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Chapter 1

Introduction

Quantum information theory deals with the application of quantum mechanical sys-
tems to information processing tasks such as communication, computation and cryp-
tography [21, 44, 79]. This endeavour has brought together physicists, mathemati-
cians and computer scientists, and has led to a fruitful interchange of ideas from
these three fields.

Theoretical computer science employs category theory in areas such as categorical
logic [62], type systems [46], and programming language semantics [39]. Category
theory also plays a crucial unifying role in many areas of modern mathematics. The
philosophy of category theory is that one should consider a mathematical object,
not in terms of its elements, but rather in terms of the structure-preserving maps
(morphisms) between it and other such objects. Categorical quantum mechanics [1]
applies categorical techniques to the study of quantum information theory. The basic
category of interest is FHilb, whose objects and morphisms are finite-dimensional
Hilbert spaces and linear maps respectively. Quantum structures such as finite-
dimensional C∗-algebras can be treated abstractly as objects in this category carrying
certain algebraic structure.

Various positive consequences of this change in perspective have already been
explored in the literature:

• A maximally entangled bipartite pure state of a pair of identical systems is
precisely the unit of a dagger duality in FHilb; quantum teleportation can
therefore be understood as a consequence of the ‘snake equations’ defining
such a duality [1, Section 2.1].

• As a compact closed category [55], FHilb admits a flexible and intuitive graph-
ical calculus [52, 53, 88] from which the Choi-Jamio lkowski isomorphism and
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the interchange law for monoidal product and composition emerge trivially.

• Formulating quantum structures in terms of maps gives them a process-theoretic
interpretation; orthonormal bases, for instance, can be defined by copying and
comparison of classical information [30]. Quantum theory can even be rederived
using axioms inspired by the process-theoretic approach [87].

• Categorical-algebraic structures relevant to quantum mechanics can be consid-
ered in other categories with similar structure, or vice versa, leading to new
insights in quantum and other theories [48, 80].

In this thesis we will further demonstrate the utility of the categorical-algebraic
perspective in quantum information theory by obtaining new insights in two different
areas.

Reference frame–independent quantum teleportation. Based on an alge-
braic formulation of quantum teleportation in the category of finite dimensional
unitary representations of a compact Lie group, we propose schemes for quantum
teleportation between parties with misaligned reference frames. These schemes do
not depend on prior alignment or the use of decoherence–free subspaces, and are
robust against changes in reference frame alignment during execution. They utilise
algebraic structures called equivariant unitary error bases, which we completely clas-
sify for qubits. We consider applications of these results, and show how similar
schemes could be developed for other multi-party protocols such as quantum key
distribution.

Most of this work appeared in the following papers:

• Tight quantum teleportation without a shared reference frame (with Jamie Vi-
cary)

https://arxiv.org/abs/1710.01060

Phys. Rev. A 98, 012306 (2018).

• Quantum teleportation with infinite reference frame uncertainty and without
prior alignment (with Jamie Vicary)

https://arxiv.org/abs/1802.09040

Submitted for publication.

• Tight reference frame–independent quantum teleportation (with Jamie Vicary)

https://arxiv.org/abs/1710.01060

QPL2016, EPTCS, 236:202-214 (2017).
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Quantum graph isomorphisms. In two recent papers, a compositional theory of
quantum functions was developed, which allows one to use categorical and algebraic
techniques to treat controlled projective measurement (considered as a ‘quantum
assisted function’ from the control set to the outcome set). A consequence of this
work is a classification and construction of quantum graph isomorphisms, perfect
quantum strategies for a nonlocal game. Here we give a concrete presentation of
this construction, and show how it can be used to construct instances of quantum
pseudo-telepathy.

• A compositional approach to quantum functions (with Benjamin Musto and
David Reutter)

https://arxiv.org/abs/1711.07945

J. Math. Phys. 59, 081706 (2018).

• The Morita theory of quantum graph isomorphisms (with Benjamin Musto and
David Reutter)

https://arxiv.org/abs/1801.09705

Commun. Math. Phys. (2018).

Credit. The research in Part 1 of this thesis was conducted in collaboration with
Jamie Vicary. The research in Part 2 of this thesis was conducted in collaboration
with Benjamin Musto and David Reutter.

Thanks. Thanks to Jamie Vicary, my supervisor, for patient direction and en-
couragement throughout the last four years. Thanks to Benjamin Musto and David
Reutter, for an enjoyable and fruitful collaboration. Thanks to my parents, who
taught me intellectual curiosity and perseverance. I thank God for my limited un-
derstanding of this small part of what He creates; I am humbled by my ignorance.
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Part I

Reference frame–independent
quantum teleportation
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Chapter 2

Reference frames in quantum
teleportation

2.1 Reference frames in quantum teleportation

A shared reference frame is an important implicit assumption underlying the cor-
rect execution of many quantum protocols [14, 44, 45, 56, 67, 68, 94]. As quantum
technologies move into space [7, 84, 104] and handheld devices [37, 38, 99], scenar-
ios where this assumption is violated are naturally encountered. This problem has
already received attention in the case of ground-to-satellite quantum key distribu-
tion [7, 61, 63, 93]; there is also a smaller body of work on quantum teleportation
without a shared reference frame [25, 69, 70], which is increasingly important as
quantum repeaters [75] and ground-to-satellite quantum teleportation [84] become
experimentally viable.

One general approach to overcoming reference frame misalignment is simply to
align reference frames before beginning the quantum procedure. This problem has
been studied for specific cases including temporal [23], directional [8, 81], Carte-
sian [24] and permutational [59] reference frames; see [14] for a general review.
However, this is not applicable if reference frame alignment drifts significantly on
timescales shorter than the time taken to perform the protocol, and may be difficult
if alignment between more than two parties is necessary [50, 51]. Prior alignment
also involves communication of reference frame information, which may be crypto-
graphically sensitive in some scenarios [13, 49, 56]; although it is possible to align
reference frames in a cryptographically secure way [26], this requires additional re-
sources such as shared classical randomness. Another general approach involves the
use of decoherence-free subspaces [64]; as this requires larger Hilbert spaces, prac-
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tical implementation can be nontrivial, although experimental solutions have been
developed for optical systems [34].

In the following three chapters we will discuss the particular problem of quan-
tum teleportation in the situation of reference frame misalignment. In particular,
we will exhibit new schemes for teleportation which are resistant to the effect of
reference frame misalignment, and which do not require prior alignment or the use
of decoherence free subspaces.

2.1.1 Reference frames and transformations

First, we recall the mathematical formalism of reference frame transformations in
quantum mechanics [14]. Let F be the space of configurations of the reference frame,
and let V be the d-dimensional Hilbert space of a system whose states are described
with respect to this frame. Let G be the group of reference frame transformations,
which has a transitive left action on F . The Hilbert space V carries a unitary
representation ρ : G −→ B(V ), which encodes how states transform under a change
in frame configuration: a state with vector |ψ〉 in frame configuration f ∈ F will
have vector ρ(g) |ψ〉 in configuration g · f . Let gAB ∈ G be the reference frame
transformation taking Alice’s frame fA ∈ F onto Bob’s frame fB ∈ F ; that is,
fB = gAB · fA.

Proposition 1. A state with vector |ψ〉 in Bob’s frame has vector ρ(g)† |ψ〉 in Alice’s
frame. A linear map with matrix M : V −→ V in Bob’s frame has matrix ρ(g)†Mρ(g)
in Alice’s frame. For any X ∈ L(V ), let [X] : L(V ) −→ L(V ) be defined by [X](ρ) =
XρX†; with this notation, a general quantum channel Φ : L(V ) −→ L(V ) in Bob’s
frame is the operation [ρ(g)†] ◦ Φ ◦ [ρ(g)] in Alice’s frame.

Proof. By definition a state described in Alice’s frame as |ψ〉 will be described in
Bob’s frame as ρ(g) |ψ〉; the first equation follows immediately.

For the linear maps, consider that a linear map is defined by its matrix elements
in some orthonormal basis. Bob performs the operation with matrix elements Mij in
his frame; that is, he performs the operation MB such that 〈iB|MB |jB〉 = Mij. Now
note that |iB〉 = ρ(g)† |iA〉, so Mij = 〈iB|MB |jB〉 = 〈iA| ρ(g)MBρ(g)† |jA〉. In Alice’s
frame, therefore, Bob has performed the operation MB such that ρ(g)MBρ(g)† = MA;
this operation is therefore related to MA by MA = ρ(g)†MBρ(g). To extend the
same argument to general quantum channels, use the fact that all channels can be
expressed using Kraus maps:

Φ(ρ) =
∑

i

EiρE
†
i
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We already know how the Ei transform, so the result follows.

2.1.2 Quantum teleportation

We begin by recalling the conventional teleportation procedure. This procedure was
called ‘tight’ by Werner [103], as the dimensions of the Hilbert spaces involved are
minimal.

Procedure 1 (Conventional tight teleportation [18]). Alice holds an n-dimensional
quantum system, prepared in a state |ψ〉. Separately, Alice and Bob hold an en-
tangled pair of n-dimensional quantum systems, in a maximally entangled state
(1⊗X) |η〉 for some unitary X, where

|η〉 =
1√
n

n∑

i=1

|ii〉

is the generalised Bell state.1 Alice performs a joint measurement on the system to
be teleported and her entangled system, described by an orthonormal basis |φi〉 ∈
Cn ⊗ Cn. She communicates the classical measurement result i to Bob using a
perfect classical channel; Bob then performs the unitary correction Ui on his half of
the entangled state. The procedure is successful if Bob’s system is now in the state
|ψ〉.

A complete description of correct procedures was given by Werner.

Definition 1. For a Hilbert space H, a unitary error basis (UEB) is a basis of
unitary operators {Ui}i∈I , with I = {0, 1, . . . , dim(H)2− 1}, such that for all i, j ∈ I
we have:

Tr
(
U †i Uj

)
= δij dim(H) (2.1)

Under this correspondence, we construct Alice’s joint measurement basis as

|φi〉 := (1⊗XTUT
i ) |η〉 , (2.2)

and Bob performs the correction Ui from the unitary error basis when he receives the
measurement result i from Alice. Werner showed [103, Theorem 1] that all correct
measurement and correction data for Procedure 1 can be obtained from a unitary
error basis in this way.

1All maximally entangled states of a bipartite system are of this form.
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2.1.3 Example: reference frame uncertainty in ground-to
satellite teleportation

We can now present an example of the effect of reference frame misalignment on
teleportation, based on a recent experimental implementation of ground-to-satellite
quantum teleportation [84].

Alice is on Earth and possesses a qubit ρ, which she wants to transfer to Bob
on an orbital satellite. They share an optical link through which they can perform
quantum or classical communication, mediated by individual photons or classical
beams of light. They use a similar protocol to that of Bouwmeester et al [20], except
without postselecting on a single outcome of Alice’s measurement. Explicitly:

1. Alice creates a pair of photons in a Bell state |φ+〉 = 1√
2
(|00〉+ |11〉), where |0〉

is left and |1〉 right circular polarisation2.

2. Alice transmits one of these photons to Bob through the optical link, using
the link as a quantum channel. Bob, upon receipt, transfers its state to some
memory qubit.

3. Alice performs a measurement on her memory qubit and the other entangled
photon, in the Bell basis |φi〉 = (1⊗ UT

i ) |φ+〉. (Ui will be defined shortly.)

4. Alice communicates the outcome i corresponding to her measured state |φi〉 to
Bob through the optical link, using the link as a classical channel. (She could,
for instance, encode the result in the duration of a number of light pulses.)

5. Bob performs a corresponding Pauli correction Ui on his memory qubit:

U0 =

(
1 0
0 1

)
U1 =

(
0 1
1 0

)
U2 =

(
0 −i
i 0

)
U3 =

(
1 0
0 −1

)

If the operations are performed perfectly this will result in perfect teleportation, as
can easily be checked.

Fidelitous communication of one half of the photon pair is an experimental prob-
lem which has been treated elsewhere with some success [84]. However, there is
another, equally significant, problem in Stage 5: reference frame uncertainty arising
from rotation of the satellite.3 The situation is shown in Figure 2.1. The reference

2Polarisation is a suitable degree of freedom because of its known resilience to atmospheric
turbulence on travel through free space [4]; viability in this setting has already been demonstrated
experimentally [84].

3This problem was not discussed in the recent paper of Ren et al. [84], since their protocol
postselected on measurement outcome 0, for which Bob need not perform a correction operation.
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Figure 2.1: The ground-to-satellite teleportation setup.
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frame transformation group is the 2D rotation group U(1). If θ ∈ [0, 2π) is the angle
of a clockwise rotation of the 2D Cartesian frame, we have the following action on
the state of the photon:

θ 7→ ρ(θ) =

(
1 0
0 e−2iθ

)

Here the vector acted on by the matrix is (vL, vR)T , where vL is the left and vR the
right circular polarisation coefficient. The transfer of the photon to Bob’s memory
qubit will require some operation in his frame, so the final state of the memory qubit
will carry the same action of the transformation group.

We work in Alice’s reference frame. Suppose that her measurement result is
i. Due to the unknown rotation of the satellite, the correction Bob performs will
not be Ui, but rather ρ(θ)†Uiρ(θ), and it is easy to check that the state of Bob’s
qubit following the protocol is ρ(θ)†Uiρ(θ)U †i |ψ〉, where Alice’s original state was |ψ〉.
Since we do not know the value of θ ∈ U(1) which describes the true reference frame
misalignment, we must ‘twirl’ [14]—that is, average over the entire group U(1)—to
obtain the effective final state. If Alice’s initial state is σ, and she measures i, then
Bob’s final state is σ′i, given as follows:

σ′i =
1

2π

∫ 2π

0

dθ C[ρ(θ)†Uiρ(θ)U †i ](σ) (2.3)

Here and throughout the following two chapters we use the notation C[M ](σ) =
MσM †. If Alice measures 0 or 3, the channel works perfectly, since U0 and U3 are
stabilised under conjugation by elements of ρ(U(1)). However, if Alice measures 1 or
2 the channel will be totally decohering. On average, the channel therefore has the
following action: (

a b
c d

)
7→
(
a b/2
c/2 d

)
(2.4)

In what follows we will discuss how to achieve a higher quality of teleportation in
this situation and others. We will return to this example in Section 4.7.

2.2 Categorical-algebraic approach

2.2.1 A categorical setting for reference frames in quantum
mechanics

In order to gain some insight into the problem discussed in the previous section, we
introduce a categorical setting for quantum mechanics which incorporates reference
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frame–dependence. Let G be the group of reference frame transformations, which we
assume to be a compact Lie group. We consider the category Rep(G), whose objects
are finite dimensional unitary representations of G; we write these representations
as (H, π), where H is the underlying Hilbert space and π : G −→ End(H) is the ho-
momorphism specifying the representation. The morphisms f : (H1, π1) −→ (H2, π2)
are intertwiners ; that is, linear maps satisfying the equation

π2(g) (f(v)) = f (π1(g) (v)) . (2.5)

The category Hilb of finite dimensional Hilbert spaces and linear maps is a special
case of Rep(G) where G is trivial. The generalisation Rep(G) preserves many of
the properties of Hilb; it has duals, for instance, and a direct sum such that every
object splits as a sum of simple objects (the irreducible representations). There is a
faithful fibre functor Rep(G) −→ Hilb, which takes each representation (H, π) to its
underlying Hilbert space H, and each intertwiner to its underlying linear map.

There are two equivalent ways to interpret the morphisms in Rep(G). The first
is in terms of a superselection rule placing restrictions on permissible transitions.
From this perspective, the objects of Rep(G) are superselected quantum systems,
the superselection sectors are the isotypic components of the representation, and the
morphisms are permissible transitions. In fact, up to particle statistics, the categories
Rep(G) capture all superselection rules for particles in (3 + 1) dimensions. Indeed,
the following Tannaka-type theorem of Doplicher and Roberts [35] shows that the
symmetric tensor *-categories associated with superselection rules are all categories
of representations of compact Lie groups, up to a Z2-grading.

Theorem 1 ([74, Theorem 2.18]). For any symmetric tensor *-category C, there ex-
ists a compact Lie supergroup4 (G, k), unique up to isomorphism, and an equivalence
F : C −→ Rep(G, k).

The bosonic sector of any superselection rule can therefore be described using Rep(G),
where G is the corresponding compact Lie group.

The second interpretation makes explicit use of reference frames. In this interpre-
tation, a certain reference frame with transformation group G is fixed; the objects of
Rep(G) are quantum systems described according to that frame, and the morphisms
are reference frame–independent transformations; that is, transformations which will
be described or performed identically regardless of the configuration of the reference
frame.

Superselection and reference frame dependence are physically very closely con-
nected. This was noted as far back as the work of Aharonov and Bohm [3], and

4[74, Definition 2.13].
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has been considered more recently in the theory of quantum reference frames [14].
The connection may be briefly summarised as follows. In one direction, reference
frame dependence induces a superselection restriction when there is no reference
frame available to break the symmetry of a quantum system; in this case, the per-
mitted transitions are precisely the frame–independent transitions, and the superse-
lection rule is therefore described by the category Rep(G). On the other hand, one
may break a superselection restriction corresponding to a compact group by using
a physical system carrying the regular representation of G as a quantum reference
frame [3, 14, 56], following the prescription in [56, Section II.C]. In this case the
reference frame system is sometimes called a reservoir.

For our work on quantum teleportation, we will consider Rep(G) as the category
of systems decribed according to a fixed reference frame with transformation group
G. However, it is worth bearing in mind that the categorical structures we describe
here may also be interpreted in terms of a superselection rule.

2.2.2 An algebraic formulation of teleportation schemes

We now formulate teleportation procedures as algebraic structures in the category
Hilb of finite dimensional Hilbert spaces and linear maps, before investigating the
corresponding structures in the category Rep(G).

It was shown by Coecke et al. [30] that orthonormal bases correspond precisely
to special dagger commutative Frobenius algebras, or classical structures, in Hilb.
Indeed, every orthonormal basis {|i〉} of a Hilbert space V defines

• a copying map

δ : V −→ V ⊗ V
|i〉 7→ |i〉 ⊗ |i〉 ,

which perfectly copies every vector in the orthonormal basis;

• a comparison map

m : V ⊗ V −→ V

|i〉 ⊗ |j〉 7→ δij |i〉 ,

which checks equality of two basis states;
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• a unit map

1 −→ V

1 7→ 1

dim(V )

∑

i

|i〉 ,

where 1 is the one-dimensional Hilbert space, which maps the scalar unit to
the normalised sum over basis elements;

• and a counit map

ε : V −→ 1

|i〉 7→ 1,

which takes every basis vector to the scalar unit.

Together, these maps obey the relations of a special commutative dagger Frobenius
algebra. Moreover, from such an algebra, it is possible to recover the orthonormal
basis defining it as the set of ‘copyable states’ [30, Theorem 5.1.]. Orthonormal
bases therefore acquire a process-theoretic interpretation as structures permitting
the extraction, copying and comparison of classical data from a quantum system.

We consider teleportation from this perspective. Recalling Definition 1, we make
a categorical-algebraic definition of a teleportation procedure. We shall use tensor
diagrams throughout this thesis; the first appears here. The wires correspond to
Hilbert spaces and the boxes to linear maps, and they are read from bottom to top.
Arrows on the wires are used to distinguish Hilbert spaces from their duals; a Hilbert
space H has a wire with an upwards arrow, and the dual space H∗ has a wire with
a downwards arrow.

Definition 2. In the category of finite-dimensional Hilbert spaces and linear maps,
a quantum teleportation procedure on a Hilbert space H is a classical structure on
the object H ⊗H∗, satisfying the following condition, where c is some scalar:

copying = c · unit (2.6)

Here the ‘cup’ and ‘cap’ are defined as in (6.2).
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By the above discussion, the copyable states form an orthonormal basis of V ⊗V ∗ '
End(V ). We now show that this equality imposes unitarity of the elements of this
basis, recovering the definition of a unitary error basis (Definition 1). We can expand
the copying map in terms of the orthonormal basis elements:

i i

i

∑

i

copy =

Now using the snake equations (6.3) we write the elements of the orthonormal basis
(which are matrices) as:

i
= M

i
=:

Using this, we expand the LHS of (2.6) and simplify using the snake equations:

∑

i

Mi Mi

M†
i

=
∑

i

Mi Mi

M†
i

We now expand the RHS:

∑

i

Mi

From this and orthonormality of the matrix basis, it is clear that MiM
†
i = 1. The

orthonormal basis of matrices is therefore unitary.
What have we gained by redefining a unitary error basis in this way? Firstly, this

equation has a clear operational interpretation. On the left hand side, an entangled
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state is shared between Alice and Bob. Alice performs a measurement in the unitary
error basis, and transmits the measurement information to Bob. Bob then uses
the classical information received to perform a correction operation. This is formally
equivalent to the right hand side, in which Alice obtains random classical information,
and transfers her quantum state to Bob.

Secondly, such structures can be considered outside of the category of Hilbert
spaces and linear maps, in categories such as the category Rel of finite sets and
relations, as well as the fusion categories considered in topological quantum infor-
mation theory.

In Rep(G), a quantum teleportation procedure on a representation (H, ρ) is a
unitary error basis for H such that the corresponding classical structure morphisms
are intertwiners (2.5). It is sufficient for the unit and the comparison map to be in-
tertwiners, since the other maps are Hermitian adjoints of these. For the comparison
map, the intertwining condition (2.5) may be expressed in terms of the unitary error
basis as follows:

m
(
ρ(g)Uiρ(g)† ⊗ ρ(g)Ujρ(g)†

)
= δijUi

For this equation to hold, the conjugation action of ρ must permute the orthonormal
basis of unitary matrices.

In the next two chapters we will see how these permuted bases of unitary ma-
trices may be used to perform reference frame–independent teleportation protocols.
(In practise, they need only be permuted up to a phase.) In Chapter 3 we will see
how they permit perfect teleportation for certain finite group representations, inde-
pendent of the relative alignment of Alice and Bob’s frames. In Chapter 4 we will see
how these results may be applied to obtain tight and perfect teleportation schemes
for representations of general compact Lie groups.
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Chapter 3

Perfect tight reference
frame–independent teleportation
for finite transformation groups

3.1 Introduction

Main results. We consider the problem of quantum teleportation between two
parties whose local reference frames are misaligned, where the set of possible local
reference frame transformations forms a group G with a unitary representation ρ :
G −→ U(d) on the d-dimensional system to be teleported. Success of the protocol
is judged by a third-party observer who holds full reference frame information, and
who must agree that the original state has been teleported perfectly up to a global
phase. We present a teleportation scheme for certain (G, ρ), where G is finite, which
is guaranteed to succeed regardless of the parties’ reference frame configurations and
which additionally satisfies the following properties.

• Tightness. The parties only require a d-dimensional maximally entangled re-
source state, and only 2 dits of classical information are communicated from
Alice to Bob.

• Dynamical robustness (DR). The scheme is not affected by changes in reference
frame alignment during transmission of the classical message from Alice to Bob.

• No reference frame leakage (NL). No information about either party’s reference
frame alignment is transmitted.1

1This has cryptographic significance in some scenarios [13, 49, 56].
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Our scheme depends on the existence of aG-equivariant unitary error basis for the
representation (G, ρ); these are orthogonal bases of unitary matrices permuted up to
a phase by the conjugation action g ·M = ρ(g)Mρ(g)†. We exhaustively classify these
structures for two-dimensional representations, where the composite homomorphism
G

ρ−→ U(2)
q−→ SO(3), where q is the quotient taking a unitary to its corresponding

Bloch sphere rotation, allows us to identify faithful representations with subgroups
of the 3-dimensional rotation group SO(3). We show that an equivariant unitary
error basis exists precisely when this subgroup is isomorphic to one of the following
(the generators are listed on the right):

1 the trivial group
Z2 generated by a π rotation around any axis
Z3 generated by a 2π/3 rotation around any axis
Z4 generated by a π/2 rotation around any axis
D2 generated by a π rotation around any axis and a π rotation around a perpendicular axis
D3 generated by a π/3 rotation around any axis and a π rotation around a perpendicular axis
D4 generated by a π/2 rotation around any axis and a π rotation around a perpendicular axis
A4 rotations preserving a regular tetrahedron centred at the origin
S4 rotations preserving a regular octahedron or cube centred at the origin

We also provide a construction for any permutation representation with dimension
less than 5, and show how to prove nonexistence in some cases.

Our results rely on a new idea regarding the classical communication part of the
protocol: we suppose that the readings of the classical channel are themselves inter-
preted with respect to the local reference frame. Mathematically, this corresponds
to a nontrivial action of the group of reference frame transformations on the classi-
cal channel. Such classical channels have been called ‘unspeakable’ [81]; we provide
examples, and show how they can be used to communicate the measurement result.
An unspeakable classical channel is a powerful resource which could be used to ex-
ecute a prior alignment step before the protocol begins, but we emphasize that it is
not being used in this way here; indeed, by the (NL) property, our protocol in fact
transfers no information at all about either party’s reference frame alignment, and
makes use of the unspeakable channel in a nontrivial way.

We can give the following simple intuition for how our scheme works. Local ref-
erence frame misalignment can cause errors in the performance of the protocol, since
Bob will perform correction operations with respect to his own frame, which need
not be aligned with the frame in which Alice performed her measurement. But, since
in our setting the misalignment also affects the classical channel, it can also cause
errors in transmission of the classical measurement result; Bob may, in interpreting
the channel reading with respect to his own frame, receive a different measurement
value to that transmitted by Alice. In essence, our scheme is constructed so that
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these errors exactly cancel out. This intuition makes clear how the (DR) property is
possible, since a change in local reference frame alignment also affects reception of
the classical communication data, even if it takes place while that information is in
transit.

Related work. Chiribella et al. [25] considered teleportation with a speakable clas-
sical channel only, and showed that when the group G of reference frame transfor-
mations is a continuous compact Lie group, perfect tight teleportation is impossible;
this does not contradict our work, which uses an unspeakable classical channel and
a finite group G. (Furthermore, as a consequence of our main results, we show that
for finite G, perfect tight teleportation is indeed possible with a speakable classical
channel in some restricted situations; see Corollary 1 and Remark 2.)

Several other solutions for reference frame–independent teleportation for a finite
group of reference frame transformations exist in the literature. These all involve
establishment of a shared reference frame in some way: by using pre-shared entan-
glement [25], sharing entanglement during the protocol [56], or transmitting more
complex resources [14, Section V.A]. Unlike our scheme, these approaches work for
arbitrary (G, ρ) where G is finite. However, none of them have all the properties of
tightness, dynamical robustness and no reference frame leakage, as our scheme does.

Quantum communication under collective noise corresponding to a finite group
was considered by Skotiniotis et al. [89]. From the perspective of our discussion
above, their protocol satisfies the (DR) and (NL) properties. However, it requires a
quantum channel; it is not a teleportation protocol. Their token could be equally
be transmitted using an unspeakable classical channel of the type we construct in
Section 3.4. However, we are not transmitting a token in their sense; in particular,
the classical system we transmit need not carry a free and transitive action of G.

Criticism. We can criticise our perfect tight scheme as follows. Firstly, as with the
alternative solutions discussed above, it works only for finite G. Secondly, it cannot
be implemented for all scenarios (G, ρ) with finite G, and, although we provide a
range of constructions of equivariant unitary error bases, and completely characterise
valid (G, ρ) for qubit teleportation, we cannot give necessary and sufficient conditions
for the applicability of our scheme in higher dimensions. Thirdly, to communicate
the measurement result, we do not use an ordinary ‘speakable’ classical channel, but
rather an ‘unspeakable’ classical channel; while we provide a number of examples
of such channels, it is nevertheless clear that this novel aspect of our approach may
raise technological barriers in an implementation. Finally, up to a global phase,
the system to be teleported and Bob’s half of the entangled pair must carry the
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same representation ρ of G, and Alice’s half of the entangled pair must transform
according to the dual representation ρ∗; although this is physically reasonable in view
of charge conservation, a situation may arise in which it is hard to construct a system
carrying the representation ρ∗. Very often (for instance, for all representations with
real characters), ρ ' ρ∗ up to a phase, which solves this problem.

Outlook. These results may be applicable to cryptography and security of quan-
tum protocols, as it has been noted that reference frame uncertainty is of crypto-
graphic importance [13, 49, 56], and that a private shared reference frame may be
considered as a secret key [13, 49]. In this context, it is useful to know what protocols,
such as quantum teleportation, may be performed even in the absence of a shared
reference frame, without any transmission of cryptographically sensitive reference
frame information.

3.2 Example

We begin with an informal example of our perfect tight scheme, in the specific case
where the quantum systems are two-dimensional and the reference frame corresponds
to a choice of spatial direction. This will be followed by a more general and precise
treatment in the next section.

Alice and Bob are quantum information theorists operating on spin-1
2

particles.
They work in separate laboratories, which do not necessarily have the same ori-
entation in space, and their task is to teleport a quantum state without revealing
their spatial orientations, either to each other or to any eavesdropper.Their relative
orientations are not completely unknown: the rotation g taking Alice’s Cartesian
frame onto Bob’s is promised to lie within the subgroup Z3 ⊂ SO(3), the group of
rigid spatial rotations through multiples of 2π/3 radians around some axis. However,
g ∈ Z3 is unknown. Let a ∈ Z3 be the transformation rotating the reference frame
anticlockwise through 2π/3 radians. We suppose that the action of a affects the
description of qubit states by the standard spin-1/2 representation:

ρ(a) =

(
1 0
0 e2πi/3

)
(3.1)

That is, a state which appears as |v〉 in frame configuration f will appear as ρ(a) |v〉
in frame configuration a · f .

Alice and Bob share the two-qubit entangled state

|η〉 =
1√
2

(|01〉+ |10〉).
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Note that this state is invariant up to a phase under the action (3.1) of a change in
reference frame orientation, so the entanglement will not be degraded by changes in
reference frame alignment following its initialisation. All these aspects of the overall
setup are common knowledge to both parties.

Conventional scheme. Let Alice and Bob perform a conventional teleportation
protocol using the following unitary error basis:

U0 =
(

1 0

0 e2πi/3

)
U2 =

1√
3

(
1

√
2e2πi/3√

2 e5πi/3

)

(3.2)

U1 =
1√
3

(
1

√
2e4πi/3√

2e4πi/3 e5πi/3

)
U3 =

1√
3

(
1

√
2√

2e2πi/3 e5πi/3

)

If the reference frames have the same alignment, the procedure will be successful.
However, if the reference frames are misaligned by some nonidentity element g ∈
Z3, then, from the perspective of Alice’s frame, Bob will not perform the intended
correction Ui, but rather ρ(g)†Uiρ(g). Assuming the uniform distribution over Z3, a
simple calculation shows that an input pure state will emerge in a mixed state.

New scheme. We now describe our reference frame–independent scheme. Before
performing the protocol, Alice and Bob share the coordinates of four unit vectors
{v0, v1, v2, v3} ∈ R3, which form a regular tetrahedron centred on the origin such
that, under the reference frame transformation a ∈ Z3 ⊂ SO(3), the vectors are
permuted as follows:

a · v0 = v0 a · v1 = v2 a · v2 = v3 a · v3 = v1 (3.3)

For example, let v0 = 1√
3
(x̂ + ŷ + ẑ), v1 = 1√

3
(x̂− ŷ − ẑ), v2 = 1√

3
(−x̂ + ŷ − ẑ) and

v3 = 1√
3
(−x̂ − ŷ + ẑ), and suppose that the generating element a ∈ Z3 acts as a

right-handed rotation about the axis defined by v0.
If Alice obtains measurement result i, she communicates this to Bob in the fol-

lowing way: she prepares a physical arrow, of the sort a medieval archer might use,
arranges it to have the same orientation as the vector vi, and then sends it directly
to Bob by parallel transport along a known path. When the arrow is received, Bob
observes its orientation in his own frame, correcting if necessary for the parallel
transport map associated to the path, and matches this with one of the reference
orientations vj ∈ {v0, v1, v2, v3}; he thus obtains the message j ∈ {0, 1, 2, 3}. He
then performs the corresponding unitary correction. This procedure is illustrated in
Figure 3.1.
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v0

v1v3

v2

v0

v2v1

v3

Alice Bob

Alice’s frame Bob’s frame

OA OB

Figure 3.1: In our classical communication procedure, Alice and Bob label the vertices of
regular tetrahedra centred on their origins OA and OB, using their own Cartesian frames.
Bob’s frame is related to Alice’s by a 2π/3 anticlockwise rotation around the axis defined
by v0. Upon measuring |φ1〉, Alice prepares an arrow pointing to vertex v1 and sends this
to Bob by parallel transport. In Bob’s frame this arrow points to vertex v2, and so he
performs correction U2.

Note that Alice transmits no information about her local reference frame by the
above procedure, since her measurement result is uniformly random, and thus so
is the direction indicated by the arrow. Also, we emphasize that exactly two bits
of classical information have been transferred, since there were four possible values
upon transmission and four possible values upon receipt.

