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Abstract

For general processes theories described by symmetric monoidal categories, we introduce the notions of resource
and resource theory. For any resource theory we construct a preordered monoid that compares resources, where the
monoid structure accounts for compositionality. Any monotone function to the reals which also preserves the monoid
structure then provides a quantitative measure of relative cost. For general resource theories we also define the notions
of conversion rate and catalysis. We analyse the structure of resource theories, consider existing resource theories,
some paradigmatic real world examples, and examples of a purely mathematical nature.

1 Introduction
The term resource theory has occurred at many occasions in the physics literature. For example, there are the resource
theories of entanglement [17], purity [15], asymmetry [19] and athermality [4]. The purpose of these theories is to
establish a quantitative measure of relative cost of the resources. Moreover, the notion of a resource is so generic that
we can think of many kinds of resources in other areas of science, e.g. in chemistry:

2H2O2 + MnO2 → 2H2O + O2 + MnO2

as well as in real life situations, for example, the required quantities of ingredients in any production process, ranging
from food production to construction work.

But what is a resource theory? That is, is there a general mathematical definition that underpins all existing
resource theories, and in particular, form which a natural quantitative notion of relative cost arises? Such a structure
can then be studied as a mathematical entity in its own right, and provide results that can be fed back to all concrete
resource theories. Certain new questions can then also be posed, e.g. are there other concepts, features and general
principles that are common to all resource theories?

The general pattern of the example resource theories mentioned above, is that one has a theory about some kind of
stuff, some of which is free, and some of which isn’t [16]. The stuff usually consists of a family of states and/or pro-
cesses, for example, in entanglement theory the non-free stuff would be entangled states and/or entangling operations,
while local operations and classical communication which are the operations that do not increase entanglement, are
freely available. Nielsen showed in [22] that bipartite entangled states give rise to a partially ordered set of equivalence
classes of states, i.e. a preordering on the states, where the order expresses which states can be converted into other
states by local operations and classical communication. Hence, this LOCC-comparison relation it captures the relative
value of the resources: if a resource is above another one in the preordering, then one can obtain the later from the first
one without any cost.

Here we start with a general theory of systems and processes, including states, and define the notion of a resource
theory. The resulting general definition of a resource theory gives rise to a preordering, which moreover always comes
together with a monotone composition operation. This composition operation captures an essential part of the structure
of a resource theory, and any good measure of cost should respect it too, including in the case of LOCC-comparison. To
prove this point we provide examples of fundamentally different resource theories which yield the same preorderings,
and their difference is only revealed in terms of the composition operation. We also give examples of monotone cost
functions that do not respect this composition operation, and expose their inadequacy.

This composition operation also allows to compare tuples of resources and yields the notion of a conversion rate,
that is, the fraction of resources of one kind are required to produce resources of another kind. Composition dependent
quantitative features of this kind are clearly also important for entanglement theory, e.g. entanglement distillation [2].

Within our conception of a resource theory, not only states but also processes can be resources. This accounts
for situations where the use of a device that transforms states does not come for free, e.g. hiring a super computer to
perform a computation, labour cost in construction work, energy cost of a cooker, etc. As a consequence, focussing
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back on quantum information theory, our framework also generates the resource inequalities of Devetak et al. in the
context of quantum Shannon theory [12, 1]. Process transformations have also been considered elsewhere in quantum
information, e.g. in [5].

2 Data of a resource theory
The definition of a resource theories builds on that of a process theory.

2.1 General process theories
Our starting point is a theory describing:

1. a collection of systems A,B, . . . and processes f : A→ B, g : C → D, . . ., where to A→ B,C → D, . . . we
refer as the type of the process.

2. which can be composed in parallel yielding A⊗B and f ⊗ g,

3. and processes can also be composed sequentially when the input/output systems allow to do so, that is, in
computer science terms, ‘when the types match’:

g ◦ f :=
(

in(f)
f−→ out(f) = in(g)

g−→ out(g)
)

;

4. we moreover assume the existence of a trivial system I (cf. ‘nothing’), and, for each system A, of an identity
process 1A : A→ A which doesn’t alter the system.

This data is presented as a symmetric monoidal category (SMC) (C,⊗, I) [10]. We will use the diagrammatic calculus
of SMCs [24]. Processes of the type I → A are states.

Here are some examples:

systems processes
Physics physical systems evolutions, measurements etc.

