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Abstract

This is a thesis in two complementary parts.

The first part informally suggests the graphical calculus for monoidal categories as a uni-
fying framework for compositional semantics in generative and typelogical grammars, one in
which the two approaches are category-theoretic duals.

The second part formally establishes a construction that completes arbitrary monoidal
categories with respect to near-arbitrary graphical equations encoding structural monoidal
natural transformations, offering freedom for theorists to explore and calculate with structures
of their own devising.
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Part I

Graphical Grammar
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The purpose of this part is to provoke a connection between compositional semantics, and two
kinds of approaches to formal grammar analyses of natural language: Generative Grammars and
Typeological Grammars.

We assume that meaning is compositional. Given this assumption, these are the visions we
wish to communicate: we believe that the role of grammar is to direct the composition of meaning,
and we believe that in doing so, grammar and semantics do not impose constraints on one another.
We believe that the mathematical structures that generate grammatically correct sentences are,
suitably conceived, categorially dual to the mathematical structures that evaluate the meaning of
sentences.

We are not in the business of providing a Theory of Language, rather we seek to invite applied
category theorists and formal linguists towards consideration of a lingua franca for Theories of
Language. As such, in this work we are concerned about empirical linguistic data only insofar as
they recommend constraints on expressivity in the theories we are attempting to establish common
ground for.

Also, we’ll do it in pictures.

1 Compositional Semantics

1.1 Compositionality

The proposed ideological glue is Frege’s (Principle/Conjecture) of Compositionality, which is the
bare minimum of any analysis – from the greek άυα- (above/throughout) and λὺσιζ (decomposi-
tion/disintegration). We let the man speak for himself [Max66, p.31] (emphasis mine):

. . .we split up the sentence

“Caesar conquered Gaul”

into “Caesar”, and “Conquered Gaul.” The second part is “unsaturated” – it
contains an empty place; only when this place is filled up with a proper name,
or with an expression that replaces a proper name, does a complete sense appear.
Here too I give the name “function” to what this “unsaturated” part stands for.
In this case the argument is Caesar.

Compositionality as functional application is a good first approximation, and one that has en-
joyed staying power. The Set Theory that Frege and Cantor developed eventually found favour
with Bourbaki[Paw], whose structuralist philosophy is evident in the presentation of nearly all
undergraduate mathematics even today: if the mathematics was developed earlier than the 20th

century, there is a great chance that it is formally presented by sets and functions between them.

At first, ‘function’ was defined in terms of analyticity. In the precursor to the mathematical
field of Analysis, (single variable) functions were conflated with analytic representations – algebraic
composites of ‘simple’ monovariate functions, such as polynomials – which today we recognise as
differentiable functions. Fourier made the distinction between functions and their analytic repre-
sentations – fourier series, though analytic, could represent discontinuous modern functions. In

2



parallel, logicians[Boo10] began their investigations into symbolic logic with functions defined by
monovariate algebraic expressions. With time, the notion of function converged upon its present
day form, as a many-one binary relation.

The essence of the modern day function is arguably determinism. Functions relate ‘inputs’ to
‘outputs’, in such a way that the value of the inputs determine the values of the outputs. In prac-
tice, this determinism yields an implicit temporality [noab] via epistemic asymmetry: if we know
the inputs of a known process, we can calculate the outputs, but if we only know the outputs, in
general we are left uncertain about what the inputs were. This ontology of function as process
that transforms inputs to outputs in a deterministic way is familiar to our everyday intuitions of
physical processes, and this will be our preferred ontology.

The ideas above are old. The fresh approach is a new mathematical language for speaking
and reasoning about old ideas: Applied Category Theory, a branch of mathematics that concerns
itself with Compositionality. Category Theory is 21st-century mathematics, borne of a desire to
seek unification in the various structuralist presentations of mathematics. The 21st-century philos-
ophy that Category Theory engenders is that of synthesis : broadly characterised, a structuralist
concerns themselves with the inner structure and mechanics of a mathematical object, whereas a
category theory concerns themselves with how different mathematical structures interact.

In particular, we are interested in the theory of monoidal categories, which is all about the
sequential and parallel composition of processes. Do not be fooled by the simplicity of the diagrams
that we draw in this part: the second part of this work will place them on formal grounds as solid
as any other.

1.2 Process Theories

The presentation in this section is a quick overview of concepts expressed in more detail in [BC17,
Ch.3]. We just introduce circuit diagrams in the context of Set, and we detour just before reach-
ing string diagrams for compact closed categories and Rel, instead introducing Delpeuch’s free
autonomous construction[Del14].

A Process Theory ontologises the world as stuff and processes. There are types of stuff, and
that’s all we know about stuff. Processes take stuff as input, and produce stuff as output, provided
that the types of stuff going in and out match the type specification of the process. Processes
can be composed with one another to form new processes. The ‘Theory’ part of ‘Process Theory’
refers to the notion of equality of processes that one wishes to consider.

Example 1 (An analogy). Consider power socket converters between international standards.
A converter accepts input of certain standards and provides outputs of certain standards; these
are the processes. A US-to-UK converter can’t be plugged into a Brazil-to-Tonga converter; this
is what is meant by well-typedness. A US-to-UK converter can be plugged into a UK-to-Brazil
converter, yielding a US-to-Brazil converter; when typing is satisfied, processes can be composed.
Suppose your friend needs a US-to-Brazil converter, and you have both a single device that does
the job, and the composite US-to-UK-to-Brazil converter from before. Though these are different
devices, to your friend they are just as good as one another ; this kind of equality is what a Process
Theory is about.
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1.2.1 The basic graphical language of processes

Let us consider a particularly simple and expressive family of process theories, where there are
only two modes of composition: vertical, and horizontal. It would not be remiss for the time
being to imagine that vertical composition is temporal or sequential in nature, and that horizontal
composition is spatial or concurrent in nature. In Figure 1 we present the elements of a graphical
syntax for expressing such processes.

Figure 1: Each dotted box represents a bounding box, in which we form our graphical expressions. Each
well-formed dotted box is itself a process, and can be used in other composite processes formed by the
rules below. From left to right:

•••••••• A wire of type A, which ferries stuff of that type.

• A process named f , drawn as an axis-aligned box, which takes stuff of type A as input, and
outputs stuff of type B.

• A vertical composite process of named processes f and g. First f ‘transforms’ A-stuff to B-stuff,
and then g transforms that B-stuff into C-stuff.

• A horizontal composite process of named processes h and k. Since we can name h and k
separately, why not invoke those processes concurrently? This composite takes A-stuff and C-
stuff, and returns B-stuff and D-stuff.

• The special ’nothing’ process.

• A process u that gives some output, but takes no input. We call these ’states’.

• A process v that accepts some input, but gives no output. We call these ’effects’.

Observe that in the graphical syntax, really all that is left is processes. Specific states might
“create” stuff, but this stuff is hidden under and ferried by wires1.

1Wires themselves are special processes known as identities.
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Our graphical syntax has few constraints, but many affordances. Here are the rules:

Figure 2: We assume that wires are processive, in that for any horizontal slice of a diagram, any single
wire only intersects that slice once.

Figure 3: We assume that all wires terminate either at the top or bottom of the bounding box, or at
the top or bottom of a process-box, and no wires should terminate at the ‘nothing’ end of a state or
effect.
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Figure 4: Wires should not cross.

Figure 5: If two diagrams obey the above rules, and they can be deformed into one another by planar
isotopy, which is to say, continuous transformations of the plane, then they are equal.

Sets and functions between them form a process theory in this way. Wires are sets, and boxes
are functions. If a box takes multiple wires A,B, . . . , Z as input, or outputs multiple wires, we
consider the function to be taking in tuples (a, b, . . . , z) ∈ A × B × . . . Z as input, and we treat
outputs similarly. States of type A are elements of the set A. Effects in set are boring, because
we take an arbitrary singleton set to stand in for ‘nothing’, and there is only one function from
any set into a singleton. The reason we take singletons {?} to be ‘nothing’ is because we interpret
parallel composition as the product of sets, and A×{?} ' A; so it really behaves like ‘nothing’, in
that products with a singleton don’t express any extra data. Formally, we say that the category
Set with tensor product as the categorical product forms a monoidal category.

However, in for instance, Set, there may be graphical equations that hold beyond planar
isotopies. For instance, we know that there is function (+1) : N → N that maps any natural
number n 7→ n+ 1.
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1.2.2 Equations and Substitution

If you know that certain equations hold in your monoidal category, you can use them to reason
graphically. Suppose we know that that the process (+1) applied to the state n is equal to the
state n+ 1. We can express this fact in a system of graphical equations as follows:

Figure 6: Simple stuff. We will stop drawing the bounding boxes now.

The general rule for well-formedness of such graphical equations is that the incoming and out-
going wires on the bounding boxes of the two sides of the equation must match. We can use these
equations to calculate via diagrammatic substitutions.

Figure 7: Reading left to right, we mark just the top-left and bottom-right corners of the subdiagrams
we apply an equation to.

In general, we might write out a system of substitution rules for Set that look like this:
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Figure 8: Still simple stuff.