Suppose that Alice and Bob’s laboratories share the same reference frame; that
is, their local frames are related by the element e ∈ Z3 of the group of reference
frame transformations. Then the arrow’s orientation will be the same in Bob’s frame
as in Alice’s frame, and the measurement outcome will be faithfully communicated.
In this case the protocol will be successful, and it is identical to the conventional
teleportation protocol, albeit with the two classical bits of information transmitted
from Alice to Bob in an unusual way.

Now suppose that Alice and Bob’s frames are misaligned by the action of the ele-
ment a ∈ Z3 of the reference frame transformation group. In this case, if Alice sends
the result 0, 1, 2, or 3, Bob will receive the result 0, 2, 3 or 1 respectively, because
of the transformation properties (3.3) of the arrows. Furthermore, when Bob applies
the unitary Ui in his local frame, its action is seen in Alice’s frame as ρ(a)†Uiρ(a).
The following equations describe the consequences of such a conjugation, as can be
directly checked using expressions (3.1) and (3.2):

ρ(a)†U0ρ(a) = U0 ρ(a)†U1ρ(a) = U3

ρ(a)†U2ρ(a) = U1 ρ(a)†U3ρ(a) = U2
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We now see the point of the entire construction: the unitary error basis (3.2) was
carefully chosen so that these two apparent sources of error—in the transmission
of the classical measurement result, and in Bob’s unitary correction—exactly cancel
each other out. For example, if Alice obtains measurement outcome 1, Bob will re-
ceive this as measurement outcome 2, and will perform the correction U2 in his frame,
which in Alice’s frame is equal to ρ(a)†U2ρ(a) = U1, and so the intended correction
will be carried out after all. As a result, the quantum teleportation will conclude suc-
cessfully, even though Alice and Bob’s reference frames were misaligned. Similarly,
it can be shown that the teleportation is also successful if the frame misalignment is
given by the element a2 ∈ Z3.

Discussion. We have exhibited a procedure for reference frame–independent quan-
tum teleportation in the particular case of spatial reference frame misalignment with
transformation group Z3 ⊂ SO(3). This involved a careful choice of unitary error ba-
sis (3.2), with communication of the measurement result through a classical channel
carrying a compatible nontrivial action (3.3) of the reference frame transformation
group. Only 2 bits of classical information were transferred from Alice to Bob, as in a
conventional teleportation procedure, and the Hilbert space of the entangled resource
was of minimal dimension, so this procedure was tight in the sense of Werner [103].
The unspeakable information transmitted by Alice was uniformly random, since Al-
ice’s measurement results were; in particular, Bob, or an eavesdropper on the classical
channel, received no information about Alice’s reference frame alignment. Finally,
the procedure would have succeeded even if Bob’s reference frame alignment changed
during the protocol, while Alice’s measurement result was still in transit.

In this example we chose Z3 ⊂ SO(3) as the reference frame transformation
group, but the same unitary error basis and classical channel allow reference frame–
independent teleportation for the group A4 ⊂ SO(3) of order 12, as we will see in
Section 3.5.

3.3 Perfect tight reference frame–independent tele-

portation for finite transformation groups

A key concept in our new scheme is that of an unspeakable classical channel. For
simplicity, we only consider perfect classical channels in this paper; whatever reading
Alice sends through the channel will be received unaltered by Bob. However, his
interpretation of this reading will be affected by his reference frame orientation.
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Definition 3. For a finite group G, an unspeakable classical channel is a classical
channel whose set of messages carries a nontrivial action of the group G of reference
frame transformations.

Writing I for the set of messages carried by the channel, we can encode the data of
an unspeakable channel as a group action σ : G × I −→ I. For each reference frame
transformation g ∈ G taking Alice’s frame onto Bob’s frame, we obtain an invertible
function σ(g,−) : I −→ I, which describes how a message input by Alice using her
local frame is interpreted by Bob with respect to his local frame. Since this function
is invertible, there is no loss of information; however, if the receiver of the message
does not know g ∈ G, they will be unable to infer which message was actually input.
The arrows channel of Section 3.2 was an unspeakable classical channel; we will see
more examples in Section 3.4.

We now define our new teleportation scheme. Here we write ρ∗ for the dual
representation of ρ.

Procedure 2 (Reference frame–independent teleportation). Alice has an n-dimensional
quantum system in a state |ψ〉. Separately, Alice and Bob hold a maximally entan-
gled state (1⊗X) |η〉 of a pair of n-dimensional quantum systems. They each possess
local reference frames with transformation group G, acting unitarily by a represen-
tation ρ on the system to be teleported, by a representation ρ∗ ⊗ θ1 on Alice’s half
of the entangled state, and by a representation ρ⊗ θ2 on Bob’s half of the entangled
state, where θ1, θ2 are any one-dimensional representations of G.

Alice performs a joint measurement on the system to be teleported and her half
of the entangled state, described by an orthonormal basis {|φi〉}, |φi〉 ∈ Cn⊗Cn. She
uses a perfect unspeakable classical channel to communicate the classical measure-
ment result i to Bob, who receives the message σ(g, i), where g is the transformation
taking Alice’s local frame configuration upon transmission onto Bob’s local frame
configuration upon receipt. Bob then immediately performs a unitary correction
Uσ(g,i) on his half of the entangled state.

This was called teleportation of unspeakable information by Chiribella et al [25].

Remark 1. In Appendix 3.6.1 we show that the conditions on the possible represen-
tations carried by each system precisely imply that the maximally entangled state
may always be taken to be G-invariant up to a phase, preventing degradation of
entanglement by reference frame transformations.

The measurement and correction operations for Procedure 2, together with the action
σ on the unspeakable classical channel, are correct data if, regardless of Alice and
Bob’s reference frame alignments, Bob’s system ends in the state |ψ〉 ∈ Cn, according
to a third observer with a fixed frame who can see both laboratories.
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Definition 4 (G-equivariant unitary error basis). For a finite group G, and a Hilbert
space H carrying a unitary action ρ of G, an equivariant unitary error basis (equiv-
ariant UEB) for (G, ρ) is a unitary error basis {Ui}i∈I for H whose elements are
permuted up to a phase by the right conjugation action of G.2

That is, for all i ∈ I and g ∈ G, and some family of phases ξ(i, g) ∈ C, we have that
ξ(i, g)ρ(g)†Uiρ(g) ∈ {Ui}i∈I . Ignoring the phases, we can encode the effect of this
conjugation as a right group action τ : I ×G −→ I.

Definition 5 (Orbit type). For a G-equivariant unitary error basis {Ui}i∈I , we define
its orbit type as the multiset of sizes of each orbit in I under the action τ : I ×G −→ I.

We now show that the notion of G-equivariant unitary error basis gives a precise
mathematical characterization of correct data for Procedure 2.

Theorem 2. All correct data for Procedure 2 can be obtained from an equivariant
unitary error basis {Ui} for (G, ρ), with associated right action τ . The measure-
ment and correction operations are as in (2.2), and the unspeakable classical channel
carries the action τ−1 : G× I −→ I.

Proof. We work in Alice’s frame. Let Bob’s misalignment with respect to this frame
be g ∈ G. For sufficiency, suppose Alice measures x ∈ I; Bob then reads τ−1(g, x)
and performs the correction

Uτ(τ−1(g,x),g) = Ux,

as required. For necessity, note that the procedure must work for trivial misalign-
ment g = e; therefore, by Werner’s result [103, Theorem 1], Alice must perform
measurements corresponding to a unitary error basis, and Bob must perform the
unitary correction Ux in his own frame whenever he receives x ∈ I. The condition
on the unspeakable channel is therefore clear.

We say that an unspeakable classical channel is compatible with an equivariant
UEB when it carries the inverse action as in Theorem 2. We see that our scheme can
be implemented for some representation (G, ρ) if and only if there exists an equiv-
ariant UEB for (G, ρ), and Alice and Bob have access to a compatible unspeakable
classical channel.

Before considering equivariant unitary error bases and unspeakable channels in
more detail, we note the following obvious corollary of Theorem 2.

2While the categorical analysis in Chapter 2 required them to be permuted precisely, this weaker
definition turns out to be more physically relevant.
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Corollary 1. With only a speakable classical channel (that is, a channel carrying
a trivial G-action), Procedure 2 succeeds for all frame alignments only if the action
τ : I×G −→ I is trivial; that is, the elements of the orbit type of the equivariant UEB
are all 1.

3.4 Requirement I: Unspeakable channels

In this section we address the physical requirement of our scheme, a compatible
unspeakable classical channel for a given equivariant UEB.

3.4.1 Construction from quantum systems

We begin with a completely general method for constructing such a channel. When
Alice performs the measurement on her two systems, they decohere in her measure-
ment basis, and the joint system becomes a single classical object. Alice can transfer
this directly to Bob, still in the eigenstate corresponding to her measurement result.
Since the reference frame transformation is guaranteed to act as a permutation on
measurement outcomes, Bob will also receive the system in an eigenstate, which he
can can identify by performing the same measurement as Alice. Due to reference
frame uncertainty, the result he receives may of course be different to that noted by
Alice. The result is an unspeakable classical channel. Since Bob both measures and
performs the corresponding corrections in his own frame, the procedure will succeed
for any reference frame misalignment.

3.4.2 Construction from shared classical system

In some physical situations, the method of Section 3.4.1 involving transfer of the
decohered quantum systems may be impractical. We now provide an alternative
construction. The problem is the following: given the right action τ : I × G −→ I
of a finite group on a finite index set, we must construct a compatible unspeakable
classical channel Σ whose set of messages MΣ can be identified with I, so that it
carries the corresponding left action τ−1 : G× I −→ I.

Here we show how this can be done when τ−1 is a transitive action. This is
sufficient since, if τ−1 is not transitive, I will split into orbits under it, and the
following procedure may be performed:

• After her measurement, Alice communicates the orbit O ⊂ I of the index she
measured, through a speakable channel.
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• She then communicates the precise measurement index i ∈ O using an un-
speakable classical channel with the set of messages O, carrying the restricted
action τ−1|O : G×O −→ O, which is transitive.

This procedure still leaks no reference frame information, since the orbit is communi-
cated as speakable information and the outcomes within each orbit are equiprobable.
It is still tight, since the classical channel distinguishes only d2 possible messages, de-
spite being split into speakable and unspeakable parts. It is still dynamically robust,
since the orbit is unaffected by reference frame transformations.

We assume, therefore, that the action τ−1 is transitive. We can then characterise
it further using the following well-known fact from group theory [71, Theorem 3.4].
Recall that the set of right cosets {Hgi} of a subgroup H < G carries a canonical
left action g · (Hgi) = Hgig

−1; we write this left G-set as G/H.

Lemma 1. For any transitive left G-set X, there is a unique conjugacy class C of
subgroups of G such that X ' G/H iff H ∈ C.

It follows that τ−1 is characterised up to isomorphism by its associated conjugacy
class of subgroups. It also follows that any transitive unspeakable classical channel Σ
(that is, any unspeakable classical channel whose set of messagesMΣ is a transitive G-
set) is characterised by its associated conjugacy class of subgroups CΣ. Our problem
can therefore be rephrased as follows: we need to construct a transitive unspeakable
channel for which CΣ = Cτ−1 , so that MΣ ' G/H ' I as left G-sets.

A key construction is the following, which allows us to group together messages
in MΣ to create a new channel with a different associated conjugacy class.

Construction 1 (Quotient channel). Let Σ be a transitive unspeakable classical
channel with associated conjugacy class of subgroups CΣ, and let HΣ ∈ CΣ. Fix an
isomorphism α : MΣ ' G/HΣ. Let K be another subgroup such that HΣ < K < G.

We obtain a quotient channel whose associated conjugacy class of subgroups has
representative K, and whose messages are right cosets Kg, transmitted as follows. In
order to send a coset Kg, Alice picks uniformly at random any element x ∈ K/HΣ ⊂
G/HΣ, and sends the message α−1(xg) ∈ MΣ. Depending on his reference frame
orientation, Bob receives some y ∈ MΣ, such that α(y) lies in some right coset of
K/HΣ. He then uses the canonical isomorphism

G/HΣ

K/HΣ

' G/K

to obtain a right coset of K in G, which is the message he receives.
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We obtain the following corollary. We define a partial order on conjugacy classes of
subgroups, where C1 < C2 iff H1 < H2 for some H1 ∈ C1, H2 ∈ C2.

Corollary 2. If we have access to a transitive unspeakable classical channel Σ with
associated conjugacy class of subgroups CΣ, and CΣ < Cτ−1, then we may construct
a compatible channel for τ .

Proof. Take Hτ−1 ∈ Cτ−1 , HΣ ∈ CΣ such that HΣ < Hτ−1 , and construct the quotient
channel.

The trivial subgroup is the only member of its conjugacy class, which we call the
trivial class. The trivial class is beneath every other conjugacy class of subgroups
in the partial ordering. From an transitive unspeakable channel Σ whose associ-
ated conjugacy class of subgroups is the trivial class, we may therefore construct a
compatible channel for any transitive τ−1.

We now show how to use a shared classical system to construct an unspeakable
classical channel with trivial associated conjugacy class.

Definition 6. A reference frame system is a classical system whose configuration
is described according to a local reference frame, and whose set of configurations C
carries a free and transitive action of G.

The details of how this system is shared between Alice and Bob are abstracted away
in this approach. The nomenclature is derived from the fact that Alice and Bob
each possess physical systems serving as their local reference frames, on which the
reference frame transformation group G acts freely and transitively, by definition.

Alice and Bob will use their shared reference frame system to communicate mes-
sages. They associate each of the |G| configurations of the system to an element of G
using a labelling, which is a choice of isomorphism l : C −→ G depending on their local
reference frame configurations. Once Alice fixes a labelling, she can communicate
element g ∈ G to Bob by preparing the system in the configuration associated to g
in her labelling. Bob will then interpret this configuration with respect to his own
labelling.

A labelling l : C −→ G is obtained by choosing a configuration xe such that
l(xe) = e, where e is the identity element of G; the labelling is then fully determined
by the equation l(g · xe) = gl(xe) = g. Alice and Bob both agree on a way to pick xe
based on their own local frame configuration; this is specified by a map ε : F −→ C,
where F is the space of local frame configurations and ε satisfies the naturality
equation

ε(g · f) = g · ε(f). (3.4)
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Alice transmits g. Bob receives g̃−1.

Alice’s
local
frame
configuration
is fA ∈ F .

1. Alice orients
the box to
[e]A = ǫ(fA).

2. Alice rotates
the box by g and
sends it to Bob.

3. Bob rotates
the box by g̃ to
[e]B = ǫ(fB).

Bob’s
local
frame
configuration
is fB ∈ F .

Figure 3.2: The reference frame channel of Example 1, where G is the group of rigid
rotations of a cube. Here Alice transmits a π/2-rotation around the x axis, and Bob
receives a π-rotation around the z-axis.

We write [l(x)] to refer to x ∈ C when a labelling is fixed. Alice and Bob generally
have different labellings lA, lB, so we write [lA(x)]A, [lB(x)]B to refer to x using their
respective labellings. We obtain the following proposition.

Proposition 2. A shared reference frame system gives rise to a transitive unspeak-
able classical channel whose associated conjugacy class of subgroups is trivial.

Proof. From the above discussion,the labelling of the channel is defined as [g]A = g ·
[e]A; we have [e]A = ε(fA), so [g]A = g·ε(fA) = g·ε(g−1

AB ·fB) = (gg−1
AB)·[e]B = [gg−1

AB]B.
The channel therefore carries the action σ(g, x) = xg−1, and the result follows.

By Corollary 2, it is therefore possible to construct a compatible unspeakable channel
for any equivariant unitary error basis using a shared reference frame system. We
conclude this section by presenting two examples of shared reference frame systems.

Example 1 (Particle in a box). Suppose that the quantum systems used in the tele-
portation protocol are particles in cubic boxes. In order to describe states of and
operations on these systems, it is necessary to decide which sides of the box are ‘up’,
‘front’ and ‘right’. Alice and Bob shared such a labelling when they created their
entangled pair of boxes; since that time, however, the orientation, and therefore the
labelling, of Bob’s box may have altered. The choice of labelling can be seen as a
reference frame, whose transformation group is the group of rigid rotations of a cube.
One reference frame system here is a classical solid cube, with labelled sides, passed
between parties; the map ε : F −→ C is defined by labelling the cube identically to
the box containing the particle. This is illustrated in Figure 3.2.
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Example 2 (Group of time translations). We suppose that the system to be teleported
has a basis of energy eigenstates with different energy eigenvalues. Over the period
T of time evolution, these states will acquire a relative phase. In order to define
states and operations, Alice and Bob must choose a time t0 at which the chosen
basis vectors will have trivial phase. If we are promised that Alice and Bob’s clocks
are related by a time translation in a finite subgroup of U(1), then the choice of t0
corresponds to a reference frame with cyclic transformation group. One reference
frame system here is the time of arrival, modulo T , of a signal transmitted from
Alice to Bob; the map ε : F −→ C is defined by the signal arriving at one’s own time
t0.

3.5 Requirement II: Equivariant unitary error bases

We now turn to the classification and construction of equivariant unitary error bases,
the mathematical basis for our scheme.

3.5.1 Classification for qubits

We first fully classify equivariant UEBs for two-dimensional representations (G, ρ).
Let q : SU(2) −→ SO(3) be the quotient homomorphism taking a qubit unitary to
its corresponding Bloch sphere rotation. Our results are outlined in the following
theorem.

Theorem 3 (Classification of equivariant UEBs for qubits). The existence of unitary
error bases of a given orbit type for a unitary representation ρ : G −→ U(2) depends
only on the isomorphism class of the image subgroup q(ρ(G)) ⊂ SO(3), according to
the classification given in Table 3.1.

Whilst in Table 3.1 we have only given the orbit type of the UEBs, in the proof we
give now we we also describe the associated action τ : I ×G −→ G. Before beginning
the proof, we make a quick remark.

Remark 2. By Corollary 1, tight qubit teleportation without an unspeakable classical
channel is possible only when the image of the composite homomorphism G

ρ−→
U(2)

q−→ SO(3) is isomorphic to 1, Z2 or D2.

We begin by fixing some notation for rotations. Euler showed [42] that every
rotation in SO(3) can be represented uniquely as a rotation through an angle 0 ≤
θ ≤ π around a given normalised vector n̂ ∈ R3. We write a rotation through an
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angle θ around an axis n̂ as r(θ, n̂).3 Given two rotations r(θ1, n̂1) and r(θ2, n̂2),
we write the angle and axis of the composite as θ12 and n̂12. For concision, we will
occasionally write rotations simply as r ∈ SO(3), omitting to mention the axis and
angle of rotation.

It is well known that unitary operations on a qubit correspond to rotations of the
Bloch sphere together with a global phase [79, Exercise 4.8]. It is easy to check that
two unitaries U1, U2 are orthogonal iff their corresponding Bloch sphere rotations
q(U1), q(U2) obey the following condition.

Definition 7. Two rotations r1, r2 ∈ SO(3) are Hilbert-Schmidt orthogonal (HS-
orthogonal) if the composite r−1

1 r2 is a rotation through the angle π.

The image of a UEB under the quotient q will be a set of HS-orthogonal rotations
preserved under conjugation by the HS-orthogonal rotations q(ρ(g)) for g ∈ G; this
inspires the following definition.

Definition 8. A HS-orthogonal error basis (OEB) is a family O ⊂ SO(n) of n2

HS-orthogonal rotations. For a finite group G and a homomorphism ρ : G −→ SO(n),
an equivariant HS-orthogonal error basis for (G, ρ) is an OEB O ⊂ SO(n) preserved
under conjugation by ρ(g) for all g ∈ G.

In the other direction, given an equivariant OEB for (G, q ◦ ρ), one may obtain
all corresponding equivariant UEBs for (G, ρ) by picking phases for each rotation.
A classification of equivariant UEBs for subgroups G ⊂ U(2) is therefore equivalent
to a classification of equivariant OEBs for subgroups q(G) ⊂ SO(3). Note also that
the action of ρ(g) on the index set of a UEB is identical to the action of q(ρ(g)) on
the index set of the corresponding OEB.

Theorem 4 ([5, Theorem 19.2]). The finite subgroups of SO(3) are as follows:

• cyclic groups Zn for n ≥ 1, generated by a rotation through 2π/n around a
given axis;

• dihedral groups Dn for n ≥ 1, generated by a rotation through 2π/n around a
given axis and a π-rotation around a perpendicular axis;

• the group of orientation-preserving symmetries of a regular tetrahedron, iso-
morphic to A4;

3Note that this notation is slightly redundant because rotations through an angle π around
antipodal n̂ are identical, as are all rotations through an angle 0.
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• the group of orientation-preserving symmetries of a regular octahedron (or a
cube), isomorphic to S4;

• the group of orientation-preserving symmetries of a regular icosahedron, iso-
morphic to A5.

In order to find sets of points preserved under the conjugation action of these sub-
groups, we recall a useful way to think about conjugation in SO(3). The group SO(3)
may be viewed as a closed ball B(3) ⊂ R3 of radius π, which we call the SO(3)-ball,
under the identification

r(θ, n̂) 7→ θn̂. (3.5)

Antipodal points on the boundary are identified, since rotation through an angle π
around n̂ is the same as rotation through an angle π around −n̂. Given two rotations
r1 = r(θ, n̂) and r2, we have the identity

r2r1r
−1
2 = r2r(θ, n̂)r−1

2 = r(θ, r2(n̂)).

It follows that, under the identification (3.5), conjugation by a rotation in SO(3)
corresponds to rotation of the SO(3)-ball. Equivariant OEBs for a subgroup are
therefore sets of orthogonal points in the SO(3)-ball permuted by rotations in that
subgroup.

For concision, in what follows we will occasionally conflate points in B(3) and
rotations in SO(3). For instance, we say ‘a point on the z-axis’ to signify the element
of SO(3) corresponding to a point on the z-axis, that is, a rotation around the z-axis
through some angle. We will also write sin(x), cos(x) and tan(x) as sin(x), cos(x)
and tan(x) respectively.

We now recall some useful facts about orthogonality in SO(3).

Lemma 2. Each rotation in SO(3) around n̂ is orthogonal to exactly one other
rotation around ±n̂.

Proof. The composite r(θ1, n̂)−1r(θ2, n̂) is the rotation r(θ2 − θ1, n̂). For a given
θ1 ∈ [0, π], there is only one θ2 ∈ (−π, π] such that θ2 − θ1 is an odd multiple of
π.

Lemma 3. The rotation r(θ2, n̂2) is orthogonal to the rotation r(π, n̂1) iff either n̂2

is orthogonal to n̂1 or θ2 = 0.

Proof. We have the following standard formula for the rotation angle θ12 of the
composite r−1

2 ◦ r1, where ri is a rotation around the axis n̂i through an angle θi ∈
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[0, π] [79, Exercise 4.15]:

cos(θ12/2) = cos(θ1/2) cos(θ2/2)

+ sin(θ1/2) sin(θ2/2)n̂1 · n̂2

(3.6)

Orthogonality of r2 and r1 is precisely the condition that the LHS is zero. Since the
first term on the RHS equals zero when θ1 = π, the second term must also. This
implies that either n̂1 · n̂2 = 0, in which case the axes of rotation are orthogonal, or
sin(θ2/2) = 0, in which case the other rotation is simply the identity.

Lemma 4. Two rotations can be orthogonal only if the angle between the axes of
rotation is obtuse. If the angle between the axes is π/2 then for orthogonality one
rotation must be through the angle π.

Proof. Considering (3.6), we note that both cos(θ1/2) cos(θ2/2) and sin(θ1/2) sin(θ2/2)
will be positive for θ1, θ2 ∈ [0, π). The sum can only be zero, then, if n̂1 · n̂2 ≤ 0,
i.e. if the angle between the axes is obtuse. If the angle is π/2 then we need
cos(θ1/2) cos(θ2/2) = 0, which implies that one of the rotations is through an an-
gle π.

We now begin our classification.

Subgroups of SO(3)

Any set of orthogonal points will be equivariant for Z1. We proceed directly to the
nontrivial cases. Let the z-axis be the axis of rotation of the generator of Zn which
rotates the SO(3)-ball through an angle 2π/n. Recalling that antipodal points on
the ball’s surface are identified, we immediately obtain the following characterisation
of the orbits under this action.

Lemma 5. The orbit sizes under the conjugation action of Zn on SO(3) are:

• 1, for a point on the axis of rotation;

• n, for a point in the interior of the ball and not on the axis of rotation, on the
boundary of the ball and not on the xy-plane or the axis of rotation, or on the
intersection of the boundary of the ball and the xy-plane when n is odd;

• n/2, for a point on on the intersection of the boundary of the ball and the
xy-plane when n is even.
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Proposition 3. The Z2-equivariant orthogonal error bases are as follows:

• for orbit type (1,1,1,1), a 2-parameter family of solutions, where two points are
rotations around the z-axis and the other two are π-rotations around orthogonal
axes in the xy-plane;

• for orbit type (2,1,1), a 2-parameter family of solutions, where one point is
a rotation around the z-axis, another point is a π-rotation around an x-axis
perpendicular to the z-axis, and the other two points are rotations around axes
in the yz-plane (see Figure 3.3), where the y-axis is perpendicular to both the
x- and z-axes;

• for orbit type (2,2), a 2-parameter family of solutions, where, for an axis x
orthogonal to z and an axis y orthogonal to both, two points lie in the xz-plane
and below the xy-plane, and another two points lie in the yz-plane and above
the xy-plane (see Figure 3.4).

Proof. Orbit type (1,1,1,1). By Lemma 2 there can be at most two rotations on the
z-axis. The other two, in order to have orbit size 1, must both be π rotations around
different axes in the xy-plane, which must be orthogonal to each other by Lemma 3.
This set of solutions therefore has two independent parameters, namely the angle of
one rotation around the z-axis and the orientation of the perpendicular axes in the
xy-plane.

Orbit type (2,1,1). Firstly, suppose both the 1-orbits lie off the z-axis. Then they
must be orthogonal π-rotations in the xy-plane. But then the other two rotations
would have to be orthogonal and we would end up in the case (1, 1, 1, 1).

Let us now suppose that exactly one of the 1-orbits lies on the z-axis. The
other must be an orthogonal π-rotation; let this be around the x-axis. Then the
2-orbit must lie in the yz-plane by Lemma 3. We are therefore looking for three
orthogonal points in the yz-plane, one on the z-axis and the other two symmetric
under a reflection in the z-axis. Let r be the rotation angle of the elements in the
2-orbit and θ be the angle between them. Here we take 0 < θ < 2π, where θ = 0
would correspond to both points being on the positive z-axis. By (3.6) we have the
following equation for orthogonality of the elements of the 2-orbit:

r = 2 cos−1

(√
cos(θ)

cos(θ)− 1

)
(3.7)

This has a unique solution r ∈ [π/2, π] for θ ∈ [π/2, 3π/2], and none otherwise. Using
(3.6), it can be shown similarly that, for given θ, there is a unique value of the z-
coordinate of the 1-orbit such that all three points are orthogonal (see Figure 3.3). We
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2-orbits

1-orbits (z-axis)
OEB 1
OEB 2
OEB 3

OEB Elements

1 π around z, ±π/2 around y
2 Identity, π around y ± z

3 2 arccos(
√

1/3) around z, ±3y − z

Figure 3.3: Z2-equivariant OEBs with orbit type (2, 1, 1). The diagram shows the in-
tersection of the yz-plane with the SO(3)-ball. One 1-orbit of the OEB is a π-rotation
around the x-axis, and the remaining 2-orbit and 1-orbit are rotations around axes in the
yz-plane shown in the diagram. Each 2-orbit is a pair of points with identical z-value
on the two curved gray lines. The corresponding 1-orbit is a point on the z-axis. Three
possible choices of points are given in the table and marked in the figure, joined by dashed
lines.

therefore have a 2-parameter family of solutions, where one parameter corresponds
to a choice of z-coordinate z1 of the 1-orbit on the z-axis, and the other parameter
comes from a choice of orientation of x-axis.

Suppose now that both 1-orbits lie on the z-axis; we will demonstrate that we
cannot then obtain solutions of this orbit type. Firstly, if the elements of the 2-orbit
are π-rotations not in the xy-plane, then they will not be orthogonal to the 1-orbits
on the z-axis. On the other hand, if the elements of the 2-orbit are rotations through
an angle less than π and not in the xy-plane, then, given that by Lemma 2 the
z-rotations will be on opposite sides of the origin, both elements of the 2-orbit will
make an acute angle with one of the z-rotations, violating Lemma 4. The 2-orbit
must therefore lie in the xy-plane. The rotations of the 2-orbit must be through an
angle less than π, or they would form two 1-orbits. But, by Lemma 4, in order to be
orthogonal both z-rotations must then be through an angle π, which would identify
them.

Orbit type (2,2). Each 2-orbit will lie in a plane through the z-axis. Again, let r be
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the rotation angle of the elements in the 2-orbit and θ be the angle between them;
the relationship between r and θ was already given in (3.7).

We must find two 2-orbits where all four elements are pairwise orthogonal. With-
out loss of generality let the first orbit O1 lie in the xz-plane, and let θ1 ∈ [π/2, π].
Certainly, the second orbit O2 must have θ2 ∈ [π, 3π/2], as otherwise the central
angle between some pair of elements will be acute. We now show that the orbit O2

must also lie in the yz-plane. In other words, the two 2-orbits must lie in orthogonal
planes containing the z-axis, and be on opposite sides of the xy-plane.

Let r1, r2 ∈ [0, π] be the rotation angles of O1 and O2 respectively. Take one
element from each orbit, and consider their composition (3.6). With r1, r2 fixed, the
only thing that can vary on the right hand side of this equation is the angle between
the axes of rotation of these elements. This angle will lie between 0 and π, and cos(x)
is single-valued in that range; therefore, for both elements of the second orbit to be
orthogonal to the given element of the first, their axes of rotation must both have
an equal central angle with that element. This means that the xz-plane containing
O1 must be orthogonal to the plane through the z-axis containing O2, which must
therefore be the yz-plane.

With the planes fixed, we now find which angles θ1 ∈ [π/2, π] and θ2 ∈ [π, 3π/2]
defining the two orbits are compatible. By the above discussion, for orthogonal-
ity of all elements it is sufficient for a single pair of elements from different or-
bits to be orthogonal. Unit vectors n̂1, n̂2 defining the axes of rotation of a pair
of elements in O1, O2 respectively may be expressed in Cartesian coordinates as
n̂1 = (sin(θ1/2)), 0, cos(θ1/2)) and n̂2 = (0, sin(θ2/2), cos(θ2/2)). The orthogonality
condition (3.6) then becomes

− cos(r1/2) cos(r2/2) = sin(r1/2) sin(r2/2) cos(θ1/2) cos(θ2/2). (3.8)

Replacing θ1, θ2 with r1, r2 using (3.7), squaring both sides and performing some
trigonometric manipulations, we derive

r1 = 2 cos−1

(√
1

2
− cos2(

r2

2
)

)

This uniquely determines r1 ∈ [π/2, π] for any r2 ∈ [π/2, π]. The solutions of orbit
type (2,2) are therefore parametrised by two angle variables; the first is the orienta-
tion of the x-axis and the second is the angle r2 of one of the rotations in the 2-orbit
O2 lying below the xy-plane. Two of these solutions are shown in Figure 3.4.

Proposition 4. The Z3-equivariant orthogonal error bases are as follows:
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• for orbit type (1,1,1,1), no solutions;

• for orbit type (3,1), a 2-parameter family of solutions, forming the vertices of
a tetrahedron with one vertex on the z-axis and the other three forming an
equilateral triangle in a plane perpendicular to the z-axis (see Figure 3.5).

Proof. Orbit type (1,1,1,1). All the points would need to be on the z-axis, which is
impossible by Lemma 2.

Orbit type (3,1). By the classification of orbits (Lemma 5), these OEBs consist of
a 1-orbit on the z-axis and a 3-orbit forming the vertices of an equilateral triangle
in a plane perpendicular to the z-axis. Let one of the elements in the 3-orbit lie
in the xz-plane, so (r, ψ, 0) are its spherical coordinates. From (3.6) we obtain the
following condition for orthogonality of the elements of the 3-orbit:

r = 2 sin−1

( √
2√

3 sin(ψ)

)

Where soluble, this equation completely determines r for given ψ. It admits solutions

for ψ ∈ [sin−1(
√

2
3
), π − sin−1(

√
2
3
)]. By (3.6) we also obtain an equation in

ψ for the height z of the point on the z-axis, which is single-valued in the range

ψ ∈ [sin−1(
√

2
3
), π − sin−1(

√
2
3
)]:

z = 2 tan−1(

√
3

2
cos(r(ψ)/2) tan(ψ))

Under this equation z can take all values in [−π, π]; the 3-orbit lies on the other
side of the xy-plane. These OEBs therefore form a 2-parameter family, where one
parameter is the angle ψ, and the other is the choice of x-axis. Two solutions are
shown in Figure 3.5.

Proposition 5. The Z4-equivariant orthogonal error bases are as follows:

• for orbit type (1,1,1,1), no solutions;

• for orbit type (2,1,1), a 2-parameter family of solutions identical to the (1,1,1,1)
solutions for Z2 (Proposition 3);

• for orbit type (2,2), no solutions;

• for orbit type (4), no solutions.
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Proof. Orbit type (1,1,1,1). All the points would need to be on the z-axis, which is
impossible by Lemma 2.

