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Abstract

Non-locality and contextuality are key features of quantum mechanics that

distinguish it from classical physics. We aim to develop a deeper, more

structural understanding of these phenomena, underpinned by robust and

elegant mathematical theory with a view to providing clarity and new per-

spectives on conceptual and foundational issues. A general framework for

logical non-locality is introduced and used to prove that ‘Hardy’s paradox’

is complete for logical non-locality in all (2, 2, l) and (2, k, 2) Bell scenarios,

a consequence of which is that Bell states are the only entangled two-qubit

states that are not logically non-local, and that Hardy non-locality can

be witnessed with certainty in a tripartite quantum system. A number of

developments of the unified sheaf-theoretic approach to non-locality and

contextuality are considered, including the first application of cohomology

as a tool for studying the phenomena: we find cohomological witnesses

corresponding to many of the classic no-go results, and completely char-

acterise contextuality for large families of Kochen-Specker-like models. A

connection with the problem of the existence of perfect matchings in k-

uniform hypergraphs is explored, leading to new results on the complexity

of deciding contextuality. A refinement of the sheaf-theoretic approach is

found that captures partial approximations to locality/non-contextuality

and can allow Bell models to be constructed from models of more general

kinds which are equivalent in terms of non-locality/contextuality. Progress

is made on bringing recent results on the nature of the wavefunction within

the scope of the logical and sheaf-theoretic methods. Computational tools

are developed for quantifying contextuality and finding generalised Bell

inequalities for any measurement scenario which complement the research

programme. This also leads to a proof that local ontological models with

‘negative probabilities’ generate the no-signalling polytopes for all Bell

scenarios.





Contents

Introduction 1

1 The Sheaf-theoretic Framework 5

1.1 Empirical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Presheaves & Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 The Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Locality & Non-contextuality . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Possibilistic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 A Hierarchy of Contextuality . . . . . . . . . . . . . . . . . . . . . . 16

1.7 Towards an Ontological Theory . . . . . . . . . . . . . . . . . . . . . 20

1.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Hardy’s Paradox as a Logical Condition for Non-locality 25

2.1 Hardy’s Non-locality Paradox . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Properties of Empirical Models . . . . . . . . . . . . . . . . . . . . . 28

2.3 Coarse-grained Versions of Hardy’s Paradox . . . . . . . . . . . . . . 31

2.4 An n-partite Hardy Paradox . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Universality of Hardy’s Paradox . . . . . . . . . . . . . . . . . . . . . 34

2.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Hardy Non-locality with Certainty . . . . . . . . . . . . . . . . . . . 47

2.8 Non-universality of Hardy’s Paradox . . . . . . . . . . . . . . . . . . 54

2.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 The Cohomology of Non-locality & Contextuality 57
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Introduction

At a fundamental level, non-locality and contextuality are key features of quantum

mechanics that confound classical intuitions. It was realised early on that the theory

displayed certain non-intuitive features: they gave rise to apparent paradoxes such as

Schrödinger’s cat [101] and quantum ‘steering’ [97], and led to the Einstein-Podolsky-

Rosen argument [48] for the incompleteness of quantum mechanics. The classic no-go

theorems of Bell [22], Kochen & Specker [73] et al., however, showed that non-locality

and contextuality are necessary features of any theory that agrees with the predictions

of quantum mechanics.

While these features are challenging from a conceptual point of view, they have

opened the door to radical new possibilities. Bell’s insights in particular have been

key to developments in quantum information theory, which has grown up around

the idea that entanglement and non-locality are a resource that can be exploited.

This has led to some remarkable results, including Shor’s algorithm [99], which can

factor integers in polynomial time, quantum cryptography [26], and the teleportation

protocol [25]. More recently, there has also been much work on the experimental

realisation of contextuality [21, 71], for which one might hope similar applications

can be found.

This dissertation is concerned with understanding the mathematical structure of

non-locality and contextuality. Gaining a deeper, structural understanding of these

phenomena, underpinned by robust and elegant mathematical theory, is important

for a number of reasons. It can provide clarity and new perspectives on conceptual

and foundational issues; it exposes connections with diverse fields in which similar

structures arise in non-physical contexts, raising interesting possibilities for the trans-

fer of methods and insights in both directions; eventually, one also hopes that it can

lead to a more systematic approach to harnessing and utilising both non-locality and

contextuality as resources.

Non-locality and contextuality are properties of the correlations or ‘empirical mod-

els’ that arise from the operational predictions of quantum mechanics. Abramsky &
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Brandenburger showed that empirical models can be precisely described in sheaf-

theoretic terms, and moreover that a very natural unified characterisation of locality

and non-contextuality emerges in this setting [4]. This is the language that will be

used throughout the dissertation, and is described in detail in chapter 1. Another

consequence of the sheaf-theoretic description is the emergence of a hierarchy of non-

locality/contextuality:

Strong Contextuality > Logical Contextuality > Contextuality.

Chapter 2 builds on work published in [79]. It presents a general framework for

logical non-locality, which is a precursor to the more general sheaf-theoretic approach

and is expressed in similar terms. An advantage to our logical framework is that it

comes equipped with a particular representation that provides a powerful means of

reasoning about empirical models. This leads to several interesting results. ‘Hardy’s

paradox’ [59, 60] is considered to be the simplest non-locality proof for quantum

mechanics. We prove a number of completeness theorems which show that it provides

a necessary and sufficient condition for logical non-locality in all (2, 2, l) and (2, k, 2)

scenarios. It will be seen that these have many consequences and applications. These

include a proof that maximally entangled two-qubit states are the only entangled

two-qubit states which are not logically non-local. This is surprising since they are

perhaps the most studied and utilised of entangled states, even though in this light

they appear to be anomalous in terms of non-locality. Much of the literature on

Hardy’s paradox is concerned with the probability of witnessing a paradox, which

has experimental motivations: the highest probability to date is ≈ 0.4 [37]. We also

achieve a striking improvement on this, demonstrating that it is possible to witness

Hardy non-locality with certainty for a tripartite quantum system.

Chapters 3 and 4 are both concerned with developments of the sheaf-theoretic

approach. Non-locality and contextuality are characterised by obstructions to the ex-

istence of global sections of empirical models represented on presheaves. Cohomology

theories can roughly be thought of as descriptions of obstructions to solving some

kind of equation. In chapter 3 we attempt to apply the powerful tools of presheaf

cohomology to witness and characterise non-locality and contextuality. The possible

use of cohomology to study contextuality in the sense of the Kochen-Specker theo-

rem was first suggested by Isham & Butterfield [68], and this work represents the

first progress in this direction. Indeed, we succeed in finding cohomological witnesses

of non-locality and contextuality corresponding to many of the classic no-go results.
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While the approach is not yet strong enough to characterise contextuality in all mod-

els, it can be shown that it yields a complete invariant for contextuality for large

families of Kochen-Specker-like models. A connection is also found between contex-

tuality of empirical models and the problem of the existence of perfect matchings in

k-uniform hypergraphs, which has been much studied in the mathematics literature,

and which leads to results on the complexity of deciding contextuality that are new

to the foundations of quantum mechanics.

In chapter 4, the notion of extendability which was shown by Abramsky & Bran-

denburger to correspond in a unified manner to non-locality and contextuality is

refined. This captures partial approximations to locality and non-contextuality and

can be useful in characterising the properties of sub-models of an empirical model.

The refinement also has another useful application. On practical and foundational

levels, the notion of locality in Bell models can more easily be motivated than the

corresponding general notion of contextuality. It is shown that a particular, canonical

extension, when well-defined, may be used for the construction of Bell models from

models of more general kinds in such a way that the constructed model is equiv-

alent in terms of non-locality/contextuality. This construction can be carried out

for the Kochen-Specker-like models, which throws up some interesting connections

between contextual and non-local models: in particular it relates the simplest pos-

sible contextual model, the contextual triangle of Specker’s parable [75], with the

Popescu-Rohrlich no-signalling correlations [93]. It also suggests a route to proposing

Bell tests that correspond to contextuality proofs.

Chapter 5 contains some initial work on attempting to bring recent developments

in the foundations of quantum mechanics concerning the nature of the wavefunction

within the scope of the logical and structural methods that are set out in the dis-

sertation. As a first step, this involves generalising and reformulating a criterion for

the reality of the wavefunction proposed by Harrigan & Spekkens [63], which is cen-

tral to the PBR theorem [94]. The new criterion has several advantages, including

the avoidance of certain technical difficulties. By considering the reality not of the

wavefunction but of the observable properties of any ontological physical theory a

novel characterisation of non-locality and contextuality is found. A careful analysis

of one of the key assumptions of the PBR theorem also leads to some insights on the

development of a sheaf-theoretic approach to ontological theories.

Finally, while many of the topics dealt with throughout the dissertation are of

quite a theoretical nature, chapter 6 demonstrates that computational exploration can

play an important role in the research programme. A number of computational tools
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have been developed and have been implemented as a Mathematica package. These

cover the calculation of quantum empirical models, and a computational approach to

calculating the degree of contextuality and to finding logical Bell inequalities which

is applicable to any measurement scenario (not just to Bell scenarios) using linear

programming. This provides a useful setting for formulating and testing conjectures.

One particularly interesting result in which computational exploration has played

an important role shows that local ontological models with ‘negative probabilities’

generate the no-signalling polytopes for all Bell scenarios.
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Chapter 1

The Sheaf-theoretic Framework

Any physical theory must make predictions for empirical observations. We will refer

to any (possibly hypothetical) set of empirical observations, or any set of theoretical

predictions for empirical observations, as an empirical model , an example of which is

the following.

00 01 10 11

A B 1⁄2 0 0 1⁄2

A B′ 3⁄8 1⁄8 1⁄8 3⁄8

A′ B 3⁄8 1⁄8 1⁄8 3⁄8

A′ B′ 1⁄8 3⁄8 3⁄8 1⁄8

This should be read as saying that, if measurements A and B are made jointly, then

the probability of A having outcome 0 and B having outcome 0 is 1/2, etc. This

empirical model, which we will return to shortly, arises from the CHSH formulation

[40, 24] of Bell’s theorem [22]. As the example shows, an empirical model can pro-

vide data for joint observations. The data might be probabilistic, as in this case, or

deterministic. We will be particularly concerned with empirical models of the kind

in which measurements have discrete spectra of outcomes, for the reasons that quan-

tum mechanics gives rise to discrete empirical models, and that the features we are

interested in already exhibit themselves at this level.

Non-locality and contextuality are features of correlations in empirical models that

contradict the intuitions underlying classical physics. They arise, in particular, in cer-

tain quantum mechanical predictions and can be confirmed by empirical observation.

A simple example of the non-intuitive nature of these features will be presented in

section 2.1.

The first step to a deeper and more structural understanding of non-locality and

contextuality is to adopt an appropriate framework and language for dealing with
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empirical models, and these features in particular. An early approach was the hidden

variable framework, which will be encountered in chapter 5. We will introduce a

logical framework for non-locality in chapter 2, which is a precursor to the more

general unified sheaf-theoretic framework for non-locality and contextuality due to

Abramsky & Brandenburger [4]. The unified approach can be shown to subsume the

others and is central to the dissertation. This chapter presents an overview of the

main ideas of the approach. The approach itself is further developed in chapters 3

and 4.

1.1 Empirical Models

States and Observables

Many of the empirical models that we will be concerned with arise from quantum

mechanics. One kind of quantum mechanical empirical model can be obtained by

choosing a state and observables and then calculating the expectation values of the

various outcomes. For example, we could specify the following two-qubit Bell state∣∣φ+
〉

=
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B)

and all pairs of local measurements, where

A = B =

 0 1

1 0

 , A′ = B′ =

 0 e−i
π
3

ei
π
3 0


are the available measurements on the respective qubits. The model obtained in this

case is the Bell-CHSH model from before.

State-independent Models

Another kind of quantum mechanical empirical model is the state-independent em-

pirical model, an example of which arises from the Kochen-Specker theorem [73]. We

will refer to the simpler, 18-vector proof of the theorem in R4 [34]. It is shown here

that for any state it is always possible to choose 18 vectors (measurements) labelled

A, . . . , R with the following properties:

• Compatible sets of measurements consist of mutually orthogonal subsets of the

vectors. These are the columns of the table below. Jointly, each compatible set

defines a projective quantum measurement.

6



A A H H B I P P Q

B E I K E K Q R R

C F C G M N D F M

D G J L N O J L O

Joint outcomes assign 1 to the vector onto which the state has been projected,

and 0 to all other vectors.

• The probability distribution arising from each compatible set of measurements

has the same form. There are non-zero probabilities {pi}4
i=1corresponding to

the outcomes {1000, 0100, 0010, 0001}, respectively, such that
∑4

i=1 pi = 1, as

in the following example. The precise values of the probabilities need not be

known.

1000 0100 0010 0001

A B C D p1 p2 p3 p4

State-independent models, therefore, are more general in the obvious sense that

they hold for any state. On the other hand, they do not contain precise probabilistic

information, effectively only indicating which of the outcomes are possible and which

are impossible. Nevertheless, as we will see, non-locality and contextuality can already

exhibit themselves at this level.

No-signalling

No-signalling is a property that is satisfied by all correlations that arise from quan-

tum mechanics in either of these ways. This was originally observed in relation to

compound systems [53], where it can be seen to be a straightforward consequence

of the tensor product structure [70]. It states that if a joint measurement is made

then the probabilities of the various outcomes to a measurement on one sub-system

should not depend on which measurements are made elsewhere. It is clear that in

the case of spatially distributed systems, such behaviour could lead to superluminal

signalling; one experimenter could measure her subsystem and immediately affect the

probabilities of the outcomes to measurements made by another experimenter on a

different subsystem.
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However, it is not difficult to show that this is true more generally of any corre-

lations arising from joint measurements of commuting observables in quantum me-

chanics: this property has been referred to as generalised no-signalling [4] or no-

disturbance [95]. One way of stating this is that for any empirical model predicted by

quantum mechanics, marginal probability distributions are well-defined. For exam-

ple, with reference to the Bell-CHSH model, we can speak of the marginal probability

distribution

p(oA | A) := p(oA | A,B) = p(oA | A,B′)

where p(oA | A,B) :=
∑

oB
p(oA, oB | A,B) ‘forgets’ the outcome of the second

measurement.

Confusion often surrounds this property and its relationship to relativity. First of

all, it should be noted that quantum mechanics is a non-relativistic theory. It is true

that the property forbids superluminal signalling through the measurement process;

but in fact it imposes something even stronger, since it also holds for compatible mea-

surements on a system which is not spatially distributed. It should also be noted that

the analogous form of no-signalling holds in classical mechanics. Values of observables

in a classical system are represented functions of the system’s phase space. Choosing

to evaluate an observable at a particular point in phase space does not in any way

alter the value of another observable at that point. The non-relativistic feature of

classical mechanics is that it allows instantaneous action-at-a-distance: a change of

potential instantaneously affects a particle anywhere in classical space. There is a

similar action-at-a-distance in non-relativistic quantum mechanics, in terms of po-

tentials, but also (at least in the standard formulation) in terms of collapse of the

wavefunction. An attempt at a non-relativistic motivation for the property is con-

tained in [6].

No-signalling does not characterise quantum correlations: there exist no-signalling

correlations that cannot be realised by any quantum system: the Popescu-Rohrlich

correlations [93], for example. Generally speaking, we will assume no-signalling as a

minimum requirement of the empirical models we will be interested in.

1.2 Presheaves & Sheaves

This section contains some basic mathematical background concerning presheaves

and sheaves. These are the structures that we will use to describe empirical models.

Sheaf theory is pervasive in modern mathematics, allowing the passage from local to

global [77]. For the present purposes it suffices to restrict our attention to presheaves

8



and sheaves on a poset. The posets we will be concerned with consist of subsets of

some set X ordered by subset inclusion.

Definition 1.2.1. A presheaf on a poset P is a functor

F : Pop → Set

(or, equivalently, a contravariant functor F : P → Set) where P is regarded as a

category.

The objects of the category P are just the elements of the set P, and there exists

a morphism ip,p′ : p → p′ whenever p ≤ p′. We call these inclusion maps. Then F

assigns a set F (p) to each element p ∈ P and a restriction map F (ip,p′) : F (p′)→ F (p)

to each inclusion map ip,p′ . Functoriality of these assignments implies that

F (ip,p) = idF (p)

for all p ∈ P, and

F (ip,p′′) = F (ip′,p′′) ◦ F (ip,p′)

whenever p ≤ p′ ≤ p′′. Elements of F (p) are called sections , and we will use the

notation s|p := F (ip,p′)(s) for a restriction of a section s ∈ F (p′). If there exists a top

element > ∈ P, then a section s ∈ F (>) is called a global section.

Example 1.2.2. For any poset P, we can define a presheaf F : Pop → Set by

F (p) := {p′ ∈ P | p′ ≤ p} for all p ∈ P and F (p)|q := {p′ ∈ F (p) | p′ ≤ q} for all

q ∈ P such that q ≤ p.

A bounded complete poset P is a poset in which all bounded sets {pj}j∈J have

a least upper bound or join
∨
j∈J pj. For a poset U ⊆ P(X) consisting of subsets of

some set X ordered by subset inclusion, bounded completeness corresponds to the

closure of U under countable unions.

Definition 1.2.3. A presheaf on a poset P is a sheaf if whenever p =
∨
j∈J pj and

there exists a family of sections {sj}j∈J , with sj ∈ F (pj) for each j ∈ J , which

satisfies the compatibility condition:

∀ j, k ∈ J. sj|pj∧pk = sk|pj∧pk ,

then there exists a section s ∈ F (p) such that s|pj = sj for all j ∈ J .

9



A useful intuition is that a presheaf assigns information to a poset in such a way

that the assignment for a particular element can be restricted to lower elements in a

consistent way. A sheaf has the additional property that if assignments exist and are

locally compatible on everything below a particular element then they can be glued

or lifted to provide an assignment on that element. The presheaf defined in example

1.2.2 is also a sheaf.

The relevance of these structures to contextuality in the sense of the Kochen-

Specker theorem is that it is possible to assign values to certain properties of a quan-

tum system (those measured by the vectors A, . . . R) in a way that is consistent over

contexts (the sets of compatible measurements) but that cannot be lifted to a global

assignment of values to all of these properties at once. Analogous, intuitive examples

are the Penrose triangle (figure 1.1) and the Penrose stairs, which are locally but

not globally constructible. Indeed, one could present these examples as families of

sections on appropriate presheaves which do not arise as restrictions of any global

section.

Example 1.2.4. For the triangle, we could label the edges {A,B,C}, take as poset

subsets of the edges labelled by inclusion, and define a presheaf F that for each subset

of edges gives all possible strict total orderings of those edges: e.g.

F ({A,B}) = {A > B, B > A}.

Restrictions arise in the obvious way. If we interpret ‘>’ as ‘appears closer than’ then

the Penrose triangle would represent a family of sections

{s{A,B} = B > A, s{B,C} = C > B, s{C,A} = A > C},

which cannot arise from restrictions of any global section s{A,B,C}, which in this case

would be a strict total order on {A,B,C}.

The Kochen-Specker theorem was first expressed in the language of presheaves by

Isham & Butterfield in [68], which instigated the topos approach to physics. While

there are some similarities between the topos approach and the sheaf-theoretic ap-

proach we are about to set out, we note that there are several key differences. The

topos approach deals with contextuality, but is primarily concerned with the spectral

presheaf, which is derived from an operator algebra, and thus heavily incorporates

much of the mathematical structure of quantum mechanics from the outset. The

present approach will avoid this, and assumes a minimum of quantum mechanical

baggage. It will therefore provide an elegant language for the discussion of non-local
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Figure 1.1: The Penrose Triangle.

and contextual correlations in a more general setting that remains neutral with regard

to any underlying physical theory.

1.3 The Framework

With these examples of empirical models in mind, we set out the sheaf-theoretic

framework. We assume sets X of measurements and O of outcomes. There is an

additional structure on the set of measurements, a cover M over X, which specifies

the sets of compatible measurements: we think of these as sets of measurements that

can be performed jointly. In quantum mechanics, for example, this structure would

arise as the commutative subalgebras of the algebra of observables.

Definition 1.3.1. We will refer to (X,O,M) as a measurement scenario.

We will mainly be concerned with finite measurement scenarios. Sets in the down-

closure U :=↓M will be referred to as contexts and will be denoted by the letters

U, V, . . . ; elements of the cover M itself will be usually be referred to as maximal

contexts and will be denoted by the letters C,D, . . . .

A measurement scenario forms an abstract simplicial complex. For example, figure

1.2 (a) represents the measurement scenario for the Bell-CHSH model, and figure

1.2 (b) represents a similar tripartite measurement scenario in which the shaded

faces represent the maximal contexts (this is the compatibility structure of the GHZ-

Mermin model [58, 57, 83, 84]).

The event sheaf E : Pop(X) → Set is defined by E(U) := OU for each U ⊆ X;

i.e. E(U) contains all functional assignments of outcomes to the measurements in U .

11



Figure 1.2: (a) The compatibility structure of the Bell-CHSH model (b) A similar
tripartite measurement scenario.
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In order to describe an empirical model we must specify a probability distribution

over the assignments E(C) for each maximal context C ∈ M. This can be achieved

by composing E with the distribution functor DR : Set→ Set that takes a set to the

set of R-distributions over it, where R is some semiring. Probability distributions are

obtained when R = R+, the non-negative reals. More generally, it can be useful to

consider other kinds of distributions: for example ‘negative probability’ (R = R) or

‘possibilistic’ (R = B, the Boolean semiring) distributions. The composition of the

two functors, DRE , is a presheaf in which restriction is given by marginalisation of

distributions. Now, an empirical model can be specified by a family of distributions

{eC}C∈M, where each eC ∈ DRE(C).

To avoid confusion between sections of the event sheaf E and the presheaf DRE ,

we will refer to sections of the former as assignments throughout, since they are

understood to assign outcomes to measurements.

We build the property of no signalling into our models by imposing the condition

that the marginals of the distributions {eC}C∈M specifying an empirical model agree

wherever contexts overlap; i.e.

∀ C,D ∈M. eC |C∩D = eD|C∩D.

This implies that there are well-defined distributions eU for all U ∈↓M, since we

obtain the same distribution no matter which maximal context we marginalise from.

This is compatibility in the sense of the sheaf condition.

Definition 1.3.2. An empirical model e over a measurement scenario (X,O,M) is

a compatible family of R-distributions

{eC}C∈M,

12



with eC ∈ DRE(C) for each C ∈M.

We will use tables as a convenient way of representing empirical models throughout

the dissertation. The following example illustrates how such a table is anatomised in

the sheaf-theoretic language.

Example 1.3.3 (The Bell-CHSH Model). The empirical model is again represented

in the following probability table.

00 01 10 11

A B 1⁄2 0 0 1⁄2

A B′ 3⁄8 1⁄8 1⁄8 3⁄8

A′ B 3⁄8 1⁄8 1⁄8 3⁄8

A′ B′ 1⁄8 3⁄8 3⁄8 1⁄8

The measurement scenario is described by X = {A,A′, B,B′}, O = {0, 1} and

M = {{A,B}, {A,B′}, {A′, B}, {A′, B′}}.

The labels for the rows correspond to the maximal contexts, and the cells of each row

C (ignoring the entries for now) correspond to the assignments E(C): for example,

E({A,B}) = {AB 7→ 00, AB 7→ 01,

AB 7→ 10, AB 7→ 11}.

The entries of each row specify the probability distrubution over these assignments

(the joint outcomes): for example, the first row of the table

00 01 10 11

A B 1⁄2 0 0 1⁄2

corresponds to the distribution

e{A,B} ∈ DR+E({A,B}).

The sheaf-theoretic empirical model e obtained in this way is of course well-defined

since it arises from quantum mechanics and is therefore necessarily compatible (no-

signalling).

13



1.4 Locality & Non-contextuality

An important feature of the framework is that it is general enough to provide a unified

approach to non-locality and contextuality. The main result of [4] is the following

theorem.

Theorem 1.4.1 (Abramsky & Brandenburger). An empirical model can be realised

by a factorisable hidden variable model if and only if the model is extendable to a

global section.

By factorisability it is meant that, when conditioned on any particular value of

the hidden variable, the probability assigned to a joint outcome should factor as the

product of the probabilities assigned to individual outcomes. For Bell scenarios this

corresponds exactly to Bell locality [22]. On the other hand, a model is said to be

extendable to a global section precisely when there exists a d ∈ DRE(X) such that

d|C = eC for all C ∈ M. This corresponds to non-contextuality in the sense of the

Kochen-Specker theorem [73].

In the sheaf-theoretic language, then, locality and non-contextuality are charac-

terised in a unified manner by the existence of global sections. Contextuality will

therefore sometimes be used as a general term which is assumed to include non-

locality. This insight has already led to many interesting results [2, 4, 9, 11, 12, 81,

100]. Non-locality and contextuality are characterised by obstructions to the exis-

tence of global sections. In chapter 3 we take this idea further and explore the use of

presheaf cohomology as a tool for identifying such obstructions. In chapter 4 we will

introduce a refinement of the notion of extendability, which can capture the idea of

partial approximations to locality or non-contextuality, and recovers the usual form of

extendability in an appropriate limit. We mention also that the set of global assign-

ments E(X) provides a canonical form of local hidden variable [30, 31]. A simplified

proof is given in chapter 5. In this way, the sheaf-theoretic framework can be said to

subsume the hidden variable approach.

We note that this greatly generalises earlier work by Fine [50], which showed in

certain bipartite Bell-type measurement scenarios1 that for any local hidden variable

model there exists an equivalent deterministic local hidden variable model.

1(2,2,2) Bell scenarios, which will be presented in detail in chapter 2.
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1.5 Possibilistic Models

Since the fundamental insight of Bell [22, 24], it is known that quantum mechanics

gives rise to non-locality. Under some seemingly natural assumptions of locality and

realism, it can be shown that any empirical model would have to satisfy certain

Bell inequalities, which can be violated quantum-mechanically, from which Bell’s

conclusion follows.

A more intuitive, logical approach to non-locality proofs was pioneered by Hey-

wood and Redhead [67], Greenberger, Horne, Shimony and Zeilinger [58, 57] (which

was formulated in a simplified form by Mermin [83, 84]) and Hardy [59, 60] (also

treated by Mermin [86]). This kind of non-locality proof disregards the exact values

of the joint outcome probabilities and only records which of them are non-zero and

which are zero. In other words, one distinguishes only between possible outcomes

and impossible outcomes, and this turns out to be sufficient for demonstrating non-

locality in quantum mechanics. Subsequently, several other non-locality proofs of this

type have been found (e.g. [29, 36, 54]).

In order to present this kind of ‘logical’ argument, it suffices to consider what we

call possibilistic empirical models. One kind of possibilistic empirical model that we

have already encountered is the state-independent model, but in fact we can obtain a

possibilistic model from any empirical model via the process of possibilistic collapse.

In a possibilistic empirical model the distributions are Boolean; i.e. the semiring is

R = B = ({0, 1},∨, 0,∧, 1) where ∨ (‘or’) is addition modulo 2 and ∧ (‘and’) is

multiplication modulo 2. Boolean ‘1’ is understood to denote ‘possible’ and ‘0’ to

denote ‘impossible’.

