorphism is natural in the strict
categorical sense [26]. Since H}* ~ H; via the (categorical) natural correspondence

(W | =)
we also have a natural isomorphism

HiQ@Ho =~ (H])" @ Ho >~ H] — Ho

_>’H’{ = Y

explicitly given by
zfag e @e) = 3 fag (e | )
af

We will use both the natural and the base-dependent isomorphisms in this paper.
For computer scientists a natural correspondence is to be preferred due to the important
role which category theory plays in the semantics of programing languages [5]. Physicists
might rather choose the base dependent one since in quantum information theory they
are used to work with fixed bases anyway e.g. {|0),|1)} in the case of so-called qubits. In
this two-dimensional case they would then set

foo  fio
for fu

Another kind of isomorphism that will be of major interest is

H1Q@Ho >~ Hi P Ho

> <= f00l00) + fo1|01) + fi0]10) + f11|11).

where

Hi b He = {Z fap (= | 68)> ) e,(BZ) ‘ (faplas € (Cnxn}
af

is the vector space of anti-linear maps. This correspondence is also canonical via the
linear correspondence

Zfa,@ € )®e/(3 > Zfaﬂ<_|e(al)>'e(ﬁ?)
of af

Unfortunately, the passage from linear to anti-linear functions blurs any straightforward
categorical status of the above kind of canonicity. Also the strict correspondence between
composition of functions and multiplication of corresponding matrices diminishes [Lem-
mas 5.4, 5.5 and 5.7 in Subsection 5.1]. Nonetheless H; & Ha will prove to play a crucial
role for the developments in this paper and for the understanding of information flow
through entanglement in general [Subsection 4.1].

Definition 2.3 By a functionally labeled (bipartite) state ¥y € H; ® Ho we mean the
isomorphic image of a function f via one of the above linear isomorphisms. By a func-
tionally labeled (bipartite) projector Py we mean the projector

Pf_P\I;f Hi @ Ho = Hi ® Ho i (I)r—><\11f|(1))

10



This functional labeling provides a bridge between applying quantum measurements and
classical functional reasoning. It also indicates what’s so great about entanglement. In
terms of types, taking a system of type H; together with one of type Hs provides one
that is in bijective correspondence with one of type H; — Ho. This is in sharp contrast
to the classical situation where in case of pairing types we would just obtain H; X Ho as
global type. A physical discussion on how entanglement lies at the core of the speedup
of quantum algorithms as compared to classical ones can be found in [27].

In fact, what we study in this paper is to which extend we can replace in the sentence
above “one that is in bijective correspondence with one of type H; — H2” by “one of
type H1—Hs2”. This mainly involves proving that compositionality of functions, that is,
given f: A — B and g : B — C we can define a composite

gof:A—=C:uip—g(f(¥)),

carries over to the world of entanglement of physical states. Moreover, we will show that
also the tensor structure, that is, given f : A — C and g : B — D we can define a product

fxg:AxB—=CxD,

and currying of arguments [12], that is, passage from a two argument function to a one
argument function via the isomorphism

(AxB)—»C ~ A— (B—C0C),

will carry over to our setting.

Our notion of entanglement specification was used by S. Abramsky and the author in
[3] to realize the traced monoidal category of vector spaces in terms of quantum system.
Therefore [3] is the main predecessor to this paper. On the other hand, the results of
this paper explain why the constructions in [3] are truly natural — we will elaborate a
bit more on the connection between the results in this paper and those presented in [3]
in Subsection 6.6 and Appendix C.

2.3 Example: recovering the teleportation protocol

We will not start by describing the standard quantum teleportation protocol [9]. We will
reproduce it from a much simpler (probabilistic) version introduced in [3]. Although at
first sight the steps we have to take to accomplish this might seem somewhat arbitrary,
they incarnate a generally applicable canonical procedure.

In this subsection all Hilbert spaces are two-dimensional. We refer to each component
of a compound system as a material /physical carrier of state. Thus Hi®. ..®@H,, describes
the state jointly carried by m carriers of state. In [3] we observed the following. Consider
three carriers of state jointly described in

H1QHo®Hs with  Hq ~ Ho ~ H;s

11



via (pseudo-)identities
id: Hy — Ho and id: Hy — Hs.
Thus if H1, Hs and Hs have qubit bases we have

id : Hy o = Hayz = dol0)+i[l) = dol0)+¢pill) .

If we first subject carrier 2 and 3 to the base-dependent functionally labeled projector
Piq: H1 @ Ho — H1 ® Ho and then subject carrier 1 and 2 to Piq : Ho ® Hz — Ho ® Hs,
then, if the input state of carrier 1 is not entangled to the others and is in state ¢ then
the output state of carrier 3 will also not be entangled to the others carriers and will also
be in state ¢. The input state of carrier 2 and 3 plays no role at all (except when the
state of carrier 2 and 3 is badly chosen and cannot pass through the first projector). In
a picture this yields:

Thus we are able to teleport the state ¢ (probabilistically) from carrier 1 to carrier 3. To
see that this truly embodies teleporting a state from one region in space to another one
it suffices to tilt the trajectories of the carriers as in this picture:

We now verify the above claim for the particular case of qubits — this is the case for
which the original teleportation protocol was formulated in [9].

Convention 2.4 We ignore normalization constants and will continue to do so through-
out the paper in order not to cloud it with those meaningless constants.

Tensor symbols are omitted as it is usual in the quantum information literature. By

id:((l) (1)> s Wig = |00) + [11)

12



we have, assuming the input at carrier/qubit 2 and 3 is not orthogonal to |00) + |11),
Pig = (00 + 11 | =)(|00) + |11)).
~—_——
constant

For input |¢) = ¢o|0) + ¢1]|1) at carrier/qubit 1, after applying the projector Piq to
carrier/qubit 2 and 3 the state of the system is:

|$)(100) + [11)) = ¢0]|000) + o[011) + ¢1[100) + ¢1]111).
Next, applying Pjq to the first two carriers/qubits yields
¢0(|00) + [11))[0) + ¢1(]00) + [11))]1) = (|00) + |11))[¢)

what proves the claim for the qubit case.

This result actually generalizes in a remarkable manner to projectors labeled by ar-
bitrary functions between Hilbert spaces of arbitrary (finite) dimension [Section 3.1]:

| | (g0 f)() = g(f(d))
Py

It then follows that the teleportation in the first example is merely a consequence of the
fact that (id o id)(¢) = ¢. It seems that the information flows as follows:

A
| | (gof)(e)

) I
A

That is, it flows as if not the projectors but the functions that label them act on the
state in a simular way as the boxes do in classical functional models. However, for carrier
2 it is as if the information flows backward in time. This seemingly backward in time
flow has been pointed at in [57] for the usual teleportation protocol but the additional
functional behavior we expose here makes it far more striking. This more general case is
at its turn only one particular incarnation of the general theorem which we will prove on
compositional behavior (in the above sense) of the labels of functionally labeled projectors
which specify entanglement.

13



We will have to play this game carefully, as is shown in the following counter example:

| | # (ide f)(¢)
id

The third carrier will be entangled to the second one because they constitute the entangled
state W;q and there will be no spoor of the function f in the final state of the third carrier.
Thus compositionality fails. The crucial question to answer in order to establish a true
functional paradigm for analyzing and designing entanglement specification networks will
consists of nailing down how information propagates through projectors that specify
entanglement — this of course in the as if sense.

We will now pass from a probabilistic to a non-probabilistic protocol. We can conceive
the first projector (in physical time) as specifying an in advance prepared state. This
eliminates the uncertainty which goes with that projector. And this is indeed what one
does in most of the standard protocols. One assumes the existence of some entangled
state which is for most protocols the EPR-state W;q — sometimes also referred to as an
EPR-pair. As we will show in Subsection 3.2 one can eliminate the uncertainty which
goes with the first projector without having to rely on prepared states.

Next consider the following alternative labels for projectors:

7r::<(1) (1)> s W =|01) + [10)

id* = ( (1) _(1) > S Wyge = |00) — |11)

« [0 —1 ~ _ _
w.-(l 0> +— U =|01) — |10)

It is well-known that the set of functions {id, w, id*, 7*} constitute a base for H; ® Ho,
namely the so-called Bell-basis. The labeling functions themselves “almost” constitute
the Pauli matrices

o =X =7 oy =Y =in" 0, =7 :=id*

up to multiplication of 7* by the imaginary unit i. We stick the functions {id, =, id*, =*}
rather than to the Pauli matrices because of their agreement with the Bell-basis.

With each f € {id, 7, id", 7*} we now associate a distinct number ay and define a
self-adjoint operator

M(lda T, ld*a 7T*) = aiq - Pia + ar - Pr + ajg* - Pigx + az- - Pre |

14



that is, a four-outcome measurement in quantum theory of which (as discussed above)
the crucial part is the list

(Pia, Pr, Pig=, Pr<) .

Our teleportation protocol can be conceived such that the second projector which we
apply is actually the measurement M (id, 7,id*, 7*) where we condition on the fact that
the outcome when we effectuate it has to be a;q. What should we do if the measurement
outcome ends up not being a;q?

Consider the following four variations on the same theme:

A A A A

These variations indeed all teleport since
idoid=momr=id*oid" = —n* o™ =id.

Thus we have four distinct (probabilistic) teleportation protocols, where the four ap-
pearing second projectors are those that constitute the spectral decomposition of the
self-adjoint operator M (id,7,id*,7*). In these variations the first projector (i.e. the
preparation of an entangled state) which we (have to) apply has to be such that the
composition of its label with the label of the second projector yields the identity. Could
we choose the first projector as a function of the obtained result in the measurement
M(id, 7, id*, 7*) hence eliminating the probabilistic feature of our protocol?

| | ¢

4-outcome measurement iidvzVid* V.

- (—

preparation

Of course we cannot do that since we would violate physical causality. But we can correct
the error of applying the wrong projector at a later stage (after the measurement) as a
unitary transformation on carrier 3. For each of the possible outcomes that is:

15



id ™ id* i
| | | | | |
id T id* *

[ [ [

e—— | — e—— II_

id id id id
| | | | | | | |
since
moidom =idoidoid =id*oidoid* = —7* oid o 7* =id.

Here of course the symbols id, 7, id*, 7* in the grey boxes are not anymore the labels
of projectors but actual unitary maps — all the maps id, w, id*, 7* are indeed unitary.
We thus produced a non-probabilistic teleportation protocol and the reader might realize
that it is the usual one.

The classical information that has to be transmitted in this protocol consists of the
outcome of the measurement M (id, 7,id*, 7*) being send to track 3 such that the appro-
priate unitary transformation can be applied. All this results in the following picture:

¢

e —» idVaVvid*va* unitary transformation
| ! | chosen as a function
| of the measurement
4-outcome measurement iidvrvid*vr* outcome

id

with the doted line being the transmitted classical information. The crucial step in all
this is that compositionality provides us with the following substitution:

A A

U—l

id id
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relying on the arithmetic

id®9 0id1? = id®3) o (U~ o )1V
— (idoU™1)3) o y(12)
= (U101d)23)0U( 2)

(U1H® 0id>3) o g(1:2)

which uses commutation of id and U~!'. As we will see in Subsection 3.3 commutation
is not a necessity to perform this trick. In that subsection we will also elaborate a bit
more on the teleportation protocol shaping it as one usually finds it in text books. This
substitution allows to pass from probabilistic teleportation in terms of entanglement spec-
ification via a family of supplementary probabilistic teleportation protocols to the usual
teleportation protocol in terms of preparation, measurement, classical communication and
local unitary transformations. Setting M := M (id, 7,id*, 7*), denoting by = € o(M) that
z is a possible outcome of the measurement M and denoting by U, € {id, =, id*, n*}
the label of the corresponding projector we obtain:

, - )

A U; ! | ---------- —>» U; 1

id Uz M

id id id

A (A )

Conversely we can interpret teleportation in terms of entanglement specification by con-
ditioning the measurement outcome e.g. U, := id. This two-way principle generalizes
into a two-way compilation tool between:

z € o(M)

e General entanglement specification networks ;

e Networks of prepared states, non-local measurements, local unitary operations and
exchange of classical information between components.

This procedure allows us to (i) design communication and computation protocols in terms
of functional considerations, (ii) using high-level formal tools for example from process
calculi, (iii) express this then as a family of entanglement specification networks and (iv)
compile it then to (prepared states,) measurements, unitary transformations and classical
communication. We now start the full formal development of these ideas beginning with
the study of the compositional behavior of bipartite entanglement specification.
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3 Compositionality for bipartite entanglement specification

Consider n (material) carriers of state, in parallel, respectively described in a Hilbert
space H,;, such that the whole set is described in

HiQH Q... Hp -

Let 1,...,m be discrete consecutive instances of time.
m -\ -1 ] o
2 1\ ] o
T o
Hi Ho Hn

We refer to the vertical lines as tracks. At several locations this network has entanglement
specification (~ eP)
Prijr : Hi®@H; = H; @H,;

the indices respectively pointing at:
e The labeling function f;
e The indices of material carriers {i,7} to which the eP is applied;

e The time 7 at which it is applied.

Pf;i,j;T
| |
H; H;

Of course ¢ and j are implicit in f : H; — H; as the indices of the domain and codomain,
but it will be useful to have them explicitly. Further, although i and j are arbitrary non-
equal indices in {1,...,n}, in our graphical representation we will conveniently represent
them as adjacent. The general situation then looks for example as follows:

18



| |
S | Pypuaas(—
[
4 Pproga [ Pgera |-
|
S R B Ppyses [
[
2 PUﬁJﬂ -
Lot Pragn b
| |

Let b
gir= S ulr Ve el € R,
v=1

Qaj...Qp

be the initial state at time 0. Let Py,; ;.1 be the only eP at time 1. The state at time
1+ €< 2isthen
W= P (U17)

where slightly abusively by Py,; ;.1 we actually mean

v=n v=n
Prijn ®@id-gi gy : Q@ Ho = Q) Ho

v=1 v=1

with id_; ;3 being the identity on
QR{Hy v e{l,....,n}\ {i,j}}.
Let Py .- be the only eP at time 7. Analogously set
U7 =P (77)
for all 7 € {1,...,n} and set TOout ;= I,

Definition 3.1 An entanglement specification network is one of the above kind. We call
H; the type of the i-th carrier and @, =1 H, the horizontal type of the network.

Given is an entanglement specification network =. We will now define a notion of path

within such a network. Any pair (v,7) with v € {1,...,n} and 7 € {1,...,m} can be
conceived as a coordinate in an entanglement specification network:
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-~ (1m)--- (2m)-------- (n,m)-

- (1,2) --- (2,2) -------- (n,2) -
I I I

- (1,1) --- (2,1) —----——- (n,1) -
| | |

(1,in) (2,in) (n,in)

where we have added input coordinates
I(E) :={(v,in) |v € {1,...,n}}
and output coordinates
O(E) :={(v,out) | v € {1,...,n}}.
The space of coordinates is
S(E):={1,...,n} x{in,1,...,m,out}.
Let P(Z) be the set of eP’s occurring in E. Define
PE) = {(v7) €S(E) ‘ i, f Pz €P(E) or Priy €P(E)}.

Thus P(E) is the set of all coordinates where we have an eP. Define

(v, ), (v, )] == (v, 71 +1),...,(r,72 — 1))

(v, 19), (v,m)[ :=((v,72 = 1),..., (v, 71 + 1))
for 1 <7 < 1 <m. Note that ](v,7;), (v, 7;)[ can be empty. Further set

[(v,in), (v, 7)] = ((v,in), (1, 1) ..., (v, 7 — 1))

(v, 1), (v,0out)] = ((v,7 +1),...,(rv,m), (v,out)).

By a path in Z we mean a list [' := (I'y,...,[|p|) of coordinates in S(Z) of some specific
shape (to be defined below).

3.1 Compositionality for forward paths
i. Full forward paths. In this section we first consider paths of the following shape:
[(v1,), (w1, m)[- (w1, 71), (v2,71)) - 1(v2, 1), (02, 72) - ((V2, 72), (W3, 72)) - J(v3, 72), (3, 73)[ - - ..
<A ey -2y @egs Tyep L (@yeps eDs @egses 1) - J@egss 7ieps @)l
implying T'; € [(E) and I'jp| € O(Z), and where we additionally require

JWy+1:73), (Vg1 Ty4) [ NP(E) =0
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for all v € {1,...,||T|| — 1},

[(v1,), (v, ) NP(E) =0, 1)1+ ey (ryj+1,)] 0 P(E) =0
and
va?V'v:V'y+1§Tv € (E)

for all v € {1,...,||'||}. For convenience we set:
Vin 1= 1 Hin :=Hy,

Vout *= V||T||+1 Hout := Moy 1

Note that [|I'|| is the number of eP’s through which I" passes. Some basic examples are:

In words and referring to the pictures, such a path
e starts at time in and ends at time out;
e proceeds along the tracks;
e whenever it encounters an eP it:

1. jumps from track v, to another one, namely track v, ;
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2. reverses its direction (with respect to the direction of the actual physical time).

It follows that paths are manifestly acausal with respect to the physical flow of time.
In this definition it is also implicitly encoded that an eP allows paths to pass in four

different ways:
¢ S )

Definition 3.2 By a full forward path we mean one of the above kind.

We introduce the notation zy ... 2 ...z, for 21 ... 212441 . - - . Assume that the initial
state can be written as

U= ¢m ® Z q)al...&m...an ’ 681) ®...8 é(al;l:) ®...® eg;)

a1...04n...00

with ¢;, € H;pn, that is, the v;,-th carrier of state is initially not entangled to any other
one. We will express this fact by saying that ¢;, is free in ¥. Analogously we conceive
bout being free in ¥ whenever

U= ¢out ® Z q)al...dout...an ) 65111) Q...0 é(uout) Q... egfl) '

Qout
ai...Qoyt.--Qn

for ¢out € Hout-
Definition 3.3 We call the pair (2, ) regular if ¥ is not equal to U € Q) —1 H,.

As we will discus in Subsection 4.4 ¥ will only be 0 in very singular cases and they can
be avoided either by a different choice of ¥ while retaining ¢;, or by a slight modification
of the network that doesn’t alter its compositionality and the set of paths it admits.

Theorem 3.4 (Full forward path compositionality) Given are:
e An entanglement specification network Z of horizontal type @\ _7 H, ;

o A full forward path T passing through ||U'|| eP’s respectively labeled Py .

Vo sV 15Ty 9
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o An input state U € Q=% H; with (2, V) regular.

If ¢ is free in U then ¢y is free in ¥ and we have

bout = (fyrjj o=+ o fyr10fyo fyo10

Proof. See Section 5.

In a picture this means that for the following network:

-+ 0 f1)(in) -

Pout = (f8 °

6 - — fi—> || — fa— | _____]
5 - —fh—= [t
4 —fi— |1 ]
3 = [
I R — fr—
Lorges —TJo— [ — i

~~
. in (2) o ,(3) o ,(4)
¢Zn z ¢a2a3a4a5' Cay ®ea3 ®ea4 ®ea5
Qp03aq05

we have

(5)

bout = (fs o fro feo fso fao fyo fao f1)(din)

where we simplified denotation by:

N

A

ES

and

<€

&
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Priijir

> o

<€

&

-0 f1)(¢in)



T -1 —f— = T -1 Prijir |-
Y A A Y
" M ", M

Thus this theorem teaches us that information flows in an entanglement specification
network as if it flows along full forward paths in a compositional manner, the functions
applied to it being the labeling function of the corresponding eP. Of course, the acausal
nature of such path forces us to stress that we have no actual physical flow but only an as
if flow through full forward paths. Note in particular the sharp contrast with the actual
physical causal order when applying projections (we omit track specification):

U= (ProoPrsoPp50Ppu0Pr30Pro0Pg0Pra)(V)
S———— S————

Pri60Prye P10 Pra
We can indeed freely commute those eP’s that happen at the same time, although ob-
viously in general we don’t have f3o f; = fi o f3 and fgo f¢ = fe o fs at all. For
{i,j}n{k,l} =0, i+# j and k # | we have
Prijir ® Poktr @1d-fijrny = (Pf;z',j;r+e ® Z'dﬁ{i,j}) ° (Pg;k,z;r ® idﬁ{k,Z})
= (Pg;k,l;T-i-e ® Z.dﬁ{k,l}) ° (Pf;i,j;r ® idﬁ{i,j}) )

for e sufficiently small. Thus, in pictures:

| | | | -1 P 36,037 +HE

12

T Pf;i,j;T 77777 P!];k,lﬂ' N
| | | lfF Pokpr [+

12

Pf;i,j;T

It then also follows that considering only one eP at each time is no actual restriction.
Remarkable is the independence of ¢,,; on

Z Prrazanas 6822) ® 6&33) ® e&t) ® 6&55)

Q34
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in the above example or on

S @ ba, e @@l @ @ el
a1...04n...00

in general — except for the few singular cases where U becomes U [Subsection 4.4].

The cautious reader might have some concerns with respect to typing and interchange-
ability of the different labelings discussed in Subsection 2.2. And he is very right to do
so. We postpone the discussion of these matters to Proposition 4.4 in Subsection 4.1.

ii. Partial forward paths. Theorem 3.4 on compositionality extends beyond the case of
full forward paths. Consider paths of the shape:
[(Vl)Tin)) (Vlle)[' ((VlaTl)a (V27Tl)) '](V2;T1)7 (V2>T2)[' cee
1@y ey =1)s @y Ten L @egs 7ien)s @eges 1e) - 1@y ie)s @ejs Tou)]

provided that at times 7;, and 7,,; no €P’s occur. So we drop I'1 € [(Z) and ' € O(E)
but replace these by:

e T, <7 and 0| < Tout assuring the path is forward ;

o Vye{l,... .||} : 7 < Tout-
The condition
(1, Tin), (1, )[ NP(E) =0
V@15 7y W) Tour)] N PE) =0
replaces [(v1,), (v1,71)[ N P(E) = 0 and J(v)r)1+1, 7)r))s (Vr)j4+15)] N P(E) = 0 as com-
pared to full forward paths. Thus, the generalization is such that the input can be at

any time (before the output) while the output should be after (in physical time) all other
eP’s that take part in the path:

The time at which the path starts and ends doesn’t coincide anymore with in and out. We
indicate this by referring to the initial and terminal path time in italic contra boldface
which we use for the initial and terminal physical time — as we have done so far and
will continue to do so.
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Definition 3.5 By a partial forward path we mean one of the above kind.
Corollary 3.6 Theorem 3.4 extends to partial forward paths.

There is a clear asymmetry in the above result with respect to the flow of physical time.
We can have 7, < 79 but we cannot have 7, > 7,,¢. It is easy to find counter examples
which establish this.

Counter example 3.7 Counsider the following path.

¢in

At time 2 the third carrier of state is in general entangled to the second one since they
are in the entangled state labeled by an arbitrary function f.

There also seems to be an obvious physical argument purely relying on causality. If
there is an eP through which the path passes at a time later than the time at which
we evaluate ¢gy:, we could still decide not to effectuate the eP or change it. Having a
functional correspondence between ¢;, and ¢, which depends on this “still changeable”
function g would be in conflict with causality. However!

Riddle 3.8 (Cancelability on the left for atomically singular maps) If for partial
forward paths we drop the condition 7 < 7,y,:, Whenever in addition to ¢;;, being free in ¥ it
is also given that ¢, is free in U, then we can actually prove that compositionality as it is
expressed in Corollary 3.6 still holds. How can this be possible in view of the above outlined
argument on causality with respect to the actual physical time?

Solution. See Subsection 5.5. O

The title of this riddle refers to a notion which we will introduce in Subsection 5.3.

Many more surprising facts of this kind will be discussed in Subsection 4.1 and Sub-
section 4.3. One crucial lesson which follows from the fact that only the partial forward
paths defined above assure that the output is free is that for arbitrary intermediate points
of the path no statement can be made on compositional dependence on the input. We
can deduce from this that the compositionality result is a global one and not a local one.
That is, the compositionality theorem only makes statements on how the input and the
output relate for a path of a particular shape with restrictions both on

26



1. how it passes through eP’s, and,
2. where the input and output are located relative to the rest of the network;

it makes no statements on the state at intermediate points of a path.

3.2 Local unitary actions

We will now allow our networks to contain local unitary transformations. This means
that at coordinates (i,7) where no is located we might encounter:

The definition of a path stays the same:
e Paths pass unitary transformations as if they would not be there.

We introduce a labeling convention.
Convention 3.9 If a path goes forward (in physical time) through the unitary transfor-
mation we label it as U. If the path however goes backward through the unitary transfor-

mation we label it by U™, that is, by U’s inverse.

This “reversal” of the label should be interpreted as representing the unitary transfor-
mation “as seen by the path”, and not by physical time.

Extending our example from the previous section this could yield:
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Theorem 3.10 (Extended compositionality) With the assumptions of Theorem 3./
when I' additionally passes through unitary transformation

U»y H HV’Y‘H — HV7+1

either or both after Py .. | v v, and before Py ., o .7 then the functionality theo-
rem still hold with as modified compositional expression:

bout = (Ujrjj+1 0 frjjo Uypj o+ o fypr0Uppro fyoUyo fypo---0Uso froUn)(din) -

Thus, in terms of the labels, there is no difference between the path passing through an eP
or through a unitary transformation. Except then for the fact that in the case of unitary
transformations it are these transformations themselves which appear as functions while
for eP’s it are the functional labels. It then follows that we can factor unitary components
out as we did in Subsection 2.3.

Corollary 3.11 (Unitary correction 1) If g and U commute then we have:
A A A A

U

Uof

\
1
\
|
\
1

A A A A
Hence effectuating the unitary action U “at the end of the path” is equivalent to having

implemented U o f. Thus we can use U to correct f into the desired result U o f. We
now weaken the commutation requirement.
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Corollary 3.12 (Unitary correction 2) If goU = U o g then we have:
A A A

U

12

~
12
~

A A

In this more general case we can use U to correct f into the desired result U o f since
effectuating the unitary action U at the end of the path is equivalent to having imple-
mented U o f. This non-commutative version has important applications as it is shown
in Subsections 3.3 and 3.4.

Definition 3.13 An eP is positive for a path I' iff I enters from above; an eP is negative
for a path I' iff I" enters from below. In pictures:

Y 4

positive

negative

| * *
Definition 3.14 An eP Py ;.. € (E) is free from below iff for each 7 € {1,...,x — 1}
= Analogously we define being free

there exists neither P_y, ;. € (E) nor P_; 1., € ().
from above in = for an eP. In pictures:

We conclude by mentioning some “causality respecting” strategies one can use to compile
entanglement specification networks into networks of prepared states, non-local measure-
ments, local unitary transformations and classical communication.

(1a) A negative and free from below appearing eP can be conceived as a prepared state.

(Ib) A negative appearing eP can be corrected by a unitary transformation.
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(2) A positive appearing eP can be corrected either via Corollary 3.11 or Corollary 3.12
depending on its commutation properties with the negative appearing eP which it
precedes (along the path).

Note that combining (1b) and (2) allows to produce a non-probabilistic teleportation
protocol without relying on prepared states.

We will mostly rely on (la) for eliminating uncertainties for negative appearing eP’s. In
Subsections 3.3 and 3.4 we present some more refined thoughts on correction of unwanted
measurement outcomes.

3.3 Example: logic gate teleportation

We now reproduce the quantum logic gate teleportation protocol of [33]. Quantum gate
teleportation is an ingenious variant of the teleportation protocol. One does not just
teleport a pair of states but at the same time reproduces the pair as if a CNOT-gate
has acted on it. The protocol only uses measurements and locally unitary operations
[Definition B.3] while a CNOT-gate itself is a non-local unitary operation. The action of
a CNOT-gate on the standard qubit base of pure tensors is

=)

1 0

DR O

Thus, the action on the first qubit is id but on the second qubit is either id or 7 depending
on the value of the first qubit. The action is clearly unitary since it merely swaps the
base vectors |10) and |11). It is obvious that such a unitary action does not factor into
two local unitary operators U; ® Us each acting on one qubit since U; would have to be
id what makes Us undefinable.