Orbit type (2,1,1). The 2-orbit must consist of orthogonal π-rotations around axes
in the xy-plane. One parameter therefore corresponds to the rotation angle of one of
the rotations on the z-axis, and the other to the orientation of the orthogonal axes
in the the xy-plane.

Orbit type (2,2). These must be four different π-rotations around axes in the xy-
plane. But then they cannot be orthogonal.

Orbit type (4). The angle between rotation vectors in a 4-orbit will be acute if they
are not in the xy-plane, so they cannot be orthogonal. If they are in the xy-plane
then as the angle between adjacent vectors is π/2, at least one pair of opposite vectors
must be π-rotations by Lemma 4; but then these will be identified and this will not
be a 4-orbit.

Proposition 6. There are no Zn-equivariant orthogonal error bases for n ≥ 5.

Proof. We handle the odd and even cases separately.

n ≥ 5 and n odd : The only orbit sizes are 1 and n. Since we only have four elements
in the UEB, all four points must be of orbit size 1; they must therefore all be on the
ẑ-axis. But this is impossible by Lemma 2.

n ≥ 5 and n even: For n = 6, the orbit sizes are 1, 3 and 6. Since for the reason
given above we cannot have four 1-orbits, we must have one 1-orbit and one 3-orbit.
However, the axes of the π-rotations will not be orthogonal and so the rotations are
not orthogonal by Lemma 3. For n = 8, the orbit sizes are 1, 4 and 8, so we are
forced to have a 4-orbit by Lemma 2. But these π rotations will again not be around
orthogonal vectors and are therefore not orthogonal by Lemma 3. For n > 8, the
orbit sizes for elements off the ẑ-axis are all greater than 4.

Dihedral subgroups of SO(3).

Let the z-axis be the axis of cyclic rotation, and let the f -axis be the perpendicular
axis of π-rotation (the ‘flip axis’).

Proposition 7. The D2-equivariant orthogonal error bases are as follows:

• for orbit type (1,1,1,1), one solution;

• for orbit type (2,1,1), six solutions;
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• for orbit type (2,2), three solutions;

• for orbit type (4), two solutions.

Proof. Any solution for D2 must also be a solution for its Z2 subgroup, and we
proceed by case analysis of Z2-orbit types, making use of Proposition 3.

Z2-orbit type (1, 1, 1, 1). Recall that Z2-equivariant OEBs of this type are made up
of two π-rotations around orthogonal axes in the xy-plane and two rotations around
the z-axis. If we fix the flip axis f , in order that the rotations in the xy-plane are
preserved there are two choices for the axes; either f and g, or f + g and f − g. In
order that the z-rotations are preserved, there are two choices for the rotation angles;
either 0 and π, or −π/2 and π/2. The orbit types are (1,1,1,1), (2,1,1), (2,1,1) and
(2,2).

Z2-orbit type (2,1,1). Recall that Z2-equivariant OEBs of this type are made up of a
π-rotation around some x-axis, a rotation around the z-axis, and two other rotations
around axes in the yz-plane (see Figure 3.3). Fix the flip axis f . The z-rotation
will be preserved under the flip only if it is through an angle π or 0. This fixes the
rotation angle r of the elements in the 2-orbit as π/2 or π respectively. For the x-
rotation to be preserved under the flip, we need either that x = f or y = f . In both
of these cases, the solutions with r = π/2 and r = π are preserved. We therefore
obtain four equivariant OEBs with orbit type (2,1,1).

Z2-orbit type (2,2). Consider the 2-parameter family of solutions of orbit type (2, 2).
The 2-orbits O1, O2 lie on opposite sides of the xy-plane, in the xz- and yz-planes
respectively. D2 is abelian, so the Z2-orbit pairing will be preserved after the flip.
There are therefore two possibilities if the elements are to be preserved under the
flip; the flip can either swap the xz- and yz-planes or preserve them.

If the planes are preserved then the flip axis must be the x- or y-axis, and the
2-orbits must be symmetric under reflection in the xy-plane. Since one orbit is fixed
by the other, this gives two solutions of orbit type (2, 2), corresponding to a choice
of r1 = π/2 or r1 = π in O1, where ri is the rotation angle of the elements of Oi (see
Figure 3.3).

If the planes are permuted then the flip axis must be v1±v2, and r1 = r2. Setting
r1 = r2 in (3.8) and substituting in (3.7), we obtain cos(θ) = −1

3
, where θ ∈ [π/2, π]

is the central angle between the elements of each orbit. This has a unique solution
in the relevant domain, of orbit type (4). There are two of these for a given choice
of f -axis, since we can choose which orbit lies above the xy-plane.

Proposition 8. There are six isolated D3-equivariant quotient orthogonal error bases
all of orbit type (3,1).
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Proof. Any solution for D3 must also be a solution for its Z3 subgroup. In Proposi-
tion 4 we saw that solutions were the vertices of a 2-parameter family of tetrahedra
with one vertex on the z-axis and the others forming the vertices of an equilateral
triangle on the other side of the xy-plane. The vertex on the z-axis point must be
preserved under reflection in the xy-plane, so it must be through an angle 0 or π;
the two possibilities were shown in Figure 3.5. For z = 0, the elements of the 3-orbit
will be preserved if the fz plane is orthogonal to the triangle’s medians, giving three
solutions. For z = π, the f -axis must go through any of the three vertices of the
triangle, giving three solutions.

Proposition 9. The D4-equivariant orthogonal error bases are as follows:

• for orbit type (2,1,1), two isolated solutions;

• for orbit type (2,2), two isolated solutions.

Proof. Any solution forD4 must also be a solution for its Z4 subgroup. In Proposition
5 we saw that these form a single 2-parameter family; they can only be preserved if
f = x or f = x+ y, and the points on the z-axis are either {0, π}, which yields orbit
type (2, 1, 1), or {−π/2, π/2}, which yields orbit type (2, 2).

Proposition 10. There are no Dn-equivariant orthogonal error bases for n ≥ 5.

Proof. If there is no equivariant OEB for the cyclic subgroup there can be none for
the full dihedral group. The result therefore follows from Proposition 6.

Other subgroups of SO(3).

Proposition 11. The tetrahedral subgroups have two equivariant orthogonal error
bases, both of orbit type (4).

Proof. Any solution for the tetrahedral group must also be a solution for its Z3

subgroup. These form a 2-parameter family of tetrahedra. Since the tetrahedral
group preserves only a regular tetrahedron and its dual, there will be exactly two
solutions corresponding to the vertices of those tetrahedra.

Proposition 12. The octahedral subgroups have one equivariant orthogonal error
basis, of orbit type (1, 3).

Proof. Any solution for the octahedral group must also be a solution for its D4

subgroup. Only one of these equivariant for the full octahedral group, with three
points at the face centres of a cube of centre-to-face length π, and the final point at
the origin.
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Proposition 13. The icosahedral subgroups have no equivariant orthogonal error
bases.

Proof. There is no equivariant OEB for the D5 subgroup, so there will be none for
the full icosahedral group.

3.5.2 Higher dimensions

In this section we consider the problem of constructing an equivariant UEB for
representations of dimension greater than two.

Construction for permutation representations.

Recall that a representation ρ : G −→ U(n) is a permutation representation if there
exists an orthonormal basis of Cn in which ρ(g), g ∈ G are all permutation matrices.
In this special case, equivariant UEBs can be constructed from Hadamard matrices
satisfying a certain equivariance condition.

Proposition 14. Let (G, ρ) be a permutation representation, and let H be a Hadamard
matrix that commutes with all permutation matrices ρ(g). Then the following are el-
ements of a G-equivariant unitary error basis:

(UH)ij =
1

N
H ◦ diag(H, j)† ◦H† ◦ diag(HT , i) (3.9)

Here diag(M, i) is the diagonal matrix whose diagonal is the ith row of M .

Proof. It is proven in [78, Corollary 35] that this is a UEB; showing G-equivariance
is a simple exercise in matrix algebra.

We will use this construction to prove Theorem 5. First we need the following lemma.

Lemma 6. Let M be a circulant matrix of dimension ≥ 3 whose first column vec-
tor (a, b, . . . , b) has first entry a and all other entries b. Let a = |a|α, b = |b|β
where α, β ∈ U(1) and |a|, |b| 6= 0. Then M is unitary precisely when the following
conditions are satisfied:

n− 2

n
≤ |a| ≤ 1 (3.10) |b|2 =

1− |a|2
n− 1

(3.11) Re(α∗β) =
2− n

2

|b|
|a| (3.12)
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Proof. For unitarity it is sufficient that the rows form an orthonormal basis. It is
clear from the symmetry of M that it is sufficient for one row vector to be normal,
and one pair of row vectors to be orthogonal. This gives us two equations in a and b:

|b|2 =
1− |a|2
n− 1

(3.13)

Re(a∗b) =
2− n

2
|b|2. (3.14)

We will demonstrate that (3.10) is necessary and sufficient for us to find b satisfying
these equations. It is obvious that (3.13) is satisfiable if and only if |a| ≤ 1. Letting
a = |a|α, b = |b|β, equation (3.14) then reads as follows:

Re(α∗β) =
2− n

2

|b|
|a|

Since −1 ≤ Re(α∗β) ≤ 1, and α, β can be freely adjusted to give Re(α∗β) any value
in that range, we see that the following is necessary and sufficient for (3.14) to be
soluble:

(2− n)2

4

|b|2
|a|2 ≤ 1

Use of the equation (3.13) and a short calculation demonstrates that this is equivalent
to the lower bound in the inequality (3.10).

Theorem 5. There exists a G-equivariant unitary error basis for every permutation
representation (G, ρ) of dimension less than 5.

Proof. We use the construction in Proposition 14. Expressed in the G-permuted
orthonormal basis, Im(ρ) will be some subgroup of the permutation matrices Sn. To
use Theorem 14, we must find a Hadamard matrix in the centraliser of ρ(G). In the
worst case, Im(ρ) will be all permutation matrices.

For dimension less than 5, there exists a Hadamard matrix which commutes with
all permutation matrices. We ignore the degenerate case n = 1. For n = 2 the
following family of Hadamard matrices commutes with S2, where |a| = |b| = 1/

√
2

and Re(a∗b) = 0: (
a b
b a

)

For n ≥ 3, the centraliser of Sn is the group of circulant matrices of the type described
in Lemma 6; the conditions for such a matrix to be unitary were given there. Setting
|a| = |b| in (3.11), it follows that |a| = 1/

√
n. This is compatible with (3.10) only for

n ≤ 4.
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Table 3.2: Simple monomial representations for A5.

() (1, 2)(3, 4) (1, 2, 3) (1, 2, 3, 4, 5) (1, 2, 3, 5, 4)
1 1 1 1 1
5 1 -1 0 0
5 1 2 0 0
6 -2 0 1 1
6 2 0 1 1

Showing nonexistence.

In this section we provide a method for proving nonexistence of an equivariant unitary
error basis for some representations (G, ρ).

Definition 9. A unitary matrix is monomial if it has precisely one nonzero entry in
each row and column, all of which are necessarily elements of U(1). A representation
ρ : G −→ U(n) on some n-dimensional vector space V is monomial [33] if it admits
an orthonormal basis of Cn in which all the matrices ρ(g), g ∈ G are monomial.

G-equivariant unitary error bases for (G, ρ) are G-equivariant orthonormal bases
of End(V ) ' ρ ⊗ ρ∗, all of whose elements are unitary maps. Therefore, if (G, ρ)
admits an equivariant UEB, then ρ⊗ρ∗ must be monomial. It is also well known [33]
that every monomial representation is a direct sum of representations induced from
one-dimensional representations of subgroups. We therefore obtain the following
proposition.

Proposition 15. If (G, ρ) admits an equivariant UEB, then ρ ⊗ ρ∗ must split as a
direct sum of representations induced from one-dimensional representations of sub-
groups.

This condition is straightforward to check using characters in a computer algebra
program such as GAP [43]. As an example, we exhibit a 3-dimensional representation
for which no equivariant UEBs exist.

Example 3. We show that the 3-dimensional irreducible representations of the alter-
nating group A5 admit no equivariant unitary error basis. In Table 3.2 are shown
the characters of the induced monomial representations of the alternating group A5

of dimension less than or equal to 9. We see that χVi(1, 2, 3, 4, 5) = (±
√

5 + 1)/2;
this means that χVi⊗V ∗i (1, 2, 3, 4, 5) has a multiple of

√
5 as a summand for both of

i = 1, 2. However, all the monomial characters of A5 of degree less than 9 have
integer values. χVi⊗V ∗i can therefore not be decomposed as a Z+-linear combination
of monomial characters.
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3.6 Appendix to Chapter 3

3.6.1 Existence of G-invariant maximally entangled states

Here we prove the result stated in Remark 1.

Definition 10. A state ω of a G-representation is invariant up to a phase if g · ω =
θ(g)ω for some homomorphism θ : G −→ U(1).

Lemma 7. Let A,B be G-representations of identical dimension. A maximally en-
tangled pure state ω ∈ A⊗B invariant up to a phase exists iff A ' θ⊗B∗ for some
θ : G −→ U(1).

Proof. Suppose the representation A is the dual of B up to a character θ. Then
let ω be the unit η : 1 −→ θ∗ ⊗ A ⊗ B witnessing the duality θ∗ ⊗ A ' B∗. In the
other direction, suppose there exists a state stabilised up to a phase. Any maximally
entangled state is of the form ∑

i

|i〉 ⊗X |i〉

for some orthonormal basis {|i〉} and unitary X. Working in that basis we have the
following, for all g ∈ G, and where ρA(g)T is the transpose in the basis {|i〉}:

g ·
∑

i

|i〉 ⊗ V |i〉 =
∑

i

ρA(g) |i〉 ⊗ ρB(g)V |i〉

=
∑

i

|i〉 ⊗ ρB(g)V ρA(g)T |i〉

It follows that ρB(g)V ρA(g)T = θ(g)V , and therefore that ρB(g) = θ(g)V ρA(g)∗V † for
all g, where ρA(g)∗ is the complex conjugate matrix. The result follows by definition
of the dual representation.
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Chapter 4

Perfect and tight teleportation
schemes for compact Lie
transformation groups

4.1 Introduction

The main issue with the perfect tight scheme described in the last chapter is that
it is not applicable to all groups. In particular, equivariant unitary error bases do
not exist for infinite compact Lie groups, which occur more commonly in physical
implementations such as ground-to-satellite teleportation. In this chapter we show
how the perfect tight scheme for finite groups can be used to define two new schemes,
possible for any compact Lie group, which are in general either perfect or tight;
we call the perfect scheme and the tight scheme. (Recall that a tight teleportation
scheme is one where, to teleport a d-dimensional quantum state, one uses a maximally
entangled state of two d-dimensional systems and communicates one of d2 classical
messsages.) As with prior alignment schemes, an unspeakable channel is used for
communication, although the set of configurations will now generally be continuous.
(We will show how the constructions of unspeakable channels in Section 3.4 can be
extended to the continuous case.)

The key property differentiating both our schemes from previous methods for
teleportation in the case of reference frame misalignment is that they require no
initial alignment phase, and may be applied in situations where prior alignment
is unfeasible; in particular, in situations where the reference frame alignment is
changing rapidly. We now briefly describe the main properties of the two schemes.1

1In this discussion we use the same terminology as in Chapter 3, with the goal of the scheme
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• Tight scheme. This scheme has improved purity in general compared to the
standard teleportation protocol, and possesses the following desirable proper-
ties, all of which are shared with the standard teleportation protocol when
reference frame alignment is assumed.

– Dynamical robustness (DR). The scheme is not affected by changes in
reference frame alignment during transmission of the classical message
from Alice to Bob.

– Minimal entanglement (ME). The parties only require a d-dimensional
maximally entangled resource state.

– Minimal communication (MC). Only 2 dits of unspeakable classical infor-
mation are communicated from Alice to Bob.

– Minimal operations (MO). Alice performs a d2-valued measurement in a
fixed orthonormal basis, and Bob performs corrections from a fixed basis of
d2 unitaries. Neither party realigns their frame either actively or passively,
or performs any computations.

– No reference frame leakage (NL). No information about either party’s
reference frame alignment is transmitted.2

• Perfect scheme. This scheme performs perfect teleportation, up to a global
phase, while retaining properties (DR) and (ME) of the tight scheme. It vio-
lates (MC), (MO) and (NL); in particular, it requires a classical channel capable
of communicating full reference frame information. Its key advantage over prior
alignment schemes is the (DR) property.

Technical outline. The essential idea of our schemes is to consider a finite sub-
group H ⊂ G with an H-equivariant unitary error basis, and bootstrap the previous
results to obtain a protocol that is immune to errors arising from the subgroup H.

With no prior knowledge of the reference frame transformation relating Alice’s
and Bob’s frames, the effective channel3 for a conventional protocol will be a uniform
average over the unitary channels corresponding to each possible misalignment. More
formally, let i be Alice’s measurement result, let dg be the uniform Haar probability
measure on the group G, let Ti,g : B(V ) −→ B(V ) be the unitary channel induced by

being for Alice to teleport the quantum state of a d-dimensional quantum system to Bob.
2This has cryptographic significance in some scenarios [13, 49, 56].
3The effective channel is the channel taking Alice’s original state onto the density matrix en-

coding Bob’s knowledge about his final state, given his lack of knowledge about Alice’s reference
frame alignment.
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a conventional teleportation scheme with reference frame misalignment g ∈ G, and
let σ ∈ B(V ) be the state to be teleported. Then the effective channel superoperator
Ti : B(V ) −→ B(V ) is given as follows, as a function of the measurement result i:

Ti(σ) =

∫

G

dg Ti,g(σ) (4.1)

The effect of our tight scheme is to replace the uniform probability measure dg
in this expression with a weighted measure dg pi(g), which is peaked around the
identity g = 1G where the reference frame uncertainty is zero. This has the effect in
practice of increasing the fidelity of the overall superoperator Ti. Numerical results
(see Table 4.1) show that this can for some groups more than double the purity
compared to the standard protocol, while in other cases the improvement is more
modest.

The factor pi(g) : G −→ R in the new probability measure depends on the subgroup
H, the unspeakable channel, and the encoding scheme used, in such a way that it is
peaked around the identity (see Figure 4.1). Explicitly, the unspeakable channel has
a space of readings C, which carries a smooth measure-preserving action of the group
G describing how a change in reference frame affects the readings sent through the
channel. If Alice measures result i, she will send a reading from a certain encoding
subset Ei associated to that value. Bob, for his part, will perform the correction
corresponding to i if the reading g · i he receives lies in a certain decoding subset
Di. The factor pi(g) = µC(Di ∩ g · Ei) is the measure in C of the intersection of
the image g ·Ei of the encoding region Ei under the reference frame transformation
g and the decoding region Di. For an important class of unspeakable channels, the
factor pi(g) will be derived from a fundamental domain F for the subgroup H ⊂ G.
(See Figure 4.1 for G = U(1).)

For our perfect scheme, additional reference frame information is transmitted
by Alice, reducing reference frame uncertainty exactly to the finite group H; the
measurement result is simultaneously communicated, so that the previous results [95,
96] can be applied to perform perfect teleportation. Our techniques allow us to ‘fold’
the measurement result in with the reference frame information, obviating the need
to communicate it through a separate channel, and most importantly, maintaining
the novel dynamical robustness property.

Constructions and calculations. Our schemes have two requirements: an H-
equivariant unitary error basis and a compatible unspeakable classical channel. The
existence of H-equivariant unitary error bases was addressed in the last chapter.
Here we show how the construction of compatible unspeakable channels from shared
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U(1) 0

π/4

−π/4 −1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

p(θ)

θ/π

Figure 4.1: The reference frame transformation group U(1) is parameterised by a sin-
gle angle variable θ ∈ [−π, π), and has cyclic subgroup Z4 ⊂ U(1) with fundamental
domain F = (−π/4, π/4), highlighted in the left subfigure. The effective channel for
a conventional protocol is a uniform average over all θ ∈ [−π, π); the effect of our
tight scheme with a reference frame channel is to reduce this to a weighted average
with factor p(θ) shown in the right subfigure.

reference frame systems given in Section 3.4 can be extended to the case of continuous
spaces and infinite groups.

We derive an expression for the effective channel induced by our tight telepor-
tation scheme, which we use to calculate channel purity4 for a variety of groups
and unspeakable channels. In particular, we consider G = U(1), arising in telepor-
tation with polarised photons and energy eigenstates of different eigenvalues; and
G = SU(2), arising in teleportation with spin-1

2
particles. Comparing this with the

purity for a standard protocol, where an unspeakable channel is not used, we nu-
merically confirm improved purity in each case. The results are shown in Table 4.1.

Criticism. Compared to conventional teleportation, our tight scheme shows only
a small improvement for the group U(1), for which there already exist experimental
methods for dealing with misalignment in optical systems [34, 93] (although these
existing methods, based on decoherence free subspaces, are not tight.) Improvements
for SU(2) are more substantial. Also, we emphasise that both our tight scheme and

4We define channel purity as the normalised purity of the Choi-Jamio lkowski state associated to
the quantum channel induced by the protocol, where we take a convex sum over all frames g ∈ G,
weighted by the Haar measure. Where figures are numerical estimates we give an error range in
the reported figure.
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Transformation group Conventional purity New tight scheme purity

U(1) 0.59 0.62 (reference frame channel)

SU(2) 0.21
0.32± 0.02 (reference frame channel)
0.44± 0.03 (rod channel)

Table 4.1: A comparison of the purity achieved by conventional teleportation and
our new tight scheme. The numbers shown are purity values for the effective channel,
calculated in Section 4.8. For SU(2), the purity is given for two different unspeakable
channels which could be used to implement our scheme.

our perfect scheme require an unspeakable classical channel on which the reference
frame acts nontrivially; by comparison, previous schemes based on prior alignment
make use of an unspeakable quantum channel [9, 14, 50, 51, 81, 90].

Outlook. Our approach may be applicable to other multi-party protocols in the
case of reference frame uncertainty; these include quantum key distribution [17, 40],
where reference frame–independent protocols correspond to equivariant complemen-
tary orthonormal bases. It may also be possible to generalise our teleportation
schemes to continuous variable systems [82]. Such a generalisation would allow us to
extend our results to locally compact groups such as the Poincaré group, for which
the Haar measure still exists but irreducible representations are in general no longer
finite dimensional.

Related work. Chiribella et al [25] showed that perfect reference frame-independent
teleportation can be achieved only if the state to be teleported is itself invariant un-
der the group action. This result does not apply to our schemes, since we make
use of an unspeakable classical channel, a possibility that this previous work did not
consider.

Imperfect teleportation with an infinite group of reference frame transformations
has been considered by other authors. Chiribella et al [25] considered perfect tele-
portation with vanishing error in the limit of infinite entangled resources; Marzolino
and Buchleitner [69] considered teleportation of identical particles under a particle
number superselection rule5; and Kitaev et al [56] showed that a shared quantum
reference system could be used to approximate perfect quantum protocols. All these
approaches require the size of the shared entangled resource to increase; in contrast,

5Here both parties use a particle reservoir to perform operations, and the phase difference in the
reservoirs corresponds to the action of a U(1) transformation group.
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our schemes have the same entanglement requirements as standard quantum tele-
portation. Our schemes also apply to arbitrary compact Lie groups, whereas the
approach of Marzolino and Buchleitner [69] is specific to U(1) uncertainty.

Outline. In Section 4.2 we give an informal example of our schemes in the case of
continuous spatial reference frame uncertainty. In Section 4.3 we provide a frame-
work for sending classical information through an unspeakable classical channel with
an continuous space of readings. In Section 4.4 we specify operational procedures
underlying our two schemes. In Section 4.5 we show how a shared reference frame sys-
tem may be used to construct compatible encodings for any equivariant unitary error
basis. In Section 4.6 we finally define our tight and perfect teleportation schemes. In
Section 4.7 we give another example in the case of phase reference frame uncertainty,
which uses the formalism we have developed. In Section 4.8 we derive numerical re-
sults for the tight scheme, shown in Table 4.1. In the appendices we recall the effect
of reference frame transformations on states and operations, and prove Theorem 6
and some technical results about Voronoi cells.

4.2 Example

We begin with an informal example, using the same scenario as in Section 3.2. Alice
and Bob are spatially separated, and their qubits are spin-1

2
particles. Alice plans

to teleport a state σ to Bob. They each possess half of the following maximally
entangled pair6:

|η〉 =
1√
2

(|01〉 − |10〉)

However, they do not have a shared spatial reference frame: the Cartesian frame ac-
cording to which Alice’s x-, y- and z-spin axes are defined is related to Bob’s by some
unknown three-dimensional rotation. The reference frame transformation group is
SU(2), which acts on a qubit Hilbert space H by its standard matrix representation
ρ : SU(2) −→ B(H). The transformation g(t) ∈ SU(2) which relates Alice’s and Bob’s
frames at time t is unknown, and may vary on timescales shorter than the message
transmission time between the parties.

6Note that the entangled state is invariant under changes in reference frame, so both parties’
frames may shift arbitrarily following its creation without affecting the quality of the entangled
resource.
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Conventional scheme. We first suppose that Alice and Bob use the entangled
state |η〉 to attempt a standard teleportation protocol [18], based on the Pauli unitary
error basis:

U0 =

(
1 0
0 1

)
U1 =

(
0 1
1 0

)
U2 =

(
0 −i
i 0

)
U3 =

(
1 0
0 −1

)
(4.2)

Alice measures the state σ together with her entangled qubit in the maximally en-
tangled orthonormal basis |φi〉 = (1 ⊗ −i(UiU2)T ) |η〉, and communicates the mea-
surement result to Bob through an ordinary classical channel. Bob then applies the
correction Ui to his half of the entangled state. Should both parties’ reference frames
be aligned, Bob’s system will finish in the state σ.

However, if Bob’s frame is related to Alice’s by a nontrivial transformation g ∈
SU(2), then from the perspective of Alice’s frame, Bob will not perform the intended
correction Ui, but rather the conjugated unitary

ρ(g)†Uiρ(g). (4.3)

Since the conjugation action of SU(2) has kernel {±I}, we only consider the quotient
SO(3) in the following analysis. The transformation g is unknown, so we must average
over the whole of SO(3) to find the effective channel, which for measurement result
i yields the following expression:

Ti(σ) =

∫

SO(3)

dg [ρ(g)†Uiρ(g)U †i ] (σ) (4.4)

Here dg is the Haar measure on SO(3), and we have used the notation [X](σ) for
the conjugation XσX†. Averaging over the four equiprobable measurement results,
we find (Section 4.8.3) that the effective channel purity is approximately 0.21.

Tight scheme. Alice considers a cube centered at the origin of her frame, oriented
so that the x-, y- and z-axes form normal vectors to its faces; we call the faces
intersected by the x-, y- and z-axes the 1-, 2- and 3-faces respectively. She measures
in the basis {|φi〉}, and transmits her measurement result using the encoding scheme
given in Table 4.2, and illustrated in Figure 4.2, which we summarize as follows.
If Alice receives measurement result 0, she sends a spherically symmetric object
(in other words, a sphere) to Bob. Otherwise, if she receives measurement result
n ∈ {1, 2, 3}, she prepares a rigid rod in an arbitary orientation in space, centred
at the origin of her frame, such that it intersects the n-faces of the cube. She then
sends this object through space to Bob by parallel transport.
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Measurement result Classical transmission

0 Featureless sphere
1 Rod oriented along any axis intersecting the 1-faces
2 Rod oriented along any axis intersecting the 2-faces
3 Rod oriented along any axis intersecting the 3-faces

Table 4.2: Tight encoding scheme for the rod channel. Alice chooses the precise
orientation of the rod uniformly at random from the set of all orientations satisfying
the intersection condition.

When Bob receives the object from Alice, he performs the reverse of Alice’s en-
coding scheme. If he receives the spherically symmetric object he performs correction
U0. If he receives a rod, he moves it by parallel transport to his origin, and observes
which faces of the cube it intersects. Bob’s cube will of course in general be oriented
differently to Alice’s, and so he may observe a different intersection than that en-
coded by Alice. Having observed an intersection with the n-faces, he then performs
correction Un.

We emphasise that since Alice performs one of 4 actions, and Bob receives one
of 4 messages, the scheme transmits precisely 2 bits of classical information. Bob
can observe the exact orientation of the rod in his frame, but this conveys no further
information, since Alice’s measurement result was uniformly random, and so any rod
orientation was equally possible.

To see why this encoding scheme leads to increased overall purity for the final
state, consider the octahedral subgroup Oct ⊂ SO(3) preserving the cube. The Pauli
UEB is equivariant for the action of this subgroup, and is permuted inversely to the
labels on the cube’s faces under reference frame transformations in this subgroup.
By Theorem 2, teleportation is therefore perfect if the reference frame misalignment
is in the group Oct ⊂ SO(3). It follows from our later analysis (Theorem 6) that,
for reference frame error uniformly distributed in SO(3), the expression (4.4) for
the effective channel under the tight scheme just described becomes the following,
where the new probability measure dg pi(g) : G −→ R is proportional to the spherical
measure of the intersection of the spherical projections of the i-faces with their image
under the rotation g ∈ SO(3):

Ti(σ) =

∫

SO(3)

dg pi(g)[ρ(g)†Uiρ(g)U †i ] (σ). (4.5)

This changes the effective probability distribution over possible misalignments from
the uniform distribution to a distribution which is peaked around the identity, where
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Figure 4.2: Tight encoding scheme for the rod channel. Alice measures 1, chooses at
random an orientation of the rod which intersects the 1-faces of the cube in her frame,
and communicates the rod to Bob by parallel transport along a straight path. In
Bob’s frame, related to Alice’s by a π/4-rotation around the y-axis, the rod intersects
the 3-faces; he therefore performs the correction U3.

the induced errors will be less pronounced. In Section 4.8.3 we describe a numerical
calculation of the purity of the effective channel as 0.44±0.03, approximately double
the value for a conventional scheme.

Finally, this scheme is indeed tight. We illustrate the properties of the procedure
that we claimed in Section 4.1:

• (ME), (ML). Immediate.

• (DR). The effective channel (4.5) is unaffected by changes in reference frame
orientation during execution, as long as Bob’s reference frame does not change
between observing the rod in his lab and performing the corresponding correc-
tion.

• (NL). To an observer outside Alice’s lab, the information she communicates is
uniformly random. This follows from the fact that her measurement outcomes
are equiprobable, and given the measurement outcome i all directions through
the corresponding face pair of the cube are equiprobable. Therefore, nothing
can be deduced from her transmission about her reference frame orientation.

• (MC). There are four messages Bob can receive: a spherically symmetric object,
or a rod oriented through the i-faces for some i ∈ {1, 2, 3}. All four messages are
equiprobable. He therefore obtains precisely two bits of classical information.
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Measurement result Alice’s rotation rA Bob’s observation rB

0 () () or (234) or (243)
1 (132) (142) or (132) or (12)(34)
2 (123) (13)(24) or (123) or (143)
3 (134) (134) or (124) or (14)(23)

Table 4.3: Type C encoding scheme for the reference frame channel.

Perfect scheme. We now give an example of our scheme for perfect teleportation.
We call the following family of unitary matrices the tetrahedral qubit unitary error
basis:

V0 =
(

1 0

0 e2πi/3

)
V2 =

1√
3

(
1

√
2e2πi/3√

2 e5πi/3

)

(4.6)

V1 =
1√
3

(
1

√
2e4πi/3√

2e4πi/3 e5πi/3

)
V3 =

1√
3

(
1

√
2√

2e2πi/3 e5πi/3

)

This UEB is equivariant for the tetrahedral subgroup Tet ⊂ SO(3) preserving a
regular tetrahedron centred at the origin with vertices:

v0 = ẑ v1 =
1

3
(
√

8x̂− ẑ) v2 =
1

3
(−
√

2x̂+ 2
√

3ŷ − ẑ) v3 =
1

3
(−
√

2x̂− 2
√

3ŷ − ẑ)

We identify the elements of Tet ∼= A4 with the permutation they induce on these
vertices.

Alice again measures in the basis {|φi〉}, where |φi〉 = (1 ⊗ −i(ViU2)T ) |η〉. To
perform the classical communication, Alice uses a completely asymmetric classical
object whose orientation exactly determines a frame of reference. In order to trans-
mit the measurement result i, she aligns the asymmetric object so that the frame
determined by its orientation matches her own Cartesian frame. She then rotates the
object by an element rA ∈ Tet, according to the prescription in Table 4.3, and sends
it to Bob. Bob observes the orientation of the object according to his own Cartesian
frame, and realigns his frame (actively or passively) by the smallest possible angle so
that the rotation rB taking his frame onto that determined by the orientation of the
asymmetric object is in Tet. He then uses Table 4.3 to decide which measurement
result j to correct for, and performs — in his own frame — the correction Vj.

