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Abstract
By dimension we refer to the difference between one-dimensional symbolic

strings and two- or higher-dimensional diagrammatic formalisms, e.g. circuits.
Much of the complexity of grammar is due to the fact that human language is a

one-dimensional vehicle for higher-dimensional content. This dimensional collapse
requires bureaucratic conventions and stylistic features which typically vary across
different languages, such as SVO-order.

We identify language circuits as a lean structure for the ‘factual essence of
language’, that is, the inner-workings of meanings within language across several
layers of expressiveness—cf. words, sentences, larger text etc. Language circuits
may capture that what is truly universal beneath grammar.

Concretely, for the specific case of pregroups, we exhibit an algorithm that
transforms proofs of grammatical correctness for a substantial fragment of English
into language circuits, which compose just like sentences in larger text. The crux of
the algorithm consists in providing words with ‘internal wirings’, e.g. for a subject
relative pronoun, a predicative adverb and an adposition respectively:

*Adpos**Adv*

Together, these internal wirings form a visually depicted algorithm that undoes
pregroup bureaucracy, and their complexity represents the complexity invoked by
the dimensional collapse of grammar.

These internal wirings also allow us to canonically deform pregroup diagrams
into language circuits, like this one:

likes

Alice flowers Bob Claire

gives

While us humans could not verbally communicate in terms of language circuits,
machines can, so language circuits can be conceived as grammar for machines.
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1 Introduction

One branch of the study of the structure of language goes back deep in the previous
century with the works of Ajdukiewicz [2] and Bar-Hillel [7] resulting in the Lambek
calculus [36]. We call these structures ‘grammatical calculi’1. Mathematically, what
we are talking about are strings of grammatical types (a.k.a. free monoids), with some
additional structure that allows one to figure out which of these strings grammatically
make sense. Lambek himself went on to challenge Lambek calculus, favouring his 1999

1Sometimes they are also referred to as categorial grammars. While we say categorial (no C between
i and a), these grammars typically also have a natural category-theoretical incarnation – see e.g. [16].
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‘pregroup grammars’ [37, 38]. These are the ones we will also focus on in this paper.
However, the core ideas of this paper extend well beyond pregroup grammars, including
CCGs [55], drawing on the recent work in [63] that casts CCGs as augmented pregroups.

It has been claimed that grammatical calculus exposes the ‘universality’ of grammar,
up to the point that some suggest grammar is hardwired in our brains. Notable names
here include Chomsky [13], Montague [45], and much earlier Bacon [4]. Still, it suffices
to look at different languages to see that there are very clear differences for something
‘universal’. For example, for each permutation of subject, verb and object order, there
is some language in the world where that ‘convention’ is taken.

Grammatical calculi aren’t just purely academic gadgets, but have practical uses in
natural language processing (NLP). For example, they allow for highly efficient parsing
[15], that is, assigning grammatical roles to a string of words, and they can guide trans-
formations of text corpora between languages, enabling general computational linguistics
for languages with few data resources [9]. They were also used for combining grammar
and word meanings into one compositional whole [24], resulting in a framework, called
DisCoCat, that enables one to assign a meaning to a sentence given the meanings of
its words. This framework is also supported by experimental implementations [28, 32],
which are still ongoing [60, 44, 61].

We argue that much of the complexity of grammar is due to the fact that human
language is a one-dimensional vehicle for higher-dimensional content, and that this di-
mensional collapse comes with the introduction of:

(a) many language-dependent bureaucratic conventions, and

(b) introduces stylistic language features.

In this paper we put forward a procedure that distils sentences into what we call ‘language
circuits’. We do this for the specific case of pregroups, but our recipe can be extended
to more general grammatical calculi.

We in part build further on earlier work within DisCoCat that provided so-called
‘internal wirings’ [51, 52, 28, 33, 21, 17, 22] for words such as adjectives, relative pro-
nouns, and transitive verbs, and extend this to a much broader fragment of English.
Diagrammatically speaking, while grammatical calculi provide wires between words in
order to elucidate their interactions, we also provide wirings within words. For example,
a pregroup diagram for the phrase:

-ingDance man

will become:
-ing

Dance

man

These additional wirings will generate an equivalence relation on sentences that equates
them up to features/bugs (a) and (b) mentioned above.
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We introduced these grammar equations in the earlier conference paper [25]. Pre-
viously additional structure for grammatical calculi had been introduced by providing
semantics to certain words, for example, quantifiers within Montague semantics [46].
This is not what we do. Grammar equations strictly stay within the realm of grammar,
and grammar only, and hence provide a genuine refinement of the theory of grammar,
introducing novel ‘grammatical truths’. Here we recall that story, and expand upon it.

These internal wirings will allow us to canonically deform the pregroup representations
of grammar into circuits, as the circuits provide a normal form for the grammar equations.
An important technical feature of our work is that the passage to language circuits
cannot be done in terms of grammatical calculi in the form of preordered monoids, but
requires diagrams in a fundamental manner, and in fact, as also shown in [25], internal
wirings also make no sense in term of preordered monoids. Hence passing to the realm
of diagrammatic representations – which correspond to proper free monoidal categories
– is not just a convenience, but a necessity for this work.

A simplified account of grammar will obviously make any task were grammar comes
into play easier, and in particular when machines are involved. It can bring grammar
into play in a manner it isn’t yet, for example, within machine learning driven natural
language processing. However, the result of canonically merging vector embeddings for
meanings with grammatical calculi results in a formalism that closely resembles quantum
theory [14, 19]. This means that straightforward implementation will result in a potential
exponential blowup of required space resources.

Addressing this hurdle, more recently DisCoCat was successfully implemented on
quantum hardware [43, 41], under the name QNLP. This was the first time that NLP
was done on quantum hardware, and it was done using full sentences in a grammar-aware
fashion, using corpora consisting of over 100 sentences. Given the size and limitations
of the currently available quantum hardware, it is surprising that anything like that was
even possible. In our hardware implementations of QNLP we were already implicitly
using the ideas of this paper, and we attribute the success of that endeavour to doing so.

A more recent variant of DisCoCat called DisCoCirc extended the DisCoCat frame-
work to larger text consisting of multiple sentences [17]. One particular feature of DisCo-
Cat has always been an elegant diagrammatic presentation, using a formalism borrowed
from category theory [23, 20], and in the case of DisCoCirc text takes the form of circuits.
Implicitly and informally, it adopted a simplified representation of grammar like the one
we introduce here, and this intuition will be the starting point for this paper.

We also believe that language circuits are not just a representation of structures in
language, but that this structure in language is itself a representation of the workings of
the world ‘out there’. More precisely, we believe that language circuits for an essential
part of the interface that relates our thoughts to the outside world, or using AI termi-
nology, it is an essential part of our embodiment. Hence we expect it to play a role in
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AI well beyond NLP. Here’s how for us things relate:

To conclude, before even starting, with language circuits we are bringing forward an
essential structure of reality, which is present in language, and in fact, possibly at the
origin of the universal structure of language. In case you feel this is too strongly stated,
we do also put forward an essential structure of language.