This is all well and good, but sometimes we might wish to specify certain properties about
our processes that are cumbersome to encode by a system of equations in this way. For instance,
consider the binary addition operation + : N × N → N. We know by arithmetic that for any
natural numbers a, b, that a+ b = b+ a:

Figure 9: Here, it doesn’t matter what a and b are: this equation always holds, because that’s just how
addition works.

What we really want to say is that addition is symmetric: it doesn’t matter what order we feed
in the arguments. We might want to write an equation like this:

Nobody needs to be shot just yet. We are proud to announce that centuries of mathematical
development has culminated in a method to simulate crossing wires.
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Figure 10: But the wires cross! Wasn’t that forbidden?

1.2.3 As if the wires cross

Suppose, for all pairs of wires in the monoidal category – which is to say in Set, all sets A,B – we
have a special process θA,B that satisfies the following equations.

Figure 11: Two of these special processes in succession cancel each other out.
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Figure 12: The special processes swap places with other processes like so.

Figure 13: And a special case for states.

We might choose to label the boxes differently, and perhaps suggestively:

Figure 14: Now it looks as if the processes f and g slide down the wires.

So there’s the trick: we use processes to simulate the mathematics of crossing wires. Thinking

10



of the special processes θ as ‘hiding’ crossed wires in this way, the figures above seem intuitively
clear: crossing wires over twice is the same as doing nothing2, and processes can slide along crossed
wires. In Set, such a process exists for all sets A,B: θA,B := A×B → B×A/(a, b) 7→ (b, a). So we
say that Set is symmetric monoidal. As graphical shorthand in symmetric monoidal categories,
we draw the special processes θA,B as crossed wires, though secretly, they still have invisible boxes
around them.

1.2.4 As if the wires bend backwards

So we have cheated the rule that wires cannot cross. What about the rule that wires cannot bend
backwards? Well, suppose that we have special processes ηA and εA for all wire labels A, which
look like this:

Figure 15: The unit and counit of a right-autonomous monoidal category. A fancy way to say that
these processes will pretend to bend the wire to the right. Or left. Plus I keep forgetting which one
is the unit and which is the counit. Ultimately not that important. There are also vertically reflected
versions with AL instead of AR, and those give left-autonomous monoidal categories.

The AR is a special wire label, functionally determined by A. We might consider the alternative
presentation R(A), where R is a function from the collection of wire labels (objects in our monoidal
category, in this case sets) to itself, though we haven’t evaluated the function yet. For the left and
right units and counits, we want the following equations to hold:

2Not so in braided monoidal categories.
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Figure 16: See where we’re going? Our physical intuitions should kick in once we redecorate the boxes
and wires more suggestively in the next figure.

Figure 17: Cups, Caps, and the Yanking Equations. Technically speaking, this notation where wires are
marked with direction is only correct for compact monoidal categories, which are planar autonomous
(left + right autonomous) symmetric. Really formally we would have to keep track of the number of
times the wire bends back left and right.
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Figure 18: There is also, technically, a graphical rule that allows one to ‘compress’ and ‘decompress’
wires (above). A useful shorthand, but not really necessary in plain monoidal categories. When we
are using processes to fake bending wires, we have to additionally specify how autonomous structure
behaves with respect to it (below). If we didn’t specify this rule, (A∗ ⊗ B∗)∗ (not depicted) would
define the multiplicative connective of linear logic [KU17, p.9-10][Gir11, p.188]

Sadly, Set doesn’t have processes that behave in this way. The reason is that there is only
one effect in Set. Recalling that the ‘nothing’ set is an arbitrary singleton {?}, there’s a unique
function from any set to the singleton, so we have the following graphical equations in Set:

Figure 19: We notate the unique effect with !.

Thus in Set, starting with one side of a yanking equation results in a broken wire, as shown in
figure 20.

So, we have the equation in figure 21 for all sets in Set:
Thus there are no interpretations of cups and caps in Set. There are, though, in Set’s nonde-

terministic cousin Rel, the category of sets and relations between them, and also in FdHilb, the
category of finite dimensional Hilbert Spaces and bounded linear maps between them. The pres-
ence of cups and caps is fairly useful for modelling phenomena in quantum mechanics[BC17, §4.1.2].
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Figure 20: Quite dangerous. The passage from the first to second diagram is the yanking equation,
and the passage from the second to the third is the unique-effect equation.

Figure 21: The first equation follows from above. The replacement in the second equation follows
because there is only one function from the singleton to the singleton. The final equation simply
reverses the first two, now with v in place of u. The consequence of equating the leftmost and
rightmost diagrams is that all elements of any set are equal, as u and v were arbitrary: contradiction.

But we have a different trick to pull. Recall that the graphical calculus concerns the sequential
and parallel composition of processes modelled in what we have been calling a monoidal category,
where sequential composition in the monoidal category is depicted vertically and respects ingoing
and outgoing types, and parallel composition is depicted horizontally. We can define a (monoidal)
category of diagrams drawn in this way, by modelling vertical composition of diagrams as se-
quential composition in the monoidal category, and horizontal composition of diagrams as parallel
composition in the monoidal category.

In this monoidal category of diagrams, we can ask that the cups and caps η and ε are included in
the stock of diagrams, and we can ask that they obey the yanking equations. We call this category
L(Set): the free autonomous completion of Set[Del14]. The η and ε diagrams aren’t from the
same universe as diagrams from the graphical calculus of Set, and we keep track of this fact by
drawing veteran diagrams from Set in bold, and new, added diagrams thin in the diagrammatic
calculus of L(Set).

There is an upside to this trick: note that in the figure 22, the diagram on the left of the
equation has these uninterpretable elements, but the diagram on the right doesn’t, so the diagram
on the right is the same thing as a diagram from the diagrammatic calculus in Set, and refers to
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Figure 22: Now the yanking equations do hold: the formal cup and cap are no longer interpretable
in Set, so we avoid the problem of disintegrating wires as before, as we cannot apply Set-equations
to them. This is also the catch: the formal cup and cap have no interpretation in Set. They’re just
drawings.

something that is actually in Set.

In other words, sometimes we can add made-up processes that obey new made-up equations to
a graphical calculus, and when the diagrams we draw are “well-formed” in some way, we can derive
a diagram that doesn’t contain any of those made-up processes. It’s as if the made-up processes
and equations stuck around just long enough to help guide calculation and composition, and then
disappeared. This is worth keeping in mind.

2 What is Syntax?

The chief object of study of linguistics is Natural Language. Natural Language is, loosely con-
ceived, any language that is, or was once the mother tongue of a group of human beings[Tra14,
p.57]. What differentiates human language from the signalling systems, of say, plants[Kar08]? In
1960, Hockett[CC] undertook a cross-linguistic study, and identified a list of 13 design features,
shared by all – and the stronger claim is, only – human languages. Among these, we draw atten-
tion to the third design feature: transitoriness. Spoken languages do not stick in the air as speech
bubbles; they are transmitted in the medium of air, quickly fading. In conjunction with the design
feature of discreteness, by which phonemes (perceptually distinct units of sound in a language)
constitute words – which all languages also have – it seems that physics has forced the spoken
word into linear streams of phonemic data3. By all accounts the spoken word predates writing
systems4, a technology that allows the persistence of linguistic data over time. Thus, though
writing systems for natural languages may have nonlinear symbolic arrangements of morphemic
– units of meaning – data, such as in ideographic (early cuneiform and egyptian) or logographic
languages (later chinese), in written form, all natural written text is presented as linear strings of

3There is the muddy issue of sign languages, where a visual medium of communication allows simultaneous
transmission of morphemes.

4Though there cannot exist evidence to the contrary.
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words – which are the smallest elements of language that can be taken in isolation to carry meaning.

Grammar is the study of the formation of these linear strings of data. Grammar in the modern
conception is also known as morphosyntax [Rad10, p.1], where morphology is the study of how mor-
phemes form words, and syntax is the study of how words form sentences. Of course, grammarians
have identified many other interstital layers of rules and structure in natural languages between,
above, and below the distinction we have just outlined, such as the highly influential school of
pragmatics[grice], but we cannot do them justice here.

There are, broadly speaking, two kinds of formal approaches to formal syntax in the modern
day[PS01]. They are the Generative-Enumerative, and the Model-Theoretic, of which the former is
currently mainstream, in no small part due to Chomsky’s seminal contributions. The Generative-
Enumerative approach treats grammar as a finite device that generates a set of strings or other
structures, and the Model-Theoretic approach holds that a grammar is a set of axioms – known as
constraints – in a formal logical system. The approaches are naturally complementary: the former
determines ‘what is allowed’ while the latter determines ‘what is not allowed’ in grammar, and
indeed modern syntactic theories make use of tools developed by both schools of thought[Dal].