In view of the results obtained above there are two immediate candidates to do such
a thing “at least probabilistically”, namely implementation of id o CNOT
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| | A

CNOT : (H1 ® H2) = (H1 ® Ha2)

id: (H1 @ Ha) = (H1 @ Ha)

A

and implementation of CNOT o id

| | A

id: (H1®Ha) = (H1 Q@ H2)

oNOT : (H1 @ Ha) — (H1 ® Ha)

A

The problem is now reduced to eliminating the probabilistic nature as we did it for
ordinary teleportation in Subsection 2.3. In the case of idoCNOT we prepare the idy, g7,-
labeled state and in the case of CNOToid we prepare the CNOT-labeled state, eliminating
the uncertainty due to the first (in time) eP. In addition to this we have to perform a
unitary correction in order to eliminate any “unwanted measurement outcome” in the
measurement which we perform to implement the second eP.

i. Implementing id o CNOT. We can apply Corollary 3.11 since id commutes with every-
thing. Since we want the unitary correction to consist of local unitary operation we have

to complete
o 10 2 0 n 0 ® 0 n 1 ® 1 n 1 ® 1
T 0 1 1 0 1 1 0

into a measurement base {UcnoT , @, ...} such that the labeling function fg of each base
vector @ is unitary and in particular that CNOTo fg ! (which is the corresponding required
unitary correction) is local. Hence for some unitary transformations Uy : H; — H; and
Us : Ho — Ho we have

-1

U
that is fo=1] %

Ui

o CNOT
Us ’

CNOTo f3' = ‘

where we used the vertical representation of the respective tensors U; @ Uy and Uy '@ Uy
to make types graphically match with the above representation of CNOT and Wyor. This
yields the following situation for correcting the obtained measurement outcome.
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U
Uz

o CNOT

A

For U; = Us = id we have ® = W yor. As alternative choices for Uy and Us let Uy, Uy €
{id, 7, id*, 7*}. We show orthogonality of the resulting base vectors. Observe that

).

If this doesn’t seem obvious at first, just look at the following pictures having our com-
positionality results in mind.

— Lo .
Cevor = (CNOT " ®id) (\If oit

g
|

L
2 2

(eNoT @ id) (W

-1
Uy B
-

-1
UL1
U,

Recalling Convention 3.9, the physical outputs in the two pictures give exactly the left-
handside and righthandside in the equation. Strictly spoken this doesn’t follow from
Theorem 3.10 but it does have the same flavor. It does follow by Lemma 5.8 in Section 5
where we prove Theorem 3.10 — this graphical justification of the above equation nicely
illustrates how one can use compositionality in quantum arithmetic.

Proposition 3.15 Functional labeling of states commutes with the tensor:
1. \I/f ®\I/g = \I/f®g;

2. \I/f1®91 1 \Ilf2®g2 — \ijl 1 \Iif2 or \ijl 1 \Iif2'

Proof. Using the construction of the tensor product presented in Appendix A we have

189 = (X fasle | =)-e) @ (X gnale? | =) - ")
af Yo
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= Y fasgrs(eD | ) e | =) - e @ oY

afvyd
= Y fasgale) @ e | =)o) @ el
afyd

such that

U@, = (Zfaﬁ W eey)® (2975 e @)

= Z faﬂgv(;-ea) ®eg) ®e(ﬁ) ®e((5)
afvyd
- qu@g .
It is further obvious that the above proof does not depend on the chosen labeling. The
second claim follows by Proposition A.11 in Appendix A. O

\I/U2_1
Since CNOT ™! ®id is a unitary transformation which preserves orthogonality Proposition
3.16 reduces the required orthogonality to the Bell-base being orthogonal.

By this proposition we have

G

-1
Ul

—1
U,

So we now have a protocol which does what we required it to do. This is however
not the protocol introduced in [33]. A problem with this protocol might be the actual
physical realizability of the measurement which is highly non-local and requires itself
effectuation of a CNOT-gate [Appendix B]. A crucial feature considered by the authors
to justify their protocol [33] is fault tolerance [58]. We will slightly elaborate on features
of that kind below but our main goal here is to illustrate a methodology which uses the
compositionality theorems.

ii. Implementing CNOT oid. The protocol proposed in [33] will be obtained when we im-
plement CNOToid. Since CNOT does not commute with arbitrary unitary transformations
this requires the use of Corollary 3.12. As measurement base we take

> with Up,Up € {id, m, id*, n*},
Yy,

that is, we take the product of the respective Bell-bases of H1 ® H1 and Hs @ Ho. B
Proposition 3.16 we know that the corresponding labeling functions are

with Uy, Uy € {id, m, id*, n*}.

Ui
Us

One verifies that

,n_*

id

id*
id

id*
id

id*
id

™
- oCNOT CNOTo

™

™
CNOTo id‘ = = oCNOT CNOTo = o oCNOT

™
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*

id*
id*

id
CNOTo
™

id
id*

id

*

id
™

id

id*

id
= |, |°CNOT  CNOTo =

oCNOT CNOTo o

oCNOT

the latter column since 7* = 7 o id*. Thus by

Ui
id

id
= (o]
Us

Ui
Us

it follows that all necessary unitary corrections factor in a pair of local unitary corrections.
In principle this completes the design of the protocol.

iii. Using the Pauli group structure. The protocol designed above is the one to be found
in [33] but still it might appear not that familiar to the reader. We will reshape both the
teleportation and the logic gate teleportation protocol. To do this it suffices to notice
that by 7* = 7o id* we can think of a measurement in the Bell-base as consisting of two
sub-measurements

—-—-3 2 bits e —> 1 bit

! ! ~—» 1 bit

i i i
idvrvid*vr* ~ idvid* { idvr

ALY
This operationally incarnates the by Booleans x and z parametrized representation

Yoz = 0z) + (=1)%1(1 — z))

of the Bell-base as can be found in the standard literature. This observation transforms
the above teleportation protocol into:

................. —>» | idvid*

--------- »| idvw

id

In case of logic gate teleportation we can additionally use the following.
Proposition 3.16 Functional labeling of eP’s commutes with the tensor:

Pf®Pg :Pf®g.
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Proof. We have
Py ®@Py =Py, ® Py, =Pu,ou, = Pu,y, = Pray

by Proposition 3.16 and Proposition B.4. O

Thus we can think of an eP labeled by the tensor of a pair of functions as a pair of eP’s:

g
f@y ~ I
!
\’
H1@H2 Ha®@Ha Hi He Hs Ha

This transforms the above protocol into:

A A

R — SU 7\ TS W P\ T
|

j R —» | idvr

i i

idvid*} i idva

S —{—>» idvid*
I
I

— >» | idvm | idvw

CNOT

A A

If in this picture we substitute “idVvid*” by “Z” and “idV7” by “X” and permute the
carriers a bit then we exactly obtain FIG 2 in [33]. We represented the “virtual” action
of the CNOT-label on the path by the usual representation of the CNOT-gate in quantum
circuits. This clearly exposes where effectuation of the CNOT-gate is “hidden” in the
logic gate teleportation protocol.

iv. Locally correctable gate teleportation via Clifford groups. We reproduced logic gate
teleportation for the particular case of a CNOT-gate. As shown in [33] this example

35



extends to all unitary transformations in the Clifford group, that is, the group generated
by the CNOT-gate, the Hadamard gate and the phase gate via composition and tensors,
given a fixed number of qubits (~ size of the space) on which they act. This can easily
be seen since the Clifford group can be alternatively defined as

CGn={V €Up | Vo[Gu]o V' CGn}
where the Pauli group is defined as
Gp:={U1®...9U, | Uy,...,U, € G}

with
G ={a-id,a 7, a id,a- 7| aec{l,i-1,—i}}

and U,, being all unitary transformations acting on n qubits. Thus each V' € CG,, is such
that for each Uy € G, there is a Uy € G,, such that

VolU =UoV.

This brings us within the scope of Corollary 3.12 while assuring that the necessary cor-
rection Uj is a tensor of local unitary operations. We obtain

since

V=VoU oU'=U0oVoU "
As also indicated in [33] we can push this line of reasoning further when considering
CG2 = {W €U, | WolG)oW ! CCG,}

which contains some unitary transformations not in CG,, such as the Toffoli gate, the 7/8
gate and the controlled phase gate. Each W € CG2 is such that for each U, € G, there is
a Uy € CG,, such that

WOUQZUQOW.

Of course Uy € CG,, is itself not necessarily local but we can implement it exactly as we
implemented V € CG,, above. We obtain
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since
W=WolyoUy'=UsoWolUy'=UpolUoUoWolUy'=UjolUsoU Lo WolU, .

In this setting U; is the only unitary transformation which we have to apply and it
is a tensor of local ones. In terms of measurements and classical communication, the
“outcome” Uy L of the first measurements conditions the second prepared state as being
(72 while the outcome U 1 imposes effectuation of a unitary transformation (71. Note
here also that the temporal order of the eP’s is fully determined by the causal flow of
classical information.

This procedure clearly extends inductively for k£ > 2 to all unitary transformations in
COFL = {W U, |Wol[GyoW L CCGF}.

Causality of the flow of classical information again fully fixes the eP’s temporal order.
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RN - =1 .. 2k —1
— | 2% -2
B I = O B -

1 2 3 4 5 2k —3 2k -1 2k +1
Hence we possess a method for implementing all unitary transformations in
cgy = |Jcgr
keN
while restricting to

e Bell-base measurements, and

e Unitary transformations of the Pauli group (and hence local).

On the other hand the prepared states can be any
\I/f€H1®...®Hn with fECg;‘{.

Definition 3.17 The height of an eP network is the minimal required number of distinct
instances of time at which there is an eP or a unitary transformation. The depth of an
eP network is the number of eP’s and unitary transformations acting on each carrier.
The width of an eP network is the number of participating carriers.

The height of the above network is 2k +1 given that W € CGX. We need k measurements,
k — 1 corrections in terms of a prepared state, 1 correction in terms of a local unitary
operator and of course also the initially prepared state encoding W itself. The causal
dependencies in terms of classical information obstruct any of these operations to be
performed at the same time. The depth is only 2. Each qubit in its prepared state
will only be subjected to one additional operation, either a Bell-base measurement or
a unitary transformation. The width is also 2k + 1 since we need k eP’s representing
prepared entangled states and to this we have to add the initial state.
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3.4 Example: parallel composition via Bell-base measurements

As an exercise we will produce an algorithm which, for unitary operations, substitutes se-
quential by parallel composition and hence reduces the depth of a network. We will team
this line of thought up with the imposed constraints and corresponding developments of
the previous subsection. In particular does the passage from sequential to parallel compo-
sition allow to implement the so-called first law of fault-tolerant computation put forward
in [55]: “Don’t use the same bit twice”. As mentioned above fault-tolerance was also the
main motivation behind the logic gate construction [33]. Of course, with this prophecy of
a reality with quantum computers in mind, one has to admit that currently it is still sort
of a bit early to foresee how the ultimate architecture of those machines will be. Form a
computational point of view the operational compilation tool needed to pass from an en-
tanglement specification network to a setting of (prepared states,) measurements, unitary
transformations and classical communication has to take this architecture into account.
But it seems fair to say that restricting the necessary required operations to a limited
number of already realized ones would increase the global realizability of any proposed
model for computation. Thus we will do so. We do repeat that our main goal is expos-
ing a methodology emerging from information flow based reasoning about entanglement
rather than proposing a particular model for quantum computation.

i. Parallel composition via Bell-base measurements. Assume that we have a variety of
available entangled states but that we can only perform Bell-base measurements. We
want to implement a composition of unitary transformations

Jmo...of1

where we assume that all involved unitary transformations and thus also f,,0...0 f; have
the same type namely

fioooosfms(fmocofi)  Hi® ... QHy > H1®...Q Hy.

A motivation for performing such a composition could be that one possesses a primitive
set of gates from which by composition and tensoring one can accomplish the action of a
much larger set. As an example, given the CNOT-gate, the Hadamard gate and the phase
gate, by composition and tensor one can produce arbitrary unitary operations in CG,,.

The composite fp, o...o fi would be realized “probabilistically” when effectuating:

A
(fmo...of1)(9)

id id N ,T

f1 fo fm
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Each
(d:H1®...0H, > H1®...® Hy)-labeled

is of course at each turn a tensor of n
(id : H, — H,)-labeled ’s.

We can think of the “global path” as consisting of n subpaths which interact in the
fi-labeled eP’s. In general each f; is itself also a tensor of several functions.

(fmo...o f1)(¢)

fgsed

f§1’2)®f2(3’4)

f1(1)®f{2’3)®f{4)

In benefit of clarity of the picture we re-indexed the types of the eP a bit such that now

Pfl’ ,me T HL ... QHIQHIR...QH, > Hh Q... HI1OHI ... H,, -
We have the following quantitative facts:

e Both the height and the depth of this network are 2;
e The width of the network is (2m + 1) x n;

e The required number of Bell-base measurements is m x n .

The above mentioned limited variety of available gates which motivates performing com-
position now translates in a limited variety of available prepared states. However, prepar-
ing these states in general involves application of the corresponding gate.

Some of the fi(a""’o’s might be identities and in that case there is a redundancy in
the number of Bell-base measurements since we will have occurrences of ido ... oid = id
encoded as several eP’s. As an example consider the case of

X
id ~— cNor
BN !
N
777777777 TGN [0% U—
P—— |
Cl\iOT:—————————‘ id
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that is
(evor? @id*) o (1" © oxoTi? @ idy”) o (1  enoT("?).
We can reduce the number of measurements by substituting “triples”

(measurement ; id-prepared state ; measurement)

by only one measurement.

In the case of this example this passage reduces the number of measurements to (m x n)/2.
If more than 4 initial states are involved while applying one two-qubit gate at the time
the reduction factor will be 1/(n — 2) in stead of 1/2. Note also that after this reduc-
tion the network obtained when starting from a composition which has two or more
non-trivial gates at the same time is equivalent (~the same up to permutation of the
carriers) as the one obtained when starting from the modified composition which one gets
after substituting each occurrence of

.0 (f(aly"'ygl) ® g(a27---;(2) ® . ) o...
by either
o (id@0) @ gla20) @ Y o (fltnl) @ id(@2) @ L Yo

or
..0 (f(ala"'ygl) ® id(a27-“ac2) ® . ) o) (id(ala"ﬂ(l) ® g(a27'“ag2) ® . ) o...

(and hence increasing m). Below we put this reduction in an algorithmic shape.
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ii. Computation via o generating set of gates. Of course one desires to pass to a de-
terministic protocol via some correction taking into account “undesired measurement
outcomes”. Let us for the sake of the argument assume that

fla"'afmecgn-

As demonstrated in Subsection 3.3 we can correct undesired measurement outcomes im-
mediately “after” (with respect to the path direction) the eP which follows the measure-
ment via unitary transformations effectuated strictly “later” (with respect to the physical
time) than the measurement itself.

i SR
rrrrrrrr 1
These corrections are local unitary transformations in G, since f1,..., fm € CG,. Roughly

spoken, the required number of unitary corrections as well as the height of the resulting
network is proportional to the number m of gates one applies. However, one can reduce
the height and the required number of unitary corrections by further exploiting the group
structure of G, and for each v € {1,...,n} only applying one unitary correction at the
end of each subpath. That is, each occurrence of

(measurement ; prepared state; correction ; measurement ; prepared state; correction)
along a subpath can be replaced by
(measurement ; prepared state ; measurement ; prepared state; correction)

Below we make this reduction of unitary transformations precise.

In terms of m both the height and the number of required unitary corrections are now
constants. Most importantly, by reducing the number of unitary transformations that we
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have to perform we reduce the errors that they might cause. The depth is now 2 and the
height is 3. It is easy to see that we can extend this procedure to

fla"'afmecglyi

following Subsection 3.3 paragraph (iv) but this will increase the height to 2k + 1. Also
the width will increase.

iii. A compilation algorithm. We assume that at each instance of time we only apply one
gate — it should be obvious that this does not impose any restriction. For convenience
we will represent the gates themselves as f;, that is, we trow away the identities in the
tensor. Given are:

e Two numbers n and m respectively being the number of qubits involved and the
number of gates one desires to apply consecutively.

e The respective initial states ¢, of the qubits.

e The kinds of gates f; we apply where the index i € {1,...,m} specifies the order of
application; specification of the list Tracks(f;) being the qubits to which we apply
fi; below we will sometimes conceive Tracks(f;) as a set rather than as a list.

Desired is the state of the qubits after being subjected to the gates. Available are
e Local unitary operations in G, ;
e Bell-base measurements ;
e Prepared entangled states of which the functional labels include fy, ..., fim.
Assuming that all f; € CG,, we now define the network which produces this state.
e Denote by |Tracks(f;)| the cardinality of Tracks(f;). Consider
i=m
n + (2- Z |Tracks(fi)|>
i=1
carriers of state.

e The initial state of these is
v=n i=m
v=1 i=1

Gates(v) := {z e{l,...,m} ‘ veE Tracks(fi)} .

e Set

For each v € {1,...,m} and each i € Gates(v) set

I(v,4) := Sup({j € Gates(v) | j < i} U{0})
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and let Order(v,7) be the position of v in the list Tracks(f;). Now define for each
such pair (v,4) the numbers

Inz(-y) =v if I(rv,i)=0

j:l(l/,i)—l
= n+ (2 Y |Tracks(fj)|) + | Tracks(fi(,5))| + Order(v,I(v,1)) otherwise
j=1
j=i—1
Outz(-y) =n+|2- Z |Tracks(f;)| | + Order(v, 1)
j=1
and apply a Bell-base measurement Mi(y) to the carriers In!”) and Outgy).

1

—1
Let (Ui(y)) be the function labeling the outcome state of the measurement Mi(y).
Then solve the equations

Vi: @ {0 | v e Tracks(fi)} o fi = fio @ {0, o UL

Vo: U =id

vE Tracks(fz-)}

using the Clifford group structure. For each v € {1,...,n} define
I(v) := Sup(Gates(v))

and apply the unitary transformation (ZS;’ ) to carrier

j=I(v)—1
n+ (2 > |Tracks(fj)|> + | Tracks(fr,,))| + Order(v,1(v)).

J=1

Using all the above one straightforwardly verifies that this indeed produces the desired
state as output. Some quantitative facts.

The height of this network is 3;
The depth of this network is 2;
The width of the network is
i=m
n+ <2- Z |Tracks(f,~)|> .
i=1
This number lies between 2m + n and 2(m x n) + n.

The required number of Bell-base measurements is

i=m v=n

Z | Tracks(f;)| = Z |Gates(v)| .

=1 v=1

This number lies between m and m X n.
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e The required number of one-qubit unitary transformations is n.

One can extend this algorithm for arbitrary unitary transformations in CG; using the
method exposed in 3.3. But this of course changes the numbers.

e The height of the network is now 2k + 1 with
k:=Inf{j eN| fi,...,fm €CGL}.

e The depth of this network is still 2;

e The width of the network is now
n+ (2 > k(i) - |Tracks(fz-)|>
i=1

with ‘
k(i) :==Inf{j e N| f; € CG}}.

This number lies between 2m + n and 2(k x m x n) + n.

e The required number of Bell-base measurements is now

i=m

S~ k(i) - | Tracks(f;)].

i=1
This number lies between m and k X m X n.

e The required number of one-qubit unitary transformations is still n.

3.5 Example: specificational quantum logic

We started this paper of by discussing the notions of pre- and post-specification in or-
thodox functional computing. This involved asserting that the input and the output of
functional actions satisfy certain properties. We can do the same for our virtual paths.
So far we only made assertions about the state of the input and the output of a path.
We can extend this to asserting that at the input and the output the corresponding car-
rier satisfies certain properties [Subsection 2.1]. From the discussion in Subsection 2.1
it follows that one can put forward the following (at least conceptually) “operational”
definition of a physical property [40].

Definition 3.18 A physical system possesses a property Ap iff in case we would perform
the measurement 1-P + 0 - P+ we obtain outcome 1 with certainty.

The properties which a quantum systems can possess are in bijective correspondence with
the complete lattice of closed subspaces I(H) of a Hilbert space H [13]. An axiomatic
characterization of this lattice can be found in [54].
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Question 3.19 Given is a path in an entanglement specification network. Is there a
weakest pre-specification which guarantees a given post-specification?

For a path I" we can write A % B whenever pre-specification A guarantees post-specification
B and the weakest pre-specification for B, provided it exists, is then

\/{A€L®#) | A% B},

Weakest pre-specifications are well-known in orthodox functional computing [23, 36] —
also referred to as weakest preconditions. They extend to quantum systems and even more
so to general property lattices [18, 20, 28]. This generalization has the classical case as its
limit. Briefly, if we consider the supremum preserving pointwise extension f : L; — Lo
of the functional action to the lattices of properties then the weakest pre-specification
for B is f*(B) where f* : L, — L; is the infimum preserving Galois adjoint to f [20].
The orthodox case arises when both lattices are complete atomistic Boolean algebras. A
specificational quantum logic would be the corresponding analogue to Hoare logic [35].
We think that a fruitful collaboration could emerge if some members of the quantum logic
community and some of the theoretical computer science community would join forces
on issues like these.

4 Requirements and time witnesses for compositionality

The passage from a causal reality to an acausal formal tool to reason about it obviously
cannot exist without certain limitations. We expose them in this section.
4.1 Time reversal and complex phase

Let us indeed be courageous and expose some edges to the above.

Deceit 4.1 Above we boldly cheated. In Section 2.2 we discussed the existence of a canon-
ical functional labeling of bipartite states and projectors via a linear isomorphism

n: (M @Ha) = (Hi = Ha) 29 @1 .
where B
Y= (1/)|_>7-l1 :H1 — C.
Using H ~ H** we obtain a complementary functional labeling via the linear isomorphism

e (Hi@Ha) = (Hi > Ha) i h @ -

where ~

Y= (Y| =)y : Hi = C.
Other linear isomorphisms which also allow functional labeling of bipartite states in terms of
linear functions are

el (M1 @Hy) = (M = Ha) i ei @ b -
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where {e;}; is a chosen base of #;, but these linear isomorphisms depend on the chosen
base {e;};. There are two obvious concerns which arise with respect to the results claimed in
Subsection 3.1 and Subsection 3.2:

1) First with respect to the e-labeling. If we have two eP’s in a teleportation-style settin
g g
projecting on ¥ € H; ® Hs and ® € Hy ® Hs, then the canonical labeling functions

f=€(U):H] = Hs and g=€(®):H5 — Hs
don’t have matching types which allow composition since
codom(f) = Ha # H5 = dom(g) .

Hence the composite “g o f” is ill-defined.

]
¢ Ho Hs

Dually, when we want to implement the composite of functions with matching types
eg. [ : Hi — Hz and g : Ha — Hs, then the projectors on the states n~!(f) €
Hi®Ho and n1(g) € Hi3®H3 don’t match for a “teleportation-style” implementation.

Heo
| | (gof)(@)

(2) Secondly with respect to an e!®}-labeling. For a teleportation-style setting with pro-
jectors on ¥ € Hi ® Hso and ® € Hy ® Hg the functions

(1) (2)
N U)  Hy 5 He  and  €lSTH®)  Hy — Hs
depend on the choices of {egl)}i and {egz)}i so how can the compositionality result
still hold for all possible choices? Dually, when implementing f o g via a teleportation-

style network different choices of bases yield different networks and hence different
dependencies of the input ¢;;, € H1 on the output ¢y € Hs.
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However, the example of teleportation which we explicitly worked out in Subsection 2.3 using
the base-dependent labeling seems to confirm that the compositionality theorems are indeed
correct and so do all the investigations we did around the logic gate teleportation protocol.
Further there is the explicitly proven compositionality in [3]. What is the catch to all this?

Recalling the in Section 2.2 introduced notation H; % Hs to denote the anti-linear
functions from H; to Ho, the labeling

€ (H1®Ha) = (H1 P Ha) 2p @b (— | 1) - b

seems to escape both of the above mentioned concerns since it is both canonical and
provides matching types, and indeed, with respect to this labeling the compositionality
theorems perfectly hold. Below we will derive from this fact how to make the e-labeling.
The adjustment which we will have to make has the following “feel”:

“When reading the time of a transparent clock from its back we have to
conjugate the angles which the hands make relative to the noon position.”

We have to do a similar thing when “reading” our paths whenever they undergo time-
reversal due to an eP. This “conjugation of angles” produces an additional component
to the composite which will make the types match. Although one could argue that this
makes matters slightly more complicated it also provides a syntactical merit by providing
a witness for reversal of the temporal direction of the path. In particular will the reader
who has some experience with *-autonomous categories [8] and classical linear logic [29]
welcome these witnesses.

This also affects the implementation of the e{ei}—labeling. As the compositionality
theorem currently stands, in general it does not hold for the ef¢}-labeling. However, it
does hold in many cases, as for example for teleportation, logic gate teleportation, parallel
implementation of composition and its use in [3]. The additional component encoding
time reversal mentioned above requires only a minor adjustment to Theorem 3.4 for the
case of an e®}-labeling and the differences due to different choices of bases will then
cancel each other out. More precisely, in order to make the compositionality theorems
work we have to conjugate all elements in the matrix of the functions labeling negative
appearing eP’s [Definition 3.13]. It then follows that if these matrices only have real
coefficients then the result will remain invariant under this conjugation. And this was
exactly the case for the maps id and =, id*, 7* we needed for implementing teleportation,
logic gate teleportation and parallel composition. All this becomes evident after doing
the appropriate bit of mathematics.

i. Interchangeability of different labelings. First we introduce three bijections and their
respective inverses which will be useful for the rest of the discussion. These are the
anti-linear correspondences

e H S H mp s and Tt H* G Hozap s ap,
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the base-dependent linear correspondences
sted o S HY e o g and S{ey P H = H e e
and the involutive base-dependent and anti-linear conjugation of coefficients

C:C_I:H%H::ZQ/)i-eiHZQ/;i-ei

where we dropped explicit reference to the chosen base of H to simplify notation. The
commutative diagram below expresses how these maps compose.

=
S |

w
S{Bi}

For H ~ H** there exists a correspondence ¢ — 1) which is natural in the categorical
sense [26] when considering the category ¢ of finite dimensional complex vector spaces
with linear functions as morphisms. There exists no such thing with respect to H ~ H*.
However, the non-linear correspondence r* : ‘H % H* is canonical in the sense that it
does not depend on the choice of base.

H*

H

We recall the general forms discussed in Subsection 2.2
Fro= Y fan (e 1 =0
af

1= Y s (e e
of

S

Fdi= 3 fu e 1) ]

of the maps respectively in H] — Ha, H1 & Ho and H; — Ha. One verifies that these
maps satisfy

fr=for flet = f o sfed fr=fledoc
f=["or f:f{ei}os{ei} f{ei}:f*oc-

Notice that the equalities at the right already show that in order to cancel the base-
dependency of f1¢} out it suffices to conjugate the coefficients of the input vector in the
same base. They also guide us towards defining the actions corresponding to the above
introduced maps r*, st} and ¢, these respectively being

T (H] > He) > (H1 S He) i f—= ff=for®
glei} . (H = Ha) = (H1 — Ho) = fr—>f{ei} :fos{ei}
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G: (M1 — Ha) = (Ha % Hy) = fled o fr = fleit o
while their respective inverses are
F(f*) = [T o f")i=froc S (F1) = i o sy

— we indeed use notation ¢ both for ¢ itself and for its inverse. The commutative diagram
below concisely expresses how these actions compose.