Possibilistic collapse turns any empirical model into a possibilistic one by conflat-

ing all non-zero probabilities to the Boolean ‘1’. More carefully, its action is described

by the natural transformation γ : DR+ → DB induced by the function

h : R+ → B, p 7→

{
0 if p = 0

1 if p > 0
. (1.1)

Example 1.5.1. The now familiar Bell-CHSH model collapses to the following pos-

sibilistic model.
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00 01 10 11

A′ B 1 0 0 1

A B′ 1 1 1 1

A B′ 1 1 1 1

A′ B′ 1 1 1 1

We introduce a notation that will be extremely useful in dealing with possibilistic

models. The support of a distribution d over Y is the set

supp(d) := {y ∈ Y | d(y) 6= 0} .

For any U ⊆ X we define

Se(U) := {s ∈ E(U) | ∀ C ∈M. s|C∩U ∈ supp(eC)|C∩U} .

That is to say, the set Se(U) contains all functional assignments of outcomes to the

measurements U that are consistent with the model e. In particular, the set Se(X)

contains all the global assignments that are consistent with the model e, and for

each maximal context C ∈ M we have Se(C) = supp(eC). It can be shown that

Se : P(X)op → Set defines a sub-presheaf of the sheaf of events.

The possibilistic content of an empirical model is that which is available at the

level of the support of the distributions of which it is made up. That is because a

Boolean distribution can be equivalently represented by its support: i.e. there is a

bijection

supp(d) ∼= {y ∈ Y | γd(y) = 1}

between the distributions DB(Y ) and the non-empty subsets of Y , and therefore

{Se(C)}C∈M ∼= {γeC}C∈M.

1.6 A Hierarchy of Contextuality

Logical Contextuality

At the possibilistic level, for any empirical model e, we can pose the problem of

whether γe is extendable to a global section. As we have seen, a global section

d ∈ DBE(X) can be equivalently represented by the set supp(d) ⊆ E(X). Then the

problem is to find a Boolean distribution over the global assignments E(X) which
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restricts to γeC for each maximal context C. If such a distribution exists we will say

that e is possibilistically extendable (to a global section).

Using the notation introduced in section 1.5, we are interested in the existence of

a Boolean distribution d ∈ DBE(X) for which the following conditions hold.

1. supp(d) ⊆ Se(X); i.e. all global assignments in supp(d) are consistent with the

empirical model.

2. ∀ C ∈M. ∀ t ∈ Se(C). ∃ s ∈ supp(d). t = s|C ; i.e. any possible local assignment

can be obtained as the restriction of some global assignment in supp(d).

In short,

Se(C) = {s|C | s ∈ supp(d)} (1.2)

for each C ∈M.

There is also an equivalent way to consider possibilistic extendability, which will

be especially relevant in chapters 2 and 3.

Proposition 1.6.1. An empirical model e is possibilistically extendable to a global

section if and only if, for all C ′ ∈ M, each assignment s′ ∈ Se(C
′) belongs to a

compatible family of assignments {sC}C∈M such that sC′ = s′.

Proof. If e is possibilistically extendable to a global section d then by (1.2) there

exists some global assignment s ∈ supp(d) such that s|C′ = s′. We define the family

{sC}C∈M by sC := s|C . Then sC′ = s′ and the family is compatible since it’s defined

by restriction from a global assignment.

For the converse, suppose that s′ ∈ Se(C ′) belongs to a compatible family {sC}C∈M
such that sC′ = s′. Then we can glue these assignments together to form a global

assignment s : X → O defined by s(m) := sC(m) for any C 3 m. This is well-defined

by the compatibility of {sC}. Now we can define the Boolean distribution d with

support supp(d) := {s ∈ E(X) | s′ ∈ Se(C ′) for some C ′ ∈M}. This is a possibilistic

global section since conditions 1 and 2 are trivially satisfied.

Definition 1.6.2. If an empirical model is not possibilistically extendable to a global

section we say that the model is logically contextual (or logically non-local when

appropriate).

These are the empirical models that admit ‘logical’ proofs of non-locality.

Some models can be non-local or contextual without exhibiting the properties at

the possibilistic level: an example is the Bell-CHSH model. However, it can be shown
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that a probabilistic model that exhibits logical contextuality at the possibilistic level

is necessarily contextual at the probabilistic level, too [4]. Logical contextuality is

therefore a strictly stronger form of contextuality. Many familiar empirical models

exhibit logical non-locality or contextuality, including the Hardy model [59, 60], which

will be considered in detail in chapter 2. A recent result [13] even indicates that for

any multipartite qubit state there exists some choice of measurements that will give

rise to logical non-locality.

Example 1.6.3 (The Hardy Model). The support of the Hardy model is represented

in the following table.

00 01 10 11

A B 1 1 1 1

A B′ 0 1 1 1

A′ B 0 1 1 1

A′ B′ 1 1 1 0

The local assignment t : AB 7→ 00 cannot be obtained as the restriction of any

global assignment s : ABA′B′ 7→ 00oA′oB′, and therefore condition 2 for possibilistic

extendability does not hold.

Strong Contextuality

Recall that Se(X) consists of those global assignments that are consistent with the

support of e; i.e. whose restrictions to every context of compatible observables are

possible according to e. These are the only global assignments that could be taken

to be possible. It has already been observed that if a possibilistic extension d ∈
DBE(X) exists then supp(d) ⊆ Se(X), and it is clear that in this case Se(X) is

also a possibilistic extension of e. This follows from condition 2: if any possible

local assignment arises as the restriction of an assignment in supp(d) then, since

supp(d) ⊆ Se(X), it arises as a restriction of an assignment in Se(X). For this reason,

Se(X) can be regarded as providing a canonical candidate for a possibilistic extension

of the empirical model e.

In general, the set Se(X) of consistent global assignments can fail to determine

an extension of the empirical model e if it isn’t large enough to account for all ‘local’

assignments that are possible in e; that is, if there exists some assignment s ∈ Se(C)

on some maximal context C ∈ M which does not arise as a restriction of a global
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assignment in Se(X), as in example 1.6.3. The extreme case happens when Se(X) is

empty (then, Se(X) does not even determine a distribution over E(X)). This means

that there is no global assignment that is consistent with the support of e. In this

case, we say that the model e is strongly contextual (or strongly non-local, when

appropriate).

Note that to have non-empty Se(X) is a weaker property than possibilistic extend-

ability: it is simply asking for the existence of some global assignment consistent with

the support of e. Correspondingly, the negative property is stronger than possibilistic

non-extendability (possibilistic contextuality/non-locality). Some of these ideas will

be generalised in chapter 4.

The Hardy model of example 1.6.3 is logically non-local but not strongly non-

local. Strong contextuality is displayed by many models, however, including the

GHZ-Mermin model [83, 84], the 18-vector Kochen-Specker model, the Peres-Mermin

‘magic square’ [85, 91] and the Popescu-Rohrlich correlations [93].

Example 1.6.4 (The GHZ-Mermin Model). This model will also be considered in

more detail in chapter 2. Its support is represented in the following table.

000 001 010 011 100 101 110 111

A B C 1 0 0 1 0 1 1 0

A B C ′ 1 1 1 1 1 1 1 1

A B′ C 1 1 1 1 1 1 1 1

A B′ C ′ 0 1 1 0 1 0 0 1

A′ B C 1 1 1 1 1 1 1 1

A′ B C ′ 0 1 1 0 1 0 0 1

A′ B′ C 0 1 1 0 1 0 0 1

A′ B′ C ′ 1 1 1 1 1 1 1 1

Here, no local assignment can be completed to a consistent global assignment.

We thus arrive at a strict hierarchy of contextuality:

Strong Contextuality > Logical Contextuality > Contextuality.

In terms of familiar representative non-local models of these classes,

GHZ > Hardy > Bell.
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1.7 Towards an Ontological Theory

Many current research programmes are concerned with the problem of reformulating

or axiomatising quantum mechanics (e.g. [38, 61, 69]). At the foundational level, a

goal of such programs is often to provide a framework for possible theories that might

allow one to identify special or defining features of quantum mechanics. Another

eventual goal might be to provide a framework that is compatible with quantum

mechanics while at the same time being general enough to allow for a possible theory

of quantum gravity.

The sheaf-theoretic framework provides and elegant and powerful unified approach

to the non-locality and contextuality of correlations in empirical models in a way that

is neutral with respect to whatever theory might give rise to the correlations. In this

section we outline some steps towards a sheaf-theoretic framework for axiomatising

ontological theories, in which this neutrality can be a useful feature, drawing on ideas

from [5].

The following is a consequence of Gleason’s theorem [56], which provides a moti-

vation to think of empirical models as states (for a more detailed discussion see [45]

and [46]).

Proposition 1.7.1. Let H be the Hilbert space for a quantum system with observables

A ⊆ B(H), a von Neumann (sub)algebra of the set of bounded linear operators on

H. Let C(A) be the set of commutative subalgebras of A. There is a one-to-one cor-

respondence between the no-signalling empirical models on the measurement scenario

(A,R,C(A)) derived from the compatibility structure of the observables and the set

of positive linear functionals on A (the Gleason states).

This tells us that if we consider the measurement scenario of all the possible

observables on a quantum mechanical system, no-signalling models correspond in a

precise way to the quantum states. We will use this as the motivating example for

setting up a sheaf-theoretic framework for ontological theories. It should also be noted

that if one were to restrict attention to a smaller algebra of observables, this could

allow for a larger space of Gleason states, which would no longer coincide with the

quantum states [14].

As an aside, the proposition justifies the use of the terms non-local, logically non-

local, etc. to describe quantum states for which there exist some sets of compatible

observables such that the resulting empirical model has the particular property. This

terminology was introduced in [9].
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Definition 1.7.2. A state is said to be (logically/strongly) contextual (or non-local)

if there exist some observables such that the resulting empirical model has that prop-

erty.

Since a quantum state can be considered as an empirical model in its own right,

the existence of some subset of the observables A giving rise to a non-local model

implies non-locality of the state, because the existence of a global section for the state

would imply, by restriction, the existence of a global section for any such sub-model.

We note also that if R4 can be embedded into the Hilbert space of a quantum system,

then by the 18-vector Kochen-Specker theorem (which is state-independent) all states

of that system are (strongly) contextual in this sense.

For convenience we fix a single outcome set O = R.

• To each system A we associate a system type (XA,MA), and a set of states

SA which are (no-signalling) empirical models over the measurement scenario

(XA, O,MA). The system A is completely defined by the tuple (XA,MA, SA).

A morphism of system types is a simplicial map f : (XA,MA)→ (XB,MB); i.e. a

map f : XA → XB such that f(C) ∈↓ MB for all C ∈ MA. Recall that ↓ MB, the

down-closure of MB, which contains all (not necessarily maximal) contexts for the

system B, is defined by

↓ MB := {U ∈ P(XB) | ∃ C ′ ∈MB. U ⊆ C ′} .

So every maximal context in the system A maps to a valid context in the system B.

This induces a map f ∗ : SB → SA (note the reversal) on states defined by

f ∗(e)C(s) :=
∑

s′∈E(f(C))

s′◦f=s

ef(C)(s
′),

for any e ∈ SB and C ∈ MA. That f ∗(e) is a well-defined model follows from the

compatibility of e.

• A morphism of systems f : (XA,MA, SA) → (XB,MB, SB) is a morphism of

system types with the additional property that f ∗(SB) ⊆ SA. This can be

interpreted as saying that each state in SB must be reachable from some state

in SA.

It is clear that identities and compositions are well-defined, so systems and morphisms

of systems form a category C, which we call the category of systems.
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Furthermore, we would like to be able to treat compound systems. For a system of

type A and a system of type B there should be a means of composing these to obtain

a compound system of type A⊗B in a coherent way. The appropriate structure is a

symmetric monoidal product structure on the category of systems. The idea of using

this kind of structure to treat compound systems has been developed extensively in

the categorical quantum mechanics programme [7, 8], and we will not labour the

point here.

• For systems A given by (XA,MA, SA) and B given by (XB,MB, SB) we define

the compound system A⊗B by the tuple

(XA⊗B,MA⊗B, SA⊗B)

where XA⊗B := XA tXB, the disjoint union of the measurement sets,

MA⊗B := {CA t CB | CA ∈MA, CB ∈MB} ,

and

SA⊗B := {e a state on (XA⊗B, O,MA⊗B) | e|A ∈ SA, e|B ∈ SB} .

The action on morphisms is the obvious one which lifts from the coproduct

(disjoint union) of measurement sets.

(C,⊗) forms a symmetric monoidal category.

These three axioms can provide a basic setting in which to consider ontological

theories in the sheaf-theoretic language. Of course there may be other restrictions

or axioms that we would wish to impose; for example, we might wish to restrict

attention to certain types of systems, or certain states on systems, or to impose

axioms such as local tomography or the Hardy composition principle [62], etc. A sheaf-

theoretic ontological theory, then, would be some symmetric monodical subcategory

of (C,⊗). In chapter 5 we will suggest some other ways in which this approach might

be developed.

1.8 Discussion

The sheaf-theoretic framework provides a precise mathematical language for analysing

empirical data or predictions, and can be a powerful, unifying approach to the foun-

dations of quantum mechanics. We have seen that a very natural, unified character-

isation of non-locality and contextuality, the key features of quantum correlations,
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emerges in the general setting. This has already led to a string of interesting results,

such as the classification of contextuality of section 1.6. The deeper, more structural

approach can raise surprising and interesting connections with other fields. On the

one hand, it raises possibilities for the use of new methods and results in the study

of non-locality and contextuality: the mathematics of cohomology, which will be con-

sidered in chapter 3, or game theory [100], for example. On the other hand, it can

also lead to the wider application of foundational research: to relational database

theory [2] or linguistics [96], for example. These possibilities have only begun to be

investigated.
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Chapter 2

Hardy’s Paradox as a Logical
Condition for Non-locality

In this chapter, which builds on work published in [79], we consider a general frame-

work for logical non-locality proofs, which takes some inspiration from the relational

hidden variable framework of Abramsky [3]. Though not as general, it can be con-

sidered as a precursor to sheaf-theoretic framework [4], which it predates. More

specifically, we study logical Bell inequalities in (n, k, l) Bell scenarios, where n is

the number of sites, k is the number of allowed measurements at each site, and l is

the number of possible outcomes for each measurement. This is a purely possibilis-

tic version of the sheaf-theoretic framework for such scenarios, which comes with a

particular representation for n = 2 and n = 3 scenarios that can provide a powerful

means of reasoning about empirical models.

Hardy’s non-locality ‘paradox’ is a proof without inequalities showing that certain

non-local correlations violate local realism [59, 60]. It is considered to be the simplest

non-locality proof for quantum mechanics. What we find appears to be a remark-

able universality of Hardy’s paradox. We prove a number of completeness theorems

showing that it is a necessary and sufficient condition for logical non-locality in all

(2, k, 2) and (2, 2, l) scenarios, subsuming, for example, ladder paradoxes [29]. We

show that we can even interpret the logical versions of the no-signalling condition

and the normalisation of probabilities as degenerate cases of the non-occurrence of

coarse-grained Hardy paradoxes. However, for the (2, 3, 3) and (3, 2, 2) scenarios we

find new logical locality conditions which can be violated without the occurrence of

a Hardy paradox.

These completeness results have many interesting consequences. They lead to a

constructive argument that the Popescu-Rohrlich box is the only strongly non-local

(2, 2, 2) model, and to a proof that Bell states are not logically non-local. Since

all other entangled two-qubit states can be shown to witness a Hardy paradox [60]
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this proves the surprising result that the Bell states are the only such states that

are not logically non-local. Together with recent results indicating that all n-partite

entangled qubit states for n > 3 are logically non-local [13], this shows that the Bell

states are anomalous in this respect, in spite of the fact that they are perhaps the

most studied and utilised entangled states. It also leads to the discovery of a family

of no-signalling empirical models which lie within the Tsirelson bound and can have

an arbitrarily small violation of the CHSH inequality though they are not quantum

realisable.

Much of the literature on Hardy’s paradox is concerned with the probability of

witnessing a paradox, which is often considered to be a measure of the quality of

Hardy non-locality. This has experimental motivations. The original Hardy paradox

can be witnessed with maximum probability (5
√

5 − 11)/2 ≈ 0.09. It has been

shown, however, that it is possible to witness a generalisation of Hardy’s paradox

with probability 0.125 for a tripartite quantum system [54], and more recently that

another generalisation of Hardy’s paradox can be witnessed with probability ≈ 0.4

for a high-dimensional bipartite quantum system [37].

Using the present framework, we will achieve a striking improvement on these

results, and demonstrate by a much simpler argument that it is possible to witness

Hardy non-locality with certainty for a tripartite quantum system. Interestingly,

the argument relies on the same state and measurements as the GHZ experiment

[57]. We also show that Hardy non-locality can be achieved with certainty for a

particular non-quantum, no-signalling (2, 2, 2) empirical model, which turns out to

be the Popescu-Rohrlich no-signalling box [93].

2.1 Hardy’s Non-locality Paradox

The original Hardy argument concerns the (2, 2, 2) scenario. To give a concrete ac-

count of the argument we consider an idealised experiment in which measurements

are carried out in Alice’s lab and Bob’s lab, which share a (possibly entangled) quan-

tum state. Each experimenter can choose to make one of two measurements on their

subsystem, which we call polarisation and colour. Each measurement has two possi-

ble outcomes: {↑, ↓} for polarisation, and {G,W} for colour. We assume that Alice

and Bob perform very many runs of the experiment (each time starting with the

same shared state) and then tabulate their results as in table 2.1. A ‘1’ in the table

signifies that it was possible to obtain those two outcomes in the same run, and a ‘0’

signifies that this never happened. Such a specification of possibilities is of course an
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Table 2.1: An empirical model containing a Hardy paradox. This is a possibilistic
table with ‘1’ standing for ‘possible’ and ‘0’ standing for ‘impossible’. The blank
entries are not relevant to the argument.

Bob

Alice

↑ ↓ G W

↑ 1 0

↓

G 0

W 0

empirical model. Recall from chapter 1 that any probabilistic empirical model can be

transformed into a possibilistic one in a canonical way via possibilistic collapse: the

process by which all non-zero probabilities are conflated to ‘1’.

The partially completed table 2.1 is Hardy’s paradox. Notice that the table is of a

different form to those of chapter 1. Empirical models will be represented in this way

throughout the chapter. We have deliberately chosen this particular representation

because, as we will see shortly, it allows one to more easily recognise various features

of empirical models and to reason about them. However, it is not used elsewhere in

the dissertation since it cannot be straightforwardly generalised beyond n = 3. For

the present tabular representation of empirical models we will use the terminology

that measurements label rows/columns, joint measurements label boxes, outcomes

label sub-rows/columns, and joint outcomes label entries.

The apparent paradox arises because the table tells us that, when both experi-

menters measured polarisation, it was possible for them to both get the outcome ↑;
but, when one measured polarisation and the other measured colour, it never hap-

pened that they could obtain ↑ and W together. From these statements it seems that

whenever ↑ was measured in one lab, the colour in the other lab must have had the

value G; and since it was possible for both to get the outcome ↑, then it should have

been possible for both to get the outcome G if the experimenters had instead decided

to measure colour on those runs. However, the remaining specified entry in the table

tells us that it was not possible for both experimenters to measure G. Despite this

apparent paradox, such behaviour is actually predicted by quantum mechanics.

Definition 2.1.1. We say that the joint outcome (↑, ↑) witnesses a Hardy paradox.
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Of course, in stating this argument, we have made some tacit assumptions. In par-

ticular, we have assumed some form of locality (or, to be more precise, no-signalling)

by supposing that, for each run, Bob’s choice of measurement did not affect Alice’s

outcome and vice versa. As discussed in section 1.1, such behaviour could give rise

to faster-than-light communication between far distant labs, which is prohibited by

special relativity. We have also implicitly assumed some form of realism: that colour

and polarisation had definite values even when they were not being measured. With-

out such an assumption, of course, it would be difficult to give sense to a notion of

locality. A further assumption, which concerns the free-choice of experimenters, is

that every combined measurement choice has some outcome. This is related to the

property of λ-independence, which will be discussed in chapter 5.

Throughout the dissertation we refer to this as Hardy’s paradox, though we draw

attention to the fact that it is only an apparent paradox. Really, this is a non-locality

theorem, which states that models of a certain form cannot satisfy the properties of

locality and realism.

We can write the condition for non-occurrence of the Hardy paradox in table 2.1

as a formula in Boolean logic:

p(↑, ↑) → p(↑,W ) ∨ p(W, ↑) ∨ p(G,G) ,

where the p(i, j) ∈ {0, 1} are the entries of the table, or the possibility values for Alice

to obtain outcome i and Bob to obtain outcome j. This can be thought of as a logical

Bell inequality. For the (2, 2, 2) scenario, there are 64 versions of the Hardy paradox

which one obtains from table 2.1 by permuting the order or labelling of measurements

and outcomes.

2.2 Properties of Empirical Models

In any discussion of locality, realism, etc. it is important to be careful about which

properties are being assumed or inferred. In chapter 1 we mentioned some properties

that empirical models might have. We will now present various properties in the

context of our tabular representation of n = 2 possibilistic empirical models.

Definition 2.2.1. Measurement locality is the property that at each site the allowed

measurements are independent of which measurements are made at the other sites.

We assume from the outset that all the models we deal with satisfy measurement

locality. For n = 2, this is equivalent to the property that if the table of a model
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Table 2.2: Examples of possibilistic empirical models: (a) a deterministic empirical
model; (b) a local model; (c) a signalling model.

↑ ↓ G W

↑ 1 0 1 0

↓ 0 0 0 0

G 1 0 1 0

W 0 0 0 0

↑ ↓ G W

↑ 1 0 1 0

↓ 1 0 0 1

G 1 0 1 0

W 1 0 0 1

↑ ↓ G W

↑ 1 0 1 0

↓ 0 0 0 0

G 0 1 1 0

W 0 0 0 0

(a) (b) (c)

has any zero box then that box must belong to a row (or column) of zero boxes, for

otherwise the choice of measurement at one site would affect the available measure-

ments at the other. This allows us to omit such rows/columns of zero boxes in the

tabular representation and to assume that all tables are totally defined on the domain

of measurement choices.

Definition 2.2.2. (Possibilistic) no-signalling (NS) is the property that the choice of

measurement at one site does not affect the possible outcomes at another site.

In terms of the tabular representation, this means that if a sub-row has any ‘1’

then that sub-row must have a ‘1’ in each box, and similarly for sub-columns. For

example, table 2.2 (a) and (b) are both no-signalling, while (c) is signalling. In (c), if

Alice measures polarisation then the outcome of a polarisation measurement by Bob

has to be ↑, but if Alice measures colour then Bob always gets ↓. It can be shown

that if an empirical model violates possibilistic no-signalling then it also violates

probabilistic no-signalling. The converse does not hold in general [3].

Definition 2.2.3. (Strong) determinism is the property that the outcome at each site

is uniquely determined by the measurement at that site.

In the tabular form, this property says that each box should contain at most one

‘1’, and that the ‘1’s are consistent with no-signalling in that they line up in the same

sub-rows/columns where possible. We call such an arrangement of ‘1’s a determin-

istic grid (in the sheaf-theoretic language, these correspond to global assignments).

Table 2.2 (a) is an example of a deterministic model. By this definition, determinism

implies no-signalling.
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In order to define local models, we need a notion of stochastic mixtures in our

possibilistic setting. We define the mixture of a model A with entries pAij and a model

B with entries pBij to be the model with entries

pij ≡ pAij ∨ pBij .

This means that an outcome is possible in the mixture if and only if it is possible in

at least one component of the mixture. Note that there is no mixing parameter of

the kind that arises when considering stochastic mixtures of probabilistic models.

Definition 2.2.4. The local models are those that can be obtained by taking mixtures

of arbitrary sets of deterministic models.

This corresponds to the existence of a possibilistic global section in the sheaf-

theoretic approach. In the tabular representation, a model is local if and only if every

‘1’ in its table belongs to some deterministic grid. An example of a local model is

table 2.2 (b). The model in table 2.1 used to explain Hardy’s paradox is not local,

since the ‘1’ in that table cannot be completed to a deterministic grid. In other words,

the assignment does not belong to a compatible family of assignments, one for each

context, c.f. proposition 1.6.1.

By theorem 1.4.1, the local models are precisely the models that can be described

by (factorisable) local hidden variable models. The decomposition of local models into

deterministic models described here can be seen as a canonical form of hidden variable

model in which each value of the hidden variable corresponds to a deterministic

model. The fact that all local hidden variable models for the (2, 2, 2) scenario can be

captured in this way follows from the work of Fine [50], but theorem 1.4.1 holds for

all measurement scenarios, even those which are not of the Bell form.

We then obtain the following proposition, which facilitates the application of our

results to the usual probabilistic setting:

Proposition 2.2.5. With these definitions, possibilistic collapse takes probabilistic

local models to possibilistic local models. Conversely, every possibilistic local model

can be written as the possibilistic collapse of a probabilistic one.

Proof. The first statement is clear from the fact that a non-trivial convex combination

of two probabilities pA, pB ∈ [0, 1] is non-zero precisely when at least one of pA or pB is

non-zero. For the second statement, we simply write a given possibilistic local model

as a mixture of deterministic models and assign an arbitrary non-zero probability to

each of these models such that the probabilities sum to 1. This defines a probabilistic

local model with the required property.
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Table 2.3: A (2, 2, l) scenario with a H(m1,m2) coarse-grained Hardy paradox.

o′1 · · · o′l o1 · · · om2 om2+1 · · · ol
o′1 1 0 · · · 0
...

o′l

o1

...

om1

0 · · · 0
...

. . .
...

0 · · · 0

om1+1

...

ol

0
...

0

We interpret this as saying that a non-locality proof without inequalities (or a

logical non-locality proof) exists for a given empirical model if and only if it is non-

local in the sense of definition 2.2.4.

2.3 Coarse-grained Versions of Hardy’s Paradox

For (2, 2, l) scenarios, we consider coarse-grainings of the Hardy paradox. The basic

form is the same as in the (2, 2, 2) case (table 2.1), but in the general case (table 2.3)

we have m1×m2, (l−m1)×1 and 1×(l−m2) subtables of ‘0’s, where 0 < m1,m2 < l.

Any empirical model whose table is isomorphic (up to permutations of measurements

and outcomes) to table 2.3 for some values of m1 and m2 is said to have a coarse-

grained Hardy paradox. We use the notation H(m1,m2) for this property.

Conditions for the non-occurrence of a paradox can still be written as a logical

formula. For table 2.3 the corresponding formula is

p(o′1, o
′
1)→

l∨
r=m1+1

p(or, o
′
1) ∨

l∨
s=m2+1

p(o′1, os) ∨
∨

r∈[1,m1]
s∈[1,m2]

p(or, os) .

We use the notation NH(m1,m2) for the property that all such formulas are satisfied

for a particular model.
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The coarse-graining includes the degenerate values 0 and l for m1 and m2. The

cases m1 = 0, m2 = l and m1 = l, m2 = 0 are especially interesting.

Proposition 2.3.1. The no-signalling condition can be stated as the logical predicate

NS = NH(0,l) ∧ NH(l,0) .