It will be shown in Proposition 23 that this procedure results in perfect telepor-
tation. Of the properties considered in Section 4.1, it possesses the (DR) property,
since the parties’ reference frame orientation may change arbitrarily during the mea-
surement and transmission phases, and need only remain constant between Bob’s
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receipt of the classical information and his performance of the corresponding correc-
tion; it clearly also uses an entangled resource of minimal dimension, and so satisfies
(ME). However, the procedure violates (MC), (NL) and (MO), since Bob must re-
align his frame in order for the protocol to be successful, and he gains information
about Alice’s reference frame alignment from the orientation he receives.

4.3 Encoding schemes for continuous channels

4.3.1 Continuous unspeakable channels

In this section we extend the previous definition of unspeakable channels (Defini-
tion 3) to the case of a continuous space of readings.

Definition 11. We say that a classical channel communicates unspeakable informa-
tion [81], or is an unspeakable channel, if its space of readings C is itself described
with respect to the reference frame, carrying a nontrivial smooth measure-preserving
action of the reference frame transformation group G.

A channel whose space of readings is not described with respect to the reference
frame, and which therefore carries a trivial G-action, is called a speakable channel.

Throughout this paper we make the simplifying assumption that there is no channel
noise; whatever reading Alice sends through the channel will be received unaltered
by Bob, although his description of it may be different. A channel is therefore fully
described by its space of readings and the G-action on that space; for this reason we
conflate the channel and its space of readings, using the same letter C for both.

Example 4. The channels used in Section 4.2 were unspeakable channels for the group
G ' SU(2) of spatial rotations.

Example 5. If G ' U(1) is the group of time translations of a quantum system7, so
that a frame corresponds to a choice of a ‘zero of time’ t0, then a channel through
which a signal is sent to arrive at a fixed time, and whose space of readings corre-
sponds to the time of arrival of the signal with respect to the period, is an unspeakable
channel. (This is the continuous version of Example 2.)

4.3.2 Compatible encoding schemes for continuous actions

We now specify a framework for encoding of measurement values in an unspeakable
channel with a continuous space of readings, which allows us to extend the notion of

7This reference frame transformation group naturally occurs when the states |0〉 and |1〉 of a
qubit are energy eigenstates with different eigenvalues.
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a compatible channel to the continuous setting.

Definition 12 (Encoding scheme). Let C be an unspeakable channel and I be a
finite set of values to be sent through it. An encoding scheme for I is:

• A space of subsets {Ei ⊂ C | i ∈ I}, the encoding subsets, where Ei are disjoint
open sets.

• A space of subsets {Di ⊂ C | i ∈ I}, the decoding subsets, where Di are disjoint
open sets which cover C up to a set of measure zero.

The encoding subset Ei is the set of all possible readings Alice can send in order to
transmit the value i ∈ I. The decoding subset Di is the set of all possible readings
upon receipt of which Bob will record the value i ∈ I.

As before, the success of our protocol depends on encoding schemes which are com-
patible with the right action of H on the index set of the UEB. We define a general
notion of compatibility of an encoding scheme with a right action.

Definition 13 (Compatible channel). Let C be an unspeakable channel for a finite
group H. Let σ : I ×H −→ I be a right action of H on an index set I. We say that
an encoding scheme for I is compatible with σ if:

• The decoding subsets {Di}i∈I and the encoding subsets {Ei}i∈I are permuted
under the action of H on C, inducing left actions τD, τE : H × I −→ I.

• The left actions τD, τE : H × I −→ I are equal and inverse to the action σ :
I ×H −→ I of H on I. That is, for all i ∈ I,

τD(i,−) = τE(i,−) = σ−1(i,−).

In other words, given a right action of the reference frame transformation group on
a set, a compatible encoding scheme for that set induces the inverse left action on
the values sent through the channel.

4.4 Two teleportation procedures

In this section we define the operational procedures which Alice and Bob will follow
in our teleportation schemes.

Our approach depends on the existence of a compatible encoding scheme for the
action σ : I ×H −→ I induced by the right conjugation action of the finite subgroup
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H ⊂ G on an equivariant UEB with index set I. In Section 4.5, we will show,
using an unspeakable classical channel corresponding to a shared reference frame
system, a compatible encoding scheme for any transitive right action σ of H may be
constructed.

As in the finite case (Section 3.4), to ensure that our procedures can be applied
to nontransitive actions, we use the orbit splitting of I under the H-action. Alice
will first communicate, through a speakable channel, the orbit O ⊂ I of her mea-
surement result; she will then then communicate the measurement index i ∈ O using
an unspeakable classical channel with the set of messages O, compatible with the
restricted action σ|O : O × H −→ O, which is transitive and therefore amenable to
our construction in Section 4.5. As before, this does not affect any of the desirable
properties of the teleportation schemes. Of course, if one can find an equivariant
UEB with a single orbit under the H-action [96], such as the tetrahedral UEB for
BTet < SU(2) in Section 4.2, or combine different orbits in a single physical channel,
as in Section 4.7, this prior speakable communication of the orbit label is unnecessary.

Throughout this section and the rest of the chapter, let H ⊂ G be a finite
subgroup, let {Ui}i∈I be an equivariant UEB for H, let σ : I × H −→ I be the
corresponding right action of H on the index set of the UEB, let Ik ⊂ I be the orbits
of I under σ, where k is some index for the orbits, and let σk : Ik ×H −→ Ik be the
corresponding transitive restricted actions.

4.4.1 Teleportation without realignment

We first detail a procedure which satisfies the (MO) property, and which will form
the basis of our tight scheme.

Procedure 3 (Teleportation procedure without realignment). Let C be an unspeak-
able channel forG (and therefore also forH), and let (Dk

i , E
k
i )i∈I be encoding schemes

for Ik compatible with σk : Ik ×H −→ Ik.
Alice measures in the basis {|φi〉}i∈I as in a standard teleportation protocol (2.2).

Let her measurement result be i ∈ Ik. The result is transmitted as follows.

1. Alice transmits the orbit label k through a speakable channel.

2. Alice sends a reading x chosen uniformly at random from the region Ek
i .

3. Bob receives g · x ∈ Dk
j and performs the correction Uj.

Here g is the reference frame transformation taking Alice’s frame at the time of
measurement onto Bob’s frame at the time of receipt.
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We derive an explicit expression for the effective channel obtained using Procedure 3
for a general encoding scheme.

Theorem 6 (Effective channel for Procedure 3). Suppose that Alice measures some
result i ∈ Ik. Then the channel induced by Procedure 3 is as follows:

Tk(ρ) =
|Ik|

µC(Ek
0 )

[π(ci)] ◦
∫

G

(
dg p(g) [π(g)†U0π(g)U †0 ]

)
◦ [π(ci)

†] (ρ) (4.7)

Here 0 ∈ Ik is any element of the orbit; the normalising factor µC(Ek
0 ) is the measure

of Ek
0 in C; p(g) =

∫
Ek0⊂C

dx1Dk0 (g · x), where 1Dk0 is a continuous approximation to

the indicator function for Dk
0 ⊂ C; and {ci}i∈Ik , ci ∈ H are such that ci · Ek

0 = Ek
i .

Proof. The proof is somewhat technical, so has been placed in Section 4.9.1.

Proposition 16. Procedure 3 satisfies (ME), (DR) and (MO).

Proof. (ME) and (MO) are clear, since the entangled resource, measurements and
corrections are exactly as in a conventional teleportation protocol; only the classical
communication step has changed.

(DR) is also satisfied. Since the orbit is unaffected by reference frame transforma-
tions, we need only consider the second and third stages of the procedure. In Alice’s
frame, reference frame misalignment affects Bob’s reading of the transmitted mea-
surement result, and his unitary correction. Since the interval between both of these
events is limited only by Bob’s apparatus, we may assume that his reference frame
alignment does not change between these steps. Otherwise, the effective channel (4.7)
is unaffected by unknown arbitrary changes in reference frame alignment throughout
the rest of the procedure, since it involves an average over all misalignments in any
case.

In general Procedure 3 communicates an infinite amount of reference frame informa-
tion.

Proposition 17. Suppose Alice measures i ∈ Ik, performs Procedure 3, and Bob
receives y ∈ C. Bob now knows that the reference frame misalignment gAB ∈ G lies
in the subset

{g ∈ G | g−1 · y = x for some x ∈ tjEk
j }. (4.8)
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4.4.2 Teleportation with realignment

We now detail a teleportation procedure which involves realignment, and will form
the basis of our perfect scheme. For simplicity, we assume that Alice’s encoding
subsets are singleton sets, as will be the case for our perfect scheme.

Procedure 4 (Teleportation procedure with realignment). Let C be an unspeakable
channel for G (and therefore also for H), and let (Dk

i , E
k
i )i∈I be encoding schemes

for Ik compatible with σk : Ik×H −→ Ik. Let Ek
i = {xki }, where xki is a single reading

in C.
Alice measures in the basis {|φi〉}i∈I as in a standard teleportation protocol (2.2).

Let her measurement result be i ∈ Ik. The result is transmitted as follows.

1. Alice transmits the orbit label k through a speakable channel.

2. Alice sends the reading xki .

3. Bob receives y = g · xki ∈ Dk
j and performs the correction ρ(rj(y))Ujρ(rj(y))†,

where rj(y) ∈ G is any element such that rj(y) · xkj = y.

In words, Bob realigns his frame (actively or passively) so that the reading he re-
ceives is xkj , and then performs the correction Uj. Here g is the reference frame
transformation taking Alice’s frame at the time of measurement onto Bob’s frame at
the time of receipt.

We derive an explicit expression for the effective channel obtained using Procedure 4
for a general encoding scheme.

Proposition 18 (Effective channel for Procedure 4). Suppose that Alice measures
some result i ∈ Ik. Then the channel induced by Procedure 4 is as follows:

Ti(σ) =

∫

StabG(xi)

ds [ρ(s)†Uiρ(s)U †i ] (σ) (4.9)

Here ds is the Haar measure on StabG(xki ).

Proof. Alice measures i ∈ Ik and communicates xki to Bob, who receives y ∈ Dj,
where y = g · xki = (rj(y)hijs) · xki for hij ∈ H such that hij · xki = xkj and some
s ∈ StabG(xki ).
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The distribution over StabG(xki ) is uniform. We therefore have the following
expression for the effective channel:

Tk(ρ) =

∫

StabG(xki )

ds [ρ(rj(y)hijs)
†ρ(rj(y))Ujρ(rj(y))†ρ(rj(y)hijs)U

†
i ] (σ)

=

∫

StabG(xki )

ds [ρ(hijs)
†Ujρ(hijs)U

†
i ] (σ)

=

∫

StabG(xki )

ds [ρ(s)†Uiρ(s)U †i ] (σ)

At each step, we used the fact ρ is a representation. To get the final equality, we
used equivariance of the unitary error basis.

Proposition 19. Procedure 4 satisfies (ME) and (DR).

Proof. Exactly as in Proposition 16.

4.5 Continuous reference frame channels

We now show that the construction from reference frame systems given in Section 3.4
can be extended to the continuous setting.

4.5.1 Continuous reference frame channels

Definition 14. A reference frame system is a classical system described according
to a reference frame, on whose space of configurations the reference frame transfor-
mation group G acts freely and transitively.

These systems were already considered in the finite case; the construction here will
be a straightforward extension to the infinite case.

Example 6. The set of orientations of a totally asymmetric solid object in n dimen-
sions is a reference frame system for the group of n-dimensional spatial rotations, as
in Section 3.2.

Example 7. The set of orientations of a single vector of fixed length in the plane, spec-
ifying the positive x-direction, is a reference frame system for the two-dimensional
spatial rotation group U(1), since the orientation of the positive y-direction is deter-
mined by perpendicularity and parity.
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Example 8. The classical system of Example 5, where the set of configurations is the
time of arrival of the signal, is a reference frame system for the group of periodic
time translations U(1).

Again, Alice and Bob will use their shared reference frame system to communicate
messages, using the well-known fact that any free and transitive left G-space is
isomorphic to the group G considered as a left G-space under left multiplication.8

As before, they associate each of the configurations of the system to an element of G
using a labelling, obtained by choosing an element xe ∈ C such that l(xe) = e. Again,
we assume that there is a canonical procedure (agreed by both parties beforehand)
to choose an element xe ∈ C based on one’s own frame configuration f ∈ F , where
F is the space of reference frame configurations, corresponding to a map ε : F −→ C
satisfying the naturality condition 3.4. We use the same notation as before for
labellings and their inverses.

Example 9. For the channel of Example 6, one can define ε by aligning marked
orthogonal points on the object with one’s own Cartesian frame. For the channel of
Example 7, one can define ε by aligning the vector with one’s own x-axis. For the
channel of Example 2, one can define ε by timing the signal to arrive at one’s own
zero of time, with respect to the period.

Proposition 20. Let F be the space of reference frame configurations, and let Alice
and Bob have different frame configurations fA ∈ F and fB = gAB · fA, which they
use to label a reference frame system by fixing [e]A = ε(fA) and [e]B = ε(fB). Then:

[g]A = [gg−1
AB]B (4.10)

Proof. The G labelling of the channel is defined as [g]A = g · (xe)A; we have (xe)A =
ε(fA), so [g]A = g · ε(fA) = ε(g · fA) = ε(g · g−1

AB · fB) = (gg−1
AB) · (xe)B = [gg−1

AB]B.

We have seen how labelling of a shared reference frame system allows us to construct
an unspeakable channel whose set of messages is the set of elements of G, and which
carries the action (4.10). We call this a reference frame channel. As an example of
the utility of such a channel, we give a procedure whereby it can be used to transfer
full reference frame information in a single shot.

Procedure 5 (Reference frame information transfer). Alice arranges with Bob to
send the reading [e]A which is the identity in her labelling. Bob receives it and sees
that it is labelled [g−1

AB]B in his own frame. He thus learns that the reference frame
transformation taking Alice’s frame at the time of transmission onto his own is gAB.

8Manifolds on which G acts freely and transitively are usually known as principal homogeneous
spaces, or torsors.
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4.5.2 Encoding schemes for continuous reference frame chan-
nels

We now use reference frame channels to construct compatible encoding schemes
(Definition 13) for any transitive right action of any finite subgroup H ⊂ G. In order
to characterise the possible transitive right actions of H, we recall the following
well-known fact.

Lemma 8. Let H be a finite group. Any finite transitive right H-set is isomorphic
to a right coset space (H/L)R for some subgroup L ⊂ H under the right action
(Lh2) · h1 = Lh2h1.

Recall from Proposition 20 that the G-labelling of C carries the left action [g]A =
[gg−1

AB]B. As the first step in defining the encoding scheme for a given transitive
right H-set, we now show how a labelled channel C may be divided into regions [Rh]
labelled by elements of H, which, for reference frame changes hAB ∈ H, are permuted
as [Rh]A = [Rhh−1

AB
]B. To this end, we first recall the definition of a fundamental

domain.

Definition 15. A fundamental domain for the action of H on G is an open subset
F ⊂ G such that the H-translates Fh have empty intersection and cover G up to a
set of measure zero.

Remark 3. We are trying to approximately limit the domain of possible reference
frame transformations to F . It is therefore sensible to pick F so that all the readings
in it are as close to the identity as possible under some metric. To make this precise
one can use Voronoi cells (Definition 26).

Having fixed some fundamental domain F , we now define the regions [Rh].

Definition 16. Fix a subgroup H ⊂ G, and a fundamental domain F for H in G.
Then the regions [Rh] for h ∈ H are defined as

[Rh] = [Fh] = {[fh] | f ∈ F}.

These regions are indeed permuted in the desired way.

Lemma 9. Let Bob’s reference frame configuration fB ∈ F be related to Alice’s
configuration fA ∈ F by fB = hAB · fA for hAB ∈ H. Then

[Rh]A = [Rhh−1
AB

]B.
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Proof. By (4.10) the labelling on the readings transforms as [g]A = [gg−1
AB]B; so

[Rh]A = {[fh]A | f ∈ F} = {[fhh−1
AB]B | f ∈ F} = [Rhh−1

AB
]B.

This completes the proof.

We now show how to use the above division to obtain compatible encoding
schemes (Dk

i , E
k
i )i∈Ik for each (Ik, σk). We know from Lemma 8 that (Ik, σk) is iso-

morphic as a right H-set to the right coset space (H/Lk)R. Let αk : Ik −→ (H/Lk)R
be an isomorphism, where for notational convenience we treat αk as a map onto coset
representatives rather than onto cosets themselves. That is, we have αk(i) = ci for
i ∈ Ik and representatives ci ∈ H of the cosets Lkci.

Definition 17. Let Lk, H and ci be as above. The tight reference frame encoding
scheme is defined as:

[Dk
i ] =

⊔

l∈Lk
[Rlci ] [Ek

i ] = [Dk
i ]

The perfect reference frame encoding scheme is defined as:

[Dk
i ] =

⊔

l∈Lk
[Rlci ] [Ek

i ] = {[ci]}

It is clear that these subsets are disjoint and open and that the {[Dk
i ]}i∈Ik cover the

channel up to a set of measure zero; this is therefore an encoding scheme. We now
show compatibility.

Proposition 21. The encoding schemes of Definition 17 are compatible with (Ik, σk).
That is, the subsets (Dk

i , E
k
i )i∈Ik carry the following action of H under reference

frame changes hAB ∈ H:

[Dk
i ]A = [Dk

σ−1(hAB ,i)
]B [Ek

i ]A = [Ek
σ−1(hAB ,i)

]B

Proof. We have

[Di]A = tk∈K [F (kci)]A = tk∈K [F (kcih
−1
AB)]B = tk∈K [F (kα(σ−1(hAB, i))]B

= tk∈K [F (kcσ−1(hAB ,i)]B = [Dσ−1(hAB ,i)]B.

The result for [Ek
i ] in the perfect encoding follows similarly.
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4.6 Teleportation schemes for compact Lie trans-

formation groups

We now define our teleportation schemes. The tight scheme may be performed with
any unspeakable channel, whereas the perfect scheme requires a reference frame
channel.

4.6.1 Tight teleportation scheme

Definition 18 (Tight encoding scheme). We say that an encoding scheme (Dk
i , E

k
i )i∈Ik

is tight if the encoding subsets {Ek
i }i∈Ik cover the space of readings for all k.

Remark 4. Since the encoding subsets {Ek
i }i∈Ik are permuted transitively under the

action of H, it follows that they all have the same measure.

Example 10. The tight encoding scheme for a reference frame channel (Definition 17)
is tight. The first encoding scheme in Section 4.2 was tight.

With a tight encoding scheme, Procedure 3 leaks no reference frame information.

Proposition 22. When the encoding scheme is tight, Procedure 3 additionally sat-
isfies (MC) and (NL).

Proof. For a tight encoding scheme, Alice is equally likely to send any reading in the
channel, since Alice has an equal probability of measuring any i ∈ Ik and chooses a
reading with uniform probability from the subsets {Ek

i }i∈I , which have equal measure
and cover the space of readings up to a set of measure zero. It follows that the pro-
cedure communicates no reference frame information, since without prior knowledge
of the reading Alice sent, nothing can be learned from the reading that is received.
The (NL) property is therefore satisfied.

The only useful information Bob learns from the message he receives is which
of his decoding subsets {Dk

i }i∈Ik the reading he receives lies in; there are
∑

k |Ik| =
|I| = d2 possible messages, which are equiprobable. In total, therefore, he receives
two dits of classical information. The (MC) property is therefore also satisfied.

We therefore define our tight teleportation scheme as follows.

Definition 19. Our tight teleportation scheme uses Procedure 3 together with a
tight encoding scheme for every orbit Ik.
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4.6.2 Perfect teleportation scheme

Proposition 23. Procedure 4 with the perfect encoding scheme on a reference frame
channel (Definition 17) induces a perfect teleportation channel.

Proof. Immediate from Proposition 18 and the fact that the stabiliser of any reading
in the channel is trivial.

We therefore define our perfect teleportation scheme as follows.

Definition 20. Our perfect teleportation scheme uses Procedure 4 together with a
perfect encoding scheme on a reference frame channel for every orbit Ik.

4.7 Phase reference frame uncertainty revisited

Finally, we return to the example of phase uncertainty, which we saw in Section 2.1.3
in the context of ground-to-satellite teleportation. Alice and Bob have an optical
link along a line of sight, through which they can perform quantum or classical
communication mediated by individual photons or classical beams of light. The axis
of this link can be treated as a shared z-direction. However, there is no shared
xy-frame in the perpendicular plane.

Alice intends to transfer one half of a polarisation-entangled pair of photons to
Bob, which can be used to teleport the state of a qubit in her possession. However,
reference frame uncertainty may arise from rotation of the devices [61]; if Bob’s
device rotates around the axis of the optical link, his description of the polarisation
state of the transmitted photon will change.

Recall that the reference frame transformation group here is the 2D rotation
group U(1). If θ ∈ [0, 2π) is the angle of a clockwise rotation of the 2D Cartesian
frame, we have the following action on the state of the photon:

θ 7→ ρ(θ) =

(
1 0
0 e−2iθ

)
(4.11)

The deleterious effect of this uncertainty on the teleportation channel was shown
in (2.4).

Unspeakable channel and encoding scheme. We consider how our schemes
can be used to improve performance. We propose that Alice use the polarisation of
a classical beam of light to communicate the measurement result. We note first that
because the action (4.11) has kernel {0, π}, we can consider the reduced reference
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D1

D2

D1

D2
D1

φ = π/2

φ = 0

φ = −π/2

Figure 4.3: The decoding subsets [D1] and [D2]. The polarisation axis of a beam of
light linearly polarised at angle θ = π/4 is shown in the figure.

frame transformation group U(1)/Z2 ' U(1), with parametrisation [−π/2, π/2). The
orientation of the polarisation axis of a linearly polarised light beam carries a free and
transitive action of this reduced reference frame transformation group and therefore
serves as a reference frame channel.

From the results of our previous paper [96, Theorem 4.1], the largest subgroup
of G with an equivariant UEB is Z4; the equivariant UEB is the set of Pauli ma-
trices (4.2). We choose the fundamental domain in G as the Voronoi cell of the
identity for the metric µ(θ1, θ2) = |θ1− θ2| (see Appendix 4.9.2). We define the map
ε : F −→ C by stipulating that the reading labelled by the identity should be the
orientation of the x-axis of the labeller’s Cartesian frame.

Under the action of Z4, the only orbit of the Pauli UEB which is not a singleton is
i ∈ {1, 2}. We use the machinery of Section 4.5.2 to define tight and perfect encoding
schemes for this orbit. The tight encoding scheme is:

[D1] = [E1] := {[φ] | φ ∈ (12π/8, 13π/8] ∪ (15π/8, π/8] ∪ (3π/8, 4π/8]}
[D2] = [E2] := {[φ] | φ ∈ (13π/8, 15π/8] ∪ (π/8, 3π/8]} (4.12)

The angles here are the polar angles of the polarisation axis with the labeller’s x-axis;
the regions [D1] and [D2] are shown in Figure 4.3. The perfect encoding scheme has
[D1] and [D2] as in (4.12), with [E1] := {[e]} and [E2] := {[π/4]}.

Tight scheme. Following Procedure 3, Alice sends her measurement result as
follows. If Alice measures 0 or 3, she transmits a beam of clockwise or anticlockwise
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circularly polarised light respectively. Since the direction of circular polarisation is
preserved under reference frame transformations, Bob will receive the measurement
result as it was sent. However, if she measures 1 or 2, she sends the measurement
result encoded in the polarisation axis of a beam of linearly polarised light, using the
regions specified in (4.12). If she measures 1, she sends the light linearly polarised
along an axis selected uniformly at random from the region [E1]A. If she measures
2, she sends the light linearly polarised along an axis selected uniformly at random
from the region [E2]A. Bob then uses [D1]B and [D2]B to decode. By Theorem 6 we
calculate the effective channel for measurement result 1 as

4

∫ π

−π
dθ p(θ) [ρ(θ)†U1ρ(θ)U †1 ](σ) (4.13)

where p(θ) is the modulus of a sawtooth wave:

p(θ) =

∣∣∣∣
(θ + π/2)

π
−
⌊

1

2
+

(θ + π/2)

π

⌋∣∣∣∣ (4.14)

This integral is straightforward to evaluate for an arbitrary input density matrix. The
channel for result 2 is similar. Averaging over the possible measurement outcomes,
we find that the tight scheme has the following action on an input density matrix:

(
a b
c d

)
7→
(

a b
2

(
1
π2 + 1

)
c
2

(
1
π2 + 1

)
d

)
(4.15)

We see that the quality of the channel has increased slightly, despite the fact that
no reference frame information has been transmitted. In particular, the final state is
now asymmetric; our protocol teleports unspeakable information even when values
1 and 2 are measured.

Perfect scheme. We now outline our perfect scheme. If Alice measures 0 or 3, she
transmits a beam of left or right circularly polarised light respectively; regardless of
his reference frame orientation, Bob will receive the polarisation direction transmit-
ted, and perform the required correction. If she measures 1 or 2, she transmits light
linearly polarised along the direction [0]A or [π/4]A respectively. Bob observes the
polarisation of the light he receives with respect to his own frame. If the polarisa-
tion direction is in the region [D1]B, he rotates his frame either actively or passively
so that the light is polarised along the direction [0]B, and performs the correction
U1. If the polarisation direction is in the region [D2]B, he rotates his frame either
actively or passively so that the light is polarised along the direction [π/4]B, and
performs the correction U2. By Proposition 23, this results in perfect dynamically
robust teleportation.
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4.8 Channel purity calculations for tight scheme

In this section we assess our tight scheme in the specific cases of U(1) and SU(2)
reference frame uncertainty on a qubit, and compute its average purity, comparing
this to the purity obtained by the conventional teleportation scheme. Of course, we
give no calculations for our perfect scheme, since that yields purity 1 in all cases.

4.8.1 Map purity

We begin by introducing the measure we use to evaluate the success of the proto-
col, the map purity P (ρT ) [85, 86, 105]. We first recall the definition of the Choi-
Jamio lkowski (CJ) state of a channel.

Definition 21. The Choi-Jamio lkowski state ρT of a channel T on a Hilbert space
of dimension d is

ρT =
1

2
(1⊗ T ) (ω),

where ω is the density matrix of the state 1√
d

∑d−1
i=0 |i〉 ⊗ |i〉.

Definition 22. The normalised map purity P (T ) of a channel T on a Hilbert space
of dimension d is the normalised purity of its CJ state; that is,

P (T ) = 1 +
Tr(ρT ln(ρT ))

ln(d2)
(4.16)

For the specific problem of optimising the conventional protocol over the space of all
qubit UEBs, we use the normalised linear map purity for ease of calculation.

Definition 23. The linear map purity P (T ) of a channel T on a Hilbert space of
dimension d is defined as the normalised linear purity of its CJ state; that is,

P L(T ) = Tr(ρ2
T ).

The map purity, whether linear or not, is easy to calculate and very similar to
minimum purity over pure state inputs in the qubit case [86], which we consider
here.

In this work there are two situations in which we need to calculate the map purity.
The first situation is optimisation of the linear map purity for standard teleportation
over the space of all qubit UEBs. We first note that all our channels are random
unitary channels.

73



Definition 24. A random unitary channel is a channel of the form

σ 7→
∫

X

dx[U(x)] (σ)

for some label space and probability measure (X, dx), where each U(x) is a unitary
matrix.

In our case, the channel is of the form

σ 7→
∑

i

∫

G

dg p(i)q(g)[U(i, g)](σ)

where U(i, g) are the unitaries, the label space is I×G, and the probability measure
on the label space is dgp(i)q(g); this is the product of the Haar measure, the prob-
ability p(i) of measurement result i (which is uniform), and the p.d.f. q(g) over the
set of reference frame alignments. We have the following useful expression for the
map purity of these channels.

Proposition 24 (Map purity of a random unitary channel). Let T be a random
unitary channel on a Hilbert space of dimension d. Let I = {0, . . . , n−1} be a discrete
index for the random unitary matrices with probability distribution p(i), i ∈ I, and
g ∈ G be a continuous index with p.d.f. q(g)dg, such that the probability of a given
unitary is p(i)q(g)dg. Then:

PL(T ) =
1

d2

n−1∑

i,j=0

∫

G×G
p(i)p(j)q(g)q(g′)dgdg′|Tr(U(i, g)†U(j, g′))|2 (4.17)

Proof. This is a straightforward unpacking of the definition of PL(T ) for a random
unitary channel.

We will also need to calculate the map purity from the matrix expression of the
superoperator for a given channel. Recall that a superoperator, as a linear map
on the space of density matrices, can be written as a d2 × d2 matrix [73, 106].
The density matrix of the CJ state can be obtained by ‘reshuffling’ the entries of
this superoperator matrix and multiplying by a scale factor [85], illustrated here for
d = 2: 



A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44


 7→

1

2




A11 A12 A21 A22

A13 A14 A23 A24

A31 A32 A41 A42

A33 A34 A43 A44
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4.8.2 Calculations for U(1)

Here we consider the case G = U(1), where the group of reference frame transforma-
tions acts on the qubit state as follows:

θ 7→
(

1 0
0 eiθ

)
(4.18)

Conventional scheme. We begin by finding the UEB which optimises linear map
purity for a conventional protocol. A general qubit UEB may be expressed as UEV ,
where U, V are arbitrary unitary matrices and E = {X0, X1, X2, X3} is the Pauli
UEB (4.2). Since we ignore global phase, we need only consider unitaries up to
their induced rotation of the Bloch sphere. Let Rn̂(θ) be a Bloch sphere rotation
through an angle θ around the x̂ axis; let Xi be a Pauli rotation (that is, a rotation
through an angle π around the x-, y- or z axis); and let x̂, ŷ be two unit vectors which
correspond to the choice of UEB. Then the equiprobable unitaries are as follows:

Uig = gV †XiU
†g†UXiV (4.19)

∼ V gV †XiU
†g†UXi (4.20)

= Rx̂(θ)RXi(ŷ)(−θ) (4.21)

We write ∼ to indicate that replacing unitaries (4.19) with unitaries (4.20) will yield
a channel with the same purity, because of cyclicity of the trace in (4.17). The second
equality follows by the fact that conjugating a rotation Rx̂(θ) by another rotation
Q gives QRx̂(θ)Q

−1 = RQ(x̂)(θ). By Lemma 24 we therefore have the following
expression for the effective channel:

P (T ) =
1

256π2

∑

i,j

∫ 2π

0

∫ 2π

0

dθ1dθ2|Tr[RXj(ŷ)(−θ2)RXi(ŷ)(θ1)Rx̂(θ2 − θ1)]|2 (4.22)

Here the choice of UEB corresponds to a choice of two unit vectors (x̂, ŷ) or equiva-
lently a choice of angles (ψx̂, ψŷ, φx̂, φŷ) ∈ [0, π]2× [0, 2π]2. The factor in front of the
integral is a product of the normalisation factors for the parameterisation of U(1)
and the 1/4 probabilities for measurement results i and j. The simplicity of the
integral allows us to numerically evaluate it for given x̂, ŷ with negligible error. We
performed Nelder-Mead maximisation over x̂, ŷ and found optimality of the Pauli
UEB, corresponding to angles (0, 0, 0, 0). The normalised map purity for this UEB
is

1 +
1

ln(4)
(0.75 ln(0.75) + 0.25 ln(0.25)) ' 0.59.
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Tight scheme. To employ our approach we must choose a finite subgroup H ⊂
U(1) for which an equivariant UEB exists. Since the region of integration will be the
fundamental domain of such a group, we should choose the largest such subgroup
possible; in previous work [96] this was shown to be H ' Z4, for which there exists
a two-parameter family of equivariant UEBs, all with the same orbit type:

U0 = Rẑ(θ − π) U1 = Rẑ(φ)XRẑ(−φ) U2 = Rẑ(φ)Y Rẑ(−φ) U3 = Rẑ(θ)

Here X and Y are the Pauli matrices, and Rn̂(θ) is the unitary matrix (we ignore
phase) which rotates the Bloch sphere through an angle θ about the axis n̂. The
Pauli UEB is the member of this family with parameters θ = π, φ = 0. The tight
reference frame encoding scheme for this family of UEBs was given in (4.12).

We use Theorem 6 to calculate the superoperator for the effective channel. Be-
cause the group is abelian, conjugation by π(ci) is irrelevant, so the channel will be
identical for measurements 1 and 2. For a similar reason we need only consider the
Pauli UEB, since all UEBs in the family yield identical channels. It is easy to derive
an analytic expression for p(g); we stated it at the end of Section 4.7. There we also
stated the action on an input density matrix for measurement results 1 and 2. The
normalised map purity for the effective channel is

1 +
1

ln(4)

(
1 + 3π2

4π2
ln

(
1 + 3π2

4π2

)
+
−1 + π2

4π2
ln

(−1 + π2

4π2

))
' 0.62.

4.8.3 Calculations for SU(2)

We now consider the case G = SU(2), acting on a qubit state by its defining repre-
sentation.