Hi% Ho

=]

HT—)’HQ c

31e;

7‘[1 —>H2

Recalling that also H; & Ho is a vector space these maps 7, 7, gleit, S{e;) and ¢ are
isomorphisms between three distinct isomorphic copies of the vector space H1®Ho. When

regarding
Z fap e ) ® eﬁ

as the general form of the vectors in H; ®7—[2 itself it easily follows that it are these three
isomorphisms which express how the different labelings interrelate.

Proposition 4.2 (Labeling interchangeability) The commuting diagram

/(/H1 T
Hl ® HQ K_ﬂ}{* H2 ¢
7‘[1 —>H2

expresses how the different labelings interrelate.
Unfortunately the compositionality result cannot hold for all labelings.
Proposition 4.3 In its current form Theorem 8.4 only holds for the €*-labeling.

Proof. In Section 5 we prove that compositionality holds for the e*-labeling. It then fol-
lows by the discussion below that Theorem 3.4 could not generally hold for any arbitrary
el¢i} labeling as well. The compositionality theorem is ill-defined for the e-labeling since
types don’t match. O

Hence interchangeability of labelings should be expressed with the e*-labeling as reference.
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Proposition 4.4 (Labeling interchangeability bis) For ¥ € H, ® Ho let

[ =¢€(D) € Hi—Ho
f*=€(0) € Hi1%+Ho
f{ei} = e{ei}(\lf) € Hi—Hs.

The commuting diagram

Hq fr Ho

f{ez}

\/

expresses, in view of Proposition 4.3, the interchangeability of the e-, €* - and e{ei}—labelz’ngs
with respect to the compositionality theorems. Thus

f =) and fled =e(r).
This results in the following;:

e In case of an e-labeling the composite f|pjjo--- o fi should be replaced by

7 (fyry) e -0 (f1)
what results in ||T'|| additional identical components
e H e HE )

which act each time I' passes an eP. As mentioned above, this conjugation can
be seen as an explicit witness of the time-reversal and an adequate heuristics is
provided by the “reading a transparent clock from the back” metaphor.

e In case of an e!®}-labeling the composite firjp © - -+ © f1 should be replaced by
affiihy oo e

where we dropped labels which distinguish between the bases of different Hilbert
spaces to avoid notational overkill. For a forward path which always passes through
an even number of eP’s this can be rewritten as

i o(eo sl oo o it o (co sl oc)o. o i o (co ff N o).
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The functions appearing as
co fz{]: kS }1 oc

are exactly those that label negative appearing eP’s. For their matrices we have
(cofiihoa)(Xva-ea) = (eofyh) (Z Ja " ca)
o
= (Z% 5 Das - ﬁ)

= Zd)a fzkl_1 aB " €p
af

while

2{]?}1 (Z d)a ea) = 2,3: d)a (fz{]:i_}1)a,8 c€p.

Hence the net effect of all this comprises:
— The coefficients in the matrix of the functions which label positive appearing
eP’s remain unaffected.

— The coefficients in the matrix of the functions which label negative appearing
eP’s have to be conjugated.

2k—1

Explicitly, simplifying notation by writing ( f2k 1)aﬂ as fos » we have
— in 7l 2 72k -1 AT =1 [Tl plVout)
Pout = Z Pa failfiliz iok— 202k —1 Z2k ik fZHrH 2b[|r||— 1f\|r\| 8B

ail...iHFH,l/B

fOI' ¢m = E ¢ZTL . allzn and (,bout Zﬂ ¢out Vout)

This confirms our claims made at the beginning of this subsection.

The necessity to conjugate the coefficients in negatively appearing eP’s is not just
a calculative accident, but can also be exposed in a canonical fashion. An analogous
construction as the one above for el¢} can be done for € too. We rewrite

(S e -0 (f1)
as
firo (o M- o r*) oo fop o (ry 0 fog_107*) 0. .0 f3 o (r* o f1 0 7%).
Note that for f = e¢(¥) the anti-linear bijection
€:(H1®@H) = (H1 = H5) = VU= rfoe(V)or”

is canonical. This yields an alternative formulation of the compositionality theorem where
positive appearing eP’s should be labeled by € while negative appearing eP’s should be
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labeled by €. This provides matching types for the composite which are alternatingly the
duals of the types in the network:

& 5 €(¥ EWyir-1), 4 €(¥yry)
T s g S T

ii. Implementing composition of linear functions. Let us now address the question on how
to implement a composition of linear functions. This is indeed a different problem than
the one addressed above which only enables us to implement composition of anti-linear
functions. Given is

f f firp-1 fiimy
Hi =5 Mo =2 Hg - Hypy 1= ey 2 Hyjj
with ||I'|| even. We consider carriers in

HI@H,; QH3 D ... ®'HHFH,1 ®'H‘*‘FH ®H||F||+1.

We arrange the eP’s as follows:

Moo My Mz HE o Hs Hyr—1 Hjry - Hjrjn
It remains to be specified on which states they project.

e If an eP appears positive we attribute 5= (faz).

e If an eP appears negative we attribute (r o n~1')(for_1) where we introduced a
canonical (=base-independent) anti-linear mapping

r: (Hop—1 @ Hop) = (Hop—1 @ Hay,) = U= W

with ) )
\Il:Zfij'ei(X)éj for \II:Zfij'éi(X)ej-
ij 7

Note that r o~ ! involves conjugation of the coefficients in the matrix ( fij)ij-

Since both r and 1~ ! are canonical so is their composite. We claim that this is an

implementation of the composition fjpo...o f1. To show this we apply Theorem 3.4 to
the proposed network
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with
op—1 = (ron ") (for—1) and o, =0 (for)

being aware that that theorem only holds for the e*-labeling. We obtain

. GTl=1,,4 O
Hi 25 Hy 5 My - My = Hpy = Hyeja
with
gok—1 = (e*oron 1) (fa_1) and 926 = (€ o™ 1) (for)

as the composite which relates ¢! to ¢™®. Moreover,
(e oron ) (fu )W) = (D A leiwe) )
ij
= D [l e) g
]
]
= (r*o for—1)(¥)

SO
(e"oron ™) (for1) =7%0 for 1

and analogously
(€ on ") (far) = farore.
Hence

* *
gHFHO...Ogl = fHFHO’)”*O’)” OfHFH_IO,,,onO'r*or of1

= fHFHO...Ofl

since 7, o " = 4d. This concludes the proof of our claim. Note that it is again the
combination of base-independence and matching types which yields a correct (alternative)

implementation of the compositionality theorem.

iii. Corrections to unitary actions. We now look at the implications of the above for

Theorem 3.10 which extends compositionality to local unitary actions.

Proposition 4.5 In its current form Theorem 3.10 only holds for the €*-labeling.

Proof. See the proof of Proposition 4.3.

This implies the following for the other labelings.
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e In case of an e-labeling the composite
Uirji+1 2 fiyryjo Upryj© -+ o Uz o fro Uy
should be replaced by
Uppjjva o ™ (firy) o Uypy o -0 Uz o 7 (f1) o Uh
with identical interpretation as discussed above.

e In case of an e{ei}—labeling the composite should be replaced by

U410 o &(f3)) 0 Usk o é(f35]) 0 Uy 0+ 0 U,
that is,
Ujrjjsa 0o fif o colnpo fi o coUpy 0+ 0 Uy
= Ujrjs10---o fagt o Ul o (co flit o) o Uy 0---0 U

where

U{e’} i=coUypoc: Hop — Hop

is the unitary transformation obtained by conjugating the matrix of Uy in the base
{eEZk)}i. The net effect of this is that in addition to the elements of the matrix
of the functions that label negative appearing eP’s we additionally have to do the
following;:

— When the path goes backward through a local unitary action then the elements
of the matrices (in the chosen base for the Hilbert space on which it acts)
of the unitary transformations which label it have to be conjugated. Since
they are labeled by the inverse of the local unitary action itself this results in
transposing the original matrix in the base {eEZk) b

This necessity to conjugate matrix of the unitary transformations that label local unitary
actions through which the path goes backward again can be derived from reasoning via
forcing matching types and canonicity. When using the e-labeling for positively appearing
eP’s and the é-labeling for the negatively appearing ones the alternatingly dualized types
requires substitution of Usy : Hop — Hop by

Uspp =1%o Upp o1y : Hi — Hiy
such that we get
&(War—y1) v
Hy - Mo 220, D2 s T g H

We conclude by summarizing the formal results for the e{¢}-labeling.
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Lemma 4.6 Let

g:=Urys1e firjoUyrj oo Utz 0 for+10Uzgy10 fap o Uggo-+-0Uz 0 froly

be a composite of €-labels for eP’s in a configuration such that the path passes through
them in the same order and the same temporal direction as for the network below.

| | ] | | R
o I LN e L e o
| | B | T
TU1 lUQ lU2k TU21¢+1 lU2k+2 lU||r|| TU||F||+1
******** foe [ fiey 1
o - | |

n

Then we have

g(¢zn) = ¢out

iff for the matrices of the corresponding €'} -labels we have

t 1
¢%u - Z ¢mUa11f11]1 giia t e

Qi1 -4 pf|+1J1--J] 0|

2k 2k 2k+1  pRhtl  pr2kt2

Jok—102k 7 i2kJ2k = Joktok41Y P2k 1T2k+1 ~ J2k4102k42 "
gl fIIFII i+t
JHFH Vo) 4oy ]HFH’HFIH—I

with din = Lo ¢ - €™ and gou = S5 - €.
iv. Using matrices to represent anti-linear maps. The above also motivates a definition

for the matrix of an anti-linear map.

Definition 4.7 The matriz of an anti-linear map f* : Hi & Ho for the bases {e&l)}a
of H1 and {eg)}g of Hs is the matrix of the linear map f* or, : Hi — Ho for the bases

{(eg}) | —=)}a of Hi and {eg) }p of Ho.

It follows that the matrix of an anti-linear function f are exactly the coefficients (fy3)as
to be found in the generic form

F= 3 fas (= e} e
ap

Since this is also the case for both linear labelings the following is then obvious.
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Proposition 4.8 Let ¥ € Hi ® Ha. The following matrices are the same.

o The matriz (fap)ap of coefficients when ¥ is expressed in the base {e&l) ® 6%2)}(15.
e The matriz of (V) : Hi — Ha in the bases {(6(@1) | =)}a of Hi and {e(;)}g of Ha.
e The matriz of € (¥) : H1 b Ha in the bases {6&1)}(1 of Hi and {e(ﬁZ)}g of Ha.

e The matriz of e{e‘(ll)}(\ll) : Hi1 — Ha in the bases {e&l)}a of H1 and {eg) ts of Ha.
In particular do we have that the labeling
€ (H1 ®@Ha) & (H1 — Ha)
as well as the labeling transformations
¢: (H1 Ho) = (H1 — Ho) and re : (H1 P Ho) = (H] = Ha)
preserve matrices.

Remark 4.9 The base {e&l)}a of H; used to express the matrix and the one used to
define the labeling elea’} . (H1 ® Ha) — (H1 — Hz) have to coincide.

Since matrix calculus is a product of “strictly linear” algebra something will change.
What changes is that composition of anti-linear functions does not coincide anymore with
multiplication of matrices. Fortunately, the required correction only involves complex
conjugation of certain coefficients. Lemma 4.6 exposes an example of an expression
involving matrices of anti-linear maps (and of linear maps) which express composition of
functions. The basic rule is that every time one multiplies with a matrix of an anti-linear
function one has to conjugate all coefficients on the left of that matrix. Lemmas 5.4, 5.5
and 5.7 in Subsection 5.1 are explicitly proven examples of this rule.

4.2 Reversal of path direction

The e-labeling we needed as supplement to the e-labeling in order to make types match
can be conceived as providing an answer to the following question:

“How does an eP act if it acts negative on a path (as compared to positive)?”

Indeed, we could consider the action of eP’s appearing positive with respect to a path as
a reference and conceive the action of those appearing negative as a variation on this.

Deceit 4.10 We arranged the network such that the functions labeling the eP’s acted in
the same direction as in which the path passed though it. This raises the following question:

“How does an eP contribute to the action on the input if a path I' path passes
through it in the opposite direction of its labeling function?”
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E.g. which functions will appear at “7” and “7/" in

| | ( “?g” o “?f?? ) (¢)

—f—

—g—

Obviously this cannot be f itself because in general the types won’t match.

We refer to Appendix A for the definition of the adjoint of a linear map. The adjoint of
a linear map would be the obvious candidate for reversing the labeling. We extend the
definition of the adjoint of a linear map by setting

(7"*)Jr =r,.

Since every anti-linear map f : H; & Ho arises as gor* : Hy — Ho for some linear map
g :=7(f) : H7 — Ha we then have

f1=(gor) = (") ogl =riog!
by the usual rules of adjoints [Proposition A.3]. This insinuates the following.

Definition 4.11 We define the anti-adjoint of an anti-linear map f : Hi & Ho as the
anti-linear map

fT:T*O(fOT'*)T:HQq—’HI.
We can now formulate the answer to the above question.
Proposition 4.12 With respect to compositionality theorems we have

P pidir = Prtgjisr

where f1 is the anti-adjoint to f.
Proof. See Section 5. O
Again, of course, with the following restriction to the labelings.
Proposition 4.13 Proposition 4.12 only holds for the €*-labeling.
In the case of the e-labeling again the types don’t match and in case of a el¢}-labeling

the result needs an adjustment. An again we rely on Proposition 4.4 and its notations.
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e Given is a linear function f : H] — H2 which is the e-labeling of some eP. Then the
corresponding e-labeling f* with respect to a path passing in the opposite direction
should be of type H5 — H; and thus cannot be f’s adjoint. We have

for®=f* and ffor*=(f" with (f*)'=r.off.
Thus
fi:fio'f'*o’l"*:(f*)TOT*:T*OfTOT*'

e Given is a linear function f{¢} : H; — Ho which is the ef¢}-labeling of some eP.
Then the corresponding e{®}-labeling (f{¢})f with respect to a path passing in the
opposite direction should be of type H5 — #H;. We have

f{@i} oc=f* and (f{ei})iocz (f*)Jr
Thus
(Fleht = (fld)lococ= () oc=r.0 floc.

It then easily follows that the matrix of (f{¢})¥ will be the transposed matrix of
fleid that is, the adjoint of fi¢} with conjugated elements, explicitly

(f{ei})ig = fézi} .
By Proposition 4.8 on the matrices for the different labelings we also have the following.

Proposition 4.14 The matriz of the anti-adjoint of an anti-linear map f : Hi1 & Ho is
the transposed of the matriz of f, that is,

(fg:,é‘)aﬂ = (fﬁa)aﬁ'

We leave the implementation of all this for the élabeling supplemented e-labeling to the
interested reader. We summarize part of the above in a lemma.

Lemma 4.15 Let
=€) :H1 b Ho
be the €*-labeling of an eP which projects on ¥ € Hi ® Hs.
| |
Py

| |
H Ho

The following matricial shapes appear in the matriz composition of Lemma 4.6

YPJ fT* A L |
'ul IUI *u* *u*

.. (fl{JeZ})” e . (f]{iei})ij ... 59 . (fl{]eZ})Z] . . (fTJ{ZeZ})Z] .




as a function of how the path passes through the eP.

The adjoint of a linear map is in general not its inverse, and neither is the anti-adjoint
of an anti-linear map its inverse, even if the map admits an inverse. This will impose
limitations on the compositional interpretation of information flow through entanglement
when we want to go beyond the type of paths discussed in the previous subsection. This
will be the scope of the following subsection.

4.3 Temporal location of inputs and outputs

We investigate if the compositionality theorem still holds when generalizing the notion
of path by varying the temporal direction of the path’s input and output.

i. Backward paths. Since the virtual flow of information as exposed in Theorem 3.4
doesn’t seem to care about the actual physical direction of time one could wonder whether
the theorem extends to the case where we reverse the direction of a path.

Definition 4.16 By a full backward path we mean one which becomes a forward path
after reversing the list’s order.

,,,,,,,,,,,,,,,,,,,,, |[;]

Definition 4.17 An anti-linear map f : H1 & Hs is called anti-unitary if

f=Uor* where U:H]— Ho is unitary.
Proposition 4.18 If f : Hy — Ho is anti-unitary then f1 = f~L.
Proof. We have
fl=rio(for) =ro@) =ro@) ' =Wor,) ="
by Proposition A.5 in Appendix A. O

In benefit of notational simplicity we formulate the next corollary for the e*-labeling. The
version for the e-labeling is analogous except for replacing anti-unitary by unitary and
adding the necessary maps r, and r* in order to make types match.

Corollary 4.19 (Backward path compositionality) Given are:
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e An entanglement specification network E of horizontal type Q=7 H,; ;
o A backward path T' passing through ||U'|| eP’s respectively labeled Py ..y 1.7
o An input state U € Q=1 H; with (2, V) regular.
If we both have
® Py s free in U
® Pout 1S free in U

then
(flooflroflofliorofin)(ba) = din.

If in addition all maps fyp),---, f1 are anti-unitary we have

bout = (firjj o -0 fyrr1ofyofy10---0 f1)(din) -

Proof. Given that ¢y is free in ¥ we can apply Theorem 3.4 to the path obtained
by reversing the list order. Then by Proposition 4.12 the result follows. If all maps
f1,-++, fyr| are anti-unitary there inverses coincide with their adjoints [Proposition 4.18]
so we obtain

("o 0 g o £y o fh oo 7)) = i

from which the result follows. O

Of course this is a much weaker statement then the compositionality claim made in
Theorem 3.4 since we require @oyut to be free in U and also that all maps fjr,---, f1 are
anti-unitary. This is unfortunately the strongest statement we can make. Let us look
at some counter examples which expose this failure of compositionality. We will only
consider matrices with real coefficients such that the e{ei}—labeling applies without the
necessity of conjugation.

Counter example 4.20 Consider the linear function
Py:HoHido (] d) .
Note that in the base {1, es} with ¢ L ey this function has
(03)
0 0

as matrix. Of course this is a projector but we use it as a labeling function and not as a
specification. The actual specification it defines is the eP

Pp, :HOH > HOH.
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Since Py, is a projector it is self-adjoint and thus PL] = Py. By applying the forward path
compositionality theorem, Proposition 4.12 and the fact that Py (¢) = 1 we obtain:

A N
| | ¥ | | v
_PT/)_> <—Pw—

—id— +—id —
p | | ¢ | |
0 Y

what would indicate that Py (1)) = ¢. But this is only the case if ¢ = 1.

The cautious reader might notice that it is the irreversibility of Py which obstructs
extending compositionality to backward paths. This is however not the only reason as
shown in the counter example bellow which only involves reversible labeling functions.

Counter example 4.21 Consider the self-adjoint endomap f : H — H with matrix
20\ (20
0 1 L0 1

L b= (/0N L b =(fo)9)

within

N \J

By forward compositionality we have vy = 4¢g and 1 = ¢ while backward path com-
positionality would indicate that ¢g = 41y and ¢1 = 1.

Hence in this case backward path compositionality doesn’t hold as a consequence of the
fact that reversing passage through an eP does not correspond with inverting the labeling
function but by taking its adjoint [Proposition 4.12].

Interlude 4.22 Now for something merely of recreational interest. It contributes to the
game on exposing so-called quantum weirdness. In certain situations we can make state-
ments for backward paths on freeness of ¢y, given ¢, is free. If the path involves carriers
vi,...V, and not carriers vgyq,...vn, then, provided that all the maps f1,---, fjr are
surjective, the output of the path will not be entangled to any of the carriers vg41q, ... vp.
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A similar thing holds for forward paths. Given that the output is free in W, if again the
path only involves carriers v, ... v, and not carriers vg1,...vy,, then, provided that all
the maps fi,---, fjr|| are now injective, the input of the path will again not be entan-
gled to any of the carriers vgy1,...v,. Note here that forward flow injectivity assures
reversibility in terms of a partial map. However, we are not talking about the eP’s them-
selves being reversible because they aren’t at all. Actually they are all equally “maximally
irreversible” [Section 5.3]. What we are talking about here is reversibility of the labeling
functions. A proof of this useless but entertaining observation can be found in Section 5.
Nothing however can be said on the fact whether the output of the path will be entangled
to the other carriers vgy1,...v,. This will also be shown in Section 5.

ii. Output only paths. The above might insinuate that compositional behavior is restricted
to forward paths only. This is not the case. Consider paths of the following shape:

((v1,), (v1, m)[- ((v1,710), (v2,11)) - J(v2, 1), (v, T2)[ - -
@ Te-0)s @eys Tep - @egs 7ie)s @ 71e)) - 1@eps e @egss)]
implying both I'1, I';p) € O(Z) with the condition
[(Vla)a(ylaTl)[ N IP)(E) :@

replacing [(v1,), (v1,71)[ N P(E) = 0 as compared to full forward paths. Both ¢;, and
dout are now to be identified at time 7,,¢. Thus, the main feature of such a path is that
it both starts and ends in the physical output:

Definition 4.23 By an output only path we mean one of the above kind.

Theorem 4.24 (Output only path compositionality) Given are:
e An entanglement specification network E of horizontal type E?f Hi;
o An output only path I' passing through ||| eP’s respectively labeled Py ., 1. .\ ir 5

o An input state U € @7 H; with (B, V) regular.

If ¢ is free in U then ¢y is free in W and we have

bout = (fipy o -0 fre10fyo fy-10:0 f1)(din) -
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Proof. See Section 5. O

This theorem is an exact copy of the full forward path theorem except for the fact that
‘full forward path’ is replaced by ‘output only path’ and ¥ by W. It’s significance is
however manifestly different. To start with, we have no control at all on whether ¢;, is
free since it is part of the physical output-state and not of the input state. This actually
makes for the following weird observations.

Riddle 4.25 (Pathology of output only paths with free outputs) If we reverse a
forward path then we obtain a backward path for which compositionality fails. This is in
particular due to the fact that reversal of the action of an eP along a path encodes as taking
the adjoint of the labeling function. If we however reverse an output only path we again
obtain an output only path. Thus when considering compositionality for these two paths at
the same time we both have

bout = (firjjo- 0 fi)(din)  and (f1T°"'°f|T|p||)(¢out) = din -

where ¢;, and ¢y refer to the initial path direction of the output only path. In general
fi,-.+, fjr) are not unitary, that is, the adjoints do not coincide with the inverses. This
smells like a contradiction. How can this be the case?

Solution. See Subsection 5.5. O

The title of the next riddle refers again to the notion of atomically singular map which
we will introduce in Subsection 5.3.

Riddle 4.26 (Pathology of atomically singular maps) Now we consider a situation
in which we connect up a full backward path and a full forward path by one additional eP as
in the picture below.

in out

1 2
¢out in

We obtain an output only path. We know that compositionality holds for the whole path
while it fails for the backward subpath. How can this be the case?
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Solution. See Subsection 5.5. O

As it was the case for forward paths we can weaken the restrictions on the location of
the input and output. Whenever freeness of the output is guaranteed we can again prove
claims on compositionality for output only paths analogous to the ones made in Riddle
3.8 for forward paths. They are however somewhat pathological as will be discussed in
the solution to Riddle 3.8 and Riddle 4.25 in Subsection 5.5.

There is a slight but truly qualitative change with respect to the e- and the eleid.
labelings. The respective additional components r* and ¢ are now odd in number. This
yields a conjugation of the coefficients of the input as an additional net effect:

_ Tin ¢l 72 2k—1 72k 2k+1 7 ITf -1 [T . Vout)
Pout - Z Pa failfiliz"'fizk—zizk 17 92k 1Z2kf22ki2k+1' lerH 201 — 1fl|\r|\ AR )
CMZl...lHFH_lﬁ

It should be clear that this conjugation exposes the fact that the path “as a whole”
produces a time reversal. We conclude with a lemma which states the matricial shape of
output only path compositionality.

Lemma 4.27 Let

g :=Ujrjsro fir e Uyry o © fakt1 0 Uzgy1 0 fap o Ugg © fog—10---0Uz0 fioU;

be a composite of €-labels for eP’s in a configuration such that the path passes through
them in the same order and the same temporal direction as for the network below.

L | | R

77777777777777777 for |
lU1 TUz TUQk lUQkH lU||r|| TU||F||+1
| | | | | |

- R - fok—1 [ foktr - - fiep -

Then we have
9(din) = Pout
iff for the matrices of the corresponding €'} -labels we have

out __ m
¢,3 - Z ¢ azllejl Jiig "t

Q1.4 D] 41J1--J| )|

2k-1 2k [j2k+1 f2k+1
“Jiok_1Jok—1" J2k—1i2k l2k]2k Jokt2k417 12k+1J2k41 "7

gt fIIFII lITl+1
JHFH UIEINTHI] ]HFHlHFIH—l

with $in = Yo - €™ and Gour = Y5 93 - €50
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iii. Input only paths. To close the circle we take a brief look at the remaining case of
the four possible alternatives with respect to the direction of the path at its input and
its output.

Statement 4.28 There is no analogous result for input only paths.
We substantiate this statement by a counter example.

Counter example 4.29 Consider the following path:

| |
id |

¢in Qbout

where ¢;, and ¢,y are completely arbitrary and thus id(¢in) # dout-

There is of course also the purely physical argument that it would be absurd to have
a statement on relational dependence of current events depending on things that might
happen in the future. It is always the experimentalist’s option to choose to cancel an
intended act at any time.

iv. General paths. All the above illustrates the subtile interplay between the virtual
path’s time (e.g. in and out) and real physical time (e.g. in and out). We will need
the proofs of the above results in order to obtain insight in the exact combinatorics of
a general statement on compositionality for general paths and why it arises the way it
does. Corollary 6.2 contains elements of such a thing.

4.4 Amplitude and regularity

The compositionality theorem interpretation involves the condition that there is a non-
zero chance of “passage” of the actual physical state ¥ through all eP’s. The actual
values of the non-zero probability do not play any role as we for example illustrated
for teleportation in Subsection 2.3 — we can eliminate probabilities by introducing an
additional classical information flow which allows unitary correction.

Question 4.30 When does the output state ¥ become 09

One verifies that there are only two cases in which this can happen namely in the case
of a badly chosen input or in the case of a badly constructed network. Both can easily
be overcome.

Definition 4.31 Let x < 7. An eP P, ;.. € (E) covers an eP Py, ;.. € (E) if for each
oe€{k+1,...,7 —1} there exists neither P_,, ., € (E) nor P_; ., € (E).
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The two cases in which ¥ becomes 0 are:

1. When Py, ;.. € (E) is free from below [Definition 3.14] and

=" goa; €0 @ed) @ D 0 4 4ane®. .00, .0e0)e.. 0l

o a1...6;...4;...an

with _ ‘ _ _
Z faiaj : 683 ® egj) 1 Z Joiaj - 683 ® eg]j) .
Qi ;o
This can easily be avoided by choosing the component »_, aj Jaiag ° e(aii) ® e(ajj) dif-
ferently within W. We recall again that the choice of input doesn’t affect composi-
tionality in any way.
. When Py, ;.- € () covers Py, ;.. € (E) and
Z faiaj . egfi) ® e(ajj) 1 Z Jai; * egfi) & e&jj) .
o ;o
The magic of quantum mechanics allows to eliminate this case by introducing one
additional eP which projects on the state
Y foies e @)+ > gasa, el @) = 3 (fasay + Gaiay) - €% @ )
Qo Qo a;a;
at time o with 7 < 0 < k. Note that no path could pass through this newly
introduced eP anyway. Indeed, the region between an eP and one that covers it

only allows loops in view of how a full or partial forward or backward path travels
through an eP.

Koo g : g
| |
i ERREEREEE - — - f+g
[ [
T S - f

Therefore this additional eP will not influence the information flow in any way.
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Thus somewhat surprisingly, the measurement used to implement it will not require
any correction of “unwanted outcomes”.