Proof. For table 2.3, NH(0,l) and NH(l,0) state that the first sub-column in the lower

left box needs to contain some ‘1’, and, respectively, that the first sub-row in the

upper right box needs to contain some ‘1’. These are the possibilistic no-signalling

relations. By permutations of measurements and outcomes, these apply to any ‘1’ in

the table; so for the no-signalling predicate we get NS = NH(0,l) ∧ NH(l,0).

The case that m1 = m2 = l is also interesting.

Proposition 2.3.2. The condition that there exists a well-defined Boolean distribu-

tion at each context (or the ‘normalisation of possibility’) can be expressed as NH(l,l).

Proof. For table 2.3 NH(l,l) simply expresses that the lower right box in table 2.3

should contain at least some ‘1’. This is the normalisation of possibility: in order to

form a well-defined Boolean distribution at each context, at least one outcome has to

be possible for each choice of measurements. So given that at least some ‘1’ occurs

somewhere in the table of a no-signalling model, the normalisation of possibility is

equivalent to NH(l,l).

These properties and observations extend to all (2, k, l) Bell scenarios by consid-

ering 2×2 subtables. Moreover, when we consider coarse-grainings of the generalised

version of Hardy’s paradox for (n, 2, 2) Bell scenarios in the next section, it will be

clear that these observations extend in an obvious way to all (n, k, l) Bell scenarios.

2.4 An n-partite Hardy Paradox

Wang and Markham have described a generalisation of the Hardy paradox to (n, 2, 2)

scenarios which can be used to demonstrate that all symmetric n-partite qubit states

for n > 2 are logically non-local [104]. This kind of generalisation has been described

elsewhere by Ghosh, Kar and Sarkar [54], and is also considered in [36] and [39]. If

measurements and outcomes are both labelled by {0, 1} at each site, then a gener-

alised Hardy paradox occurs if (up to re-labelling of measurements and outcomes)

the following possibilistic conditions are satisfied.
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Figure 2.1: The n = 3 Hardy paradox. The blue entry corresponds to Boolean ‘1’ or
‘possible’, and the red entries to ‘0’ or ‘impossible’. The blank entries are unspecified.

• p( 0, . . . , 0 | 0, . . . , 0 ) = 1

• p (π(1, 0, . . . , 0) | π(1, 0, . . . , 0) ) = 0 for all permutations π

• p( 0, . . . , 0 | 1, . . . , 1 ) = 0

Then, since all possibilities p(o1 . . . on | m1 . . .mn) are Boolean valued, we can

consider these as logical propositions and write the following formula in Boolean logic

for the non-occurrence of a generalised Hardy paradox:

p( 0, . . . , 0 | 0, . . . , 0 ) →∨
π∈permutations

p ( π(1, 0, . . . , 0) | π(1, 0, . . . , 0) ) ∨ p( 0, . . . , 0 | 1, . . . , 1 ) .

For the purposes of this chapter it is not necessary to go beyond the n = 3 paradox,

which can be represented in a three dimensional version of the tabular representation

described in section 2.2; see figure 2.1. The advantage of the representation is that it

provides a powerful visual means of analysing models.

The axes correspond to different sites, the cubes to joint measurement choices,

and individual entries to outcomes, similarly to the n = 2 case. The properties of

the tabular representation generalise in the obvious way to the third dimension. For

example, the blue entry in figure 2.1 cannot be completed to a deterministic grid, and

so any (3, 2, 2) model containing this paradox is logically non-local.
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2.5 Universality of Hardy’s Paradox

In this section we will prove a number of completeness theorems, which show that the

occurrence of a (coarse-grained) Hardy paradox is a necessary and sufficient condition

for logical non-locality in certain Bell scenarios. In other words, for the scenarios we

will describe, logical non-locality is always due to the occurrence of a Hardy paradox.

We write NH for the property that no coarse-grained Hardy paradox occurs in a

given model.

Theorem 2.5.1. For the (2, 2, 2) scenario, the property of non-occurrence of any

coarse-grained paradox is equivalent to possibilistic locality:

NH ↔ (Locality) . (2.1)

Proof. We have already demonstrated in section 2.1 that an occurrence of the Hardy

paradox implies a violation of locality. It only remains to prove that NH implies

locality. By the observations at the end of the last section, we know in particular

that NH implies NS, so that we can freely use the latter.

From the earlier definition, a model is local if and only if every ‘1’ in its tabular

representation belongs to some deterministic grid. We begin by choosing an arbitrary

‘1’ in the table. Without loss of generality (w.l.o.g.) let this be the ‘1’ in table 2.4

(a). Then, by NS, the first sub-row must have a ‘1’ in each box, and similarly for

the first sub-column. Again w.l.o.g. we let these be the entries in table 2.4 (b). If

the starred entry here is a ‘1’, this completes the first entry to a deterministic grid

and we’re done. Assume that the starred entry is a ‘0’. Then, by no-signalling, we

can fill in the ‘1’s in the lower right box of table 2.4 (c). Now, if either of the starred

entries in this table is a ‘1’, this completes the first entry to a deterministic grid. This

must be the case, for if it were not then the ‘0’s in these places would form a Hardy

paradox together with the first entry and the ‘0’ in the lower right box; but we have

assumed the property NH.

This theorem generalises easily to (2, 2, l) scenarios.

Theorem 2.5.2. For (2, 2, l) scenarios, the property of non-occurrence of any coarse-

grained Hardy paradox is equivalent to locality; i.e. (2.1) holds for (2, 2, l) scenarios.

Proof. Again, it is enough to show that the left-hand side implies the right-hand

side while assuming NS. If we take an arbitrary ‘1’ in the table, we can re-label

measurements and outcomes such that this ‘1’ appears in the upper-left corner of the
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Table 2.4: Stages in the proof of theorem 2.5.1.

1 1 1

1 *

1 1 *

1 0 1

* 1

(a) (b) (c)

table, and such that for the upper-right and lower-left boxes, the first sub-row and

sub-column, respectively, non-zero entries (of which, by no-signalling, there must be

at least one) appear before zero entries, as in table 2.5. Assuming that there is no

coarse-grained paradox, at least one of the starred entries must be a ‘1’, and this

completes the arbitrarily chosen ‘1’ to a deterministic grid.

We can also generalise theorem 2.5.1 to (2, k, 2) scenarios.

Theorem 2.5.3. For (2, k, 2) scenarios, the property of non-occurrence of any Hardy

paradox is equivalent to locality; i.e. (2.1) holds for (2, k, 2) scenarios.

Proof. By theorem 2.5.1, we know that this holds for k = 2, and will show by induc-

tion that it holds for all k. It is useful to use the tabular representation of models

in what follows. In this setting, it must be shown that every ‘1’ in a given table can

be completed to a deterministic grid of ‘1’s, assuming that no Hardy paradox occurs.

We will show that this property holds for all k1 × k2 tables, i.e. for all scenarios with

k1 two-outcome measurements for Alice and k2 two-outcome measurements for Bob,

given that it holds for all k1 × (k2 − 1) tables and all (k1 − 1) × k2 tables. As base

cases, we know this to be trivially true for all k1 × 1 and 1× k2 tables.

First we prove the inductive step in the special case that some sub-row or sub-

column in the k1 × k2 table consists entirely of ‘0’s. Suppose we have an outcome

sub-column of ‘0’s for some measurement setting of Bob. Then if Bob makes this

measurement the is just one possible local outcome, which occurs with certainty. We

pick any ‘1’ in the table. If this ‘1’ is in the same measurement setting of Bob as

the sub-column of ‘0’s, then by no-signalling its sub-row has a ‘1’ in each box of

the same setting for Alice. We choose any other of these ‘1’s and complete it to a
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Table 2.5: Taking an arbitrary ‘1’ (upper left) in the table of a no-signalling model
forces the table to be of this form.

1 1 · · · 1 0 · · · 0

1
...

1

∗ · · · ∗
...

. . .
...

∗ · · · ∗

0
...

0

deterministic grid in the k1×(k2−1) table obtained by ignoring the particular setting

of Bob. Then, by no-signalling, this must complete to a k1 × k2 deterministic grid.

If the initial ‘1’ is in a different measurement setting of Bob to the column of ‘0’s,

one can similarly forget the latter setting and apply the induction assumption to the

remaining k1× (k2− 1) table. Again, the resulting deterministic grid in the sub-table

completes uniquely to the whole table by no-signalling. A similar argument holds for

sub-rows of ‘0’s.

Now we need to prove the inductive step in the case that there are no sub-rows or

sub-columns of ‘0’s. By no-signalling, this is equivalent to no individual box having

a sub-row/column of ‘0’s. Hence we can assume that every box has a diagonal or

anti-diagonal of ‘1’s. We choose an arbitrary ‘1’ in the table, which w.l.o.g. we can

write in the upper left corner. By the inductive hypothesis, this can be completed to

a k1 × (k2 − 1) deterministic grid, which w.l.o.g. we write in the upper left corners of

all boxes up to Bob’s (k2 − 1)th setting (see table 2.6).

Assume that this deterministic grid does not complete to Bob’s k2th setting. Then

there must be a ‘0’ in the upper right corner of some box(es) of Bob’s k2th setting,

and a ‘0’ in the upper left corner of some box(es) in the same setting. In table 2.6, we

have illustrated a representative situation, including the diagonals or anti-diagonals

that these boxes must have. In order to avoid a Hardy paradox triggered by the ‘1’s
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Table 2.6: Table for the proof of theorem 2.5.3.

1
· · ·

1 1 0

1

1

*
· · ·

1

*

0 1

1

1
· · ·

1

. . .

in the top sub-row, we must have ‘1’s in the starred places, corresponding to all those

sub-rows where the ‘0’ in the k2th setting of Bob occurs on the upper left. But now

we can find a deterministic grid including the initial ‘1’ for table 2.6 by choosing the

second outcome for Alice in the case of a starred row and the first outcome otherwise,

while choosing the first outcome for Bob in all measurements.

2.6 Applications

We now present some results that follow from the completeness theorems of the

previous section.

Complexity

The theorems can tell us something about the computational complexity of recog-

nising logical non-locality, which in the relevant scenarios is equivalent to deciding

whether a Hardy paradox occurs.

Proposition 2.6.1. Polynomial algorithms can be given for deciding non-locality in

(2, 2, l) and (2, k, 2) models.

Proof. For (2, k, 2) scenarios, deciding whether a model is local or non-local simply

amounts to checking all 2 × 2 sub-tables for such a Hardy paradox, which gives an

algorithm that is polynomial in the size of the input: we check for the 64 possible

Hardy configurations in each of
(
k
2

)2
sub-tables, which is clearly O(k4). For (2, 2, l)
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Table 2.7: A ladder paradox. The (2, 2, 2) ladder paradox is just the standard Hardy
paradox.

1 0

0

* . . .

. . .
0

0

0

scenarios, one has to check whether each ‘1’ in the table can be completed to a

deterministic grid. Following the illustration in table 2.5, it must be checked whether

there is some ‘1’ among the starred entries, which is equivalent to the non-occurrence

of the coarse-grained Hardy paradox. There are 4l2 entries in the table, and each

check is clearly O(l2). Again, we have an algorithm that is polynomial in the size of

the input.

Ladder Paradoxes & Other Generalisations

The ladder paradox [29] has been proposed as a generalisation of the original Hardy

paradox and was used for experimental tests of quantum non-locality [17]. Up to

symmetries, there is one ladder paradox for any number of settings k. It can be

presented neatly in tabular form (table 2.7). We will not explain here how the ladder

paradox is in contradiction with locality, as our theorem 2.5.3 makes it clear that the

ladder paradox has to be subsumed by the original Hardy paradox in terms of its

strength for proving non-locality.

Proposition 2.6.2. For (2, k, 2) scenarios, the occurrence of a ladder paradox implies

the occurrence of a Hardy paradox.

Proof. This follows as a corollary of theorem 2.5.3, but one can also prove the propo-

sition more directly. If the starred entry in table 2.7 is a ‘0’, then the Hardy paradox
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Table 2.8: The Chen et al. paradox occurs when at least one of the starred entries is
non-zero. The relevant entries for each joint measurement are either those above or
those below the diagonal.

* · · · * 0 · · · 0
. . .

...
. . .

...

* 0

0 · · · 0
. . .

... 0

0
...

. . .

0 · · · 0

occurs; if it is a ‘1’, then the ladder paradox for k − 1 settings is triggered by this

‘1’. Applying the argument recursively, we find that either the Hardy paradox occurs

somewhere in the table, or the ladder paradox for two settings occurs. Since the lat-

ter is again just a Hardy paradox, we find that Hardy’s paradox occurs in any case.

Hence the occurrence of a ladder paradox always implies the occurrence of a Hardy

paradox.

We also comment on a very recent paper by Chen et al. [37] which claims to

provide a generalisation of Hardy’s paradox for high-dimensional (qudit) systems. In

the present terminology, their argument applies to (2, 2, l) Bell scenarios. This will

be relevant to the discussion in section 2.7. It is presented in tabular form in table

2.8. For this, theorem 2.5.2 (first published in [79]) implies that there must exist

a coarse-graining of the measurements considered for which the model contains an

ordinary Hardy paradox.

Proposition 2.6.3. The occurrence of a Chen et al. paradox implies the occurrence

of a Hardy paradox.

Proof. Again, this follows directly from theorem 2.5.2, but one can also prove the

proposition more directly. Suppose one of the starred entries corresponding to out-

comes (o′i, oj) of table 2.8 is non-zero. We write p(i, j) > 0 for short. Then we can see

from the table that for the joint measurement represented by the upper-right box, we

39



must have p(r, j) = 0 for all r > (l − j). Similarly, for the measurement represented

by the lower-left box, p(i, s) = 0 for all s > (l − i). In the lower-right box, we have

p(r, s) = 0 when r ≤ (l− j) and s ≤ (l− i). This is a (2, 2, l) Hardy paradox, or more

precisely the H(l−j,l−i) paradox.

The PR Box

Theorem 2.5.1 can be used to provide the first constructive proof of a result originally

due to Lal [4, 74] that the only strongly non-local (2, 2, 2) models are the Popescu-

Rohrlich no-signalling boxes [93].

Proposition 2.6.4. The only strongly non-local no-signalling (2, 2, 2) models are the

PR boxes.

Proof. Recall from chapter 1 that strong non-locality is the property that no assign-

ment of outcomes that is possible in the model can belong to a global assignment. In

terms of the tabular representation this is simply the property that no ‘1’ can be com-

pleted to a deterministic grid; and by the proof of theorem 2.5.1, strong non-locality

is equivalent to the property that every ‘1’ witnesses a Hardy paradox. Simply by us-

ing this characterisation of strong contextuality and the requirement that the model

must be no-signalling we can prove the required result.

For any choice of measurements there must be some possible outcome (this is the

‘normalisation of possibilities’: the requirement that possibilities at each context form

a well-defined Boolean distribution). This possible assignment is represented by a ‘1’

in the table, and it must witness a Hardy paradox. After re-labelling as necessary,

we can represent the model as in table 2.1. For this to be a no-signalling model,

it is necessary to fill in ‘1’s as in table 2.9 (a). Using the fact that the ‘1’s in the

lower-right box must also witness Hardy paradoxes, we must fill in ‘0’s as in table 2.9

(b). By no-signalling, the remaining unspecified entry in the upper-left box must be

a ‘1’, and by the fact that it must witness a Hardy paradox, the remaining entry in

the lower-right box must be a ‘0’ .We thus arrive at table 2.9 (c), which is the PR

box.

Bell States are Anomalous

Projective measurements can be prescribed for almost all entangled two-qubit states

such that the resulting empirical model will contain a Hardy paradox [60]. The pre-

scription breaks down for the maximally entangled states, or the familiar Bell states.
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Table 2.9: Stages in the proof of proposition 2.6.4.

1 1 0

1

1 0 1

0 1 1

1 0 1 0

0 0 1

1 0 0 1

0 1 1

1 0 1 0

0 1 0 1

1 0 0 1

0 1 1 0

(a) (b) (c)

This naturally raises the question of whether there are any projective measurements

that can be chosen for the maximally entangled states such that the resulting empir-

ical model contains a Hardy paradox. The question gains even more importance in

light of the completeness theorems of section 2.5 which show that it is equivalent to

asking whether the maximally entangled states are logically non-local.

Somewhat surprisingly, we answer this question in the negative, and show that no

projective measurements can be chosen that lead to a Hardy paradox (and thus logical

non-locality) for a maximally entangled state. To the author’s knowledge, this is the

first full proof of the fact. A related result showing that if the same two measurements

are available at each site then it is impossible to realise a Hardy paradox was proved

independently by Abramsky & Constantin [9]. The proof we are about to present

holds for any number of measurements per qubit, and without the restriction that

the same set of measurements should be available for each qubit.

This is remarkable since it shows that the Bell states are the only entangled two-

qubit states not to be logically non-local. In fact, recent results indicate that all

n-qubit entangled states are logically non-local for n > 2. It appears, therefore, that

despite being perhaps the most studied and utilised states in the field of quantum

information, the Bell states are actually anomalous.

Theorem 2.6.5. Bell states are not logically non-local.

Proof. We prove the statement for the Bell state∣∣φ+
〉

=
1√
2

(|00〉+ |11〉) .

Since all other maximally entangled states are equivalent to this one up to local

unitaries, which can easily be incorporated into the local measurements, the proof

will extend to all maximally entangled states.
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Any quantum mechanical empirical model obtained by making local projective

measurements on |φ+〉 will necessarily give rise to a (2, k, 2) model. By theorem 2.5.3

we know that Hardy’s paradox completely characterises logical non-locality for such

scenarios, and that logical non-locality implies the occurrence of a Hardy paradox

in some (2, 2, 2) sub-model. It therefore suffices to show that for any observables

{A1, A2} for the first qubit and {B3, B4} for the second qubit the resulting model

does not contain a Hardy paradox.

The +1 and −1 eigenvectors for these measurements will be given by

|0i〉 = cos
θi
2
|0〉+ eiφi sin

θi
2

|1i〉 = sin
θi
2
|0〉+ e−iφi cos

θi
2

where {(θi, φi)}i∈{1,2,3,4} label the coordinates of the +1 eigenvector of the respective

measurements on the Bloch sphere. The amplitudes of the outcomes of the various

joint measurements are calculated to be:

〈0j0k|ψ〉 =
1√
2

(
cos

θj
2

cos
θk
2

+ e−i(φj+φk) sin
θj
2

sin
θk
2

)
〈0j1k|ψ〉 =

1√
2

(
cos

θj
2

sin
θk
2

+ e−i(φj−φk) sin
θj
2

cos
θk
2

)
〈1j0k|ψ〉 =

1√
2

(
sin

θj
2

cos
θk
2

+ ei(φj−φk) sin
θj
2

cos
θk
2

)
〈1j1k|ψ〉 =

1√
2

(
sin

θj
2

sin
θk
2

+ ei(φj+φk) cos
θj
2

cos
θk
2

)
where j ∈ {1, 2} and k ∈ {3, 4}. We see that 〈0j0k|ψ〉 = e−i(φj+φk) 〈1j1k|ψ〉 and

〈0j1k|ψ〉 = 〈1j0k|ψ〉 for each choice of measurements. Thus the symmetry of the un-

derlying state manifests itself as a symmetry in the probabilities of the joint outcomes

for each choice of measurements:

p(01 | AB) = p(10 | AB) (2.2)

p(00 | AB) = p(11 | AB). (2.3)

We know from proposition 2.6.4 that the only strongly contextual (2, 2, 2) models

are the PR boxes, which are not quantum realisable [93]. So even though the PR box

satisfies these symmetries, it cannot be realised by measurements on |φ+〉. We show

that there is a unique (2, 2, 2) model (up to re-labelling) that satisfies the symmetries

(2.2) and (2.3) and is logically but not strongly non-local.
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Table 2.10: Stages in the proof of theorem 2.6.5.

1 1

1 1

1 1

1 1

1 1

1 1

(a) (b)

1 1 0

0 1 1

1 1

1 1 0 1

B3 B4

A1

1 0 1 0

0 1 0 1

A2

1 1 1 0

1 1 0 1

(c) (d)

If a model is not strongly non-local then there exists at least one global assignment

compatible with the model, or in tabular form at least one deterministic grid. Up

to re-labelling this is represented in table 2.10 (a). By the symmetry (2.3) there

must exist a second global assignment, as in table 2.10 (b). It is clear from the

configuration of the table that none of the entries that have already been specified

can witness a Hardy paradox. If the model is logically non-local, therefore, at least

one of the unspecified entries in table 2.10 (b) must witness a Hardy paradox. Up

to re-labelling, this can be represented as in table 2.10 (c). By the symmetry (2.2)

the table must be completed to table 2.10 (d). This (up to re-labelling) is the only

possibilistic empirical model that respects the symmetries and is logically non-local

without being strongly non-local. The question now is whether it can be realised by

measurements on |φ+〉.
Consider the measurement statistics for the joint measurement A1B3 required by

table 2.10. If these are to arise from quantum observables A1 and B3, then 〈φ+|0103〉 =

〈φ+|1113〉 = 1√
2

and 〈φ+|0113〉 = 〈φ+|1103〉 = 0. So, either |01〉 = |03〉 = |0〉 and

|11〉 = |13〉 = |1〉 up to an overall sign or vice versa. The eigenvectors of both

observables are {|0〉 , |1〉}, so they must simply be Pauli X operators (up to a common
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sign, which would allow for re-labelling the outcomes):

A1 = B3 = ±X. (2.4)

A similar argument applies for the joint measurements A1B4 and A2B4, showing that

A1 = B4 = ±X, (2.5)

A2 = B4 = ±X. (2.6)

Equations (2.4–2.6) imply that

A1 = A2 = B3 = B4 = ±X;

but therefore the measurement statistics for A2B3 must be the same as for each of

the other joint measurements, and it is not possible to realise table 2.10 (d). This

completes the proof that no quantum mechanical logically non-local empirical model

can be obtained by considering (any number of) local projective measurements on

the Bell state.

Symmetry is important here: the symmetry of the underlying state manifests it-

self as a symmetry of the probabilities of outcomes for each joint measurement. By

theorem 2.5.1, logical non-locality implies a particular relationship between certain

probabilities in each of these distributions (a Hardy paradox). However, quantum

mechanically there cannot exist local projective measurements that realise these cor-

relations and respect the symmetries at the same time. On the other hand, there

exists a whole family of no-signalling empirical models which are logically non-local

and respect the symmetries. These are the no-signalling models with support as in

table 2.10 (d), and the PR box.

Fritz [51] has considered quantum analogues of Hardy’s paradox. These are not

realisable quantum mechanically, but can arise in more general no-signalling empirical

models. An interesting point is that table 2.10 (d) contains two such paradoxes, and

so the fact that any model with this support is not quantum realisable also follows

from the results of [51].

We have mentioned already that this result singles out the Bell states as being

unique among entangled qubit states. In section 2.8 we will see that the completeness

of Hardy’s paradox for logical non-locality breaks down outside of the scenarios that

we have considered so far. Beyond qubit states, since there are more ways of being

logically non-local, it appears less likely that such a situation might arise.
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Tsirelson’s Bound

We consider in more detail the family of logically non-local, no-signalling empirical

models with support given by table 2.10 (d) that appeared in the proof of theorem

2.6.5. These models have some interesting properties.

Tsirelson [102] proved the existence of an upper bound on the degree to which

any quantum mechanical (2, 2, 2) empirical model can violate a CHSH inequality

[40]. Several attempts have been made to find physical principles that account for

this bound, such as the absence of third-order interference [42], information causality

[89], and non-trivial communication complexity [33]. These last two are somewhat

complicated by the fact that the properties must be proved on a case by case basis

by finding appropriate protocols.

The models that we are interested in are all non-local, and we will show that many

lie within the Tsirelson bound. In fact one can find models in this family that will

violate the CHSH inequality by an arbitrarily small amount, and in this sense come

arbitrarily close to the polytope of local models. What is surprising is that all models

in the family are provably not quantum realisable.

This is important since it shows directly that the Tsirelson bound, which in any

case only applies to the (2, 2, 2) Bell scenario, does not completely characterise quan-

tum correlations even here, and only provides a necessary condition for quantum real-

isability. Recently there has been some progress on completely characterising the set

of (2, 2, 2) quantum correlations by means of a convergent hierarchy of semi-definite

programs [88]. At any rate, the fact that the Tsirelson bound does not provide a

necessary and sufficient condition for quantum realisability to some extent weakens

the argument that physical principles that account for the bound should necessarily

be of fundamental importance to quantum mechanics, and single it out in the space

of all no-signalling theories.

Similar families of models to this one have been discussed in [15], where it is shown

that information causality can be used to provide an improvement over the Tsirelson

bound in characterising quantum correlations. We note that this family can also be

seen to violate information causality by means of the protocol from [89].

The Bell version [24] of the CHSH correlation function is

S := |E(A,B) + E(A′, B′)− E(A′, B) + E(A′, B′)| , (2.7)

where E(A,B) is the probability that the outcomes to the joint measurement AB are

correlated minus the probability that they are anti-correlated. Permuting the mea-

surement labels at each site, or equivalently the signs of the terms in this expression
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Table 2.11: A family of non-quantum, non-local empirical models, which lie within
the Tsirelson bound for 0 < q <

√
2 − 1 and can be arbitrarily close to the local

polytope.

1⁄2 0 1⁄2 0

0 1⁄2 0 1⁄2

(1-q)⁄2 q⁄2 1⁄2 0

q⁄2 (1-q)⁄2 0 1⁄2

will give other CHSH correlation functions (we have chosen the one that will achieve

the maximum for the models we are interested in). It can easily be shown that for a

local model,

Smax ≤ 2.

This is the CHSH inequality. For a deterministic model, S = 2 for each correlation

function. Using the triangle inequality, any model that can be expressed as a stochas-

tic mixture of deterministic models must therefore have S ≤ 2 for each inequality.

Tsirelson showed that the maximum achievable for a quantum empirical model is

Smax = 2
√

2 [102]. However, this is less than the algebraic maximum of S = 4, which

Popescu and Rohrlich showed to be attainable by a no-signalling empirical model

(the PR box).

Proposition 2.6.6. The probabilistic empirical models defined by table 2.11 such

that 0 < q ≤ 1 are logically non-local, not quantum realisable, and violate the CHSH

inequality by 2q. For 0 < q <
√

2− 1, the models lie within the Tsirelson bound.

Proof. This is the family of models that arose in the proof of theorem 2.6.5 together

with the PR box (q = 1). We first show that any model in this family violates the

CHSH inequality by 2q. By inspection of table 2.11 it is clear that the only correlation

function that can violate the CHSH bound is that of equation (2.7). This function

has value S = 2 + 2q, whereas for the other functions, S = 2q. So Smax = 2 + 2q and

the model violates the CHSH inequality by 2q. The Tsirelson bound is achieved for

q =
√

2 − 1, and for 0 < q < 2
√

2 − 1 the models are non-local but lie within the

Tsirelson bound.
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To show that no model in this family is quantum realisable, it would suffice to

notice that every model in the family contains several of the Fritz quantum analogues

of Hardy’s paradox [51]. However, we can also prove this more directly. We rely on a

result due to Masanes [82] showing that any quantum mechanical (2, 2, 2) empirical

model is realisable by projective measurements on a two-qubit state. Therefore, if a

model in this family is quantum realisable, it must be realised by some observables

on a two-qubit state, say {A1, A2} on the first and {B3, B4} on the second. Each of

these observables defines a basis {|0i〉 , |1i〉} for C2. If we consider the measurements

A1 and B3, for example, then we can define a basis

{|01〉 ⊗ |03〉 , |01〉 ⊗ |13〉 , |11〉 ⊗ |03〉 , |11〉 ⊗ |13〉}

of C2 ⊗ C2 for the joint system. The underlying state can be decomposed in this

basis; but then according to the upper-left box in table 2.11 we must have

|ψ〉 = ± 1√
2

(|01〉 ⊗ |03〉+ |11〉 ⊗ |13〉) =
∣∣φ+
〉
.