We discuss related work in Section 8. This includes previous work within DisCoCat
[28, 34, 51, 52, 33, 21, 17, 48, 59, 26, 40], relations to discourse representation structures
[47, 31, 18, 57], Harris and Chomsky’s transformational grammar [50], Chomsky’s deep
structure [8], dynamic semantics [30, 58, 53], dynamic epistemic logic [6, 5], other logic-
oriented approaches to text [3, 42], and dependency grammars [56].

2 The natural habitat for language

Sometimes things are forced to live in a world that is not their natural habitat. One
such thing, in mathematics, are tensor categories, also known as tensor networks. This
structure plays a central role in fields like quantum theory [20], computer science [1],
and many others, capturing the operations of parallel composition ⊗ (a.k.a. ‘while’)
and sequential composition ◦ (a.k.a. ‘after’). Typically, in textbooks, this structure is
represented by one-dimensional (1D) strings of algebraic symbols, and then, equations
are needed to express their interaction, most notably, ‘bifunctoriality’:

(g1 ⊗ g2) ◦ (f1 ⊗ f2) = (g1 ◦ f1)⊗ (g2 ◦ f2)

On the other hand, representing it in terms of 2D diagrams, reading diagrams from top
to bottom (as we do in English), no equations are needed:

(
g1 ⊗ g2

)
◦

(
f1 ⊗ f2

)
=

(
g1 g2

)
◦

(
f1 f2

)
=

f1

g1

f2

g2

(
g1 ◦ f1

)
⊗

(
g2 ◦ f2

)
=

 f1

g1

⊗
 f2

g2

 =
f1

g1

f2

g2
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That is, by using the 2D format of diagrams, the defining symbolic equations are built-
into the geometry of the plane. The reason for the symbolic representation being more
involved is that in order to force something two-dimensional (2D) on a 1D line, artificial
bureaucracy needs to be introduced (e.g. bracketing) and this requires extra rules as well.
A more detailed discussion of all of this can be found in [23, 20].

Something similar, although a bit more subtle, is true for language. In order to
see this, it suffices to look across different languages, where different choices have been
made about word-ordering. For example, all possible permutations of subject-object-verb
(SOV) order occur in some existing language, e.g. in French and English:

je t’aime (SOV) vs. I love you (SVO)

Given that these sentences have the same meaning, the word-ordering is really not much
more than meaningless bureaucracy. In other words, the natural habitat for the words
in these sentences is not a 1D ordered triple. We emphasise 1D here, as human commu-
nication by means of speech is intrinsically 1D.

Grammatical calculi [36, 29, 37], which are a mathematical account of grammar,
reflect that 1D-ness. Their core is a string-generating ‘monoid’, for example, in symbolic
‘pregroup’ terms [38] the grammar of the above two sentences respectively is:

n︸︷︷︸
S

· n︸︷︷︸
O

·
(−1n ·−1n · s)︸ ︷︷ ︸

V

vs. n︸︷︷︸
S

·
(−1n · s · n−1)︸ ︷︷ ︸

V

· n︸︷︷︸
O

Where n stands for noun and s stands for sentence.
In corresponding diagrammatic terms [49, 24] (which we explain in more detail in

Section 4, and which in this paper is vital) we see very different nesting patterns when
looking at how the subject and the object meanings ‘enter’ the transitive verb:2

je t’ aime
I youlove

s
s nnn

n

On the other hand, the connective structure is the same, and we can deform one diagram
into the other, provided we allow words to leave the 1D line:

je t’ aime je aime

t’

je aime

t’

t’aimeje
= = = (1)

This example tells us that the natural habitat for language isn’t 1D.
This phenomenon also happens within a single language, with different word-orderings

carrying the same factual content. Consider the following example:

Alice likes the flowers that Bob gives Claire

vs.

Bob gives Claire the flowers that Alice likes

2As we explain in Section 4, the diagrams do not only represent the grammatical types, but also the
derivation using pregroup algebra that the sentence is well-formed.
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The pregroup diagrams now look as follows:

Alice flowerslikes that Bob gives Claire

vs.

Bob gives Claire flowers that Alice likes

The factual content which these two sentences convey, in absence of any additional con-
text, is exactly the same. The difference that may occur within specific contexts is that
the position of the verbs likes and gives with respect to the relative pronoun that

comes with a built-in potential to indicate a causal dependency of the first part of the
sentence on the second part. For instance, Alice may like the flowers that Bob

gives Claire because Alice and Claire are friends, and Bob may have given the

Claire flowers that Alices likes because Bob wants to spite Alice.
Is there any way that enables us to derive the close correspondence between those two

sentences? Moreover, is there any way to relate them that also accounts for the difference
in terms of causality that may occur when they are placed within a larger context?

The algorithm we put forward in this paper will enable us to relate them, while also
capturing the potential causal differences that may exist between them. However, the
deformation trick (1) wouldn’t do the job this time. More needs to be done in order to
identify these sentences as effectively the same. We will do so in Section 4.

Altogether, due to the 1D restriction, there seems to be a lot bureaucracy at play
within grammar. So we ask ourselves:

What is the natural habitat of language?

Along the same lines, while it has been claimed that grammar is supposed to be universal
across all languages [13, 45, 4], grammatical calculi don’t reflect that universality given
that different languages have different grammars. Hence:

What is truly universal about grammar?

Besides the academic interest of the above questions, they are also also practically impor-
tant as we don’t want to impose a burden on machines that is really just a consequence
of our own oral and verbal limitations.

We will propose an algorithm called ‘distillation’, that addresses these questions:

???
distillation

gram. calc.

and in particular, propose what ??? should be. Drawing from our discussion above,
a grammatical calculus formally captures grammar, and in doing so reflects language-
dependent conventions (icon ), stylistic features (icon ), and specific features of the
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particular grammar calculus used to formally represent the grammar (icon ). Distilla-
tion means to extract the factual content, eliminating these differences:

???

( , , )

(
, ,

)
(

, ,
)

and we want the product of distillation to be that which is essential to language.

3 Going 2D: language circuits informally

As mentioned in the introduction, in this paper we focus on pregroup grammatical calculi
(for English), not only because of their elegant diagrammatic presentation that will allow
the conversion into language circuits to be purely topological, but also since they are the
simplest of all grammatical calculi, and can be refined into other ones including CCGs
[55], drawing on the recent work in [63].

As mentioned in the introduction, DisCoCat [24] was introduced in order to compute
the meaning of a whole, from the meaning of its parts, given grammatical structure.
Concretely, DisCoCat decorated grammar with meanings, via a functor:

DisCoCat : Pregroup Diagrams −→ Meaning

DisCoCirc [17] was introduced in order to extend DisCoCat to text, and in particular,
in DisCoCirc sentences can be composed, resulting in a 2D circuit.3 So having textual
composition seems to take us out of a 1D realm. Something else DisCoCirc does is to
update meanings as text progresses, repeating a slogan from [17]:

A sentence is a process that updates meanings

We hypothesise here that the structure of these updates really matches what we were
looking for in the previous section, namely that what is truly universal about grammar.

Let’s consider again the sentence:

Alice likes the flowers that Bob gave Claire

and see how the meanings of words are altered by it. Factually, we learned two things:

• Concerning Alice and the flowers, that there’s a liking-relationship.

• Concerning Bob, the flowers and Claire, that there is a giving-relationship.