We do not prove the above claims on regularity. They follow straightforwardly from the
proofs which follow below in Section 5.

5 Proofs and solutions

In this section we collected most of the proofs of the previous sections. Although they
involve a lot of algebraic manipulation they provide structural insights and indicate a
graphical representation of those manipulations.

5.1 Propagation of entangled states

Let 7 # j. We introduce a graphical representation

to indicates that at time 7 4+ € < 7 + 1 the state U7 has shape

(Zfaa]‘ a1®60‘1) (Zq)o‘l 0‘1 aJ oy Carbi ;e 0‘")

QiQj ai...qg.. aJ

where

Cartiijon = €0 ®...00 0. 00 e.. 0.
We fix the choice of a labeling.

Convention 5.1 In this section we conceive all labeling functions f,g,h,... as being an
anti-linear, that is, they are in the image of the €*-labeling. FE.g.

fi=€ (Zfocaj‘ az®€ ))37'[1‘%?'[]‘.

o

As mentioned above we ignore global normalization [Convention 2.4] what results in
P, ~ <Zga5 . egf) ®ef3]) ‘ —> . Zgaﬂ . eg) ®ef3]).
af af

Recall that the passage from an €*-labeling to matrices in a chosen base requires some
conjugations of coefficients [Lemmas 4.6, 4.15 and 4.27]. An arbitrary entangled state

Z Vo oan eall) ®"'®€(OZL)

aj...Qn
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will be graphically represented by

where the thick lines represent the entanglement between the individual carriers of state.

First we verify how a bipartite projector acts on an arbitrary multipartite entangled
state 7. We have

(Priijrs1 ®@idgi 53) (P7)

= > U . <Z fap - €D ® e(ﬁj) ‘ el) ® e&jj)> : (Z fap - €D ® e(ﬁj)) ® €qy...4;...Gj...0m
af af

Qat...an
- Z\Ilal N (Z faﬂéaaiaﬂﬂj) : (Z faﬂ : eg) ® eg)) ® Cay..dy...qtj...an
Qat...an o
= (Z fo‘ﬂ e ® eﬁ ) ( Z\pal .an faiaj 'eal...di...dj...an)

aj...Qn

- (Z faﬂ e ® eﬁ ) (Z (I)gj}.di...dj...an ’ eal-..di...dj...an)

ai...G...G;j...an

where
T7+1 r T
(I)al T aJ Qpn " Z fOéiaj \Ijal...an .

;o

We express this graphically as a lemma.

Lemma 5.2 (State preparation)

The above calculation teaches us something else too. If U7 is itself of the shape

XT@J}T:(Z Oél Oék' ® ®eak) (Zy;kJrl Qn a’iﬁ})@...@e&?)

af ..o Qp41---Qn
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with 4,7 < k < n then we have

ORI )
@al...c}i...c}j...an - faiaj \Ilal...an

Qo

_ r T T
- Z faiaj Xal...ak yakJrl...an

Qo

_ T r T
- yakJrl...an Z faiaj Xal...ak

;o
and thus

gl = (Z fap - e(ai) ® €(ﬁj)) & < Z (Z f_aiaj Xczl...ak) ) ea1~~~di---dj~~ak> ® Y
af

al...di...dj...ak Qg

— XT-I—I ® yT .
Of specific interest to us will be the cases Y™ =3, ¢a - €q and V7 = 3,5 gap - €a ® €5.
Lemma 5.3 (Factor independence) Let 1 <i<j<k<n. IfUT =X" QY™ with

v=k v=n
XTe@M, and Y e K H
v=1 v=k+1

then the action of Py, j.. 11 does not alter the factor Y7. In particular do we have

Nor does the presence of the factor Y7 alters the action of Py ;i1 on X7.
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Next consider

0om (S o) o (S 0 7)
]
inHi @ Ho ® Hy ® Hg. We have

(idyy, ® Py 3 ®idyy,) (V)

= Y fijhw - V@ <Zgaﬁ el ®eﬂ)‘ ®el > (Zgaﬁ ot ))®el(4)

ijkl

= Y fijhu (Zgaﬁ5ag5ﬁk) (Zgaﬂ el ®eﬂ)) ®el( !

ijkl

= Zfl]gjkh’kl 6 (Zgaﬂ 6 ®65))®el()

ijkl

- (Zfijﬁjkhkz'e( ® e} ) (Zgaﬁ & ®eﬂ))

ijkl

Lemma 5.4 (Anti-linear composition) Let f: Hi & Ho, g: Ho B Hz and h : Hs & Hy
be anti-linear maps defined by

f=Y fil= ey e gi=Ygil= [Pyl hi= S hl— | ) - el)
i ik kl

Then we have

hogof:=3" figjxhu(—| ey 65(4)'
ikl

Proof. We have

ho go f = Z hk2l<z Gjak1 <Z fijl <_ | ez(l)> ’ eg?) €§§)> ’ BIS);) el(<:32)> ’ el(4)
kol jok1 iJ1
= > fijiGjoka Mot (— | €EI)><€§~?) | €§§)><€1§) eld)) el
ij172k1 kol
> fiiGiihr(— | ez(l)> . 654)
ijkl
what completes the proof. O

We prove a slight generalization of this lemma which we will need later in the text.
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Lemma 5.5 (Anti-linear composition bis) Let
f1 cH1 > Hy ... fZ H; Hi+1 f2m+1 : H2m+1 = H2m+2

be anti-linear maps defined by
Zfal B\ | eal ’ ll-H
aZ/BZ

foralli e {1...,2m + 1}. Then we have

foo.ofii= > fomfora -

oy ...a2m+18

2k—1 2k+1
"k 2002k 1 a2k 102k Y Q2R Q41 """
2m 2m+1 () . (2m+2)
. a2m—1062mfa2m+1ﬁ< |€a > eﬂ .

Proof. Follows from Lemma 5.4 by induction.

Applying Lemma 5.4 to the above yields
(id3, ® Pgos @idy,) (V) = (Z(h ogof-e) ® el ) (Zgaﬁ él; )) :
il
Following Lemma 5.3 on factor independence we can introduce an extra factor
o7 e Q{He | €€ {L,....n}\ {i,j. k,1}}

such that

(Zfaza]' Oéz®e ) (Zhakal' Oék®6511))®(1)7-

;i (69X 7]

After re-indexing we obtain

(P fijksr+1 ®idﬁ{j,k})(qﬂ) = (Z (hogof)ase € ®ea1) (Z Jajay ®€Sllc)) DT

;o QO
Lemma 5.6 (Compositionality)

hogof
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For U : Ha — Ho unitary we have
(id#, @ Uikt = 04Ukt
hence

(Zd?’{l ® U (Z fzk 6 ®€](c )) = Z fzkészkl 6( ) ®€l( )
ik ik;jl

= Zf]kUkl 6 )®€§).
jkl

For V : H; — H, unitary we have
(V ®@idy, )ikt = Uijok
and by Propositions A.3 and A.5 we have

Vij = (V_l)ji )

hence

(V ®idy,) (Zfzk e; ®€;(c)) = > firVijOns - 6()®6§)
ik ik;jl

= > faVy el @
ijk

= > Vit e @

ijk
= > (VYfn- eV @e.
ijk
Lemma 5.7 (Anti-linear composition tris) Let f : Hy & Ho be an anti-linear map
defined by
Fi= 3 It 1) e
ik

and let U : Ho — Ho and V : Hi — Hy be unitary transformations defined by

2 2 (1)

U= Unlef | =)o V= ZVW -y
kl

Then we have

Uof =3 fulUui~ )¢ fov=3Vifui~|e") e

jkl ijk
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Proof. We have

Uof = ZU’C21<€I(€22)

S Find— ey el - ef?

kal jk1

= Y fitUkn(—| 65'”)(61222) | el&?) : 652)
jkikal

= > fikUn(—| €§'1)> cef?
ki

PV = L p(S Vel |-l | ) -l

J2 2J1

= Y Vi (el | e o)) e
ij1j2k

= Y Viful= 1) €
ijk

what completes the proof. O

Applying Lemma 5.4 to the above then yields

(idw, ®U) (X fir- eV @) = (U0 - @ef”
ik

il
(V ® id?-LQ) (Z fij . 651) X 652)) = Z(f o V_l)kl . 61(61) ® 652) .
i kl

Lemma 5.8 (Unitary action)
T4 2
T+ 1+€

T+ 1

We will now extend the compositionality lemma by allowing unitary operators to act on
the incoming entangled state before the projector does. Again setting

U= (Z fij - egl) ® 652)) ® (Z b - 61(63) ® 654))
7 Kl

74



considering ¥ as above by Lemma 5.8 we have
(idy, QU @V ®idy,) = (Z(U o f)ij- 651) ® 652)) ® (Z(h oV - 659 '@ eg )) :
17 kl
By Lemma 5.6 it then follows that
((ida, ® Pyra 3 @ idda,) o (idw, @ U @ V @ iday,) ) (V)

- (Z(hOV_IOQOUOf)iZ'e(I ® € ) (Zgaﬂ el ))

il
For U :Hj — Hj and V : Hy — H}, we have
((Pf;j,kﬁ-l-l ®id Gy o (UV® idﬁ{j’k})) (27)
= (X (hovtogoUo Mo el @el))® (Y gaja,-ed) ©el)) @ 07

[e77e7) Qj Qg
with U7 and ®7 as defined above.

Lemma 5.9 (Extended compositionality)

hoV_logoUof

5.2 Core of compositionality proof

Consider now an entanglement specification network = and an output only path T'. As-
sume, as we did in the assumptions of Theorem 3.4 and Theorem 4.24, that the index
v € {1,...,||T'||} in fy stands for the order in which I' passes through the eP’s. We
denote by Pos(T") all eP’s in (Z) which are positive for I' and by Neg(T") all eP’s in
(2) which are negative for I' [Definition 3.13]. Recall that an eP can be both positive
and negative for some I'. The disjoint union Neg(I') + Pos(I") then contains ||[I'|| eP’s.
Clearly I' passes alternatingly through Pos(I') and Neg(I'). We also know that ||I'|| is
odd. Therefore we have the following cardinalities for the sets of eP’s of each kind:

Il +1 Iy -1
()] = .
2 2

and |(T)] =
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Let Tr C {1,...,m} be the |(T")|-element ordered set of time instances at which an eP
contained in Neg(I") is specified. Note that it is no restriction to assume that no two eP’s
contained in Neg(T") coincide timewise. We will refer to an eP in Neg(T") by labeling it
by 7 € Tr. We fix some more notations by stipulating

Pri=Py uruer € (r),
that is,
e 7(7) is the order of P, along I';
e 1 is the track where T enters P, ;
e v? is the track where I' leaves P .
For each P, € (T') we define subpaths of T':

e Let I'™ be the list obtained by first removing all elements from the list T' that
come after (v}, 7) and then, starting from the first of the remaining list-elements,

removing all elements until all the remaining have time before 7.

e Let I'?“! be the list obtained by first removing all elements from the list I that
come before (v?,7) and then, starting from the last of the remaining list-elements,
removing all elements until the remaining all have time before 7.

Let (v/",7) be the first element of the list I'”* and let (1%, 7) be the last element of the

T T

list T'%%. We define yet another sublist of I':

Ff_n D quo_ut . [(Vm 7_+), (Vin 7_)[ Ff_n i quo_ut . ](Vgut’ 7_), (Vout, 7_+)]

T T T
where:

e 77 is the smallest number in TrN{7+1,...,m} such that either (v, 7+) € P(Z)NT
or (v ) e P(E)NT;

e Ifnosuch 77 € Tr N {r +1,...,m} exists we set 77 :=.

All this becomes much clearer with a picture.
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T~ | I Fz_n D Fgut ~ I I F?rn, Fgut ~

We have the following.

Lemma 5.10 For all T € Ty the states U™ ! € QY=1 H, have the shape
(Zgaﬂ e ®eﬂ ) (Zgaﬂ e ®e(ﬁ )) QP!

with
A ) -
9= Fyn-r0 o Sy 9= g © -0 Fyma
and the states U7 € @, =1 H, have the shape

(Zfaﬁ el ®6,3 ) (Zhaﬂ e T)®e%m))®tif
af
with
3= Fym foi= Lyl © - © Fym- e -
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Proof. Observe that an output only path alternatively goes through negative and positive
eP’s and that the first and last eP through which it passes are both positive. We now
proceed by induction on the value of 7.

(i) Base case. Denote by 7y the infimum of Tr. Since P, is the first eP (in physical
time) of the network which is negative for I' it follows that F’T’g and T'2"* can only pass
through positive eP’s so they each only can pass through one other eP, that is, ||[['|| =
|IT24%|| = 1. Refer to the corresponding times at which these two positive eP’s act as 7
and 7°. Hence the claim made in this lemma for this case is

9 = fy(ro)-1 97 = fry(ro)+1 h:= fyro)41 © Fy(re) © Fr(ro)—1 -

Observing the geometry of an entanglement specification network and a path:

in A p
2 Uz 1z Lz

in view of the factor independence lemma, the above claim is true for ¥ ! by Lemma
5.2 on state preparation and it is true for ¥ by Lemma 5.6 on compositionality.
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INro)+1 © Ia(ro) © Fairo)—1

(ii) Inductive step. For T fixed define 7* as the supremum in (I'?) and 77 as the supremum
in (T'24!). Tt then follows by the geometry of an entanglement specification network and
a path that
' ' t t ' t
=T o' v =17 e l'2%t.
Recall also that by the definition of a path we have that neither of

o B e | B 7 N (o | R 22 M (20 | I [ e O M )

T T

intersects with an eP. Applying the induction hypothesis to 7* and 7° then results in
the fact that U™ and U™ respectively contain a factor

U VB % o) o o)
Z ap " Ca’ ®€ﬁ Z g ea” g
with
A ) ; P .
W= ey ) © - 0 Fyen )= | W= Fyoyviie | © - © Fyroy i |-
Since we have
] ] t ) A t t
v = vy v = vk VA =y vy = vt

it follows that U™~! will contain both of these factors. Again this becomes much clearer
when providing a picture.
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iz © - © Iao—lire|

' out

This establishes the first claim of the lemma since
Y(r) + |[TA] = 7(r) — 1 Y(7?) = |IT% ] = 7(7) +1
Y(TP) + T3 = () + |07 Y(7) = IR = () = [I07]
such that ¢* = A* and h? = g”. The second one then follows by applying Lemma, 5.6. O
In the case that 7 is the supremum of 7T, that is, when P, is the last eP (in physical
time) of the network which is negative for I, this lemma yields the following.

Proposition 5.11 For an output only path in an entanglement specification network we
have the following shape of the outcome state:

V= (Z(f\\FH 0...0 f1)ag e((l”in) ® egfout)) 2.

af
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5.3 Atomically singular maps

The main goal of this subsection is introducing the notion of an anti-projector.

Definition 5.12 Given a linear map f : H1 — Hs or an anti-linear map f : H1 & Ho
its kernel is

Ker(f) :={y € H1 | f(¢) = U}

and its range is

Range(f) := {f(¢) | ¢ € Ha}.

Definition 5.13 A linear map f : Hiy — Ho or an anti-linear map f : Hi & Ha is
atomically singular iff

Dim(Ker(f)) = Dim(H;) — 1.
By the well-known linear algebraic equality
Dim(Ker(f)) + Dim(Range(f)) = Dim(#)
we obtain the following alternative characterization of atomically singular maps.
Proposition 5.14 A linear or an anti-linear map f is atomically singular iff
Dim(Range(f)) = 1.

Proposition 5.15 Let h be atomically singular.

1. If h = fog and f is injective then g is atomically singular.

2. If h=go f and f is surjective then g is atomically singular.
Proof. If f is injective then Dim(Ker(h)) = Dim(Ker(g)) and if f is surjective then

Dim(Range(h)) = Dim(Range(g)). The results then follows respectively by Definition
5.13 and Proposition 5.14. O

Since both r, : H & H* and ¢ : H — H are bijections it follows that the maps
Toi=(—ory): (H1 P Ha) = (HT — Ha)

and
¢:=(—o0c¢): (H1 % Ho) = (H1 — Ho)

don’t alter the range of their arguments. By Proposition 5.14 we then have the following.
Proposition 5.16 The labeling transformations 7, and ¢ preserve atomic singularity.

We characterize the linear and the anti-linear atomically singular maps in terms of the
shape of their matrix [Definition 4.7].
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Lemma 5.17 A linear or anti-linear map f is atomically singular iff in some well-chosen
orthonormal base its matriz has the shape

r0 - 0
00

e
e

that is,
(fozﬂ)ozﬂ =Tr: (510461,3)(1,3 >
for some r € ]R(J{

Proof. Choose ¢ L Ker(f) with |¢)| =1 and let

i)
P = 1w

€ Range(f).

Set égl) =1 and 652) := ¢ and extend these to respective orthonormal bases {é&l)}a and
{ég) }p of Hi and Ho by choosing

&), ey €Ker(f) and &, el o 1 Range(f).

In these bases the respective generic shapes of a linear or an anti-linear map are

IFWp [ =) -¢ and [f (= 14) - ¢

Hence we obtain a matrix of the above shape with r = |f(¢)|. The converse is trivial. O
Relative to fixed bases we have the following.

Lemma 5.18 Let {e&l)}a be a base of Hi and let {e/(;)}g be a base of Ha. A linear map
f:Hi — Ho or an anti-linear map f : Hi & Ha is atomically singular iff in the bases
{e(al)}a and {eg) }g its matriz has the shape

(faB)as = (Yabp)as
for some tuples (o) and (¢3)s.

Proof. We explicitly prove the theorem for the anti-linear case. Since by Proposition
4.8 we know that
C: (7‘[1 - 7‘[2) — (7‘[1 — 7'[2)

preserves matrices and since by Proposition 5.16 we know it also preserves atomic singu-
larity the result follows for the linear case.
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Let f be anti-linear and let fo3 = a¢g. For o =3 1 - e&l) and ¢ € ¢ we have

0=(p|2)= Z‘Pad)ﬁ o |6§31)>:Z@a1/)a7

hence
Zfaﬁ o el Z%%% e Z(Z@oﬂ/’a) (Z¢ﬂ “s ):

Thus we have Dim(Ker(f)) = Dim(H;) — 1.

Conversely, first recall the two bases constructed in the proof of Lemma 5.17, that is,

{1/), égl), Ceey égl)m(’}-[l)} and {¢a 652)? ) é]()21)m(7-12)} .

Since we know the image under f of all these vectors we will derive the coefficients (fog)as
by inserting these vectors in the generic anti-linear form

=3 fas (el e
af

By £($) = |f(1)| - ¢ we obtain

VB: Y faptha = |F()l¢s
and by f(&") = U for i € {2,...,Dim(#1)} we obtain
VB: Y fap€h =0

where € e =Y,¢ e Settlng

(fap)as == 1f ()| (Yabs)ap

provides the (unique) solution for the above Dim(#;) x Dim(#3) equations. Indeed,
3 fatha = 3 |f W)badsha = |f (V)]s (3" batha) = I (@)I¢s

since |¢| = 1 and

D fante = 2P WIadsts = 1 WIgs (3 tava) = 0

1

since by 1 L Ker(f) and éz(-l) € Ker(f) we have (éz(- ) | ¥) =0. O

We recall the definition of pure tensors [Appendix A].
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Definition 5.19 A vector ¥ € H; ® Ho is a pure tensor iff there exist » € H; and
¢ € H; such that ¥ =9 ® ¢.

Note that the pure tensors of H1 ® Ho can be represented in Hi X Hs. However, Hqi X Ha
cannot be conceived as a subset of H; ® Ho since, for example, the pairs (¢ -1, ¢) and
(1, ¢ - @) are not equal in Hy x Hy although

c-YP)@d=(c-9p@¢)=¢@(c- )
in H; ®Hy. When passing to one-dimensional subspaces the embedding becomes faithful.
Lemma 5.20 A wvector

Zgag . e&l) X 6(;) € HiQHsy
apf

is a pure tensor iff there exist tuples (1q)a and (¢g)g such that
(gaﬂ)aﬁ = (1/)a¢,6‘)aﬁ-

Proof. It suffices to set 1 =", 9 6&1) and ¢ =3 515 - eg) in Y ® ¢. O

The above results in a characterization of those functions which label pure tensors.
Proposition 5.21 The following are equivalent:

o A vector V € Hi ® Ho is a pure tensor.

e The labeling function e{ei}(\lf) : Hi1 — Ha s atomically singular.

e The labeling function €*(¥) : H1 & Ho is atomically singular.

o The labeling function e(V) : Hi — Ha is atomically singular.

Proof. Combining Lemmas 5.18 and 5.20 yields the result for the €*- and the eleid.
labelings. By Proposition 5.16 this extends to the e-labeling. O

Our constructive approach in the proofs of Lemma 5.17, Lemma 5.18 and Lemma 5.20
also indicates the explicit construction of the functions labeling pure tensors and vice
versa for the €*-labeling. Using Proposition 4.4 on labeling interchangeability we obtain
the corresponding results for the e-labeling and the ef¢i}-labelings.

Proposition 5.22 Let ¥ =9 ® ¢.

fle(¥) = ¢
o If f = el (W) then
ff (W) {f((p)ZU for ¢ L c(v)
fh)=4¢
o If f =€ (T) then
f f (W) ¢ {f((p)ZU for ¢ Lo



@)y =¢
f(@) =0 for o Ly

o If f=¢(V) then {

Proof. Given (¢*(¥))(1)) = ¢ we have (el¢}())(c(4)) = ¢ by el®}(¥) o ¢ = (W),
Given (¢*(¥))(p) = U for ¢ L 9 we have (¢!} (¥))(c(p)) = O for

ply < Z‘F_’oﬂ/)azo g Z‘ﬁad)azo & clp) Lc(y)

and thus by substitution of ¢(¢) by ¢ we obtain (el®}(¥))(p) = © for ¢ L ¢(¢). The
proof of the remaining €(V)-case proceeds straightforwardly using €(¥) o r* = ¢*(¥). O

Proposition 5.23 Let f be atomically singular.

o If f =elei}(V) then U = c(y) ® (1) with v L Ker(f).

o If f=€"(V) then ¥ =19 ® f(vp) with ¢p L Ker(f).

o If f =¢€(V) then U =1 ® f(¢p) with ¢p L Ker(f).
Proof. Given ¥ = ¢ ® (¢*(¥))(¢)) with ¢ L Ker(e*(¥)) again by el¢}(¥) o c = *(¥) we
have U = ¢ @ (el¢} (1)) (c(y)) with

p LKer(el“H(W)oc) & ¢ L {p et |(H(@))(clp)) = U}
& L{c(p) € Hy | (H(D))(p) = U}
& o) L{p €M | (D)) (p) = U}
& c(ih) L Ker(ele (1))

so by substitution of ¢(1)) by ¢ we obtain
U =c(y) @ (1) ()  with ¢ L Ker(el*}(w)).

The proof of the remaining e(\If)—c_ase again proceeds straightforwardly using the fact that
e(W)or*=e"(V)and ¢ L o &1 L @ O

From Proposition 5.23 we can derive the generic shapes of the functions which label a
pure tensor ¢ ® ¢. We obtain, respectively for an el¢}- the e- and the e*-labeling,

(c() | =) - ¢:Hi— Ha (=) -b:H1 > Ho (=) -¢:H] = Hs.

In Subsection 4.3 we already encountered an important example of an atomically singular
(endo)map namely the projector on the one-dimensional subspace spanned by a (unit)
vector 1, that is,

Py:=(p|—)-¢:H—-H.
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It arises as the e{®}-labeling of the pure tensor ¢(¢)) ® ¥. The corresponding eP which
is labeled by Py, is itself also a projector, namely

Pp, = (c({)@¢|—) ch) @y : HOH >HOH,

and thus also an atomically singular map, as are all eP’s, but in this paper the impor-
tant ones are the atomically singular labeling functions. The atomic singularity of eP’s
becomes important when axiomatizing the ideas of this paper [4].

Definition 5.24 By an anti-projector we mean the e*-labeling function
Pyi=(-[¢) v :HPH

of a symmetric pure tensor
YRIPYEHRSH.

Symmetric pure tensors and anti-projectors are in canonical bijective correspondence.
In particular does each anti-projector define an eP which projects on a symmetric pure
tensor. Projectors do not necessarily define an eP which projects on a symmetric pure
tensor due to the base-dependency of the et¢}-labelings. The 7-labeling does define a
canonical pure tensor given a projector P, : H — H as labeling function, namely the
anti-symmetric pure tensor

YRPEH @H.

Proposition 5.25 An anti-linear map f : Hi & Ha is atomically singular iff its adjoint
ft:Hy & Hy is atomically singular.

Proof. By Proposition 4.14 the matrix of f takes the shape (1o¢g)qs iff the matrix of
f1 takes the shape (¢q13)as from which the result follows. O

The state obtained when taking the adjoint of the labeling function which labels a state
Y ® ¢ is the state ¢ ® 1. This shows that for the anti-projector Py, since it labels the
state 1 ® 1, we have P:rp = Py, that is, anti-linear self-adjointness.

5.4 Proofs of compositionality theorems

i. Full forward path compositionality. In order to apply Proposition 5.11 to the case of
full forward path compositionality we assume the existence of:

e An additional track labeled 0 of type Ho = H;, with ¢y, € Ho as initial state. The
presence of this track will not change ¥ due to the independence lemma.

e An eP at time , namely

PP;‘)_ 0, Vin; - Hin @ Hin = Hin @ Hip :: & — <¢zn X ¢7,n | (I)> : ¢7,n X ¢7,n
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where the labeling function is the anti-projector [Subsection 5.3]
P+ Hin & Hin 2= (@ | din) - din -
Setting ¢y = 3, #" - eo We have
(PG )as = 905

Introducing this extra eP will merely change ¥ to ¢, ® ¥; it prepares the pure tensor
®Din ® pin, of which the righthandside vector ¢;;, is the one we assumed as being the input
of the path and of which the lefthandside vector ¢;, will not be acted on by any eP and
consequently doesn’t interact with the rest of the network. Hence it does not alter the
qualitative content of Theorem 3.4.

We also extend the path I' by adding

[(07)3 (03)[' ((Oa)a (Vina)) ’

This results in the following picture.

—— -
s® | ¢j

gl e —
| I |

¢inT Qbin?
Ho Hin

We obtain an output only path to which we can apply Proposition 5.11. As ¢;, ® ¥ we
obtain

(X (irgo- 0 froPh Jas e @ ef)) @ @

af

where [Lemma 4.27]

* _ in iin 7l 2 #IT| -1 [T
(fHFH ©-..0 fl © P(;bln)a/g - Z ¢7&n¢22f2021f2122 Tt iHFH*2iHFH71fiHFﬂflﬁ

io...iHFH,1
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S0
Z(f\\FH o...ofjo0 ch' )aﬁ e( ) ® e(ﬁu""t)
af
= r Vou
= X i i fz|\||r|\|| 28)|1)|- 1fz‘|‘\r‘|‘\ 18 (0)®e§3 )

aig...i||r| =10

- (;Wa" ) (Z ¢ fmlflm' fz|\||FF|\|| leuru 1f|‘||FF|\|| 187 ﬁyout))

aiy...i|r| =10

= ¢m 02y ¢out

with [Lemma 4.6]

bout = (f||F|| o"'of'y-i-l Offyof'y—lo"'ofl)((ﬁin)-

This finishes the proof of full forward compositionality. O

ii. Partial forward path compositionality. The proof proceeds along the same lines as the
one for full forward path compositionality. We illustrate this in a picture.