Referring back to the proof of theorem 2.6.5, we have already shown that no

model in this family is quantum mechanically realisable by measurements on the |φ+〉
state. We note that the local model for which q = 0, which this family approaches,

is realisable with A1 = A2 = B3 = B4 = ±X.

2.7 Hardy Non-locality with Certainty

While Hardy’s paradox is considered to be an ‘almost probability free’ non-locality

proof, much of the literature on Hardy’s paradox is concerned with the value of

the paradoxical probability ; i.e. the probability of obtaining the particular outcome

assignment that witnesses a Hardy paradox (e.g. [29, 37]). This is especially relevant

for experimental tests. In this section, we will show how Hardy non-locality can be

demonstrated in such a way that even this probability becomes irrelevant.

As previously mentioned, Hardy [60] prescribed measurements for all entangled

two-qubit states (excluding the maximally entangled ones) such that the resulting

empirical model contains a Hardy paradox. For this family of models the maximum

paradoxical probability is

pmax =
5
√

5− 11

2
≈ 0.09 . (2.8)

We might think of this as providing a candidate Tsirelson-like bound for the paradox-

ical probability in the (2, 2, 2) scenario, which by theorem 2.5.3 would extend to any
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(2, k, 2) scenario. We note, however, that this is only relevant to logical non-locality.

For example, it is possible to achieve the Tsirelson violation of the CHSH inequal-

ity with the state |φ+〉 by choosing equatorial measurements at φ = π/8, 5π/8 on

the Bloch sphere for each qubit, though the resulting model will not exhibit logical

non-locality (see chapter 6). So there exist non-local quantum mechanical empirical

models for which the value of the paradoxical probability is always ‘0’ .On the other

hand, we will see shortly that it fares better than the Tsirelson bound in managing

to exclude the family of non-quantum models from proposition 2.6.6.

A model has also been found for which the tripartite Hardy paradox can be wit-

nessed with probability 0.125 [54], and in [39] it is demonstrated that for a generalised

no-signalling theory it is possible to witness a (2, 2, 2) Hardy paradox with probability

0.5. For the (2, 2, l) scenario, Chen et al. have recently argued that it is possible to

witness logical non-locality with probability ≈ 0.4 in the large d limit for two qudit

systems with the paradox presented in table 2.8. From our proposition 2.6.3, it be-

comes clear that they are essentially summing the probabilities of witnessing (l−1)2/2

(coarse-grained) Hardy paradoxes.

In this section, we use our framework to gain a new perspective on this problem

and achieve a striking improvement on these results. In particular, we will demon-

strate by much simpler arguments how Hardy non-locality can be witnessed with

certainty for a tripartite quantum system, and for a particular non-quantum (2, 2, 2)

empirical model. Interestingly, the models required for these arguments turn out to

be the familiar GHZ-Mermin model, and the PR box.

The PR Box

We begin with a simple example to illustrate the idea.

Proposition 2.7.1. The PR box witnesses a Hardy paradox with certainty.

Proof. The probabilistic version of the PR box is given in table 2.12. We have al-

ready observed in the proof of proposition 2.6.4 that every assignment of outcomes

that has non-zero probability witnesses a Hardy paradox. Each entry in the table

therefore represents a paradoxical probability of 0.5; but for any joint measurement

the probability of obtaining an outcome that witnesses a Hardy paradox is 1.

The PR box achieves the maximum paradoxical probability of 0.5 for a no-

signalling model found by Choudhary et al. in [39], but by a much simpler argument

and using a familiar and well-studied model. Moreover, we see that the more relevant
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Table 2.12: The PR box.

1⁄2 0 1⁄2 0

0 1⁄2 0 1⁄2

1⁄2 0 0 1⁄2

0 1⁄2 1⁄2 0

parameter, the probability of witnessing some Hardy paradox is actually 1 for any

choice of measurements.

So the value of the paradoxical probability and the probability of witnessing a

Hardy paradox need not be the same. This is what lies behind the fact that the Chen

et al. paradox appears to violate the Hardy bound (2.8). However, we can prove that

for any quantum realisable (2, 2, 2) empirical model these necessarily coincide.

Proposition 2.7.2. For any quantum realisable (2, k, 2) empirical model, the para-

doxical probability and the probability of witnessing a Hardy paradox coincide.

Proof. First, we note that by theorem 2.5.3 it suffices to prove the proposition for

(2, 2, 2) models. If the probabilities do not coincide, then it must be the case that, for

some joint measurement, more than one Hardy paradox may be witnessed. Working

within our formalism, it is clear that any such empirical model must be of the form

of table 2.11 up to re-labelling of measurements and outcomes. In this family, for

a particular joint measurement, the probability of witnessing a Hardy paradox is

always ‘1’. However, we have proved in proposition 2.6.6 that no model in this family

is quantum realisable, and the result follows.

This shows that even taking into account that the probability of witnessing a

Hardy paradox may in general be higher than the paradoxical probability, the Hardy

bound for (2, k, 2) models still holds. In fact, it excludes the family of non-quantum

models from proposition 2.6.6 which were seen to lie within the Tsirelson bound.

GHZ

We now consider the (3, 2, 2) empirical model used in the Mermin version [83] of

the GHZ non-locality argument [57], which we note is not of the tripartite Hardy
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form. The model was encountered already in chapter 1 as an example of a strongly

contextual model. Here, we need only consider a subset of the measurement contexts.

000 001 010 011 100 101 110 111

X X X 1 0 0 1 0 1 1 0

X Y Y 0 1 1 0 1 0 0 1

Y X X 0 1 1 0 1 0 0 1

Y Y X 0 1 1 0 1 0 0 1

The suppressed rows of the table {XXY,XY X, Y XX, Y Y Y } have full support. Fig-

ure 2.2 (a) depicts the model in the three dimensional representation.

Proposition 2.7.3. The GHZ model witnesses a Hardy paradox with certainty.

Proof. The three dimensional representation makes it easy to identify an n-partite

Hardy paradox, which is shown in figure 2.2 (b). It can be expressed algebraically as

follows.

• p( 1, 1, 1 | Y, Y, Y ) > 0

• p( 1, 1, 0 | Y, Y,X ) = p( 1, 0, 1 | Y,X, Y ) = p( 0, 1, 1 | X, Y, Y ) = 0

• p( 0, 0, 0 | X,X,X ) = 0

Up to re-labelling, this is the form of the n-partite Hardy paradox defined in section

2.4. Moreover, it can similarly be demonstrated that any joint outcome for the

measurement context Y Y Y witnesses a Hardy paradox (a more careful treatment

will be given in the proof of proposition 2.7.4).

The paradoxical probability is p(1, 1, 1 | Y, Y, Y ) = 0.125. However, since every

outcome to the measurement Y Y Y witnesses some Hardy paradox, then it is clear

that the probability of witnessing a Hardy paradox is actually 1.

This provides a much simpler tripartite Hardy argument than that of Ghosh, Kar

and Sarkar [54]. We obtain their maximum of 0.125 for the paradoxical probability,

which was also obtained on the GHZ state but with different measurements. We

do better, however, since with certainty we must witness some Hardy paradox for

the joint measurement Y Y Y . The model here is exactly the GHZ-Mermin model,

since the observables available at each subsystem are simply the X and Y operators,

so in fact what we have shown is that the GHZ experiment [57] witnesses Hardy

non-locality with certainty.
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Figure 2.2: (a) The GHZ model. We represent only the red, impossible outcomes;
all other entries are possible. (b) Hardy’s paradox within the GHZ model; the blue
outcome is possible.

(a) (b)

GHZ(n)

Mermin gave logical non-locality proofs for n-partite generalisations of the GHZ state

[87] for all n > 2. Again, his arguments were not of the Hardy form, but we will now

show how to generalise proposition 2.7.3 to some of the GHZ(n) models.

The GHZ(n) states are:

|GHZ(n)〉 :=
1√
2

(|0 · · · 0〉+ |1 · · · 1〉) , (2.9)

where n is the number of qubits. Note that for n = 2 the state obtained is the |φ+〉
Bell state. For n > 2, Mermin considered models in which each each party can make

Pauli X or Y measurements. With a little calculation, it is possible to concisely

describe the resulting empirical models in a logical form.

The eigenvectors of the X operator are

|0x〉 =
1√
2

(
|0〉+ ei0 |1〉

)
, |1x〉 =

1√
2

(
|0〉+ eiπ |1〉

)
. (2.10)

The vector |0x〉 has eigenvalue +1 and the vector |1x〉 has eigenvalue −1. These are

more usually denoted |+〉 and |−〉, respectively, but we use an alternative notation

to agree with our usual {0, 1} labelling for outcomes. Similarly, the +1 and −1

eigenvectors of the Y operator are

|0y〉 =
1√
2

(
|0〉+ eiπ/2 |1〉

)
|1y〉 =

1√
2

(
|0〉+ e−iπ/2 |1〉

)
. (2.11)
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The phases have been made explicit since they will play the crucial role in the following

calculations.

The various probabilities for the empirical model predicted by quantum mechanics

can be calculated as

|〈GHZ(n)|v1 . . . vn〉|2

where the vi are the appropriate eigenvectors. This evaluates to∣∣∣∣1 + eiφ√
2n+1

∣∣∣∣2 =
1

2n
(1 + cosφ) , (2.12)

where φ is the sum of the phases of the vi. From the phases of the possible eigenvec-

tors, (2.10) and (2.11), it is clear that we must have φ = k π/2 for some k ∈ Z4, the

four element cyclic group. For k = 0 (mod 4), the probability will be 1√
2n−1

; for k = 1

or 3 (mod 4) the probability will be 1√
2n

; and for k = 2 (mod 4) the probability will

be ‘0’.

We can now reduce the calculation of probabilities for any such model into a simple

counting argument. If k0x is the number of |0x〉 eigenvectors, k1x is the number of

|1x〉 eigenvectors, and so on, then

k = k0y + 2 · k1x + 3 · k1y (mod 4)

=
(
k0y + k1y

)
+ 2 ·

(
k1x + k1y

)
(mod 4).

• For contexts containing an odd number of Y ’s, every outcome is possible with

equal probability 1√
2n

, since k = 1 or 3 (mod 4).

• For contexts containing 0 mod 4 Y ’s, outcomes are possible if and only if they

contain an even number of 1’s. For these outcomes, k = 0 (mod 4) and the

probabilities are 1√
2n−1

. If there were an odd number of 0’s in the outcome then

k = 2 (mod 4) and the probability would be 0.

• Similarly, for contexts that contain 2 mod 4 Y ’s, outcomes are possible if and

only if they contain an odd number of 1’s. Again, the non-zero probabilities are
1√

2n−1
.

Though the probabilities are seen to be easily be calculated in this way, we need

only concern ourselves with the possibilistic information.

Proposition 2.7.4. All GHZ(n) models for n = 3 mod 4 witness an n-partite Hardy

paradox with certainty.
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Proof. Proposition 2.7.3 showed that this holds for GHZ(3). Let o = (o1, . . . , on)

be any binary string of length n, let φi be the function that changes the ith entry

of a binary string, and let o−1 denote the binary string of length n which differs in

every entry from o. We show that every outcome o to the measurements (Y, . . . , Y )

witnesses a Hardy paradox. We deal with the cases that o has an even or odd number

of 1’s separately.

Suppose o has an even number of 1’s.

• p (o | Y, . . . , Y ) > 0, since there are an odd number of Y measurements;

• p ( o | π(X, Y, . . . , Y ) ) = 0, for all permutations π, since there are 2 mod 4 Y ’s

and o has an even number of 1’s;

• p (o−1 | X, . . . , X) = 0, since there are 0 mod 4 Y ’s and o−1 has an odd number

of 1’s.

Suppose o has an odd number of 1’s.

• p (o | Y, . . . , Y ) > 0, since there are an odd number of Y measurements;

• p (φi(o) | φi(Y, Y, . . . , Y ) ) = 0, for all permutations i = 1, . . . , n, since there

are 2 mod 4 Y ’s and an even number of 1’s in φi(o);

• p (o | X, . . . , X) = 0, since there are 0 mod 4 Y ’s and an odd number of 1’s in

o.

It should be pointed out that even though we can say with certainty that some

Hardy paradox will be witnessed in these models, the paradoxical probabilities are
1

2n
, and so the maximal paradoxical probability is obtained for the tripartite GHZ

model.

This kind of result does not hold for GHZ(n) models for which n 6= 3 mod 4, as it

can be shown that these models do not contain n-partite Hardy paradoxes. This is

because any (n, 2, 2) Hardy paradox must take the form of one of the paradoxes in the

proof of proposition 2.7.4, but it can easily be verified that the counting arguments

only allow these for n = 3 mod 4.
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Figure 2.3: A non-Hardy (3, 2, 2) paradox. We assume that all unspecified entries
are possible. This model does not contain a Hardy paradox, but is logically non-local
since the blue entry cannot be completed to a deterministic grid.

2.8 Non-universality of Hardy’s Paradox

The completeness results of section 2.5 might raise the conjecture that the Hardy para-

dox could be universal in the same sense for any (2, k, l) scenario. However, we have

found that the equivalence of locality to the absence of Hardy-type non-locality does

not hold for (2, k, l) scenarios in general: consider the probabilistic empirical model

displayed in table 2.13 (b), for example. This concerns a Bell scenario with three

two-outcome measurements for Alice, and one two-outcome and one three-outcome

measurement for Bob. (This can easily be expanded to a probabilistic empirical model

in the (2, 3, 3) scenario, but we find the example easier to understand in the form of ta-

ble 2.13.) By direct inspection, we find that no coarse-grained Hardy paradox occurs

for this empirical model. Nevertheless, it displays logical (and hence probabilistic)

non-locality: the ‘1’ in the upper left corner of table 2.13 (a) cannot be completed to

a deterministic grid.

We have already seen at the end of section 2.7 that the Hardy paradox does

not occur in GHZ(n) models for n 6= 3 mod 4, though it is known that these are

logically non-local. So for (4, 2, 2) scenarios we know that completeness must break

down. However, already for the (3, 2, 2) scenario we have been able to find a logically

non-local model (figure 2.3) for which no Hardy paradox occurs.

In conclusion, the Hardy paradox and its coarse-grainings cannot account for all

non-local behaviour in scenarios with at least three parties, or with at least three

settings and at least three outcomes. In general, the non-occurrence of a Hardy

paradox is necessary but not sufficient for possibilistic locality.
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Table 2.13: (a) A non-locality proof without inequalities; (b) a probabilistic no-
signalling model to which it applies although it displays no (coarse-grained) Hardy
paradox.

1 0

0

0

0

0

1⁄16 3⁄16 0 1⁄8 1⁄8

3⁄16 9⁄16 1⁄2 1⁄8 1⁄8

0 1⁄2 1⁄8 1⁄4 1⁄8

1⁄4 1⁄4 3⁄8 0 1⁄8

0 1⁄2 1⁄8 1⁄8 1⁄4

1⁄4 1⁄4 3⁄8 1⁄8 0

(a) (b)

2.9 Discussion

To begin with, we have investigated the scope of Hardy’s non-locality paradox in

terms of non-local behaviour. We have proved a number of completeness theorems

showing that it is a necessary and sufficient condition for logical non-locality in (2, 2, l)

and (2, k, 2) Bell scenarios. In this sense, it is the only non-locality proof without

inequalities for these Bell scenarios. We can even interpret the possibilistic versions

of the no-signalling condition and the normalisation of probabilities as degenerate

cases of the non-occurrence of a coarse-grained Hardy paradox.

However, we have found that this universality does not extend to the (2, 3, 3) Bell

scenario, nor does it extend to n-partite scenarios for n > 2. This raises the question

of finding other logical non-locality conditions that do not belong to the class of

Hardy paradoxes for n, k, l > 2. The GHZ(n) models of section 2.7, for example, are

logically non-local but do not contain (n, 2, 2) Hardy paradoxes for n 6= 3 mod 4.

The completeness theorems of section 2.5 have led to a number of interesting

applications. We have seen that for (2, 2, l) and (2, k, 2) scenarios, polynomial al-

gorithms can be given for deciding non-locality. It was conjectured in [79] that the

general decidability problem for possibilistic local models with k as the free input is

NP-hard when n > 2, l ≥ 2 or n ≥ 2, l > 2; as is the case for probabilistic models

[92]. It was shown that the problem is NP by Abramsky in [3], and the it has since

been proved to be NP-complete by Abramsky, Gottlob and Kolaitis [10]. This gives
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some reason to suspect that it is not possible to obtain a classification of conditions

that are necessary and sufficient for logical non-locality in full generality.

Another direct consequence is that the Hardy paradox must subsume all other

non-locality arguments for (2, 2, l) and (2, k, 2) scenarios, and we have demonstrated

this for the ladder paradoxes and the Chen et al. paradox. Furthermore, the theorems

have been used to provide the first constructive proof that the PR boxes are the only

strongly contextual (2, 2, 2) models, as well as the first full proof that the Bell states,

despite being maximally entangled, are the only entangled two-qubit states that are

not logically non-local.

Together with recent work by Ying [13] which shows that all entangled n-partite

qubit states are logically non-local, this singles out the Bell states as being anoma-

lous in terms of non-locality. This is quite surprising in light of the fact that they

are perhaps the most studied and utilised of entangled states. We mention, however,

that it remains to be seen whether the result still holds when we allow for POVM’s.

The proof of theorem 2.6.5 is quite interesting in itself, and led to the discovery of a

family of non-quantum empirical models which lie within the Tsirelson bound and can

have an arbitrarily small violation of the CHSH inequality. Interestingly, the models

violate information causality, which has been proposed a candidate property for char-

acterising quantum correlations, and also violate the Hardy bound on paradoxical

probabilities.

In section 2.7, we have taken advantage of the perspective gained within our

framework to demonstrate a striking improvement on the probability of witnessing a

Hardy paradox, which is often used in the literature as a measure of the quality of

Hardy non-locality. With much simpler arguments, it has been demonstrated that

a tripartite quantum system can in fact witness Hardy non-locality with certainty.

Interestingly, the empirical model used for this proof was exactly that of the GHZ-

Mermin non-locality proof. Though it is not quantum realisable, we have also shown

that the PR box has this property.

A further interesting point is that Abramsky [2] has uncovered a correspondence

between possibilistic empirical models and relational database theory. It remains to

be explored whether the completeness theorems of this chapter might find applications

in database theory, or indeed whether similar results already exist in the field that

might lead to further insights.
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Chapter 3

The Cohomology of Non-locality &
Contextuality

We have seen in chapter 1 that the mathematics of sheaf theory can provide a nat-

ural framework in which to analyse the structure of non-locality and contextuality.

Empirical models form compatible (no-signalling) families of sections on a presheaf

of distributions that is defined on a cover corresponding to the sets of compatible

measurements. Locality and non-contextuality are characterised in a unified manner

by the existence of global sections. Therefore, the phenomena of non-locality and

contextuality can be characterised in terms of obstructions to the existence of global

sections.

Roughly speaking, cohomology theories can be thought of as descriptions of ob-

structions to solving some kind of equation (see e.g. chapter 3 of [64] for some intuitive

examples). The aim in this chapter, which is largely based on [12], is to build on these

results, using the powerful tools of presheaf cohomology to study the structure of non-

locality and contextuality and provide a positive characterisation of obstructions to

global sections, and by extension of non-locality and contextuality. The possible

application of cohomology to the study of contextuality in the sense of the Kochen-

Specker theorem was first suggested by Isham & Butterfield [68]. The results here

provide the first steps in this direction.

We succeed in finding cohomological witnesses of non-locality and contextuality

which correspond to many of the classic no-go results. The approach is not yet strong

enough, however, to completely characterise these phenomena for all models. We will

discuss certain situations in which cohomology can fail to identify contextuality, which

merit further investigation.

More precisely, we use the Čech cohomology on an abelian presheaf derived from

the support of the model in order to define a cohomological obstruction for the family

as a certain cohomology class. This class vanishes if the family has a global section.
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Thus, in general, the non-vanishing of the obstruction provides a sufficient (but not

necessary) condition for the model to be contextual. It can be demonstrated that

for a number of salient examples, including PR boxes [93], the GHZ-Mermin model

[83], and the 18-vector configuration giving a proof of the Kochen-Specker theorem

in R4 [34], the obstruction does not vanish, thus yielding cohomological witnesses for

contextuality. Moreover, we prove that for large classes of models generalising the

state-independent models of these Kochen-Specker proofs, the cohomological char-

acterisation provides a complete invariant for contextuality. These general results

also raise an interesting connection between contextuality of Kochen-Specker models

and the existence of perfect matchings in hypergraphs, leading to a number of useful

insights.

3.1 Čech Cohomology of a Presheaf

Let X be a topological space, U be an open cover of X, and F be a presheaf of

abelian groups on X. So F(U) is an abelian group for each open set U ∈ U, and

when U ⊆ V ∈ U, there exists a group homomorphism ρVU : F(V ) → F(U). These

assignments are functorial:

ρUU = idU ,

and if U ⊆ U ′ ⊆ U ′′ then

ρU
′

U ◦ ρU
′′

U ′ = ρU
′′

U .

The nerve N(U) of the cover U is defined to be the abstract simplicial complex

comprising those finite subsets of U with non-empty intersection. Concretely, we take

a q-simplex to be a list σ = (U0, . . . , Uq) of elements of U, with |σ| := ∩qi=0Ui 6= ∅.
Thus a 0-simplex (U) is a single element of the cover U. We write N(U)q for the set

of q-simplices.

Given a q + 1-simplex σ = (U0, . . . , Uq+1), we can obtain q-simplices

∂j(σ) := (U0, . . . , Ûj, . . . , Uq+1), 0 ≤ j ≤ q

by omitting any one of the elements of the q + 1-simplex. Note that:

|σ| ⊆ |∂j(σ)|.

We now define the Čech cochain complex . For each q ≥ 0, we define the abelian

group Cq(U,F):

Cq(U,F) :=
∏

σ∈N(U)q

F(|σ|).
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We also define the coboundary maps

δq : Cq(U,F) −→ Cq+1(U,F).

For ω = (ω(τ))τ∈N(U)q ∈ Cq(U,F) and σ ∈ N(U)q+1,

δq(ω)(σ) :=

q+1∑
j=0

(−1)j ρ
|∂j(σ)|
|σ| ω(∂jσ).

For each q, δq is a group homomorphism.

Proposition 3.1.1. For each q, δq+1 ◦ δq = 0.

By this proposition, C•(U,F) is a cochain complex . We will also consider the

augmented complex

0→ C0(U,F)→ · · · .

We define Zq(U,F), the q-cocycles , to be the kernel of δq, and Bq(U,F), the

q-coboundaries, to be the image of δq−1. These are subgroups of Cq(U,F) and, by

proposition 3.1.1, we have Bq(U,F) ⊆ Zq(U,F). We define the q-th Čech cohomology

group Ȟq(U,F) to be the quotient group Zq(U,F)/Bq(U,F). Note that B0(U,F) =

0, so Ȟ0(U,F) ∼= Z0(U,F).

Given a cocycle z ∈ Zq(U,F), the cohomology class [z] is the image of z under

the canonical map

Zq(U,F) −→ Ȟq(U,F).

A compatible family with respect to a cover U is a family {ri ∈ F(Ui)} for Ui ∈ U,

such that, for all i, j:

ri|Ui∩Uj = rj|Ui∩Uj .

Proposition 3.1.2. There is a bijection between compatible families and elements of

the zeroth cohomology group Ȟ0(U,F).

Proof. Cochains c = (ri)Ui∈U in C0(U,F) correspond to families {ri ∈ F(Ui)}. For

each 1-simplex σ = (Ci, Cj),

δ0(c)(σ) = ri|Ci∩Cj − rj|Ci∩Cj .

Hence δ0(c) = 0 if and only if the corresponding family is compatible.
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We will also use the relative cohomology of F with respect to an open subset

U ⊆ X. We define two auxiliary presheaves related to F . First, F|U is defined by

F|U(V ) := F(U ∩ V ).

There is an evident presheaf morphism

p : F −→ F|U , pV :: r 7→ r|U∩V .

Then FŪ is defined by FŪ(V ) := ker(pV ). Thus we have an exact sequence of

presheaves

0 - FŪ - F p- F|U .

The relative cohomology of F with respect to U is defined to be the cohomology of

the presheaf FŪ .

We have the following refined version of proposition 3.1.2.

Proposition 3.1.3. For any Ui ∈ U, the elements of the relative cohomology group

Ȟ0(U,FŪi) correspond bijectively to compatible families {rj} on F such that ri = 0.

Proof. By proposition 3.1.2, compatible families correspond to cocycles r = (rj) in

C0(U,F). By compatibility, ri|Ci∩Cj = rj|Ci∩Cj for all j. Hence r is in C0(U,FŪi) if

and only if ri = pUi(ri) = 0.

3.2 Cohomological Obstructions

Recall that the support supp(φ) of a function φ : X → R, where R is any commutative

ring, is the set of all x ∈ X such that φ(x) 6= 0. We define a functor FR : Set −→ Set

such that FR(X) is the set of functions φ : X → R with finite support. There is an

embedding x 7→ 1 · x of X in FR(X), which we will use implicitly throughout. Given

f : X → Y , we define:

FRf : FRX −→ FRY :: φ 7→ [y 7→
∑
f(x)=y

φ(x)].

This assignment is easily seen to be functorial.

In fact, FR(X) is the free R-module generated by X. It is an abelian group, and

FR(f) is a group homomorphism for any function f . In particular, taking R = Z,

FZ(X) is the free abelian group generated by X. Thus, given any presheaf of sets P on

X, we obtain a presheaf of abelian groups FZP by composition: FZP (U) := FZ(P (U)).
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Given an empirical model e defined on the the measurement scenario (X,O,M),

we will be interested in the relative Čech cohomology groups Ȟq(M,FC̄) for the

abelian presheaf F := FZSe and the open cover M of maximal contexts of X. Note

that F(C) is the set of formal Z-linear combinations of assignments in the support

of eC for any set of measurements C ∈M.

To each s ∈ Se(C) we associate an element γ(s) of a cohomology group, which

can be regarded as an obstruction to s having an extension within the support of

e to a global section. In particular, the existence of such an extension implies that

the obstruction vanishes. In good cases, these two conditions are equivalent, yielding

cohomological characterisations of contextuality and strong contextuality.

For notational convenience, we fix an element s = s1 ∈ Se(C1). Due to the com-

patibility (no-signalling) of the empirical model {eC}, there must exist some family

{si ∈ Se(Ci)} with s1|C1 ∩ Ci = si|C1 ∩ Ci for i = 2, . . . , n. We define the cochain

c := (s1, . . . , sn) ∈ C0(M,F). The coboundary of this cochain is z := δ0(c).

Proposition 3.2.1. The coboundary z of c vanishes under restriction to C1, and

hence is a cocycle in the relative cohomology with respect to C1.