3The 1D vs. 2D angle may sound a bit confusing at first, since DisCoCat diagrams are also 2D. Still,
in such a diagram the words are all restricted to a line, placed side-by-side.
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We can now represent this as a circuit, with the ‘actors’ involved as the wires of the
circuit, and the ‘meaning-updating processes’ as gates:

likes

Alice flowers Bob Claire

gives
(2)

Now compare this circuit with the sentence’s pregroup diagram:

Alice flowerslikes that Bob gives Claire

A remarkable simplification occurred: the circuit is visually natural, much simpler to
replicate from memory than the pregroup diagram. This hints at the fact that something
(cf , and from the previous section) has been removed.

Now let us consider the following clearly different pregroup diagram:

Bob gives Claire flowers that Alice likes

We obtain a very similar circuit:

likes

Alice flowers Bob Claire

gives
(3)

The difference between (2) and (3) is the ordering of the gates. This can be interpreted
in different manners, all compatible with our approach:

(α) If there is no causal relationship between the two parts of the sentence, then we
expect the gates to commute, so the two circuits are equal.

(β) If there is causal relationship between the two parts of the sentence, the difference
in the ordering of the gates is a witness of that fact.

Other options concerning the circuit could include:

(γ) Not treating all actors on the same footing, for example, one may want to treat
flowers differently than Alice, Bob and Claire. This would be possible, following
[17]. For clarity of the argument in this paper we treat all ‘actors’ on equal footing.

Now consider the text:

Bob gives Claire flowers

Alice likes those flowers

9



Again we get this circuit:

likes

Alice flowers Bob Claire

gives

However, now it is a circuit representing two sentences, so we are now dealing with a
grammar that composes ‘text’, which is of course not at all surprising given that we took
DisCoCirc as our starting point. Yet, it is a clear departure from traditional grammatical
calculus, and only enabled thanks to the passage to 2D circuits [17].

Let’s now have a closer look at how 2D gets exploited in order to simplify things as
compared to pregroup diagrams. For a single gate with two inputs, which we can think
of as a transitive verb, the very fact that the gate has two inputs already tells us that a
subject and an object are needed. In particular, these inputs enter at the top of the gate,
and leave at the bottom, which is orthogonal to the direction along which the transitive
verb relates the subject and the object:

V

S O

so we are indeed exploiting 2D.4

4 From pregroups to language circuits

For our purposes, a pregroup has a set of ‘basic types’ n, s, ... each of which admit left
and right inverses −1n and n−1. Each grammatical type is assigned a string of these,
e.g. a noun gets n, and a transitive verb (in English) gets:

tv = −1n · s · n−1

The inverses ‘cancel out’ from one direction:

n · −1n → 1 n−1 · n → 1 (4)

A sentence is grammatical if when taking the string of all of its grammatical types, the
inverses cancel to leave a special, ‘final’, basic type s (for sentence), like here for n · tv ·n:

n ·
(−1n · s · n−1) · n (assoc.)→

(
n · −1n

)
· s ·

(
n−1 · n

) (4)→ 1 · s · 1 (unit)→ s

This calculation can be represented diagrammatically:

n ntv
(5)

where:
4Although, as specialists will tell you, rather even 4D, given that we allow wires to freely move past

each other, such that we only care about their topological connectedness.
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• the boxes are the types we start from,

• the ‘cups’ represent the cancellations (4),

• the straight wire corresponds to types that aren’t cancelled, and

• the associativity step (assoc.) and elimination of the unit step (unit) become trivial
when using diagrams, just like it was the case for bifunctoriality in Section 2.

Definition 4.1. A calculation like (5) is called a pregroup proof.

In (5) we want to think of the two nouns being fed into the transitive verb, which
then puts out the meaning of the entire sentence. A more detailed discussion is in [17].

Earlier we saw these two pregroup diagrams:

Alice flowerslikes that Bob gives Claire (6)

Bob gives Claire flowers that Alice likes (7)

which couldn’t be related to each other as things stand. We would like to know what is
needed to be able to do so. We also want to know what is needed to be able to turn them
into the circuits (2) and (3). As it turns out ‘what is needed’ coincides in both cases.

4.1 Rewriting pregroup diagrams via internal wirings

What is needed are ‘internal wirings’ [51, 52, 28, 33, 21, 17, 22] of certain words, that is,
not treating these as ‘black boxes’, but specifying what is inside, at least to some extent.
Equationally speaking, they provide a congruence for pregroup diagrams, and we can
establish equality by means of topological deformation.

4.1.1 Spiders

For constructing these internal wirings we make use of ‘spiders’ [20] (a.k.a. Frobenius
algebras [12, 23]). One can think of these spiders as a generalisation of wires to multi-
wires, as rather than having two ends, they can have multiple ends. Still, all they do,
like wires, is connect stuff, and if one connects connected stuff to other connected stuff,
then everything becomes connected (a.k.a. ‘spider-fusion’):

. . .

. . . . . .

. . .

=
. . .

. . .
= (8)
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The plain wires and cups we saw above are special cases:

= =

and other examples include ‘copy’ and ‘delete’:

(9)

In general, spiders can be non-commutative, that is:

6=

which are necessary when (cf. the discussion in Section 3):

(α) there are clear causal relationships, and/or

(β) one wants to account for differences in emphasis.

Remark 4.2. What’s being copied by (9) are wires:

:: 7→ :: 7→

When these diagrams also carry meaning, like in DisCoCat, then the copy spider typically
won’t copy the meaning vectors, but rather create correlated pairs. This is akin to the
quantum no-cloning theorem.

An important property for these non-commutative spiders is:5

while
...

...

6=
...

...

we have
...

...

=
...

...

(10)

One could put this as a slogan:

spider heads can move past each other, but spider legs can’t.

Remark 4.3. As shown in [25], internal wirings in terms of spiders don’t make sense for
symbolically defined pregroups (i.e. preordered monoids) since the spiders force symbolic
pregroups to be trivial. A passage to certain (free) monoidal categories is needed, like in
[49], but of course, as always we will work with the diagrammatic representation of these
[54, 23], that is, pregroup diagrams.

5The first equation requires commutativity to be valid while the second is about associativity, a
property that follows from (8).
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4.1.2 Internal wiring for relative pronouns

For relative pronouns we start with the internal wirings that were introduced in [51, 52]:

relative pronoun

sentence wirenoun wires

(11)

Substituting this internal wiring in the pregroup diagrams we saw above:

Alice flowerslikes Bob gives Claire

that

(12)

Bob gives Claire flowers Alice likes

that

(13)

permuting the boxes a bit, more specifically, swapping Bob gives Claire and Alice

likes in the 2nd diagram, the two diagrams start to look a lot more like each other:

Alice flowerslikes Bob gives Claire (14)

Bob givesflowerslikesAlice Claire (15)

Their only difference is a twist which vanishes if we take spiders to be commutative,
and either a loose sentence-type wire coming out of the verb likes in the first diagram,
versus a loose sentence-type wire coming out the verb give in the second diagram, the
other verb having its sentence type deleted.

Remark 4.4. Note also how we could now think of flowers being ‘copied’ by the spider
and one ‘copy’ is then provided to each of the verbs. A better view is that a single copy
is shared by the verbs — see Remark 4.2.