Conventional scheme. We have a channel of the form (4.17), which involves inte-
gration over SU(2). In order to obtain a parametrisation and measure for the integral,
we use the isomorphism between SU(2) and the unit quaternions. These quaternions,
being diffeomorphic to the 3-sphere S3, may be parametrised by hyperspherical co-
ordinates (θ, ψ, φ) ∈ D, where D = [0, π] × [0, π] × [0, 2π]. This parametrisation is
inherited by SU(2), along with the Haar measure dΩ on S3, as follows:

g(θ, ψ, φ) =

(
cos(θ) + i sin(θ) sin(ψ) sin(φ)

(
cos(ψ) + i cos(φ) sin(ψ)

)
sin(θ)

−
(
cos(ψ)− i cos(φ) sin(ψ)

)
sin(θ) cos(θ)− i sin(φ) sin(ψ) sin(θ)

)

dΩ =
1

2π2
sin2(θ) sin(ψ) dθdψdφ
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We consider the integrand. Expanding the UEB elements in the form UEV , where
U, V are arbitrary unitary matrices and E = {X0, X1, X2, X3} is the Pauli UEB, we
see that the unitaries of the channel will be, for all Y ∈ SU(2) and i ∈ I = {1, . . . , 4},

U(Y, i) = Y V †X†iU
†Y †UXiV

∼ V Y V †X†iU
†Y †UXi

where the equivalence is again a consequence of the cyclicity of the trace in (4.17).
We therefore obtain the following equation for the map purity:

P (T ) =
1

32

∫

D×D
dΩ1dΩ2|Tr[XiY1XiŨY

†
1 Y2Ũ

†XjY
†

2 Xj]|2 (4.23)

Here we performed a change of variables from Yi to Ỹi = V YiV
†, using the invariance

of the measure; we omit the tilde on the new variable. We also wrote Ũ := V U ; note
that this is the the only significant element in our choice of UEB.

There are only three relevant angle variables in the choice of UEB, corresponding
to a choice of a single unitary Ũ := V U . We performed random sampling of 100
angle triples and computed the linear map purity of the effective channel for the cor-
responding UEB using (4.23). None of these UEBs outperformed the Pauli matrices.
For these the normalised map purity is

1− 1

2 ln(4)

(
ln

(
1

2

)
+ ln

(
1

6

))
' 0.21.

Tight scheme with rod channel. The action on the rod channel considered in
Section 3.2 can be most easily expressed using the inner product–preserving isomor-
phism of SU(2)-spaces

S2 ⊂ R3 α−→ B(C2)

(nx, ny, nz) 7→
I + (nx, ny, nz) · (X, Y, Z)

2
,

(4.24)

where I,X, Y and Z are the Pauli matrices, S2 carries the obvious quotient left
action of SU(2), and B(C2) carries the left action of SU(2) by conjugation. The
encoding and decoding regions are then made up of Voronoi cells for the cardinal
points under the metric derived from the Hilbert-Schmidt inner product.

Using the above identification, we calculated p(g) and the integral (4.4) using
Monte Carlo integration with rejection sampling [83], took the average over the four
measurement results, and found normalised map purity 0.44± 0.03.
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Tight scheme with reference frame channel. Again, we choose the largest
possible subgroup H ⊂ SU(2) for which an equivariant UEB exists; in previous
work [96] this was shown to be H ' BOct, where BOct is the binary octahedral
group, which has order 48. The group BOct ⊂ SU(2) is the symmetry group of a
cube centered at the origin of the Bloch sphere and whose center-to-face axes we
take to be the x-, y- and z-axes. The Pauli UEB is, up to phase, the unique UEB
equivariant for this subgroup.

We show in Appendix 4.9.2 that the Frobenius distance function (Definition 27)
is an invariant distance function for SU(2) such that the Voronoi cell of the identity
of any subgroup in SU(2) is a fundamental domain (Proposition 25). Let F be the
Voronoi cell of the identity element of the subgroup H = BOct.

The channel is perfect for measurement result 0. However, {U1, U2, U3} is a 3-
orbit up to a phase under the conjugation action, isomorphic as a right H-set to the
right coset space obtained by taking the quotient of H by a certain subgroup K =
Stab(U1) ⊂ H. We choose right coset representatives of K in H as follows:

c1 =

(
1 0
0 1

)
c2 =

1

2

(
1− i −1− i
1− i 1 + i

)
c3 =

1√
2

(
1 + i 0

0 1− i

)

The channel expression is given by Theorem 6. We evaluated the integral using
Monte Carlo integration with rejection sampling, took the average over the four
measurement results, and found the normalised map purity of the effective channel
to be 0.32± 0.02.

4.9 Appendix to Chapter 4

4.9.1 Proof of Theorem 6

We now provide the postponed proof of this theorem.

Theorem 7 (Effective channel for a general encoding scheme). Suppose that Alice
measures some result i ∈ Ik. Then the channel induced by Procedure 3 is as follows:

Tk(ρ) =
|Ik|

µC(Ek
0 )

[π(ci)] ◦
∫

G

(
dg p(g) [π(g)†U0π(g)U †0 ]

)
◦ [π(ci)

†] (ρ) (4.25)

Here 0 ∈ Ik is any element of the orbit; the normalising factor µC(Ek
0 ) is the measure

of Ek
0 in C; p(g) =

∫
Ek0⊂C

dx1Dk0 (g · x), where 1Dk0 is a continuous approximation to

the indicator function for Dk
0 ⊂ C; and {ci}i∈Ik , ci ∈ H are such that ci · Ek

0 = Ek
i .
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Proof. We define U(x) = Uj | x ∈ Dk
j . Then, in Alice’s frame, Bob’s correction will

be:
π(gAB)†U(gAB · x)π(gAB),

where x ∈ Ek
i is the direction sent by Alice. Since both gAB ∈ G and x ∈ Ek

i

are unknown and uniformly distributed, we must average over both. When Alice
measures i ∈ Ik, the channel is as follows for input state σ:

T ki (σ) =
1

µC(Ek
i )

∫

G×C

dg dx1Eki (x) [ρ(g)†U(g · x)ρ(g)U †i ] (σ) (4.26)

Here 1Eki
is a continuous approximation to the indicator function for the region

Ei ⊂ C.
First we show that T ki = [ρ(ci)] ◦ T k0 ◦ [ρ(ci)

†]; that is, every measurement result
in a given orbit produces a similar channel. Indeed, since the product measure dg dφ
is invariant under the left G-action g1 · (g2, x) = (g2g

−1
1 , g1 ·x) on G×C, we can make

the change of variables (g, x) 7→ (gc−1
i , ci · x):

T ki (σ) =
1

µC(Ek
i )

∫

G×C

dg dx1Eki (ci · x)[ρ(ci)ρ(g)†U(g · x)ρ(g)ρ(ci)
†U †i ρ(ci)ρ(ci)

†] (σ)

=
1

µC(Ek
0 )

[ρ(ci)] ◦
∫

G×C

dg dx1Ek0 (x)[ρ(g)†U(g · x)ρ(g)U †1 ] ◦ [ρ(ci)
†] (σ)

= [ρ(ci)] ◦ T k0 ◦ [ρ(ci)
†]

To obtain the first equality we changed variables and used the fact that ρ is a
representation. For the second equality we used 1Eki

(ci · x) = 1Ek0
, linearity, and

the fact that the action of G on C is measure-preserving. We can therefore restrict
our attention to the channel where Alice measures the index 0 ∈ Ik.

We will now express the integral for the channel T k0 as a sum over integrals where
Bob performs a definite correction. The action ν : (g, x) 7→ g · x is continuous;
it follows that the preimages of the open sets Dk

i under ν are open and therefore
measurable. That the open sets ν−1(Dk

i ) cover G × C up to a set of measure zero
follows immediately from the fact that the Dk

i cover C up to a set of measure zero
and ν is a submersion. We may therefore split the domain of integration over the
ν−1(Dk

i ):

T k0 (σ) =
1

µC(Ek
0 )

∑

i∈Ik

∫

G×C
dg dx1Ek0 (x)1Dki (g · x) [ρ(g)†Uiρ(g)U †0 ] (σ)
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Now we observe that the integrals over ν−1(Dk
i ) are identical for all i ∈ Ik:

T k0 (σ) =
1

µC(Ek
0 )

∑

i∈Ik

∫

G×C
dg dx1Ek0 (x)1Dki (g · x) [ρ(c−1

i g)†U0π(c−1
i g)U0] (σ)

=
|Ik|

µC(Ek
0 )

∫

G×C

dg dx1Ek0 (x)1Dk0 (g · x) [ρ(g)†U0ρ(g)U0] (σ)

The first equality uses that Ui = ρ(ci)U0ρ(ci)
†, while in the second we performed the

change of variables (g, x) 7→ (cig, x) and noted that 1Dki ((cig) · x) = 1Dk0
(g · x). By

Fubini’s theorem this may be evaluated as an iterated integral, where x is integrated
over first:

T k0 (σ) =
|Ik|

µC(Ek
0 )

∫

G

dg

∫

C

dx1Ek0 (x)1Dk0 (g · x) [ρ(g)†U0ρ(g)U0] (σ)

This produces a weighting for g ∈ G which is precisely the measure in C of the set
Dk

0 ∩ (g · Ek
0 ). The result follows.

4.9.2 Voronoi cells

Definition 25. We say that G has an invariant distance function if there is some
distance function µ : G×G −→ R which makes G into a metric space and is invariant
under translation, i.e. µ(g1, g2) = µ(gg1, gg2) = µ(g1g, g2g) for all g1, g2, g ∈ G.

Definition 26. If G has an invariant distance function, we define the Voronoi cells
{Vh |h ∈ H} as follows:

Vh = {g ∈ G | µ(h, g) < µ(h̃, g))∀ h̃ 6= h}

That is, the Voronoi cell of h ∈ H is the set of all g ∈ G which are closer to it than
to any other element of H.

It is often possible to use the Voronoi cell Ve of the identity as a fundamental domain.
In our calculations for SU(2) uncertainty in Section 4.8, we use the Voronoi cell of
the identity under the Frobenius distance function as a fundamental domain for
BOct ⊂ SU(2). We now define the Frobenius distance function and show that the
Voronoi cell of the identity for this distance function on SU(2) is indeed a fundamental
domain.
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Definition 27. For a matrix Lie group embedded in M(n), one may consider the
matrices within G as forming a submanifold of Cn2

; the Euclidean distance on that
space induces a metric on G by restriction, which we call the Frobenius distance
function:

µF (M1,M2) =

√
1

d
Tr[(M1 −M2)†(M1 −M2)]

In order to show that the Voronoi cell of the identity is a fundamental domain, we
first prove a simple lemma.

Lemma 10. Let G be a compact Lie group with invariant distance function µ, and
let H ⊂ G be a finite subgroup. Then the Voronoi cells Vh are the H-translates Veh.
Moreover, the Voronoi cell of the identity Ve is a fundamental domain if for every
h ∈ H, h 6= e, the set

{g ∈ G |µ(g, e) = µ(g, h)} (4.27)

has measure zero.

Proof. It is easy to see that the Voronoi cells are all H-translates of the Voronoi cell
of the identity. Indeed, for x ∈ Ve we have that µ(e, x) < µ(h, x) for all h 6= e. We
therefore see that xh ∈ Vh, since µ(h2, xh) = µ(h2h

−1, x), which is minimised when
h2h

−1 = e, that is, when h2 = h. Therefore Vh = Veh.
For the first statement, the {Vh}h∈H clearly cover G except for some subset of

the union ⋃

h1,h2∈H
{g ∈ G |µ(h1, g) = µ(h2, g)}

of sets of points equidistant from two elements of H. If this is of measure zero then
Ve will be a fundamental domain. Now note that µ(h1, g) = µ(h2, g)⇔ µ(e, g−1h1) =
µ(g, h2). Let ḡ = g−1h1. We have

⋃

h1,h2∈H
{g ∈ G |µ(h1, g) = µ(h2, g)} =

⋃

h1,h2∈H
{(ḡ ∈ G |µ(e, ḡ) = µ(h1ḡ

−1, h2)}

=
⋃

h1,h2∈H
{(ḡ ∈ G |µ(e, ḡ) = µ(h−1

2 h1, ḡ)}

=
⋃

h∈H
{(ḡ ∈ G |µ(e, ḡ) = µ(h, ḡ)},

so the union of sets of points equidistant from two elements of H has measure zero
if and only if the union of sets of points equidistant from the identity and one other
element of H does.
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Finally, we show for SU(2) under the Frobenius distance function that the Voronoi
cell of the identity is a fundamental domain.

Proposition 25. For any h ∈ SU(2), the subset {g ∈ G |µ(g, e) = µ(g, h)} has
measure zero, where µ is the Frobenius distance function.

Proof. We have:

µ(g, h)2 ∼ |Tr[(g − h)†(g − h)]|
= |Tr[2 · 1− (h†g + g†h)]|
= 2|2− Re(Tr[gh†])|

For µ(g, e) = µ(g, h) it is therefore necessary that

|2− Re(Tr[gh†])| = |2− Re(Tr[g])| (4.28)

Note that Re(Tr[u]) = Tr[u] = 2 cos(θu/2) for any u ∈ SU(2), where θu is the angle of
the corresponding rotation of the Bloch sphere. Now we have9 the following equation
for the angle of rotation θ12 of the composition Rn̂2(θ2)◦Rn̂1(θ1) of two special unitary
matrices which are rotations of the Bloch sphere through angles θ1, θ2 around the
axes n̂1, n̂2 respectively:

c12 = c1c2 − s1s2n̂1 · n̂2 (4.29)

Here c12 = cos(θ12/2), ci = cos(θi/2) and si = sin(θi/2). Suppose we have some
g = Rn̂1(θ1), h = Rn̂2(θ2) for which Equation 4.28 holds. Then we have c12 = c2. We
consider small changes in c1. Locally parametrising SU(2) by the angle of rotation
θ1 and the spherical polar angles φ1 ∈ [−π, π), ψ1 ∈ [0, π) determining n̂1, it is easy
to check that there is no point at which ∂c12

∂θ1
= ∂c12

∂φ1
= ∂c12

∂ψ1
= 0. Therefore, we can

always change the value of c12 in Equation 4.29 by a small change in c1. It follows
that the set has measure zero, since the Haar measure on SU(2) is induced by a
Riemannian metric.

9See Exercise 4.15 of [79].
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Part II

Quantum pseudo-telepathy
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Chapter 5

Pseudo-telepathy and
noncommutative mathematics

Nonlocal games in quantum information theory. Bell showed [15] that the
experimental predictions of quantum mechanics violate those of classical mechanics.
Nonlocal games are a family of scenarios in which these violations are clearly ob-
served. In these games two or more non-communicating parties, possibly sharing an
entangled state, must perform a task for which guaranteed success would ordinarily
require communication.

For a two-player game, the general set-up is as follows. The players Alice and
Bob communicate with a third party called the verifier. The game is defined by
four sets XA, XB, YA, YB (Alice’s input set, Bob’s input set, Alice’s output set, and
Bob’s output set) and a subset R ⊂ XA ×XB × YA × YB. Alice and Bob know this
information, but may not communicate once the game has begun. When the game
starts, the referee sends Alice and Bob elements xA ∈ XA, xB ∈ XB respectively,
and they must return elements yA ∈ YA, yB ∈ YB respectively; they win the game if
(xA, xB, yA, yB) ∈ R. (See Figure 5.1.) They may share some classical randomness
before the game begins; while allowing for probabilistic mixtures of classical strategies
may improve the winning probability, the classical correlations Alice and Bob share
are necessarily independent of the vertices xA, xB they each receive from the verifier.

This is not the case when the two non-communicating players share a pair of
entangled quantum systems, since one player’s measurements on their half of the
entangled state will affect the outcomes of the other player’s measurements on the
other half. Since quantum mechanics does not permit superluminal signalling, Alice
and Bob cannot use these correlations to communicate; they can nevertheless use
the correlations to coordinate their responses to the verifier, thereby increasing their
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Alice Bob

Verifier

yA xA xB yB

(xA, xB , yA, yB) ∈ R?

|ψ〉

Figure 5.1: The setup for a two-player nonlocal game. While Alice and Bob may
not communicate, they may share an entangled state |ψ〉 which they can use to
coordinate their response to the verifier.

A BxA xB

yA yB

(yA, yB) ∈ R|xA,xB

|ψ〉

Figure 5.2: An application of quantum pseudo-telepathy to distributed quantum
computation. Using shared entanglement, two unconnected nodes compute the rela-
tion R on a given input.

success probability for some games. This phenomenon has been called quantum
pseudo-telepathy [22], because Alice and Bob’s success makes it seem as though they
have communicated, even though no communication has occured.

This phenomenon has been usefully applied to distributed quantum computa-
tion [21], zero-error communication [32] and device-independent quantum cryptogra-
phy [2]. We briefly describe the first of these. Suppose that a distributed computer
contains two unconnected nodes A,B, which can each receive data from sets XA, XB,
and transmit data from sets YA, YB. (See Figure 5.2.) A strategy for the nonlocal
game is then precisely a strategy allowing A,B to compute the relation R. That
is, whenever xA, xB are received by the nodes, they will transmit yA, yB such that
(xA, xB, yA, yB) ⊂ R. In general, shared entanglement allows the relation to be
computed with higher probability.

It is very natural to ask which nonlocal games have perfect strategies with shared
entanglement (that is, strategies where Alice and Bob win the game with probability
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1), but not without it. In this case, algebraic and combinatorial techniques become
much more relevant.

Two approaches to quantisation. In particular, a remarkable connection to
noncommutative mathematics has recently been identified [65, 76]. Noncommuta-
tive mathematics studies noncommutative, or ‘quantum’, analogues of structures in
classical mathematics. The approach is as follows: instead of a finite set X, one
considers the finite-dimensional commutative C∗-algebra CX of complex functions
f : X −→ C, where multiplication in the C∗-algebra is pointwise multiplication of
functions and ∗ is complex conjugation. It is easy to check that a function f : X −→ Y
induces a ∗-homomorphism f : CY −→ CX. Going the other way, one can obtain a
set from a commutative C∗-algebra by taking its spectrum, and a ∗-homomorphism
between C∗-algebras contravariantly induces a function between spectra. In categor-
ical language, there is a duality between the category of finite sets and functions and
the category of finite-dimensional C∗-algebras and ∗-homomorphisms, called Gelfand
duality.

Structures on the finite set X induce dual structures on CX. For instance, a
group structure on X (a multiplication function m : X × X −→ X, an inversion
map i : X −→ X, and a map e : {·} −→ X picking out the identity element, obeying
the conditions defining a group) induces a ∗-homomorphism m̃ : CX −→ CX ⊗ CX,
called the comultiplication, a homomorphism ĩ : CX −→ CX, called the antipode, and
a homomorphism ẽ : CX −→ C, called the counit. The equations making (X,m, i, u)
into a group imply that (CX, m̃, ĩ, ẽ) is a Hopf ∗-algebra (for a definition, see [66]),
which is commutative, since multiplication of functions is commutative. Going the
other way, the structure of a Hopf ∗-algebra on a commutative finite-dimensional
C∗-algebra induces the structure of a group on its spectrum. One may therefore
identify finite groups with finite-dimensional commutative Hopf algebras.

Once a structure has been formulated in terms of a commutative C∗-algebra,
it is easy to ‘quantise’ it: one simply drops the commutativity condition on the
C∗-algebra. A finite quantum set, therefore, is simply a general (i.e. possibly non-
commutative) finite-dimensional C∗-algebra. (We generally conflate sets with their
associated algebras, simply referring to finite dimensional C∗-algebras as quantum
sets, rather than ‘function algebras on complex sets’.) A finite quantum group is
a general (i.e. possibly noncommutative) finite-dimensional Hopf ∗-algebra. The
theory of these quantum structures may be developed analogously to the classical
theory, although there is generally no obvious structure on the other side of the
duality. These arguments extend from finite sets to compact topological spaces; a
compact quantum topological space is a C∗-algebra, and a compact quantum group is
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a Hopf ∗-algebra.
It is also possible to quantise functions. Since functions between sets induce ∗-

homomorphisms between their corresponding algebras, we may take ∗-homomorphisms
between quantum sets to correspond to ordinary functions. However, the ∗-homomorphisms
between two C∗-algebras form an ordinary set, not a quantum set. One is therefore
led to seek a definition of quantum functions. There are several ways to obtain this:
for instance, one involves a universal construction in the category of C∗-algebras and
∗-homomorphisms [92], while another is motivated by diagrammatic calculus and
topology [76]. They all result in the same definition in the finite-dimesional case: a
quantum function A −→ B is a ∗-homomorphism CB −→ CA ⊗ B(H), where H is
some auxiliary finite-dimensional Hilbert space. A notion of quantum bijection then
can be defined [76], and from there a notion of quantum graph isomorphism [76].

It is not obvious that this has anything to do with quantum information theory.
However, there is a deep and surprising connection to nonlocal games, at least in
the setting of perfect strategies. This is because we can also define a notion of
quantisation using nonlocal games: one finds a nonlocal game whose perfect classical
strategies are all the instances of a certain type of mathematical object. One can
then define the quantum analogue of that type of mathematical object to be the
thing whose instances are the perfect quantum strategies (i.e. those using a shared
entangled state). We now introduce the particular example we consider in this thesis.

Definition 28 ([6]). The graph isomorphism game is defined by two graphs Γ,Γ′

with vertex sets VΓ, VΓ′ respectively. The verifier sends vertices vA, vB ∈ VΓ to Alice
and Bob respectively, and they return vertices wA, wB ∈ V ′Γ to the verifier. Alice and
Bob win the game if the relationship between wA and wB — i.e. ‘same’, ‘connected’
or ‘disconnected’ — is the same as the relationship between vA and vB.

In a deterministic classical strategy, the vertices Alice and Bob return depend only
on the vertices they receive. This corresponds to a function f : VΓ −→ VΓ′ , where Alice
and Bob return vertices f(vA) and f(vB) respectively. (To see that they both use
the same function fA = fB = f , note that if the verifier sends the same vertex x to
Alice and Bob then they must both return the same vertex, implying fA(x) = fB(x)
for all x.) It is straightforward to check that, for a perfect classical strategy, f must
be a graph isomorphism [6, Sec.3.1].

It turns out that these two approaches to quantisation produce identical defini-
tions of quantum graph isomorphism. One may therefore use the tools of noncom-
mutative topology to construct and classify instances of quantum pseudo-telepathy
in the graph isomorphism game.
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The Morita theory of quantum graph isomorphisms. In the paper [77], the
present author and collaborators showed that one can completely classify the finite-
dimensional quantum isomorphisms out of a given graph Γ (that is, the strategies
for the graph isomorphism game with graphs (Γ,Γ′) for any graph Γ′ which use a
finite-dimensional entangled resource), as well as the graphs quantum isomorphic to
that graph (that is, the isomorphism classes of graphs Γ′ for which the quantum
graph isomorphism game with graphs (Γ,Γ′) can be won with a finite-dimensional
entangled resource), in terms of structures in the ‘category of finite-dimensional
quantum elements’ of the quantum automorphism group of that graph. We review
these results in some detail in Chapter 6, but will give a rough overview now.

The definition of quantum elements of a quantum group can be motivated by
observing that the isomorphism classes of irreducible representations of the com-
mutative Hopf ∗-algebra CG, for some finite group G, are all one-dimensional, and
correspond to the elements of the group.1 We can therefore analogously define the
finite-dimensional ‘quantum elements’ of an (imagined) compact quantum group to
be the finite-dimensional representations of its Hopf C∗-algebra of functions.

We classify finite-dimensional quantum graph isomorphisms out of Γ by consider-
ing the finite-dimensional quantum elements of the automorphism group of Γ (these
are finite-dimensional quantum automorphisms, each corresponding to a strategy for
the graph isomorphism game with graphs (Γ,Γ) using a finite-dimensional entan-
gled state). Indeed, in the category of finite-dimensional quantum automorphisms
of Γ, some of the quantum automorphisms carry an algebraic structure — a simple
dagger Frobenius algebra — which indicates that they have been obtained by com-
posing a quantum graph isomorphism with its dual (the quantum equivalent of the
inverse). We show that any quantum automorphism carrying an algebraic structure
of this kind can be split to obtain a quantum graph isomorphism out of the graph,
and that, moreover, any quantum isomorphism out of the graph produces such a
quantum automorphism by composition with its dual. We therefore obtain a corre-
spondence between ∗-isomorphism classes of simple dagger Frobenius algebras in the
category of quantum automorphisms of a graph, and quantum isomorphisms out of
that graph.

For the graph isomorphism game, we are only really interested in the graphs
which are quantum isomorphic, and not the quantum isomorphisms themselves. This
is where Morita theory comes in; it allows us to classify the simple dagger Frobenius

1This can be seen immediately, since the matrix algebra B(H) has only one irreducible represen-
tation, of dimension dim(H); a commutative C∗ algebra has only one-dimensional factors (which in
this case correspond to elements of the group); and the representations of a direct sum of algebras
are direct sums of representations of the factors.
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algebras which correspond to quantum isomorphisms from the same graph. We say
that two algebras are Morita equivalent if there is a dagger bimodule between them
in the category of elements of the quantum automorphism group. This notion of
equivalence of simple dagger Frobenius algebras is weaker than ∗-isomorphism. We
obtain a correspondence between Morita equivalence classes of simple dagger Frobe-
nius algebras in the category of quantum automorphisms of a graph, and quantum
isomorphic graphs.

Constructing quantum graph isomorphisms. Although this classification is
fully general, the category of quantum automorphisms of a given small graph is in
general poorly understood. In order to construct isomorphisms, we therefore restrict
our attention to the classical subcategory of quantum automorphisms generated by
the ordinary automorphisms of the graph. (A classical automorphism can be consid-
ered as a quantum automorphism with a one-dimensional Hilbert space, and these
generate a subcategory under direct sum; see Section 6.3.3.) Perhaps surprisingly,
this classical subcategory contains simple dagger Frobenius algebras which split to
give nontrivial quantum bijections out of the graph.

In the Chapter 7 we discuss the construction of quantum graph isomorphisms
from these algebras in the classical subcategory. First, we classify the algebras, and
show that they correspond to subgroups of the automorphism group of the graph
of central type. These groups generalise the Pauli matrices: like Z2 × Z2, they are
groups which have a faithful projective representation as a basis of orthogonal unitary
matrices (a unitary error basis).

For any one of these algebras which gives rise to a classical quantum isomorphic
graph (this requires an additional group-theoretical condition, since there are such
things as quantum graphs) we explicitly construct the new graph, and the quantum
isomorphism giving the strategy for the graph isomorphism game, and consider when
this new graph will be isomorphic. We also discuss the connection to the linear
constraint system games such as the Mermin-Peres magic square game. It is to be
hoped (and is a matter for further computational investigation) that these central
type groups will give rise to a large number of new instances of nonlocal games that
may be won perfectly using shared entanglement, but not without it.
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Chapter 6

Quantum bijections and quantum
isomorphisms

6.1 Introduction

6.1.1 Background

Pseudo-telepathy and the graph isomorphism game

Quantum pseudo-telepathy [22] is a well studied phenomenon in quantum informa-
tion theory, where parties can use non-signalling correlations from pre-shared entan-
glement to perform tasks classically impossible without communication. These tasks
are generally formulated as games; in these games, players are provided with inputs
by a verifier, and must each return outputs satisfying some winning condition. One
such game is the graph isomorphism game [6], which generalises the linear constraint
system games studied intensively in recent years [27, 28, 91].

Definition 29 ([6]). The graph isomorphism game is defined by two graphs Γ,Γ′

with vertex sets VΓ, VΓ′ respectively. Two non-communicating players, Alice and
Bob, communicate with a verifier. The verifier sends vertices vA, vB ∈ VΓ to Alice
and Bob respectively; they return vertices wA, wB ∈ V ′Γ to the verifier. Alice and
Bob win the game if the relationship between wA and wB — i.e. ‘same’, ‘connected’
or ‘disconnected’ — is the same as the relationship between vA and vB.

In a deterministic classical strategy, the vertices Alice and Bob return depend only
on the vertices they receive. This corresponds to a function f : VΓ −→ VΓ′ , where Alice
and Bob return vertices f(vA) and f(vB) respectively. (To see that they both use
the same function fA = fB = f , note that if the verifier sends the same vertex x to
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Alice and Bob then they must both return the same vertex, implying fA(x) = fB(x)
for all x.) A strategy is perfect if, using it, Alice and Bob win the game for any input
xA, xB sent by the verifier. It is easy to see that, for a perfect classical strategy, f
must be a graph isomorphism [6, Sec.3.1].

We can also consider quantum strategies. While Alice and Bob may share an
entangled bipartite quantum state and use the non-signalling correlations to syn-
chronise their outputs.

A quantum graph isomorphism is a set of projective measurements on a Hilbert
space H of dimension d, indexed by elements of VΓ and with outcome set VΓ′ , sat-
isfying certain orthogonality conditions. A quantum graph isomorphism defines a
quantum strategy, where Alice and Bob perform these measurements their half of a
maximally entangled pair of d-dimensional quantum systems. (More general classes
of quantum measurements and entangled states could be considered, but all strate-
gies are quantum graph isomorphisms up to convex combination; this is true of all
synchronous games [47].)

Quantum pseudo-telepathy in the graph isomorphism game is exhibited by pairs
of non-isomorphic graphs which are quantum isomorphic. The only known examples
come from quantum but not classically satisfiable linear constraint systems; the
smallest known of these has 24 vertices [65], and is obtained from the quantum
solution to the well-known Mermin-Peres magic square [72].

A compositional approach

To find new examples of quantum pseudo-telepathy in the graph isomorphism game
and other synchronous games, we propose a new approach. In [76], the author and
collaborators show how quantum isomorphisms fit into a general theory of quantum
functions. A quantum function between classical sets X −→ Y is an X-indexed
family of projective measurements with outcomes in Y ; this is a matrix of projectors
{Px,y}x∈X,y∈Y on a finite-dimensional Hilbert space HP such that each row {Px,y}y∈Y
forms an orthonormal decomposition of the identity operator on HP .

Quantum functions P : X −→ Y and Q : Y −→ Z can be composed, giving
a quantum function Q ◦ P : X −→ Z; explicitly, this is defined as (Q ◦ P )x,z :=∑

y∈Y Q ⊗ P on the Hilbert space HQ◦P := HQ ⊗HP . This generalises the ordinary
composition of functions. On the other hand, unlike classical functions, for quantum
functions P,Q : X −→ Y with underlying Hilbert spaces HP and HQ we can consider
compatible linear maps f : HP −→ HQ fulfilling fPx,y = Qx,yf for all x ∈ X, y ∈ Y .
These intertwiners imply that the quantum functions between two sets form, not a
set, but a category.
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Using this compositional framework, we define notions of quantum bijection and
quantum graph isomorphism, recovering the game-theoretical definition and placing
it within a broader setting of noncommutative set theory which includes the non-
commutative graphs considered in zero-error quantum communication [36]. We also
make contact with compact quantum group theory; the category QPerm(A) of quan-
tum permutations of a set, and the category QAut(Γ) of quantum automorphisms of
a graph, are finite dimensional representation categories of certain well-studied Hopf
C∗-algebras.

Quantum bijections from classical symmetries

This framework can be applied to classify and construct quantum bijections. We
show in [77] that the quantum bijections into a set A can be completely classified
in terms of algebraic structures in the category QPerm(A). Indeed, any bijection
into a set gives a simple dagger Frobenius monoid in QPerm(A), and two equivalent
quantum bijections give rise to ∗-isomorphic Frobenius monoids. Going in the other
direction, we can split any simple dagger Frobenius monoid in order to obtain the
corresponding quantum bijection.

Although a general ∗-isomorphism classification of simple dagger Frobenius monoids
in QPerm(A) currently seems unfeasible, we can focus on the subcategory generated
by classical permutations, where the algebraic classification reduces to a group–
theoretical one. In this thesis we will focus on this group-theoretical construction of
quantum bijections. The relevance for quantum graph isomorphisms is that a graph
structure on a set A can be uniquely ‘pulled back’ along a quantum bijection to make
it a quantum isomorphism; this new graph need not be classically isomorphic.

6.1.2 Overview of this chapter

In this chapter we will give an accessible overview of the relevant results from the two
papers [76, 77]. In the next chapter we will use these results to consider constructions
of quantum bijections from group theoretical data, applicable to quantum pseudo-
telepathy.

Contents of this chapter. In Section 6.2 we introduce Gelfand duality, the basis
of our approach to quantum functions. In Section 6.3 we define quantum bijections
and explain their various properties. In Section 6.4 we show how quantum graph
isomorphisms fit into our framework. In Section 6.1.4 we give a brief overview of the
graphical calculus we use to derive many of these results.
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6.1.3 Notation and conventions.

In this chapter and the next we assume some basic notions in category theory, of the
sort that could be found in an introductory course [19, 98].

We make use of the graphical calculus for tensor categories; a brief overview is
given in Section 6.1.4. We read diagrams from bottom to top.

All the sets and quantum sets we consider are finite, and all the Hilbert spaces
we consider are finite-dimensional.

For a group L, we write ZL(S) and NL(S) for the centraliser and normaliser of a
subset S ⊂ L in L, respectively. We denote the commutator of two group elements
a, b ∈ L by [a, b] := aba−1b−1, and define the commutator of two subsets similarly.
We write Sn for the symmetric group on n points.

6.1.4 The graphical calculus of string diagrams

We make use of the graphical calculus of monoidal dagger categories [29, 88]. Mostly,
this will be the graphical calculus of the category Hilb of finite-dimensional Hilbert
spaces and linear maps. Before commencing the mathematical material, we briefly
review this calculus.