Semantics is the study of the meanings of words and sentences, and tends to follow in the wake
of formal theories of grammar, or really, formal logics of any kind. As a result of this geneaology,
the dominant approach since Montague towards semantics is truth-theoretic. It has, however,
been a recurring desire throughout the centuries to capture meaning within formal systems, and
its pursuit has been fruitful: Wiener argues that Leibniz’s dream of a Calculus Ratiocinator –
a universal logical calculation framework – is the forerunner of the Machina Ratiocinatrix, the
reasoning machine that modern computers have become[Wie61, p.12]. There are of course deeper
complexities to the meaning and function of language than mere verity[Aus05], enough so that
some would argue that the task is futile[WR07], but we remain broadly sympathetic to Leibniz’s
vision.

We will continue in a very small corner of a very small patch of the study of language. We
are interested in the Phrase Structure and Typeological approaches to formal syntax – which are
generative-enumerative and model-theoretic, respectively – and even then only of a small toy-model
fragment of either, and we are interested in allowing the structures of both grammatical theories
to direct semantic composition.

3 Phrase Structure Grammars

3.0.1 Historical Context

What follows is a condensed history that contextualises Chomsky’s context-free grammars, which
loosely follows a more detailed exposition given in [Tra14].

The conceptual origins of phrase structure grammars are ancient greek. Aristotle divided sen-
tences into subject and predicate – a distinction that remains in our first-order logic today – and
the greek school developed through the course of around 400 years and culiminated in the clas-
sification system devised by Dionysus Thrax. By studying the behaviour of Greek, he concluded
that greek words fell into one of eight syntactic categories : Nouns, Verbs, Articles, Pronouns,
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Prepositions, Conjunctions, Adverbs, and Participles. The Greek school of grammar was adopted
by the Romans for Latin, and eventually the Greaco-Roman grammar came to dominate European
schools of grammar into the 20th century with little modification, and in some instances, remains
taught today.

In late 19th century Europe, Saussure[Sau95] inspired a major and lasting ideological change,
positing that languages were not mere atomistic collections of phonemes and words, but rather
structured systems of data. Saussure’s structuralism remains de rigeur. Structuralist thought
eventually inspired the branching off of semiotics from linguistics: the study of signs and meaning.
The chief exponenent of semiotics was Roman Jakobson, who, during his exile from Russia to
America in the midst of WW2, encountered the American school of semiotics founded by C.S.
Peirce[Har78], which had by the time extended the theory of signs and meaning to biology in the
work of Sebeok[Smi74]. Structuralist linguistics paired naturally with semiotics, in that language
provided structures that could produce meaning.

In time, the research programmes of American and European structuralists diverged, along
the lines of the Analytic and Continental traditions of philosophy. American structuralists lost
interest in the meaning and function of words, and focused on placing the study of linguistic form
on firm scientific footing. It was in this zeitgeist in mid-20th century America that Zellig Harris
grew interested in the analysis of linguistic form by formal, abstract, and algebraic means. Though
Harris’ approach was viewed by his colleagues as eccentric, he created a deep impression on one of
his students, Noam Chomsky.

3.0.2 Context-Free Grammars as a Theory of Language

In Chomsky’s seminal 1957 work, Syntactic Structures[CL02], the generative grammar proposed
produces syntactically correct linguistic strings by means of production rules that expand upon
strings, beginning from an initial symbol. The symbols themselves were aligned with syntactic
categories, and the terminal symbols at which no further production rules could be applied were
words, belonging to their parent syntactic category in a production tree.

Production rules work on the free monoid Σ∗ over an alphabet Σ (that is, finite strings of
symbols from Σ, including the empty string ε), where Σ contains a special start symbol S, and a
subset of terminal symbols Υ, which are disallowed in the codomain of production rules. Production
rules are most generally of the form Σ∗ → Σ∗. The received presentation of such production rules
is BNF: Backus-Naur Form[HU79, p.80], where each rule is presented without loss of generality as:

A→ b | C · d

Where A,B,C,D ∈ Σ∗, and the above rule is to be read: “a string A can be replaced by either
a symbol b, or the concatenation of the string C with the symbol d.” Vertical bars indicate that a
rule might license different replacements, and the we indicate concatenation of lowercase symbols
and uppercase string variables in Σ∗ with a dot. A collection of these rules is called a grammar,
and a string is said to be in the language of a grammar if the string consists solely of terminals, and
the string can be derived from the start symbol S by means of the production rules of the grammar.
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Example 2. Suppose that we have two syntactic categories: N, for ‘noun’, and V, for ‘verb’,
where we have two nouns: chickens and roads, and one verb cross5. Define the alphabet
Σ : {S, VP, NP, N, V, chickens, cross, roads}6, where S stands for ‘sentence’ (and ‘start’), VP for
‘verb phrase’, NP for ‘noun phrase’, N for ‘noun’, and V for ‘verb’, and the three words are terminals.
Let’s take the following to be our production rules:

S → NP · V P
V P → V ·NP
NP → N

V → cross

N → chickens

N → roads

The first rule says essentially that a sentence is composed of a subject and a predicate. The
second tells us that predicates are formed of a (transitive) verb, and another noun phrase (recall
Frege’s ‘unsaturated’ component in “Caeasar conquered Gaul”!) Since our example is fairly simple,
nouns are just as good as noun phrases (typically one allows noun phrases to be composed of a
determiner along with another noun phrase.) Our final three rules capture the words of our
language and the syntactic categories they belong in. Given these rules, we might have a production
that looks like Figure 23.

Figure 23: We mark terminal productions with dotted lines. Doesn’t this look familiar?

5Ok, properly speaking our nouns would be NP, not N, but whatever.
6Yes, suppose chickens, cross, and roads are atomic symbols.
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So chickens cross roads is grammatically correct in this toy model, as is roads cross

chickens, chickens cross chickens, and roads cross roads. Note that only the first of these
has a comfortable reading. Chomsky exemplifies the problem with the sentence Colorless green

ideas sleep furiously: grammatically correct, but nonsensical. Thus he argues for a separation
of concerns for syntax and semantics.

Figure 23 looks a lot like a diagram from a process theory, and that’s because it is. Every rule
in BNF with multiple productions on the right can be broken up into distinct rules with unique
productions. For instance, the rule A→ b | C · d from before would break into:

A→ b

A→ C · d

Each rule in this way can be interpreted as a process in a process theory, so the production
tree that we have just drawn could just as well have been depicted so:

Figure 24: Nice.

Shortly after Syntactic Structures, Chomsky and Schützenberger [HM14] worked to place
classes of production rules in relation to the models of computation that could recognise them.
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If for context sensitive languages, we rule out those languages that generate the empty string,
we obtain the non-contracting grammars [RS97, §4][HU79, p.230, ex. 9.9], which are those whose
production rules all (weakly) monotonically increase the length of the string operated upon. This
is not a massive concession when we require context sensitive grammars to serve as models of lan-
guage, because the empty string would correspond to the empty utterance, whose grammaticality
is suspect. Making this concession gives us a nice graphical correspondence with the geometry of
the process theories that implement production trees.

Figure 26: L0 rules have no restrictions on inputs and outputs. Non-contracting L1 rules have fewer
inputs than outputs. L2 rules have exactly one input, and L3 rules have one input and one output,
leaving behind terminal effects. This correspondence will be more suggestive after we consider semantics
in generative grammar.

The toy example we gave was a context-free grammar. Interest in context-free grammars as
theories of natural language waned after it was demonstrated that human languages exhibited
mild context-sensitivity [Shi85], though formal language theory in models of computation remains
a mainstay of any undergraduate computer science education. We’re happy to continue with our
toy context-free example.

3.0.3 Semantics in Generative Grammar by diagrams

In 1998, Heim and Kratzer applied truth conditional married truth-conditional semantics with
generative grammars [HK98]. Their work is a landmark in the field. They adopt a rigid inter-
pretation of Frege’s compositionality as functional, set-theoretic composition, and their approach
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can be summarised as follows: give the terminal nodes of production (which correspond to words)
set-theoretic semantics, in particular taking transitive verbs to be ‘schönfinkelized”7 functions in
two arguments, and inductively traverse the structure of the production tree to determine what
composes with what.

We have very little to gain from a play-by-play exposition of their formalism. We exhibit in-
stead an op-functor8 from the monoidal category of production rules in context free grammars to
L(Set), which faithfully captures the first three chapters of material.

Recall our previous example chickens cross roads. Suppose we do the näıve thing, and
model chickens and roads as elements of some noun set, and the transitive verb cross as a
process that takes two nouns, and returns a sentence type. For all we care, the noun type can be
the set of JPEGs, and cross can be a neural net that takes images and does whatever with them.
We’re going to treat the terminals of production first:

7Essentially just currying.
8Structure preserving map that reverses directions of arrows
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Figure 27: This is the action of the op-functor on the terminal production processes; we should be
presenting the right-hand diagrams upside down, but we’re keeping them this way to stress the structural
nature of the map. Recall that what’s drawn in bold is a ‘native’ of Set, whereas what’s drawn thin is
a formal element. To stress that they are different, we have boxed off the natives. The reasons for the
particular choices of mapping will become evident shortly.
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Figure 28: The objects of the source category are the labels from Σ. The objects of the target category
are the two sets corresponding to the noun- and sentence- types, which we have notated with a bar
and directional arrows to distinguish them from N and S.
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Figure 29: For the processes in the source category, which are production rules, we choose new processes
in L(Set) like so. Note that in doing so, we have respected the mapping choices we have made for
objects.
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4 Typeological Grammars

The aim of this paper is to obtain an effective rule (or algorithm) for distin-
guishing sentences from nonsentences, which works not only for the formal
languages of interest to the mathematical logician, but also for natural lan-
guages such as English, or at least for fragments of such languages.