13



4.1.3 Internal wiring for verbs

The deleting of sentence-types of verbs:

likes
(16)

by the internal wiring of relative pronouns seems to prevent us from bringing the diagrams
(14) and (15) any closer to each other, as in general there is no way to get back to:

likes

However, this irreversibility does not happen for a particular kind of internal wiring for
the verb, used in a number of earlier papers [28, 33, 17, 22]. In those papers spiders
were assumed to be commutative, while here we need them to be non-commutative. We
arrange a twist such that the right legs of the spiders contribute to the sentence type.

Definition 4.5. A transitive verb comes in spider-form if for some choice of spiders it
has internal wiring:

*trans v*

︸︷︷︸
s

(17)

For transitive verbs in spider-form, if the sentence type gets deleted:

=

*trans v*
*trans v*

we can bring back the original form by copying the remaining wires:

=

*trans v**trans v*

So nothing was ever lost. To conclude, for the internal wiring of verbs proposed above,
the copying and deleting spiders now guarantee that in (16) nothing gets lost.

Remark 4.6. This presence of the operations copying and deleting is not dissimilar
from how one takes linear logic and turns it into ordinary classical logic by adjoining the
ability to copy and delete premisses [27]. Similarly, here we bring in copying and deleting
on top of the linear structure of pregroups in order to achieve the rewriting of pregroup
diagrams that are related to each other.
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The spider-form extends to adjectives, transitive verbs and ditransitive verbs:

*trans v*

︸︷︷︸
s

*ditrans v*

︸︷︷︸
s

*adj*

(18)

and the same principle applies here too.

4.2 Rewriting pregroup diagrams into each other

Let’s look again at our example sentences, now with internal wirings (18):

Alice flowers Bob Claire

*likes* *gives*

BobflowersAlice Claire

*likes* *gives*

Then deleting all the outputs we get:

BobflowersAlice Claire

*likes* *gives*

BobflowersAlice Claire

*likes* *gives*

Using the spider-fusion (8) we can further simplify these:

BobflowersAlice Claire*likes* *gives*

(19)
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BobflowersAlice Claire*likes* *gives* (20)

The only difference is now the twist. If there is no causal relationship between the two
parts involving likes and gives (cf. (α)) the spiders will act commutatively on them,
and the two pregroup diagrams are the same. If there is a causal relationship (cf. (β))
then the twist witnesses this.

4.3 Rewriting pregroup diagrams into circuits

However, we have no outputs anymore, so let’s just stick in a copy-spider (to the right)
for all nouns, and then we respectively obtain:

BobflowersAlice Claire*likes* *gives*

(21)

BobflowersAlice Claire*likes* *gives* (22)

Now deforming (21) and using spider-fusion – and (10) in particular, which allows the
copy-spider attached to flowers to slide past the other spider – gives us:

BobflowersAlice Claire

*likes*

*gives*

Replacing these boxes by names we get a true circuit that can be composed:

Alice Bob Claireflowers

*gives*

*likes*

In the case of (22) we obtain:

Alice Bob Claireflowers

*gives*

*likes*

(23)
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Hence, when the two diagrams representing our example sentences become closely
related, they also admit a circuit form, which we call language circuits.

Comparing now to circuits (2) and (3), the order of the gates is indeed reversed, and
we see that non-commutativity of spiders corresponds to non-commutativity of the gates.
This is not surprising. Above the gates take the following shape [22]:

*adj* *trans v* *ditrans v*
(24)

Which we can also think of as internal wirings, induced by the ones we assumed in (18):

=
*trans v*

*trans v*

=
*trans v*

(25)

Definition 4.7. Gates in language circuits come in spider-form if for some choice of
spiders they have internal wiring (24).

4.4 Innocence of spider-forms

So we have left it open what the spiders actually are. There is one particularly interesting
choice, which shows that we can obtain the spider-form at no cost whatsoever.

Lemma 4.8. Without loss of generality, we can assume that gates in language cir-
cuits come in spider-form (24) for an appropriate choice of wires and (non-commutative)
spiders. Equivalently, we can assume that adjectives, intransitive, transitive, and ditran-
sitive verbs respectively have the internal wirings (18).

Proof. We provide the proof in the case of gates, which then translates to adjectives,
intransitive, transitive, and ditransitive verbs through (25). Given an adjective and
transitive verb as a gate:

adj trans v

we can put them in the form:

adj trans v
(26)

as follows:

(a) one doubles the wires:

:=

17



(b) one uses the (well-known) pair-of-pants spiders:

:=

Then we can cast the adjective and transitive verb respectively as:

adj

and:

trans v
=

trans v

(27)

The same trick extends to intransitive and ditransitive verbs. Pair-of-pants spiders are
non-commutative. Indeed, if we swap the two legs we get:

= 6=

and this leads to non-commutativity of the corresponding gates e.g.:

B

A

6=
A

B

==
A

B A

B

since the boxes are typically non-commutative.

Remark 4.9. When composing gates of the form (26) in a circuit, like here:

trans v

adj2adj1

wires play no role

it immediately follows that the left wire is effectively doing nothing. So we may as well
ignore it, and instead of (a) and (b) as in the proof of Lemma 4.8 we could:

(a) leave the wires as they are, and

18



(b) use the following ‘pseudo-spiders’:

︷︸︸︷leg leg

leg

Without those ‘numb’ wires, for example, the gate (27) now simply looks as follows:

trans v
= trans v

i.e. like regular gates.

4.5 Gates acting on Gates

Thus far we have represented nouns as wires, and verbs as gates that act on these wires.
An adverb like quickly turns a verb like runs into another verb, namely runs quickly.
Hence we expect adverbs to turn a gate into another gate:

runs

quickly

= runs quickly

In circuit jargon these are sometimes referred to as combs. Just as in the case of gates
we propose a spider-form for adverbs and other combs:

Definition 4.10. An adverbs comes in spider-form if it has internal wiring:

*adv*

(28)

And just as in the case of gates this choice is innocent:

Lemma 4.11. Without loss of generality, we can assume that combs such as adverbs in
language circuits come in spider-forms like (28) for an appropriate choice of wires and
(non-commutative) spiders.
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Proof. By again relying on the pair-of-pants spiders as we did in Lemma 4.8 for adjectives
and verbs we can put an adverb in the form:

*adv*

when we cast it as:

adv

and the same trick extends to combs taking in transitive and ditransitive verbs.

5 The wrapping gadget

Above in Section 4.1.3 we saw that sentence wires were decomposed into noun wires.
However, for pregroup proofs it is important to know that those wires do belong together,
which we informally indicated as follows:

*trans v*

︸︷︷︸
s

*ditrans v*

︸︷︷︸
s

*adj*

So using standard logic notation, our types are as follows.

Definition 5.1. The wire-types are generated as follows:

Y = n | Y ⊗ Y | [Y ]
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Here, Y ⊗ Y means putting wires side-by-side, while [Y ] means considering wires
together. In fact, Lambek [38] also used square brackets to additionally restrict the
proofs of grammaticality pregroups allow for, in order to avoid ambiguities. We now
provide a formal counterpart to bracketting in terms of diagrams.