Programming data types B, N, ... programs
Chemistry chemicals H2, O2, ... chemical reaction
Cooking ingredients carrot, potato, ... boiling, spicing, mashing, etc.

Math. practice propositions proofs (cf. lemma, theorem)
Finance e.g. currencies $, e, ... money transactions

Construction work kinds of building materials, ... acquiring materials,
construction work

Example 1. In many cases one is interested in communication processes. One can take the objects of the category
to be structured, where Alice and Bob now respectively refer to the 1st and the 2nd component of the tuple. Hence
objects are of the form (A,B) with A,B ∈ |C|, and their composition is componentwise, that is (A,B)⊗ (A′, B′) :=
(A⊗ A′, B ⊗B′). Processes of type (A,B)→ (A′, B′) can then be taken to be subsets of C(A⊗B,A′ ⊗B′). For
example, the process of Alice sending some data to Bob has type (A, I)→ (I, A) and can be depicted as a morphism
of C(A⊗ I, I ⊗A) as:

where the dotted boxes refer to the two agents. If Alice takes a copy of her data and then transforms one copy of her
data by means of a process A → B before sending it to Bob, who already possesses data of type C, then the overall
process has type (A,C)→ (A,B ⊗ C) and can be depicted in a diagram as:

f
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where the dot depicts copying. More complex communication situations can be modelled similarly. If agents can
posses two types of data, e.g. quantum and classical, then we can consider each component of the object again to
consist of a pair, now referring to each of the two kinds of data. Operations could then transform data of one type into
data of the other type, e.g. quantum measurement and quantum control operations.

2.2 Resource theories
Definition 1. A resource theory consists of an SMC C together with a proper all-objects-including sub-SMC of
so-called free processes:

Cfree
6=
↪→ C .

Any process which is not free is called a resource.

We write
Sys := |C| Proc :=

⋃
A,B∈|C|

C(A,B) Procfree :=
⋃

A,B∈|C|

Cfree(A,B)

for the collection of all systems, processes, and free processes respectively.
Examples of already developed resource theories in quantum information are:

free processes resources

entanglement theory [17] local operations,
classical communication

entangled states,
entangling processes

purity theory [15] maximally mixed states,
unitary operations other states/operations

asymmetry theory [19] symmetry-respecting
operations

symmetry-breaking
operations

athermality theory [4] states in T -equilibrium,
energy-conserving unitaries

athermal states,
other operations

But one can consider new ones too:
resources free processes

mixedness theory pure states,
unitary operations other states/operations

as well as examples outside physics:

resources free processes
DIY building acquiring materials construction work

What is considered as free depends on the situation. If one builds one’s own house labor is for free and only materials
have to be accounted for, and the same is true for cooking. But this is for example not the case for a building company
and a restaurant.

We can now also consider examples presented in more direct mathematical terms:

C Cfree

non-determinism Rel∅ (relations) Set∅ (functions)
irreversibility Set∅ Perm∅ (permutations)

CQM quantum mixedness CPM(C) [23] WP(C) [8]
CQM classical mixedness Stoch(C) [11] Func(C) [11]

3 Parallel resources
We now initiate the study of the conversion of resources, that is, which resources can be ‘produced’ when others
are ‘consumed’ in the presence of an unlimited supply of the free processes. In particular, we identify the founda-
tional mathematical structure that captures conversion of resources, namely, the structure of a non-negative preordered
monoid.

For reasons of clarity, we first consider a special kind of resource that can only be consumed in parallel, that is,
resources f1, . . . , fn can only be consumed as the single (compound) resource f ′ := f1 ⊗ . . .⊗ fn. This assumption
will provide a stepping stone to the general more complex case, which we discuss in Section 5. But parallel resources
do already capture one very important example of resources, namely resource states, which due to the nature of their
type can only be composed in parallel.
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3.1 Comparing parallel resources
Definition 2. For f, g ∈ Proc we set:

f � g

whenever
∃Z ∈ Sys, ξ1, ξ2 ∈ Procfree, j ∈ Proc : ξ2 ◦ (f ⊗ 1Z) ◦ ξ1 = g ⊗ j . (1)

In string diagrams, the equality in (1) becomes:

ξ2

f

ξ1

g j= (2)

We refer to Z as the ancilla, that is, the additional system space required while processing the resource, to ξ1 as
pre-processing, to ξ2 as post-processing, and to j as junk. Given a resource f , when composing it with free processes,
either in parallel or sequentially, then we always obtain an expression of the form of the LHS of (2).