Proof. We write Ci,j := Ci ∩Cj. For all i, j, we define zi,j := z(Ci,j) = si|Ci,j − sj|Ci,j .
Due to the compatibility of the family {si}, for all i, j,

si|C1∩Ci,j = (s1|C1∩Ci)|Cj = s1|C1∩Ci,j .

Similarly, sj|C1∩Ci,j = s1|C1∩Ci,j . Hence zi,j|C1 = 0, and so zi,j ∈ FC̄1
(Ci ∩ Cj).

Thus z = (zi,j)i,j ∈ C1(M,FC̄1
). Note that δ1 : C1(M,FC̄1

) → C2(M,FC̄1
) is the

restriction of the coboundary map on C1(M,F). Hence z = δ0(c) is a cocycle.

Definition 3.2.2. We define γ(s1) to be the cohomology class [z] ∈ Ȟ1(M,FC̄1
).

Note that, although z = δ0(c), it is not necessarily a coboundary in C1(M,FC̄1
),

since c is not a cochain in C0(M,FC̄1
), as pCi(si) = si|C1 ∩Ci 6= 0. Thus, in general,

we need not have [z] = 0.

Remark There is a more conceptual way of defining this obstruction, using the

connecting homomorphism from the long exact sequence of cohomology; see [55]. We

have given a more concrete formulation, which may be easier to grasp, and is also

convenient for computation.

Proposition 3.2.3. The following are equivalent:
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1. The cohomological obstruction vanishes: γ(s1) = 0.

2. There is a family {ri ∈ F(Ci)} with s1 = r1, and for all i, j,

ri|Ci ∩ Cj = rj|Ci ∩ Cj.

Proof. The obstruction vanishes if and only if there is a cochain c′ = (c′1, . . . , c
′
n) ∈

C0(M,FC̄1
) with δ0(c′) = δ0(c), or equivalently δ0(c − c′) = 0 (i.e. such that c − c′

is a cocycle). By proposition 3.1.2, this is equivalent to {ri := si − c′i} forming a

compatible family. Moreover, c′ ∈ C0(M,FC̄1
) implies that c′1 = pC1(c

′
1) = 0, so we

have r1 = s1.

For the converse, suppose we have a family {ri ∈ F(Ci)} as in the second state-

ment. We define c′ := (c′1, . . . , c
′
n), where c′i := si − ri. Since r1 = s1, we find that

pCi(c
′
i) = s1|C1,i − r1|C1,i = 0 for all i, and c′ ∈ C0(M,FC̄1

). We must show that

δ0(c′) = z (i.e. that zi,j = c′i|Ci,j − c′j|Ci,j); but this holds since ri|Ci,j = rj|Ci,j.

As an immediate application to contextuality, we have the following.

Proposition 3.2.4. If a model e is possibilistically extendable, then the obstruction

vanishes for every assignment in the support of the model. If e is not strongly con-

textual, then the obstruction vanishes for some assignment in the support.

Proof. If e is possibilistically extendable, then for every s ∈ Se(Ci), there is a com-

patible family {sj ∈ Se(Cj)} with s = si. Applying the embedding of Se(Cj) into

F(Cj), by proposition 3.2.3 we conclude that γ(s) = 0. The same argument can be

applied to a single assignment witnessing the failure of strong contextuality.

Thus the non-vanishing of the obstruction is a sufficient condition for contextual-

ity. The non-necessity of the condition arises from the possibility of ‘false positives’:

families {ri ∈ F(Ci)} that do not determine bona fide global assignments in E(X).

The Hardy Model

This first example shows that false positives do indeed arise. It is the Hardy model

[60], which was examined in detail in chapter 2. In the more usual representation,

the support is described as follows.
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00 01 10 11

A B 1 1 1 1

A B′ 0 1 1 1

A′ B 0 1 1 1

A′ B′ 1 1 1 0

For convenience, we enumerate the assignments.

00 01 10 11

A B s1 s2 s3 s4

A B′ s5 s6 s7 s8

A′ B s9 s10 s11 s12

A′ B′ s13 s14 s15 s16

As discussed in chapter 2, the assignment s1 provides a witness for the non-locality

of the Hardy model. It is not a member of any compatible family of assignments in

the support. However, we do have the following family of Z-linear combinations of

assignments:

r1 = s1, r2 = s6 + s7 − s8, r3 = s11, r4 = s15.

One can check that

r2|A = 1 · (A 7→ 0) + 1 · (A 7→ 1)− 1 · (A 7→ 1) = r1|A,

r2|B′ = 1 · (B′ 7→ 1) + 1 · (B′ 7→ 0)− 1 · (B′ 7→ 1) = r4|B′ .

Thus the family {ri} meets the conditions of proposition 3.2.3, and the obstruction

γ(s1) vanishes.

3.3 Non-locality Results by Example

The PR Box

There is better news when we look at the PR box [93]. The support of this model is

described again in the following table.
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00 01 10 11

A B 1 0 0 1

A B′ 1 0 0 1

A′ B 1 0 0 1

A′ B′ 0 1 1 0

This is a strongly contextual model (see proposition 2.6.4), so no assignment in the

support is a member of a compatible family. The coefficients for a candidate family

{ri} can be labelled as follows.

00 01 10 11

A B a 0 0 b

A B′ c 0 0 d

A′ B e 0 0 f

A′ B′ 0 g h 0

The constraints arising from the requirements that ri|Ci,j = rj|Ci,j are:

a = c, b = d, a = e, b = f, c = h, d = g, e = g, f = h,

implying that all the coefficients must be equal.

Checking that an assignment in the support is a member of such a family re-

quires assigning 1 to the coefficient labelling that assignment and 0 to all the other

assignments in that row. Clearly such an assignment is incompatible with the above

constraints, since it implies 1 = 0. Hence there can be no such family, and the obstruc-

tion does not vanish for any assignment in the support, witnessing the non-locality

of the PR box.

GHZ

We now consider the GHZ-Mermin model [83], which is also strongly contextual. This

model, however, is realisable in quantum mechanics, whereas the previous example

is not. The support for the relevant part of the model is described in the following

table.
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000 001 010 011 100 101 110 111

A B C 1 0 0 1 0 1 1 0

A B′ C ′ 0 1 1 0 1 0 0 1

A′ B C ′ 0 1 1 0 1 0 0 1

A′ B′ C 0 1 1 0 1 0 0 1

The other contexts {ABC ′, AB′C,A′BC,A′B′C ′} have full support. Coefficients for

a candidate family are labelled as follows.

000 001 010 011 100 101 110 111

A B C a 0 0 b 0 c d 0

A B′ C ′ 0 e f 0 g 0 0 h

A′ B C ′ 0 i j 0 k 0 0 l

A′ B′ C 0 m n 0 o 0 0 p

The constraints arising from the requirements that ri|Ci,j = rj|Ci,j are:

a+ b = e+ f c+ d = g + h

a+ c = i+ k b+ d = j + l

a+ d = n+ o b+ c = m+ p

f + g = j + k e+ h = i+ l

e+ g = m+ o f + h = n+ p

i+ j = m+ n k + l = o+ p

Again, to check whether an assignment in the support is a member of such a family

requires setting the coefficient for that assignment to 1, and the coefficients for all

other assignments in that row to 0.

It suffices to show that these constraints cannot be satisfied over the integers

modulo 2. This implies that they cannot be satisfied over Z, since otherwise such a

solution would descend via the homomorphism Z → Z/2Z. Of course, this will also

show that the cohomological obstruction does not vanish even if we use Z/2Z as the

coefficient group.

All cases for GHZ have been machine-checked in mod 2 arithmetic, and it has been

confirmed that the cohomological obstruction witnesses the impossibility of extending

any assignment in the support to all measurements. Thus cohomology witnesses the

non-locality of the GHZ model.
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3.4 Contextuality Results by Example

The Peres-Mermin Square

The Peres-Mermin ‘magic square’ [85, 90] is an important example of a contextual

model which can be realised in quantum mechanics using two-qubit observables. The

model consists of nine measurements {A, . . . , I}. The compatible families of mea-

surements are the rows and columns of the following table.

A B C

D E F

G H I

For ‘row contexts’ the support of the model contains only those assignments with an

odd number of 1’s, while for ‘column contexts’ it contains only the assignments with

an even number of 1’s. Thus the model has the following support table.

000 001 010 011 100 101 110 111

A B C 0 1 1 0 1 0 0 1

D E F 0 1 1 0 1 0 0 1

G H I 0 1 1 0 1 0 0 1

A D G 1 0 0 1 0 1 1 0

B E H 1 0 0 1 0 1 1 0

C F I 1 0 0 1 0 1 1 0

We label the coefficients for a candidate compatible family of Z-linear combinations

of assignments at each context.

000 001 010 011 100 101 110 111

A B C 0 c1 b1 0 a1 0 0 t1

D E F 0 c2 b2 0 a2 0 0 t2

G H I 0 c3 b3 0 a3 0 0 t3

A D G t4 0 0 a4 0 b4 c4 0

B E H t5 0 0 a5 0 b5 c5 0

C F I t6 0 0 a6 0 b6 c6 0
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Compatibility gives rise to the following constraints.

a1 + t1 = b4 + c4 a4 + t4 = b1 + c1

b1 + t1 = b5 + c5 a5 + t5 = a1 + c1

c1 + t1 = b6 + c6 a6 + t6 = a1 + b1

a2 + t2 = a4 + c4 b4 + t4 = b2 + c2

b2 + t2 = a5 + c5 b5 + t5 = a2 + c2

c2 + t2 = a6 + c6 b6 + t6 = a2 + b2

a3 + t3 = a4 + b4 c4 + t4 = b3 + c3

b3 + t3 = a5 + b5 c5 + t5 = a3 + c3

c3 + t3 = a6 + b6 c6 + t6 = a3 + b3

To check whether some assignment in the support belongs to such a family, we set

its coefficient to 1 and the coefficients of the other assignments in the same context

to 0. It has been machine-checked in mod 2 arithmetic that there is no solution to

the system for any choice of starting assignment. So cohomology also witnesses the

contextuality of the Peres-Mermin model.

The Contextual Triangle

We will introduce a general notion of a Kochen-Specker-type model in section 3.5, the

simplest example of which is the contextual triangle. This is the model that arises

from Specker’s parable [98, 75]. It has also appeared in a somewhat different context

in [4] and [81], and is related to the Penrose triangle of figure 1.1.

The model is defined on the following measurement cover:

M = {{A,B}, {B,C}, {A,C}}.

The cover is not realisable by projective measurements in quantum mechanics since

the pairwise compatibility would imply that {A,B,C} should also be an allowed

measurement context. It is, however, realisable by POVM’s [65], though it is not

known if the actual model we are interested in on this cover is realisable. It is

nevertheless a useful example to set the scene.

We are interested in the Kochen-Specker support , which contains those assign-

ments with exactly one 1 among the outcomes. Thus we have the following table:
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00 01 10 11

A B 0 1 1 0

B C 0 1 1 0

C A 0 1 1 0

The coefficients for a candidate family are labelled as follows.

00 01 10 11

A B 0 a b 0

B C 0 c d 0

C A 0 e f 0

The constraints on the coefficients for a compatible family are:

a = f, b = e, a = d, b = c, d = e, c = f,

implying that all the coefficients must be equal.

As before, checking that an assignment in the support has a non-vanishing ob-

struction requires setting the coefficient labelling that assignment to 1, and the other

coefficients in its row to 0. Clearly there is no such solution, since it would imply

that 1 = 0.

The 18-Vector Kochen-Specker Configuration

The 18-vector construction in R4 from [34], gives rise to a model that is state-

independent at the level of the support. This is the model with Kochen-Specker

support on the measurement cover given by the columns of the following table.

A A H H B I P P Q

B E I K E K Q R R

C F C G M N D F M

D G J L N O J L O

We label the coefficients for a candidate family as below.
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1000 0100 0010 0001

A B C D a b c d

A E F G a e f g

H I C J h i c j

H K G L h k g l

B E M N b e m n

I K N O i k n o

P Q D J p q d j

P R F L p r f l

Q R M O q r m o

Note that some of the constraints on the coefficients take the form of simple equations

between coefficients (see proof of proposition 3.5.5) allowing us to reduce from 36 to

18 coefficients; we have used this reduction in the table.

The remaining constraints are expressed by the following equations.

b+ c+ d = e+ f + g a+ b+ d = h+ i+ j

a+ c+ d = e+m+ n a+ b+ c = p+ q + j

a+ f + g = b+m+ n a+ e+ f = h+ k + l

a+ e+ g = p+ r + l i+ c+ j = k + g + l

h+ c+ j = k + n+ o h+ i+ c = p+ q + d

h+ g + l = i+ n+ o h+ k + g = p+ r + f

b+ e+ n = q + r + o b+ e+m = i+ k + o

i+ k + n = q + r +m q + d+ j = r + f + l

p+ d+ j = r +m+ o p+ f + l = q +m+ o

It has been machine-checked in mod 2 arithmetic that no cohomological obstruction

vanishes, confirming that we have a cohomological witness for the Kochen-Specker

theorem.

3.5 General Results I

The previous examples, while providing cohomological non-locality and contextuality

proofs, needed to be analysed on a case by case basis. Therefore, one might view
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these as providing a proof of concept. In this section, however, we are concerned with

finding general results which prove the effectiveness of the cohomological approach

for whole classes of models. In particular, we will be interested in models that can

be used for contextuality arguments similar to that of Kochen & Specker [73].

We begin by introducing a general notion of a Kochen-Specker-type model for

any measurement cover. These models will be encountered again in chapter 4. We

assume an outcome set {0, 1}. For any maximal context C ∈ M and measurement

m ∈ C, we define sC,m ∈ E(C) to be the section that assigns 1 to m and 0 to all

other measurements in C. Possible outcomes for each context are precisely those that

assign 1 to a single measurement. This kind of condition arises when one considers

projective measurements in quantum mechanics.

Definition 3.5.1. Let O = {0, 1}. The Kochen-Specker support for the cover M is

the presheaf given by

SKS(C) = {sC,m | m ∈ C}.

The Kochen-Specker model on the measurement scenario (X,O,M) is the possibilis-

tic model {eC}C∈M defined by

supp (eC) = Se(C) = SKS(C),

for all C ∈M.

A necessary condition for Kochen-Specker models to have a consistent global as-

signment (i.e. Se(X) 6= ∅) is given in [4]. The negation of this condition, therefore,

provides a sufficient condition for a model to be strongly contextual.

Proposition 3.5.2 (Abramsky & Brandenburger [4]). The existence of a consistent

global assignment implies that

gcd{dm | m ∈ X} | |M|, (3.1)

where gcd is the greatest common divisor and dm := |{C ∈M | m ∈ C}|.

We refer to (3.1) as the GCD condition, and to each dm as the degree of the

measurement m. All models that do not satisfy the GCD condition are therefore

strongly contextual.

Definition 3.5.3. ¬GCD is the class of Kochen-Specker models that do not satisfy

the GCD condition.
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For the results that follow, it is necessary to assume connectedness of measure-

ment scenarios in the following sense. Given any measurement scenario (X,O,M)

one can define a hypergraph (X,M) with the measurements X as vertices and with

hyperedges given by the maximal contextsM. This differs from the abstract simpli-

cial complex defined by the measurement scenario in that it only takes into account

the maximal contexts. As we will see later, it can also be useful to consider the dual

hypergraph (M, X), which has a vertex for each maximal context and a hyperedge

em = {C ∈M | x ∈ C} for each measurement m ∈ X.

Definition 3.5.4. A measurement scenario (X,O,M) is said to be connected if its

hypergraph (X,M) is connected.

That is to say, a measurement scenario is connected if, for any maximal contexts

C,C ′ ∈M, one can find a finite sequence of maximal contexts

C = C0, C1, C2, . . . , Cn, Cn+1 = C ′

such that

∀ i ∈ {0, . . . , n}. Ci ∩ Ci+1 6= ∅.

We will now show that cohomology captures strong contextuality for a class of

connected Kochen-Specker models using an argument related to proposition 3.5.2. Of

course, we note that cohomology witnesses strong contextuality in some connected

models outside of this class (e.g. the PR box, the GHZ and Peres-Mermin models)

so it captures the property more finely than this.

Proposition 3.5.5. If the cohomological obstruction vanishes for some assignment

in a Kochen-Specker model, then the GCD condition holds for that model.

Proof. Assume that γ(s1) = 0 for some assignment s1 ∈ Se(C1) in the support. If we

enumerate the maximal contextsM = {Ci}i∈I then this implies by proposition 3.2.3

that there exists a compatible family {ri ∈ F(Ci)}i∈I of Z-linear combinations of

assignments of Sesuch that r1 = s1. Recall that the support of each maximal context

is Se(C) = {sC,m | m ∈ C}. Let ci,m denote the coefficient of the assignment sCi,m in

the linear combination ri.

If for some i, j there exists m ∈ Ci ∩ Cj, then compatibility gives the following

constraints:

ci,m = cj,m,
∑
m′∈Ci
m′ 6=m

ci,m′ =
∑
m′′∈Cj
m′′ 6=m

cj,m′′ .
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Using equations of the first kind we can identify the coefficients ci,m for all i, and

unambiguously denote these coefficients by cm alone, regardless of the context. Sum-

ming the two equations above gives∑
m∈Ci

cm =
∑
m′∈Cj

cm′ ;

i.e. the sums of the coefficients of ri and rj are the same. By connectedness, and

since the sum is equal to 1 for the context C1, the coefficients of rk sum to 1 for each

maximal context Ck.

Hence, we have

|M| =
∑
C∈M

1 =
∑
C∈M

∑
m∈C

cm =
∑
m∈X

dmcm = g
∑
m∈X

dm
g
cm

where dm := |{C ∈ M | m ∈ C}| as before and g := gcd{dm | m ∈ X}. Since g

divides dm for all m, we can conclude that g divides |M|.

Then for any model in the class ¬GCD, no cohomological obstruction vanishes,

and we have the following corollary.

Corollary 3.5.6. Cohomology witnesses contextuality for all ¬GCD Kochen-Specker

models.

We have already considered two familiar models from this class: the contextual

triangle and the state-independent model arising from the 18-vector proof of the

Kochen-Specker theorem, from which we provided a cohomological proof of the the-

orem.

3.6 General Results II

The fact that cohomology can be shown to witness contextuality for this class of

strongly contextual models, as well as the success of the cohomological approach

in all of the strongly contextual and strongly non-local examples that have been

considered (recall that the only example where a false positive has been seen to arise

was the Hardy model, which is not strongly non-local) might lead us to suspect that

the cohomological characterisation is complete for strong contextuality. However, it

has been possible to construct a strongly contextual model for which a false positive

does arise. This is the Kochen-Specker model for the cover

M = {{A,B,C}, {B,D,E}, {C,D,E}, {A,D, F}, {A,E,G}}.
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In contrast with all of the earlier examples, this model does not satisfy any rea-

sonable criterion for symmetry, nor does it satisfy any strong form of connectedness.

In fact, the existence of measurements with degree 1 is crucial in this example (F and

G each belong to a single maximal context). It means that it is always possible to

choose coefficients for s{A,D,F},F and s{A,E,G},G that will make the coefficients of the

respective contexts sum to 1 without imposing any constraints on the other contexts.

This leads to the following conjecture.

Conjecture 3.6.1. Under suitable assumptions of symmetry and connectedness, the

cohomological obstruction is a complete invariant for contextuality.

We will now present some results which support this conjecture, including a

proofs of the conjecture for other classes of Kochen-Specker models. Note that this a

strengthening of a conjecture made by the author and his collaborators in [12], which

only proposed that the cohomological obstruction might be a complete invariant for

strong contextuality. This is because, for models with appropriate properties, we can

prove (proposition 3.6.4) that contextuality and strong contextuality are equivalent.

The first step is to introduce the appropriate notion of symmetry. Again, we

will define this in relation to the hypergraph derived from a measurement scenario.

A hypergraph (X,M) is vertex-symmetric if its automorphism group is transitive.

That is to say that for every pair of vertices m,m′ ∈ X there exists a hypergraph

automorphism α : X → X such that α(m) = m′. Every vertex-symmetric hypergraph

is necessarily k-regular, which is to say that there exists some k ∈ N such that the

degree dm = k for all m ∈ X.

Definition 3.6.2. A measurement scenario (X,O,M) is said to be symmetric if the

hypergraph (X,M) is vertex-symmetric.

It can be useful to phrase the problem of contextuality of Kochen-Specker models

in terms of hypergraphs. This naturally leads to some interesting connections with

ideas from (hyper)graph theory. A transversal of a hypergraph (X,M) is a subset

Y ⊆ X such that Y ∩ C 6= ∅ for all C ∈ M. A stable transversal of (X,M) is a

transversal Y such that no two elements m,m′ ∈ Y are adjacent. In these terms, it is

possible to characterise contextuality in Kochen-Specker models as follows (this was

first pointed out in [4]).

Proposition 3.6.3. The Kochen-Specker model on (X,M) is non-contextual if and

only if each m ∈ X belongs to a stable transversal of the hypergraph (X,M).
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Proof. Recall from proposition 1.6.1 that a model is non-contextual if and only if

every ‘local’ assignment s ∈ E(C) belongs to a compatible family of assignments

{si ∈ E(Ci)}Ci∈M

in the model. Since every possible assignment in a Kochen-Specker model is of the

form s = sC,m, it follows that in such a model non-contextuality is equivalent to every

section belonging to a compatible family {sCi,mi}Ci∈M for some {mi ∈ Ci}Ci∈M. A

family of assignments, therefore, is defined by a family of measurements {mi}Ci∈M,

and compatibility of the assignments translates to the property that if mi ∈ Ci ∩ Cj
then mi = mj, or, equivalently, if mi 6= mj then mi 6∈ Cj and mj 6∈ Ci. This is

precisely a stable transversal of (X,M).

Proposition 3.6.4. A symmetric Kochen-Specker model is contextual if and only if

it is strongly contextual.

Proof. Consider the Kochen-Specker model on (X,M). Suppose there exists some

m ∈ X such that m belongs to a stable transversal Y of the hypergraph (X,M). Since

the model is symmetric, for any m′ ∈ X there exists a hypergraph automorphism

α : X → X such that α(m) = m′. Since α is a hypergraph automorphism, it must be

that α(Y ) is also a stable transversal of (X,M). It is therefore the case that every

m ∈ X belongs to a stable transversal.

The fact that symmetry implies an equivalence between contextuality and strong

contextuality is an interesting point: all of the familiar strongly contextual models

are symmetric. On the other hand, the Hardy model, which is contextual but not

strongly contextual, is inherently asymmetric. This was a crucial consideration in the

proof of theorem 2.6.5, in which it was shown that in order to realise a Hardy model,

the underlying entangled state must have some asymmetry.

Some interesting connections arise when we consider the problem of contextuality

in Kochen-Specker models in terms of dual hypergraphs (M, X). A matching M of

the hypergraph (M, X) is a set of pairwise non-adjacent edges M ⊆ X. A perfect

matching is a matching that matches all vertices. This is the dual notion to a sta-

ble transversal. Now we arrive at the following characterisation of contextuality for

Kochen-Specker models.

Corollary 3.6.5. The Kochen-Specker model on (X,M) is non-contextual if and

only if every edge belongs to a perfect matching of the dual hypergraph (M, X).
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Proof. This is the dual statement of proposition 3.6.3.

In this dual picture, edge-transitivity is the relevant notion of symmetry: for any

two edges em, em′ ∈ X there exists a hypergraph automorphism α : X → X such

that α(em) = em′ . An edge-symmetric hypergraph is necessarily k-uniform, which is

to say that |em| = k for all em ∈ X. Of course, in our case, |em| is just the degree dm

of the measurement m.

Such problems have been studied in the mathematics literature, and there are

several results that can find interesting applications to the problem of contextuality

in Kochen-Specker models. The first results we mention relate to the decidability

problem for strong contextuality in Kochen-Specker models with constant degree

d = k, which is equivalent to checking for the existence of a perfect matching in a

k-uniform hypergraph.

For d = 2, the ‘blossom algorithm’ [47] provides an efficient method1 of finding a

maximum matching (i.e. a matching M such that |M | is maximised) and hence for

deciding strong contextuality.

Corollary 3.6.6. Decidability of strong contextuality for Kochen-Specker models with

constant degree d = 2 is polynomial with respect to the number of maximal contexts.

For d ≥ 3, however, this is known to be an NP-complete problem [52].

Corollary 3.6.7. Decidability of strong contextuality for Kochen-Specker models with

constant degree d ≥ 3 is NP-complete with respect to the number of maximal contexts.

These results, which as far as the author is aware are new to the foundations of

quantum mechanics literature, complement the work of Pitowsky [92] and Abramsky,

Gottlob & Kolaitis [10] which prove similar NP-completeness results for probabilistic

and, respectively, possibilistic Bell scenarios, as well as our proposition 2.6.1, which

gave efficient algorithms for deciding logical non-locality in certain Bell scenarios.

In the d = 2 case, Tutte’s theorem [76] provides a necessary and sufficient condition

for a 2-uniform hypergraph (i.e. a graph or multigraph) to have a perfect matching.

Corollary 3.6.8. A Kochen-Specker model with constant degree d = 2 has a global

assignment if and only if for each S ⊆M the subgraph of (M, X) induced by (M−S)

has at most |S| connected components with an odd number of vertices.

1O(|M|4).
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This has the same flavour as Vorob’ev’s theorem [103], which was originally proved

in relation to game theory, but which in our setting characterises measurement covers

for which empirical models are necessarily local.

In the general case, despite the fact that the decidability problem for perfect

matching of a k-uniform hypergraph is NP-complete, there do exist a number of suffi-

cient conditions. One such condition, due to Daykin & Häggkvist [44], is sufficient for

any k-uniform hypergraph satisfying the GCD condition to have a perfect matching.

The condition is

m ≥
(

1− 1

d

)(
|M| − 1

d− 1

)
, (3.2)

where d is the degree and m := minC∈M |C|. We can use this to prove the following

result.

Proposition 3.6.9. Cohomology provides a complete characterisation of contextu-

ality for the class of symmetric Kochen-Specker models which satisfy the Daykin-

Häggkvist condition (3.2).

Proof. A symmetric model has constant degree d = k for some k, and its dual hy-

pergraph is k-uniform. If the GCD condition and condition (3.2) are both satisfied

satisfied, the Daykin-Häggkvist theorem guarantees the existence of a perfect match-

ing, and hence that that the model is not strongly contextual. In fact, we know by

proposition 3.6.4 that strong contextuality and contextuality are equivalent for sym-

metric models, so assuming the GCD condition to hold, Daykin-Häggkvist theorem

actually guarantees non-contextuality. Together with proposition 3.5.2, this proves

that the GCD condition is necessary and sufficient for non-contextuality in this class

of models. Therefore, by proposition 3.5.5, cohomology witnesses contextuality for

all models in the class.

This proves a restricted version of conjecture 3.6.1. If it could be shown that the

GCD condition is necessary and sufficient for an edge-symmetric hypergraph to have

a perfect matching, then by a similar argument we could prove the conjecture for all

Kochen-Specker models. However, it is possible to find a counter-example to this,

and there is some reason to suspect that classifying the edge-symmetric hypergraphs

that have a perfect matching is not an easy problem [35].