Joachim Lambek, The Mathematics of Sentence Structure (1958)
Knowing sufficiently powerful models of computation that will recognise languages is, to an

extent, an academic concern: what matters from a computational perspective is knowing concrete
deductive procedures that can determine the grammaticality of a sentence after it has been uttered,
without access to the deep syntactic structure that may have generated it.

In his seminal work published shortly after Chomksy’s, Lambek began the undertaking of a
complementary approach to the generative-enumerative school. The residuated type system he
introduced was among the first substructural logics, and enjoyed fruitful cross-pollination with lin-
ear logic three decades later. Over time, the algebraic structures Lambek considered evolved, the
most modern incarnation being pregroups, which are much like groups, except with left and right
inverses for all objects, which behave like group inverses but only under left or right multiplication
respectively. We defer the reader to [CGS13] for a detailed treatment and historical perspective.

Typeological (sometimes Typological) grammars operate at the level of syntactic categories.
The essence of typeological grammar is the assignment of an algebraic type to each syntactic
category, from an algebra that at has at least the structure of a monoid: there is at least a binary
tensor operation ⊗ on types. The ⊗ typically models the separation of distinct but consecutively
uttered words. The assignment of types is paired with a system of gentzen-sequent style logical
rules by which one can determine the well-formedness of a sentence by the outcome of a process
of deduction[Moo14].

Example 3. We translate our chickens cross roads example into the typelogical system NL.

NL9 has a residuated type algebra (⊗, /, \), where all three operations are binary over a car-
rier alphabet encoding types. We will take our alphabet to just be {N, S}, where N informally
corresponds to ‘noun’, and S ‘sentence’. The types available to us will contain entries such as
N, (N⊗ S), (N⊗ (N/S)), etc..

In our example, we have two syntactic categories, that of nouns and verbs. We assign nouns the
type N, and we assign verbs the type (N/(S\N)). We model gaps between words as the connective
⊗. So the sentence chickens cross roads is assigned the type

((N⊗ (N/(S\N)))⊗ N)

Now we need to begin a derivation with this as the premise in a suitable logic, and we treat a
sentence as grammatical if we can derive S, the sentence type, from the type of the sentence. The
only inference rules of NL we need for this example are the application rules: for all types A,B,

9NL stands for the ‘Mon-associative Lambek Calculus’, referring to the non-associativity (and non-
commutativity) of the binary ⊗ connective. The original lambek calculus L considered an associative tensor
product, and was later ‘gradated’ into non-associative and non-commutative versions.
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(A ⊗ (A/B)) → B, and ((A\B) ⊗ B) → A (linear logicians will be well aware that the (A/B)
notation is a precursor to Girard’s linear maps A( B.) The derivation follows in Figure 31.

Figure 31

The algebraic models for the NL logic are known as residuated pregroups. In later iterations,
Lambek simplified the type system to (⊗, 1, (−)L, (−)R), where ⊗ is considered associative (but
not commutative), 1 is a nullary operation (constant) unital for ⊗, and (−)L and (−)R unary type
forming operations known as the left and right adjoints respectively. The inference rules for this
type system are, for all types A:

A⊗ AR → 1→ AR ⊗ A
AL ⊗ A→ 1→ A⊗ AL

The algebraic models for this system are known as pregroups. Rewriting our example in this
system, we would keep the same base of atomic types {N, S}, and we would type nouns as N,
and verbs as NR ⊗ S ⊗ NL. Note that now the role of ⊗ is no longer to model solely the gaps
between words occurring in sentences: word-types themselves share the same tensor product. In
this system, the sentence chickens cross roads is typed (dropping the brackets for ⊗ due to
associativity):

N⊗ NL ⊗ S⊗ NR ⊗ N

And recalling that 1 is unital with respect to ⊗, the derivation would be as in figure 32

4.1 Semantics in Typelogical Grammars by diagrams

A striking connection was noted by Coecke et. al[CSC10] between Lambek’s pregroup grammars
and the diagrammatic calculus for compact closed categories: the left and right adjoint types cor-
responded to bent wires, and the reduction rules corresponded to cups and caps.

The connection to application was made via Firth’s distributional semantics. In 1960, the
linguist Firth put forward the dictum “You shall know a word by the company it keeps”[Fir57]:
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Figure 32: Only S remains uneliminated by the end of the derivation.

the proposal was to treat the kinds of contexts a word appeared in as the semantics of that word.
It was only with the advent of Moore’s law and the availability of large digital corpora of text that
this proposal became practical in the field of computational linguistics. The de rigeur approach
today is conceptually simple. First, concoct a bag of several hundred context words, and assign
each of these context words a dimension in a vector space. Represent every other word in a corpus
as a vector in this vector space, with entries corresponding to a histogram of how often the word
appears within the same context (say, within the same sentence) as one of the context words.

Example 4. For example, if the context words are {green,bark,furry}, and we have a large
enough corpus of text, we would expect the word tree to have high values in the green and bark

dimensions, and the word dog to have high values in the bark and furry dimensions.

Distributional semantics came to favour when it was discovered that the linear algebra of these
vector space semantics seemed to reflect deep semantic relations between words: if one takes the
vector for King, subtracts the vector for Man, and adds the vector for Woman, the closest vector to
the result is the vector for Queen. Exciting stuff10.

After investigations in the programme of categorical quantum mechanics, an ingenious marriage
was devised: since the category of finite dimensional vector spaces is monoidal and compact closed,
and Lambek’s pregroup grammars are also compact closed, why not take a distributional semantics
approach to model the meanings of individual words, and then use linear cup and cup maps
arranged in a manner dictated by the pregroup grammars to compose these meanings and obtain
vector space representations of the meanings of sentences?

Example 5. Following from Figure 32, if we have vector representations of chickens, cross, and
roads, we can draw the following diagram in FinVect, the category of finite dimensional vector
spaces. The backwards bending wires become dual spaces, and finite dimensional vector spaces
are isomorphic to their double-duals.

Fantastic. Why aren’t we all doing this? In short, our computers aren’t big enough. The
category of finite dimensional vector spaces has two monoidal structures, the direct sum and the
classic tensor product. Taking the direct sum is additive in dimension: the direct sum v ⊕ w of
two vectors of dimensions n and m respectively yields a vector of dimension n+m. This is totally
manageable, but the trouble is that with the direct sum as the tensor product, FinVect is not

10Everyone uses this example to talk about how great distributional semantics is, but analogical reasoning with

word vectors is fraught with difficulty in practice[RDL17]. The closest word to
→

King −
→
Man +

→
Woman is not

→
Queen,

but rather
→

King. This isn’t to mention other problems with distributional semantics, such as the fact that it can’t
tell apart antonyms.
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Figure 33: Read from bottom to top. Looks very similar to the derivation in Figure 32. The dotted
boxes are enclosing the linear maps that act as caps in FinVect, also known as metrics[BC17, p.146].

compact closed, and we can’t get at those juicy caps. FinVect with the classic tensor product is
compact closed, but the dimension of v ⊗ w is n×m. This multiplicative blowup in dimension is
not great: a distributional categorical semantics approach to our chickens cross roads exam-
ple – assuming the dimensions of N and S are about 1000, and we are being charitable, as deep
neural models can take data of dimensions orders of magnitudes larger – would require about a
petabyte worth of storage to encode the initial input N ⊗ NL ⊗ S ⊗ NR ⊗ N. For a sense of scale,
this is enough data to take a picture documenting every minute of your expected natural lifespan
(around 80 years) with a 12-megapixel camera on a decent smartphone, with enough to show each
of the about 10,000 people you will meet in that lifetime a Netflix-4k quality (3Mbps) rendition of
Stanley Kubrick’s ‘2001: A Space Odyssey’ (runtime 2h44m), and to take a copy of the library of
congress (200TB) to your grave when you’re done. All to evaluate chickens cross roads.

What are the workarounds? The first solution is to wait for, and then use, a quantum computer.
We have an alternative suggestion.

4.2 An alternative suggestion

Just use L(Set) instead of FinVect.
And as a bonus, the diagrams we get are categorially dual to the generative-enumerative ap-

proach, up to planar isotopy.
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Figure 34: Read from bottom to top.

Figure 35: Here’s Figure 30 again. The diagram in Figure is the second diagram from the right.
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5 Apologia

You’ve only shown one example.

True, but the connection we have drawn is surely compelling. If we take generative and typelogical
grammars as seriously as cognitive models, it is natural to conclude that generative grammars run
typelogical proofs in reverse, such that the recipient of the sentence can have an easy time putting
together the intended meaning. We are aware of the technical result that context-free grammars
are weakly equivalent to pregroup grammars[Bus01], but that is a result that holds no force here:
the interest should lie in finding the complementary pair of generative-enumerative and typelogical
grammars that serve as a good empirical model.