,,,,,,,,,,,,,,,,,,,,,,, |
J

We omit an explicit proof here. O

iili. Proof of Proposition 4.12. Since all compositionality results follow by Lemma, 5.6 it
suffices to consider reversal of the eP’s for that result. Having an eP opposite to the
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direction of the path corresponds in the proof of Lemma 5.6 with the substitution

Zfalaj al®e Zfaaj' a]@eal).

Q;Q Q;Q

By Proposition 4.14 we have

Z fa oj " ® eaz Z fa]az a] a.i)

(67 CKJ (67} CKJ
what completes the proof. O

iv. Partial freeness of the full backward path output when all labeling functions are sur-
jective [Interlude 4.22]. We demonstrate the sufficiency of surjectivity for deducing that
Doyt 18 free in ¥ provided that:

1. ¢jp is free in VU ;
2. ¢out is not entangled to any of the carriers that take part in the path.

Consider the following situation.

We have to prove that } .5 gags - egj""t) ® e(ﬁo) is of the form ¢ ® ¢ given that

d(gofyrye---ofi)ap )®3g = in ® ¢
ap

with the additional knowledge that all fi,..., fir are singular. Note here that since
the path is backward we assume that the function g is directed from track r,,; to track
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0, reflected in the exchange of the order of the base vectors. By Proposition 5.21 we
have that g o fr o...0 f1 is atomically singular and by Proposition 5.15 it follows that
whenever all f are surjective that also g is atomically singular. Again by Proposition
5.21 it then follows that ¢, is free in V. O

Counter example 5.26 Consider the configuration of the following picture.

4 ]
— ¢

3 - g b

2 f .
——

1 ]

Hi Ho H3

By Lemma 5.2 on state preparation we know that carrier 1, 2 and 3 are all entangled in
W but that carrier 3 is not entangled to the other two in W. Thus freeness of ¢;, in ¥
does not guarantee ¢,,; to be free in W.

Hence we can say nothing on whether ¢,,; is entangled to any of the carriers which take
part in the path if this was not assumed in advance.

v. Qutput only path compositionality. By Proposition 5.11 we have

> (fipgo---o fi)as elvin) @ eg’out)
af

as a component of the output state. Assuming that ¢;, is free corresponds to requiring
that the above component can be written as a pure tensor ¢;, ® ¢yyt. Thus by Lemma
5.5 and Lemma 5.20 we know

172 A=t T yin gout
2 JoiTii - Timisiymy- Jir a6 = Pa 957

L1.-:2)|D)|

Using the fact that ¢y, is normalized we obtain

o5t = (X ooin)os

[0}

=Y (oY)

[0}

_ Zin ) 7 IT] -1 [T
= Z% Z failfiliz"'fi|\r|\—2i\|m|—1fil\FH—lﬂ
«

L1210
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_ in 1 7] -1 |IT]
- Z $a f‘”l taig * flnrn 20| |7 lflnrn—lﬂ

aiiedr)|
= ((firyo--- 0 f1)(din))
by Lemma 4.27 what completes the proof. O

vi. Extended compositionality. After substituting Lemma 5.6 by Lemma 5.9 in Subsection
5.2 — what results in the obvious extension of Proposition 5.11 — the result follows from
the other proofs in this subsection.

5.5 Solutions to the riddles

The solutions to the riddles rely on the preceding proofs in this section.

i. Solution to Riddle 3.8. Let I'. , be the subpath of I' obtained by removing list
elements, starting with the first one, until the list has no occurrences at a physical time
later than 7,,; anymore. The first element of the remaining list I'; , will then also be
at time 74,;. Thus the resulting path I';, , will be an output only path. Since ¢y, is
free in W7eut the composite of the labeling functions of all eP’s along I’ has to be an
atomically singular map, that is,

FrtL #Irf=1 Il — (4. pouty.
(Z i vin i flnrn 24|17 - 1flum| 1ﬁ) = (@i 5 )in 1

Y-t )|

Tout

with
[T =k +1=[|Tr,.]

The range of this atomically singular map is the subspace spanned by ¢°“!. It then also

follows that HFH ™
) 1 out

(Z Foirfiria - lnrn 281 — lfmrn 15)a5 (tha &5 ) s

21.-:2)|1||
with

71 2
1/)04 = Z failfiliQ e lk 2lk 1¢7'k 1°
i1 1

Hence fjpjo...o fi is itself also atomically singular with as range the one-dimensional
subspace spanned by ¢°“!. Since the outcome ¢y is independent of the other eP’s
fi,..., fr—1 which take no part in I'\ 'y, it follows that we will have compositional
behavior. The fact that in physical time fi,..., fr—1 might not have taken place “yet”
doesn’t affect the outcome state ¢°% at all. To summarize, when f is atomically singular
we have for an arbitrary ¢ that

(fe9)(®) = f(#)

ignoring normalization and provided that both sides of the equality are non-zero. We
will discuss the issue of disentanglement, which is the functional counterpart to atomic
singularity, in more detail in Subsection 6.5. O
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ii. Solution to Riddle 4.25. The solution lies in the decreased degrees of freedom. In fact,
once the network and the path is specified there are no degrees of freedom left anymore
since both ¢, and ¢q,; are part of the physical output ¥ of which the part relevant for
us is completely determined by the network itself, that is, there is no dependence on the
physical input ¥. Changing the notations to qbi and @L , would stress this fact. It then
follows that the compositionality claim only applies to the particular input (ﬁm which we
obtain for the chosen path, and not for any arbitrary vector ¢ € H;,. The composite of
the maps f1,---, fjr has to be atomically singular in order to assure that gbi and @) ,
are free in W. So we have, equivalently,

(firy o ---° fi)ag = ¢ - ¢Fm and (fHI‘HO---Ofl):(rg ¢Fom P

It is due to this that we can both have

¢OUt (fHFH ©---0 fl)(qbzrn) and (f{r -0 fﬁp”)( Eut) = an

while neither
firjje---ofi and f{ro"'ofﬁpu

admit an inverse. Given an entanglement specification network, this fact strongly restricts
the output only paths for which a compositionality result in the sense of Theorem 4.24
will hold. We conclude that output only paths in the sense of Theorem 4.24 are somewhat
pathological. However, as we will discuss below, output only paths do become interesting
when we relax the condition on freeness by conceiving them “in context” [Subsection 6.1].
Again we refer to Subsection 6.5 for more details on the significance of disentanglement
in perspective of the results of this paper. O

. Solution to Riddle 4.26. Here we cannot use the decreased degrees of freedom argu-
ment which we used above since both ¢! and ¢4* are arbitrary. But the solution is very
similar to the solution of Riddle 3.8. Denoting the global path by I' we have

(Z fl HFH 1 fHFH )
iy iviz ZHFH 20|11/ 9 1) -18 ) o8

i1 |
1,out ;2,in Fk+1 [IT|| )
(Z fC”l v Zk 2Zk 1¢lk 1 ¢ flklk+1 ’ fZHFH 18 afB

b2 ||

= (z/)a (CE fk+1)(¢2’i”))ﬁ> "

It then follows that we have

G2ur = (fyry© -0 fug)(@>™)

for the global path T", which is (of course) the same expression as we obtain when con-
sidering the forward path only. Hence, due to the fact that the extra eP used to connect
up the two paths is atomically singular the backward path and the eP’s therein play no
role at all on 9. O
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6 Functions as inputs and outputs

First we digest things a bit by means of a conclusion. Then we will analyze which facts
brought us to this conclusion. We will investigate whether we can push things even
further by exploiting these facts even more.

Conclusion 6.1 We identified an (acausal) “as if behavior” of the information flowing
i an entanglement specification network which contains bipartite projectors and local
unitary actions [Subsections 3.2 and 3.1|, or, boldly put, the information flowing through

bipartite entanglement itself:

Y4 yi
_
) P

A

The necessity of the use of as if (as compared to is) is enforced by

e the acausality of the flow [Subsections 3.2 and 3.1], and even more so,
e by the limitations of the interpretation [Subsections 4.1 and 4.3].

All statements only refer to “global” behavior (the relation between inputs and outputs of
paths) and not to “local” (intermediate) nodes of a path.

Subsection 5.2 reveals that the structural core of the compositional behavior of the virtual
information flow through the eP’s rests in Lemma 5.6, which is not a lemma on

e how a free state propagates through the eP’s
but a lemma on
e how two entangled states interact when they pass an eP.

In the picture below f and A interact by means of the action of the g-labeled eP on them.
This interaction results in a new entangled state hogo f.

hogof

Considerations on freemess of the input ¢;, and the output ¢y, are of a secondary
nature as compared to this interaction mechanism. This will allow some more refined
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interpretations of our paths [Subsection 6.1]. And these will allow at their turn for more
sophisticated functions such as function-valued functions and higher-order functions to
be encoded in terms of entanglement [Subsection 6.4].

The question on compositional behavior breaks up in two subquestions with corre-
sponding subanswers namely one on compositionality and one on freeness.

Corollary 6.2 Consider an arbitrary path U of one of the shapes we have considered
so far but without any a priori condition on the location of the input and the output
concerning time-point and time-direction. Further we assume regularity.

o If both the input state ¢y, and output state poyr are free and if in addition the output
points forward (in physical time) then ¢y depends compositionally on ¢y, .

o If Tout is later (in physical time) than any other point of the path then the freeness
of the output state can be deduced from the freeness of the input state.

Proof. The proof proceeds by case by case evaluation using Theorem 3.4, Riddle 3.8,
Corollary 3.6 and Theorem 4.24. It still remains to be checked that if for an output only
path freeness of an arbitrary located input guarantees freeness of the output whenever
the latter is later than any other point of the path. We leave this to the reader. O

For purely physical reasons only forward and output only paths can pass either of the
conditions in the two statements in Corollary 6.2. Notice that for these two cases, given
freeness of the input ¢;,, the condition on compositionality provided ¢, is free is weaker
than the one on freeness of the output ¢gy;.

Corollary 6.2 gives a unified view on forward and output only paths’ compositional
behavior. These two kinds of paths are however manifestly different. In particular is
the output only case pathological in the sense that besides the output ¢y, also the
input ¢y, is produced by the network [Riddle 4.25]. Having freeness of the input (and
the output) then requires the composite of all labeling functions along the path to be
atomically singular [Subsection 5.3]. This strongly restricts the paths for which any
compositionality statement can be made. For example, the positive eP [Definition 3.13]
of a one-eP output only path needs to be a projector on a pure tensor [Proposition 5.21]
in order to have a compositionality statement of the kind of Theorem 4.24.

¢in ¢out

o 6* (¢zn ® ¢out)”'
| |

On the other hand, Lemma 5.6 and even more so Proposition 5.11 respectively apply
to arbitrary 3-eP and n-eP output only paths. Below we will change the rules of the
game and this will provide all output only paths with compositionality statements. As a
matter of fact also backward and input only paths will become truly relevant.
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6.1 Entanglement as a function

The relevant part of the physical output ¥ in Lemma 5.6 and Proposition 5.11 can and
will in most cases be a proper entangled state (=not a pure tensor).

Question 6.3 Can we formulate a compositionality statement for arbitrary output only
paths while maintaining our information flow paradigm?

To this aim we also answer a more specific question.
Question 6.4 What is the operational significance of a bipartite entangled state?

This question has several answers. We introduce the following graphical representation
for the four kinds of paths we have considered so far, that is, forward, output only,
backward and input only.

I SR I
Y oA

i. Behavior under measurement. Below we conceive g as being anti-linear.

e If we perform a measurement M; on carrier 1 of a bipartite system which is in state

Zgaﬁ . eg}) ® eg)
af

then, whenever after the measurement carrier 1 is in state ¢ € H1, carrier 2 is in
state g(¢1) € Ho ; if we instead perform a measurement on carrier 2 then, whenever
after the measurement carrier 2 is in state ¢y € Hso, carrier 1 is in state g'(¢2) € H;.

This view is well-known and admits several extensions e.g. multipartite entanglement [17]
and property lattices [18]. It however forces us to bring quantum measurements explicitly
into the interpretation.

ii. Effective input specification. Bringing measurements into the picture can easily be
avoided. Due to the spectral decomposition theorem [Subsection 2.1 and Theorem A.8]
the action of a measurement reduces to that of a projector, namely the projector

Py i HoH = (d1]Y) b
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which specifies the outcome state ¢1 = 3, ¢1 - el(l)

(P, @id3,) (3 g - e @€))) = 3 gag - Py (D) @)
ap af

of the measurement. We have

= gas (1| D) - 1 @)
af

= $1© (3 Fhoas )
ap
= ¢1 ®g(d1)

where the conjugation vanishes in the last step due to anti-linearity [Lemma 4.27]. In
terms of linear maps this conjugation is the witness of the fact that the specification of
the input is directed “backwardly” in time [Subsection 4.1]. Indeed, since an entangled
state ¥; can be obtained as the physical bipartite output of the bipartite projector Py
we get the following picture.

Y A

P¢1 ¢out = f(¢ln)

Dually to the above calculation we also have

(id’Hl ® P¢2) (Z Gap - 68) ® e,(BZ)) = gT(¢2) ® ¢2 .
af

By Proposition 5.11 an entangle state W, can also be seen as the relevant part of the
physical output of any output only path which is such that g = fypo...0 fi. Of course
P, defines itself also an output only path consisting of one eP. Hence the path-view
generalizes the preparational one.

g=fir|e...of1 g

It then follows that we can read an output only path in the same way as we can interpret
entanglement. This essentially consists in replacing

“If the input is free and equal to ¢;;,, then ...”
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by the conditional statement
“Whenever we effectively specify the input by a projector Py, then ...”.

In a picture this means that we evaluate compositionality by making the path first pass
through one additional box which specifies (backwardly) that the input is indeed ¢, .

T¢in A(,bout = (foy - - © f1)(Pin)
= (fHFH o...0 f1 o Pjﬁzn)(¢ln)

Due to effective specification of ¢;, by means of Py, we have that ¢y is now free in ¥
for any output only path. There is no harm in reading the projector Py, in the same
way as we read local unitary operations acting on the path. Moreover, the direction of
reading actually doesn’t really matter since PLM = Py, . All the above leads us to a
second interpretation which views an entangled state as being the relevant part of the
physical output of an output only path.

Conclusion 6.5 (Effective input specification) If we effectively specify the input ¢jy,
of any output only path by means of a projector Py, —then ¢our = g(¢in); the dual case
bout = 91 (¢in) arises by reverting the direction of the path and hence replacing Py, by
Pg,.. now located at the other end of the path.

Note that we can also add an input specification projector to each forward path.

J Gout = (fyry © - - - © f1)(din)

= (firyo---o fioPg,.)(din)
= (fHFH o...0f1 0P¢m)(1/))

¢in

P¢in

*(ﬁzn or any d)-/y—¢zn
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This doesn’t impose any change on the path’s compositional properties.

Observe further that in contrast to the discussion in the solution of Riddle 4.25 ef-
fective input specification provides both forward an output only paths with the same
number of available degrees of freedom, namely the choice of the projector by means of
which we effectively specify the input.

The above clearly indicates that we can generalize Corollary 6.2 to arbitrary output
only paths when dropping the requirement on freeness of the input and replacing it by
effective input specification by means of a projector. It moreover at the same time gets
rid of all the pathological cases [Riddles 3.8, 4.25 and 4.26]. We will not formulate the
resulting corollary explicitly. It will be included in the main theorem of our story which
we formulate at the end of this paper.

Convention 6.6 We will read any input ¢;, “as if 7 it is effectively specified by Py, .
This convention enables a unified treatment of many different kinds of paths.

iii. FEntangled states as functions. The above also indicates that we can interpret the
entangled states themselves as functions. When passing from effective input specification
to potential input specification the entangled state U, is waiting for the actual input ¢;,
to be specified by the projector Py, . In terms of the A-calculus [7] the entangled state
acts as the A-it term Az.f(z). Once the input input ¢;, is specified this term becomes

- f (@) bin 2 F(im) -

As a consequence, we can think of an eP or more generally, an output only path, as
producing a function which takes effective input specification as values. It follows that
besides labeling entangled states by functions we can also view them as functions.

Conclusion 6.7 (Bipartite entanglement as a function) Every bipartite entangled
state can be interpreted as a function.

iv. Behavior in context. Paths of the kinds we have studied until now can be conceived
as parts of more complex collections of interacting paths. Paths which individually do
not satisfy compositionality statements might do it within a larger context. This is for
example the case for individual eP’s.

L |‘d|A
¢ Y A
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In the above picture neither the one-eP input only nor the one-eP output only path
admits a compositionality statement in the sense of Section 3 but the joint path admits
one. Hence one can define the compositional behavior for the output only and the input
only path by their behavior within the concatenated path.

Consider now an output only path. We can turn it into a forward one by adding an
additional identity eP.

| |
id bout = (fipjj © - - - © f1 0 id)(¢in)

= (fyrj oo f1)(¢in)

¢in

A

We obtain a full forward path and thus compositional behavior for any input ¢;,. This
again provides an alternative interpretation of output only paths and thus also an alterna-
tive interpretation of entanglement — vs. the effective input specification interpretation.
However, in both cases we evaluate compositional behavior in a larger network, for exam-
ple by adding Py, in the case of effective input specification, and by adding an identity
eP in the above case. The generic idea is captured by the utterance “behavior in context”.

Any backward path can be turned into a forward one by adding two identity eP’s.

| | A
id Gout = (id o firje---ofio id)(bin)

= (firy o0 f1)(din)

-

¢in id

W | |

The resulting behavior is perfectly compositional (without being pathological). Clearly
this observation again involves an entertaining riddle. We encourage the reader to see
what happens to the two provided counter examples for backward compositionality when
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placed in context, and how that context changes their non-compositional behavior into
compositional behavior.

In an appropriate context an input only path becomes an output only path.

¢in ¢out: (idof||F||o---oflOid)(¢in)
= (firyo---o fi)(¢in)

id id
| | | |

This allows to attribute to each input only path a bipartite entangled state ¥, with
g = fjr) ©--.o fi1. Rather abusively we can think of them as providing entanglement in
a “backward” fashion (as if of course).

Conclusion 6.8 Any path of the kinds we have considered so far, that is, forward, output
only, backward and input only, exhibits (non-trivial) compositional behavior when placed
i an appropriate context.

v. Both positive and negative eP’s and both output only and input only paths produce
functions. An eP produces an entangled state which we can interpret as a function. This
of course happens at its positive side and by physical causality it makes no sense to talk
about producing an entangled state at its negative side. Nonetheless the above shows
that its negative side acts as if it produces a function analogous to how its positive side
produces one.

Conclusion 6.9 (Producing functions) Fach bipartite eP produces a function both
at its positive and its negative side. Analogously, both input only and output only paths
produce a function respectively at the side of their physical input and output.

vi. Functions vs. relations. In a sense one could say that bipartite entanglement behaves
rather as a relation than as function, or more precise, as a multirelation. Relations can be
represented by {0, 1}-valued matrices while in the case of multirelations we have N-valued
matrices. It is easy to extend this idea to C-valued matrices and if we fix a base we can
generate in this way all linear functions. In particular is the inverse of a (multi)relation
obtained by transposing the matrix which is in harmony with the fact that reversal of
the direction of passing an eP requires taking the adjoint. If one however tries to extend
this line of thinking to multipartite entanglement then one ends up with something that
could be called a polymultirelation . While a (multi)relation relates elements of two sets
such a polymultirelation relates elements of many sets.
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6.2 Example: entanglement swapping

The above discussed wider significance of Lemma 5.6 and of Proposition 5.11, and its
implications for reading output only paths, allows us to discuss entanglement swapping
[61] in a similar fashion as we discussed teleportation.

We consider four carriers, carrier 1 being id-entangled to carrier 2 and carrier 3 being
id-entangled to carrier 4. How do we get carrier 1 id-entangled to carrier 4 without acting
on either of them. The solution is provided by Lemma 5.6.

idoidoid = id

| |
id

1 2 3 4

The spatial geometry associated with this setting is the following which also incorporates
the preparation of the two initial entangled states.

/N | Pid

A Py A | Py
The corresponding path and information flow is depicted below.

b
¢in A ¢out = ¢zn

id

id id
| | | |

By Conclusions 6.7 and 6.9 we can interpret this as merely being a composition of identity
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functions.

id

id

id id
H H H H

The above is of course to be interpreted probabilistically with respect to the projector on

carrier 3 and 4. Analogously to what we did in the case of the teleportation protocol we

can produce the usual non-probabilistic swapping protocol by exploiting compositionality.

¥ Ay A

Ut I - U !

id id id id
| | | |

\ Ja:Eo(M)

All symbols have the same significance as they had in the case of teleportation.

6.3 Example: preparation of entangled states

In view of the above presented analysis of entanglement swapping it should be obvious
that the algorithm proposed in Subsection 3.4 can be modified into one for fault-tolerant
preparation of entangled states from a small generating set of available ones, while im-
posing the same constraints as we did in Subsection 3.4. Hence we assume that the only
available components are

e Local unitary operations in G, ;
e Bell-base measurements ;
e Some prepared entangled states with as functional labels f1,..., fi, € CG,, .

The latter could be restricted to (bipartite) CNOT-gates, (unipartite) Hadamard gates
and (unipartite) phase gates. In Subsection 3.4 we exposed how fault-tolerant “paral-
lel composition” enables us to produce any gate in the subgroup of CG, generated by
fi,-.., fm via composition, tensor and identities. If ¢ € CG,, is a unitary operation we
can produce in that way, then we can also produce the entangled state

v, e H"@H"

102



which has g as labeling function. In order to obtain an algorithm which does this, it
suffices to drop the following in the algorithm of Subsection 3.4:

e the first n carriers of states, and,

e the Bell-base measurements Mi(u) for which I(v,7) =0.
The “inputs” of the produced entangled state are the carriers
j=i—1
2. Z |Tracks(f;)| | + Order(v,1)
j=1

for v € {1,...,n} and i such that I(r,7) = 0. Its “outputs” are the carriers

i=1(v)-1
(2- > |’I‘racks(fj)|) + |Tracks(fj,))| + Order(v,1(v))

=1

for v e {1,...,n}.
As an example, by means of the configuration

A M

3,4 2,3 1,2
CNOTg ) CNOTg ) CNOTg )

we realize the 8-qubit state labeled by the unitary map
(oot @id*) o (i) ® oxoTi? @ idy”) o (1 ® enoT("?).

Again, as it was the case for the construction in Subsection 3.4, this procedure can be
extended from producing CG,-labeled entangled states to producing CG;-labeled entan-
gled states. Note in particular that the carriers which make up the resulting entangled
state have themselves not been acted on yet. Hence they can be used as prepared states
for other algorithms.

6.4 Tri- and tetrapartite entanglement

So far we only considered single snake-like paths. We will now pass from the logic of bi-
partite entanglement specification to the logic of multipartite entanglement specification,
that is, we will identify the information flow capabilities of eP’s of the shape

T - Pi,j,...,k);T ”””
1T T
H; Hj Hi



We cannot just label these eP’s via a unique labeling function since there are no (unique)
multipartite analogues to the isomorphisms

Hi®H; =~ ’H;‘—)’Hj ~ H; % Hj.

Note in particular that while the tensor is associative and commutative the function
arrow isn’t. However, it is not completely true that in the bipartite case we had a unique
obvious candidate to label H; ® H;. By commutativity of the tensor each of the types

H; + Hj and Hj Y H;

provides a candidate labeling function — which is adjoint to the other one [Proposition
4.12]. We left the task of choosing one of these two candidates to the path — more
specifically we left the task to the path’s direction [Deceit 4.10]. Hence each bipartite eP
accepts two functional readings.

In this subsection we study the functional readings accepted by tripartite entanglement,
that is, accepted by eP’s of the shape

Py HiQH @Hs > H1 @Ho @ Hz 1 @ = (¥ | D) - W

with
U= Zfam-e(al) ®e§32) ®e§33) € HiQ@Hs®Hs.
afy

The binary choice of a direction in the bipartite case becomes in the multipartite case a
9-ary choice which consists of attributing a type to the eP.

Bipartite entanglement can be interpreted in terms of functional actions on an in-
formation flow. Here we will proceed by reducing the information flow interpretation of
tripartite entanglement to that of bipartite entanglement. We enable this reduction by
exploiting the associativity of the tensor product. We have

H1QHo Q@ Hg =~ (H1®H2)®H3
~ H1®(H2®H3).

Using the isomorphism between H; % Ho and Hi ® Ho and (for now) ignoring commuta-
tion of the tensor we obtain two corresponding functional types namely

(Hl S 7‘[2) % Hz and Hi (Hz S 7‘[3).
Below we discuss these two cases separately.

Definition 6.10 The order of function types is

Hi — Ha) = max(order(H1) + 1, order(Hs))
order(H; & Hz) = max(order(H,) + 1, order(Hz) ).
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We introduce the size of function types as
size(H) = 1
size(H1 x Ha) = size(H1) + size(Hs)
size(H1 — Ho) = size(H1) + size(Hz)
size(H1 & Ho) = size(H1) + size(Hz) .

Recall that second order functions such as
f:(H1—>H2)—>7'[3 or f:(qu—)HQ)q—)H?,

allow to accommodate things like definite integrals and derivatives and so on.

i. Second order types. The type
(7‘[1 S 7‘[2) G Hs

stands for a function which itself takes a function of type H1 % Ho as input and outputs an
element of H3. From Conclusion 6.7 we know that an entangled state can be interpreted
as a function. Moreover, by Conclusion 6.9 we know that each output only and each
input only path can be conceived as producing a function.

Let us consider the case of “feeding” the function produced by an output only path
in a negative [Definition 3.13] tripartite eP.

f:(/H19—>/H2)Q—>fH3

\J

Assume that the tripartite eP which we labeled by f projects on

Z Fasy - e(0[1) 2 e,(32) ® e(ﬁ3)
apy
and that the function produced by the output only path is g : H1 9+ Hz which has (gas)as

as its matrix in base {e&l)}a of H, and base {eg) }p of Ha, that is, the output only path
produces the entangled state

Zgag . esll) &® 6512) .
ap

When conceiving the tripartite eP as a bipartite one of type (H; ® Hs) ¢+ Hsz which
projects on

Z f(th . (6511) ® 6/532)) ® e(ﬁ?))
(aB)y
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and which receives as input

b= S gy el) .2
ap

we can apply the compositionality results of Section 3. It then follows that it suffices to
conceive the anti-linear (2nd order) function

f:(H1q—>H2)Q—>’H3

F(X ga— 1) e) = S (X guifue) - ¢
af ko ij

in order to make the information flow interpretation hold.

as

In the case that a tripartite eP which we type in the same way acts positive [Defi-
nition 3.13] we obtain the same result. This can easily be seen by feeding the function
which is “downwardly produced” by a bipartite eP [Conclusion 6.9] in the tripartite eP.
Assuming that the bipartite eP projects on an entangled state >-,5 gag - e&l) ® eg), then
by Conclusion 6.5 on effective input specification the above result follows again by setting
Gin 1= 3B Jop * eg}) ® eg) while conceiving the tripartite eP as bipartite.