We also mention another class of symmetric models for which we can prove that

the conjecture holds by virtue of the fact that the GCD condition is necessary and

sufficient for non-contextuality. These are the Kochen-Specker models whose dual

hypergraphs are simply graphs consisting of a closed chain of vertices, or multigraphs
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Figure 3.1: Dual (multi)graphs of chain Kochen-Specker models: (a) the contextual
triangle; (b) an example with multiple edges which has a perfect matching (red).

m3

m1 m2

m1 m2

m3m4

m5

(a) (b)

whose underlying graph is of this form. A couple of examples are given in figure

3.1. We will refer to such models as chain Kochen-Specker models. This class con-

tains the model for the Klyachko proof of the Kochen-Specker theorem [72] and its

generalisations [75].

Proposition 3.6.10. Cohomology provides a complete characterisation of contextu-

ality for chain Kochen-Specker models.

Proof. For the dual hypergraph of such a model, we claim that there exists a perfect

matching if and only if there exists a Hamiltonian cycle (a closed cycle which passes

through each vertex exactly once) of even length. Since we have assumed that the

dual hypergraph is a multigraph, each measurement must have degree d = 2. A

matching pairs vertices, so the existence of a perfect matching implies that there

must be an even number of vertices. Since the underlying graph consists simply of

a chain of vertices, there necessarily exists a Hamiltonian cycle, which, since there

are an even number of vertices, must be of even length. Conversely, if there exists a

Hamiltonian cycle of even length, then by selecting alternating edges in the cycle one

obtains a perfect matching.

This shows that a model in this class is contextual if and only if it is strongly

contextual, since if some edge belongs to a perfect matching there exists a Hamil-

tonian cycle of even length, but then all edges can be shown to belong to a perfect

matching. Furthermore, it is clear that the GCD condition is necessary and sufficient

for non-contextuality since it holds precisely when |M| is even. By proposition 3.5.5,

cohomology completely characterises contextuality for this class of models.
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3.7 Discussion

We have succeeded, in sections 3.3 and 3.4, in finding cohomological non-locality and

contextuality proofs that are counterparts to many of the well-known theorems (GHZ,

Kochen-Specker, etc.). There are some immediate limitations to the results described

in these sections, however. One point is that the obstructions are simply computed

by brute force enumeration, so the results we have obtained can only be considered a

proof of concept, and are not as conceptually illuminating as one might hope. Ideally,

we would like to use the machinery of homological algebra and exact sequences to

obtain more conceptual and general results. A second point is that, in general, the

cohomological condition for contextuality is sufficient, but not necessary. This is a

consequence of the fact that the presheaf we use F = FZSe is only an approximation

to the presheaf Se that we are really interested in. Overcoming these limitations is

an objective for future work.

The results of sections 3.5 and 3.6 represent some progress on the issue of gen-

erality. We have seen that for large classes of Kochen-Specker models cohomology

provides a complete characterisation of contextuality. Moreover, the investigations in

these sections have led to several insights which are illuminating in their own right. In

particular, we have found a connection between Kochen-Specker-type contextuality

proofs and the problem of the existence of perfect matchings in hypergraphs. This has

been quite fruitful in that known results about hypergraphs have allowed us to show

that decidability of strong contextuality for Kochen-Specker models with constant

degree d = 2 is a polynomial problem, while for d ≥ 3 it is NP-complete, and Tutte’s

theorem was seen to provide a necessary and sufficient condition for non-contextuality

in d = 2 Kochen-Specker models.

The conjecture made in [12] that under suitable assumptions for symmetry and

connectedness it might be shown that cohomology provides a complete characterisa-

tion for strong contextuality has also been strengthened in light of proposition 3.6.4,

which shows that for symmetric Kochen-Specker models contextuality and strong

contextuality are equivalent. Propositions 3.6.9 and 3.6.10 prove the conjecture in

restricted cases.

Another idea is that ‘good’ cases (in which cohomology succeeds in witnessing con-

textuality) may somehow be related to the notion of Vorob’ev regularity of measure-

ment covers. In [103], Vorob’ev characterised the covers, or more precisely the simpli-

cial complexes these generate on which any model is extendable; i.e. non-contextual.
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These are exactly the complexes which can be reduced to an empty complex by remov-

ing certain extremal maximal contexts. From the proof of the theorem, one can see

that the non-extendability of a model would be already noticed in its reduced form,

which allows us to focus on witnessing non-contextuality for irreducible (Vorob’ev

regular) covers. A necessary condition for a context to be extremal is that it contains

measurements that do not belong to any other maximal context. Even though the

strongly contextual model that gave a false positive in section 3.6 has no extremal

contexts, and is therefore irreducible, it does have this weaker property.
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Chapter 4

Bell Models from Kochen-Specker
Models

Again we recall that in chapter 1 extendability of empirical models was seen to corre-

spond in a unified manner to both locality and non-contextuality, an insight that has

initiated diverse lines of research (e.g. [2, 4, 9, 11, 12, 100]). In this chapter, which is

based on [78], we introduce a refinement of the notion of extendability that captures

the idea of partial approximations to locality/non-contextuality. This can be useful

in characterising the properties of sub-models.

The refinement has also found more practical applications. Certain empirical

models, such as those considered in chapter 2, have measurements that can be par-

titioned into sites, and can be considered to abstract spatially distributed systems:

these are the Bell-type models. We are especially interested in a particular, canonical

extension, which, when well-defined, may be used for the construction of equivalent

Bell models from models of the more general kind. On both foundational and prac-

tical levels, an advantage of having an equivalent Bell form of a contextual model

is that it is much easier to motivate a notion of locality in a Bell scenario than the

corresponding notion of non-contextuality in a more general measurement scenario,

making non-local behaviour all the more striking.

In chapters 2 and 5, for example, we present locality as the conjunction of deter-

minism and parameter independence (this is closely related to no-signalling, which we

discussed in some detail in chapter 1). Of course, in a spatially separated system, one

might appeal to compatibility with relativity to motivate parameter independence as

a reasonable physical assumption: the choice of measurement in one system should

not instantaneously affect the outcomes of measurements on other systems. On the

other hand, the justification for this kind of argument is less clear for sets of compat-

ible measurements that are made on a single system: one could simply ‘coarse-grain’

the measurement set so that the sets of compatible measurements are treated as the
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basic measurements, and the problem is somewhat mitigated. This was realised by

Bell, who had observed a similar result [23]1 to that of Kochen & Specker [73] be-

fore going on to prove his more well-known non-locality theorem [22] (this is also

discussed in [85]). A further advantage is that non-locality can be exploited as an

information theoretic resource [20], whereas contextuality has yet to be developed for

such purposes.

We can find equivalent Bell models for many familiar examples of contextual mod-

els: the entire family of symmetric Kochen-Specker models from chapter 3, which in-

cludes the contextual triangle and the 18-vector Kochen-Specker model, for example.

One connection that arises is that the equivalent Bell model for the contextual trian-

gle is essentially a folding of several Popescu-Rohrlich boxes [93]. The Peres-Mermin

square [85] is also treated. This represents a step in the direction of proposing equiv-

alent Bell tests for contexuality results, though an important issue that remains to

be addressed is that of quantum realisability.

4.1 Bell Scenarios

Bell scenarios are measurement scenarios that can be thought of as abstracting of spa-

tially distributed systems (see figure 4.1). We encountered this kind of measurement

configuration in chapter 2, in which we introduced a logical framework for (n, k, l)

Bell scenarios. These were to be thought of as n-partite models, in which each party

could choose to perform one of k different measurements, each of which could have

l possible outcomes. For example, the model arising from the Bell-CHSH theorem

from chapter 1 or the original Hardy model [60] from chapter 2 are both (2, 2, 2)

models. An example of a (3, 2, 2) model is that which arises from the GHZ-Mermin

non-locality argument [83]. Recall that in such scenarios extendability corresponds

to the usual notion of Bell locality.

More carefully speaking, these are measurement scenarios (X,O,M) for which

the set of measurements can be written as a disjoint union X =
∐n

i=1 Xi such that

the maximal contexts are given by the cartesian product M =
∏n

i=1 Xi. We define

l := |O| and k := max1≤i≤n |Xi|.
As a technical remark, there is a slight abuse of notation here. Elements of

X =
∐n

i=1Xi are of the form 〈x, i〉 where i ∈ {1, . . . , n} identifies the site and x ∈ Xi.

An element of the cover
∏n

i=1 Xi is an n-tuple 〈x1, . . . , xn〉 with each xi ∈ Xi, which

can be seen as a subset of
∐n

i=1Xi if we interpret it as {〈x1, 1〉, . . . , 〈xn, n〉}. We will

1This paper was written earlier but finally published later than [22].
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Figure 4.1: A Bell scenario.
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denote it as a tuple, however, to simplify notation. Therefore, the maximal contexts

of a Bell scenario are the sets of measurements that contain one measurement from

each site.

4.2 Kochen-Specker Models

Of course, not all measurement scenarios are of the Bell type. We have already

encountered some examples: the state-independent model for the 18-vector proof of

the Kochen-Specker theorem [34] and the Peres-Mermin square [85]. Both of these

models make use of measurement scenarios that are of a more general form and

cannot be partitioned into sites. Many ‘non-Bell’ models fall into the general class of

Kochen-Specker models from definition 3.5.1.

Recall that these are the possibilistic models on any connected measurement sce-

nario for which, at each maximal context, an assignment is possible if and only if

it maps a single measurement to the outcome 1. As we saw in chapter 3, the coho-

mological characterisation of strong contextuality is complete for certain classes of

Kochen-Specker models.

00 01 10 11

A B 0 1 1 0

B C 0 1 1 0

C A 0 1 1 0

The contextual triangle, above, which we encountered in chapter 3, is the simplest

example. We will return to this model in section 4.6.

83



Note that in this chapter we use an equivalent definition of the Kochen-Specker

support, which is more convenient for our present purposes:

SKS(C) := {s ∈ E(C) | o(s) = 1} ,

where o(s) := | {x ∈ C | s(x) = 1} | for any assignment s ∈ E(C).

4.3 No-signalling Extensions of Models

We consider the problem of extending an empirical model to a cover that allows

increased compatibility of measurements. For notational convenience, in this section,

we fix sets X of measurements and O of outcomes, so that a measurement scenario

can be identified by its cover M of maximal contexts alone. Also, when we refer

to models in this section it will be assumed that we refer to possibilistic models, as

introduced in chapter 1.

Definition 4.3.1. Let M and M′ be two measurement covers on X. We write

M�M′ when ↓M ⊆↓M′; i.e.

∀ D ∈M. ∃ C ∈M′. D ⊆ C.

Definition 4.3.2. Let M�M′, and let e be a model defined on M. A model f on

M′ is said to extend e if

∀ D ∈M. fD = eD.

When such an f exists, we say that e is extendable to M′.

Note that the cover M> := {X}, in which any subset of measurements is jointly

compatible, is larger than all other covers; i.e. it is the top element in the poset of

measurement covers. Asking for extendability to the top cover amounts to asking for

extendability in the usual sense: in other words, locality or non-contextuality. The

notion of extendability to any coverM′ ≺M> therefore captures partial approxima-

tions to the usual notion. One cover that will be of particular interest in section 4.4

is the following.

Definition 4.3.3. For any cover M we define n(M) := maxC∈M |C| to be the max-

imum size of contexts in M (where no confusion arises, this will be simply denoted

n). Then we can define another cover

PnX := {Y ⊆ X | |Y | = n}

over X. It necessarily holds that M� PnX.
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We now consider a construction that provides a candidate for a canonical ex-

tension of a model to any larger cover (much like Se(X) for the usual notion of

extendability). We note, however, that this will not necessarily yield a well-defined

model. The idea is to allow every assignment except those that are directly forbidden

by the compatibility/no-signalling condition; i.e. to allow every assignment in e′ that

is consistent with the possible assignments in e.

Definition 4.3.4. Let M � M′ and e be a model on M. For each C ∈ M′ and

s ∈ E(C), we define:

e′C(s) :=
∧

W⊆C,W∈↓M

eW (s|W ).

If {e′C}C∈M′ is a well-defined model extending e, we call it the canonical extension of

e to M′, and say that e is canonically extendable to M′.

According to the definition, the support of the extended model e′ at each maximal

context C ∈M′ is

supp(e′C) = {s ∈ E(C) | ∀ W ∈↓M,W ⊆ C. s|W ∈ Se(W )} = Se(C);

i.e. the support contains those assignments on C that are consistent with the model

e. We can equivalently express this in a way that mentions only maximal contexts:

supp(e′C) = {s ∈ E(C) | ∀ D ∈M. ∃ t ∈ E(D). t ∈ Se(D) ∧ t|C∩D = s|C∩D} .

Clearly, for M′ =M>,

supp(e′X) = Se(X);

i.e. the assignments consistent with e′ are precisely the global assignments consistent

with e.

We saw in chapter 1 that Se(X) provides a canonical local hidden variable space

for the model e. Although the present construction does not satisfy properties that

are quite as strong, the next two propositions show why this construction, when it

yields a well-defined extension, can be regarded as canonical in some sense, especially

with regard to strong contextuality.

Proposition 4.3.5. LetM�M′, e be a model onM, and f be a model onM′ that

extends e. Then, for all C ∈M′,

supp(fC) ⊆ supp(e′C)

(i.e. fC(s) = 1 implies e′C(s) = 1 for any s ∈ E(C)).
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Proof. Consider any maximal context C ∈ M′ and any assignment s ∈ supp(fC).

Then, by virtue of f being an extension of e, all restrictions of s to contexts in

M must be consistent with e. That is, for all W ⊆ C with W ∈↓ M, we have

s|W ∈ Se(W ). Then, by the definition of e′, it must be that s ∈ supp(e′C).

This tells us that any extension has less possible assignments than the canonical

one. This is not surprising, since the canonical construction picks out all the assign-

ments that are consistent with the model e. It is clear that, in the extreme, e′C might

fail to be a distribution for some C ∈M′; i.e.

supp(e′C) = Se(C) = ∅.

Obviously, in that case there can be no extension of e toM′ whatsoever. We say that

e is strongly non-extendable toM′, in analogy with the notion of strong contextuality.

The following proposition will be relevant for the construction of Bell models in

section 4.4. It can be read as saying that e′ is the most conservative extension that

can be made in terms of not introducing any extra (global) strong contextuality.

Proposition 4.3.6. Let M � M′, let e be a model on M, and suppose that e is

extendable toM′. Then e′ is strongly contextual if and only if e is strongly contextual.

Proof. It is enough to show that Se(X) = Se′(X); i.e. that the sets of global assign-

ments consistent with each model coincide. For a global assignment s ∈ E(X),

s ∈ Se(X)

⇔

∀ U ∈↓M. s|U ∈ Se(U)

⇔ { “⇐”: all Us above satisfy U ∈↓M ⊆↓M′, hence are covered by some C ∈M′ }

∀ C ∈M′. ∀ W ⊆ C,W ∈↓M. s|W ∈ Se(W )

⇔

∀ C ∈M′. sC ∈ Se′(C)

⇔

s ∈ Se′(X).

The situation here is more complicated than in the usual case of extensions to

the top cover. The key issue is whether compatibility (no-signalling) holds for the
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extended model. This is by no means guaranteed. It might happen that the canonical

construction e′ has too many possible assignments, causing it to be signalling. The

reason is that e′ picks out all the assignments that are ‘locally’ consistent with e,

but when overlaps of contexts arise that were not contained in the original cover it is

possible that assignments are not compatible. We give an example to illustrate how

such behaviour might arise.

Example 4.3.7. The model e on the cover M = {AB,BC,CD,DA} is given by the

following table.

00 01 10 11

A B 1 1 1 1

B C 1 0 0 1

C D 1 0 0 1

D A 1 1 1 1

We consider the canonical extension e′ to the cover M′ = {ABC,BCD} � M (see

figure 4.2).

000 001 010 011 100 101 110 111

A B D 1 1 1 1 1 1 1 1

B C D 1 0 0 0 0 0 0 1

The extension e′ is clearly not compatible. For example,

1 = e′ABD|BD (01) 6= e′BCD|BD (01) = 0.

Sub-models

No-signalling extensions can also be related to the contextuality of sub-models of an

empirical model.

Definition 4.3.8. Let e be a model on M. For any U ⊆ X, the induced sub-model

of e on U is {eU∩C}C∈M.

By compatibility of the original model it is clear that any induced sub-model will

be a well-defined empirical model. We note that this definition holds for any empirical

model, not just the possibilistic ones we are concerned with in this section.
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Figure 4.2: The measurement covers of example 4.3.7: (a)M = {AB,BC,CD,DA}
(b) M′ = {ABD,BCD}.
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Proposition 4.3.9. Let e be a model on M. If f extends e to M′ then all of the

sub-models induced by M′ are non-contextual.

Proof. We show that if {fC}C∈M′ extends e to M′ then each f ′C is a global section

of the induced sub-model of e on C. The induced sub-model on C is a model defined

on the measurement cover (C,O,M|C) where M|C = {D ∩ C}D∈M. Since f is an

extension, fC |D∩C = eD∩C for all D ∈M, and fC must be a global section.

The converse is not necessarily true, however. It is possible that all sub-models

that are induced in this way by elements of a cover M′ � M have a global section

but that one cannot find an extension {fC}C∈M′ (canonical or otherwise) that is no-

signalling. This is the situation for example 4.3.7, for which the induced sub-models

on ABD and BCD are non-contextual, but, as we have seen, the model cannot be

extended to the cover M′ = {ABD,BCD}.
Nevertheless, more can be said about the relationship between extendability and

induced sub-models when we talk of the strong properties.

Corollary 4.3.10. Let M � M′ and let e be a model on M. Then e is strongly

non-extendable to M′ if and only if there exists some C ∈ M′ such that the induced

sub-model of e on C is strongly contextual. In particular, e is strongly non-extendable

to M′ = Pn(M)X if and only if it has a strongly contextual induced sub-model of size

n(M).

Proof. This follows from proposition 4.3.5.
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4.4 Construction of Bell Models

We turn now to a second construction, which builds from empirical models on certain

kinds of measurement covers Bell models that are equivalent in terms of contextu-

ality. Note that this construction is not restricted to possibilistic models, and will

work for any kind of empirical model. The idea is to start with a model on some

measurement scenario (X,O,M), and to transform this into a model on the Bell

scenario (
∐n

i=1 X,O,
∏n

i=1X). Measurements here are of the form 〈x, i〉 with x ∈ X
and i ∈ {1, . . . , n} identifying the site (copy of X).

Definition 4.4.1. Let U ⊆
∐n

i=1X. An assignment s ∈ E(U) is said to be codiagonal

if it satisfies

∀ x ∈ X. ∀ i, j ∈ {1, . . . , n}. 〈x, i〉, 〈x, j〉 ∈ U =⇒ s(〈x, i〉) = s(〈x, j〉);

i.e. copies of the same measurement at different sites are assigned the same outcome.

Equivalently, in categorical terms, an assignment s : U → O is codiagonal when it

factors as

U �
� //

∐n
i=1X

`
n // X // O .

We denote the set of such assignments by EO(U).

With each set U ⊆
∐n

i=1 X of measurements on the new scenario, we associate a

set U ⊆ X of measurements on the original, which is obtained by forgetting the site

information; i.e. U := {x ∈ X | ∃ i. 〈x, i〉 ∈ U}. It is clear that there is a bijection

EO(U) ∼= E(U), which commutes with restrictions to smaller contexts, and we write s

for the image of an assignment s ∈ EO(U) under this map. Recall also that PnX :=

{Y ⊆ X | |Y | = n}.

Definition 4.4.2. With any empirical model f defined on a measurement scenario

(X,O,PnX) we associate an n-partite empirical model fBell on the Bell scenario

(
∐n

i=1 X,O,
∏n

i=1 X) defined by

fBell
C (s) =

{
fC(s) if s ∈ EO(C)

0 if s 6∈ EO(C)
.

Proposition 4.4.3. fBell is an empirical model.

Proof. It is clear that in the Boolean case, fBell
C is a distribution over the assignments

EO(C), and hence also over E(C). Moreover, in the general case, fBell
C is equivalent to

fC , and since C is a context (not necessarily maximal) of the measurement scenario
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for f it is therefore a well-defined distribution. As for compatibility, let C1 and C2

be two maximal contexts, and let C1,2 := C1 ∩ C2. For t ∈ EO(C1,2), we have:

fBell
C1

∣∣
C1,2

(t)

= { definition of marginalisation }∑
s∈E(C1)
s|C1,2

=t

fBell
C1

(s)

= { since fBell
C1

(s) 6= 0 only if s is codiagonal }∑
s∈EO(C1)
s|C1,2

=t

fC1(s)

= { using the bijection s 7→ s }∑
s∈E(C1)

s|C1,2
=t

fC1(s)

= { compatibility condition for the model f }∑
r∈E(C2)

r|C1,2
=t

fC2(r)

= { same steps in reverse order for C2 }

fBell
C2

∣∣
C1,2

(t).

For t ∈ E(U) \ EO(U), any assignment s ∈ E(Ci) that restricts to t is not codiagonal.

Therefore fBell
Ci

(s) = 0 and compatibility holds trivially. We conclude that

fBell
C1

∣∣
C1,2

= fBell
C2

∣∣
C1,2

.

Proposition 4.4.4. There is a bijection between the global sections of f and of fBell.

In particular,

• fBell is non-local if and only if f is contextual,

• fBell is logically non-local if and only if f is logically contextual,

• fBell is strongly non-local if and only if f is strongly contextual.
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Proof. By the definition of fBell, it is clear that any assignments that are deemed pos-

sible by a global section d ∈ DRE(
∐n

i=1X) of the model must belong to EO(
∐n

i=1X).

Recall that there exists a bijection EO(U) ∼= E(U), s 7→ s for each U ⊆
∐n

i=1X,

and that these bijections commute with restrictions. The correspondence lifts to pro-

vide bijections between DREO(U) and DRE(U) that commute with marginalisation.

Therefore, if U =
∐n

i=1X (and U = X), the resulting bijection gives the desired

correspondence between global sections.

On a related note, it is worth pointing out that any compatible family of Z-

linear combinations of assignments in f can be lifted to a compatible family of this

kind on fBell by taking its pre-image under diagonalisation, leading to the following

proposition. It is unclear whether the converse holds.

Proposition 4.4.5. The existence of a non-vanishing cohomological obstruction in

fBell implies the existence of a non-vanishing obstruction in f .

In good cases, we can use the canonical extension of the previous section to extend

a model e on (X,O,M) to a model e′ on (X,O,PnX) and then apply the present

construction to obtain a Bell model which, in general, is equivalent to the original in

terms of strong contextuality.

Corollary 4.4.6. Let e be an empirical model on (X,O,M) and suppose that e is

canonically extendable to (X,O,PnX). Then e′Bell is strongly non-local if and only if

e is strongly contextual.

4.5 Bell Models from Kochen-Specker Models

The construction of an equivalent Bell model can be carried out for all Kochen-Specker

models in which maximal contexts are all of the same size.

Proposition 4.5.1. The Kochen-Specker model for any scenario (X,O,M) in which

all maximal contexts are of the same size (i.e. |C| = n for all C ∈M) is canonically

extendable to (X,O,PnX).

Proof. Let e be the Kochen-Specker model for the scenario (X,O,M). For a context

C ∈ PnX and an assignment s ∈ E(C), we have

s ∈ Se′(C) ↔ ∀ W ⊆ C,W ∈↓M. o(s|W ) ≤ 1 ∧ ∀ D ⊆ C,D ∈M. o(s|D) = 1
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Since C ∈ PnX, it cannot have any proper sub-context that is a maximal context in

M. Thus, we can write:

e′C(s) =


1 if C ∈M∧ o(s) = 1

1 if C /∈M∧ ∀ W ⊆ C,W ∈↓M. o(s|W ) ≤ 1

0 otherwise

.

This is clearly a distribution for every C ∈ PnX, as there is always at least one

possible assignment.

Now, let U ( C and consider the marginalisation e′C |U . First, we look at the case

that C /∈ M. Then it is easy to see that, for any t ∈ E(U), t ∈ Se′(C)|U implies

that ∀ V ⊆ U, V ∈↓M. o(t|V ) ≤ 1. Conversely, if the latter holds, one can extend t

to C by assigning 0 to all other measurements, giving an assignment s ∈ E(C) that

satisfies ∀ W ⊆ C,W ∈↓M. o(s|W ) ≤ 1, since o(s|W ) = o(s|W∩U) = o(t|W∩U) ≤ 1 for

all such W . We then have s ∈ Se′(C), and hence s|U = t ∈ Se′(C)|U . So,

t ∈ Se′(C)|U ↔ ∀ V ⊆ U, V ∈↓M. o(t|V ) ≤ 1. (4.1)

For the case that C ∈ M, a section t ∈ E(U) is in Se′(C)|U if and only if o(t) ≤ 1.

So equation 4.1 holds in this case, too, since U itself is one of the V ’s in the formula.

This shows that the marginalisation to any U is independent of the maximal

context from which one starts, proving compatibility as required.

Combining this with corollary 4.4.6 gives the following.

Corollary 4.5.2. For any Kochen-Specker model e, the Bell model e′Bell is well-

defined, and is strongly non-local if and only if e is strongly contextual.

Proposition 3.6.4 showed that symmetric Kochen-Specker models are contextual if

and only if they are strongly contextual. This means that for the whole class of sym-

metric Kochen-Specker models (including the contextual triangle and the 18-vector

model), we can construct Bell models that are equivalent in terms of contextuality.

Corollary 4.5.3. For any symmetric Kochen-Specker model e, the Bell model e′Bell

is well-defined, and is non-local if and only if e is contextual.

4.6 Examples

The Contextual Triangle

Carrying out the construction on the triangle yields the following (2, 3, 2) model.
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00 01 10 11

A A′ 1 0 0 1

A B′ 0 1 1 0

A C ′ 0 1 1 0

B A′ 0 1 1 0

B B′ 1 0 0 1

B C ′ 0 1 1 0

C A′ 0 1 1 0

C B′ 0 1 1 0

C C ′ 1 0 0 1

We include dashes to make it clear that different measurements in the same context

are now considered to belong to different sites. It is especially interesting that the

model can be seen to contain many different PR boxes [93] as sub-models. These are:

00 01 10 11

A A′ 1 0 0 1

A C ′ 0 1 1 0

B A′ 0 1 1 0

B C ′ 0 1 1 0

00 01 10 11

B A′ 0 1 1 0

B B′ 1 0 0 1

C A′ 0 1 1 0

C B′ 0 1 1 0

00 01 10 11

B A′ 0 1 1 0

B C ′ 0 1 1 0

C A′ 0 1 1 0

C C ′ 1 0 0 1

and those obtained by reversing the order of the measurements.

We note that neither the triangle nor the PR box is realisable in quantum me-

chanics. The triangle provides the simplest possible example of a contextual model,

and the PR box is the only strongly contextual (2, 2, 2) model (proposition 2.6.4).

The Peres-Mermin Square

The Peres-Mermin square [85] is another example of a strongly contextual model,

though it does not fall into the class of Kochen-Specker models. It, too, has the

desirable property that it can be extended to PnX. We can therefore construct a

tripartite Bell model from it which is equivalent in terms of strong contextuality.