Definition 5.2. The wrapping gadget forces a number of wires to be treated as one,
i.e. it wraps them, and is denoted as follows:

· · · · · ·
Y1 Yi YN

[ N⊗
i=1

Yi
]

By unfolding we mean dropping the restrictions imposed by the wrapping gadget:

· · · · · ·
Y1 Yi YN

[ N⊗
i=1

Yi
]

unfold7→
· · · · · ·
Y1 Yi YN

· · · · · ·

Cups and spiders carry over to wrapped wires in the obvious way, e.g.:

· · ·

[ N⊗
i=1

Yi
]

Y1 YN

unfold7→ · · ·

Y1 YN

(29)

with the following conventions being made for composites of cups and copy-spiders:

· · ·

[ N⊗
i=1

Yi
]

Y1 YN

[ N⊗
i=1

Y(N−1)
]

· · ·
Y1YN

unfold7→
· · ·

YN
· · ·

YNY1 Y1

· · ·

[ N⊗
i=1

Yi
]

Y1 YN

unfold7→
· · · · · ·

Y1 YN

Y1 YN

· · · · · ·
YNY1
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Note that when considering cups as spiders the convention for composites doesn’t
match the one we made. Indeed, as spiders the type would be [Y1 ⊗ YN ] ⊗ [Y1 ⊗ YN ],
which would require cups to cross, versus [Y1 ⊗ YN ] ⊗ [YN ⊗ Y1] in our convention. The
reason for doing so is that our convention for cups matches what happens when doing
proofs in pregroups, and also makes diagrams more readable because of the cups being
nested. However, this convention cannot be extended to arbitrary spiders.6

We illustrate all this now on the example of relative pronouns seen earlier. For:

︸︷︷︸
s

where the sentence wire consists of two noun-wires this becomes:

However, that’s not enough, as we can now produce the following diagrammatically
represented proof of grammaticality that abuses the object relative pronoun:

Alice flowersgives

that

Bob plays chess

which obviously we don’t want. The reason is that the deleting of the sentence type of
plays belongs together with the noun-wire now connecting the relative pronoun with
gives, like in (12). This is imposed as follows:

(30)

Hence, in the case of the internal wiring of relative pronouns, we do not only need one,
but two wrappings. In order for pregroup diagrams to match these wrapped wires, they
will also need wrapping gadgets and wrapped wires.

Definition 5.3. A pregroup diagram with wrapping is a pregroup diagram which in
addition may contain wrapping gadgets and wrapped wires.

6The same mixed convention is also made in [20].
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6 A catalog of internal wirings

We now provide a catalog of internal wirings for a substantial fragment of English. To-
gether, these internal wirings form a visually depicted algorithm that undoes pregroup
bureaucracy, and their complexity represents the complexity invoked by the dimensional
collapse of grammar.

We divide these internal wirings in on the one hand ‘content words’, like (18) in the
case of adjectives and verbs, and on the other hand ‘functional words’, like (11) in the
case of relative pronouns, the difference being that:

• in the case of content words there will still be a ‘black box’, but with less wires,

• while in the case of functional words there only will be wiring.

For the cases of adjectives, verbs and relative pronouns:

• we make necessary improvements as compared to the previously established internal
wirings [51, 52, 28, 33, 21, 17] by introducing wrapping gadgets just as we did in
the previous section for relative pronouns – cf. (30).

We make a number of simplifications as well:

• We ignore determiners such as the and a. We could easily consider them, but that
would distract from our core message by complicating diagrams.

• We ignore tenses of verbs. Tenses can be handled by introducing subtypes [38],
that is, diagrammatically, having different kinds of basic wires of different types.
We can also recover case agreement for plurals and gender in the same way.

A special case includes:

• nominative pronouns like she, it, they which will be treated as regular nouns in
the pregroup diagrams. We describe who/what these pronouns are referring to at
the level of language circuits.

We also provide the pregroup typings of each of the words.

6.1 Content words

Verbs We’ve already seen these, but now we present then with the wrapping gadget.
We stop at ditransitive verbs, as tritransitive verbs are very rare in any natural language.
In principle there isn’t a reason to stop at three wires, and although this may be hard for
us humans to handle, as we will see, we can build verb-like boxes with more wires using
just intransitive and transitive verbs plus adpositions. We can also construct ditransitive
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verbs in this way. The ordering of arguments for ditranstive verbs in English, from left
to right, is subject-object-theme where object and theme follow the verb.

*TV*

−1n · [n · n] · n−1

*DV*

−1n · [n · n · n] · n−1 · n−1

*IV*

−1n · [n]

Intransitive Verb Transitive Verb Ditransitive Verb

Adjectives. We consider two kinds of adjectives, depending on whether they appear
before or after the noun it modifies. In the latter case in the car is purple we treat
all of is purple as the adjective, ignoring the copula is.

*A.Adj*

n · n−1

Attributive Adjective

*A.Adj*

−1n · n

Predicative Adjective

Adverbs. Adverbs admit the same attributive/predicative distinction as adjectives, de-
pending on whether they modify verbs before or after cf. quickly runs vs. runs quickly,
and we also have to consider the different arities of the verb.

*Adv*

−1[[n · −1n] · [n]] · n · −1n · [n]

*Adv*

−1n · n · −1n · [n] · [[n · −1n] · [n]]−1 · n

Attributive AdverbIV Predicative AdverbIV

*Adv*

−1[[n · −1n] · [n · n] · [n−1 · n]] · n · −1n · [n · n] · n−1 · n

*Adv*

−1n · n · −1n · [n · n] · n−1 · n · [[n · −1n] · [n · n] · [n−1 · n]]−1 · n

Attributive AdverbTV Predicative AdverbTV
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Intensifiers. Intensifiers are words like very, extremely, terribly, which intensify
the meaning of adverbs or adjectives. By contrast, mitigators are words or phrases like a

little, not so, somewhat, which reduce the intensity of adverbs or adjectives, but as we
are just concerned with grammatical structure, we will refer to these too as intensifiers.
We consider intensifiers to occur before the word they modify. We exhibit intensifiers for
adverbs for intransitive verbs here.

−1[[n · −1n] · [n]] · n · −1n · [n] . . .−1n · n · −1n · [n] · [[n · −1n] · [n]]−1 . . .

IntensifierA.Adv.IV IntensifierP.Adv.IV

*Int*

[n · −1n · [n] · [[n · −1n] · [n]]−1]−1 · n

*Int*

[−1[[n · −1n] · [n]] · n · −1n · [n]]−1

Adpositions. Adpositions relate sentences to nouns, or sentences to sentences. For ex-
ample Alice plays in the garden until Bob calls her. Here in relates the phrase
Alice plays to the noun (the) garden, and until relates Alice plays to the phrase
Bob calls her. Here we only consider the phrase-noun kind, for which we have a family
of internal wirings, one for each kind of verb phrase that precedes the adposition.

*Adpos**Adpos*

AdpositionIV AdpositionTV

−1[[n · −1n] · [n]] · n · −1n · [[n] · n] · n−1 · n · n−1

−1[[n · −1n] · [n · n] · [n−1 · n]] · n · −1n · [[n · n] · n] · n−1 · n · n−1
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6.2 Functional words

Relative Pronouns. There are subject and object relative pronouns for transitive and
ditransitive verbs. Intransitive verbs only have subject relative pronouns.