In the graphical calculus, morphisms are displayed as string diagrams, which we
read from bottom to top. In these diagrams of strings and nodes, strings are labelled
with objects, and nodes are labelled with morphisms. The string for the monoidal
unit I is not drawn. Composition and tensor product are depicted as follows:

A

B

C

f

g

A B

C D

f g (6.1)

gf : A −→ C f ⊗ g : A⊗B −→ C ⊗D
In a monoidal dagger category, given a morphism f : A −→ B, we express its †-adjoint
f † : B −→ A as a reflection of the corresponding diagram across a horizontal axis.

Restricting attention to the category Hilb, we note that all finite-dimensional
Hilbert spaces V have dual spaces V ∗ = Hom(V,C), represented in the graphical cal-
culus as an oriented wire with the opposite orientation as V . Duality is characterized
by the following linear maps, here called cups and caps :

VV ∗

V V ∗

V V ∗

VV ∗

(6.2)

f ⊗ v 7→ f(v) 1 7→ 1V v ⊗ f 7→ f(v) 1 7→ 1V
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To define the second and fourth map, we have identified V ⊗V ∗ ∼= V ∗⊗V ∼= End(V ).
It may be verified that these maps fulfill the following snake equations :

= = = = (6.3)

Together with the swap map σV,W : v ⊗ w 7→ w ⊗ v, depicted as a crossing of wires,
this leads to a very flexible topological calculus, allowing us to untangle arbitrary
diagrams and straighten out any twists:

= = = (6.4)

A closed circle evaluates to the dimension of the corresponding Hilbert space:

= = dim(H) (6.5)

6.2 Frobenius monoids and Gelfand duality

Our framework for quantum functions puts finite set theory into the setting of linear
algebra. In this way, we are able to formulate functions as linear maps, allowing us
to generalise the definition to quantum functions of a higher dimension, and also to
quantum functions between quantum sets.

To do this we use Gelfand duality for finite sets; in particular, a Frobenius al-
gebraic formulation admitting a diagrammatic calculus whose convenience will soon
become clear.

6.2.1 Frobenius monoids

Definitions

Finite sets correspond to certain Frobenius monoids in the category Hilb of finite-
dimensional Hilbert spaces and linear maps. We first recall the definition of a Frobe-
nius monoid.

94



Definition 30. In a monoidal category, a monoid is an object M with multiplication
and unit morphisms, depicted as follows:

(6.6)

m : M ⊗M −→M u : I −→M

These morphisms are associative and unital :

= = = (6.7)

Analogously, a comonoid is an object C with a coassociative comultiplication δ :
C −→ C ⊗ C and counit ε : C −→ I. The †-adjoint 6.1.4 of a monoid in a monoidal
dagger category is a comonoid.

For all these multiplication, comultiplication, unit and counit morphisms we draw
white nodes rather than labelled boxes, to be concise; we can easily distinguish the
morphisms by their type.

Definition 31. A dagger Frobenius monoid in a monoidal dagger category is a
monoid where the monoid and †-adjoint comonoid structures are related by the
Frobenius equation:

= = (6.8)

A dagger Frobenius monoid is special if equation (6.9a) holds. In Hilb, such a
monoid is moreover symmetric or commutative if one of (6.9b) or (6.9c) holds.

= = = (6.9)

a) special b) symmetric c) commutative

By (6.7) and (6.8), the following cups and caps fulfil the snake equations (6.3):

:= := (6.10)

There is also a notion of morphism between dagger Frobenius monoids.
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Definition 32. A ∗-homomorphism f : A −→ B between dagger Frobenius monoids
A and B is a morphism f : A −→ B satisfying the following equations:

f

=
f f

f

= f† = f (6.11)

A ∗-cohomomorphism f : A −→ B is a morphism f : A −→ B satisfying the following
equations:

f
=

f f

f
= f† = f (6.12)

A ∗-isomorphism is a ∗-homomorphism which is also a ∗-cohomomorphism.

It can be shown that the dagger of a ∗-homomorphism is a ∗-cohomomorphism;
every ∗-isomorphism is unitary; and every unitary ∗-homomorphism between dagger
Frobenius monoids is a ∗-isomorphism.

We refer to Frobenius monoids in Hilb as Frobenius algebras. One important
example is the endomorphism algebra of a Hilbert space.

Definition 33. The endomorphism algebra of a Hilbert space H is defined to be
the following special symmetric dagger Frobenius algebra on H ⊗ H∗ (where n =
dim(H)):

1√
n

√
n

1√
n

√
n (6.13)

6.2.2 Gelfand duality for finite sets

We now recall how finite sets and functions may be identified with Frobenius algebras
and their cohomomorphisms, using the framework established by Coecke, Pavlović
and Vicary [30].

Example 11. Let {|i〉}1≤i≤n be an orthonormal basis of a Hilbert space H. The
following multiplication and unit maps and their adjoints form a special commutative
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dagger Frobenius algebra on H:

:=
n∑

i=1
i† i†

i

:=
n∑

i=1

i
(6.14)

m : |i〉 ⊗ |j〉 7→ δi,j |i〉 u : 1 7→
n∑

i=1

|i〉

In fact, every special commutative dagger Frobenius algebra A comes from an or-
thonormal basis of A; the basis vectors are given by the copyable elements of A,
defined as follows.

Definition 34. A copyable element of a special commutative dagger Frobenius al-
gebra A is a vector |ψ〉 ∈ A, such that the following hold:

ψ

= ψ ψ

ψ
= ψ† = ψ (6.15)

Theorem 8 ([30, Theorem 5.1.]). The copyable elements of a special commutative
dagger Frobenius algebra A are an orthonormal basis of A for which the monoid is
defined as in in Example 11.

Every special commutative dagger Frobenius algebra in Hilb is therefore defined
by Example (6.14) for some orthonormal basis on a Hilbert space. This gives a
correspondence between sets (which can be considered as orthonormal bases of some
Hilbert space) and special commutative dagger Frobenius algebras in Hilb.

We develop a similar correspondence for functions. For a special commutative
dagger Frobenius algebra A, let Â be its set of copyable elements. It can be shown
that function Â −→ B̂ gives rise to a ∗-cohomomorphism between A and B, and,
conversely, every ∗-cohomomorphism A −→ B comes from such a function.

Corollary 3 ([30, Corollary 7.2.]). The category of special commutative dagger Frobe-
nius algebras and ∗-cohomomorphisms in Hilb is equivalent to the category of finite
sets and functions.

This equivalence takes a special commutative dagger Frobenius algebra A to the set
of copyable elements Â, and a set X to the algebra associated to the orthonormal
basis {|x〉 | x ∈ X} of C|X|. We therefore consider the category of finite sets as
‘contained within Hilb’ using the following identification.
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Set Hilb
sets of cardinality n special commutative dagger Frobenius algebras of dimension n
elements of the set copyable states of the Frobenius algebra
functions ∗-cohomomorphisms
bijections ∗-isomorphisms
the one element set {∗} the one-dimensional Frobenius algebra C

We also broaden our analysis to include noncommutative Frobenius algebras, as
is common in noncommutative topology. In noncommutative topology, one identifies
finite sets X with commutative special symmetric dagger Frobenius algebras1 CX
of functions X −→ C. Structures on X correspond to dual algebraic structures on
the CX; for instance, a monoid structure on X induces a comonoid structure on the
algebra CX.

By analogy, one then considers general (i.e. possibly noncommutative) special
symmetric dagger Frobenius algebras2 as dual to finite quantum sets. The dual
algebraic structures on function algebras CX can usually be extended to general
special symmetric dagger Frobenius algebras also, giving a method of quantisation.
For instance, a comonoid structure on such an algebra could be thought of as dual
to a quantum monoid.

Definition 35 (Quantum set). A quantum set is defined to be a special symmetric
dagger Frobenius algebra (equivalently, a finite-dimensional C∗-algebra.)3

6.3 Quantum bijections

6.3.1 Definition

We now define the correct notion of a quantum bijection between quantum sets. The
simplest approach is based on the fact that an ordinary bijection is a ∗-cohomomorphism
which is also a ∗-homomorphism. We define a quantum bijection analogously, adding
an additional Hilbert space wire corresponding to the quantum resource used to per-
form the bijection.4

1These are precisely commutative finite-dimensional C∗-algebras [97, Theorem 4.6 and 4.7].
2These are precisely finite-dimensional C∗-algebras [97, Theorem 4.6 and 4.7].
3Properly, this is the function algebra dual to the quantum set, but we conflate the two notions.
4For a detailed explanation of our quantisation procedure, see [76, Introduction].
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Definition 36. A quantum bijection between quantum sets A and B is a pair (H,P ),
where H is a Hilbert space and P is a linear map H ⊗ A−→B ⊗ H satisfying the
following:

P =
P

P

P = P † = P

P =
P

P

P = (6.16)

Definition 37. The dimension of a quantum bijection (H,P ) is the dimension of
H, its underlying Hilbert space.

Remark 5. A one-dimensional quantum bijection (an ordinary bijection) is an ordi-
nary ∗-isomorphism of Frobenius algebras, by comparison of (6.11-6.12) with (6.16).

Definition 38. We call ordinary bijections from a quantum set to itself permutations,
and denote the group of permutations of a quantum set A by Perm(A).

The underlying Hilbert space gives a notion of morphism between quantum bijec-
tions.

Definition 39. An intertwiner of quantum bijections (H,P ) −→ (H ′, P ′) is a linear
map f : H −→ H ′ such that the following holds:

f

P ′

=
f

P
(6.17)

An equivalent way to define a quantum bijection is as a dagger-dualisable quantum
function [76, Def. 4.6]. Dualisability is a kind of weak invertibility which is standard
in category theory. Here all we need of this definition is its following consequence.

Theorem 9 ([76, Theorem 4.8]). For every quantum bijection (H,P ) : A −→ B
between quantum sets, there exists a quantum bijection (H∗, P ) : B −→ A, whose
underlying linear map P : H∗ ⊗ B −→ A ⊗ H∗ fulfils equations (6.19) and (6.20),
which express that the cups and caps (6.2) are intertwiners.

P := P † = P (6.18)
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P
P = P

P = (6.19)

P
P = P

P = (6.20)

6.3.2 Quantum bijections between classical sets

For the graph isomorphism game, we are particularly interested in quantum bijec-
tions between classical sets. In this case, we will now see that Definition 36 reduces
to the definition of a controlled projective measurement we saw in the introduction.

Theorem 10. A quantum bijection X −→ Y between classical sets X and Y is a
family of projectors {Px,y}x∈X,y∈Y on a Hilbert space H such that the following holds,
for all x ∈ X and y1, y2 ∈ Y :

Px,y1Px,y2 = δy1,y2Px,y1

∑

y∈Y
Px,y = 1H (6.21)

Px1,yPx2,y = δx1,x2Px1,y

∑

x∈X
Px,y = 1H (6.22)

Proof. The elements of the set X form a basis of copyable elements of the corre-
sponding algebra (Definition 34). We expand the linear map P : H ⊗X −→ Y ⊗H
in this basis: :

Px,y := P

x

y

As an example, the first equation of (6.16), expanded in the classical basis, becomes
δy,y′Px,y = Px,yPx,y′ :

δy,y′ P

y

x

= P

yy′

x

(6.16)
=

P
P

yy′

x

= P
P

yy′

x x

The other equations are obtained similarly from (6.16).
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Considering these projectors as arranged in an |X| × |Y | matrix, equation (6.21)
states that the projectors along each row form a complete orthogonal family, while
equation (6.22) requires this for each column also. Matrices of projectors obeying
both the row and the column equations have been called magic unitaries [12] and
projective permutation matrices [6] (PPMs). We here adopt the latter terminology.

Remark 6. For matrices of projectors, composition of quantum bijections P : X −→ Y
and Q : Y −→ Z takes the form

(Q ◦ P )x,z =
∑

y∈Y
Qy,z ⊗ Px,y.

A linear map f : H −→ H ′ is an intertwiner f : (H,P ) −→ (H ′, P ′) if

fPx,y = P ′x,yf.

Quantum bijections only exist between classical sets of the same cardinality.

Proposition 26 ([76, Prop. 4.17]). If there is a quantum bijection X −→ Y , between
classical sets, then |X| = |Y |. (Every projective permutation matrix is square.)

6.3.3 The direct sum of quantum bijections

Quantum bijections A −→ B between two quantum sets do not just form a set,
but rather a category QBij(A,B), whose objects are quantum bijections and whose
morphisms are intertwiners. This category behaves much like the category of repre-
sentations of a finite group.5 In particular, there is a notion of direct sum of quantum
bijections.

Definition 40. The direct sum of quantum bijections (H,Q) and (H ′, P ) is defined
as (H ⊕H ′, Q⊕ P ), where Q⊕ P is the direct sum of the underlying linear maps:

A

H ⊕H′B

H ⊕H′
Q⊕ P =

A

HB

H

Q ⊕
A

H′B

H′

P (6.23)

If (H,P ) and (H ′, Q) are quantum bijections A −→ B between classical sets, then the
direct sum has underlying Hilbert space H ⊕H ′, and projectors:

(P ⊕Q)a,b = Pa,b ⊕Qa,b (6.24)

5In fact, we showed that QBij(A,B) is the category of representations of a certain C∗-algebra [76,
Sec. 3.4].
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Definition 41. A quantum bijection P is simple if it cannot be decomposed as
direct sum of two nonzero quantum bijections.

Remark 7. Every ordinary bijection is a simple quantum bijection, by dimensional
considerations. However, not all simple quantum bijections are ordinary bijections,
in general.

Theorem 11 ([76, Thm. 6.4]). For any pair of quantum sets A and B, QBij(A,B)
is a semisimple category.

We do not fully state the definition of semisimplicity here (see [76, Def. 6.19]), but
rather draw out its two main consequences for this work.

1. Every quantum bijection decomposes as a finite direct sum of a unique multiset
of simple quantum bijections.

2. In the category QBij(A,B), all idempotents split.

Remark 8. There are usually an infinite number of simple quantum bijections be-
tween two quantum sets.

6.3.4 The category QPerm(A)

We now focus in particular on the category QPerm(A) = QBij(A,A) of quantum
permutations of a quantum set A.

We first observe that these categories have already been considered in finite non-
commutative topology. Indeed, Wang introduced ‘quantum symmetry groups of
finite spaces’ [100] as non-commutative versions of the symmetric groups Sn.

Proposition 27 ([76, Prop. 4.12]). For a quantum set B, QPerm(B) is the cat-
egory of finite-dimensional representations of Wang’s ‘quantum permutation group’
algebra Aaut(B).

The categories QPerm(A) are monoidal categories, where monoidal product is com-
position. As discussed in Section 6.3.3, they also have a direct sum and are semisim-
ple.

Definition 42. The classical subcategory of QPerm(A) is the full semisimple monoidal
subcategory of quantum permutations decomposing as a direct sum of ordinary per-
mutations.
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A quantum permutation (H,P ) : A −→ A in the classical subcategory has the follow-
ing form. Here {|i〉} is an orthonormal basis decomposing the Hilbert space H into
one-dimensional subspaces H ∼=

⊕
iC |i〉, and fi : Γ −→ Γ are ordinary permutations:

VΓ

VΓ

H

H

P =
∑

i

fi

i

i†
(6.25)

A quantum permutation of a classical set is in the classical subcategory if and only
if all projectors in its PPM are commuting [77, Prop. 6.9].

The classical subcategory has a very convenient description. For a finite group
G, let HilbG denote the category of finite-dimensional G-graded Hilbert spaces. The
objects of this category are finite-dimensional Hilbert spaces H, with a Hilbert space
decomposition H =

⊕
g∈GHg. The morphisms are grading-preserving linear maps.

This is a semisimple monoidal dagger category: the dagger is the Hilbert space
adjoint of a graded linear map, and the monoidal product is defined as follows:

(H ⊗H ′)g :=
∑

a,b∈G,ab=g
Ha ⊗H ′b (6.26)

The simple objects in this category are one-dimensional G-graded Hilbert spaces. As
a category, HilbG is generated by the elements of the group G — which correspond
to isomorphism classes of one-dimensional G-graded Hilbert spaces. Tensor product
is induced by group multiplication.

Proposition 28. Let A be a quantum set. The classical subcategory of QPerm(A)
is equivalent to HilbPerm(A).

Proof. The classical subcategory is a semisimple monoidal dagger category generated
from the ordinary permutations of the quantum set A. There is an obvious monoidal
dagger equivalence, which takes a permutation g ∈ Perm(A) to the one-dimensional
Hilbert space with grading g.

There is in particular a full inclusion HilbPerm(A) ⊆ QPerm(A). In general ( for
classical sets of dimension greater than or equal to four [100], for instance) the
inclusion is strict; there will be simple quantum permutations which are not one-
dimensional.
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6.3.5 Splitting in QPerm(A)

Theorem 9 implies that every quantum bijection into A gives rise to a Frobenius
monoid in QPerm(A).

Proposition 29. A quantum bijection (H,P ) : B −→ A gives rise to a special dagger
Frobenius monoid in QPerm(A). The underlying object of this algebra is the compo-
sition (H ⊗ H∗, P ◦ P ), and the underlying algebra structure is the endomorphism
algebra (6.13):

H∗H

P

P
(6.27)

Proof. This follows from the fact that the structural morphisms of the endomorphism
algebra (6.13) are intertwiners for P ◦P ; this is immediate from (6.19) and (6.20).

We abstract the relevant property of these monoids.

Definition 43. Let B be a quantum set. A simple dagger Frobenius monoid in
QPerm(B) is a special dagger Frobenius monoid (H,P ) whose underlying dagger
Frobenius algebra in Hilb6 is ∗-isomorphic to an endomorphism algebra (6.13).

The main result of [77] is that the converse is also true: simple dagger Frobenius
monoids in QPerm(A) can be split to obtain quantum bijections (H,P ) : B −→ A.

Theorem 12 ([77, Thm. 3.4]). Let A be a quantum set and let X be a simple dagger
Frobenius monoid in QPerm(A). Then there exists a quantum set B and a quantum
bijection (H,P ) : B −→ A such that X is ∗-isomorphic to (H ⊗H∗, P ◦ P ).

We sketch how the quantum set B and the quantum bijection B −→ A are defined
from X. Firstly, X is a quantum bijection (H⊗H∗, X) : A −→ A. The endomorphism
algebra (6.13) is an intertwiner for this algebra. This makes the following linear map
x ∈ End(H∗ ⊗ A⊗H) a dagger idempotent (i.e. self-adjoint and fulfilling x2 = x):

1

n
X (6.28)

6This is formally defined by the forgetful functor F : QPerm(B) −→ Hilb, which takes a quantum
bijection (H,P ) to the Hilbert space H and an intertwiner to the underlying linear map.
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Here n = dim(H) is the dimension of the Hilbert space H. By splitting the idem-
potent, we obtain a new Hilbert space B and an isometry i : B −→ H∗ ⊗ VΓ ⊗ H.
This gives a map P : H ⊗B −→ A⊗H by bending wires. It follows that X is of the
form (6.27).

To define the structure of a quantum set on B, we we use the following shorthand
notation:

= P = P † = P = P † (6.29)

Now we define an algebra structure on B (depicted as grey nodes) using the algebra
structure on A (depicted as white nodes):

AA

A

:=
1

n

A

:=
1

n

AA

A

:=
1

n
A

:=
1

n
(6.30)

We show in [77] that B is a quantum set, and (H,P ) is a quantum bijection B −→ A.

6.3.6 Classification of quantum bijections

Simple dagger Frobenius algebras in QPerm(A) can be split to produce quantum
bijections (H,P ) : B −→ A from some quantum set B. Likewise, a quantum bijection
(H,P ) : B −→ A gives rise to a simple dagger Frobenius algebra P ◦P in QPerm(A).
This yields a correspondence between equivalence classes of quantum bijections B −→
A and ∗-isomorphism classes of simple dagger Frobenius algebras in QPerm(A).

Definition 44. We say that quantum bijections (H,P ) : B −→ A and (H ′, P ′) :
B′ −→ A are equivalent when there is an ordinary bijection ε : B −→ B′ and a unitary
map U : H −→ H ′ satisfying the following equation:

HA

BH

ε

U†

P ′

U

=

H B

A H

P (6.31)

For quantum bijections between classical sets, this comes down to the following
condition on projective permutation matrices.
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Corollary 4. Two projective permutation matrices {Px,y}x∈[m],v∈[n] and {P ′x′,y}x′∈[m′],y∈[n]

on Hilbert spaces H and H ′ are equivalent quantum bijections if there is an ordinary
bijection ε : [m] −→ [m′] and a unitary U : H −→ H ′ such that

Px,y = U †P ′ε(x),yU

for all y ∈ [n] and x ∈ [m].

Theorem 13 ([77, Rem. 3.9]). Let A be a quantum set. Proposition 29 and Theo-
rem 12 induce a bijection between the following sets:

• Quantum bijections B −→ A up to the equivalence relation (6.31).

• ∗-isomorphism classes of simple dagger Frobenius monoids in QBij(A,A).

6.4 Quantum graph theory

Finally, we show how (quantum) graphs and their isomorphisms can be brought into
our compositional framework.

6.4.1 Quantum graphs

Definition 45. A quantum graph is a pair (A,Γ) of a quantum set A and a self-
adjoint linear map Γ : A −→ A (the quantum adjacency matrix ) satisfying the follow-
ing equations:

G G = G G = G (6.32)

For a classical set A = VΓ, this reduces to the definition of an adjacency matrix
{Γv,w}v,w∈VΓ

; from left to right, the conditions state that Γ2
v,w = Γv,w and Γv,w = Γw,v.

A quantum graph is reflexive or irreflexive if one of the following additional
equations holds:

G = G = 0

(reflexivity) (irreflexivity)
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For classical graphs this corresponds to Γv,v = 1 or Γv,v = 0, respectively. For a
classical set, the definition of an irreflexive quantum graph therefore reduces to the
standard definition of an adjacency matrix of a simple graph.

Remark 9. There are many related definitions of noncommutative or quantum graphs
in the literature [36, 60, 101, 102]. These have applications in quantum error cor-
rection [102] and zero-error communication [36]. In [76, Sec.7], we show how our
quantum graphs correspond to these previous definitions. In particular:

• Our reflexive quantum graphs coincide with Weaver’s finite-dimensional quan-
tum graphs [102], defined in terms of symmetric and reflexive quantum rela-
tions [60, 101].

• Our reflexive quantum graphs (Matn, G) on matrix algebras coincide with
Duan, Severini and Winter’s noncommutative graphs [36].

6.4.2 Quantum graph isomorphisms

Definition 46. An isomorphism of quantum graphs Γ and Γ′ is an ordinary bijection
of quantum sets f : VΓ −→ VΓ′ intertwining the quantum adjacency matrices (i.e.
fΓ = Γ′f). We denote the group of automorphisms of a quantum graph Γ by
Aut(Γ).

For classical graphs, this coincides with the usual notion of graph isomorphism,
and the group Aut(Γ) is the usual automorphism group. We quantise this definition
to obtain a notion of quantum graph isomorphism.

Definition 47. Let (A,Γ) and (A′,Γ′) be quantum graphs. A quantum isomorphism
(H,P ) : (A,Γ) −→ (A′,Γ′) is a quantum bijection (H,P ) : A −→ A′ fulfilling the
following additional equation:

P

Γ
= P

Γ′

(6.33)

For quantum isomorphisms between irreflexive classical graphs, in terms of their
underlying projective permutation matrix {Pv,w}v∈VΓ,w∈VΓ′

the condition (6.33) be-
comes:

If (v ∼Γ v
′ and w 6∼Γ′ w

′) or (v 6∼Γ v
′ and w ∼Γ′ w

′) ⇒ Pv′,w′Pv,w = 0 (6.34)

107



These quantum graph isomorphisms between classical graphs are precisely those con-
sidered in the graph isomorphism game considered in the introduction (Definition 29).

Proposition 30 ([6, Theorem 5.4]). For classical graphs Γ and Γ′, a perfect quan-
tum strategy for the graph isomorphism game exists if and only if there is a nonzero
family of projectors {Pv,w}v∈VΓ,w∈VΓ′

fulfilling equations (6.21), (6.22) and (6.34).
Equivalently, a quantum strategy exists if and only if there is a nonzero quantum
isomorphism (H,P ) : (VΓ,Γ) −→ (VΓ′ ,Γ

′).

The categories of quantum graph isomorphisms QGraphIso((A,Γ), (A′,Γ′)) are
also semisimple (recall Section 6.3.3), with the direct sum of the underlying quantum
bijections. A quantum graph isomorphism is simple precisely when its underlying
quantum bijection is.

Proposition 31 ([76, Prop. 6.13]). A quantum graph isomorphism Q : (A,Γ) −→
(A′,Γ′) is simple if and only if its underlying quantum bijection Q : A −→ A′ is simple.
Moreover, let Q : (A,Γ) −→ (A′,Γ′) be a quantum isomorphism whose underlying
quantum bijection has a decomposition Q ∼=

⊕
i fi, where fi are simple quantum

bijections. Then each fi is a quantum isomorphism (A,Γ) −→ (A,Γ′).
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Chapter 7

A group-theoretical construction
of quantum pseudo-telepathy

7.1 Introduction

7.1.1 Overview

In the last chapter we saw that quantum bijections between classical sets A −→ A′ are
precisely projective permutation matrices (PPMs). These are quantum strategies for
two-player nonlocal games such as the graph isomorphism game, where A is the set
of inputs received from the verifier and A′ the set of outputs returned.

In Section 6.3.6 we gave a classification of quantum bijections: for any quantum
set A, equivalence classes of quantum bijections A −→ A′, where A′ is any other quan-
tum set, correspond to simple dagger Frobenius monoids in the category QPerm(A)
of quantum elements of the quantum permutation group of A. This implies a classi-
fication of projective permutation matrices in the case where A is classical, provided
that we impose an additional classicality condition on the monoids in order that
A′ also be classical (Theorem 19). This classification is constructive — given the
monoid, we can build the PPM.

Unfortunately, there is no good understanding of all simple dagger Frobenius
monoids in the categories QPerm(A), even when A is classical. However, we know
that QPerm(A) always contains a subcategory generated by the elements of the or-
dinary permutation group Perm(A); in the case where A is a classical set with n
elements, these are just the elements of Sn. In this chapter, we restrict our consider-
ation to the simple dagger Frobenius monoids in this subcategory, thereby obtaining
a group-theoretical construction of projective permutation matrices. We then con-
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sider how these quantum strategies can be used to exhibit pseudo-telepathy in the
graph isomorphism and linear constraint system games.

7.1.2 Summary

Technical background. In this group-theoretical setting, the mathematics mostly
comes down to projective representation theory. We review all the necessary technical
material in Section 7.2.

Simple dagger Frobenius algebras from ordinary permutations. Our first
main result (Theorem 18) is a classification of all ∗-isomorphism classes of simple
dagger Frobenius monoids in the category of ordinary permutations of a quantum set
A. To do this, we observe that this category is isomorphic to the category of Perm(A)-
graded vector spaces. The simple dagger Frobenius monoids in this category are just
graded matrix algebras, and so we can use the classification of Bahturin and Zaicev
(Theorem 17), which shows that the interesting graded matrix algebras come from
subgroups of Perm(A) of central type. Our group-theoretical construction of a PPM
A −→ A′ from a classical set A is therefore based on a faithful action of a group of
central type on the set A. The condition ensuring that the quantum bijective set
A′ is also classical is that all point stabilisers under the action must be coisotropic
(Definition 58), a property of certain subgroups of central type groups.

PPMs from central type groups, and composition. In the case where A is
a classical set, and the classicality condition on the monoid is obeyed, we obtain a
PPM. We give an explicit construction of this PPM in terms of the action of the
group of central type on the set A (Theorem 20). This construction makes use of
induction and restriction of representations, generalising the usual construction of
contextual measurement scenarios from eigenspaces of abelian subgroups of a group
of operators (c.f. Lemma 21).

Given quantum bijections A −→ A′ and A′ −→ A′′, we can compose them to
obtain a quantum bijection A −→ A′′. In Proposition 44 we show that composition of
quantum bijections (e.g. PPMs) corresponds to tensor product of the corresponding
simple dagger Frobenius monoids (e.g. Cartesian product of central type groups).
We observe in particular that the usual quantum strategy for the Mermin-Peres
magic square game factors through quantum bijections to and from an intermediate
quantum set (Example 12).
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The graph isomorphism game. Having obtained a group-theoretical construc-
tion of projective permutation matrices, we now apply these to pseudo-telepathy in
the graph isomorphism game. Given a graph Γ on A, a given PPM from A −→ A′

wins the graph isomorphism game (Γ,Γ′) for at most one graph Γ′ on A′. We iden-
tify a necessary and sufficient condition for such a graph Γ′ to exist (Proposition 45),
and give an explicit construction of Γ′ when the PPM is obtained from the group-
theoretical construction (Proposition 47). This construction simplifies considerably
in the case where the stabiliser subgroups for the action of the central type group
are normal (Proposition 6).

For pseudo-telepathy, we require that the graph isomorphism game for (Γ,Γ′)
has no perfect classical strategy. To rule out PPMs, we obtain a condition on a
group-theoretical PPM which means that the PPM is possible to simulate classically
(Proposition 48).

Linear constraint system games. Finally, we consider linear constraint system
games. Most if not all examples of perfect quantum strategies exhibiting quantum
pseudo-telepathy are for games of this type. It is already known that the graph iso-
morphism game generalises linear constraint system games, in the sense that classical
and quantum strategies for a linear constraint system game correspond precisely to
classical and quantum isomorphisms between two graphs.

In Proposition 50 we show that each PPM obtained from a central type group
acting faithfully on a graph produces a solution to a certain linear constraint system;
the variables are elements of the orthogonal complements of the stabiliser groups
(Definition 57), and the constants for each equation are given by the 2-cocycle asso-
ciated to the central type group.

It is then natural to ask which quantum solutions to linear constraint systems
can be obtained from a central type group acting on a set in this way. One way
to obtain a quantum solution to a linear constraint system is as a representation
of the abelianisation of the solution group (Definition 72). We show that if we
remove the classical redundancy from a solution obtained in this way, we arrive
precisely at a projective representation of a central type group. Our central type
group construction therefore in some sense captures the ‘truly quantum’ part of
quantum solutions to a linear constraint system factoring through the abelianisation
of the solution group; we make this precise in Proposition 54.
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7.2 Technical background

7.2.1 Groups of central type

We will use various results about groups of central type and their projective repre-
sentation theory.

Definition 48. Let L be a group. A function ψ : L × L −→ U(1) is a 2-cocycle
precisely when, for all a, b, c ∈ L,

ψ(a, b)ψ(ab, c) = ψ(a, bc)ψ(b, c). (7.1)

All the 2-cocycles we consider in this work take values in U(1). To a 2-cocycle we
associate a form ρ : L× L −→ U(1), defined by

ρ(a, b) = ψ(a, b)ψ(aba−1, a)∗. (7.2)

Definition 49. For a group L and a 2-cocycle ψ, the twisted group algebra CLψ is
an associative unital algebra with generators {a | a ∈ L} and multiplication

a1 a2 = ψ(a1, a2)a1a2.

(Here an overline is used to distinguish a generator a of the twisted group algebra
from the corresponding element a of the group L.)

Remark 10. Up to ∗-isomorphism of twisted group algebras, we can assume with-
out loss of generality that ψ(e, h) = 1 = ψ(h, e) and therefore ē = 1H , and that
ψ(h, h−1) = 1 and therefore h̄† = h−1.

Definition 50 ([41, Definition 7.12.21]). A group L is of central type if it possesses
a 2-cocycle ψ : L×L −→ U(1) such that either of the following equivalent conditions
hold:

1. The associated form ρ is nondegenerate, that is,

ρ(a, x) = 1 for all x ∈ ZL(a) =⇒ a = e.

2. The twisted group algebra CLψ is simple.

Simplicity of CLψ implies that it has precisely one irreducible module, of dimension
d :=

√
|L|, and moreover that there is a ∗-isomorphism CLψ ' Md(C). The matri-

ces in the image of such an isomorphism have been considered before in quantum
information theory.
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Definition 51. The unitary matrices in the image of the isomorphism CLψ −→Md(C)
are called a nice unitary error basis of dimension d. The group L is called the index
group of the nice UEB.

Proposition 32 ([57]). The matrices of a nice unitary error basis satisfy the follow-
ing condition for all a, b ∈ L:

Tr(U †aUb) = dim(H) δa,b UaUb = ψ(a, b)Uab (7.3)

Definition 52. Because the 2-cocycle condition (7.1) implies that the phase associ-
ated to a product of more than two elements is unaffected by the bracketing of the
product, we write it as ψ(g1, . . . , gn).

Lemma 11. Let (L1, ψ1) and (L2, ψ2) be groups of central type. Then (L1×L2, ψ1ψ2)
is also of central type.

Abelian groups (Zp)(2n) for p prime can be considered as vector spaces over Zp;
a nondegenerate 2-cocycle ψ is then precisely a symplectic form on the vector space
(Zp)(2n).