The constructed model contains 36 different (3, 5, 2) non-local sub-models, which are

essentially ‘padded-out’ versions of the square. The following table represents the
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non-local sub-model on the measurement cover

M = {A,B,C,D,G} × {B,D,E, F,H} × {C,F,G,H, I},

though we only explicitly write those rows that do not have full support.

000 001 010 011 100 101 110 111

A B′ C ′′ 0 1 1 0 1 0 0 1

D E ′ F ′′ 0 1 1 0 1 0 0 1

G H ′ I ′′ 0 1 1 0 1 0 0 1

A D′G′′ 1 0 0 1 0 1 1 0

B E ′ H ′′ 1 0 0 1 0 1 1 0

C F ′ I ′′ 1 0 0 1 0 1 1 0

Ignoring the additional rows, and the dashes, which are there as a reminder that the

measurements belong to different sites, this looks just like the table for the Peres-

Mermin model itself; though it is a genuinely new strongly non-local Bell model.

An interesting point is that since the Peres-Mermin contextuality proof is based

on a parity argument, just like the GHZ proof, one might expect that the Bell model

we have constructed should contain a GHZ sub-model. However, it can easily be

shown by comparison with the table for the GHZ-Mermin model (chapters 1 & 2)

that this is not the case. A further point is that it contains no tripartite Hardy

paradox (chapter 2).

4.7 Discussion

We have dealt with two related ideas. The refinement of extendability introduced here

is a development of the sheaf-theoretic framework, which captures partial approxima-

tions to locality and non-contextuality. This allows us to characterise contextuality

and strong contextuality in sub-models of an empirical model, as we have seen in

section 4.3.

The second idea is to introduce a method of constructing Bell models from models

of a more general kind in such a way that these are equivalent in terms of non-

locality/contextuality. This can even work at the level of probabilities. Equivalent

Bell forms of models are desirable since, both practically and theoretically, it is easier

to motivate a notion of locality in such scenarios than the equivalent notion of non-

contextuality in a more general scenario, as one can always appeal to relativity as
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a justification for certain assumptions. We have also mentioned that non-locality is

better understood as an information theoretic resource.

These two ideas are related by the fact that, for any model, the existence of

the canonical extension to PnX will guarantee the ability to construct a Bell model

that is equivalent in terms of strong contextuality. We have proved that for the

entire class of Kochen-Specker models with maximal contexts of constant size we

can carry out this construction, and that for the symmetric models the equivalence

even holds for contextuality. Even in the more general form, which applies to strong

contextuality only, this is a very useful result since so many of the familiar examples

of non-local/contextual models are strongly contextual: we have mentioned the GHZ-

Mermin model, the 18-vector Kochen-Specker model, the Peres-Mermin model, and

the Popescu-Rohrlich correlations.

There are several open questions arising from this work. We would like to know

whether there is an analogue of Vorob’ev’s theorem [103] for this partial notion of

extendibility; that is, given any measurement cover M′, can there be a complete

characterisation of the measurement covers M�M′ such that any empirical model

defined on M is extendable to M′. This could potentially lead to applications to

macroscopic realism similar to [100]. We would also like to know whether there

are other general classes of ‘good’ models for which we can guarantee the ability

to extend to PnX and thereby construct Bell models that are equivalent either in

terms of contextuality or strong contextuality: a class of Peres-Mermin-like models

for example.

It is especially interesting that when we constructed the equivalent Bell model for

the contextual triangle, we ended up with what is essentially a folding of PR boxes.

This appears to point to a deeper relationship between the models, which merits

further investigation. The PR box has been much studied and has been considered,

for example, as a possible unit of non-locality [19]. Since the triangle is the simplest

possible example of a contextual model, it is conceivable that it could be a unit of

contextuality. One might hope for some sort of analogous result to Kuratowski’s

theorem for graphs, which states that a graph is planar if and only if it does not

contain K5 or K3,3 as subgraphs. For example, it could be that, for some notion of

reducibility, contextual models must reduce to the triangle or to elements of some set

of irreducible models containing the triangle.

Another important issue that has not been dealt with so far is that of quantum

realisability: given that a model is quantum realisable, we would like to understand

when its extensions are and vice versa. The issue of quantum realisability was touched
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on in a different context in chapter 2. Here, it is especially relevant to the example

of the Peres-Mermin model. An aim of this work is to propose Bell tests that corre-

spond to contextuality proofs such as that of Peres & Mermin by giving a means of

quantum mechanically reproducing its equivalent Bell model. First, however, it will

be necessary to understand how quantum realisability relates to our constructions.
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Chapter 5

On the Reality of Observable
Properties

The issue of the reality of the wavefunction has received a lot of attention recently

(see especially [94, 41]). In this chapter, we will show that insights may also be

gained by considering the reality of objects and properties in physical theories more

generally, and in particular that such an approach can provide a new perspective on

non-locality and contextuality. The first step will be to introduce a suitably general

criterion for reality inspired by the Harrigan-Spekkens criterion for the reality of the

wavefunction [63], which was the subject of the Pusey-Barrett-Rudolph theorem [94].

The aim is to formulate such ideas in a manner that can allow for a deeper,

structural understanding of what is at play, and to attempt to bring considerations of

this kind within the scope of the methods of the sheaf-theoretic approach. Indeed, the

new criterion has several advantages over the original. It avoids technical difficulties,

and due to its generality it can be applied within any ontological physical theory:

generalised probabilistic theories [18], or classical mechanics, for example.

The initial research contained in this chapter also demonstrates that such consid-

erations can provide an alternative perspective on foundational questions in general.

We find a novel characterisation, for any predictive theory, of both local and non-

contextual correlations as those that can arise from observations of properties that

are ‘real’. This ties together the notions of locality and reality, bringing to light a link

between the Bell and PBR theorems, which deal, respectively, with these properties.

Much of the foundations of quantum mechanics literature, including the recent

developments on the reality of the wavefunction that we have mentioned, deals with

hidden variable models (or ontological models). We will therefore begin with a brief

overview of this framework. It has already been pointed out in chapter 1 that local

hidden variable models can be subsumed by the sheaf-theoretic framework; we will

see in more detail why this is so in section 5.3.
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5.1 Ontological Models

We are concerned with theories that give operational predictions for outcomes to

measurements; in other words, empirical models. Quantum mechanics is one such

theory. We have seen how it gives rise to empirical models in chapter 1. To give this

a more operational treatment, we associate a density matrix ρp with each preparation

p, a POVM {Em
o }o∈O with each measurement m, and prescribe the probability of the

outcome o given preparation p and measurement m by

p(o | m, p) = tr(ρpEm
o ).

We wish, more generally, to consider theories with this kind of operational struc-

ture. For each system we assume spaces P of preparations, X of measurements, and

O of outcomes. Again, there may be some compatibility structure on the space of

measurements, say M⊆ P(X), specifying which sets of measurements can be made

jointly (in quantum mechanics, this is specified by the commutative sub-algebras of

the algebra of observables). We additionally assume a space Λ of ontic states , over

which each preparation induces a probability distribution.

In an effort to simplify notation, we will use an overline to denote a tuple of joint

measurements m ∈M or joint outcomes o ∈ E(m), whereas m ∈ X and o ∈ O denote

individual measurements and outcomes, respectively. We will treat preparations and

ontic states similarly in section 5.4. Recall from chapter 1 that E : X → OX is the

event sheaf, and that E(m) denotes the set of functions o : m→ O.

Definition 5.1.1. An ontological or hidden variable model h over Λ specifies:

1. A distribution h(λ | p) over Λ for each preparation p ∈ P ;

2. For each λ ∈ Λ and set of compatible measurements m ∈M, a distribution

h(o | m,λ)

over functional assignments E(m) of outcomes to these measurements.

The operational probabilities are then prescribed by

h(o | m, p) =

∫
Λ

dλ h(o | m,λ) h(λ | p). (5.1)
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The terms ontological model and hidden variable model are both used in the

literature, but recently the term ontological model has gained some popularity. It may

be a more suitable term in the sense that the ‘hidden’ variable need not necessarily

be hidden at all: it could be directly observable. In Bohmian mechanics [27, 28],

for example, position and momentum play the role of the hidden variable. It also

carries the connotation that such a model is an attempt to describe some underlying

ontological reality.

Definition 5.1.2. A theory which determines the operational probabilities will be

referred to as an ontological theory over Λ.

We are especially interested in ontological models and theories that can reproduce

quantum mechanical predictions. Of course the simplest such theory is quantum

mechanics itself, regarded as an ontological theory.

Example 5.1.3 (ψ-complete Quantum Mechanics). The ontic state is identified with

the quantum state. A preparation produces a density matrix, which is viewed as a dis-

tribution over the projective Hilbert space associated with the system. By construction,

the operational probabilities are those given by the Born rule.

Of course, quantum mechanics, treated as an ontological theory in itself in this

way, has certain non-intuitive features. Einstein, Podolsky & Rosen provided one

early discussion of the fact [48]; but later results such as Bell’s theorem [22] and the

Kochen-Specker theorem [73] provided more clarity on the fact that non-locality and

contextuality are necessary features of any theory that can account for quantum me-

chanical predictions. In order to address these issues, we now consider some relevant

properties in the setting of ontological models. These are similar to the properties of

models in the possibilistic framework for Bell models from section 2.2.

Definition 5.1.4. An ontological model is λ-independent if and only if the distribu-

tions over Λ induced by each preparation p ∈ P do not depend on the measurements

m ∈M.

We have already implicitly assumed this in definition 5.1.1, but it is worth making

this clear since it is crucial for all of the familiar no-go theorems. A λ-dependent

model, on the other hand, would have h(λ | p,m) rather than h(λ | p) in equation

(5.1).

Definition 5.1.5. An ontological model is deterministic if and only if for each λ ∈ Λ

and set of compatible measurements m ∈M there exists some joint outcome o ∈ E(m)

such that h(o | m,λ) = 1.
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Such a model is deterministic with respect to the ontic states; the outcomes to all

measurements are determined with certainty by the ontic state.

Definition 5.1.6. An ontological model is parameter-independent if and only if the

marginal probabilities h(o | m,λ) are well-defined for all o ∈ O, m ∈M and λ ∈ Λ.

For any m ∈ m and λ ∈ Λ we can find a distribution h(o | m,λ) over O by

marginalising from h(o | m,λ). Parameter independence requires that the same

distribution be obtained regardless of which set of measurements we marginalise from;

and thus asserts that the probabilities of outcomes to a particular measurement do

not depend on the other measurements being performed. It essentially amounts to

imposing no-signalling with respect to the ontic states.

Definition 5.1.7. An ontological model is local/non-contextual if and only if it is

both deterministic and parameter-independent; empirical correlations are local/non-

contextual if and only if they can be realised by a local/non-contextual model.

This says that for each ontic state there is a certain outcome to any measurement

that can be performed, and that this does not depend on which other measurements

are made. The term local is generally only used when the system being modelled is

spatially distributed; where such an arrangement is not assumed, the model is said

to be non-contextual.

As we pointed out in chapter 1, another definition of locality that is common in

the literature concerns the factorisability of the distributions h(o | m,λ). These were

shown to be equivalent in the sense that they generate the same sets of empirical

models in [4], which built on work by Fine [50] that was specific to (2, 2, 2) Bell

scenarios.

5.2 A Criterion for Reality

In this section we will use the terminology of Harrigan & Spekkens [63], as that

which has been established in the literature. We will first present the Harrigan-

Spekkens criterion for the reality, or onticity , of the wavefunction, which will then

be reformulated and generalised. For this, we need only postulate, for each system,

a space Λ of ontic states. These can be considered to correspond to real, physical

states of the system. The idea will be that objects or properties that are determined

with certainty by the ontic state are themselves ontic. Indeed, the term ontic was

chosen as meaning that which relates to real as opposed to phenomenal existence.
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On the other hand, objects or properties that are not determined with certainty are

said to be epistemic. The dictionary meaning of this word is that which relates to

knowledge or to its degree of validation. Here, the term reflects the fact that objects

and properties of this kind are necessarily probabilistic and could thus be assumed

to represent a degree of knowledge about some underlying ontic object or property.

We also note, however, that regardless of any physical significance attached to these

definitions, the results that follow will hold on the purely mathematical level.

As well as the existence of an ontic state space, Harrigan & Spekkens also assume

that the preparation of any quantum state |ψ〉 induces a distribution µ|ψ〉 over the

ontic state space Λ for that system, which represents the probability of the system

being in each ontic state given that is was prepared in this way.

Definition 5.2.1 (Harrigan & Spekkens). If for each system, and for all wavefunc-

tions |ψ〉 6= |φ〉 the distributions µ|ψ〉 and µ|φ〉 have non-overlapping supports, then

the wavefunction is said to be ontic. If not, then there exist some |ψ〉 6= |φ〉 such

that µ|ψ〉(λ) > 0 and µ|φ〉(λ) > 0 for some λ ∈ Λ, and the wavefunction is said to be

epistemic.

We now present our more general reformulation of the definition which can be

applied to any object or property. Though the wavefunction would more usually be

considered as an object than a property of a system, for simplicity we only use the

term property from now on. It may not immediately be clear how these relate, but

this will be addressed by proposition 5.2.3.

Definition 5.2.2. A V-valued property over Λ is a function f : Λ → D(V), where

D(V) is the set of probability distributions over V. The property is said to be ontic in

the special case that, for all λ ∈ Λ, the distribution f(λ) over V is a delta function.

Otherwise, it is said to be epistemic.

Ontic properties, therefore, are generated by functions f̂ : Λ → V , which map

each ontic state to a unique value. For epistemic properties, however, there is at least

one ontic state that is compatible with two or more distinct values in V .

We now show how this definition relates to that of Harrigan & Spekkens. Any

V-valued property f specifies probability distributions over V , conditioned on Λ.

Bayesian inversion can be used to obtain probability distributions over Λ, conditioned

on V , which we (suggestively) label {µv}v∈V . Explicitly,

µv(λ) :=
f(λ)(v) · p(λ)∫

Λ
f(λ′)(v) · p(λ′) dλ′

, (5.2)
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assuming a uniform distribution p(λ) on Λ. Note that this is only well-defined for

finite Λ, and that a more careful measure theoretic treatment, which will not be

provided here, is required for the infinite case.

Proposition 5.2.3. A V-valued property over finite Λ is ontic (according to definition

5.2.2) if and only if the distributions {µv}v∈V have non-overlapping supports.

Proof. Let λ ∈ Λ and let v, v′ ∈ V such that v 6= v′. Suppose the property f is ontic

in the sense of definition 5.2.2. We assume for a contradiction that µv(λ) > 0 and

µv′(λ) > 0. Then, by (5.2), f(λ)(v) > 0 and f(λ)(v′) > 0; but since f is ontic,

vλ = v 6= v′ = vλ,

where vλ := f̂(λ).

Conversely, suppose that the distributions {µv}v∈V have non-overlapping supports

and assume for a contradiction that f(λ)(v) > 0 and f(λ)(v′) > 0. Then, by (5.2),

µv(λ) > 0 and µv′(λ) > 0.

One way of thinking about this correspondence is as a special case of the dual

equivalence between the category of von Neumann algebras and ∗-homomorphisms

and the category of measure spaces and measurable functions [66].

To illustrate, some simple examples of ontic and epistemic properties are the

following.

Example 5.2.4 (Classical Mechanics). The phase space of a system is taken to be

the ontic state space. Classical mechanical observables (energy, momentum, etc.) are

represented by real-valued functions on phase space, and are therefore always ontic.

Example 5.2.5. Consider an experiment in which a bag is prepared containing two

coins, which can be green or white, with equal probability, but are otherwise identi-

cal. We claim that the process of removing one and checking its colour measures an

epistemic property. If the ontic states are Λ = {GG,GW,WG,WW}, the property

cannot be represented by a {G,W}-valued function on Λ. Given the ontic state GW ,

for example, both G and W are compatible, and can arise with equal probability.

In example 5.2.5, according to our definition, the information gained by making

the measurement described is epistemic. In other words, the property that is actually

being measured is epistemic with respect to the state of the bag. It might also be

said the example describes a fuzzy measurement on the state of the bag.

The ontic criterion for reality set out in definition 5.2.2 has several advantages.
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• It is fully general and can be applied to any object or property in any ontological

theory.

• It avoids measure theoretic problems relating to sets of measure zero that are

inherent to that of Harrigan & Spekkens.

• It is mathematically straightforward and conceptually transparent.

5.3 Observable Properties

If we assume that the outcomes of measurements provide the values of properties of

a system, then for each measurement m ∈ X there should exist an O-valued property

fm : Λ→ D(O) such that fm(λ)(o) = h(o | m,λ) for all λ ∈ Λ and o ∈ O.

Definition 5.3.1. The observable properties of an ontological model h over Λ are

the O-valued properties fm : Λ→ D(O) given by

fm(λ)(o) := h(o | m,λ) (5.3)

for each m ∈ X such that the marginal h(o | m,λ) is well-defined.

Theorem 5.3.2. An ontological model is local/non-contextual if and only if all mea-

surements are of ontic observable properties.

Proof. First, we claim that a model is deterministic if and only if its observable

properties are ontic. This holds since, by (5.3),

h(o | m,λ) = 1 ⇔ fm(λ)(o) = 1.

Next, we claim that a model is parameter independent if and only if all measurements

are of observable properties. This holds since, by definition 5.3.1, all measurements

are of observable properties if and only if all marginals h(o | m,λ) are well-defined.

The result follows.

This is a new characterisation of locality, which falls out easily from the definitions.

It is similar to the Kochen-Specker [73] or topos approach [68] treatment of non-

contextuality. This can provide an alternative and sometimes simpler approach to

many results. The first result we mention shows that local ontological models have

a canonical form. In fact, it shows that local ontological or hidden variable models

can equivalently be expressed as distributions over the set of global assignments. In

this sense it shows how local ontological models are subsumed by the sheaf-theoretic
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approach. It has recently been proved in measure theoretic generality [31], and can

also be seen to generalise earlier work by Fine [50]. An interesting related point that

will be proved in chapter 6 is that, by allowing for negative probabilities, canonical

models can also generate all no-signalling correlations.

Theorem 5.3.3. Local models can be expressed in a canonical form, with an ontic

state space Ω := E(X), and probabilities

h(o | m,ω) =
∏
m∈m

δ (ω(m), o(m))

for all m ∈M, o ∈ E(m), and ω ∈ Ω.

Proof. By theorem 5.3.2, a local model h over Λ has a set {f̂m : Λ → O}m∈X of

ontic observable properties. For each λ ∈ Λ, we define a function ωλ ∈ E(X) by

ωλ(m) := f̂m(λ). Then the function c : Λ → E(X) defined by c(λ) := ωλ takes the

original to the canonical ontic state space.

We first prove the claim that if λ, λ′ ∈ c−1(ω) for some ω ∈ E(X) then

h(o | m,λ) = h(o | m,λ′)

for all m ∈ M and o ∈ E(m). Since λ, λ′ ∈ c−1(ω), then ωλ = ωλ′ , and therefore

f̂m(λ) = f̂m(λ′) for all m ∈ X. It follows that

h(o | m,λ) =
∏
m∈m

h(o(m) | m,λ)

=
∏
m∈m

fm(λ) (o(m))

=
∏
m∈m

δ
(
f̂m(λ), o(m)

)
=
∏
m∈m

δ
(
f̂m(λ′), o(m)

)
= · · ·

= h(o | m,λ′),

where the first equality can be shown to hold by locality.

The canonical model h over Ω is defined by

h(o | m,ω) := h(o | m,λω)

and

h(ω | p) :=
∑

λ∈c−1(ω)

h(λ | p)
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for all m ∈ M, o ∈ E(X), ω ∈ Ω, λ ∈ Λ, and any λω ∈ c−1(ω). The canonical model

realises the same operational probabilities as the original, since

∑
ω∈Ω

h(o | m,ω)h(ω | p) =
∑
ω∈Ω

h(o | m,λω)
∑

λ∈c−1(ω)

h(λ | p)


=
∑
ω∈Ω

∑
λ∈c−1(ω)

h(o | m,λ)h(λ | p)

=
∑
λ∈Λ

h(o | m,λ)h(λ | p),

where the second equality holds by the previous claim. Moreover, the operational

probabilities can be simplified as follows.

h(o | m,ω) = h(o | m,λω)

=
∏
m∈m

δ
(
f̂m(λω), o(m)

)
=
∏
m∈m

δ (ω(m), o(m))

The next proposition will not be surprising in light of the EPR argument [48]. It

shows that if one were to take the view that quantum mechanics is ψ-complete then

all non-trivial observables are epistemic or inherently probabilistic. Indeed, we can

obtain a re-statement of the EPR result as a corollary.

Proposition 5.3.4. Any non-trivial quantum mechanical observable is epistemic with

respect to ψ-complete quantum mechanics.

Proof. Any observable Â 6= I has eigenvectors, say |v1〉 and |v2〉, corresponding to

distinct eigenvalues, say o1 and o2. Consider any state |ψ〉 such that 〈v1|ψ〉 > 0 and

〈v2|ψ〉 > 0. In a ψ-complete model, the wavefunction is the ontic state, so λ = |ψ〉.
Then

fÂ(λ)(o1) = h(o1 | Â, λ) = |〈v1|ψ〉|2 > 0,

and similarly fÂ(λ)(o2) > 0. Therefore fÂ is epistemic.

Corollary 5.3.5 (EPR). Under the assumption of locality, quantum mechanics can-

not be ψ-complete.

Proof. By proposition 5.3.4, any non-trivial quantum observable is epistemic with

respect to ψ-complete quantum mechanics. Therefore, by theorem 5.3.2, ψ-complete

quantum mechanics is not local.
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This is the same result that was argued for by EPR, though the proof has more

in common with an earlier argument by Einstein at the 1927 Solvay conference [16],

and also with a more recent, general treatment found in [32] and mentioned again in

[3].

5.4 The PBR Theorem

In this section we briefly make some observations relating to the PBR theorem, which

deals with the reality of the wavefunction. One of the assumptions for this result is

preparation independence [94]:

systems that are prepared independently have independent physical states.

The other assumptions are implicit in the present framework.

Theorem 5.4.1 (PBR). For any preparation independent theory that reproduces (a

certain set of) quantum correlations, the wavefunction is ontic.

The preparation independence assumption is concerned with the composition of

systems and has not appeared in other no-go results. We will attempt to give this

a more careful treatment. First of all, the PBR theorem describes a preparation

scenario. Generalising, this can be thought of as a kind of dual to a measurement

scenario, in which the preparations P play the role of measurements and the ontic

states Λ play the role of outcomes. Just as we had a compatibility structure M for

measurements, which in Bell scenarios allowed us to chose one measurement from

each site, we should in general have a compatibility structure P for preparations,

which in the case of the PBR result allows us to chose one preparation from each

site. We should allow for joint ontic states λ : p → Λ, just as we allowed for joint

outcomes. It is possible to modify the definitions of an ontological model and the

properties from section 5.1 in an obvious way to account for this additional structure.

Definition 5.4.2. An ontological theory h over Λ is preparation independent if and

only if we can factor

h(λ | p) =
∏
p∈p

h(λp | p) (5.4)

for all p ∈ P, where λp := λ|p.

Presented in this way, this is clearly seen to be analogous to non-contextuality

or Bell locality of an empirical model. An intriguing question is what happens if
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this is relaxed to an assumption analogous to no-signalling, in which we only assume

that the marginal distributions h(λp | p) are well-defined: a sort of ‘no-preparation-

signalling’ assumption. In this case, it is easy to see that the PBR argument no

longer holds. The argument even makes tacit assumptions that each sub-system has

a definite hidden state and that these are not correlated, analogous to those pointed

out in the näıve introduction to the Hardy paradox in chapter 2. It is true that the

relaxed assumption would allow for global or non-local correlations in the joint ontic

state λ, but perhaps, in light of the Bell and Kochen-Specker theorems, this should

not be so surprising. An important question that remains to be answered, therefore,

is whether by another argument a result similar to (or indeed contrasting with) that

of PBR can be proved.

Another interesting observation, which is also pointed out in [63], is that onticity

of the wavefunction is actually inconsistent with locality. This can be demonstrated

as a consequence of what Schrödinger called steering [97]. If a local measurement in

the basis {|0〉 , |1〉} is made on the first qubit of the state∣∣φ+
〉

=
1√
2

(|00〉+ |11〉)

then this can be considered as a remote preparation of the second qubit in one of

the states |0〉 or |1〉, and similarly for a measurement in the basis {|+〉 , |−〉}. If the

second sub-system has an ontic state λ that is independent of measurements made

elsewhere, then λ must be consistent with one state from each of the sets {|0〉 , |1〉}
and {|+〉 , |−〉}, but this contradicts the onticity of the wavefunction.

We therefore arrive at the following theorem, which we propose to think of as a

weak Bell theorem, since it draws the same conclusion as Bell’s theorem [22] but with

the extra assumption of preparation independence.

Theorem 5.4.3. Quantum mechanics is not realisable by any preparation indepen-

dent, local ontological theory.

Proof. This follows from the PBR theorem and the occurrence of steering in quantum

mechanics.

5.5 Discussion

We have presented a generalised reformulation of the Harrigan-Spekkens criterion for

the reality or onticity of the wavefunction. The reformulation aspect of the present

definition can be thought of as a special case of the dual equivalence between the
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category of von Neumann algebras and ∗-homomorphisms and the category of mea-

sure spaces and measurable functions. It has been seen to have several advantages:

it avoids measure theoretic technicalities and is mathematically and conceptually

straightforward. Of course, it is also general enough to apply to any object or prop-

erty in any ontological theory.

The first obvious application of the criterion to an object or property other than

the wavefunction is to the observable properties of a system. This led to a new char-

acterisation of locality and non-contextuality in terms of the nature of the observed

properties. This can provide a useful tool for looking at foundational results: we

have used it to obtain a new proof that local ontological models have a canonical

form (which allows them to be subsumed by the sheaf-theoretic approach), and also

to gain another perspective on the EPR argument. The characterisation is similar to

the Kochen-Specker [73] or topos approach [68] treatment of non-contextuality.

It is interesting that the characterisation draws a connection between locality and

onticity: these are the properties that are dealt with by the Bell and PBR theorems,

respectively. A further connection was found in theorem 5.4.3, which showed that a

weakened version of Bell’s result can be obtained by an argument that combines the

PBR result with the incompatibility of steering and the onticity of the wavefunction.

In relation to the PBR result itself, we have attempted to give a more careful

treatment of the assumption of preparation independence, and made a concrete anal-

ogy between this property and locality/non-contextuality. It is possible to relax the

assumption to something analogous to no-signalling, in which case we have pointed

out that the PBR argument no longer holds. This amounts to introducing global or

non-local correlations in the joint ontic state, which at least seems consistent with

the Bell and Kochen-Specker theorems. An open question is whether by another ar-

gument the result can be shown to hold under the relaxed, ‘no-preparation-signalling’

assumption.

Taken further, the analogy between measurement and preparation scenarios of

section 5.4 suggests that a sheaf-theoretic approach can also be taken for preparation

scenarios. An important question, then, is how to give a unified treatment of both

kinds of scenario. It seems possible that the approach to ontological theories of section

1.7 could be extended to allow for such a treatment, with the ontic states defined to

be the Gleason states of corollary 1.7.1.