Lemma 3. Any expression in the language of symmetric monoidal categories that includes a single occurrence of
some morphism f can be put in the form of the LHS of (2).

The presence of the junk process j allows for some morphism f not to be entirely consumed in the production of
g. For example, for f = f1 ⊗ f2 we may have:

ξ2 ◦ ((f1 ⊗ f2)⊗ 1Z) ◦ ξ1 = g ⊗ (f2 ⊗ j′) , (3)

where f2 is not consumed and reappears as part of the junk j = f2 ⊗ j′. More importantly, when taking ξ1 = 1 and
ξ2 = 1 we have:

f1 ⊗ f2 � f1 (4)

i.e. ‘the whole is more costly than its parts’. In a diagram (2) is realised as follows:

f2 = f1 f2f1 (5)

where the two dotted boxes in the LHS represent ξ1 and ξ2 and the one in the RHS represents j. We will use this
manner of establishing that (2) is realised throughout this paper.

The presence of a junk process in RHS implicitly assumes that resources are disposable, that is, not consuming a
resource doesn’t come at any cost. This immediately excludes ‘negative resources’ such as financial debt, as well as
‘undesirable resources’, e.g. nuclear waste. One can deal with financial debt or nuclear waste in the present formalism
by treating the processes of disposing of them as a proper resource.

In Section 3.6 we show that if certain conditions are met the junk process becomes redundant in Definition 2. One
of these conditions has a physical origin while the other one puts a non-emptiness constraint on the of free states of
any type.

Remark 1. If the SMC of free processes contains zero-processes, that is, processes 0 ∈ Proc which are such that
f ⊗ 0 = g ⊗ 0 for all pairs of processes f, g ∈ Proc of the same type, then (2) can always be trivially satisfied,
by including such a zero-process within ξ− and in j. Therefore, when constructing mathematical examples based on
standard categories such as Rel, one may have to exclude these zero-processes from the candidate junk processes.
On the other hand, for real life resource theories zero-processes can never take place, as these represent the ‘the
impossible’.

For resource theories, it should be intuitively clear that, for example, if f1 � g1 and f2 � g2, then f1⊗f2 � g1⊗g2.
The following definition captures the nature of the �-relationships for general resource theories.
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Definition 4. A preordered monoid is a structure

(M , � , · , 1 )

where�⊆M×M is a reflexive transitive relation, · : M×M →M is associative and has unit 1 up to the equivalence
relation induced by the preordering, that is,

∀x, y, z ∈M : (x · y) · z ' x · (y · z) and ∀x ∈M : 1 · x ' x ' x · 1 (6)

where x ' y means x � y and y � x. We require these structures to interact as follows:

a � b , x � y ⇒ a · x � b · y . (7)

Note that the unit of a preordered monoid need not be unique. Each preordered monoid induces a partially ordered
monoid by quotienting relative to the equivalence relation:

(M/' , ≥ , · , [1] )

where for equivalence classes [x] and [y] we have:

[x] ≥ [y] ⇔ x � y .

Now the unit is of course unique. We call this the induced partial ordering.
A preordered monoid can equivalently be defined as a small thin monoidal category (MC) C, where (⊗, I) provides

(·, 1) and ‘non-emptyness of hom-sets’ provides �, that is,

A � B ⇔ C(A,B) 6= ∅ . (8)

Bifunctoriality then exactly yields (7). In fact, to any MC C we can associate a preordered monoid, namely, the
so-called ‘decategorification’ of C. If this MC is moreover symmetric then the monoid is commutative up to ', that
is,

∀x, y ∈M : x · y ' y · x . (9)

We call such a preordered monoid also symmetric.

Definition 5. By the decategorification DEC(D) of a symmetric monoidal category D we mean the symmetric
preordered monoid that has |D| as its elements, and such that for A,B ∈ |D| we have A � B if and only if D(A,B)
is non-empty.

A preorder (M,�) can have several bottom elements, i.e. ⊥ ∈M such that

∀x ∈M : x � ⊥ . (10)

We call a preordered monoid (M,�, ·, 1) non-negative if 1 is a bottom. Then we have:

∀x, a ∈M : x · a � a , (11)

that is, the operation x · − : M →M is order increasing for any x.
By ffree we will mean ‘any free process’.