Proposition 33 ([11, Theorem 5]). Abelian groups of central type are all direct
products of symplectic vector spaces (Zp)(2n).

Nonabelian groups of central type are much harder to classify. For order 121 or less,
they are listed at [58].

7.2.2 Projective representation theory

We recall definitions and theorems from projective representation theory.

Definition 53. A projective representation of a finite group L with 2-cocycle ψ is a
module over the twisted group algebra CLψ.

The category of CLψ-modules Mod(CLψ) is semisimple; it has a finite set of simple
objects, and every object can be decomposed uniquely as a direct sum of these.
We call the simple objects of this category irreducible projective representations
(ψ-i.p.r’s) of L.

Definition 54. Let V be a CLψ-module, and let X be an irreducible CLψ-module.
We define the multiplicity of X in V to be the number of times X appears in the
decomposition of V into irreducibles.
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There is an obvious restriction functor ResLH : Mod(CLψ) −→ Mod(CHψ), where
the cocycle ψ is restricted in the obvious way; for a CLψ-module V , we write VH for
ResLH(V ). Likewise, there is an induction functor IndLH : Mod(CHψ) −→Mod(CLψ);
for a CHψ-module W , we write WL for IndLH(W ) = CLψ ⊗CHψ W . These functors
form an adjunction, implying the following theorem.

Theorem 14 (Frobenius reciprocity, [54, Cor. 5.6.3]). Let H < L, and let ψ :
L×L −→ U(1) be a 2-cocycle. Let V be a CLψ-module and let W be a CHψ-module.
Then the multiplicity of V in WL is equal to the multiplicity of W in VH .

The notion of conjugation of a representation is closely connected to induction. Let
H < L, let ψ : L× L −→ U(1) be a 2-cocycle, let W be a CHψ-module, and consider
the natural embedding of W as a submodule W ⊂ (WL)H . It is clear that for
any g ∈ L, gW ⊂ WL is a C(gHg−1)ψ-submodule of W ; we write this submodule
abstractly as W (g). W (g) is irreducible if W is.

Definition 55. We say that two H-modules V1, V2 are conjugate if V2 ' V
(g)

1 for
some g ∈ L.

This definition divides the irreducible CHψ modules into conjugacy classes. There
are |NL(H)|/|H| irreducible modules in each class, where NL(H) is the normaliser
of H in L.

Lemma 12. Let W be a projective representation of H < L. Then the set of L-
conjugates of W is a left L-set; that is, (W (g1))(g2) = W (g2g1).

A relation between different restriction functors is given by the following well-known
theorem. We first make a definition.

Definition 56. Let Hi, Hj < L. The (Hi, Hj)-double coset HixHj of an element
x ∈ L is a subset of L defined as follows:

HixHj := {hixhj | hi ∈ Hi, hj ∈ Hj}
The (Hi, Hj)-double cosets partition L.

Remark 11. For any (Hi, Hj)-double coset X ⊂ L, the subset X−1 ⊂ L is a (Hj, Hi)-
double coset.

Theorem 15 (Mackey’s subgroup theorem, [54, Theorem 5.7.2]). Let Hi, Hj < L

and let T be a set of (Hi, Hj)-double coset representatives. Let W be a CHψ
i -module.

For t ∈ T , let Wt := (W (t))tHit−1∩Hj . Then, as CHψ
j -modules:

(WL)Hj
∼=
⊕

t∈T
(Wt)

Hj
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Finally, as is well-known, projective representations are ordinary representations of
a central extension of the group. We now recall how one can switch between these
two perspectives.

From ordinary representations to projective representations. Let C <
Z(L) be a central subgroup of L. Pick coset representatives {vx | x ∈ L} for
L′ := L/C. Then we have

vxvy = a(x, y)vxy

for all vx, vy, for some function a : L×L −→ C. Let π : CL −→ GLn(C) be an ordinary
representation. Because C is central, we have that π(a(x, y)) = α(x, y)1 for some
α(x, y) ∈ U(1).

Proposition 34 ([31, Definition 11]). The map

π̃ : CL′ −→ GLn(C)

x 7→ π(vx)

defines a projective representation of L′ with 2-cocycle α : G×G −→ U(1).

From projective representations to ordinary representations. Let π : CLψ −→
GLn(C) be a projective representation of L with cocycle ψ. We assume that the im-
age of L×L under ψ, Im(ψ) < U(1), is finite. We define a new group L+ = L×Im(ψ),
with multiplication

(a1, b1) · (a2, b2) = (a1a2, b1b2ψ(a1, a2)).

The projective representation π becomes an ordinary representation π+ of this group:

π+ : CL+ −→ GLn(C)

(x, a) 7→ aπ(x)

7.2.3 Representations of groups of central type

Observing that the form ρψ associated to a 2-cocycle ψ : L× L −→ U(1) satisfies

ρ(a, b) = ρ(b, a)∗ for all b ∈ ZL(a),

we think of it as an alternating form on the group. From this perspective, the non-
degenerate 2-cocycle of a group of central type induces a nondegenerate alternating
form on L.
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Proposition 35 ([41, Exercise 7.12.22.v]). Let (L, ψ) be a group of central type and
let x ∈ L. Then ρψ(x,−)|ZL(x) : Zx −→ U(1) is a multiplicative character of the
centralizer Zx, and ρψ(x,−)|ZL(x) is non-trivial for every x 6= eL, that is:

ρψ(x, a) = 1 ∀a ∈ ZL(x) ⇒ x = eL (7.4)

Following [16], we define various notions based on this analogy.

Definition 57. Let H be a group, let ψ be a 2-cocycle on H, and let S ⊆ H be a
subset. The orthogonal complement S⊥ of S is the following subset of H:

S⊥ := {g ∈ H | ρψ(g, a) = 1 ∀a ∈ ZH(g) ∩ S} (7.5)

Definition 58. We say that a subset S is isotropic if S ⊆ S⊥, and coisotropic if
S⊥ ⊆ S.

Lemma 13. Let H be a group and ψ a 2-cocycle on H. Then H⊥ is preserved under
inner automorphisms of H.

In other words, H⊥ is a union of conjugacy classes. The following result is well-
known.

Proposition 36 ([54, Sec. 7.3]). Let H be a group with 2-cocycle ψ. The number of
ψ-i.p.r’s of H is equal to the number of conjugacy classes in H⊥.

Central type subgroups (L, ψ) are an example, since L⊥ is trivial by Proposition 35;
they therefore have only one ψ-i.p.r. Their representation theory is also well-behaved
under restriction.

Proposition 37. Let H < L be a subgroup of a group (L, ψ) of central type. The
number of irreducible CHψ-modules is ≤ |L|/|H|, with equality iff H is coisotropic.

Proof. We show in [77, Proposition 4.12] that
∑

a∈H⊥∩H
|ZH(a)| ≤ L

with equality iff L is coisotropic. Recalling Lemma 13, let {b} be a set of representa-
tives for the H-conjugacy classes in H⊥ ∩H, and let Cb be those conjugacy classes.
We have

∑

a∈H⊥∩H
|ZH(a)| =

∑

b

|ZH(b)||Cb| = |# conjugacy classes in H ∩H⊥}||H|
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where the last equality is by the orbit-stabiliser theorem, implying that

|# conjugacy classes in H ∩H⊥}| ≤ |L||H|

with equality iff H is coisotropic. The result follows by Proposition 36.

Theorem 16. Let L be a group of central type, and and let V be the unique irreducible
CLψ-module, of dimension

√
|L|. Let H < L be a coisotropic subgroup and let

{Wi | 1 ≤ i ≤ |L|/|H|} be the set of irreducible CHψ-modules. Then

VH ∼=
⊕

i

Wi. (7.6)

where the orthogonal decomposition is unique.

Proof. Let ni be the multiplicity of Wi in VH and di be the dimension of Wi. Since
V is the only irreducible module of CLψ, we know that (Wi)

L must be some multiple
of V ; by Frobenius reciprocity (Theorem 14), this multiple will be precisely ni ≥
1. Considering the dimension of the induced representation, we have the following
equation:

|L|
|H|di = ni

√
|L| (7.7)

On the other hand, decomposing VH into irreducible modules and taking dimensions
, we obtain: ∑

i

nidi =
√
|L|

Substituting in (7.7):

∑

i

nidi =
√
|L| ⇔

∑

i

(ni)
2 |H|√
|L|

=
√
|L|

⇔
∑

i

(ni)
2 =
|L|
|H| .

By Proposition 37 there are |G|/|H| α-i.p.r’s, each of which must appear at least
once in the sum; this implies that ni = 1 for all i. Since no irreducible module has
multiplicity greater than one, the decomposition is unique.

We immediately obtain the following corollary by Frobenius reciprocity.
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Corollary 5. For all Wi we have that (Wi)
L ∼= V ; moreover, all the Wi have the

same dimension |ω||H|
|L| .

Let {gj | 1 ≤ j ≤ |L|/|H|} be left coset representatives for H in L. Since (Wi)
L ∼= V ,

by the discussion following Theorem 14 we obtain an orthogonal decomposition of
W for each i:

V =
⊕

j

gjW
i ∼=

⊕

j

(W i)(gj) (7.8)

For non-normal H this is different to the decomposition (7.6), since gjWi
∼= (Wi)

(gj)

is a C(gjH(gj)
−1)ψ-module, which is not a CHψ-module unless gj ∈ NL(H).

7.2.4 Graphs with symmetry

In this final background section we review the theory of graphs with group symme-
tries. The fact that double cosets appear here as well as in projective representation
theory (Theorem 15) will be crucial in our splitting of simple dagger Frobenius alge-
bras to obtain quantum bijections of classical sets.

Let VΓ be a vertex set, and let L < S|VΓ|. Let n be the number of orbits under
the action of L, and let {Oi ⊂ VΓ | 1 ≤ i ≤ n} be these orbits. For each orbit, pick
a vertex vi ∈ Oi and write Hi := Stab(vi). We thus obtain an isomorphism of L-sets
Oi
∼= L/Hi by the identification g · vi 7→ ḡ ∈ L/Hi.
We now consider the possible graph structures Γ on VΓ for which L < Aut(Γ).

Edges between orbits Oi and Oj correspond to elements of L/Hi×L/Hj. The action
of L partitions L/Hi × L/Hj into orbits. It is clear that if one edge in an orbit is
connected, all others in that orbit must be if L is to be a group of symmetries of
the graph. We now characterise these orbits, and use this characterisation to give a
compact description of an L-symmetric graph.

Lemma 14. The set of L-orbits in L/Hi × L/Hj is in bijection with the set of
(Hi, Hj)-double cosets.

Proof. Let (gi·vi, gj ·vj) be an edge. Acting by g−1
i ∈ L, we obtain an edge (vi, (g

−1
i gj)·

vj) in the same orbit. Since Hi, Hj stabilise vi, vj respectively, (vi, g · vj) is in the
same orbit as (vi, g

−1
i gj · vj) precisely when g ∈ Hig

−1
i gjHj.

Proposition 38. Let VΓ, L, {Oi}, {vi} and {Hi} be as above. Let Hij be the set
of (Hi, Hj)-double cosets. A graph Γ with vertex VΓ and symmetry L < Aut(Γ)
corresponds to a set of functions

εij : Hij −→ {0, 1} for all i, j ∈ I
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satisfying
εij(X) = εji(X

−1) (7.9)

where X−1 is the inverse double coset.

Proof. Given this data, one constructs the graph by the rule

vi ∼ x · vj iff εij(HixHj) = 1

All other edges are obtained by symmetry:

gi · vi ∼ gj · vj iff vi ∼ (g−1
i gj) · vj

The inverse double coset condition ensures that the edge relation is symmetric.

7.3 Quantum bijections from classical symmetries

The ∗-isomorphism classes of simple dagger Frobenius monoids in the categories
QPerm(A) are still not characterised in general, even for classical sets of dimen-
sion greater than or equal to four. We therefore focus on the classical subcategory
HilbPerm(A) ⊂ QAut(A), which we introduced in Section 6.3.4. We will give a ∗-
isomorphism classification of the simple dagger Frobenius algebras in this subcat-
egory, explicitly construct the corresponding quantum bijections between classical
sets, and apply these to quantum pseudo-telepathy.

Wherever possible, we prove results for general quantum sets and quantum graphs,
as these results may be applicable to zero-error quantum communication (see Re-
mark 9).

7.3.1 Simple dagger Frobenius algebras in HilbG

We will classify all the simple dagger Frobenius algebras in HilbG up to ∗-isomorphism,
for any finite group G. This will give us an up-to-equivalence classification of all the
quantum bijections into A whose associated simple dagger Frobenius algebras lie in
the classical subcategory HilbPerm(A).

This result is based on a classification of graded matrix algebras by Bahturin and
Zaicev [10]. The following result connects our setting with their work.

Proposition 39. Any simple dagger Frobenius algebra in HilbSn is graded ∗-isomorphic
to an Sn-graded matrix algebra with graded inner product.
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Proof. There is a full and faithful forgetful functor F : HilbSn −→ Hilb which forgets
the grading. In this case, by Definition 43, the images of simple dagger Frobenius
algebras under this functor are ∗-isomorphic to matrix algebras. We can take such
a ∗-isomorphism and push the grading on the original algebra forward, to obtain a
grading compatible with the inner product on the ∗-isomorphic matrix algebra.

A classification of graded matrix algebras

Bahturin and Zaicev’s classification applies to graded matrix algebras without inner
product. We now recall their results before showing that they apply in our dagger
setting also.

They showed that any grading on a matrix algebra is induced from two special
gradings, called elementary and fine. In what follows we write Ag to signify the
homogeneous subspace of the algebra A with grading g ∈ G. For a homogeneous
element v we write wt(v) ∈ G for the grading of this element.

The fine grading is defined by a group of central type.

Definition 59 ([10]). Let L < G be a group of central type, and let d =
√
|L|. Then

the ∗-isomorphism CLψ ∼= Md(C) determines a fine grading on Md(C) by the rule

(Md(C))g = span(ḡ).

All the homogeneous subspaces are one-dimensional, and the algebra has support on
gradings L < G.

We note a useful characterisation of the fine gradings.

Proposition 40 ([10]). The fine graded matrix algebras are precisely those whose
homogeneous subspaces are one-dimensional.

The elementary gradings are defined as follows.

Definition 60. Let V be a G-graded vector space of dimension d, and let {vi | i ∈
1, . . . , d} be a homogeneous basis, where vi ∈ Vgi . The tuple g = (g1, . . . , gd) defines
an elementary grading on the matrix algebra Md(C), by

wt(Eij) = g−1
j gi.

The fine and elementary gradings can be mixed in the following way.
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Definition 61. Let A be a fine G-graded matrix algebra, and let B be a G-graded
matrix algebra with elementary grading determined by the tuple (g1, . . . , gd). Then
the induced grading on A⊗B is defined by

wt(h⊗ Eij) = g−1
j hgi.

Bahturin and Zaicev showed that every graded matrix algebra is graded isomorphic
to one whose grading is induced in this way.

Theorem 17 ([10, Theorem 5.1]). Let A ∼= Mn(C) be an G-graded matrix algebra.
Then there exists a decomposition n = pq, a central type subgroup L < G of order p2,
and a tuple (g1, . . . , gq) ∈ (G)q such that, as a graded algebra, A ∼= Af ⊗ Ae, where
Af is the fine graded matrix algebra associated to L and Ae is the elementary graded
matrix algebra defined by the tuple.

Extending the classification to HilbG

We now show that there is at most one graded inner product on each matrix algebra,
up to graded isomorphism. By Proposition 39, this implies that the above classifi-
cation holds also for graded matrix algebras with graded inner product; that is, for
simple dagger Frobenius algebras in HilbG.

Lemma 15. Let A be a graded matrix algebra. There is at most one graded inner
product on A, up to graded isomorphism.

Proof. A graded inner product is nonzero only within homogeneous subspaces of
A. Therefore, graded inner products can only differ within homogeneous subspaces.
Two different graded inner products are therefore related by an isomorphism which
is nontrivial only within homogeneous subspaces, and which is therefore graded.

Translation into the classical subcategory

We have now classified the simple dagger Frobenius algebras in HilbG up to ∗-
isomorphism. In Section 6.3.4, we explained the equivalence between HilbPerm(A)

and the classical subcategory of QPerm(A). We now use this equivalence (6.25) to
obtain a diagrammatic expression for those isomorphism classes of simple dagger
Frobenius algebras in this subcategory.
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Theorem 18. Up to ∗-isomorphism, the simple dagger Frobenius algebras in the
classical subcategory of QPerm(A) are as follows:

XL,ψ,g =
1

q
√
|L|

∑

a∈L⊆Perm(A)
1≤i,j≤q

VΓ

VΓ

a

gi

g−1
j

U†a

E†ij

Ua
Eij

(7.10)

Here {Ua | a ∈ L} is a nice UEB corresponding to the central type group (L, ψ) <
Perm(A); Eij are the basis elements |i〉 〈j| for the matrix algebra Mq(C); and g =
(g1, . . . , gq) is a tuple of elements of Perm(A).

When A is a classical set, we can express (7.10) in terms of the matrix of projectors:

(XL,ψ,g)v,w =
1

q
√
|L|

∑

a∈L
0≤i,j≤q

δagi(v),gj(w)PUa ⊗ PEij (7.11)

Recall that a ∗-isomorphism in this picture is a change of basis; every simple dagger
Frobenius algebra in HilbSn ⊂ QPerm([n]) is therefore, up to a change of basis in
the underlying vector space, on a quantum permutation of the form (7.11).

7.3.2 Splitting the algebras

In Section 6.3.5, we sketched how every simple dagger Frobenius algebra X in
QPerm(A) can be split to produce a quantum bijection (H,P ) : B −→ A such that
X = P ◦ P . We will now give an explicit description of this splitting for simple dag-
ger Frobenius algebras in the classical subcategory. In particular, in the case where
A = [n] is a classical set, we will characterise those algebras for which B is classical,
and give the projective permutation matrix for (H,P ) in this case.

Splitting the elementary factor

We first note that it is trivial to split the elementary factor.

Proposition 41. Let A be a quantum set, and let A ∼= Af ⊗ Ae be a graded matrix
algebra in HilbPerm(A) ⊂ QPerm(A), defined by central type subgroup (L, ψ) and tuple
(g1, . . . , gq) ∈ (Perm(A))q. Let (H,P ) : B −→ A be the splitting of the fine factor;
that is, P ◦ P ∼= Af . Then the splitting of A is

1√
q

(
q∑

i=1

(gi)
−1

)
◦ P. (7.12)
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Proof. By (6.18) and (6.16), we see that the dual of
∑n

i=1 gi is:



∑

i

gi

i

i†




∗

=
∑

i

gi

i

i†
=

∑

i

g−1
i

i†

i

(7.13)

Expanding the algebra A, we therefore obtain

1

q

∑

a,i,j

g−1
j

i†

i

a

U†a

Ua

j†

j

gj

=
1

q
√
|L|

∑

a∈L⊆Perm(A)
1≤i,j≤q

VΓ

VΓ

a

gi

g−1
j

U†a

E†ij

Ua

Eij

(7.14)

where the equality is by pulling i and i† over to the left and recalling the definition
of Eij.

As postcomposition by a direct sum of ordinary permutations of A will not change
the source of a quantum isomorphism B −→ A, we immediately obtain the following
corollary.

Corollary 6. Two algebras with the same fine factor correspond to quantum bijec-
tions from the same quantum set.

Splitting the fine factor

The remaining problem is to split the fine graded matrix algebras. The following
lemma helps us to find a splitting.

Lemma 16 (c.f. [77, Proposition 5.10]). Let A be a quantum set, let (L, ψ) <
Perm(A) be a subgroup of central type, and let {Ua ∈ U(H)| a ∈ L} be a cor-
responding nice unitary error basis. Then a

√
L-dimensional quantum function
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(H,P ) : B −→ A splits XL,ψ if and only if the following holds, for all a ∈ L:

H

H

B

A

P

U†a

Ua

=

H

H

B

A

a-1

P (7.15)

Proof. For only if, we begin with the assumption:

H∗H

P

P

=
1√
|L|

∑

a∈L⊆Aut(Γ)

A

A

a

U†a

Ua

(7.16)

Using the shorthand notation (6.29) for the quantum bijection P , and (6.19), this is
equivalent to the following:

=
(7.16)
=

1√
|L|

∑

b∈L

Ub

U†b

b

Contracting the first two bottom wires with Ua for a ∈ L and using (7.3) completes
the proof in this direction.

For if, note that Proposition 32 implies that the following is an orthonormal basis
for H ⊗H∗: 




U†a : a ∈ L





Conjugating P ◦ P by the elements of this basis, using (7.15) and then removing
the bubble shows that each element of the basis is an intertwining projector onto a
classical permutation a−1. The algebra therefore has support on all gradings a ∈ L.
Because of its dimension, it must therefore be a fine L-graded matrix algebra.

Fine quantum bijections between classical sets

In this work, we are mostly interested in quantum bijections between classical sets for
the purposes of pseudo-telepathy. We therefore specialise to the case where A = [n],
and where B is also classical.
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Theorem 19 ([77, Prop. 4.12]). Let (L, ψ) < Sn be a central type subgroup, and
let (H,P ) : B −→ [n] be the quantum bijection generated from the corresponding
algebra. The quantum set B is classical precisely when the stabiliser Stab(x) < L is
coisotropic for each x ∈ [n].

For central type subgroups (L, ψ) < Sn with coisotropic stabilisers, we now define
the set B and the quantum bijection (H,P ) : B −→ [n] explicitly. In what follows,
let Oi ⊂ [n] be the L-orbits, let xi ∈ Oi be chosen elements in each orbit, and let
Hi = Stab(xi) the stabilisers of those elements.

Definition 62. The classical set [n]L,ψ is the set
⋃

i

{ρ | ρ is an irreducible module of CHψ
i }.

By Proposition 37, this classical set has precisely n elements. We label the elements
of the set (ρ,Hi), in order to distinguish the subgroup Hi of which ρ is a projective
representation. We now define a quantum bijection PL,ψ : [n]L,ψ −→ [n] as follows.

Definition 63. Let V be the unique irreducible module of CLψ. We define the
following matrix of projectors:

(PL,ψ)((ρ,Hi),g·xj) =

{
(ρ)(g) ⊂ VHi i = j

0 otherwise

Here by (ρ)(g) ⊂ VHi we indicate the projector onto that subspace.

Proposition 42. The matrix of projectors in Definition 63 is a projective permuta-
tion matrix satisfying (7.15).

Proof. The rows are orthogonal and complete by (7.8), and the columns are or-
thogonal and complete by (7.6). Finally, note that the projector onto the subspace
(ρ)(g) ⊂ VHi is gπig

†, where πi is the projector onto ρ ⊂ VHi . It is then immediate
that the quantum bijection satisfies (7.15).

We summarise the above results in the following theorem.

Theorem 20. Up to equivalence (Definition 44), bijections B −→ A whose corre-
sponding algebra lies in the classical subcategory of QPerm(A) are classified by pairs
of a central type subgroup (L, ψ) < Sn and a tuple g ∈ (Sn)q.

The set B is classical precisely when L has coisotropic stabilisers. In this case,
B = [n]L,ψ (Definition 62) and the quantum bijection is the projective permutation

matrix PL,ψ : [n]L,ψ −→ [n] (Definition 63), followed by a normalised direct sum (7.12)
of classical permutations in g.
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Note on irreducibility

It is natural to ask whether the quantum bijections arising from fine graded matrix
algebras can be decomposed as a direct sum of other quantum bijections. The answer
is as one would hope — they are all irreducible.

Proposition 43. Let A be a quantum set, and let (H,P ) : B −→ A be a quantum
bijection such that P ◦P lies in the classical subcategory. Then if P decomposes, i.e.
P = P1 ⊕ P2, then P1 ◦ P1 and P2 ◦ P2 are also algebras in the classical subcategory.

Proof. If P = P1 ⊕ P2, then P ◦ P = (P1 ◦ P1) ⊕ (P1 ◦ P2) ⊕ (P2 ◦ P1) ⊕ (P2 ◦ P2).
Let πi : P −→ Pi be the projector onto the Pi factor. Now the horizontal composition
πi⊗ (πi)

∗ is an intertwining projector P ⊗P −→ P ⊗P whose image is Pi⊗Pi. Since
idempotents split in the classical subcategory, Pi ⊗ Pi is in the classical subcategory
also.

Corollary 7. If the quantum bijection PL,ψ corresponding to a central type subgroup
(L, ψ) < Perm(A) decomposes as PL,ψ = ⊕iPi, then Pi = PLi,ψi, where Li < L are
pairwise commuting central type subgroups.

Proof. By Proposition 43, the subalgebras Pi ◦ Pi ⊂ P ◦ P are all in the classical
subcategory. Since P ◦P has one-dimensional support on each grading, they do too;
by Proposition 40, they therefore correspond to central type subgroups Li < L. They
also commute since they are separate blocks of a matrix algebra, implying that the
subgroups Li on which they have support must also therefore commute.

Corollary 8. A quantum bijection between classical sets corresponding to a central
type subgroup (L, ψ) is irreducible.

Proof. Let the quantum bijection be P = ⊕iPi, where Pi are irreducible. Then,
for each i, Pi ◦ Pi is a simple dagger Frobenius subalgebra of P ◦ P in the classical
subcategory. Since the homogeneous spaces of P ◦ P are all one-dimensional, those
of Pi ◦ Pi must be also; by Proposition 40, it therefore corresponds to a central type
subgroup, and has support on the identity. But only one of the disjoint Pi ◦ Pi can
have support on the one-dimensional homogeneous subspace of the identity; there
can therefore only be one of them.

7.3.3 Composition and direct product

In the next section, we will apply these quantum permutations to construct instances
of quantum pseudo-telepathy. Beforehand, we observe a compositional interpretation
of the direct product of central type subgroups (Lemma 11).
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This observation is based on the fact that permutations commuting with every
element of a central type subgroup L < Perm(A) can be pushed forward along the
corresponding quantum bijection.

Lemma 17. Let A be a quantum set, let (L, ψ) < Perm(A) be a central type subgroup,
and let K < ZPerm(A)(L) be a subgroup of the centraliser of L. Then K ∼= KL,ψ, where
the group KL,ψ is defined as follows:

KL,ψ :=





1

∆
g : g ∈ K




< Perm(AL,ψ) (7.17)

Proof. First observe that g ∈ K pulls through a double wire:

g

=
∑

a∈L

a

g

U†
a

U†
a

=
∑

a∈L

a

g
U†

a

U†
a

=
g

(7.18)

We use this to show that the elements of the set (7.17) are permutations of VΓL,ψ .
The first equation in (6.16) is proved as follows:

1√
L

g

(6.16)
=

1√
L g

(6.12)
=

1√
L

g g =
1√
L

g g

(6.5),(6.20−6.19)
=

1

(L)3/2
g g

(7.18)
=

1

L

g g

The other equations in (6.16) may be proved similarly, by expanding the bubble
and using the existing relations for g.

We write gL,ψ for g surrounded by a bubble as in (7.17). It is clear from (7.18) that
KL,ψ is a group and that the map g 7→ gL,ψ is a homomorphism under composition
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of permutations of AL,ψ. (Pull g through the double wire and contract one loop.)
That the map is an isomorphism is clear from the fact it has an inverse

1

∆
g 7→ 1

∆2
g = g,

where the last equality is obtained by pulling g through the double wire and con-
tracting the loops.

Proposition 44. Let A be a quantum set, and let (L1 × L2, ψ1 × ψ2) < Perm(A) be
a direct product of central type subgroups. Let PL2,ψ2 : AL2,ψ2 −→ A be the bijection
corresponding to the subgroup L2 < Perm(A) with cocycle ψ2. Let L1 < Perm(AL2,ψ2)
be the subgroup isomorphic to L1 obtained by the construction (7.17), and let PL1,ψ1

:
(AL2,ψ2)L1,ψ1 −→ AL2,ψ2 be the corresponding bijection.

Then (AL2,ψ2)L1,ψ1 = AL1×L2,ψ1×ψ2, and

PL1×L2,ψ1×ψ2 = PL1,ψ1
◦ PL2,ψ2 .

Proof. By Theorem 13, we need only show that the simple dagger Frobenius algebras
PL1×L2,ψ1×ψ2 ◦ PL1×L2,ψ1×ψ2 and PL1,ψ1

◦ PL2,ψ2 ◦ PL2,ψ2PL1,ψ1
are ∗-isomorphic. This

is seen as follows (here the white node is PL2,ψ2 and the black node is PL1,ψ1
):

=
1

|L1|
∑

a∈L1 U†a

Ua

a =
1√
|L1||L2|

∑

a∈L1
b∈L2

U†aU†b

UaUb

a

b
=

1√
|L1L2|

∑

ab∈L1L2

ab

U†ab

Uab

Here the middle equality is obtained by pulling a through the double wire, contracting
the loop, and expanding the remaining algebra.

Remark 12. This implies that quantum bijections corresponding to direct products
of central type subgroups can always be decomposed into quantum bijections cor-
responding to central type subgroups which are not direct products. However, this
decomposition does not preserve classicality, in the sense that there is no requirement
for the stabilisers of the factors in the product to be coisotropic. A quantum bijec-
tion from a classical set may therefore decompose into quantum bijections through
quantum set.
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Example 12. In [77, Introduction], we showed that the usual quantum solution of
the Mermin-Peres magic square linear constraint system is obtained from a quantum
permutation of its set of partial solutions, corresponding to the direct product of
central type subgroups (Z2 × Z2)2. It is therefore a composite of two quantum
bijections from (Z2 × Z2) subgroups. However, the intermediate quantum graph is
not classical. Indeed, none of the partial solutions for the middle row or column has
nontrivial stabiliser under the action of a single (Z2 × Z2) factor, and the subgroup
containing only the identity is not coisotropic.

7.4 Quantum pseudo-telepathy

7.4.1 From classical symmetries to graph isomorphisms

We have just characterised quantum bijections between classical sets [n] −→ [n] ob-
tained by splitting simple dagger Frobenius algebras in the classical subcategory of
QPerm([n]). In order to apply these to the study of quantum pseudo-telepathy, we
put a relational structure — a graph — on [n].

Given an ordinary bijection f : [n] −→ [n], and an adjacency matrix Γ on [n],
there is a unique adjacency matrix Γ on [n] such that the bijection is also a graph
isomorphism. This is true of quantum bijections also, provided that the correspond-
ing algebra is a quantum automorphism of the quantum graph Γ. (Note that for a
classical bijection, this is always true, since f ◦ f = idA.)

Proposition 45. Let A be a quantum set, let Γ be an adjacency matrix on A, and
let (H,P ) : B −→ A be a quantum bijection of dimension d, such that P ◦ P is a
quantum automorphism of (A,Γ). Then there is a unique adjacency matrix Γ′ on B
making (H,P ) a quantum isomorphism.

Proof. We define the adjacency matrix Γ′ as follows:

B

B

Γ′ =
1

d
Γ

It is easy to see using the double wire–hopping trick that this defines an adjacency
matrix on B making P into a quantum isomorphism. That it is unique can be seen
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from the isomorphism equation (6.33):

Γ

=
Γ′

⇔ Γ =
Γ′

= d Γ′

For a quantum graph (A,Γ), we now consider which of the simple dagger Frobenius
algebras in the classical subcategory of QPerm(A) are automorphisms.

Proposition 46. Let (A,Γ) be a quantum graph. A simple dagger Frobenius algebra
XL,ψ,g in the classical subcategory of QPerm(A) is a quantum automorphism of (A,Γ)
iff (L, ψ) < Aut(Γ) and g ∈ Aut(Γ)q.

Proof. There is an embedding of semisimple categories QAut(Γ) ⊂ QPerm(A), which
takes every quantum automorphism to its underlying quantum permutation. The
part of the classical subcategory of QPerm(A) contained within QAut(Γ) is generated
by those permutations which are classical automorphisms, and is therefore isomorphic
to HilbAut(Γ). The result then follows from Theorem 17.

These algebras split as before. Again, postcomposition by a direct sum of classical
automorphisms does not change the isomorphism class of the source graph, giving
the following corollary.

Corollary 9. The isomorphism class of the new graph Γ′ depends only on the fine
factor of the algebra.

We therefore write ΓL,ψ to indicate the quantum isomorphic graph obtained from a
central type subgroup (L, ψ) < Aut(Γ).

7.4.2 The graph ΓL,ψ

General description

For quantum graph isomorphisms between classical sets [n]L,ψ −→ [n] obtained from

the classical subcategory, we give an explicit description of the new graph ΓL,ψ.
Let Γ be a graph on [n], and let (L, ψ) < Aut(Γ) be a group of central type.

Recalling Section 7.2.4, let {Oi ⊂ [n]} be the orbits under the L-action, let {vi ∈ Oi}
be chosen vertices in each orbit, let Hi := Stab(vi), let Hij be the set of (Hi, Hj)-
double cosets, and let {εij : Hij −→ {0, 1}} be the edge functions of the graph.
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Definition 64. We define the graph structure ΓL,ψ on the set [n]L,ψ as follows. Let

ρ, ρ′ ∈ [n]L,ψ be irreducible modules of CHψ
i and CHψ

j respectively. By Theorem 15,
let X ∈ Hij be the unique double coset such that

ρ��⊥(ρ′)(x) for all x ∈ X.