−1n · n · [−1n · [n · n]]−1

Sub. Rel. Pron.TV

−1n · n · [−1n · [n · n · n]]−1

Sub. Rel. Pron.DV

−1n · n · [−1n · [n]]−1

Sub. Rel. Pron.IV

Ob. Rel. Pron.TV

−1n · n · [[n · n] · n−1]−1

Ob. Rel. Pron.DV

−1n · n · [[n · n · n] · n−1]−1

When we construct compound phrases with adpositions later, we additionally consider
the following generalised relative pronouns, where the bold dot is explained in (29).

Ob. Rel. Pron.compound

−1n · n · (n−1)−1 · [[[· · · ]]]−1

Sub. Rel. Pron.compound

−1n · n · [[[· · · ]]]−1 · n

Reflexive Pronouns. These are words ending with -self. To capture snake eats

itself, we consider the reflexive pronoun itself to modify the transitive verb it follows,
into the ‘intransitive verb’ eats itself.

−1[−1n · [n · n] · n−1] · −1n · [n]

Reflexive pronoun

Adjectivalisation. The gerund -ing turns verbs into an adjective-like word. It is
appropriate both for pre- or post-position while keeping the same internal wiring.

-ingTV7→Pred.Adj.
-ingIV7→Pred.Adj.

−1[−1n · [n]] · −1n · n −1[−1n · [n · n] · n−1] · −1n · n · n−1
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Passive voice. This sentence uses active voice, which we have been modelling so far.
Passive voice is used in this sentence. The passive voice ‘word’ (which we draw below),
when placed after the verb, turns uses into used, pushing the subject to the end.

Passive voiceTV

−1[−1n · [n · n] · n−1] · −1n · [n · n] · n−1

6.3 Examples

We now provide a number of examples of how the internal wirings proposed above, enable
us to relate different grammatical constructs just as in the case of what the relative
pronoun and verb internal wirings did for sentences (6) and (7).

We omit the pregroup typings, instead depicting the pregroup proofs (see Definition
4.1) directly. Wrapping gadgets that occur within internal wirings correspond to words
with pregroup typings that contain brackets, for example, nouns together forming a sen-
tence type. Wrapping gadgets that occur outside internal wirings correspond to formally
introducing brackets as a pregroup proof-step in a pregroup proof.

We relate:

• Dance -ing man

to:

• Man that dances

-ing

*IV* Subj.
*IV* Subj.

7→

(unfolding)

Subj.

Sub.Rel.Pron.IV

*In.V*
Subj. *In.V*

= 7→

(rearranging)
(wrapping)
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We relate:

• Farmer sows corn

to:

• Farmer is sow -ing corn

Subj. *TV* Obj.

7→

(unfolding, adding spider units, rearranging)

Subj. Obj.
*TV*

isCop.(TV)
-ingIV7→Pred.Adj.

7→

(wrapping, recovering pregroup proof with bracketing)

*TV*
Obj.Subj.

We relate:

• Alice

passive voice︷ ︸︸ ︷
is bored by the class

to:

• The class bores Alice
Passive VoiceTV

Obj. Subj.*TV*

Obj. Subj.*TV*

(unfolding)

7→
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*TV*Subj. Obj.

(rearranging wires, wrapping)

7→

We relate:

• Alice runs very quickly

to:

• Alice very quickly runs

*Int*

Subj.

*IV*

*Adv*

*Adv*

*Int*

*IV*
Subj.

7→

29



Subj.

*IV*

*Adv*

*Int*

=

Subj. *IV* *Adv* *Int*

=

(simplifying)

*Int*

*IV*

Subj.

*Adv*

7→

We relate:

• Alice washes Fido gently

to:

• Alice gently washes Fido

Subj. Obj.
*TV*

*Adv*
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7→

Subj. Obj.
*TV*

*Adv*

Subj.
*Adv*

Obj.

*TV*

= =

Subj. Obj.
*TV*

*Adv*

Subj. Obj.
*TV*

*Adv*

7→

6.4 Further derived internal wirings

From the internal wirings above, we can derive some more, using the fact that we expect
certain composites to be grammatically equal.

From:

• (possessed) that (possessor) owns

we derive the possessive modifier:

• (possessor) ’s (possessed)

up to rearranging the order of noun-arguments. So we consider possessive pronouns such
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as his to modify the nominative he with -’s.

owns

owns
that

possessorpossessed

owns

owns
7→ =

(unfolding) (twisting inputs)

possessed
possessor

possessor
possessed

owns

"-’s"

=

possessedpossessor

(simplifying)

From:

• author that owns book that John (was) entertain(s) -ed (by)

we derive a possessive relative pronoun:

• author whose book entertained John

*TV*owns

possessor possessed Obj.
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*TV*owns

7→

(unwrapping wires)

possessor possessed Obj.

*TV*

owns

(simplifying)

=

posessor possessed Obj.

*TV*

=

(dragging wires into place)

possessor possessed Obj.

owns

owns *TV*

whose

(recovering a pregroup proof with bracketing)

7→

possessor possessed Obj.
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From transitive verbs and adpositions:

• Bob givesTV flowers to Claire

we derive ditransitive verbs:

• Bob givesDV Claire flowers

Phrase-noun adpositions indeed turn k-ary verb phrases into k+1-ary verb phrases, hence
we can deconstruct ditransitive verbs using transitive verbs and phrase-noun adpositions.

Indir.Obj.Subj. Dir.Obj.

*TV*

*Adpos*

*Adpos*
Indir.Obj.

Subj.

Dir.Obj.

*TV*

7→

*Adpos*

Indir.Obj.

Subj.

Dir.Obj.

*TV*
=
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Subj.

Dir.Obj. Indir.Obj.

*TV*

*Adpos*

=

*Adpos* *TV*

Subj. Dir.Obj.Indir.Obj.

7→

Ditransitive Verb

From:

• Alice swims

we derive the copula is in:7

• Alice is swim -ing

Subj. *IV*
Subj.

*IV*

Subj.
*IV*

= =

(un-fusing spiders)

*IV*Subj.

=

7The equivalence holds for present tense declaratives.
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-ingIV7→Pred.Adj.

*IV*Subj.

=

iscop.(IV)

Similarly:

• farmer sows corn

is the same as:

• farmer is sow -ing corn

Subj.

*TV*

Obj.

7→

(unfolding, adding spider units, rearranging)
Subj. Obj.

*TV*

isCop.(TV) -ingIV7→Pred.Adj.

7→

(wrapping, recovering pregroup proof with bracketing)

*TV*

Obj.Subj.

7 Pregroup diagrams to language circuit algorithm

We first define language circuits, and then we present the algorithm that turns pregroup
diagrams of grammatical sentences into language circuits, and apply it to examples.

7.1 Language circuits

We now formally define language circuits. We first generalise the gates of (24) and combs
of (28) to arbitrary words.
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Definition 7.1. A basic gate is a gate with the following internal structure:

*word*

· · · · · ·

· · · · · · · · · · · ·

· · · · · ·

(31)

By Lemma 4.8, without loss of generality, they represent general gates:

word

· · · · · ·

· · · · · ·
(32)

A higher gate is a gate that acts on some combination of wires, basic gates, and other
higher gates. Where the internal dotted boxes indicate gaps to place other gates, higher
gates have the following internal structure:

· · ·

· · ·

. . .

*word*

· · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

. . .