Theorem 6. (Proc,�,⊗, ffree) is a non-negative symmetric preordered monoid.

The fact that ‘the whole is more costly than the parts’ (cf. (4)) yields:

Corollary 7. In (Proc,�,⊗, ffree) the monoid multiplication is an upper bound, that is:

∀f, g ∈ Proc : f ⊗ g � f .

Example 2. Two important examples in the mathematics literature which involve an ordering that interacts with a
monoid structure, where in both cases the ordering is a (complete) lattice, are lattice ordered groups [3], where the
monoid admits inverses, and the commutative case of quantales [21], where there is a distributive law between the
monoid multiplication and the suprema of the ordering. The inverses of lattice ordered groups contradict Corollary
7, since as already mentioned in Section 3.1, the presence of the junk process in (2) implicitly assumes resources to
be ‘non-negative’. Also the distributivity law for quantales does not seem to admit an obvious interpretation from the
point of view of resource theories. Hence, the study of preordered monoids arising from resource theories seem to
warrant a mathematical study in their own right.
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Example 3. The preordering of [22] which underpins entanglement theory is an instance of the preordering of The-
orem 6. One considers bipartite communication protocols as discussed in Example 1. The resources are entangled
bipartite (pure) states. As composition was not accounted for in [22], one considers � only for single resources, that
is, single entangled states. The free operations are generated by disentangled states, local operations, and classical
communication between the parties, and then closed under sequential composition. Given a resource state Ψ, let
(r1, . . . , rn) be the squares of the Schmidt coefficients in descending order. The main result established in [22] is
that Ψ � Ψ′ if and only iff (r1, . . . , rn) and (r′1, . . . , r

′
n) compare with respect to majorization order [20], that is,

r1 ≤ r′1, r1 + r2 ≤ r′1 + r′2, . . . ,
∑
i ri ≤

∑
i r
′
i. This ordering does not account for converting a tuple of n entan-

gled states into m entangled states although clearly this is very relevant to entanglement theory (e.g. entanglement
distillation [2]).

3.2 Essence of the monoid structure
We provide an example of two fundamentally different resource theories with the same preorders. Their difference
becomes apparent in terms of the difference of the corresponding monoid structures. This proves that the monoid
structure exposes crucial features of resource theories that are invisible for the preordering.

Example 4. Consider the resource theory Fruit which has multisets of fruit as its objects, e.g. ‘3 apples and 4
oranges’, each of which only admits one state which we can interpret as obtaining that fruit e.g. ‘buying 3 apples and 4
oranges’. The only morphisms of any other type are the identities, which are also the only free processes, and which we
interpret as ‘doing nothing to the fruit’. Hence, there are no non-trivial sequential compositions. Parallel composition
of systems and states is multiset union, e.g. composing ‘3 apples and 4 oranges’ and ‘2 apples and 3 pears’ yields
‘5 apples, 4 oranges and 3 pears’. By Theorem 6 we know that the bottom elements of the preordering are the free
processes, that is, the identities. The resources include the non-empty multisets of fruits, as well as compositions of
these with identities. Since the only free processes are identities, �-relationships can only be established by equations
of the form (5). Each equivalence class contains exactly one state, and for these � is given by multiset reverse
inclusion (cf. Corollary 7), that is, ‘cost is proportional to the amount of fruit acquired’ subject to ‘apples and oranges
don’t compare’. Restricting to only apples and oranges, the Hasse diagram of the induced partial order looks as
follows:

no fruit

1 apple 1 orange

2 apples 2 oranges1 apple and 1 orange

The monoid multiplication is componentwise addition.

Remark 2. If we would also consider the processes ‘eating fruit’ as a free processes, then this would still yield the
same preordered monoid. When using these free processes in (2) this would simply lead to fruit ‘being eaten in LHS’,
rather than being considered as junk in RHS, with the same resulting �-relationships.