Then
ρ ∼ ρ′ iff εij(X) = 1. (7.19)

Proposition 47. The construction above defines an undirected graph ΓL,ψ, and the

quantum bijection PL,ψ : [n]L,ψ −→ [n] is a quantum isomorphism ΓL,ψ −→ Γ.

Proof. The relation is clearly well-defined, since the double coset relating two repre-
sentations is unique. For an undirected graph, the relation must be symmetric. We
have that

ρ��⊥(ρ′)(x) ⇔ (ρ)(x−1)
��⊥ρ′,

so this follows from (7.9).
We show that the quantum bijection PL,ψ : [n]L,ψ −→ [n] is a quantum isomor-

phism. Recall the quantum isomorphism condition for a projective permutation
matrix (6.34):

If (v ∼G v′ and w 6∼G′ w′) or (v 6∼G v′ and w ∼G′ w′) ⇒ Pv′,w′Pv,w = 0

We need to check that the relevant projectors are orthogonal. For gi · v ∈ Oi and
gj · w ∈ Oj we have that Pρ,gi·v = (ρ)(gi) ⊂ VHi , and Pρ′,gj ·w = (ρ′)(gj) ⊂ VHj . By

Theorem 15, the subspaces (ρ)(gi) and (ρ′)(gj) are orthogonal if and only if the unique
(Hi, Hj)-double coset X such that ρ��⊥(ρ′)X does not contain (gi)

−1gj.
Suppose that ρ��∼ρ′, and gi·v ∼ gj ·w. That is, εij(X) = 0, and εij(Hi(gi)

−1gjHj) =
1. But then clearly (gi)

−1gj��∈X, since the values of εij are different. Suppose on the
other hand that ρ ∼ ρ′, and gi ·v��∼gj ·w. That is, εij(X) = 1, and εij(Hi(gi)

−1gjHj) =
0. But then again (gi)

−1gj��∈X, for the same reason.
The relevant projectors are therefore orthogonal and PL,ψΓL,ψ −→ Γ is a quantum

graph isomorphism.

Remark 13. Since the quantum graph structure on [n]L,ψ for which PL,ψ is a quantum
isomorphism is unique, it follows that the new graph does not depend on which
vertices {vi} are picked. (An explicit isomorphism between the graphs for different
vertex choices can easily be constructed.)
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Description for normal subgroups

In the case where all stabiliser subgroups are normal, the description of the new graph
is greatly simplified. In this case, all the ψ-i.p.r’s of the subgroup are conjugate (see
the discussion after Theorem 14). The following lemma is obvious, but observe that
we define a ‘funny’ left action.

Lemma 18. Let H < (L, ψ) be a normal coisotropic subgroup. Pick a ψ-i.p.r. ρ of
H. Let {gk} be coset representatives for L/H. Then the set of all ψ-i.p.r’s of H is
{ρ(gk) | gk ∈ L/H}, which is a transitive L-set under the left action g ·ρ(gk) = ρ(gkg

−1).

By picking representations ρi for each Hi and coset representatives {gi,k}k for L/Hi,

the whole set [n]L,ψ acquires an L-set structure by this left action (which is not
necessarily a symmetry of the graph ΓL,ψ). We now define the following map:

[n]L,ψ −→ [n]

(ρi)
(g−1
i,k ) 7→ gi,k · vi

Here vi are chosen vertices in each orbit Oi ⊂ [n]. This map is an isomorphism on
the individual orbits. Indeed, we have that:

ρ
(g−1
i,k1

)

i ∼ ρ
(g−1
i,k2

)

i ⇔ εi,i(g
−1
i,k1
gi,k2) = 1

⇔ gi,k1 · vi ∼ gi,k2 · vi
The difference between ΓL,ψ and Γ therefore lies in the connectivity between different

orbits. Let xji ∈ L be such that ρi��⊥ρ(xji)
j . Then:

ρ
(g−1
i,k1

)

i ∼ ρ
(g−1
j,k2

)

j ⇔ εi,j(g
−1
i,k1
xjigj,k2) = 1

⇔ gi,k1 · vi ∼ (xjigj,k2) · vj
The following description of ΓL,ψ is immediate.

Procedure 6. Let Γ be a graph with an action of a central type group (L, ψ),
such that the orbits under the action have normal coisotropic stabilisers. Choose an
irreducible representation ρi of each orbit stabiliser Hi, and for each pair (Oi, Oj)
choose xij such that ρi��⊥ρj. Then the graph ΓL,ψ is constructed as follows:

• Draw the orbits as before, with the same internal edges.

• For vi ∈ Oi, vj ∈ Oj, connect vi ∼ΓL,ψ vj iff vi ∼Γ xji · vj.
Example 13. See the quantum isomorphic graphs arising from the Mermin-Peres
magic square [6]. Here the group of central type is abelian [77, Introduction], so the
stabilisers are normal and the construction is an instance of Procedure 6.
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7.4.3 Conditions for pseudo-telepathy

Instances of pseudo-telepathy are hard to find by brute force search through all
graphs. We now give representation-theoretic conditions for central type groups
which characterise their suitability for pseudo-telepathy in the graph isomorphism
game.

Quantum bijections which cannot produce pseudo-telepathic graphs.

For some quantum bijections, the graph ΓL,ψ will never be isomorphic.

Lemma 19. Let A be a quantum set and let P : B −→ A be a quantum bijection. If
P has a one-dimensional component, then Γ ∼= Γ for all quantum graphs Γ on A,
where Γ is the pullback of Γ by P .

Proof. The splitting of a quantum isomorphism is identical to that of the underlying
quantum bijection (Proposition 31). The quantum isomorphism therefore always has
a one-dimensional component; by definition, this is a classical isomorphism.

We know from Corollary 8 that this can never be the case for quantum bijections of
classical sets arising from central type subgroups. There is however a much weaker
condition than having a one-dimensional component which also means that quantum
bijections cannot produce pseudo-telepathic graphs, and which is often satisfied by
quantum bijections arising from central type groups. The way to interpret this
condition is that it is possible to imitate the quantum bijection using a classical
bijection.

Proposition 48. Let (L, ψ) < Sn be a subgroup of central type with coisotropic
stabilisers. Then ΓL,ψ ∼= Γ for any graph Γ on [n] if, for each orbit Oi, i ∈ I, it is
possible to choose a bijection of the representations {ρi,k}k∈Ki of Hi with the coset
representatives {gi,k}k∈Ki ∈ G/Hi, such that the following subspaces are pairwise
non-orthogonal:

(ρi,k)
(gi,k)

��⊥(ρi′,k′)
(gi′,k′ ) for all i, i′ ∈ I, k ∈ Ki, k

′ ∈ Ki′ (7.20)

Proof. Suppose that the condition is satisfied. Then consider the bijection ρi,k 7→
gi,k · vi. We show that this is an isomorphism. Note first that, by Proposition 47:

ρi,k ∼ ρi′,k′ ⇔ εii′(X) = 1 where ρi,k��⊥(ρi′,k′)
(X)

On the other hand, in the graph Γ:

gi,k · vi ∼ gi′,k′ · vi′ ⇔ εii′
(〈

(gi,k)
−1gi′,k′

〉)
= 1
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Now consider the condition (7.20):

(ρi,k)
(gi,k)

��⊥(ρi′,k′)
(gi′,k′ ) ⇔ ρi,k��⊥(ρi′,k′)

((gi,k)−1gi′,k′ )

⇔ X =
〈
((gi,k)

−1gi′,k′)
〉
.

It follows that ρi,k ∼ ρi,k if and only if gi,k · vi ∼ gi′,k′ · vi.

Quantum bijections which produce pseudo-telepathic graphs.

In contrast, we now present a sufficient condition on (L, ψ) < Sn for us to construct
a graph structure Γ such that ΓL,ψ��∼=Γ.

Definition 65. Let (L, ψ) < Sn. We define the homogeneous graph for L to be the
L-symmetric graph on the vertex set [n] where, for X ∈ Hij,

εij(X) = 1 if and only if 1��∈X.

Proposition 49. Let (L, ψ) < Sn be a subgroup of central type with coisotropic
stabilisers, and let Γ be the homogeneous graph for L. Then ΓL,ψ ∼= Γ if and only
if, for each orbit Oi, i ∈ I it is possible to choose a pairing of the representations
{ρi,k}k∈Ki of Hi with coset representatives {gi,k}k∈Ki ∈ G/Hi for each i, such that

(ρi,k)��⊥(ρi′,k′) if and only if (gi,k)
−1gi′,k′ ∈ HieHj. (7.21)

Proof. If it is possible to find such a pairing, then again, choose the bijection (ρi,k) 7→
gi,k · vi. We show that this is an isomorphism. By Proposition 47 and Definition 65:

ρi,k��∼ρi′,k′ ⇔ ρi,k��⊥ρi′,k′ (7.22)

By Definition 65:

gi,k · vi��∼gi′,k′ · vi′ ⇔ vi��∼((gi,k)
−1gi′,k′) · vi′ (7.23)

⇔ (gi,k)
−1gi′,k′ ∈ HieHj (7.24)

Then (7.21) implies that ρi,k��∼ρi′,k′ if and only if gi,k · vi��∼gi′,k′ · vi′ . The map is
therefore an isomorphism.

In the other direction, suppose that there exists an isomorphism f : ΓL,ψ −→ Γ.
Pair gi,k with the preimages ρi,k = f−1(gi,k ·vi). Since the map is an isomorphism, we
have that ρi,k��∼ρi′,k′ if and only if gi,k · vi��∼gi′,k′ · vi′ , so we obtain by (7.22) and (7.23)
that

(gi,k)
−1gi′,k′ ∈ HieHi′ ⇔ ρi,k��⊥ρi′,k′ .
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A recipe for finding pseudo-telepathic graph pairs

There are many graphs, but relatively few central type groups. In [77, Introduction],
we showed that the smallest-known pair of quantum isomorphic graphs is generated
by a quantum bijection arising from a central type subgroup (Z2)4 < S24. In this case,
the target of the quantum isomorphism is the homogeneous graph (Definition 65).

It is a straightforward task to run through the central type groups of Sn for
n ≤ 24 and see if the condition (7.21) is satisfied. In this way, it may be possible to
find a smaller pseudo-telepathic graph pair. Regrettably, we have not had time to
include this in the thesis.

7.5 Linear constraint systems

In the abelian case, our construction is closely related to the theory of linear con-
straint systems [27, 28].

7.5.1 Definition

Definition 66. A linear constraint system over a finite field Zp, p prime, considered
as a multiplicative group with elements {e2kπi/p | 0 ≤ k ≤ p− 1}, is defined by a set
of variables X = {xi | 1 ≤ i ≤ n} and a set of m equations, defined by subsets
{Ek ⊂ X | 1 ≤ k ≤ m} of the variables and constants {ck ∈ Zp | 1 ≤ k ≤ m}:

∏

x∈Ek
x = ck

A classical solution of such a system is a function f : X −→ Zp such that the equations
hold.

Let Up(d) be the group of unitary operators on a Hilbert space of dimension d
with eigenvalues in Zp. A operator solution to a linear constraint system over Zp is
a function q : X −→ Up such that:

• If x1, x2 ∈ X appear in the same equation, then q(x1)q(x2) = q(x2)q(x1). (The
operators for variables in the same equation are simultaneously measurable.)

• For each 1 ≤ k ≤ m, ∏

x∈Ek
q(x) = ck1.

(Measuring all operators in the same equation Ek and multiplying the outcome
values will always give ck.)
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Classical and operator solutions to the LCS are classical and quantum strategies,
respectively, for a certain nonlocal game.

Definition 67. A local solution for an equation Ek is a function l : Ek −→ Zp such
that

∏
x∈Ek l(x) = ck.

Definition 68 (Linear constraint system game [6]). The verifier gives Alice and Bob
each an index 1 ≤ kA, kB ≤ n, specifying an equation for each party. To win, Alice
and Bob must return local solutions fA : EkA −→ Zp and fB : EkB −→ Zp respectively,
such that fA|EkA∩EkB = fB|EkA∩EkB .

An operator solution defines a quantum strategy for the game. Alice and Bob share
a maximally entangled state

∑d
i=1 |i〉⊗|i〉. Alice measures the operators {q(x) | x ∈

EkA}, and returns the values measured. Bob measures the operators {q(x)T | x ∈
EkA}, and returns the values measured. By (7.5.1), these will be local solutions, and
the correlations from entanglement imply that they will agree on any overlapping
variables.

7.5.2 Operator solutions from groups of central type

It has already been shown in [6] that an operator solution to a linear constraint
system is a quantum graph isomorphism.

Definition 69. We define the graph of a linear constraint system as follows:

• A vertex for each local solution.

• An edge (Ek, lk) ∼ (Ek′ , lk′) if and only if there is a contradiction between
them; that is, a variable x ∈ Ek ∩ E ′k such that lk(x) 6= lk′(x).

Definition 70. The homogenisation of a linear constraint system has the same set
of variables and equations, but all constants ck are set to 1.

Theorem 21 ([6]). There is a classical (resp. operator) solution to a linear con-
straint system if and only if there is a classical (resp. quantum) isomorphism from
the graph Γ of the linear constraint system to the graph Γ0 of its homogenisation.

It should therefore be possible to construct operator solutions to linear constraint
systems from central type symmetries of the graphs of their homogenisations. In
fact, up to a minor subtlety, every abelian group (Zp)2n of central type acting on a
set gives a solution to a linear constraint system in this way. The correspondence
depends on three lemmas.
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Lemma 20. The orthogonal complement H⊥ of any coisotropic subgroup H is isotropic.

Proof. If H⊥ is orthogonal to all of H, it must certainly be orthogonal to H⊥ ⊂
H.

Lemma 21. Let (L, ψ) be an abelian group of central type, and H < L be a
coisotropic subgroup. Let V be the unique irreducible module of CLψ. Then the
irreducible subspaces ρ ⊂ VH are precisely the (possibly degenerate) joint eigenspaces
for the operators {h̄|h ∈ H⊥}.

Proof. We first show that the action of H on VH preserves the eigenspaces of H⊥.
Indeed, let x ∈ H, y ∈ H⊥, and v an eigenvector for H⊥ with eigenvalue λy for y.
Then

ȳh̄v = h̄ȳv = λyh̄v,

so the action of H preserves eigenspaces. Therefore the number of eigenspaces of
H⊥ in V is less than or equal to the number of irreducible subspaces of VH . We
now show that there are as many eigenspaces in V as irreducible subspaces, and the
result follows.

Firstly, we show that the distinct possible sets of joint eigenvalues of the operators
in H⊥ is precisely the number of 1-cochains on H⊥ whose differential df is ψ|H⊥ ; that
is, the number of functions f : H⊥ −→ U(1) such that f(h1)f(h2)/f(h1h2) = ψ(h1, h2)
for all h1, h2 ∈ H⊥. To see this, first note that any possible eigenvalue assignment
f : H⊥ −→ U(1) must satisfy df = ψ|H⊥ , since, for v a joint eigenvector of h1, h2:

f(h1)f(h2)v = h1 h2v = ψ(h1, h2)h1h2v = ψ(h1, h2)f(h1h2)v

To go in the other direction, observe that the difference f−1
1 f2 : H⊥ −→ U(1) between

any two such 1-cochains is a character of H⊥. The 1-cochains with differential ψ|⊥H
therefore form a torsor for the character group (H⊥)∗ — that is, a set carrying a
free and transitive action of (H⊥)∗ by multiplication — and are therefore in (non-
canonical) bijection with the elements of (H⊥)∗.

Now we show that (H⊥)∗ has |L|/|H| elements. This follows from the fact that
the kernel of the surjective homomorphism

ρ : L −→ (H⊥)∗

a 7→ ρ(a,−)

is H. To see that this map is a homomorphism, simply observe:

ρ(a, bc)b c a = ρ(a, bc)ψ(b, c)bc a = ψ(b, c)a bc = a b c = ρ(a, b)ρ(a, c)c a b
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For surjectivity, recall from Proposition 35 that a 7→ ρ(a,−) is an isomorphism
L −→ L∗, and so yields all multiplicative characters of L. Since any character of
(H⊥) induces a character of L, we obtain all the characters of H⊥ upon restriction.
Finally, the kernel is by definition (H⊥)⊥; since L is abelian, ρ is a symplectic form
on a vector space, and so we can use dimension counting to obtain (H⊥)⊥ = H.

We have now proved that H⊥ has the correct number of possible eigenvalues; to
finish we must show that they all appear in VH . For this, observe that the action of
L on V varies the eigenspaces as

hxv = ρ(h, x)λhxv.

As we have seen, this action is transitive; it is therefore clear that all joint eigenvalues
of H⊥ have associated eigenspaces in VH .

Lemma 22. For any abelian group A,

∑

g∈A
g = e, (7.25)

except when A contains precisely one self-inverse element.

Proof. Let S < A be the subgroup of elements of order ≤ 2. It is clear that
∑

g∈A g =∑
s∈S s, since the elements which are not self-inverse will cancel. It is also clear that

S ∼= Zn2 for some n. For n = 0, (7.25) holds. For n ≥ 1,

∑

s∈Zn2

s =
∑

s∈Zn−1
2

(s, 0̄) +
∑

s∈Zn−1
2

(s, 1̄) =


 ∑

s∈Zn−1
2

s, 0̄


+


 ∑

s∈Zn−1
2

s, ¯2n−1


 .

It is then easy to see that (7.25) holds except for n = 1.

We are now ready to outline the correspondence. Given a central type group acting
on a set, where the action has stabilisers Hi, we obtain a quantum solution to a
linear constraint system where the variables in the ith equation are elements of H⊥i ,
and the constants are obtained from the 2-cocycle of the central type group.

Proposition 50. Let (L, ψ) := (Z2n
p , ψ) < Sn be a central type group, let Hi be

the stabilisers of the orbits, and let Γ be the homogeneous graph (Definition 65). If
(Hi)

⊥
��
∼=Z2 for all i, then:

• Γ is the graph of the homogeneous linear constraint system with variables X =
{x | x ∈ ti(Hi)

⊥}, and equations defined by Ek = {x | x ∈ H⊥k }.
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• ΓL,ψ is the graph of the same linear constraint system with constants ck =
ψ(Ek).

• q(x) = Ux, where Ux is the UEB associated to (L, ψ), is an operator solution
for the linear constraint system with constants ck.

Proof. To demonstrate the first bullet point, we show that the vertex sets of each
graph are isomorphic as L-sets, and that the connected double cosets are the same
in each graph for each pair of orbits; the result then follows. By Proposition 35 we
have an isomorphism of groups:

ρ : L/Hi −→ (H⊥i )∗

a 7→ ρ(a,−)

Here (H⊥i )∗ is the character group of H⊥i , which, by (7.25), is also the group of local
solutions to the equation

∏
x∈H⊥i = 1. We therefore pick a vertex vi in each orbit of

Γ and a local solution φi for
∏

x∈H⊥i = 1, and define a bijection from vertices in each
orbit to local solutions:

a · vi 7→ ρ(a,−)φi.

This is clearly an isomorphism of L-sets; moreover, for each pair of orbits only the
identity double coset is disconnected, so it must also be an isomorphism of graphs.

For the second bullet point, we use Lemma 21. In particular, each vertex cor-
responds to a representation of Hi, so is an eigenspace of H⊥i . The connectivity is
clearly the same in each case, because Γ only had the identity double cosets discon-
nected, and by Proposition 47 this will be true of ΓL,ψ also.

The third bullet point follows since the operators {Ux | x ∈ H⊥i } are all commut-
ing (since H⊥i is isotropic) and

∏
x∈H⊥i Ua = ψ(H⊥i )1 (by Lemma 22).

Remark 14. This justifies our use of the term ‘homogeneous graphs’ in Definition 65;
they can be seen as nonabelian generalisations of graphs of homogeneous linear con-
straint systems.

Remark 15. This result can be extended to all abelian groups of central type by
broadening the definition of linear constraint system to include variables taking values
in different subfields of a larger finite field.

7.5.3 A characterisation of quantum solutions obtained from
central type groups

It is a consequence of Proposition 50 that we can construct a linear constraint system
and a quantum solution for any abelian group of central type acting on a set, as long
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as none of the stabilisers of the orbits of the action are isomorphic to Z2. Here we
determine which quantum solutions to linear constraint systems can be obtained in
this way.

Definition 71 ([27, Definition 3]). The solution group G for a linear constraint
system X, {Ek}, {Ck} is presented by generators x ∈ X and J , and relations:

1. xp = Jp = e for all x ∈ X.

2. [x, J ] = e for all x ∈ X (J commutes with each generator).

3. If x, x′ ∈ X appear in the same equation Ek, then [x, x′] = e.

4.
∏

x∈Ek x = J ck .

It was shown in [27] that unitary representations of this group where J is not repre-
sented by the identity matrix are, up to a phase, quantum solutions to the LCS. The
first equation specifies that the operators have eigenvalues in Zp; the second equation
specifies that J will be taken to the complex root of unity defining the constants;
the third equation specifies that operators corresponding to variables in the same
equation are simultaneously measurable; and the fourth equation specifies that the
values measured for observables in a given equation Ek will multiply to ck.

Remark 16. In general this group is infinite, since there is no relation specified be-
tween generators not in the same equation.

Remark 17. Classical solutions correspond to the one-dimensional representations of
the solution group.

One method of obtaining representations of the solution group is to consider its
abelianisation.

Definition 72. The abelianisation of the solution group G′ := G/[G,G] is the quo-
tient of the solution group by its commutator subgroup. It has a generators-and-
relations presentation as in Definition 71, but with the additional equations [x, x′] = e
for all x, x′ ∈ X.

Any representation of the abelianisation such that the image of J is not 1 gives
a quantum solution of the linear constraint system, after precomposition with the
quotient map G −→ G′. To relate this to our construction of quantum solutions to
linear constraint systems from central type subgroups, we reformulate the definition
of the solution group in the language of projective representation theory.
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Definition 73. The projectivisation G0 of the solution group is the quotient of G
by the central type subgroup 〈J〉. (It is generated by all the variables except J , with
J taken to the identity in the relations.)

Proposition 51. Quantum solutions to the LCS are in bijection with projective
representations ρ of G0 with 2-cocycle ψ : G0 × G0 −→ Zp satisfying the following
conditions:

1. The subgroups generated by the variables 〈Ek〉 are isotropic.

2. ψ(Ek) = ck.

In the quantum solution, the variable x is taken to the operator ρ(x).

Proof. We already know that the quantum solutions to the linear constraint system
are representations ρ of G where J��7→1. As in Proposition 34, this induces a projective
representation ρ of G0, where the generators x are mapped to ρ(x). The 2-cocycle is
defined by

ψ(x1, x2)1 = ρ(x1)ρ(x2)ρ(x1x2)†

The condition (1) follows from condition (3) of Definition (71), and the condition (2)
follows from condition (4) of Definition (71).

In the other direction, given a projective representation of G0 with Zp-valued co-
cycle ψ, one obtains a representation of G0×Zp, where that group has multiplication
defined by

(a1, b1) · (a2, b2) = (a1a2, ψ(a1, a2)b1b2).

Let J be a generator of Zp. Then we have an ordinary representation of the free
group on the generators of G. We now show that the conditions (1) and (2) imply
all the relations in Definition 71. Relation (1) follows from the same relation in G′

and the fact that the cocycle is Zp-valued. Relation (2) follows immediately from the
direct product. Relation (3) follows from condition (1) above. Finally, relation (4)
follows from condition (2) above. We therefore obtain an ordinary representation of
G.

It is straightforward to see that these constructions are mutually inverse. In one
direction, we start with an ordinary representation ρ of G; we first eliminate the J ,
and then put it back when we identify it with a generator of Zp. As long as we pick
that generator to be ρ(J) we therefore recover the original representation. The other
direction is clear.
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Definition 74. The projective abelianisation G′0 is the quotient of G′ by the central
subgroup 〈J〉 (or equivalently, the abelianisation of G0).

This group has a natural characterisation.

Definition 75. The homogeneous solution group of an LCS is the group of classical
solutions to its homogenisation.

Proposition 52. The group G′0 is isomorphic to the homogeneous solution group.

Proof. Let (G′0)∗ be the dual of the abelian group G′0; that is, the (non-canonically)
isomorphic group of its ordinary representations. As G′0 is the abelianisation of
G0, irreducible ordinary representations of G′0 are in one-to-one correspondence with
irreducible one-dimensional ordinary representations of G0. By Proposition 34, these
are one-dimensional representations of G where J maps to 1, which are precisely the
elements of the homogeneous solution group.

Now we have introduced the group G′0, we consider its relevance for the linear con-
straint system.

Proposition 53. A quantum solution to the LCS with solution group G which factors
through the abelianisation G′ is precisely a projective representation of G′0 with 2-
cocycle ψ, where:

1. The subgroups generated by the variables 〈Ek〉 are isotropic.

2. ψ(Ek) = ck.

Proof. Follows from the fact that the quotient G −→ G′0 is the same whether we
quotient by the commutator subgroup first, or the group 〈J〉.

Remark 18. The Mermin-Peres magic square solution is obtained in this way from the
homogeneous solution group G′0

∼= (Z2)4 of the associated linear constraint system
(see [77, Introduction]).

In Proposition 50 we showed that, for any central type subgroup acting faithfully
on a set, where all point stabilisers are coisotropic, we obtain a quantum solution
of a certain linear constraint system. We now show that in fact this construction
captures, in a precise sense, the nonclassical part of any solution to a linear constraint
system which factors through the abelianisation of the solution group.

142



Let G′0 be the projective abelianisation of a solution group, with variable set X,
and let ρ : G′0 −→ U(d) be a projective representation with Zp-cocycle. Up to a phase,
the operator corresponding to a general element in G′0 can be expressed as

a =
∏

x∈X
xnx

where 0 ≤ nx ≤ p − 1 for all x. Some of these products of operators will commute
with everything else in the solution group and can therefore be measured before-
hand; suppose we have done this, and pick an eigenvalue for each of these operators.
Since they commute with the measured operators, the other operators will restrict to
unitaries on the corresponding joint eigenspace. We therefore obtain a new solution
group, with additional equations (specifying the joint eigenvalues of the measured op-
erators); and a new quantum solution, on a Hilbert space with decreased dimension
(the dimension of the joint eigenspace of the measured operators), given by x 7→ πxπ,
where π is the Hermitian projection onto the joint eigenspace of the measured opera-
tors. If any of the operators for the generating variables are one-dimensional, remove
those variables and change the constants accordingly. It may now be that some of
the operators corresponding to elements of the new solution group commute with
all the other operators in the new solution. In this case, repeat the above process.
One will eventually arrive at an operator solution which has no operators commuting
with all others.

Definition 76. We call the non-redundant quantum solution obtained in the above
manner a core of the original operator solution.

A core is obviously non-unique in general, since it depends on a choice of eigenval-
ues. Since ρ(a, b) is 1 only if a and b commute, we obtain our final observation by
Definition 50.

Proposition 54. Any core of an operator solution to a linear constraint system
factoring through the abelianisation is a representation of a group of central type.
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Part III

Conclusions
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Chapter 8

Conclusions

Before concluding the thesis, let us take a few pages to suggest some avenues of
further research based on the results we have derived.

Applications of the results in Part I. The first part of the thesis is at least
a proof-of-principle that the categorical-algebraic approach is a viable method of
generating novel operational quantum protocols which can be applied in the real
world. But will these new teleportation schemes will be practically useful?

Our protocol for quantum teleportation with infinite reference frame misalign-
ment should be applicable to most realistic cases in which two parties attempting to
do quantum teleportation might experience reference frame misalignment as a result
of their physical setup. Whether our scheme is more useful than others depends on
the scenario being considered. Quantum technology is at an early stage, and it is
perhaps unlikely experimentalists will look in the near future for a teleportation pro-
tocol which optimises resource use to the extent of our tight protocols, or encounter
the kind of reference frame uncertainty for which they might be best suited.

Our perfect tight protocol for finite groups may be more suitable for near-term
applications. It would be unusual for finite group reference frame uncertainty to
arise ‘by accident’. However, it is certainly possible for communicating parties to
deliberately induce reference frame uncertainty, using their reference frame configu-
ration is a sort of secret key. In this setting, our protocol shows that it is possible to
perform quantum teleportation without ever sharing a secret key, or leaking any in-
formation about the key one is using. This could have various applications to secure
communication and computation: together with shared magic states, for instance,
teleportation becomes a powerful computational primitive. The fact that there is no
need to share a secret key is clearly important when many parties are involved.
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On a theoretical level the main novelty is that, in order to extend quantum
protocols to the setting of unspeakable information, it is natural also to encode
classical information unspeakably. The possibilities opened up by this idea, such
as doing important protocols other than teleportation without prior alignment and
without leaking reference frame information, are largely unexplored.

Applications of the results in Part II. The first and most obvious application
of the results in Part II is to generate new instances of quantum pseudo-telepathy
in the graph isomorphism and linear constraint system games. Since already-known
quantum strategies use Pauli or generalised Pauli matrices (abelian groups of central
type), this more general construction from nonabelian groups of central type should
provide novel examples of ‘nonabelian’ quantum strategies.

We have also identified intriguing hints of a compositional structure behind
known quantum strategies. In particular, the quantum graph isomorphism from
the Mermin-Peres magic square factors through a pair of isomorphisms to and from
an intermediate quantum set. Could this have something to do with the appearance
of pseudo-telepathy? Evidence will be obtained from observation of the behaviour of
our group-theoretical construction under Cartesian product of central type groups.
However, for a full understanding we will require a physical interpretation of quantum
bijections between general quantum sets.

Indeed, perhaps the main future application of the results in Part II will be as
a concrete example of quantum bijections in the case where classical sets are being
related to classical sets. We finish by providing a conjecture as to the physical
interpretation of quantum bijections between arbitrary finite quantum sets.

The quantum set should be considered as the type of an information source.
A classical set, for instance, is the type of a classical information source; a matrix
algebra is the type of a pure quantum source; while a general quantum set is the type
of a mixed classical-quantum source. A quantum bijection between two quantum
sets uses half of a maximally entangled state to reversibly transform one type of
source into another, where the inverse transformation uses the other half of the
maximally entangled state. One example is teleportation: a pure quantum source is
reversibly transformed into a classical one using half of a maximally entangled state,
then the other half of the entangled state is used to reverse the transformation and
recover the classical information. These transformations relate not only sources, but
also channels, described by their weighted noncommutative graphs; the notion of a
quantum graph isomorphism can be used to classify channels which ‘pull through’
the transformation. This is why we have taken care to prove results here for general
quantum sets, whereever possible: the case of classical sets will simply be a general
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case of this theory of entanglement-assisted transformations, where both the input
source and the transformed source are classical.

We will explore these ideas in future work.
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Severini, and Antonios Varvitsiotis. Quantum and non-signalling graph iso-
morphisms. 2016. arXiv:1611.09837.

[7] Laszlo Bacsardi. On the way to quantum-based satellite communication.
IEEE Communications Magazine, 51(8):50–55, 2013. doi:10.1109/MCOM.

2013.6576338.

[8] E. Bagan, M. Baig, A. Brey, R. Muñoz Tapia, and R. Tarrach. Optimal en-
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In David H. Pitt, Axel Poigné, and David E. Rydeheard, editors, Category The-
ory and Computer Science, pages 140–157, Berlin, Heidelberg, 1987. Springer
Berlin Heidelberg.

152

http://arxiv.org/abs/quant-ph/0608213
http://dx.doi.org/10.1088/1367-2630/8/10/249
http://dx.doi.org/10.1088/1367-2630/8/10/249
http://dx.doi.org/10.1364/IQEC.2007.JSI2_4
https://doi.org/10.1007/3-540-17162-2_121
http://dx.doi.org/10.1007/3-540-17162-2_121
http://dx.doi.org/10.1007/3-540-17162-2_121
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://www-math.mit.edu/~etingof/egnobookfinal.pdf
http://www.math.mit.edu/~etingof/egnobookfinal.pdf
http://www-math.mit.edu/~etingof/egnobookfinal.pdf
http://www.math.mit.edu/~etingof/egnobookfinal.pdf
http://dx.doi.org/10.1090/surv/205
http://www.gap-system.org
http://arxiv.org/abs/quant-ph/0101098
http://arxiv.org/abs/quant-ph/0101098
http://dx.doi.org/10.1103/RevModPhys.74.145
http://dx.doi.org/10.1038/46503


[47] William Helton, Kyle P Meyer, Vern I Paulsen, and Matthew Satriano. Al-
gebras, synchronous games and chromatic numbers of graphs. arXiv preprint
arXiv:1703.00960, 2017.

[48] Chris Heunen and Sean Tull. Categories of relations as models of quantum
theory. Electronic Proceedings in Theoretical Computer Science, 195:247–261,
2015. arXiv:1506.05028.

[49] Lawrence M. Ioannou and Michele Mosca. Public-key cryptography based
on bounded quantum reference frames. Theoretical Computer Science,
560(P1):33–45, 2014. arXiv:0903.5156, doi:10.1016/j.tcs.2014.09.016.
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