· · · · · · · · ·· · ·

· · ·

· · ·
· · ·

· · ·

. . .

. . .
(33)

By Lemma 4.11, without loss of generality, they represent general combs:

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

word

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

(34)
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Definition 7.2. A language gate is a gate made up of basic and higher gates, with no
gaps. A language circuit has vertical wires labeled by nouns:

noun1 noun2 nouni nounN

· · · · · ·

and the gates in it are language gates.

Here’s an example of a language circuit (not in spider-form):

laughs

heartily

at

drinks

while

Alice Claire Bob whiskey

Alice heartily laughs at Claire while Bob drinks whiskey

(35)

The algorithm that we present below will produce either a basic or higher gate for every
content word in the sentence. Well-formed subphrases will correspond to language gates.

Order-freeness of noun-wires. We consider two language circuits to be the same if
their connectivity is the same. So rearranging vertical wires does not change a circuit:

Alice

flowers

Bob

Claire Alice

flowersBob

Claire

=

Alice

flowersBob

Claire

=likes

gives

likes
likes

gives
gives

This is why constructions that rearrange noun order such as the passive voice and the
possessive modifier have internal wirings that contain twists, while the diagrams for
the constructed and original sentences stay equal up to spider-fusion, wrapping, and
unfolding. All three of these operations conserve connectivity.
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Composing Circuits. We compose circuits obtained from sentences in text in the
obvious way, connecting wires of matching nouns.

circuit1

nounα

circuit2

nounα

nounβ

nounγ

nounβ
nounδ

7→
circuit1

nounα

circuit2

nounβ

nounγ
nounδ

Resolving pronouns. The referent is the noun that a pronoun refers to, for example,
in the sentence:

Bob drinks beer that he bought

the noun Bob is the referent of the pronoun he.
Resolving a pronoun means to determine its referent, especially when there is ambi-

guity, for example, in the text:

Alice goes to dinner with Claire; she pays the bill

the pronoun she can refer to either Alice or Claire. We do not provide an account
here of how to determine what a pronoun refers to, but any such procedure (e.g. [39, 11])
is modularly compatible with our approach. For language circuits, if a pronoun gets
resolved we fuse its wire with the wire of its referent:

*circuit*

· · · · · ·

· · · · · ·

pronoun referent

7→ *circuit*
· · · · · ·

· · · · · ·

referent

7.2 The Algorithm

We want to turn a grammatical sentence into a language circuit. Here we first list the
main steps for getting from a pregroup diagram with wrapping to a language circuit:

1. Replace words with their corresponding internal wirings from Section 6.

2. Replace sentence wires with appropriate wrapped wires.

3. Delete the output wire.

4. Replace each noun (including pronouns) with a copy-spider. The two free legs will
become the vertical wires in the circuit, labelled by the noun.
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5. Unwrap all wrapped wires using Section 5.2.

6. Resolve pronouns as described above.

7. Use spider-fusion to obtain a language circuit.

The only missing step is turning a sentence into a pregroup diagram with wrapping, for
which there are standard tools available. We now state the full algorithm in pseudo-code:

• Let S be a sentence in the fragment of English we have described, as a list of words.

• Let Parse denote a program that takes sentences in the fragment and returns their
pregroup diagrams with wrapping.

• Let NOUNS be the set of nouns in the ambient language, of which PRONOUNS is a
subset.

• Let PrnRes denote a pronoun resolution oracle, which takes a pair (p, n), p ∈
PRONOUNS, n ∈ NOUNS− PRONOUNS and returns True just when the pronoun p refers
to n, and False otherwise.
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Algorithm 1: Grammar to Circuit Algorithm

Input: A sentence S
Result: A language circuit
Data: Parse , PrnRes , NOUNS, PRONOUNS
BASICWIRES← {w ∈ S ∩ NOUNS} ; // ‘BASICWIRES’ is nouns of S
DIAGRAM← Parse(S) ; // ‘DIAGRAM’ is pregroup diagram with wrapping

if ‘DIAGRAM’ has single output wire o then
Append appropriate deletion to o in DIAGRAM ; // delete output wire

for w ∈ BASICWIRES do
Erase w’s box from DIAGRAM, creating open wire ; // copy nouns

Append rightmost output of a copy-spider to the open wire;
Pull free input of copy-spider to the top of DIAGRAM;
Pull free output of copy-spider to the bottom of DIAGRAM;
Label this new wire with w;

end
while There remain wrapped wires in DIAGRAM do

Apply unfolding from Definition 5.2 ; // unwrap

end
for w1, w2 ∈ BASICWIRES do

if w1 ∈ PRONOUNS and w2 /∈ PRONOUNS and PrnRes(w1, w2) then
Attach outputs of a copy-spider to w1, w2 inputs;
Attach inputs of upside-down copy-spider to w1, w2 outputs;
relabel merged wire as w2 ; // resolve pronouns

end

end
while There remain deletions, cups, or caps of non-wrapped wires do

Use spider-fusion to remove deletions, cups, and caps;
end
Simplify to obtain language circuit ; // clean up

return DIAGRAM ; // return language circuit

else
return False ; // (Fail if input ungrammatical)

end

41



7.3 Examples

Bob drinks in (the) black pub.

in

Bob pub

blackdrinks

in

Bob

pub

black
drinks

7→

(unfolding)

Bob

black

pub

drinks

in

=

black

drinks

in

7→

Bob pub
(delete outputs, copy nouns)

42



black

drinks

in

Bob pub
(unwrap)

=

black

drinks

in

Bob pub

=

(spider fusion)

Bob pub

↔

(Lemmas 4.8, 4.11)

drinks

black

in

This is the farmer sowing his corn.

We treat is as a regular transitive verb, and following our derivation of the posses-
sive pronoun, we treat his corn as corn that he owns. The catalog has enough for us
to express the full sentence as:

This is (the) farmer sow-ing corn that he owns.

Here is the pregroup diagram with wrapping we obtain:

isthis farmer sows corn ownshe

-ing that

After we delete the output wire, replace the noun-boxes by copy-spiders, and unfold all
the wires, we are left with only noun wires, spiders, and word-boxes:

is sows owns

this farmer corn he
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Now we use spider-fusion to eliminate cups, caps, and deletes. We move each word-box
to its own horizontal level, and bring its connected spiders to that level. By construction,
at this point we have word gates. Now we resolve the pronoun he by merging that wire
with farmer using spiders (see the dotted lines), and keeping only the farmer label. The
pronoun this has no referent, so we leave it alone:

is

this farmer

owns

corn

sows

he

We can continue to spider-fuse to completely eliminate the he wire. When there are no
pronouns left to resolve, we can apply Lemma 4.8 to simplify presentation and finish:

is

this farmer

owns

corn

sows

4.8↔
is

owns

sows

this
farmer

corn

...(the farmer) kept the cock that crow’d in the morn.

We can also apply the algorithm to noun phrases. After we obtain a language circuit
from a noun-phrase this way, we can compose it with other circuits. So now, we build
on the sentence we just translated, adding on:

(the farmer) that kept (the) cock that crow’d in (the) morn.