Example 5. Consider the resource theory Quality which only has one object I . There are two kinds of processes
of type I → I , namely, (i) the resources, which improve the quality of a certain product (e.g. maturing of whiskey)
and we assume these to be totally ordered, and, (ii) the free processes, which cause decay in quality (e.g. deluting
whiskey). The tensor ‘aims at maximal quality’, that is, p ⊗ q for p, q resources will be either p or q depending on
which one improves the quality the most, f ⊗ g for f, g free processes will be either f or g depending on which one
reduces the quality the least, and p ⊗ f will be p. Since the only manner in which non-equivalent �-relationships
arise is by reducing quality, i.e. by taking ξ2 in (2) to be a quality decay process, the partial ordering induced by �
is the total ordering representing quality levels that we started with. The monoid multiplication is the order-theoretic
supremum. When considering a product that has two quality features, each of which being modelled as above, with
the corresponding decay processes now specifying a decay level for each of these features, then the Hasse diagram of
the induced partial order looks as follows (t := taste, a:= alcohol percentage):

(t=0, a=0)

(t=1, a=0) (t=0, a=1)

(t=2, a=0) (t=0, a=2)(t=1, a=1)

The monoid multiplication is still the order-theoretic supremum.
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So in both examples we obtain the same induced partial ordering! The radically different nature of these resource
theories is captured by the distinct composition structures. While for Quality the composition is the supremum, this
is not the case for Fruit:

1 apple ∨ 1 apple = 1 apple 6= 2 apples = 1 apple + 1 apple

where the composition is the sum. More precisely, the induced partial ordering is:

(N,≥)× (N,≥)

both for Fruit and Quality, but the monoids respectively are:

(N,+, 0)× (N,+, 0) vs. (N,∨, 0)× (N,∨, 0) .

3.3 Origin of comparison relationships
The examples Fruit and Quality also provide insights in the kinds of �-relationships that may occur. The SMC of
the resource theory Fruit is a commutative monoid where the composition is to be interpreted as parallel, to which
a trivial sequential composition operation is freely adjoined. The SMC of the resource theory Quality is also a
commutative monoid but where the composition is now to be interpreted as sequential, to which a trivial idempotent
parallel composition relation is adjoined. In order-theoretic terms these are suprema, i.e. a property rather than a
genuine structure. So these examples can be seen as ‘mutually orthogonal 1D projections’ of the 2D composition
structure of an SMC.

As a consequence, these two monoids play a very different role with respect to (2), i.e. in establishing �-
relationships. As already mentioned above, for Fruit the �-relationships arise only via (5), which since all resources
are states becomes:

s2 = s1 s2s1 (12)

For Quality on the other hand, �-relationships arise only via:

=s

f

s

f

(13)

Note also that while for Fruit the operation s⊗− causes increase in the ordering, for Quality the operation f ◦ −
causes decrease in the ordering.

Definition 8. The �-relation is called purely parallel when:

∀f ∈ Proc, Z ∈ Sys, ξ1, ξ2 ∈ Procfree : ξ2 ◦ (f ⊗ 1Z) ◦ ξ1 � f , (14)

and it is called purely sequential when:
∀f, g ∈ Proc : f � f ⊗ g (15)

In a purely sequential resource theory one can think of resources as all being zero. The complementary notion is
that of a resource theory where all the resources are positive.

Definition 9. We call a resource theory positive whenever for f, g ∈ Proc:

f � f ⊗ g ⇒ g ∈ Procfree .

Positive resource theories typically exhibit the following features:

• Extensivity. This features was already clear in the contrast between the above two examples. While ‘quantity’
(cf. Fruit) is an extensive attribute like for example ‘volume’ and ‘weight’, ‘taste’ and ‘alcohol percentage’
(cf. (t) and (a) in Quality) are intensive ones like for example ‘temperature’.

• Finitarity. If a resource is infinite, for example the number of rooms available in Hilbert’s hotel, then one can
produce clones of it without any cost, something which is forbidden by the following result.
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3.4 No-cloning for positive resource theories

Theorem 10. In positive resources theories, resources cannot be ‘cloned’:

∀f ∈ Proc \ Procfree : f 6� f ⊗ f .

Remark 3. Note here the resemblance to linear logic [14] where premises also cannot be cloned. Linear logic is often
referred to as a ‘resource sensitive logic’, or in Girard’s own words: “While classical logic is about truth, linear logic
is about food”.

3.5 Resources as objects and resource conversion as morphisms

The ordering in (Proc,�,⊗, ffree) represents ‘increase in resource’ while the monoid multiplication represents ‘com-
bining resource’, and as already indicated in the previous section, these relate to the 2D composition structure of the
underlying SMCs. But this analogy is by no means a perfect match, since, as demonstrated in the previous section, the
�-relationships can arise both from sequential and parallel composition (cf. Definition 8).