What should we use, if not vectors?

It’s Set! Just about anything you can structurally specify lives there. Since the autonomi-
sation trick works for any monoidal category, you can work in Cat and have your states be
databases[SSVW16]. Or, if you don’t feel like anything fancy, in L(FinVect⊕) you can keep your
vectors and get your compact closure, too.

CFGs and Typelogical grammars are old-school, what about X?

Some unsubstantiated speculation: I suspect that transformational grammars can be expressed as
homotopies of diagrams. I regret not having the time to bring in dependency grammars and lexical
functional grammar in this work. The work of Tésniere[Tes] and Mel’cuk[MMMM88] I believe will
be particularly appealing to the category-theoretic eye for unifying structures, and I believe that
lexical functional grammar can be upgraded to lexical functorial grammar. I don’t know enough
about other systems to comment, but I am fairly sure they will succumb to diagrams.

Gotcha! cups and caps aren’t enough to do X, we need Y !

This objection is most likely to come from the Compositional Distributional Semantics community
(DisCoCat, for short.) It must be admitted that they have worked miracles in the in the arid desert
of vector space semantics, and great progress has been made in semantic and syntactic modelling.
To name a few contributions, work in the DisCoCat community has covered the phenomena of
negation [Vin19], montague semantics [dFMT], ambiguity [Rob14], entailment [KS], cognitive con-
ceptual modelling [Yaa15] , logical connectives [Mar10], inquisitive semantics [dFMT19], pronouns
[CCS13], updating information across sentences [BCG+17], and the list goes on. All this variety
has been squeezed from essentially two features of FinVect: Density Matrices and Frobenius Al-
gebras. The former is typically used in semantic modelling, and the latter in syntactic modelling,
and neither is fungible in Set.

Arguably, the chief purpose of Density Matrices in semantic modelling is to capture ambigui-
ties or superpositions of information, which can be done in more näıve manners in more suitably
structured settings, such as over probability distributions and multisets of alternatives. Frobenius
algebras are harder to reconcile, and we will revisit them in the conclusion, to see what can be
done about them.
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Yet, we have still not answered this charge in full generality. So coming up next, we’ll show
how to add just about any diagrammatic gadgets you can dream of into your favourite monoidal
categories. Skip ahead to the conclusion to see some more pictures.
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Part II

Graphical Completions of Monoidal
Categories
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6 Introduction

Given a graphical calculus for a monoidal category, and a collection of extra graphical components
and equations, we aim to demonstrate a monoidal category with a graphical calculus that supports
all the old and new graphical data and equations. So we will have a graphical completion of arbi-
trary monoidal categories. If you are reading on from the first part, process theories are functors
from the free monoidal category over a monoidal signature, and the free monoidal category over a
monoidal signature is the category of diagrams in the diagrammatic calculus over that signature.

Our approach is a generalisation of Delpeuch’s approach to the free autonomization of monoidal
categories. In a sentence, Delpeuch adds cups and caps to the diagrams of a monoidal category by
just drawing them, and then specifying that the diagrams must obey the yanking equations.

More at length, idea underlying Delpeuch’s construction was to first embed the original monoidal
category K into a syntactic category of graphical diagrams representing morphisms in K (taking
equivalence classes under planar isotopies, hence making good use of the coherence theorem.)
Then, he introduces purely formal cups and caps in the syntactic category, and he decrees that
these formal cups and caps obey the yanking equations; which is to say, he imposes additional
equalities. Then this construction turns out to be the free autonomous completion.

There are points we seek to improve upon in Delpeuch’s construction. There is a degree of
bureaucracy that must be dealt with when reasoning about upward planar graphs composed of
linear segments, which Delpeuch deals with ultimately by taking graphically induced equivalence
classes to obtain what is fundamentally a category composed of algebraic – rather than graphical
– syntactic representations of diagrams. In contrast, we will start with the algebraic representa-
tions, introducing a sequent calculus to derive morphisms and equations between them, and the
eventual term category we construct we will prove equivalent to a category of diagrams. The term
calculus we introduce is independently conceived, but we note that there are similarities between
our system and the approaches of [Mau], and of Hoare Logics.

Approaching in this algebraic manner will also give us the freedom and rigour to push to the
logical conclusion: given any structure representable by system of diagrammatic equations in the
plain monoidal graphical calculus, we will be able construct the completion of any monoidal cate-
gory with respect to that structure.

Simply conceived, what we propose in this section is painfully trivial. If you have a plain
graphical calculus with graphical equations, nothing is stopping you from just drawing in new
morphisms and labels for wires and calculating with respect to additional graphical equations that
govern the novel graphical elements. The contribution is that if someone put a gun to your head,
it is now possible to justify your activity formally.

The institutional and cultural challenge that applied category theory presents is more sub-
stantial. While forms of pictorial reasoning are workhorses of the mathematical arsenal, serving
working formalists as private calculation tools and pedagogical aids, there remains prejudice against
pictorial reasoning in formal presentations. The charges are manifold, and among them: pictures
lack rigour; we may be tricked by graphical intuitions; they do not look as serious as pristinely
typeset reams of greek.

35



These charges we answer in turn. Arbitrary pictures may lack rigour, but we will rigourously
ground the doodling systems of the previous section in this work, and of many other doodles and
ways to redoodle.

While indeed our spatial intuitions may lead us astray, the innate human faculties of spatial
comphrension and manipulation have also enjoyed the benefits of millions of years of evolution.
Progress that is labouriously wrested from understanding and manipulating reams of greek – a skill
that takes years to learn – may be expedited and made widely accessible, as our comprehension of
graphical systems is erotetically charged in light of those innate faculties.

The final charge, that reams of greek look more serious, is the least voiced aloud, but it
the likely progenitor of all prejudice against pictorial reasoning, deeply rooted in the modern
psychology and culture of mathematicians and mathematics. Understanding and manipulating
reams of greek is hard, and to do so with sufficient art and passion to make a living of it is harder :
hence the mere suggestion that it needn’t be so is an egregious affront on personal identity and
job security. Further, we have all noticed the tendency of formal presentation to pretend divine
inspiration: propositions and theorems arranged to follow one another drily, without traces of the
path of discovery, failures, struggles, and humanity. In this regard, seriousness and sacredness
with sanctified reams of greek is a shibboleth, and a point of pride in mastery of the arcane. In
constrast, pictures are profane and proletariat, presenting challenge to the cultural order. We will
skirt psychology for philosophy in answering this objection. To platonists and formalists alike, the
activity of mathematics is pushing names around ‘correctly’; why not do it in two dimensions?

6.1 The plan

7. We review the basic notions of category theory leading to monoidal categories. We will link
monoidal categories with the graphical calculus, and show that certain structural properties
expressed as natural transformations on monoidal categories can be presented as systems
of diagrammatic equations. In this section we place a particular emphasis on monoidal
signatures, and on presentations of categories as free objects under equational constraints.
We leave this section armed with a generalised notion of monoidal signature S which carries
‘all the data we care about’ in a given monoidal category K with structure.

8. We introduce the sequent calculus Mon(S), built from the data of S, which constructs dia-
grams and equations between them using the vocabulary of S.

9. We construct a category M(S) using the derivable terms, formulas, and equations from
Mon(S). We show that M(S) is strict monoidal and monoidally equivalent to K.

10. We show that when S only contains the data provided by a monoidal signature, M(S) is
equivalent to the category of diagrams in the graphical calculus over a monoidal signature.
Thus the objects ofM(S) are precisely equivalence classes of diagrams in graphical calculus
associated to K.

11. We elaborate upon structure and graphical equations, and we show how we may use the
technology we have developed to combine any monoidal category K with any structure ex-
pressible by a system of diagrammatic equations S to obtain a new monoidal category with
a graphical calculus that includes elements and equations of K and S, and nothing more.
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12. Conclusion. Discussion. Examples of what we can do with this trick.

7 Some Category Theory

This presentation of basic category theory is directed towards reaching monoidal categories, so we
assume familiarity with other basic concepts, such as products, limits, and duality. Our presenta-
tion of basic concepts up to functors follows the progression and conventions of [FS19, §3], as the
presentation of categories as free objects that satisfy equivalence relations is closely related to the
initiality of the free monoidal category over a monoidal signature in the category Mon.

7.1 Categories, Free and Finitely Presented

Definition 7.1 (Categories). A category C consists of the following data:

• A collection11 Ob(C), the elements of which we call objects of C.

• For every pair of objects c, d, a set C[c, d], elements of which are called morphisms, or

arrows, from c to d. We might denote such a morphism f : c→ d, or c
f→ d.

• For every object c, a specification of a morphism idc ∈ C[c, c], called the identity morphism
on c.

• For every triple of objects c, d, e, and every pair of morphisms f ∈ C[c, d] and g ∈ C[d, e], a
specification of a morphism in C[c, e] called the composite of f and g, denoted either g ◦ f ,
or f ; g. The former is read “g after f”, and the latter is read “f , then g”12.