Note that the indices ¢ and 7 do not play an equivalent role given the type of the
function g, and of course, neither does k. We can denote the typed matriz of f as

(flij)sok) (i) ok -
If we assume that the values f;;; are defined such that the arrows & always point forward

in this notation then we can simplify it as (f(ij)x)(ij)-

ii. Virtual function boxes. The type
Hi (Hz % H3)

stands for a function which takes an element of 7; as input and outputs a function of
type Ha% Hs. Since by [Conclusion 6.9] bipartite eP’s produce functions this tripartite
eP should act as if it produces a “virtual” bipartite eP as output, of which labeling
function depends (linearly) on the input of the tripartite eP.

f:’H19—>(/H29—>fH3)

In order to expose this kind of behavior consider the configuration below.
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¢out

When conceiving the tripartite eP as a bipartite one which projects on

> fapy e @ (6532) @)

after having applied the effective input specification Pin with Y =3, " we obtain
by Conclusion 6.5 that the entangled state of the second two carriers is

Z¢ fa(sy) - ®e()

We know that an entangled state can be conceived as a function [Conclusion 6.7]. When
applying the second effective input specification P yin the state of the third carrier becomes

—in Ti 3
> U fagam - €5
af
It follows that when conceiving the anti-linear (first order) function

f:Hl%(H2%H3)

as

= Z(Z @ifijk)(— o) - e
ik 7

the information flow interpretation indeed holds. This shows that passing from bipartite
to multipartite entanglement goes with passing from wvirtual paths to virtual eP’s. The
typed matriz of f is now

(fias (o) Vi (k) -

and simplifies under the assumption mentioned above to (fi(x))i(jk)-

iii. Consuming versus producing. In the case discussed above where we used the type
Hi1 % (H2 & Hs) to interpret a tripartite eP we produced a (virtual) bipartite eP, that
is, we produced a function. In the (H; & Hg) & Hs case we consumed a function which
itself was produced by an output only path. Producing and consuming a function are
very different operations:

107



e Consuming a function stands for producing some input value for that function and
then consuming the output returned by the function.

e Producing o function stands for consuming some input value for that function and
then producing the corresponding output.

This producing-consuming dialectics is very typical for linear logic [29]. Much of the
structure exposed here has striking similarities with that of Girard’s linear logic and in
particular with that of proof nets [31]. We will elaborate further on this matter below
when we discuss general multipartite entanglement [Section 7].

Note in particular the difference of the number of paths of size one which approach
and which leave the eP in the two cases. This shows that one of them cannot be converted
to the other by changing the paths “within the eP”.

iv. A network with tripartite eP’s. Passage from networks which contain only bipartite
eP’s to those where we also have multipartite ones requires adequate denotational tools.
We will restrict ourself here to a particular example of a network in order to demonstrate
that a compositional interpretation indeed still holds in the tripartite case.

Consider the following configuration of eP’s where the matrices inside of them are the
coefficients of the vector on which the corresponding eP projects, these matrices being
expressed in the base of tensors made up of the bases

{ef)Yars o el o

of the respective carrier types Hi, ..., Hg.
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I I

4 B (fa1a2a3)a1a2a3 ”””””””””””””””””””””””””
I

3 o ¢1 77777777777777777777777 (f§4a5a5)a4a5a6 77777 ¢2 777777777777

I I I

2 b (Gasas)asaq - (fa36a7ag)a6a7a8

]' ””””” I N '(ILOéQas)aQas_l ”””””””””””””””
7‘[1 7‘[2 7‘[3 HG H? HS

We can define the types for the (tripartite) eP’s in such a way that we can draw the
following “compound” information flow path.

I I I A

- l(¢out?77
4 _|f 27'[1‘4—’(7'[2‘4-’7'[3)} 77777777777777777777777777777777777777777777777
S S [T R R B F2r(HaHs) e He |- 2 L
R A — 1 | ] z '
g' Hs P Hy f 7‘[6%(7‘[7%7{8)
/R e Ho o Hyemeed |

Hi Ho Hs Hy Hs He Hr Hsg

Provided “compositionality would hold” we derive what ¢, should be. Due to the fact
that some functions are of size three compositionality is for this “compound” path more
sophisticated than in the case of functions of size two where we always can the composite
as a list of the shape fro...of;. Therefore we will keep track of the types in the derivation
of the composite. At the output of the f!-labeled eP typed H; 3 (H2 % H3) we obtain
the function

FH(Bin) s Ha & Hs.

At the input of the f2-labeled eP we obtain a function which is itself a (ordinary) com-
posite of functions

ho (f'(p)) ogh: Ha o Hs.
At the output of the f2-labeled eP typed (H4% Hs) % Hg we obtain the vector

FAho (fH (k) o g") : Hs.
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At the output of the f3-labeled eP typed (Hg% H7) % Hg we obtain the function
(f2o /) (ho (F1 (b)) o g") : Hr 9 Hs

where

fPof?: (Ha % Hs) % (Hr %+ Hs)
and hence
Gout = (f* 0 f2)(ho (F1(¢1)) 0 g1 (¢7,) -
We can make this expression explicit by using the (typed) matrices of the functions
involved. We also set

¢in Z ¢Zn 1 Z ¢m ,2 Qbout Z ¢out .
As matrix of the function f := f1(¢},) we have

(fazas)asas = (Zéml 0141 ozrzas))awg

and hence the matrix of the function f :=ho ffo gl is

(fa4a5)a4a5 = (Z 9L4a3fg¢3a2ha2a5) Las (Z 9a3a4fa2a3 aza5)

Qo
asas i 495

Applying the composite f3 o f2 to these then yields

( Z fa4a5f (aas)ae as(a7as))

arag
(caas)ae
resulting in
out __ Tin,2 in, lfl h 3
ag 2: a7 JazaaPar Jay(azas)tazas a4a5)a6 as(arag)
a1 2a3aq0506Q7

Now we will confront this prediction which we obtained by assuming compositionality
with the quantum mechanical calculation of the physical output of the network. In order
to do that we will use a lemma which applies to entanglement specification networks with
an arbitrary number n of carriers, an arbitrary number of time-instances m at which we
apply projectors and we allow these projectors to apply to any number of the n carriers
such that we cover the case of arbitrary multipartite eP’s. We set

=Y v, . -dVe.. .o v=Y 0, -l e

11...0n 11...0n

and for 7 € {1,...,m} we set



All these having the same significance as they had in Section 3. For
IC{l,...,n}

let
Po: QM > QHi: U= (D] 0)-
icl i€l
be the projector which projects on the unit vector

O =2 Piajaer) € QHi-

ia|a€l i€l

As in Section 3 we allow PL to act on any state ¥ € H; ® ... ® H,, by tensoring it with
identities which act on the carriers labeled by indices in

-1 :={1,...,n}\I.
Recall that we have ¥ = U™, For convenience we also set U9 := U,

Lemma 6.11 (Multipartite projector action) For r € {1,...,m}, given that
U7 =Py (77,

then

Ul i = 20 Y b i aer) 2Galach) Riaact)
]a‘CKGI

where

i1 inlJa/ia | @ € I]
denotes that we substitute the indices i for which o € I by ju, this jo being an index
which ranges over the same values as iq.

Proof. We have

Py (v) = X i (o] @l >_@®<® el(:)>

7,1 JAn acl ac~l

= > UL BGeen@aaen T1{ef | e)- <® 62?) ® (@ 653)>

acl acl acl
i1...0n

ja ‘Oéel
kala€l

_ T—1 5 (o)
- Z \Ijil...in[ja/ia|ael}q)(ja\0461 (kala€l) " <® eka> ® <® €ia )

iolae—I a€el ace—-1
o -

ja‘aef
kala€l

_ -1 & (1) (n)
- Z ( Z ‘I’il...inua/iaaef](t'(jaael)@(iaael)> "€ ®"'®ei:

21..0n ja|aeI
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where the last step merely consists in substituting k, by i, for a € I, which is allowed
since these 7,’s are not in use anymore. Identification of the coefficients for the different
base vectors completes the proof. O

Setting n := 8 and m := 4 we can now apply this lemma to the example above. Note that
by Proposition B.4 in Appendix B it poses no problem that more EP’s act simultaneously.
We obtain

1 — h. . b .
\Ijil...ig_ Z \Ijiljzi3i4j5i6i7i8h]2]5 h1225
J2J5

2 h.ooh. .= ) 3
‘I’il...is— Z \Ijilj2k3k4j5k6k7k8h]2]5h22l59k3k491324fk6k7k8fi6i7z'g

J2Js
kakakekrks
30— he - h- 1 a .73 3 7141 72 2 72 42
\Ijil...ig_ Z \Pllj2k3k4j5k6k7kgh]2]5h12l59k3k4gl3l4fk6k7kgfle,l7i8¢l1 ¢i1 fl4l5l6fi4i5i6¢l7 i7
J2Js
kskakgkrks

l1lalslelr

Hence the coefficient ¥, . factors into five components, one in which no index in
{i1,...,1g} appears namely

7 - 73 71
Z \Pllj2k3k4j5k6k7k8hj2j5.gk3]€4 fk6k7k8 ¢zl
J2Js
kskakekrks
Il

three with indices in {41,...,47} namely
2 1 2
iaisieirizis Pin
and one which contains the index i3 namely

3 1 72 72 rl
Z hm2l5gm3l4 fl6l7i8 ¢m1 fl4l5l6 ¢l7 fml mams3

lalslgly
mimams

After substituting the bounded indices
ml,mg,m3,14,l5,lg,l7,ig by Aly...,08
and permuting the coefficients we obtain

} : 72 1 7l r2 3
¢a7ga3a4¢al a1a2a3ha2a5 fa4a5a6 a7y
Q0203040506 QL7
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which coincides exactly with our prediction for 4)3;;'5 and thus confirms our prediction of
¢°“. This (random) example indicates that compositionally indeed extends beyond the
case of bipartite entanglement specification.

Note here in particular that the negatively acting eP’s, including the downward acting
effective input specifications, are the ones of which the matrix elements are conjugated.
This clearly indicates that Lemma 4.6 on the necessary conjugations in the matricial shape
of composites in bipartite entanglement specification networks generalizes to arbitrary
multipartite entanglement specification networks with respect to which coefficients have
to be conjugated.

v. The information flow capabilities of tripartite entanglement. Above we have put
some arguments forward in favour of an interpretation for tripartite entanglement which
extends the one proposed for bipartite entanglement. While bipartite entanglement allows
a (virtual) information flow by means of a function of size two of one of the two types

Hra) & Hee) with  7:{1,2} — {1,2} a permutation,

that tripartite entanglement allows a (virtual) information flow by means of a function
of size three of one of the twelve types

Hey & (Hae) ® Hem)  or (Hea) © Ha) & Ham)

with  7:{1,2,3} — {1,2,3} a permutation.

Six of them are first order functions and six of them are second order functions. Introduc-
ing a new graphical representation for “2nd order paths” while ignoring the permutations
we can depict the distinction between bipartite and tripartite entanglement as follows:

ALY
bipartite tripartite

Besides this distinction in functional actions in both cases eP’s agree on:
e Time reversal for any path passing through the eP.
e The capability to act both positively and negatively — even simultaneously.

The multiplicity of possible information flows follows by commutativity and associativity
of the tensor resulting in

Hi@H2 @Mz = (Ho) P Ha2) P Hep) = Ha)® (Ha@) P Ham) -
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This degeneration will increase whenever we increase the size of the eP. The degeneration
is however somewhat smaller than it seems to be at first sight. Via Currying of arguments
[Subsection 6.5] we can reduce the six first-order typings to three:
Curry
He)® e P Hae) = Ha) X Ha@) P Has)

Curry

(Hr2) X He) P Hez) = Hro)® (Ha) P Ha)) -

We can go even further and conceive the three inequivalent first-order typings as degen-
erated cases of the second-order typings arising due to disentanglement as we will discuss
below [Subsection 6.5].

vi. The information flow capabilities of tetrapartite entanglement. We briefly mention
how the picture changes when passing to tetrapartite entanglement. Again we rely on
the fact that bipartite entanglement can be interpreted in terms of functional actions
on an information flow. We reduce the information flow interpretation of tetrapartite
entanglement to that of bipartite entanglement via

HiQHsQHzs @ Hy =~ ((H1®H2)®H3)®H4
(H1 ®@ (H2 @ H3)) @ Ha
(H1 @ Ha) ® (H3 ® Ha)
Hi® (H2 @ H3) ® Ha)
~ Hi® (Ho® (Hs @ Hy)) .

1R

1R

1R

so using H1 P Hs ~ Hi ® Ho we obtain

((HI%HZ)%H:‘})%HAL (qu_’(HQq_)H?,))q_’Hzl 7‘[1%(7‘[2%(7‘[3%7‘[4))
(7‘[1 %’HQ) S (7‘[3 %Hz})
Hi ((qu—’r)"[g)q—’r)"[@

The type on the left is a third order one, those in the middle column are second order
ones and the one on the right is a first order one. Hence our interpretation accepts five
qualitatively different behaviors for tetrapartite entanglement which we depict below.

114



((H19—>H2)9—>H3 )%7‘[4 (7‘[1%(7‘[2%7‘[3))%/]‘[4 H1%(H2%(H3%H4))‘J

(7‘[19—)7‘[2)%7‘[3 7‘[19*(7‘[29*7‘[3) “

Y \J

(H1%Ha ) (HaHa) J

Hill Ho Hs
N \/

Note that there is no strict correspondence anymore between the order and the directions
of the path (incoming vs. outgoing). In particular are these directions not sufficient to
characterize the type — in the tripartite case they were sufficient. Hence passing from
tripartite to tetrapartite entanglement reveals some new structural components.

Conclusion 6.12 (Information flow capabilities of multipartite entanglement)
Associativity of the tensor product gives rise to a variety of information flow capabilities
for multipartite eP’s, or boldly put, for multipartite entanglement itself. Fach of these ca-
pabilities exposes itself depending on the context in which the corresponding eP is placed.

6.5 Example: Currying and disentanglement

Passing from Hilbert spaces H; and Hs to the Hilbert space H; ® Hs is not the innocent
operation of conceiving two independent things as one whole as it is the case for the
Cartesian product. It introduces many new (entangled) states for the joint system which
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have no counterpart in terms of pairs of states. In categorical terms [Appendix C] we
pass from a categorical product which captures the operation of pairing two objects in
terms of a “pairing bracket” and two “de-pairing projections” to a monoidal tensor which
admits no such interpretation. In the extreme case of a compact closed category the tensor
becomes the internalization of the morphism sets e.g.

HT Q@ Hoy ~ Hi—Ho

for finite dimensional vector spaces [Appendix 1]. It makes therefore sense to distinguish
between — ® — and a pair of inputs. We introduce

Hi x Ha = {(¢1,02) | 1 € Hi,¢1 € Ha}.

One is tempted to refer to the elements of H; x #Hy as pure tensors [Definition 5.19]. In
view of the fact that in quantum theory it are the one-dimensional subspaces which make
up the states and not the vectors themselves the distinction between ¢y ® o and (¢, P2)
is indeed essentially nihil. Adopting — x — will allow us to retain our classical picture in
full extend and one of the goals of this paper is to provide an understanding of the as
if flow of information through entanglement in classical functional terms, and this free
from any circularities such as using — ® — in the interpretation since — ® — is itself the
subject of the interpretation.

Obviously H1 x He and H1®H, play a very different role within our interpretation. An
element (¢1, ) € Hi X Ho represents a pair of independently prepared states, respectively
by projectors Py, and Pg,, of which one or both might be acting backwardly on the path,
while U € H; ® Ha is what comes out of a bipartite eP, that is, an anti-linear function
f:H1 9 He. Two pictures emerge.

A A ¥V A

é1 ) f
[ ] [ ] ol
VS.
é1 ) f
| |

A A

Crucial is the difference in the direction of the (sub)paths for the corresponding carriers.
These different polarities [Subsection 7.1] indicate that in our setting we where right to
attribute a different type to the eP P; and to the pair of eP’s (Py,,Py,) these types
respectively being H; 3 Ho and Hi X Ho.

i. Currying. This is an operation in functional programming which consists of turning a
function of two arguments into one of one argument [12]. It is named after Haskell Curry
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after whom also the functional programming language Haskell is named. For a function
f:XxY — Z and a function f.: X — (Y — Z) we have a bijection of the function sets

(XxY)=Z ~ X— (Y —2)
via identification of the prescriptions
fulz,y) 2z <= feuaxe (foz)ny—2).

In logical perspective currying is the functional witness of the deduction rule

XANY - Z
XFY=Z

something that can easily be seen in terms of categorical semantics [Appendix C].

Consider two paths I'; and I's with 7., = 72,, which respectively for inputs ¢}, € H}.
and ¢?, € H2, produce outputs ¢>,, € Hl and ¢l,, € H2,. We can define I'; x T'y which

n
given input (¢}, ¢2,) € Hi x H2 produces as output (¢L,,, d2,:) € Hlue x H2,,. We feed

in’ n out out*
the output of I'y X I's in a tripartite eP which projects on

V=Y U eV @ @) € U, 0 HE, O Hs
ijk

Py

AT

When conceiving the eP as a bipartite one of type (H; ® Hs) & Hsz which receives as
input ¢}, ® ¢2,, and is placed in an appropriate context then it produces as output

Z \Ilijk <¢})ut ® ¢(2)ut | ez(l) & 65'2)> . 61(63)
ijk

such that we can conceive the eP as being labeled by an anti-bilinear function which is
defined as

Fo (Mo X Hiw) & Hs iz (dr,2) = Y (¢ | ey (o | €§~2)> Wijp, - e
ijk

since by the universality in the definition of the vector space tensor product [Proposition
A.10] defining a anti-bilinear map of type (H; x Hz) & Hs is equivalent to defining a
anti-linear map of type (H1 ® Ha) & Hs.
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f : (,Hiut X /H?mt) — Hs

Iy

S

1
¢out

Af (¢£uta ¢gut)

2

out

id

Iy

¢

The action of an eP of this kind is completely analogous to that of one which is typed
as Hi1 & (Ha & Hs). It merely suffices to redraw the internal paths within the tripartite

eP since we have for ¢; =3, ¢; - egl) and ¢o =), ¢; - 65-2) that

f(d1,¢2) =

where

Z\I/ijk (¢1 | 3§1)>(¢2 | e§‘2)) : egcg)

ijk

2 (Z bi ‘I’z'jk) (2] V) - el

ik

i

(fe(#1))(92)

fe(p1) : Ha & H3 Z(Z (izllljwk) (652) | =) 61(93) )

ik

that is, we Curried the internal wiring of the bf eP typed as (H; x Hs) & H3 into one

which is typed as H1 & (Ho &+ H

3).

fi(Hi xHa) P Hs

fC:H1 R (H2 Q—'/H:g)

Y

T

'

Conclusion 6.13 The internal wiring of tripartite eP’s admits Currying.

118



ii. Disentanglement. The above also provides an interesting qualitative perspective on
disentanglement. When consider the following correspondences [Proposition B.4]

| | | | | |
Py Pg,p-- | Py ®@Pgy |- 1 Poiwg, [

1R
1R

it follows that we can conceive “the same eP” both as a pair of unipartite projectors
and as well as a genuine functional action. This means that it admits at its positive side
either two outgoing paths or one incoming and one outgoing one.

¥V A

1R

1 $2 - f¢:’H1Q->/H2’”
AA -
In this picture fy is the atomically singular map [Definition 5.13] defined by the prescrip-
tion [Propositions 5.21 and 5.23]

{ fo(¢1) = ¢
folp) =0 for ¢ L ¢.

This twofoldness is not the case for bipartite eP’s which do not project on a pure tensor.
Hence disentanglement specification introduces a degenerated eP which admits paths
which are outgoing both at its input and its output, as well as normal functional behavior.
In the case of normal functional behavior the functional action is however constant, that
is, independent of the input. We recall here that it doesn’t require a disentangled eP for
an output only path to produce a disentangled state. It suffices that the composite of
the functions is an atomically singular map [Riddles 3.8 and 4.25].

Conclusion 6.14 An eP labeled by an atomically singular map does not admit any in-
formation flow. Neither does an output only or an input only path of which the composite
of the labeling functions is an atomically singular map. Therefore it can be substituted by
a pair of unipartite projectors without altering its action.

Along the same lines one could argue that in some cases each typing of an eP such
that order < size — 1 is a degeneration of one which satisfies order = size — 1.
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Hi (7’[2 S 7’[3) (7’[1 S 7’[2) G Hs

| ]

b1 b2
A A

The operations required to turn a large network into one where all eP’s satisfy

[ —
P—
[ —

order = size — 1

are not obvious at all at first sight. It is also not clear when such a transformation is
possible. Such a transformation moreover requires tuples of eP’s to be considered as one
although they might be

e spatially separated ;
e act at a different time;
e act in a different direction of time (positive vs. negative).

One could consider admitting some physical changes in the network to overcome these
obstacles. This opens an interesting domain of study one could refer to as entanglement
specification network rewriting in analogy the the term-rewriting in A-calculus [7].

6.6 Example: non-local unitary maps, feedback and traces

We exposed different information flow capabilities for multipartite eP’s of which the
exposure depends on the context in which the eP is placed [Conclusion 6.12]. However, we
don’t even need the notion of an eP at all to discover such a variety of possible behaviors.
Recall that the multitude was essentially due to associativity and commutativity of the
tensor combined with the use of the isomorphism(s)

HiQ@Hys ~ Hi1 % Hy ~ ’HT—>'H2

Further we have
(H*)"=H

and one easily verifies that we also have
(7’[1 ®7’[2)* =S ,H){ ®’H; R

that is, the tensor is self-dual [Appendix C]. Consider a bipartite non-local unitary oper-
ation, or more general, a linear function of type

f:(H1®@Ha) = (M3 ®Hy).
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Physically one might want to assume H; = H3 and Hy = H4 but this assumption is not
crucial for the derivations we make below, neither is unitarity of f.

Hs Ha
| |

| |
Hq Ho

In view of the interpretation of bipartite entanglement as a function [Conclusion 6.7] we
can think of f as consuming a function and producing another one [Subsection 6.4],

that is, we “refine” its type to
f: (Hl S 7‘[2) — (7‘[3 S 7‘[4)

such that its action becomes

f Zgij(_ | ez(-l)> . 6;-2) = Zgijfz’jkl<_ | 62:3)> : 654) :
ij

ijkl

Hence we can assign a typed matriz [Subsection 6.4]

(f(a1—>a2)—)(a3—>a4))(

a1 —az)—(az—aq)

to f. This is however not the only manner how one can interpret the bipartite non-local
unitary operation f. Unraveling the initial type

(7’[1@7’[2) — (7’[3@7’[4) =S (7’[1@7’[2)*@%3@7‘[4
= HIQH;@Hs @ Hy
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we obtain a commutative and associative tetrapartite tensor product for which we have

HIQH;QHs @Hy = (H) @ Ha)* @ (H] @ H3)
= (Hq4 = Ha) = (H1 — H3),

that is, we end up with an alternative typing and hence a different picture

A : R —
A

: fﬂ}

v
N

which involves a different function

Y (Hy = Ha) = (H1 — Hs)

of which the typed matrix

N
(f(a4~>a2)*>(a1‘>a3)) (@a—az)—(a1—as3) '
satisfies
N =
f(a4~>a2)*>(al*>a3) = Jtaim02) (05 a0) -

The new picture also involves a different context. Indeed, it consumes a function at
“ports” Ho and H,4 which has to be produced somewhere else by the environment. Note
also that the direction of the function which it consumes is opposite to the one it produces.
We can graphically represent this in a more concise manner.

A

iy

Hence we obtain a different behavioral interpretation. As we show below such an alter-
native perspective can be very useful. And there are of course many of them.

i. Calculating the trace using entanglement. An (at least conceptually) interesting ex-
ample is the operational realization, or even more, computation, of partial traces, or
more precisely, computation of the trace operation of the traced monoidal category [41]
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(FDVecc, ®,Tr) of finite dimensional vector spaces and linear maps with the vector
space tensor product as tensor and with the trace defined as

T3, () i Hy = Hy s Y bifiaka - €f)
tka
for
f : 7‘[1 X 7‘[2 — Hg X 7‘[2 . Zgij . 62(-1) X 6§-2) — Zgijfijkl . 6563) X 652)
ij ijkl
where {egl)}i, {652) His {eg’)}k are respective bases of H, Ho and Hs and ¢ = ", ¢; - ez(l).
Hence the type of the trace operation is

Tej2 gy, (M1 @ Ha = Hy @ Ha) = (H1 — Hy) .

The interest in abstract modeling of traces can be seen as part of the geometry of inter-
action approach to logical models of functional programming [1, 30]. The construction
of a physical realization of the (FDVec, ®) was initiated in [3] by S. Abramsky and the
author where we showed that the network

Ty 50, (F)(Bin)

| |
id

id

¢in

realizes the functional action Tr%f,}{g( f) : H1 — Hs on the input ¢y, € Hq, that is,
it yields a physical realization of the trace. The discussion above places this result in a
different light. Indeed, consider the following picture.
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Ty 50, (F)(Bin)

id

T

id

The action Tr%f’%( f) is the result of feeding an identity into the now

Y (Ho = Ho) = (H1 — Hs)

labeled non-local unitary map. In particular does this provide an interpretation of the
trace in terms of a feedback loop. This is exactly how traces arise in most classical settings
[1, 6], that is, via feedback loops. Of course in our case the feedback loop is not a true
iteration, but a one-shot “sideways” injection of a “backward” identity.

If all this is really true let us mess a bit further with the geometry of the above, while
adding a complex conjugation whenever we reverse the direction of a path as compared

to the picture above [Subsection 4.1]
T35 240 () (Bin)
(iin

where ¢, 1= > A - e,(f). For the matrix of f* we set

* — —
f(ag%—»az)%(aﬂ—»ag) = f(az—)a2)—>(a1—)a3) - f(alﬁa2)ﬁ(a3%a2) .
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Applying Lemma 6.11 we have for

V=Y Jopu e @) @) @) and Ty = Z bap - D) @ )

15kl
that
Pal)) = 5 finarfasty -2 @) @ e 0 o)
ijkl af
- (Zdlj el ®€ ) (Zfza ka) * ®€;g)>
ika
and thus

(P(z‘)m o P1d)(‘I’f*) = Uy ® ngn ® Z ¢77:nf(7,a)(ka) . 61(93)

tka
= Uiy ® ¢in ® Trzf Hs (f)(Pin) -

Hence the entanglement specification network depicted above indeed provides a compu-
tation of the trace of f applied to ¢". If we drop the projector Pz —in it we obtain
Trzf 1, (f) as an entangled state [Conclusion 6.7] up to conjugation of the input [Propo-

sition 4.4] — since Tr%f,}{g( f) is linear while an entangled state encodes an anti-linear
map in the effective input specification view [Subsection 6.1].

ii. Geometry of interaction. In this section we consider a “slight” modification of the
type which we used above for exposing a virtual notion “feedback”. We define

fTT : (7‘[4 — 7‘[2) S (7‘[1 — 7‘[3)

of which the typed matrix

) (aa—an) (a1 —asz)

10
(f(ou;%az)%(al%ag)

satisfies
— ¢ —
f(a4—>a2)CI—>(a1—>a3) T f(az—)aQ)—>(a1—)a3) - f(alﬁa2)‘>(a3‘>a4) '
The corresponding change in the context is that the direction of the function to be

consumed is now the same as that of the one which is to be produced.

fTT
(—P

Functions such as ' admit a physically realizable notion of composition. The physical
realization of this composition * is not consecutive application but is of a parallel nature.
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From the perspective of the functions f and ¢ and the corresponding interpretation
in terms of paths, ¢! consumes the function produced by f, that is, we obtain the
concatenated function ¢ o f1 as the typed functional label for the composite.

A Al A A
JANEEN RN EER S i gTofT

| G

It should be clear to the reader that a similar construction can be used to apply the
function f to some input.

Conclusion 6.15 The type transformation f — f1 gives access to functions which are
not physically present as a non-local unitary operation but which do allow manipulations
such as composition and application to an input.