Obtaining a perfect match would mean that the preordered monoid (Proc,�,⊗, ffree) is the decategorification of
the SMC (see Definition 5). We can realise such a perfect match by constructing a new SMC from the pair (C,Cfree)
with resources and free processes as objects, and with conversions thereof as morphisms.

This ‘alternative presentation’ of a resource theory will also be interesting in its own right. For example, for
Quality it would be a natural choice to take the products as objects and their decay as morphisms. Also for Fruit we
could have taken fruit as objects and eating fruit as morphisms. A category Cooking would have culinary ingredients
as its objects and cooking receipts as its morphisms. In these examples the resources are states but the alternative
presentation can also be achieved when resources are proper processes.

Given a resource theory (C,Cfree) we construct a new SMC RC(C,Cfree) with Proc as its objects and the
morphisms of type f → g being triples:{

(Z, ξ1, ξ2) ∈ Sys× Procfree × Procfree
∣∣ (2) holds for some j

}
(16)

When representing these the triples (Z, ξ1, ξ2) in the following manner:

ξ2

ξ1

(17)

where one should think of the ‘hole’ indicated by the dotted line as allowing to insert a process of the appropriate type,
sequential and parallel composition are as follows:

ξ2

ξ1

ξ′2

ξ′1

ξ′2

ξ′1

ξ2

ξ1

Finally, we impose a congruence on morphisms, reflecting the fact that junk is invariant under symmetry. This is a
technical requirement that guaranties naturality of symmetry for RC(C,Cfree). Concretely, we will treat the following
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morphisms as equivalent:

ξ2

ξ1

'

out(g)

in(g) in(j)

out(j)

ξ2

ξ1

(18)

Theorem 11. For all resource theories RC(C,Cfree) is an SMC and:

DEC(RC(C,Cfree)) = (Proc,�,⊗, ffree) . (19)

So we established that a resource theory formulated as an inclusion of process theories admits an alternative
presentation as a single SMC where processes are the objects and resource conversions are the morphisms. One may
now also ask which additional properties an arbitrary SMC D must have for its objects to be interpreted as resources
and its morphisms to be interpreted as resource conversions.

Lemma 12. DEC(D) is non-negative whenever D(A, I) 6= ∅ for all A ∈ |D|.

The morphisms of typeA→ I can be interpreted as disposing ofA. On the other hand,A ∈ |D| is to be interpreted
as free if there also exist a morphism of type I → A. So dually, if for A ∈ |D| we have that D(I, A) = ∅, then A is a
resource.

3.6 Causality and free execution of processes
Definition 13. A process f : A→ B in a resource theory is freely executable if there exists a free state x : I → A. A
a resource theory (C,Cfree) admits free execution of processes if for everyA ∈ |C| there exists a free state x : I → A.

While a process may be free, its execution may not be whenever providing an input necessarily comes at a cost.
Therefore, in (2) we may want to restrict the junk processes to freely executable ones. It may indeed be the case that
the execution of the simulation of f as in (2) requires an input state at both inputs of ξ1, and hence, since there should
be no cost associated whatsoever with the junk process, that j must be freely executable.

Definition 14. A process theory C is causal if I is terminal, that is, if for A ∈ |C| there is a uniques process d of type
A→ I that we call universal disposing. A resource theory (C,Cfree) is freely causal if C is causal and the universal
disposing processes are free.

Causality in this form was derived as a principle in [6] and studied in the context of process theories as SMCs in
[9]. Within a spatial context it is a principle that prevents signalling [9], and plays a crucial role in the reconstruction
of quantum theory [7].

Under the reasonably mild assumptions of free execution of processes and free causality we can drop the presence
of the junk processes in (2).

Lemma 15. If a resource theory admits free execution of processes and is freely causal, then obeying (2) for some
ξ1, ξ2 ∈ Procfree and j ∈ Proc is equivalent to obeying:

ξ′2

f

ξ′1

g= (20)

for some ξ′1, ξ
′
2 ∈ Procfree.

4 Quantitative concepts for resource theories
We present three notions that are common to general resource theories and which all crucially rely on the composition
structure of the preordered monoid.



10

4.1 Cost measures
The non-negative reals R+ are ordered and admit several commutative monoid structures that make it into a preordered
monoid, e.g. ∨ and +. Cost measures for resource theories may want to respect either of these, depending on the nature
of the resource theory.