We treat the cock and the morn as nouns, and crow’d as an intransitive verb. Once
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we fill in internal structures from our catalog, we get:

cock morn

crow’dkept

farmer that
in

that

We replace noun boxes with copies, delete the output wire, and unfold. We label farmer
in brackets to remember that we have to connect it to the farmer mentioned earlier:

(farmer) cock morn

crow’dkept

in

Now we can use spider-fusion to simplify, obtaining a language circuit:

crow’d

kept

(farmer) cock

in

morn

4.8↔ crow’d

kept

(farmer)
cock

morn

in

Now we can put the two language circuits we have obtained together. When we do so, we
twist some wires to keep the order of input wires the same as the order of output wires,
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and we try to keep gates from crossing over other wires. We obtain a big, composite
language circuit, which we depict in full:

is

this farmer

owns

corn

sows

crow’d

kept

cock

in

morn

A nursery rhyme: The house that jack built. Here is the final stanza of the
nursery rhyme, which is one very long sentence:

This is the farmer sowing his corn

That kept the cock that crow’d in the morn

That waked the priest all shaven and shorn

That married the man all tatter’d and torn

That kissed the maiden all forlorn

That milk’d the cow with the crumpled horn

That tossed the dog

That worried the cat

That killed the rat

That ate the malt

That lay in the house that Jack built

To turn this long sentence into a circuit, we make some concessions:

• We overlook determiners and tenses.

• We gloss some phrases with close equivalents, for example:

...man all tattr’d and torn... 7→ ...tattr’d torn man...

• We re-express certain words using our catalog, for example:

...his corn... 7→ ...corn that he owns...
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• We resolve pronouns as follows:

farmer sowing corn that he owns 7→ farmer sowing corn that (farmer) owns

• We break up the sentence into smaller ones, for example:

farmer kept cock that crow’d in morn

becomes two sentences:
farmer kept cock

(cock) crow’d in morn

The circuit we obtain after composition is the same in both cases, as in (3).

After all this, the long sentence becomes the following text:

This is farmer sows -ing corn;

(farmer) owns corn;

(farmer) keeps cock;

(cock) crows in morn;

(cock) wakes shaven shorn priest;

(priest) marries tatter’d torn man;

(man) kisses forlorn maiden;

(maiden) milks cow;

(cow) owns crumpled horn;

(cow) tosses dog;

(dog) worries cat;

(cat) kills rat;

(rat) eats malt;

(malt) lies in house;

(house) Jack builds -ed

We see nouns, intransitive and transitive verbs, -ing, the passive voice -ed, attributive
adjectives, and adpositions: all covered by our catalog. The pregroup diagram of the
original sentence is too wide to reasonably depict. However, the language circuit we
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obtain is exactly as one expects:

is

this

farmer

owns

corn

cock

sows

keeps

crows

in

morn

wakes

priest

shaven

shorn

marries

man

tattr’d

torn

kisses

milks

forlorn

owns

crumpl’d

tosses

worries

kills

eats

lies

in

builds

maiden

cow

horn

dog

cat

rat

malt

house
jack

When the gates we choose to model words with slide past each other, we can greatly
simplify the situation. Maybe computers will have it easier than us:

is

this

farmer

his

corn

cock

sows

keeps

morn

priest

marries

man

kisses

milks

tosses

worries

kills

eats builds

maiden

cow

horn

dog

cat

rat

malt

house
jack

tattr’d

torn

forlornshaven

shorn

wakes

crumpl’d

owns lies

in

crows

in
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8 Related Work

The replacement of the sentence type with tensored wires used in this paper was prefig-
ured as ‘Cartesian Verbs’ in [21] Sec. 2.3, which in turn had precursors in [28, 34, 33].

As circuits are naturally compositional, we immediately permit a move from the
semantics of sentences to a semantics of text, as proposed in [17]. The rules governing
composition of sentences in text naturally evoke context. Textual context has figured in
DisCoCat-related papers before [48, 59], although no sentence composition mechanism
was proposed, due to a (literal) bottleneck in the geometry of pregroup diagrams.

Also within the context of DisCoCat, the work by Toumi et al. [18, 57] models in-
tersentential interaction through discourse representation structures [31], which however
came at the cost of reducing text meaning to a scalar. Language circuits benefit from dis-
course representation structures without a concession in expressiveness of meaning. The
circuits we introduce here can be viewed directly as discourse representation structures
where pronouns are represented as noun-wires with undetermined label, to be connected
to properly labelled wires elsewhere. A natural direction for further development of lan-
guage circuits in line with discourse representation is to appropriately enrich the ambient
categories so that indefinite pronouns such as everybody and something can be handled.

We remark that the explicit bracketing structure in types, which show up as the wrap-
ping gadget diagrammatically, happens to coincide with the type structure required in
Muskens’ work [47] that grants discourse representation structures to pregroup grammars
in generality. But it is worth emphasising that just as the jump from pregroup grammars
to pregroup diagrams permits compositional semantics according to grammar, a similar
compositional semantics is gained here.

The compositional semantics gained here is not without effort. The internal structures
for grammatical words chosen here strictly generalise the work of [51] and [52], but were
engineered in a similar fashion: following a pre-formal and human understanding of how
grammatical words affect information flow and connectivity in sentences. This effort
pays off. As we have seen, the passage from pregroup proofs to diagrams, and the
correspondence between pregroup diagrams and pregroup proofs, treats diagrams with
properly chosen grammar-spiders as a medium for meaning-preserving rewriting, which is
precisely the business of Harris and Chomsky’s transformational grammar [50]. So, where
the internal structure for grammatical words are well chosen and coherent with respect
to each other, the pregroup diagrams shown here before simplification into circuits can
constitute an account of what Chomsky’s deep structure [8] really is.

The language circuit formalism does not appear to detract or exclude the use of meth-
ods within traditional research in natural language syntax and semantics. In dynamic
semantics [30, 58] models sentence meanings as I/O-transitions and text as compositions
thereof. However, the approach is still rooted in predicate logic, just as Montague se-
mantics is, hence not accounting for more general meaning spaces, and so not explicitly
admitting the type structure of diagrams/monoidal categories. Dynamic semantics is a
precursor of dynamic epistemic logic (DEL) [6, 5]; we expect that DEL, and generalisa-
tions thereof, may in fact emerge from our model of language meaning by considering an
epistemics-oriented subset of meanings. In [53], static and dynamic vector meanings are
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explicitly distinguished, taking inspiration for the latter from dynamic semantics. There
are many other logic-oriented approaches to text e.g. [3], of text organisation e.g. [42],
and of the use of categorical structure.

There is a clear scope for combining language circuits with ML-methods. Some work
in this direction, for the case of DisCoCat, is [40]. There is also the concrete problem of
learning gate representations given diagrammatic constraints, which appears well suited
for an ML approach. For instance, to model collections of spatial adpositions such as
above, taken to be a binary gate with special properties, such as idempotence and transi-
tivity, learning appropriate gate representations permits the resulting circuits to express
and solve inference problems, such as in [26].

The fragment of English we have modelled here is a small controlled natural language
[35, 62, 10], examples of which have found use in industry, critical machine applications,
and to facilitate human-to-human communication. Accordingly, there is potential value
in developing procedures to translate natural language into, semantically close equivalents
in the controlled fragment, again where an ML-approach may find application. Alterna-
tively, the expressivity of the fragment can be expanded, where the natural direction of
expansion is to capture grammatical features common to multiple languages.
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