Subject to the following conditions:

• (Unitality): For any c
f→ d, we have idc; f = f = f ; idd; that is, composing with identities

does nothing.

• (Associativity): For any three morphisms a
f→ b, b

g→ c, c
h→ d, we have (f ; g);h = f ; (g;h).

Categories are fairly versatile. One can express complicated constructs quite cheaply, because
of the abstraction afforded.

Example 6 (Set is a Category). Set is the category whose objects are sets, and whose morphisms
are functions between sets.

Example 7 (Preorders are Categories). A preorder (P,≤) consists of a set P , and a binary relation
≤ on P that is reflexive, antisymmetric, and transitive (without necessarily being total, which is
what promotes the preorder to a linear order.) Any preorder is a category in the following way:
the objects Ob(C) are the elements of P , and for any x, y ∈ P , C[x, y] contains a single element if
x ≤ y, and is empty otherwise.

11We won’t fuss about size issues and the foundations of mathematics here.
12The former notation is often mentally taxing for the uninitiated, so we will skew towards the latter.
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Example 8 (Path Categories). For any directed multigraph G = (V,E, s, t) – where V is a set of
vertices, E is a set of edges, and s, t are functions with domain E and codomain V that specify
the source and target of each edge – we can obtain the Path Category, which is also denoted
Free(G), by taking the objects to be those of V , and the arrows to be all paths between any two
objects (including the trivial path, which serves as the identity on objects.)

Preorders and Path Categories fall on two ends of a spectrum: whereas Preorders do not
distinguish between parallel morphisms with the same source and target, Path Categories are
“freely generated” given a digraph. We may access the intermediate points of the spectrum by
means of an interpreted equality predicate, starting from free categories. This is a familiar idea
in abstract algebra, where a particular mathematical structure such as a group, is presented as a
“free object” that is then subjected to an interpreted equality relation.

Example 9 (The Klein 4-group, finitely presented).

V = 〈a, b | a2 = b2 = (ab)2 = e〉

To be read: the elements of the Klein group are the equivalence classes of the set of all strings
freely generated by {a, b} under the equality relation specified in the right hand side (where e is
the identity element,)

We want to establish a similar formalism of presentation for categories, where free objects are
interpreted under an equality relation.

7.1.1 Finite Graphical Presentations of Categories

In this section, we wish to show that finite digraphs with path equations always yield a category,
by freely taking paths on the digraph, and then grouping paths by the equality relation specified
by the path equations. While the notion of path on a digraph is fairly intuitive, it will not hurt to
define.

Definition 7.2 (Digraphs). G = (V,E, s, t) where V is a set of vertices, E is a set of edges, and
s, t are functions with domain E and codomain V that specify the source and target of each edge

Definition 7.3 (Path Equations). Given a Digraph G = (V,E, s, t), a Path in G is a (finite)
sequence of edges P = e1 . . . en such that for all 1 ≤ i < n, t(ei) = s(ei+1); each morphism is a
step, and paths are composed sensibly of steps. Two paths P = e1 . . . en and Q = f1 . . . fm are
parallel when s(e1) = s(f1) and t(en) = t(fm); paths are parallel if they start in the same place,
and end in the same (possibly different) place. A Path Equation in G is an equation of the form
P = Q for parallel paths P,Q in G.

Definition 7.4 (Finitely Presented Categories). A finitely presented category 〈G | E〉 consists of
a (finite) digraph G, and a set (not necessarily finite) of path equations in G denoted E. Let [P ]E
denote the equivalence class under E of a given path P in G.

The objects of 〈G |E〉 are the vertices V ofG. The morphisms of 〈G |E〉 are {[P ]E | P is a path in G}
the equivalence classes of freely generated paths; for any pair of objects c, d, 〈G | E〉[c, d] =
[Free(G)[c, d]]E (by abuse of notation, we take this to be the set of equivalence classes repre-
sented in the set Free(G)[c, d] under E.) For each object c, the identity morphism is [idc]E, where
idc ∈ Free[c, c] is the trivial path beginning and ending at c. Composition is defined by declaring
[f ]E; [g]E := [f ; g]E; note that the left composition lives in 〈G | E〉, and that the right nested
composition lives in Free(G).
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The associativity and identity composition conditions are inherited from Free(G), and pre-
served by equality relations, so we indeed have a category.

Takeaway 1: Free and thin categories are two ends of a spectrum, and we can reach parts in
between using equations between arrows.

7.1.2 Type-Theoretic Presentations of Categories

Type Theory gives a sequent-style proof language to construct morphisms in a category. We wish
to establish a correspondence early on between the categorical and type-theoretic presentations,
as we will be making use of term models [AT10, p.70] later on, also known as syntactic categories.
The inter-translation scheme between type theories and categories is fairly straightforward:

• The types of the type theory are the objects of the category13

• The terms of the type theory are the morphisms of the category

• The axioms of the type theory correspond to ‘generators’ of named morphisms in the cat-
egory: for instance, the initial axiom c ` c corresponds to the invocation of the identity
morphism on the object c

• The cut rule in type theory performs variable substitution in the contexts, which corresponds
to plain composition of arrows in the category

Remark 1. It is difficult to find definitive presentations of Type Theory, but good sources for the
interested reader are [BD08], [Cro94], and [Pau]14. The fundamental idea is that type theories are
the proof systems for the internal logics of categories. We will skip the usual presentation of type
theories in terms of variables, judgements, terms, and contexts, because we nothing to gain from
such a presentation, as we will not be developing towards dependent type theories. So, while we
will keep the proof trees, we will use the syntax of arrows between objects we have developed so
far, rather than that of typed variables in contexts and sequents. After all, x : A ` f(x) : B and

A
f→ B differ only notationally.

7.2 Isomorphisms and Universals

In the familiar world of sets and functions, we have notions of ‘injectivity’, ‘surjectivity’, and
‘bijectivity’. In the language of categories, we have the following analogues:

Definition 7.5 (Monics, Epics, Isomorphisms). In a category C, we say that a morphism f is:

• monic if for all other (well-typed) morphisms g, h, g; f = h; f =⇒ g = h

• epic if for all other (well-typed) morphisms g, h, f ; g = f ;h =⇒ g = h

• an isomorphism if there exists a morphism f−1 such that f ; f−1 = id(cod f)

13Later, when we introduce monoidal categories, we will see that the objects of the category correspond to
contexts, rather than types.

14and whereever nLab leads.
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Monic and epic morphisms are ‘cancellable’ from the left or right of equations between com-
posite morphisms, and it is not difficult to see that in the category Set, the monics are precisely
the injections, and the epics are precisely the surjections. It should come as no surprise that iso-
morphisms are both monic and epic, and moreover cancel to the identity morphism in either order
of composition.

When there exists an isomorphism f : c → d between objects c and d in a category, we say
that c and d are isomorphic, and it is easy to see that this isomorphism relation is an equivalence
relation on objects in a category. Isomorphism between objects is the arrow-theoretic way of saying
that two objects in a category are ‘just as good as one another’, which is a weaker notion than
equality, but a more versatile one: when category theorists say that an object is ‘unique’ in a
category, they very often say that as shorthand for ‘unique up to unique isomorphism’.

When would we want to specify that certain objects or arrows are unique? All the time.
Universality is a fundamental categorical notion, which arises in the search for ‘canonical con-
structions’; the mere existence of a solution is not satisfactory, we want unique existence (up to
unique isomorphism), i.e. canonicity.

Definition 7.6 (Initial and Terminal Objects). An object ⊥ is initial in a category C just when
for any other object c, there exists a unique morphism ιc : ⊥ → c. Dually, a terminal object >
is such that for any other object c, there is a unique arrow τc : c→ >.

Initial and terminal objects are unique up to unique isomorphism, and they are fairly useful
things. When we encounter categories of interpretations, we will see that the initial objects are the
free syntactic objects. For deeper discussion of universality and other basic constructs, we refer
the reader to [AT10, §1.5].

7.3 Functors and Natural Transformations

As morphisms are to objects within a category, functors are to categories: functors are arrows that
go between categories, which ‘preserve structure’.

7.3.1 Functors

Definition 7.7 (Functor). A functor F between categories C → D comprises two maps:

• An object map, sending each c ∈ Ob(C) to F (c) ∈ Ob(D)

• A morphism map, sending each f : x→ y in Mor(C) to a morphism F (f) : F (x)→ F (y) in
Mor(D)

Such that:

• F preserves identities: for all c ∈ Ob(C), F (idc) = idF (c)

• F preserves composition: for all (well-typed) morphisms f, g in C, F (f ; g) = F (f);F (g)

Example 10. The identity functor IdC : C → C, which maps every object and morphism to itself
is a functor. Furthermore, since the composition of functors F : C → D, G : D → E is again a
functor F ;G : C → E , we can define a category from a collection of categories and functors between
them!
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Example 11 (Copresheaves as semantic frames). Spivak et al.[SSVW16] have described how
categories can be viewed as database ontologies, and covariant functors into Set as database
instances. We can naturally apply this observation to the modelling of Semantic Frames[Bar92].