For example, for Fruit any natural measure would be a homomorphism of preordered monoids into (R+,≥,+, 0).
Ignoring the monoid structure and simply requiring monotonicity would result in inadequate measures. For example,
any ∨-preserving map into (R+,≥) would mean that the cost for n apples is the same as the cost for a single apple.
On the other hand, for a homomorphism of preordered monoids into (R+,≥,+, 0) it suffices to assign a price for each
individual piece of fruit since then preservation of the monoid multiplication fixes the cost of any multiset of fruit.

Definition 16. An additive cost measure is a homomorphism of preordered monoids:

µ : (Proc,�,⊗, ffree)→ (R+,≥,+, 0)

4.2 Conversion rate

Por a process f ∈ Proc let n · f :=

n︷ ︸︸ ︷
f ⊗ . . .⊗ f .

Definition 17. For two processes f, g ∈ Proc of a resource theory the conversion rate is:

R(f → g) :=
∨{m

n

∣∣∣ n · f � m · g, n,m ∈ N
}
. (21)

4.3 Catalysis
Definition 18. For processes f, g ∈ Proc of a resource theory we set:

f �cat g

if there exist a catalyst c ∈ Proc such that:
f ⊗ c � g ⊗ c

Theorem 19. (Proc,�cat,⊗, ffree) is a non-negative symmetric preordered monoid.

We can also consider cost measures and conversion rates for catalysed processes when replacing � by �cat in
Definition 16 and Definition 17 above.

In particular, if µ is an additive cost measure, then it will also be an additive cost measure with respect to the
catalytic ordering since f ⊗ c � g⊗ c implies µ(f) +µ(c) � µ(g) +µ(c), and hence that µ(f) � µ(g), and additivity
is trivialy inherited.

5 Sequentially composable resources
For a pair of resources (f1, f2) we may have:

f1 ◦ f2 � g (22)

while
f1 ⊗ f2 6� g , (23)

for example, if f1 = f2 are π/2 rotations and g is a π rotation.
On the other hand, a pair of resources that arises in parallel as f1 ⊗ f2 can in general not be consumed as in (22).

This will force us to distinguish between resources that can only be used in parallel, which were thus far denoted as
the monolithic process:

f1 ⊗ . . .⊗ fn
versus those that may also be used sequentially. We denote these as a list:

(f1, . . . , fn) ,

although in fact, they form a multiset, so the order in the sequence doesn’t matter.
We use + to denote list concatenation, ε to denote the empty list and Proc∗ to denote all lists (representing

multisets) of processes contained in Proc, including the empty list ε. By S(n) we denote the symmetric group of
permutations on n elements.
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Definition 20. For F = (f1, . . . , fn) ∈ Proc∗ and g ∈ Proc we set:

F � g

whenever
∃σ ∈ S(n), Z1, . . . , Zn ∈ Sys, ξ0, . . . , ξn ∈ Procfree, j ∈ Proc :

ξn ◦ (fσ(n) ⊗ 1Zn
) ◦ ξn−1 ◦ . . . ◦ ξ1 ◦ (fσ(1) ⊗ 1Z1

) ◦ ξ0 = g ⊗ j .
(24)

For F = (f1, . . . , fn), G = (g1, . . . , gm) ∈ Proc∗ we set

F � G

whenever there exists a partition of F into lists F1, . . . , Fm such that:

F1 � g1 . . . Fm � gm .

In string diagrams the equality in (24) becomes:

ξn

fσ(n)

ξn−1

g j=

ξ0

ξ1

fσ(1)

...
... (25)

Theorem 21. (Proc∗,�,+, ε) is a non-negative symmetric preordered monoid.

6 Closing
Having established non-negative preordered monoids as a fundamental structure for resource theories, from which
notions such as cost, rate and catalysis can be derived, one can now initiate a study of resource theories starting from
this structure. We already made substantial progress in this direction, e.g. [13] where several kinds of resources are
classified in terms of the preordered monoid structure, and connections between these properties are established. Also
a notion of approximate conversion of resources has been introduced, based on epsilonification within the context of
topological vector spaces.

By no means do we consider Definitions 1 and 2 to be the final word on what a ‘general resource theory’ should
be, but the generality of these definitions is surely sufficient to establish the study of preordered monoids within the
context of resources as a worthwhile endeavour, and encompasses the existing examples of resource theories as well
as many new ones.
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