There are of course other type transformations than f — f™ which at their turn admit
different kinds of manipulations.

iii. Types for non-local unitary actions. Above we used two variants of possible typings

for a non-local function with bipartite input and output. There are many other possible
typings which might be exposed in a different context e.g. third-order behavior.
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In Subsection 6.4 we showed for tetrapartite eP’s that there are five families of typings
which cannot be turned into each other by commutation of the base types H1, Ho, H3 and
Hs. In the case of a non-local function the situation is somewhat different. In particular
are not all base types equivalent since for the base types H; and #; it are their duals HJ
and ‘H5 which appear in the tensor product from which we derive all types by bracketing
and commutation. When we specify that f is a non-local unitary operation we have
Hy1 = Hsz and Hy = Hy. As an example, the possible types of the shape

({ 2 }){ 2 }({ 2 })

are (using the graphical notation introduced above)

0 P vy -
R S S R -
[ i i T } i 1] ) [
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A o -
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-
i

'
[

'
-

I |

up to permutation of H; and Hy. The circles on the arrow indicate anti-linearity, that
is, an arrow such as ¥ — which we failed to produce graphically.

7 General multipartite entanglement

In Section 6 we exposed the variety of emerging capabilities when passing from bipartite
to multipartite entanglement [Subsection 6.4] and corresponding typings [Subsections 6.5
and 6.6]. It opens a wide field of study involving typing and network transformation issues.
It also became clear how fast the complexity and sophistication of networks involving
multipartite eP’s grows. Therefore the study of multipartite entanglement requires the
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denotational tools and proof-theoretic methods of modern logic. This interdisciplinary
encounter will be initiated in this section. We also provide an indication of the proof of
the general theorem on compositionality for entanglement specification networks involving
multipartite entanglement. We conceive an elegant full proof and precise statement of
the theorem as a subject for further research. Such a statement requires sophisticated
denotational tools, and hence an entanglement of computational, logical and physical
notions. Many existing results from these fields will be very useful, but it remains a
matter to connect them up. This requires an encounter and endeavor towards mutual
understanding between the scientists of these communities.

7.1 Types and polarities

Due to Currying [Subsection 6.5] the types of all eP’s can be captured by the syntax
T:=H; | Th & T

involving only base types H; and (arbitrary) function types Ty & To.

Definition 7.1 By a subtype of a type T" we mean any intermediate type which occurs
during the formation of T according to the syntax defined above.

A type either refers either to the physical input or physical output of an eP, that is,
refers either to the positive or negative action of the eP [Definition 3.13]. Hence each eP
admits two distinct types.

Definition 7.2 By a typed eP we refer to a triple consisting of
e The eP itself;
e A choice of either the physical input or output;
e A type assigned to it.

By the ports of a typed eP we refer to all the carriers that pass through it, either at the
physical input or output depending on the chosen action.

When attributing a type to an eP we define its internal wiring, that is, we fix the
internal behavior of paths. This internal wiring defines at which ports paths are either
incoming or outgoing. More general, it defines for all subtypes whether the eP is either
consuming or producing [Subsection 6.4] with respect to that subtype, incoming and
outgoing paths being extremal cases of consuming and producing. This can easily be
seen when introducing polarities for subtypes. Whenever something is produced we will
attribute a “4”7-sign and when something is consumed we attribute a “—”-sign. For T
the type of an eP one easily verifies that these polarities obey the following rules.

e The type T itself gets a “+7;

o If Ty & T has a “+” then T gets a — and Th gets a “+”.
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o If T4 & T has a “—” then T gets a + and T5 gets a “—".

This leads us to the following pictures where for each pair of pictures the one on the left
shows the polarities and wiring if it appears on the left of 3 while the one on the right
shows the dual polarities and internal wiring if it appears on the right of 3.

P +

Y

HE .. e H (H1 % Ho) & ... e (H1  Ho)

Polarities also enable a rigorous definition of a virtual eP.

Definition 7.3 Given a typed eP a virtual eP (=:veP) is a non-exiting entity asso-
ciated to (i) a proper subtype of the type of that eP which (ii) carries a “4”-sign and
which (iii) has a size strictly larger than one.

As an example, the eP
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of type
(H1 % H2)  Hs) & (Ha B (Hs  He))

has three veP’s respectively being typed as
Hi S Ho Hs + Hg H4E}—>(H5Q—>H5).

7.2 The logic of interacting paths

The type which one has to assign to an eP is determined by the context e.g.

VS.

Hence we need to deduce the types to be attributed to an eP from the geometry of the
paths in a network. The syntax

T:=H; | Th + Ts
suffices to type eP’s. However,

e the bundle of all incoming and outgoing paths at the ports contained in the type
Ty for an eP of type 771 & 15, and,

e the same thing for an eP of type Tb & 17,

cannot both have the same type 77 since the internal wirings inside these eP’s at the
ports of type T} are dual to each other. In order to be able to distinguish between these
“dual” cases we have to extend our type system to

To=M; | Ty Ty | T".

We will attribute type
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T: to the incoming bundle of paths at the input of an eP of type T1 & T ;

TlL to the outgoing bundle of paths at the input of an eP of type T71 & Ts;

T,- to the incoming bundle of paths at the output of an eP of type T| & Ty ;

T5 to the outgoing bundle of paths at the output of an eP of type T7 & T5.

" ¥ Ty T v Ty

type outgoing = (type incomning)™: type incoming = (type outgoing)™*

Hence the logic is

For paths of size one these two dual perspectives of incoming and outgoing bundle are
superfluous since the path itself defines a unique direction and thus a preferred perspec-
tive. For bundles of paths of higher size this is not the case anymore since in general the
direction indicated by the input and the output of eP’s might be conflicting e.g.

(T1 S T2) % T3

Ty Ty |

T, & Ty

For convenience one could take the direction of the actual physical time as a reference
and then we assign for an eP of type T1 & T5

e T to the input bundle if the eP acts negative;

T2J- to the output bundle if the eP acts negative;

T to the input bundle if the eP acts positive ;

e T5 to the output bundle if the eP acts positive.

In a picture this yields
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Whenever for eP(1) of type 71 & T and eP(2) of type T> & T3 we state that

k3

type(outgoing bundle at (1)’s output) = type(incoming bundle at (2)’s input)
then we assure that we can effectively draw a bundle of paths between them such that

e The sizes and all polarities match, that is, a “+” at the source corresponds with a
“—" at the target (and vice versa) for all subbundles of any size;

e Information gets consumed by the subbundle’s source (=at the output of some
(v)eP) and information is produced at the subbundle’s target (=at the input of
some (v)eP)) and thus all subbundles are virtual carriers of information.

Tgl TT;

T % T3

This is a first (very simple) example of the following general idea:

“We can draw a bundle of paths which expresses the flow of information”

0

“The types of the bundles of paths match with those of the eP’s”.

If we want to push this a bit further it is useful to introduce alternative connectives [29]
THeTy:=Ti% Ty and Ty x Ty := (T1% Ty)*.
It easily follows that x and § are dual via De Morgan rules, that is,

(Ty 9 To)t =T x Tt and (Ty x To)t =T 9 Ty
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The resulting syntax
Tu=H; | Ty xTo | T 0T, | T+

is that of multiplicative linear logic [29]. If we apply it to eP’s then Curry-equivalence
[Subsection 6.5] of internal wirings becomes a consequence of associativity e.g.

Hi P (Ho & (Hs  Hy))  yields HE @ Hy © Hy 0 Hy
and thus allows permutation of H;, Ho and H3 while e.g.
(H1 % Ha) & H3) & Hyq  yields (('Hf‘ 0 Ha) X 'Hé‘) ©Hy .

We will now expose how these operations arise. Consider the picture

(Th » Th) ¢ T T3 & (T % Ty)

I
|
|

T+ pTZT

TILTL L TTz

T, & Ty Ty & Ty T, & Tj

(H1 S 7‘[2) % Hj Hs (7‘[1 S 7‘[2)
------ ] N

YA v A
Y A

— —
Hi & Ho Hy & Ha Ho & Hs

If for the ones on the left we make the types match the bundle at the input of the tripartite
eP should have type 177 % T5, that is, TIJ- % Ts. Hence

e Ti" 9T, expresses that two bundles of paths of respective types Tj- and T, are
functionally correlated due to the presence of some common eP to be encountered
when traveling backward along the bundles.
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TT% 0Ty

5 =
1]

In other words, The symbol § witnesses the presence of entanglement. Note that this case
does include disentanglement [Subsection 6.5] due to the possibility of having atomically
singular maps as labeling functions or as the composite of labeling functions. Dually

e T7 X T2J- expresses that two bundles of paths of respective types T and Tj‘ are
not functionally correlated so we will not encounter a common eP when traveling

backwards along the bundles.

Hence the symbol x witnesses true disentanglement, that is, it witnesses a proper pair of
paths. The distinction between £ and X allows us to encode how the paths in a bundle
relate to each other, if they either have been produced by common eP’s or not.

TTl x Ty

In which way does the distinction between x and % contribute to the shape of paths?
Consider the following situations of conflicting types with respect to the operations X
and & . We chose the typing relative to the closest eP.
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We conclude that matching types in the connectives x and % :
e Forces connectedness of the paths;
e Bans loops from the paths.

This satisfies our intention that paths should carry information from a source to a target.

Note that types for bundles of paths can be non-local both in space and time. That
is, two bundles of respective types TIJ- and T5 which are located in different regions of the
network but which are correlated due to a common ep when one travels backward along
these bundles should be conceived as having joint type Ti- ¢ Tb.
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E.g. if one wants to designs a network which has a function f : H; — H2 as output, that
is, a bundle of type Hi # H2, then it makes a lot of sense to locate this bundle as in the
following example.

This then allows to “physically” feed an input in the function f (= output of the network)
at the same time as one delivers the input to the network which produces the function.

7.3 The hypercompositionality lemma

Bipartite compositionality essentially relied on the compositionality lemma [Lemma 5.6].
Its use in the inductive argument which relied on the geometry of (bipartite) paths [Sub-
section 5.2] then resulted in Proposition 5.11 from which we derived case by case the
validity of compositionality for the different kinds of paths. The same methodology can
be used to generalize the bipartite compositionality theorems to the multipartite case.
We provide the analogue of Lemma 5.6 for multipartite entanglement.

Just as lemma [Lemma 5.6] exposes how two bipartite entangled states interact when
a bipartite eP acts on them, the lemma below expresses how many multipartite entangled
states interact when a multipartite eP acts on them. Consider a negatively acting typed
eP P;. For each port H; of Py there should be a positive eP P, which is the last eP
through which the 4’th carrier passed before passing through Py. We say that port #H; of

Py is in the scope of Py.
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(Th) -+ (Ta) -+~ (T3) -~ (Th)

(Ts) -+ -

Let T7, . .. ,Tli(i) be disjoint subtypes of ¢'’s type E(Tf, e ,Tli(i)) which all are in the scope
of Py and which form a complete set in the sense that they contain all ports H; of P
which are in the scope of Py. Let Pgi,..., Py be the positive eP’s which have ports that
are in the scope of Py. Then the type

Te(TL - Ty TE - Tify)

of f is made up of the subtypes T}, ... ,Tll(l); o TE ’Tllflc) and arrows (— ¢ —). Let

i . .
and (gA(a’lv-wa?(i)))A(ai,...,ai )

1 1 . .,k k
(fA(ala---aal(l):'":al7"'7al(k:)))A(a%,-..,all(l);...;alf,...,a 1(3)

;C(k:))

i.

. J .

{eqi toi of the tensor product @ T of the Hilbert spaces contained in 7. We assume the
J J

respectively be the typed matrices of f and g* where o is the index labeling a base

typed indices A(a’i, ... ,af(i)) to also include some other indices B; besides azi, . ,af(i).
The state produced by P is then of the shape

S ety oty o ® - B

i i 1)
al...al(i)Bi

) K ep; -

k3

Before this state reaches Py it will interact with other states due to the action of other
negative eP’s. By Lemma 6.11 we know that after this interaction the resulting state is
of the shape

i . . . - .
> g.A(all,...,a;(i))[Fi/Ai]q)FiDi €oi @ .- Begi B D,

ail ...a;(i)FiDi
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where A(ad, . .. ,ag(i))[Fi/Ai] denotes substitution of the indices A; C B’ (hence they are
distinct from of, . .. ,af(i)) by T';. Set

::ea}®...®eall(l)®...®€alf®...®€ k

€ 1 1 k k .
al...al(l)...al...al(k) al(k)

Lemma 7.4 (Hypercompositionality) The result of the action of Py on

1 k P
e c € €
Z gA(a%,...,all(l))[Fl/Al] gA(a’f,...,af(k))[Fk/Ak] 1. D a%...all(l)...a’f...af(k()g D
all...a;(i)
I1..TD

contains

1 k
Z gA(ﬂll,...,,Bll(l))[Fl/Al] .. .gA(ﬁlf’m,ﬂlk(k))[pk/Ak]f_A(g%,___,gll(l);m;ﬁllc,___”gllc(k))@'Fl...FkD -ep
/811;;/6;(1)

/8{677ﬂlk(k)
[1..TD
as a factor with respect to the tensor product.
Proof. The result straightforwardly follows from Lemma 6.11. O

Note that this lemma embodies the abstraction of the explicit calculation which we did
for the tripartite example in Subsection 6.4.

7.4 The grand theorem

Above we provided the generic ingredients for a theorem on compositionality for general
entanglement specification networks involving

e arbitrary multipartite eP’s, and,
e both local and non-local unitary actions.

Formulation of the theorem itself requires some decennia of research in logical syntax, a
development which (unfortunately) has happened very much independently of that of the
development of tools considered as “relevant” by the majority of the physics community.
We state the theorem we have in mind as a conjecture since we will not provide a proof
nor an exact statement. We postpone an elaborated presentation to future (co)writings.

By a typed output of a network we mean a bundle of paths of any size which ends
without “globally” entering an eP. The wiring at a typed output of a network is negative
in terms of polarities but this in general does involve real physical eP’s e.g.

- - P kg -
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We moreover allow outputs to be non-local both in space and time. By a typed input of
a network we mean a bundle of paths of any size which starts in a projector typed in the
same syntax as the eP’s. The wiring at an input is of course positive e.g.

l ¥ A Y ¥ A A Y A

—m [ =E [ e

but we do also allow inputs to point downward e.g.

=8 [ gl

T

A Y A A Y ¥ A
analogous to output only paths where we effectively specified ¢ by a projector. Inputs
can be conceived as being local in space and time since they constitute a single projector.

«

Definition 7.5 A semimultilinear function is a function
foTimx ..o x T — Tovt
which is either linear or anti-linear in its arguments.

Conjecture 7.6 (Compositionality for arbitrary networks) Given is a network which
contains multipartite eP’s and both local and non-local unitary operators. Assume that
we can define:

1. Types for all eP’s;
2. A subset of these eP’s of respective types Tf", . ,T,i" which we conceive as inputs;
3. A subset of these eP’s which we conceive as output to which we attribute type T ;
4. A complete family of paths for these eP’s;

Assume further that the following conditions are satisfied:
o Types match for all bundles of paths and all eP’s;

e The paths contained in the output which are of a negative signature point upward
and end later (in physical time) than all other eP’s in the network.

Then the state at this output is not entangled to other carriers and can be expressed as
the result of applying a semimultilinear function

foTimx ... x T Tout

to the input values. The multilinear function is obtained via sequential reading of paths
from the inputs to the outputs in such a way that the action of a eP/veP consists of
producing an output by applying its typed labeling function to its input.
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7.5 Entanglement measures from information flow capabilities

This paper provides an answer to the following question.
Question 7.7 What is the main capability of entanglement?

Our (somewhat controversial) answer to this question is
“It enables information flow between the subsystems.”

It is then obvious to measure entanglement in terms of its information flow capabili-
ties. This principle goes both for bipartite and multipartite entanglement. In particular,
whenever a preorder on bipartite entanglement is assumed, e.g. majorozation [48, 51],
we can lift this preorder to one for multipartite entanglement exactly in the same way as
we were able to reduce the information flow capabilities for multipartite entanglement to
those of bipartite entanglement. Indeed, whenever a context is specified the information
flow capabilities are given by a function of type 17 & T5 to which the given preorder
applies via the natural isomorphism

(®n)+ (@) ~ (@71) (@)

Definition 7.8 A (multipartite) entangled state ¥ € @, H; is above another entangled
state & € @, H; (hence of the same size as V) iff in every context the information flow
capabilities of the eP Py are above the information flow capabilities of the eP Pg.

The reader might want to verify that this definition provides a clear qualitative distinction
between the tripartite GHZ-state [34] and the W-state [25] in terms of their respective
information flow capabilities.

The idea of relating measures (of content) to (pre-/partial) orders has been intensively
studied in [47]. An operational view for producing orders similar to the above one has
been proposed by K. Martin and the author for the case of ordering mixed quantum
states in terms of their (static) informative capabilities [19].

We postpone a detailed study of these matters to future (co)writings.

8 Significance for computing and physics

We conclude this paper by pointing at the significance of our results.

8.1 Practical use

We exposed the logic of entanglement. Indeed, logic stands for a way to reason about
something, and this paper provides a way to reason about entanglement. That this is a
good way of reasoning about entanglement is affirmed by the fact that it allowed us to
reproduce many existing protocols in a trivial manner [Subsection 2.3, 3.3 and 6.2] and
that it moreover allowed us to produce some useful new ones [Subsection 3.4 and 6.3]. In
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particular does this logic of entanglement provide a handle to truly tackle applications
involving multipartite entanglement [Subsection 6.4, 6.5, 6.6 and 7.5].

More precisely, our logic of entanglement allows a classical functional interpretation
for networks containing measurements and unitary transformations on quantum systems
[Sections 3 and 7]. By this we mean that we can “read” the action of such a network on
an input in terms of an (acausal) traveling token which carries the information around
the network along paths and is acted on by function boxes. Obviously this strongly
simplifies methods of network and protocol design. The crucial step is the passage to
unitary transformations and projectors on one-dimensional subspaces as the primitive
ingredients of quantum theory — a measurement M should then be conceived as the
observer getting informed about which projector P; in the spectral decomposition

)

actually “took place” [Subsection 2.1].

Conjecture 7.6, the most general result in this paper, has the following shape:
“If a network satisfies bla then we can do bla.”

In practice the application of the theorem would be the converse of this, namely, given a
hypercompositional expression how can we physically realize it using entanglement, pos-
sibly with some other constraints attached to it related to efficiency, fault-tolerance etc.
We indeed conceive fault-tolerance [55, 58] as an important application of the results of
this paper. The passage from unitary actions to entanglement specification allows a com-
pilation from sequential to parallel composition [Subsections 3.4, 6.3 and 6.6], preventing
accumulation of inaccuracies in long computations. We stress that in the quantum com-
puting literature there has been a growing interest in models of computation which rather
rely on measurements than on unitary actions e.g. [16, 56, 33, 50], the motivation for these
exactly being fault-tolerance.

Calculating with functions of non-trivial higher order types requires denotational tools
such as the A-calculus [7]. On the other hand, it should be clear that our network enables
effective interpretation of arbitrary typed (linear) A-terms. Hence a profound argument
for an interdisciplinary encounter of computing and physics has been made.

The ultimate output of this paper is the initiation of a two-way compilation scheme
which turns a setting of unitary transformations, measurements and classical communi-
cation in a family of entanglement specification networks. We illustrated how this tool
works for some examples [Subsections 2.3, 3.3, 3.4, 6.2 and 6.3]. The main ingredients
were Corollary 3.11 and Corollary 3.12. This job is however not completely finished
yet. The correction of “unwanted measurement outcomes” is itself a subject that should
be further developed and which might strongly benefit from existing theories such as
quantum error correction e.g. [32].
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8.2

Paper or proposal?

Much of this paper is only an introduction, or, an invitation, to a certain line of research.
Some of this research is currently ongoing — involving several researchers including my-
self. The following topics are of major interest to us.

Analyzing other existing protocols using the results of this paper.
The design of new protocols using the results of this paper.

A rigorous mathematical account on the interplay between physical time, progress-
ing paths, complex conjugation and types of paths. A syntax which captures this
interplay would be very desirable.

The study of the connection between our paths and other existing geometric systems
for reasoning such as proof-nets e.g. [29, 31, 43]. Some attempts in that direction
have already been initiated [24, 38].

The study of entanglement specification network rewriting in analogy the the term-
rewriting in A-calculus [7] — as hinted at at the end of the “disentanglement”
paragraph in Subsection 6.5.

An axiomatic understanding on the flow of information through entanglement. This
includes a characterization of other mathematical categories besides Hilbert spaces
and linear maps which allow the same constructions as the ones of this paper. Also
here some attempts have been initiated [4].

A concise formal presentation of the information flow through multipartite entan-
glement including a simple elegant proof of “Theorem” 7.6. This should lead to a
syntax which automates reasoning about multipartite entanglement.

A quantitative account on information flow through entanglement and the connec-
tion between this and measures of entanglement. This can be pushed towards a
qualitative study of entanglement itself — this includes an elaboration on the ideas
of Subsection 6.5 on qualitative disentanglement and of Subsection 7.5 on measures
of entanglement.

And last, but not least.

An elaborated study of compilation protocols which translate families of entan-
glement specification networks into unitary transformations, measurements and
classical communication. An account on complexity issues concerning would be
desirable. Balancing probabilistic protocols and deterministic ones and the study
of the computational merit of our approach would also be desirable.
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8.3 On mathematics and physics

We now turn our attention again to the isomorphism
Hi — Hoy ~ HT Q Ho

between linear maps and the tensor product of finite-dimensional vector spaces — which
constitutes the core of this paper. When we say that this is an isomorphism we mean
that both are vector spaces and it is with respect to the vector space structure that they
are isomorphic. But there is more to H; — #Hs than merely being a Hilbert/vector space.
It is a morphism set in the category ¢ of finite dimensional complex vector spaces with
linear functions as morphisms. This means that elements of Hq — Ho and Ho — Hg admit
a composition

—o—:(H1—>H2)X(H2—>H3)—>(H1—>H3).

The Hilbert space structure of H; — #Hsy is to be conceived as an enrichment [14] of
the categorical structure. Hence one can ask whether there exists a counterpart for
H; ® Ha to this compositional property of H; — H2. The answer is provided in this
paper. There is a counterpart to composition of functions in terms of entanglement
specification. Indeed, our notion of path for entanglement specification networks realizes
a compositional action of the labeling functions on inputs of the path. Hence the answer
provided by entanglement specification admits a truly physical implementation. However,
mathematically this answer is highly non-trivial since it involves the notions of projection,
of before and after (in time), of positive and negative eP’s etc. It would be useful to
have a better understanding of what is really going on here (mathematically!). This
observation adds one more topic to the proposed topics for further research.

Let us also recall that the structural features of quantum theory don’t involve prob-
ability as an a priori. This was well-known to many authors e.g. [21, 39, 54, 59]. In the
light of this we point to the fact that the results of this paper didn’t involve probability.
In particular did we make no mention of mized states and mized measurements. Those
would only have blurred our developments.

Conclusion 8.1 Generality doesn’t always serve the essential.

The primal ingredients in this paper are unitary transformations and projectors, that is,
respectively isomorphisms and (closed) subspaces of a Hilbert space. This paper shows
that such a “restrictive” view can be very beneficial to produce an accurate understanding
of the behavior of quantum systems.

Finally, let us stress that the results in this paper, which were initiated in [3], continue
to confirm those of [17, 18, 20] in the sense that an understanding of compoundness for
quantum systems is not necessarily a matter of so-called subsystem recognition but rather
one of producing models of interaction.

8.4 ... and on Hollywood

We can now apply the Hollywood transformation:
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as if — 1is.

Note that the Hollywood transformation consists of “discarding information”, namely
{a,f}, and swapping things, namely s<»i. The Hollywood version of the above then
would sound like:

“Time goes backward at the other side of the bridge”.

Indeed, using the metaphor of the Einstein-Podolski-Rosen bridge for the fact that en-
tanglement allows instantaneous communication over a large distance, the above teaches
us that each passage of a bridge goes with time reversal! Fortunately, the restrictions of
the functionality theorem teach us that when going back in time “whatever the future
was” doesn’t exist anymore since the existence of the plot requires it being completely
effectuated. Bye bye Hollywood.

A Hilbert spaces and projectors

Definition A.1 A finite-dimensional Hilbert space is a complex vector space (H, U, -, 4, C)
equipped with an inner product (—|—) : H x H — C that satisfies

(] cr-91+ea-92) =ci(p| 1) +cald | h2)

(cr-d1+ea-go| ) =Cildr | ) + (2| ¢)
(@)= (| d) (¢p1¢)=0= ¢=0 (¢l #) >0

The latter allows us to define a norm on H as | — | := /(— | —). We introduce an
orthogonality relation L C H x H such that ¢ L ¢ < (¢ | ¢) = 0 and given a subspace
A of H its orthocomplement is

At ={peV|VWeAd:yp L.

Every finite-dimensional complex vector space extends to a Hilbert space via choice of
an inner product. An orthonormal base is a set of vectors {e;}; such that (e; | e;) = d;;
where 0;; is the Kronecker delta function, that is,

0;j =1 when ¢=35 and 6;; =0 when 7 # j.
In much of the study of Hilbert spaces the canonical morphisms are still linear maps
fler -1 +ea-the) =i f(4h1) +co- f4h2)

ignoring the in-product part of the Hilbert space structure. For a linear map f : H; — Hao
and orthonormal bases {e,}o and {eg}g respectively of 7, and Hs we have

f= Zfaﬁ(ea | —)-eg given that f(eq) = fap - €s-
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We then have for ¢ =, ¢, - €4 that
F(X¥aca) = 3 ta- flea)
= > Pafap-es

resulting in

(f(d)))ﬂ = Zd)afaﬁ

and also

(9o fap = faibis-

)

Definition A.2 A linear map f1: Hy — H; is adjoint to a linear map f : Hy — Ho iff

(W] F() = (1) | ¢)
for all ¢ € H; and all ¥ € Ha.

These adjoints relate to usual Galois adjoints in the following way. If one considers
the pointwise extension of a linear function to the orthocomplemented lattice of closed
subspaces I(#) of a Hilbert space H then each linear map f induces a map f on these
lattices. These induced maps preserve arbitrary joins. One verifies that the extension of
f1 to these lattices is given by (=)' o f* o (=)’ where (=)' stands for orthocomplementing
and f* is the right Galois adjoint of f — which preserves arbitrary meets. For details
see for example [28]. Adjoints make the category of finite-dimensional Hilbert spaces and
linear maps self-dual.

Proposition A.3 For a linear function [ : Hi — Ha we have:

1. Adjoints always exist and are unique.

2. Adjunction is involutive.

3. The matriz of f1 is the complex conjugated transposed matriz of that of f.
4. f is surjective iff f1 is injective and vice versa.
5

. If g: Ho — Hs is also linear then (go )T = flogf.

Proof. Setting

¢:Z¢]e§1)EH1 a,nd 17[):21/)7,652)67-[2
J 7
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it follows that
F8) = difin-e? € Hy
jk
and thus we have
W1 F@) = S didifmlel” | )
ijk
= > i fiklin
ijk

= Zd_)ifjiﬁbj
ij

= (Z Yifji | B)

= (fT(y) | 9} .

so we have ( fT)ij = fji. Moreover, the above equations uniquely define the mutual
adjoints when taking as 1 each of the base vectors {652) }i and as ¢ each of the base

vectors {egl)}j. Further we have that f is surjective

Range(f) = Ho

(Range(f))" =0

Vip € Ho \ {U},3p € Hy: (9 | f(¢)) #0
Vip € Ha \ {0}, 3¢ € Hy = (F1(y) | ¢) #0
Vip € Ha \ {U}: fI() #0

O R

that is if fT is injective. The shape that the adjoint of composed functions takes follows
by the matrix representation. O

Definition A.4 A linear map U : H; — Ho is a unitary operator if it preserves the
inner product, that is

(UMW) 1U() = | ¢)
for all ¢, € H;.

Proposition A.5 FEvery unitary operator has the following properties:
1. U preserves orthogonality.
2. U has an inverse U 1.