Figure 36: A semantic frame, from [Bar92, p.24]. On the right, two shapes A and B with attribute
lists captured by an ontology on the right: ‘Geometric Forms’.

C F

G

S P

color

form

shape

position

Figure 37: A category G that captures the ontology of ‘Geometric Forms’. The full data of the figure
above is captured by a covariant functor F : G → Set which maps:

G 7→ {A,B}

C 7→ {red,green} color 7→

{
A 7→ red

B 7→ green
F 7→ {square,circle} form 7→

{
A 7→ square

B 7→ circle

S 7→ {small,large} size 7→

{
A 7→ small

B 7→ large
P 7→ {left,right} position 7→

{
A 7→ left

B 7→ right

There is one more observation we wish to draw attention to about functors. It begins with
the fact that a function between sets f : X → Y induces an equivalence relation on its codomain
by grouping together objects with common image in Y : explicitly, the equivalence classes are
{{x′ | f(x′) = f(x)} | x ∈ X }. Functors between categories consist of a pair of functions, one
for objects, and one for morphisms, hence inducing equivalence classes of objects and morphisms
in the codomain category. However, because functors must preserve identities and composition,
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and due to the property in categories that every object has a unique identity morphism, we can
faithfully capture the functorially induced equivalence classes on both objects and morphisms by
just considering the equivalence classes induced on morphisms.

Lemma 1. For any functor F : C → D, and objects a, b ∈ C,

F (a) = F (b) ⇐⇒ F (ida) = F (idb)

Proof. For the forward direction, if F (a) = F (b), by the uniqueness of identities on objects in cat-
egories, idF (a) = idF (b) in D. By functors preserving identities, we have F (ida) = F (idb) as required.

For the converse, if F (ida) = F (idb), by functors preserving identities, we have idF (a) = idF (b),
and by the uniqueness of identities, we have F (a) = F (b).

Generally, a
f→ b and c

f→ d with distinct objects as codomains and domains in C may be
mapped by a functor F : C → D to the same image morphism in D, i.e. F (f) = F (g); in which
case, we must have that F (a) = F (c) and F (b) = F (d), and by the above lemma, the following
well-behavedness property.

Proposition 2. Given a
f→ b, c

f→ d in C, and a functor F : C → D,

F (f) = F (g) =⇒ F (ida) = F (idc) and F (idb) = F (idd)

Proof. By unitality of identity in C, ida; f = f = f ; idb, and since functors preserve composition,

we must have F (a)
F (f)→ F (b) in D. Symmetrically, F (c)

F (g)→ F (d). Since F (f) = F (g), we have
matching codomain and domain, so F (a) = F (c) and F (b) = F (d), and by the previous lemma,
this holds iff F (ida) = F (idc) and F (idb) = F (idd).

Takeaway 2: The data of functors can be encoded as equivalence classes of morphisms in the the
codomain category.

Later, we will show that free monoidal categories are initial objects in a category of monoidal
categories and functors between them, so any particular monoidal category may be expressed as
the data of a functor from the free monoidal category. With the above observation, we can capture
the essential data of arbitrary monoidal categories in terms of equivalence classes of morphisms in
the free monoidal category.

7.3.2 Natural Transformations

We have seen how functors are structure-preserving mappings between categories; a functor ‘mod-
els’ the source category within the structure of the target category. In this reading, the source
category is a kind of ‘blueprint’, and the target category is a concrete realisation of the blueprint.
The role of natural transformations is to allow comparison of distinct realisations/models.

Definition 7.8 (Natural Transformation). Given categories C and D, and functors F,G both
from C to D, a natural transformation η : F ⇒ G assigns to every object c ∈ C a morphism
ηc : F (c)→ G(c) in D – called the component of eta at c, such that, for any morphism f : x→ y
in C, the following diagram in D commutes:

Moreover, when every component of η is an isomorphism in D, we call η a natural isomor-
phism, in which case write F ' G.

42



F (x) F (y)

G(x) G(y)

ηx

F (f)

ηy

G(f)

Natural morphisms map objects to morphisms, and morphisms to commuting squares. It is
not easy to grasp an intuition for natural transformations without a broad inventory of concrete
examples, which we won’t provide here for space. Instead we direct the reader to [Milewski], for
concrete applications of these categorical concepts to programming. The important takeaway here
is that a natural isomorphism η : F ⇒ G is a witness to the face that F and G are ‘essentially the
same’. Now we are equipped to tackle equivalence of categories succinctly.

Definition 7.9 (Equivalence). Categories C and D are equivalent, written C ' D, if there are
functors F : C → D, G : D → C, and natural isomorphisms such that F ;G ' IdC and G;F ' IdC .

Note the familial resemblance to isomorphic arrows within a category! Asking for equality
F ;G = IdC is in a sense ‘too strict’, so this notion of equivalence of categories is a mild concession
that nevertheless respects structures within the participating categories.

There is one more ‘weakening’ of the notion of equality that we will consider, where instead of
asking for natural isomorphisms in the definition of equivalence, we ask for natural transformations
to and from the identity functors.

Definition 7.10 (Adjunctions). L : C → D, R : D → C are adjoint when 15 for all objects
X ∈ Ob(C) and Y ∈ Ob(D), we have

MorC[F (Y ), X] ' MorD[Y,G]

In which case we say that F is left adjoint to G and G is right adjoint to F , sometimes
written F a G.

7.4 Monoidal Categories

7.4.1 Monoidal Signatures

To motivate the purpose of a monoidal signature before defining it requires a brief philosophical
digression. When we speak of or reason about monoidal categories, we do so with a basic vocab-
ulary provided to us by a monoidal signature, from which we construct a whole language using
the composition of categories and the tensor product. The signature qua vocabulary plays the
intermediary between us and whatever a monoidal category actually is. The notion of monoidal
signature originally appeared under the name ‘tensor scheme’ [JS91, Dfn. 1.4], reproduced below.

15an equivalent definition is that there if exist natural transformations η : IdC ⇒ L;R and ε : R;L⇒ IdDη and ε
satisfy the yanking equations in the 2-category Cat.
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Definition 7.11 (Tensor Scheme). A tensor scheme T consists of two sets obj D and mor D,
together with a function which assigns to each element d ∈ mor D a pair (d(0), d(1)) of words in
the elements of obj D. Write

d : X1 · · ·Xm → Y1 · · ·Yn
for d ∈ mor D with d(0) = X1 · · ·Xm, d(1) = Y1 · · ·Yn

The above definition implicitly assumes strictness, which Selinger [Sel10] dispenses with in his
non-strict definition, which he calls ‘Monoidal Signatures’.

Definition 7.12 (Monoidal Signatures). Given a set of object variables Σ0, let Mon(Σ0), the
set of object terms, be the free (I,⊗)-algebra – where I is nullary and ⊗ is binary – generated
by Σ0. A Monoidal signature consists of a set of object variables Σ0, and a set of morphism
variables Σ1, along with interpretation functions dom() and cod(): Σ1 → Mon(Σ0).

Example 12. Writing ⊗ infix, the free (I,⊗)-algebra over the set A,B would contain objects such
as ((A⊗ I)⊗B), A, (I ⊗ (A⊗B)), etc.

Example 13 (The monoidal signature of Set). When we speak of Set as a strict monoidal
category (with the categorical product as tensor product), the monoidal signature we use has the
names of (all the nameable) sets as object variables, and the names of (all the nameable) functions
between sets as morphism variables. Note that there is nothing yet to interpret the equations that
hold in Set, such that the fact that the endomorphisms on N (+1); (+1) and (+2) are equal. But
then, we have not yet defined what ; means. We only have some names. The role of equations
between morphisms and objects is that of identifying denotation: just as ‘the Morning Star’ and
‘the Evening Star’ are different names with the same referent (though it took time to demonstrate!),
an equation f = g is the assertion that the two names f and g, built from the monoidal signature,
in the end refer to the same thing, whatever that thing is.

7.4.2 Free algebras and adding type constructors to a signature

To formalise the notion of ‘free algebra’, we recourse to the notion of signature from Universal
Algebra; there is an unfortunate clash of terminology, so we will call these Logical Signatures.

Definition 7.13 (Logical Signatures). A (single-sorted) logical signature σ is a triple (Fn, Rl, Ar),
consisting of:

1. Fn: a set of function symbols

2. Rl: a set of relation symbols (disjoint from Fn)

3. Ar: a function Fn∪ Rl→ N that assigns all function and relation symbols a natural number
arity

When Fn and Rl are finite, σ is finite. When Fn is empty, σ is relational. When Rl is empty, σ
is algebraic.

Adding in the object variables, we have:

Definition 7.14 (Structures). A structure Σ is a triple (D, σ, (−)Σ), consisting of:

1. D: an arbitrary set known as the domain, or carrier
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2. σ: a logical signature

3. (−)Σ: an assignment (interpretation) of:

• a function fΣ : DAr(f) → D for each function symbol f ∈ Fn

• an n-ary relation RΣ ⊆ DAr(R) for each relation symbol R ∈ Rl

When the logical signature is algebraic, the free algebra contains ‘all possible terms’.