108



Chapter 6

Computational Tools

Though many of the topics discussed and presented throughout this dissertation are

of quite a theoretical nature, computational exploration can play an important role

the research programme. In this chapter, we present a computational approach to

calculating the degree of contextuality of any empirical model and to finding logical

Bell inequalities [11] using linear programming methods. This has been implemented

as a Mathematica package, which allows one to calculate quantum empirical models

given a (pure or mixed) state and sets of compatible observables, and to calculate the

degree of contextuality of any empirical model. We stress that this is fully general

and applies to any measurement scenario, including of course all Bell scenarios.

This kind of tool can be useful, for example, in attempting to classify non-local

states [9], which will be a goal of future research. As a demonstration of how the

package works, we use it to explore the non-locality of empirical models arising from

the φ+ and GHZ(n) states. In this way, new sets of measurements on the φ+ Bell state

which give rise to empirical models that achieve the maximum violation of the CHSH

inequality are found, as well as new sets of measurements on the GHZ(n) states that

lead to similar logical proofs of non-locality.

A particularly interesting result in which computational exploration has already

been of importance shows that an empirical model is no-signalling if and only if it can

be realised by a local ontological or hidden variable model with negative probabilities.

This is proved in [4] for any measurement cover; we present a precursor of that result,

which shows that the equivalence holds for all Bell scenarios, and in which the role

of computational exploration as a guiding tool will be apparent.

109



6.1 Linear Algebra & Contextuality

Recall from chapter 1 that a model e on a measurement scenario (X,O,M) is

local/non-contextual if and only if it has a global section; i.e. a distribution d ∈
DRE(X) such that d|C = eC for all C ∈ M. This means that the empirical model

can equivalently be expressed as a mixture of global assignments E(X). Similarly, it

was shown in chapter 2 that local models on Bell scenarios are those which can be

obtained as stochastic mixtures of local deterministic models.

The tabular representation of Bell models from chapter 2 is convenient for illus-

trating this point with a simple example. The following is the local model obtained

by local X and Y measurements on each qubit of the |φ+〉 state.

1⁄2 0 1⁄4 1⁄4

0 1⁄2 1⁄4 1⁄4

1⁄4 1⁄4 0 1⁄2

1⁄4 1⁄4 1⁄2 0

It is clear that this model can be decomposed into a uniform distribution over each

of the four compatible deterministic grids.

With this example in mind, it is possible to show that, for any model, the problem

of finding a global section is equivalent to finding a solution to a particular system

of linear equations. This was pointed out in [11] and in early versions of [4]. We can

represent empirical models as vectors: for example, the previous model would be

v = {1/2, 0, 0, 1/2, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 0, 1/2, 1/2, 0}.

For any measurement scenario (X,O,M), each global assignment t ∈ E(X) can also

be written as a vector. We can form a matrix, M, with these as columns, which we call

the incidence matrix . In a Bell scenario, this corresponds to writing the deterministic

grids as vectors and forming a matrix with these as columns. More carefully, we

specify an enumeration {si}pi=1 of the set of all ‘local’ assignments
∐

C∈M E(C), an

enumeration {tj}qj=1 of the set of global assignments E(X), and define

M[i, j] :=

{
1 if si ∈ E(C) and tj|C = si

0 otherwise
.
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Proposition 6.1.1. A probabilistic empirical model e is non-contextual if and only

if there exists a solution to the system of linear equations

M.x = v (6.1)

subject to the constraint

x ≥ 0 (6.2)

(i.e. such that x[j] ≥ 0 for each component x[j] of x).

Proof. For a solution x to this system, we have
∑

j x[j] tj = v, where each tj is the

global assignment tj represented as a vector. By restricting to the rows corresponding

to any maximal context C ∈M, we have
∑

j x[j] = 1. It is clear, then, that solutions

to this system of equations correspond bijectively to global sections for the model

e.

The constraint ensures that solutions correspond to distributions over R+, the non-

negative reals, and hence that we have a well-defined probability distribution. For

possibilistic models we obtain a similar problem over the integers modulo 2, where

we substitute v with the vector vB in which all non-zero components are replaced by

1; i.e. if h : R+ → B is the semiring homomorphism (1.1) then

vB := h(v),

where h acts component-wise on v.

Proposition 6.1.2. If the system of linear equations M x = v has a solution over

R+, then the system M x = vB has a solution over B.

Proof. Since h : R+ → B is a semiring homomorphism, by applying it component-

wise to any solution for the system M x = v over R+ one obtains a solution for the

system M x = vB over B.

Corollary 6.1.3. If a probabilistic empirical model is logically contextual then it is

contextual.
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6.2 Quantifying Contextuality

Suppose that an empirical model is contextual; we would like to quantify how contex-

tual it is. This is similar to, but more general than, asking by how much a non-local

(2, 2, 2) model violates the CHSH inequality. One reason why this is of interest is that

it can help to provide a more robust basis for experimental verification of contextual-

ity by providing some tolerance for inaccuracy of measurements or state preparation.

The ideas in this section are based on [1].

Linear programming is an optimisation technique (see e.g. [43]) that can allow

us to do precisely this. Linear programs can be expressed in the following canonical

form:

maximise cT x

subject to M x ≤ b

and x ≥ 0

where b and c are vectors and M is a matrix with known coefficients; cT x is referred

to as the objective function. We can use this method to find how close a model comes

to being contextual in the sense of finding the maximum 1 · x =
∑

j x[j] can obtain

such that M x ≤ v; i.e.

maximise 1 · x

subject to M x ≤ v

and x ≥ 0

(6.3)

We note that x = 0 always satisfies the constraints, and so the linear program is

always feasible. A two-dimensional analogy is shown in figure 6.1.

Proposition 6.2.1. If x∗ is an optimal solution to the linear program (6.3), then the

following statements hold.

1. 1 · x∗ ∈ [0, 1].

2. 1 · x∗ = 1 if and only if e is non-contextual.

3. 1 · x∗ = 0 if and only if e is strongly contextual.

Proof. Since x = 0 always satisfies the constraints, we must have 1 · x∗ ≥ 0. Let

C ∈ M be any maximal context, and suppose M x∗ ≤ v. Summing over the rows

indexed by C, we find that 1 · x∗ ≤ 1 · v|C ; but since v|C is a distribution, it follows

that 1 · x∗ ≤ 1. This proves the first statement.
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Figure 6.1: A two-dimensional analogue of the linear program for contextuality, with
the image of a level set of the objective function in grey.

v

M x ≤ v

For the second statement, we show that

M x∗ = v ⇔ 1 · x∗ = 1.

Suppose M x∗ = v. Again, by considering only the rows corresponding to any max-

imal context, it can be seen that 1 · x∗ = 1 · v|C = 1, similarly to before. For the

converse, suppose that M x∗ < v. Then there exists some maximal context C and

some assignment si ∈ E(C) such that M x∗[i] < v[i]; but then 1 · x∗ < 1 · v|C = 1.

For the final statement: if 1 · x∗ > 0 then x∗[j] > 0 for some j; but then tj ∈
Se(X), so the model is not strongly contextual. For the converse, suppose the model

is not strongly contextual. Then there exists some tj ∈ Se(X) and we can define

ε := minC∈M v[tj|C ], which must be positive. The vector x defined by

x[k] =

{
ε if k = j

0 if k 6= j

satisfies the constraints, and 1 · x = ε > 0. Therefore 1 · x∗ > 0.

So the linear programming method provides a fully general measure of the con-

textuality of any empirical model. Since linear programming has polynomial time

complexity, it even seems that this might provide an efficient algorithm for decid-

ing contextuality. However, this is not the case since the incidence matrix has |OX |
columns and grows exponentially with respect to the number of measurements.

We mention briefly how these methods can be related to a form of Bell inequality.

Using the duality principle of linear programming [43], we can re-cast (6.3) as the

113



following dual program.

minimise y · v

subject to MT y ≥ 1

and y ≥ 0

(6.4)

The weak duality theorem tells us that any feasible solution to the dual problem

places a bound on the objective function of the original: if y is a feasible solution to

(6.4) and x is a feasible solution to (6.3) then

1 · x ≤ y · v.

The strong duality theorem tells us that if x∗ is an optimal solution to (6.3) and y∗

is an optimal solution to (6.4) then

1 · x∗ = y∗ · v.

If a model is contextual, then we have a vector y∗ such that MT y∗ ≥ 1 and y∗ · v =

1 · x∗ < 1. If we set z∗ := y∗ − 1, then

MT z∗ ≥ 0, z∗ · v < 0,

and z∗ defines a separating hyperplane which witnesses the fact that v is not in the

cone generated by the non-contextual polytope, since it makes an angle less than π/2

with each local deterministic model and an angle greater than π/2 with the model

v (the existence of this hyperplane is guaranteed by the Farkas Lemma). Moreover,

since y∗ is an optimal solution, it provides a tight bound. This can be thought of as

a generalised form of Bell inequality.

6.3 Mathematica Package

Computational tools in the form of a Mathematica package [80] (see figure 6.2) have

been developed for:

1. calculating quantum empirical models from any state and any sets of compatible

measurements;

2. calculating the incidence matrix for any measurement scenario;

3. quantifying the degree of contextuality of any empirical model using the linear

programming method of section 6.2.

We stress that these tools are completely general: they can be applied to any pure or

mixed quantum state in any Hilbert space and to any sets of compatible observables

in that space, including Bell scenarios as a special case.
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Figure 6.2: A screenshot of the Mathematica package.
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Figure 6.3: Equatorial measurements at φ1 and φ2 on the Bloch sphere.

|0〉

|1〉

φ1 φ2

θ = π
2

φ = 0

Equatorial Measurements on |φ+〉

As an example of how the package can be used, we consider a family of empirical

models that can be obtained by considering local measurements on the two-qubit

state ∣∣φ+
〉

=
1√
2

(|00〉+ |11〉) . (6.5)

Recall that projective measurements on a qubit can equivalently be represented by a

point on the Bloch sphere. Suppose that we allow the same two local measurements

on each qubit, and that these are equatorial on the Bloch sphere (figure 6.3). One

such model is the Bell-CHSH model from chapter 1, which is obtained when

(φ1, φ2) = (0, π/3).

We can use the package to plot the degree of contextuality of the resulting models

versus φ1 and φ2 (figure 6.4). It is interesting to note that the Bell-CHSH model does

not achieve the maximum degree of contextuality. The minima of the plot (which

correspond to maximum contextuality) occur when

(φ1, φ2) ∈
{(

π

8
,
5π

8

)
,

(
7π

8
,
3π

8

)}
and vice versa. All of the corresponding empirical models take the form of the fol-

lowing table
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Figure 6.4: Contextuality of empirical models obtained with equatorial measurements
at φ1 and φ2 on each qubit of |φ+〉.

00 01 10 11

A B p (1/2− p) (1/2− p) p

A B′ (1/2− p) p p (1/2− p)

A′ B (1/2− p) p p (1/2− p)

A′ B′ (1/2− p) p p (1/2− p)

where

p =

√
2 + 2

8
.

These can easily be shown to achieve the Tsirelson violation of the CHSH inequality.

Note that none of these models are strongly contextual: this is consistent with theorem

2.6.5, and provided one motivation for attempting to find a general proof of that result.

It may seem surprising at first that the empirical models are not constant with

respect to the relative angle (φ2−φ1) between measurements; a fact which is apparent

from figure 6.4. For example, the empirical model obtained when (φ1, φ2) = (0, π/4) is

local, but if these values are shifted by π/8 the resulting model achieves the maximum

violation of the CHSH inequality. Nevertheless, this must be the case since a rotation
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by φ around the Z-axis for each of the qubits is described by

 e−iφ/2 0

0 eiφ/2

⊗
 e−iφ/2 0

0 eiφ/2

 =


e−iφ 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiφ

 (6.6)

and thus introduces a relative phase of 2φ between the terms in |φ+〉 (6.5).

Equatorial Measurements on GHZ(n) States

We can consider similar families of models for the GHZ(n) states (2.9), where again

we allow the same two local measurements on each qubit and assume that these

are equatorial on the Bloch sphere. For GHZ(3) and GHZ(4) we obtain the plots

shown in figure 6.5. The minima of the plot for GHZ(3) reach 0, indicating strong

contextuality, and occur when

(φ1, φ2) ∈
{(π

2
, 0
)
,

(
2π

3
,
π

6

)
,

(
5π

6
,
π

3

)}
(6.7)

and vice versa. Of course, (φ1, φ2) = (π/2, 0) corresponds to the GHZ(3) model

described in section 2.7. The empirical models corresponding to other minima are

identical up to re-labelling, so these provide alternative sets of measurements that

can be made on the GHZ state that still lead to the familiar parity argument for

non-locality [87]. The situation is similar for the GHZ(4) state, in which minima of

0 are seen to occur at

(φ1, φ2) ∈
{(π

2
, 0
)
,

(
5π

8
,
π

8

)
,

(
3π

4
,
π

4

)
,

(
7π

8
,
3π

8

)}
. (6.8)

We can see a pattern beginning to emerge in (6.7) and (6.8), which leads to the

following proposition.

Proposition 6.3.1. Equatorial measurements at

(φ1, φ2) ∈
{(

(n+ k) π

2n
,
k π

2n

) ∣∣∣∣ 0 ≤ k < n

}
on each qubit of a GHZ(n) state give rise to the GHZ(n) model of section 2.7, and in

particular are strongly contextual.
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Figure 6.5: Contextuality of empirical models obtained with equatorial measurements
at φ1 and φ2 on each qubit of: (a) the GHZ state; (b) the GHZ(4) state.

(a)

(b)

119



Proof. First, we know that this holds for k = 0, since in that case we simply have

Pauli X and Y measurements, which were the measurements prescribed for obtaining

the GHZ(n) model in section 2.7. For 0 < k < n, we can rotate each qubit by the

phase φ = k π/n, so that we continue to deal with X and Y measurements. It is

necessary, however, to take account of the relative phase introduced by this operation

on the overall state. By generalising (6.6) it is clear that the state after rotations will

be ∣∣GHZ(n, φ)
〉

=
1√
n

(
|0 · · · 0〉+ ei2nφ |1 · · · 1〉

)
.

Notice that for the relevant values of φ the relative phase vanishes and we’re left with

the state |GHZ(n)〉 from (2.9). Then the probabilities of the various outcomes can

simply be calculated using equation (2.12), as before, and it is clear that we must

obtain the strongly contextual GHZ(n) models described in section 2.7.

6.4 Negative Probabilities & No-Signalling

In this final section, we prove that an empirical model on any Bell scenario has a local

ontological realisation with negative probabilities if and only if it is no-signalling.

This built on a result from an earlier version1 of [4], which proved the equivalence for

(n, 2, 2) Bell scenarios. It was later generalised to arbitrary measurement scenarios

without the restriction that they be of the Bell form in [4]. It is a remarkable result in

that, while probability distributions on local ontological models allow us to generate

the local polytope of empirical models, it shows that simply by allowing for negative

probabilities we can generate the entire no-signalling polytope. The earlier results in

particular were guided by computational exploration of the structure and ranks of

incidence matrices.

Negative probability realisations correspond to solutions of the system of equations

M x = v over R, without constraints. We have seen in proposition 6.1.2 that there

exists a semiring homomorphism h : R+ → B by which any solution over R+ can be

transformed into a solution over B. However, there can be no such homomorphism

h : R→ B from the reals: if this were the case, we would have

0 = h(0) = h(1− 1) = h(1) ∨ h(−1) = 1 ∨ h(−1) = 1.

The result will be proved inductively, and it is useful to define an inductive enu-

meration of the local assignments of an (n, k, l) Bell model. We may assume any

1Available online at http://arxiv.org/abs/1102.0264v5
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enumeration of measurements and outcomes, and let sij denote the assignment of the

outcome j to the measurement i. For a (1, k, l) model we use the enumeration

S1 = (s11, . . . , s1l, . . . , sk1, . . . , skl).

and inductively define

Sn = (s11 · Sn−1, . . . , s1l · Sn−1, . . . , sk1 · Sn−1, . . . , skl · Sn−1)

for any (n, k, l) model such that n > 1. A vector v written in this enumeration can

be decomposed into blocks,

v = (v1, . . . ,vk)

= (v11, . . . ,v1l, . . . ,vk1, . . . ,vkl),

where vij := sij · Sn−1.

Proposition 6.4.1. For any no-signalling (n, k, l) model, the sums of the probabilities

in each block vi are constant.

Proof. Let Sn−1 = (t1, . . . , tm), let i, i′ ∈ {1, . . . , k}, and let σi and σi′ denote the sums

of the the probabilities over the blocks vi and vi′ , respectively. By no-signalling, it

follows that
l∑

j=1

sij · tp =
l∑

j=1

si′j · tp (6.9)

for all 1 ≤ p ≤ m, since the choice of measurement i or i′ at site n should not alter

the probability of the assignment tp at the other sites. Then, by (6.9),

σi =
m∑
p=1

l∑
j=1

sij · tp

=
m∑
p=1

l∑
j=1

si′j · tp = σi′ .

In the case that n = 1, we have σi = σi′ = 1 since then each block is simply a

probability distribution.

Next, we consider the form of the incidence matrices with respect to the inductive

enumeration. These can be defined inductively on k and n. Let M(n,k,l) denote

the (n, k, l) incidence matrix. For an arbitrary enumeration of global sections, each

M(1,1,l) is simply the l× l identity matrix after some permutation of columns. We can
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choose our enumeration of global sections such that M(1,1,l) = Il, the l × l identity

matrix, and such that

M(1,k,l) =

 Il ⊗ 1Tl

M(1,k−1,l) · · · M(1,k−1,l)


for k > 1, where 1Tl is the row matrix whose l entries are all 1’s. For example, the

(1, 3, 2) incidence matrix is

M(1,3,2) =



1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1


.

Now, due to the inductive enumeration of local assignments, for n > 1 we must have

M(n,k,l) = M(1,k,l) ⊗M(n−1,k,l). (6.10)

Proposition 6.4.2. The rank of any (n, k, l) incidence matrix is given by

rank
(
M(n,k,l)

)
= (k (l − 1) + 1)n . (6.11)

Proof. A (1, k, l) incidence matrix can be divided into k blocks of l rows. Notice that

the rows in each block are linearly independent, and that the sum of the rows in each

block is 1Tl2 = (1, . . . , 1). This means that given any two blocks we can write any of

the rows as a linear combination of all the others. The rank of a matrix is equal to

the number of linearly independent rows. Therefore, we have

rank
(
M(1,1,l)

)
= rank (Il) = l

for all l > 0, and

rank
(
M(1,k,l)

)
= rank

(
M(1,k−1,l)

)
+ (l − 1)

= k (l − 1) + 1

for all k > 1, since each increment of k introduces (l − 1) new linearly independent

rows. Finally, from (6.10) and by the fact that

rank(A⊗B) = rank(A) rank(B)

for any matrices A and B, it follows that the rank of any (n, k, l) incidence matrix is

given by (6.11).
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Theorem 6.4.3. An empirical model on an (n, k, l) Bell scenario can be realised

by a local ontological model with negative probabilities if and only if it satisfies no-

signalling.

Proof. Realisability by a local ontological model with negative probabilities corre-

sponds precisely to the existence of a solution to the system of linear equations

M x = v over R. It is a standard result of linear algebra that such a system has

a solution if and only if

rank (M) = rank ([M | v]) ,

where [M | v] is the augmented matrix; but this follows from propositions 6.4.1 and

6.4.2 since the rows of v have the same linear dependencies as M.

6.5 Discussion

We have presented a number of computational tools which have been implemented as

a Mathematica package and which form a useful complement to the sheaf-theoretic

approach in general. Indeed, the package was used to calculate many of the probability

tables found throughout this dissertation, and as a means of testing results when

they were at the conjectural stage. Examples include theorems 2.6.5 and 6.4.3, as

well as some of the results of [9]. It is hoped that the tools and methods described

in this chapter can continue to play an important role in guiding future results and

developments within the sheaf-theoretic research programme. For example, the tools

can be especially useful in attempting to classify the non-locality of states, which will

be a goal of future work.

An important feature of the tools is that they are applicable to empirical models

on any measurement scenario; not just to Bell scenarios. The linear programming

approach to finding the degree of contextuality of a model, for example, works in

full generality and even provides a means of finding a general analogue of a Bell

inequality which witnesses contextuality given any contextual or non-local model.

This is especially relevant for experimental verification of contextuality, where it can

be used to ensure robustness of contextuality with respect to inaccuracies in state

preparation and measurements in scenarios where the CHSH or other inequalities

are not applicable. It is also an interesting development in itself, which is worthy of

further investigation. For example, one might consider how this relates to the semi-

definite programming approach of Navascues, Pironio & Aćın [88] to characterising

the set of quantum correlations in the (2, 2, 2) scenario.
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Theorem 6.4.3 also deserves a further mention. The idea of negative probabilities

in quantum mechanics has a long history, which is briefly outlined in [4]. This result

gives a perspective on their role. Feynman once said [49, p. 480],

The only difference between a probabilistic classical world and the equa-

tions of the quantum world is that somehow or other it appears as if the

probabilities would have to go negative . . .

In fact, theorem 6.4.3 and its subsequent generalisation to arbitrary measurement

covers in [4] show that, in a certain sense, allowing probabilities to ‘go negative’ is

the difference between a probabilistic classical world and the no-signalling world.
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Conclusion

We have aimed to develop a deeper, more structural understanding of non-locality

and contextuality, and to this end have presented a framework for logical non-locality,

which sits neatly within the unified sheaf-theoretic approach to non-locality and con-

textuality, and have also presented several developments of the more general frame-

work. These are underpinned by robust mathematical theory and offer clarity and

new perspectives on a variety of issues. Indeed, this programme of research has al-

ready been seen to lead to many interesting results. We have also seen the value

of the approach in its ability to highlight connections with diverse fields in which

similar structures arise, which allows for the cross-fertilisation of results and ideas.

Of course, there remain many intriguing open questions and possibilities for further

developments and applications.

The completeness theorems of chapter 2 prove that Hardy non-locality completely

characterises logical non-locality in all (2, 2, l) and (2, k, 2) scenarios, and have led to

numerous applications. Polynomial algorithms can be given for deciding non-locality

in these scenarios, even though it has been shown that in general the problem is

NP-hard [10]. A constructive proof that the PR boxes are the only strongly contex-

tual (2, 2, 2) models was found. The first full proof that Bell states, despite being

maximally entangled, are the only entangled two-qubit states that are not logically

non-local was also given. This is surprising in that it singles out the Bell states as

being anomalous in terms of non-locality. The proof of the result is interesting in

that it led to the discovery of a new family of non-quantum empirical models lying

within the Tsirelson bound but which can have an arbitrarily small violation of the

CHSH inequality. Another remarkable result that emerges within the logical frame-

work is that it can be proved that the GHZ experiment [57] should witness Hardy

non-locality with certainty. It is often the case in the literature that the probability

of witnessing a Hardy paradox is used as a measure of the quality of non-locality,

and this represents a striking improvement on the previous best probability of ≈ 0.4

[37]. The possibility of further applications remains to be explored. It will also be
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interesting to see whether there can be any transfer of ideas between this framework

and relational database theory via the correspondence established in [2].

We have found the first application of cohomology as a tool for studying non-

locality and contextuality, finding cohomological witnesses corresponding to many of

the classic no-go results and completely characterising contextuality for large families

of Kochen-Specker models. However, there is room for improvement, especially since

it is not yet possible to completely characterise non-locality and contextuality in all

models. The examples considered often relied on brute force enumeration, and one

obvious possibility is to try to use the machinery of homological algebra and exact

sequences to obtain results that are more general, but that are also more conceptually

illuminating. Other refinements such as considering higher order cohomology groups

might also be used to achieve a finer invariant.

A novel connection between contextuality of Kochen-Specker models and the ex-

istence of a perfect matching in the dual hypergraph of the measurement scenario

also appeared in relation to this material, and was crucial to the proofs of the general

results about completeness of the cohomological characterisation for certain classes

of models. This is a connection that has only begun to be explored, but which has

already been seen to lead to new insights. In fact, one of these general results follows

directly from a theorem proved in the setting of k-uniform hypergraphs. It was also

possible to use results proved in that setting to find an efficient algorithm for deciding

strong contextuality for Kochen-Specker models with constant degree d = 2, and to

show that for d ≥ 3 the problem is NP-complete. As far as we are aware, these results

are new to the foundations of quantum mechanics. They complement the results of

Pitowsky [92], Abramsky, Gottlob & Kolaitis [10] and those of chapter 2 for Bell

models. Furthermore, it was seen that Tutte’s theorem can provide a necessary and

sufficient condition for contextuality in d = 2 Kochen-Specker models.

The refinement of extendability introduced in chapter 4 was seen to be useful

for characterising contextuality in sub-models of an empirical model. Some open

questions remain: we would like to know if there is some analogue of Vorob’ev’s

theorem [103] in this case, which could potentially lead to applications to macroscopic

realism similar to [100], or whether there exist other classes of ‘good’ models that can

be guaranteed to extend to PnX and thereby to have equivalent Bell models. With

regard to the construction of Bell models, an interesting connection was found between

the contextual triangle and the PR box, which merits further investigation. One

thought arising from this, given that the PR box has been considered as a candidate

unit of non-locality [19], is whether it might be shown that there exists some set of
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‘irreducible’ contextual models including the triangle that all other contextual models

must reduce to. The construction also suggests the possibility of proposing Bell tests

that correspond to contextuality proofs such as that of Peres & Mermin [85]. However,

the issue of quantum realisability of constructed models will need to be considered

first.

Some progress has been made on bringing recent developments on the reality of the

wavefunction within the scope of the logical and sheaf-theoretic methods. One result

of this work is a generalised reformulation of the Harrigan-Spekkens criterion for the

reality of the wavefunction [63], which among other things has the advantage of avoid-

ing measure theoretic technicalities. Applying this to the observable properties of a

system led to a new characterisation of non-locality and contextuality in these terms.

A more careful treatment of preparation independence, which was a key assumption

of the PBR theorem [94], also leads to some interesting questions. It was shown that

preparation independence is analogous to Bell non-locality, and if it is weakened to

‘no-preparation-signalling’, an assumption analogous to no-signalling, then the PBR

argument no longer holds. This amounts to introducing non-local correlations on

the joint ontic state, which at least is consistent with the Bell and Kochen-Specker

theorems. An important question then is whether under this relaxed assumption the

result can hold. These considerations also suggest the need to introduce a notion of

‘preparation scenario’ analogous to a measurement scenarios, in which preparations

play the role of measurements and ontic states play the role of outcomes. It seems

the sheaf-theoretic approach to ontological theories described in chapter 1 might be

adapted to allow for a unified treatment of both kinds of scenario, where ontic states

are identified with the Gleason states of corollary 1.7.1.

A number of computational tools have been implemented as a Mathematica pack-

age forming a useful complement to the sheaf-theoretic approach in general. This

played an important guiding role for the results of [9] and in proving that realisability

by a local ontological model with negative probabilities is equivalent to no-signalling.

This is an interesting result, which shows that, in a certain sense, the only difference

between a classical probabilistic world and the no-signalling world is that probabil-

ities are allowed to be negative. It is hoped that the linear programming approach

to quantifying contextuality and finding logical Bell inequalities which applies to any

measurement scenario can find many applications due to its generality, and that these

tools can play an important role in leading to future developments and applications

within the research programme. In particular, these can be useful tool in attempting

to classify the non-locality of states.
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