3. ut=vu-1.
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Proof. The first two statements are obvious so we only prove the third one. We have

W1 U(¢) = (UoU (%) | Ug)
= (U0 (v)) | U#))
= (U~ (¥) | 4)

What completes the proof. O

Definition A.6 A projector is an idempotent self-adjoint linear endomap P : H — H
on a Hilbert space H, that is respectively, for ¢, ¢ € H,

P(P()) =P() and (P(4) | $) = (4| P(¢)).

As an example, given a unit vector ¢» € H, that is [1)| = 1, the map
Py:H=>Hudp—=(p|d)-¢

defines a projector. The fixed points of P, are the vectors in the one-dimensional sub-
space spanned by ¢ . More general, for a finite-dimensional Hilbert space, the set of all
projectors P(H) of a Hilbert space H is in bijective correspondence with the set of all
subspaces L(H) of that Hilbert space, the corresponding subspace then being the pro-
jector’s set of fixed points. When ordering these subspaces by inclusion, this bijective
correspondence

L(H) ~P(H)
lifts to one between complete lattices when ordering the projectors according to
P<L<Q < QoP=P.
Definition A.7 Two projectors P and Q are (mutually) orthogonal iff, equivalently,
e PoQ is the identical map with range U;
e The respective sets Ap and Aq of fixed points of P and Q are orthogonal.

In that case we write P L Q. We denote by P+ the (unique) orthocomplement in P(#)
to P, that is, the projector of which the subspace of fixed points is the orthocomplement
in IL(H) to the subspace of fixed points of P.

Theorem A.8 (Finitary spectral decomposition) Every self-adjoint operator M :
H — H decomposes as a linear combination of projectors:

M= Y =z-P,

zE€o (M)

where o(M) is the spectrum of M, that is, the set of its eigenvalues and where that set
{Py |z € 0(M)} satisfies
r#y=P, LP,.
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As usual in linear algebra, given a self-adjoint operator, via diagonalization one obtains
the eigenvalues, that is the spectrum o (M), and the corresponding eigenspaces

AM) == {A, | 2 € o(M)}.

The projector P, for x € o(M) in the spectral decomposition theorem is then the one
which has as fixed points A, € A(M).

Definition A.9 A map f between Hilbert spaces H1 and Hs is anti-linear iff

fler-1r +ez-ah) =1~ f(ih1) +ca- f(3h2).

We specify that a map is anti-linear by denoting its type by f : Hi1 & Ho.

The linear maps f : H — C, that is, the linear functionals H* associated to H, constitute
a vector space isomorphic to H. However, there is in general no canonical isomorphism
that connects them. Indeed, since we have (c-1 | —) = ¢(¢ | —) the canonical corre-
spondence is anti-linear instead of linear. Thus, given a base {e;}; of H , specification of
an isomorphism as

h:H% H e — (ej]—)
depends on the choice of the base. A functional (3 | —) : H — C defines a projector

Po: (=) g

via composition with the injection

by : C—H c»—>—d).

|97

Any pair of complex vector spaces H; and Ho admits a tensor product, that is, a pair
consisting of a vector space Hi ® Hz and a bilinear map h : Hi X Ho — H1 ® Ho such that
for any other bilinear map f : Hi X Ho — Hjg there exists a unique g : H1 ® Ha — Hs
with f = g o h. This tensor product equips the category of finite-dimensional complex
vector spaces and linear maps with a monoidal structure with C as unit, since given

h:Hi xHo — H1 @ Hy and h’:HgXH4—>H3®H4,
and two linear maps f : H; — Hs and g : Hy — H4, their tensor product
fRg:HI1QHs = Hz @ Hy

is uniquely defined due to universality of A with respect to h'o (f x g). We can construct
a tensor product for vector spaces Hi and Ho as

h:Hi X Ho— H1QHo :: (ea,eg)»—>ea®eg
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with 71 ® Ha being the vector space spanned by {e, ® es}qs. Identifying

(Z (I ea) 029 (Z ¢ﬂ : 6,3) and Z¢a¢ﬂ : (ea X e,@) )
a B ap

this construction does not depend on the choice of orthonormal base, in particular, for
arbitrary ¢ € H; and ¢ € Ho we have that

h(,¢) = © .

Proposition A.10 The above construction of a vector space tensor product induces a
bijective correspondence between bilinear maps and linear maps that is

(Hl XHz) —Hs ~ Hi1@Ho— Hs.
Proof. Each linear map f : H; ® Ho — H3 induces a bilinear map

g=foh:(HixHa) = Hs: (d9) = flp®1h)

since h is bilinear and f is linear. Conversely, each bilinear map g : (H1 x Ha) — H3
induces a linear map f : (H; ® Ha) — Hs by the universal property in the definition of
the vector space tensor product. O

We can define an inner product on H; ® Hs via

o' |oad) =@ |¢)),

hence

(Yo fap (a®es) | X g (er®e)) = D Jasgnlea | ex)les | ea)
af YA

afyA
= Z faﬁgaﬂ .
ap
The following is obvious.
Proposition A.11 U, Uy | &1 Q@ Py < Wy L &1 or Uy | Py,

It then also follows that when both {e, }o and {eg} s are orthonormal bases then {e, ® es}a 3
is again orthonormal with respect to this inner product.

The general form of elements of H} ® H2 and Hom(# 1, H2) respectively is
Y fap-(leal =) ®eg) and Y fapleal—)-es
af apf

and thus we obtain an isomorphism of vector spaces when providing the set Hom(H 1, Hs)
with its canonical vector space structure. Note also that we have

HI@H; ~ (H1® Ha)*
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via identification of £, ® e5, with {e4 : H1 = C}, and {eg : H1 — C}3 respective bases
for ‘H7 and H5, and the unique functional

Ea*é‘g:?‘[l@?{z—)@

that arises due to universality of h within

Ea * €3
Hi® Ho C
h
€a " Ep
H1XH2

where

Ea € Hi X Ho— C: (77[)7¢) — Ea(l/))E/g(qﬁ) .

The definition for an inner product on H; ® Hs then embodies this fact as

Yedl-0-)=(|-)o|-)

when expressing functionals in terms of the inner product.

B Quantum theory

We restrict our discussion to elementary (superselection free) finite-dimensional quantum
theory. As a general reference we propose [49, 37]. As more structurally focused references
we recommend [39, 54, 59]. For an overview of some current abstract perspectives we
refer to [21]. For an overview on quantum information processing we refer to [15]. Let
H be a finite-dimensional (complex) Hilbert space. The description of a quantum system
constitutes:

1. Description of the states of the system = kinematics.
2. The description of evolution = reversible dynamics.
3. The description of measurements = the “new” irreversible observational feature.

The states of a quantum system which is not in the presence of any other quantum
system has the set X(H) of one-dimensional subspaces of a Hilbert space H as formal
counterpart. In other words, a state of a quantum system is represented by a vector
1 € H up to normalization and phase factor. So 1,¢ € H represent the same state
whenever

Yv=c-¢ with ceCy.

For calculations it is obviously easier to represent states as vectors while structural con-
siderations benefit from the subspace perspective.
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Measurements are represented by self-adjoint operators M : H — H. When perform-
ing a measurement on the system in state ¢ (a notational abuse that we from now on
will use freely) where the corresponding self-adjoint operator has o(M) as its spectrum
of eigenvalues then we obtain as outcome of the measurement a value x € o(M) with
corresponding probability

Prob? (1) = (1 | Py (4h)) = [Pu(4)]?,

where 1 is assumed to be normalized and P, is the projector on the subspace A, of
eigenvectors with eigenvalue x, that is, the projector which exactly has A, as fixed points.
Note that

. Pu()=v so Y Prob(y) =1

z€o(H) z€o(H)

since all eigenspaces
Ar = {p € H|Pa(h) = ¢}

are mutually orthogonal and span H.

Definition B.1 We call a quantum measurement finitary if its spectrum is finite. We
call a quantum measurement non-degenerated if the size of its spectrum is equal to the
dimension of the Hilbert space.

Sequential measurements obey von Neumann’s projection postulate [49].

Postulate B.2 If a measurement yields © € o(H) as outcome then the state of the
system changes from its initial state 1 to Py(1) ; thus an immediate next measurement
gives again x as outcome — since P, (1) is itself an eigenvector with eigenvalue x.

It follows projectors encode true state transitions, explicitly

ot B(H)\ K = X(H) ::ray(y) — ray(P,(v))

where

K = {ray(y) € B(H) | Prob (y) = 0}.

So far we conceived projectors either as components of measurements or as representative
for subspaces. However, any projector, being self-adjoint, encodes itself a measurement
with spectrum o(P) = {0, 1} and eigenspaces Ay L A; and probabilities

Probj () = [P(4)? and  Probj(y) =1~ [P(4)[.

In view of the spectral decomposition theorem (Theorem A.8 in Appendix A) they can
actually be seen as primitive since all other measurements encode as linear combinations
of them. In observational terms they correspond to yes/no-questions about the system.
As an example consider polarization of photons. Let Z be the axis of propagation.
Consider as projector a light analyzer that allows only vertically polarized light to pass,
say polarized along the X-axis. If the in-coming light is polarized along the X-axis it
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passes (outcome 1). If the in-coming light is polarized along the Y-axis nothing passes
(outcome 0). If it is polarized along an axis that makes an angle 6 with the X-axis
then some light will pass, with relative amplitude cos? and the light that passed will be
vertically polarized. The amplitude reflects the quantum probability to pass that is to
obtain an outcome 1 of the projector. The change of polarization angle from 8 to 0 is
then the transition according to the projection postulate.

But there is however more to this. The primitive propositions for a classical system
are the subsets of the state space Y. Indeed, for each observable f : ¥ — R of a classical
system (e.g. energy, position, momentum) the property

fUYE)C® for E Co(f):= Range(f)
expresses for a state that:
“The value of observable f is contained in E C o(f)”.

It follows that all subsets of ¥ potentially encode a property of that classical system. In
the quantum theory we have that all statements of the kind become:

“The value of observable M is contained in E C o(H)”

and can be represented by

the projector Pg = ZPf with @Am as fixpoints.
el el

Therefore, it follows that the subspaces I.(H) encode the physical properties attributable
to a quantum system. The projectors P(#) can then be conceived as the observational
verifications of properties. It can then be argued that the state space of a quantum
structure goes naturally equipped with the structure (), that is, the complete lattice
of all the properties the system can posses and which has the system’s states as its
atoms. Also the orthogonality relation on H which pointwisely extends to L(?) has
an observational counterpart. Two subspaces B,C C ‘H are orthogonal if there exists
a projector P such that in case of verification we obtain a positive answer whenever
the system possesses property B and a negative answer whenever the system possesses
property C. Formally this means B C A; and C' C A;. Thus orthogonality encodes a
notion of distinguishability. From the above it follows that the reversible dynamics of a
quantum systems is structure preserving. It preserves both I(#H) and the orthogonality
relation. For details on unitary dynamics we refer to the relevant literature. We choose
to keep this paper focussed on structural non-numerical issues.

A bipartite compound quantum system is described in the tensor product Hi ® Ho
where H; and Hs are the Hilbert spaces in which we describe the respective subsystems.
Whereas in classical physics two systems are described by pairing states — the cartesian
product — in quantum theory we also have to consider superpositions of such pairs.
Examples of projectors on Hi ® Ho are those of the form Py ® Py, explicitly definable as

(P1®@P2) (¥ ® ¢) = P1(¢)) ® Pa(e) .
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Even though the values for general self-adjoint operators of this form should be conceived
as pairs
((II1,(II2) € U(Ml) X U(MQ)

with corresponding probabilities
ProbM 122 (4) = (¥ | (P, ® P,,) (1)),

projectors compose conjunctively under ® that is

(0,1) ~ (0,0) ~ (1,0) ~0 and (1,1) ~1.
Other examples of projectors on Hi ® Hs are those of the shape

Py =(T|-) ¥
where ¥ cannot be written as a pure tensor.
Definition B.3 A(n) (anti-)linear [Definition A.9] operator
fiHI®@Hs = Hi ®@Ho

is called non-local if there exist no (anti-)linear operators

fi:H1—Hy and fo:Ho — Ho

such that
fEf1®f23H1®H2—>H1®H2.

For the particular case of projectors we have that if ¥ = U; ® Wy then

Py = (11 @Uy | —) -0 ® Wy

(Ty [ =) (T2 | =) T2 ® Uy
(T [ =) Ty ®@ (V| —) - Uy
Py, ® Py, .

Hence we have the following.
Proposition B.4 Py, sy, = Py, ® Py, .

One verifies that if ¥ is not a pure tensor it cannot be written as a tensor of projectors. It
then follows most projectors in this paper are of this so-called non-local kind. The term
non-local should in this context not necessarily be conceived in space-like terms. Non-
local unitary operations are considered in quantum control theory, quantum computation
and quantum information [10] when the system evolves according to a so-called non-local
Hamiltonian i.e. . 4 4

U(t) = et £ U (1) @ Up(t) = et @ en 2t
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They allow to obtain non-local projectors as
Uo(P,®Py)oU ' when U#U,®U,.

Any projector P which projects on a one-dimensional subspace of H1 @ Ho can be obtained
in that way as
UoPy gy, 0 U

taking U such that U~ (¢); ® 1)2) is a fixed point of P since

P1/11®1/12 = P1/11 ® P1/11 .

Note that one cannot obtain arbitrary projectors in this way due to the simple fact that
the dimension of the projector on the global space should factor in a product of the
dimensions of the underlying ones, e.g a projector on a 5-dimensional subspace (with
7-dimensional orthocomplement) in case of dim(H1) = 3 and dim(Hs) = 4.

C Linear logic and its categorical semantics

As compared to the previous two appendices this one is not crucial for understanding
this paper. It however provides a perspective which places the results of this paper in a
very different light and might be useful for further elaborations.

One could wonder why linear logic was discovered in a categorical logic and a proof
theory context and not in physics, the machinery of quantum mechanics being much
older than either category theory or the tools of modern proof theory — the categorical
semantics of linear logic was discovered in 1968 by Lambek [44] and its full-blown syntax
was introduced by Girard in 1987 [29]. The main idea behind linear logic is that the
structural rules of weakening and contraction seize to hold and the motivation for doing
so is to achieve an accountancy of the available resources. An example in physics of
such a resource sensitive behavior is captured by the no-cloning and the no-deleting
principles with respect to tensored states [42, 52, 60]. These two principles do not require
any sophisticated mathematics in their derivations, they only use some very basic linear
algebra. However, the logical content of these principles seems not to have been fully
exposed nor does this logical content seem to have caused a lot of interest so far.

In terms of Gentzen’s sequence calculus the structural rules of contraction and weak-
ening respectively stand for

I A Al B T+ B
T,AF B T,AF B’

Respectively setting I' := ) and I := A we obtain

AAF B AFB
A B AAFB’

These rules should be read as follows:
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e If we can derive B from a pair of A’s then we can also derive B from a single A.
e If we can derive B from a single A then we can also derive B from a pair of A’s.

Hence they respectively express the ability to delete and copy propositions in the as-
sumptions of a derivation. If they seize to hold it means that the number of occurrences
of a proposition becomes essential for the ability to perform a derivation. Girard’s jus-
tification for this is that a certain derivation might consume its assumptions while it
produces its results. The general full blown version of linear logic however admits a full
and faithful embedding of classical non-linear logic by introducing a new operation !(—).
For a proposition A the expression !A relieves A from its linear constraints, that is, we
are free to either use A any number of times or not to use it at all. Hence linear logic
should not be seen as a modification of classical logic but as a refinement of it.

The reasoning below is much influenced by [2]. We conceive linear logic in terms
of the categorical semantics of its multiplicative fragment which preceded its full-blown
syntactic version by two decades [44].

Recall that a categorical product —Xx— captures the notion of pairing and de-pairing
which is typical for the Cartesian product — x —.

A: X c:U
=, f -,
~ AB): X xXY C,D):UxV
(AB):XxV| o (GD):UxY,
B:Y D:V
—_— g —

It does this by only referring to morphisms. Indeed, —Xx— goes equipped with two de-
pairing projections

p’:’B :AXB — A and pg’B :AxB — B
which in the symmetric case both yield
pA = pg’A tAXA — A
and a pairing bracket
[——]: (C—A)x(C—-B) — C— AxB

which for
idg:A— A

provides a diagonal
AA = [idA,idA] A — AiA

When conceiving morphisms f : A — B as derivations (=proofs) of B from A then p4
and A4 respectively enable contraction and weakening. In order to obtain a category
which makes sense as a semantics for logical derivations/proofs we assume some additional
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rules for the conjunction —x— and the implication — — — and it is well-known that this
results in Lawvere’s Cartesian closed categories [46].

There exists a generalization of these Cartesian closed categories, namely symmetric
monoidal closed categories, which (roughly stated) are Cartesian closed categories “with-
out pairing and de-pairing morphisms”. They still have a tensor —® — and an implication
— —o — which behave as in ordinary (intuitionistic) logic except for the inability to copy
and delete propositions with respect to these generalized connectives. The absence of
copying and deleting implies that in general — ® — is not the categorical product (if
there is any). Hence these symmetric monoidal closed categories provide an appropriate
categorical semantics for linear logic.

Of course these symmetric monoidal closed categories include Cartesian closed cat-
egories as a special case, namely those for which the tensor — ® — coincides with the
categorical product. That is, for a Cartesian closed category we have

—®— = —x —.

There is however another kind of special symmetric monoidal closed categories, namely
compact closed categories, that is, those for which we have

—® = = (_)*_o_

where * turns the symmetric monoidal closed category into a x-autonomous one [8]. In
this case the tensor represents functions. Note that this is exactly what we have for ¢,
the category of finite dimensional Hilbert spaces and linear maps. More importantly this
property is what allowed us to produce all the results of this paper.

The bottom line is then that in the universe of symmetric monoidal closed categories it

seems that the classically behaving ones are the Cartesian closed ones while the quantum-
like behaving ones are the compact closed ones. To put this boldly,

o “Classical logic” stands for the tensor encoding “pairing”.
e “Quantum logic” stands for the tensor encoding “functionality”.

In this view classical logic is not a limit of quantum logic but these two both are extreme
cases of a more general kind of logic. This view is radically different from the usual view on
quantum logic in which classical logic encodes as the Boolean limit of the non-distributive
lattices which encode quantum-like logic e.g. [21].

References

[1] S. Abramsky. Retracing some paths in process algebra. Proceedings of the Seventh In-
ternational Conference on Concurrency Theory. Lecture Notes in Computer Science
1119, 1-17 (1996).

[2] S. Abramsky. Categories, Proofs and Games. Course at Oxford University
Computing Laboratory (2002). Slides and related material is available at
web.comlab.ox.ac.uk/oucl/work/samson.abramsky/

156



3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

S. Abramsky and B. Coecke. Physical traces: classical vs. quantum information
processing. Electronic notes on Theoretical Computer Science 69 (2003) — CTCS’02
issue. arXiv:cs.CG/0207057

S. Abramsky and B. Coecke. EPR-categories. Draft (2003).
A. Asperti and G. Longo. Categories, Types, and Structures. The MIT Press (1991).

E. S. Bainbridge. Feedback and generalized logic. Information and Control 31,
75-96 (1976).

H. P. Barendrecht. The Lambda Calculus — Its Syntax and Semantics. North-
Holland (1994).

M. Barr. x-Autonomous Categories. Lecture Notes in Mathematics 752. Springer-
Verlag (1979).

C. H. Bennett, C. Brassard, C. Crépeau, R. Jozsa, A. Peres and W. K. Wooters.
Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-
Rosen channels. Physical Review Letters 70, 1895-1899 (1993).

C. H. Bennett, J. I. Cirac, D. Leifer, D. W. Leung, N. Linden, S. Poperscu and G. Vi-
dal. Optimal simulation of two-qubit Hamiltoneans using general local operations.
arXiv:quant-ph/0107035

C. H. Bennett and S. J. Wiesner. Communication via one- and two- particle operators
on Einstein-Podolsky-Rosen states. Physical Review Letters 70, 2881-2884 (1992).

R. Bird and P. Wadler. Introduction to Functional Programming. Prentice Hall In-
ternational Series in Computer Science (1988).

G. Birkhoff and J. von Neumann. The logic of quantum mechanics. Annals of Math-
ematics 37, 823-843 (1936).

F. Borceux and I. Stubbe. Short introduction to enriched categories. In [21] pp.
167-194 (2000). www.math.ucl.ac.be/~stubbe/PDF/EnrichedCatsKLUWER.pdf

D. Bouwmeester, A. Ekert and A. Zeilinger. Eds. The Physics of Quantum Infor-
mation; Quantum Cryptography, Quantum Teleportation, Quantum Computation.
Springer-Verlag (2001).

G. Brassard. Teleportation as a quantum computation. In: T. Toffoli, M. Biafore
and J. Leao. PhysComp 96 pp. 48-50. arXiv:quant-ph/9605035

B. Coecke. A Representation for compound systems as individual entities: hard acts
of creation and hidden correlations. Foundations of Physics 28, 1109-1135 (1998).
arXiv:quant-ph/0105093

B. Coecke. Structural characterization of compoundness. International Journal of
Theoretical Physics 39, 585-595 (2000). arXiv:quant-ph/0008054

157



[19]

[20]

21]

[22]
23]
[24]
[25]

[26]

[27]

[28]

[29]

[30]

31]

[32]

[33]

[34]

B. Coecke and K. Martin. A partial order on classical and quantum states. Re-
search Report PRG-RR-02-07 Oxford University Computing Laboratory (2002).
http://web.comlab.ox.ac.uk/oucl/publications/tr/rr-02-07.html

B. Coecke, D. J. Moore and I. Stubbe. Quantaloids describing causation and prop-
agation for physical properties. Foundations of Physics Letters 14, 133-145 (2001).
arXiv:quant-ph/0009100

B. Coecke, D. J. Moore and A. Wilce. Eds. Current Research in Operational Quantum,
Logic: Algebras, Categories and Languages. Kluwer Academic Publishers (2000).
Introduction at arXiv:quant-ph/0008019.

R. L. Crole. Categories for Types. Cambridge University Press (1994).
E. W. Dijkstra. A Discipline of Programming. Prentice-Hall (1976).
R. Duncan. Suicidal cuts and one step normalisation. Draft (2003).

W. Diir, G. Vidal and J. I. Cirac. Three qubits can be entangled in two inequivalent
ways. Physical Review A 62 062314 (2000). arXiv:quant-ph/0005115

S. Eilenberg and S. Mac Lane. General theory of natural equivalences. Transactions
of the American Mathematical Society 58, 231-244 (1945).

A. Ekert and R. Jozsa. Quantum algorithms: entanglement enhanced informa-
tion processing. In: Proceedings of Quantum Computation: Theory and Experiment
(1999). arXiv:quant-ph/9803072

Cl.-A. Faure, D. J. Moore and C. Piron. Deterministic evolutions and Schrédinger
flows. Helvetica Physica Acta 68, 150-157 (1995).

J.-Y. Girard. Linear Logic. Theoretical Computer Science 50, 1-102 (1987).

J.-Y. Girard. Towards a geometry of interaction. In: Categories in Computer Sci-
ence and Logic: Contemporary Mathematics 92, pp. 69-108. American Mathematical
Society (1989).

J.-Y. Girard. Proof-nets: the parallel syntax of proof-theory. In: A. Ursini and
P. Agliano, Eds. Logic and Algebra. Marcel Dekker (1996).

D. Gottesman. An introduction to quantum error correction. In: Proceedings of
Symposia in Applied Mathematics. arXiv:quant-ph/0004072

D. Gottesman and I. L. Chuang. Quantum teleportation is a universal computational
primitive. Nature 402, 390-393 (1999). arXiv:quant-ph/9908010

D. M. Greenberger, M. A. Horne, A. Shimony and A. Zeilinger. Bell’s theorem
without inequalities. American Journal of Physics 58, 1131-1143 (1990).

158



[35]

[36]

[37]
[38]
[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

C. A. R. Hoare. An axiomatic basis for computer programming. Communications of
the Association for Computing Machinery 12, 576-580 (1969).

C. A. R. Hoare and Jifeng He. The weakest prespecification. I. Fundamenta Infor-
maticae 9, 51-84 (1986).

C. J. Isham. Lectures on Quantum Theory. Imperial College Press (1995).
R. Jagadeesan. (no title) Draft (2003).
J. M. Jauch. Foundations of quantum Mechanics. Addison-Wesley (1968).

J. M. Jauch and C. Piron. On the structure of quantal proposition systems. Helvetica
Physica Acta 42, 842-848 (1969).

A. Joyal, R. Street and D. Verity. Traced monoidal categories. Proceedings of the
Cambridge Philosophical Society 119, 447-468 (1996).

R. Jozsa. A stronger no-cloning theorem. arXiv:quant-ph/0204153

Y. Lafont. From proof-nets to interaction nets. In: J.-Y. Girard, Y. Lafont and
L. Regnier. Advances in Linear Logic. London Mathematical Society Lecture Note
Series 222, pp. 225-247. Cambridge University Press (1995).

J. Lambek. Deductive systems and categories I. Syntactic calculus and residuated
categories. Mathematical Systems Theory 2, 287-318 (1968).

O. Laurent. Etude de la polarisation en logique (A Study of Polarization in Logic).
Doctoral dissertation. Institut de Mathématiques de Luminy — Université Aix-
Marseille II (2002). www.pps.jussieu.fr/~laurent/

F. W. Lawvere. An elementary theory of the category of sets. Proceedings of the
National Academy of Sciences of the Uniteed States of America 52, 1506-1511 (1964).

K. Martin. A Foundation for Computation. Doctoral Dissertation, Department of
Mathematics, Tulane University, New Orleans, USA (2000).

R. F. Muirhead. Some methods applicable to identities and inequalities of symmetric
algebraic functions of n letters. Proceedings of the Edinburgh Mathematical Society
21, 144-157 (1903).

J. von Neumann. Mathematische Grundlagen der Quantenmechanik. Springer—Verlag
(1932). Translation in Mathematical Foundations of Quantum Mechanics. Princeton
University Press (1955).

M. A. Nielsen. Universal quantum computation using only projective measurement,
quantum memory, and preparation of the 0 state. arXiv:quant-ph/0108020

M. A. Nielsen and G. Vidal. Majorization and the interconversion of bipartite states.
Quantum Information and Computation 1, 76-93 (2001).

159



[52]

[53]
[54]
[55]
[56]

[57]
[58]
[59]
[60]

[61]

A. K. Pati and S. L. Braunstein. Impossibility of deleting an unknown quantum
state. Nature 404, 164-165 (2000). arXiv:quant-ph/9911090

B. C. Pierce. Types and Programming Languages. The MIT Press (2002).
C. Piron. Foundations of Quantum Physics. W.A. Benjamin (1976).
J. Preskill. Reliable quantum Computers. arXiv:quant-ph/9705031

R. Raussendorf and H. J. Briegel. Computational model for the one-way quantum
computer: concepts and summary. arXiv:quant-ph/0207183

B. Schumacher. Private communication referred to in [11].

P. W. Shor. Fault-tolerant quantum computation. Proceedings of the 37nd Annual
Symposium on Foundations of Computer Science, pp. 56—-65. IEEE Computer Society
Press (1996). arXiv:quant-ph/9605011

V. S. Varadarajan. The Geometry of Quantum Theory. Springer-Verlach (1968).

W. Wootters and W. Zurek. A single quantum cannot be cloned. Nature 299, 802—
803 (1982).

M. Zukowski, A. Zeilinger, M. A. Horne and A. K. Ekert. ‘Event-ready-detectors’
Bell experiment via entanglement swapping. Physical Review Letters 71, 4287-4290
(1993).

160