Definition 7.15 (Free algebra on an algebraic signature). Given an algebraic signature σ, the
free σ-algebra over a set of object variables D is the structure with:

• σ: an algebraic signature

• Domain Dσ, which is defined to be closed under the following grammar:

τ := d ∈ D | f(τ1, . . . , τn)

For all f in Fn of σ with arity n.

• Each object τ ∈ Dσ and function f interpreted syntactically ; i.e., (τ)Σ = τ , and f maps
n-ary tuples (τ1, . . . , τn) of objects in D to f(τ1, . . . , τn).

Evidently, if σ is an algebraic signature, Dσ has the same objects as (Dσ)σ; the free generation
is a fixed point.

Remark 2. We choose this presentation of free algebra, as we will eventually want to add more
function symbols in addition to (I,⊗) in the algebraic signature, and these new function symbols
will serve as constructors for new objects.

Example 14 (Elements of a free residuated pregroup on D). Given a set D = {A,B}, and an
algebraic logical signature σ with two binary functions ( / ) and ( \ ), the elements of Dσ are, in
no particular order:

{A,B, (A/B), (B/A), ((A/A)\B), . . .}

The interpretation of the product operation is the job of the tensor product to be mixed in
later; all we are doing now is constructing the basic types.

Example 15 (A free pre-autonomous structure on D). We’ll begin a running example which will
eventually become a free autonomous construction. Take Aut to be the signature consisting of
two unary function symbols (−)∗ and ∗(−), which will play the role of left and right adjoint-type
constructors for objects. If D = {A,B}, then DAut consists of:

{A,B, (A)∗,∗ ((A)∗),∗ (∗(B)), . . .}

What’s missing here, as opposed to the residuated pregroup case, is an interpretation rule
saying that left and right adjoints cancel: ∗((x)∗) = x = (∗(x))∗.

Takeaway 3: Monoidal Signatures provide a basic stock of named objects and morphisms, and
we can expand the stock of named objects by expanding the algebraic signature.
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7.4.3 Monoidal Categories

Definition 7.16 (Monoidal Category). A monoidal category is a tuple (C,⊗, I, α, λ, ρ) where

• C is a category

• ⊗, the tensor, is a functor C × C → C, and we use the infix notation A⊗B for ⊗(A,B)

• I, the unit, is an object of C

• α, λ, ρ are natural isomorphisms, with types (for all X, Y, Z in C):

– αX,Y,Z : ((X ⊗ Y )⊗ Z)→ (X ⊗ (Y ⊗ Z)) – the associator

– ρX : X ⊗ I → X – the right unitor

– λX : I ⊗X → X – the left unitor

The natural isomorphisms above must satisfy the triangle and pentagon equations, which
are expressed succinctly as the condition that the following diagrams commute for all objects
in the category.

(A⊗ I)⊗B A⊗ (I ⊗B)

A⊗B

αA,I,B

ρA ⊗ idB
idA ⊗ λB

Figure 38: The triangle equation

Figure 39: The pentagon equation

Definition 7.17 (Structures on Monoidal Categories). A monoidal category is further:

• strict if the natural transformations above are identities

• symmetric if there is a twist natural transformation θX⊗Y : X ⊗ Y → Y ⊗X such that

θY⊗X ◦ θX⊗Y = idX⊗Y
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• compact closed if for each object X there are objects XL (the left dual), XR (the right
dual), and natural transformations:

ηLX : I → X ⊗XL ηRX : I → XR ⊗X
εLX : X ⊗XL → I εRX : XR ⊗X → I

Which satisfy the yanking equations:

(idX ⊗ εLX) ◦ (ηLX ⊗ idX) = idX (εRX ⊗ idX) ◦ (idX ⊗ ηRX) = idX

(εLX ⊗ idXL) ◦ (idXL ⊗ ηLX) = idXL (idXR ⊗ εRX) ◦ (ηRXR ⊗ idXR) = idXR

Notice that the objects of a monoidal category are generated by the free algebra from a monoidal
signature. Further, observe that in the case of compact closed structure, the η and ε natural
transformations require that the algebra of the monoidal signature is expanded to include unary
functions (−)L, (−)R, such that the free algebra supports objects such as (XL ⊗ I)R.

Monoidal categories admit an elegant graphical calculus. Penrose first used the graphical
calculus in 1971 as a private tool for tensor contraction calculations [Pen71]. With the advent
of category theory, two major theorems established sound foundations for the calculus. The first
was MacLane’s Coherence theorem, which showed that the triangle and pentagon equations were
necesary and sufficient for ‘all well-typed expressions built from the associator, unitors, and their
inverses commute’: essentially removing the bureaucracy of bracketing induced by ⊗. Joyal and
Street then formalised the graphical calculus in 1991 [JS91], proving that well-typed diagrams are
sound and complete for monoidal categories up to planar isotopies: the important aspect of the
diagrams is their connectivity, not the specific geometry of any individual wire. The standard
reference that surveys such graphical calculi is [Sel10].

Figure 40: We adopt the convention that composition reads from top to bottom. From left to right:

an object A; a morphism A
f→ B; the composite A

f→ B
g→ C; the tensor of A

h→ and C
k→ D; a

state morphism u : I → A; an effect morphism v : A→ I. I is the empty diagram.

Notice that we can also express the equations governing compact closed structure diagrammat-
ically:

The drawing of cups and caps as bent wires is really a graphical liberty. Formally, η and ε live
inside boxes like any other morphism; we simply omit the bounding box around them. Similarly,
we can also express symmetric structure graphically:

Takeaway 4: Structure consists of natural transformations, which may introduce type construc-
tors, and equations that hold between natural transformations. The type constructors are passed
to the algebra in the monoidal signature, and the natural transformations and equations between
them can be expressed graphically. Conversely, graphical equations between natural transforma-
tions induce structural constrants on categories.
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Figure 41: The ε, η morphisms are depicted as cups and caps respectively (take care, as we read
diagrams from top to bottom), and are depicted along with the yanking equations above. The single
equation above is actually a system of equations, natural in A: recall that natural transformations are
parameterised over the objects in a category.

Figure 42: Symmetry

7.4.4 Monoidal Functors and Natural Transformations

Monoidal functors and natural transformations between monoidal categories are just like their
regular counterparts, except that they carry additional coherence maps that preserve the monoidal
structure in their sources and targets.

Definition 7.18 (Monoidal Functor). A (lax) monoidal functor between monoidal categories
(C,⊗C, IC) and (D,⊗D, ID) (with associator and unitor natural transformations implicit) consists
of:

• A functor F : C → D
• A morphism ε : ID → F (IC) in D
• a natural transformation µa,b : F (a)⊗D F (b)→ F (a⊗C b)
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The latter two data are called coherence maps, and they must satisfy the associativity and
unitality equations, presented as commuting diagrams below:

(F (a)⊗D F (b))⊗D F (c) F (a)⊗D (F (b)⊗D F (c))

F (a⊗C F (b))⊗D F (c) F (a)⊗D F (b⊗C c)

F ((a⊗C b)⊗C c) F (a⊗C (b⊗C c))

µa,b ⊗ idF (c)

αDF (a),F (b),F (c)

idF (a) ⊗ µb,c

µa⊗Cb,c µa,b ⊗C c

F (αCa,b,c)

Figure 43: Associativity: the diagram above commutes for all a, b, c ∈ C.

ID ⊗D F (a) F (IC)⊗D F (a) F (a)⊗D ID F (a)⊗D F (IC)

F (a) F (IC ⊗C a) F (a) F (a⊗C IC)

λDF (a)

ε⊗D idF (a)

µIC ,a ρDF (a)

idF (a) ⊗D ε

µa,IC

F (λCa) F (ρCa)

Figure 44: Unitality: the diagrams above commutes for all a ∈ C.

If the coherence maps are isomorphisms, we have a strong monoidal functor. If the coherence
maps are identities, we have a strict monoidal functor.

Definition 7.19 (Monoidal Natural Transformation). If (F, µ, ε) and (G, µ′, ε′) are monoidal func-
tors from the monoidal categories C to D, a monoidal natural transformation φ : F → G is a
natural transformation between the functors F and G such that the following diagram commutes.

If the components of the natural transformation are isomorphisms, then we have a monoidal
natural isomorphism.

F (a)⊗ F (b) G(a)⊗G(b)

F (a⊗ b) G(a⊗ b)

φa ⊗ φb

µa,b µ′a,b

φa⊗b

I

F (I) G(I)

ε
ε′

φI

Figure 45: Monoidal Naturality Conditions (subscripts for domain and codomain categories of F,G
omitted)
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Definition 7.20 (Equivalence of monoidal categories). A monoidal functor is an equivalence of
monoidal categories if it is an equivalence of ordinary categories.

Now, we can state a theorem that makes life a lot simpler16; we reproduce below its statement
from [Johb]:

Theorem 3 (MacLane’s Coherence Theorem). Given a monoidal category C, there exists a strict
monoidal category C ′ for which there is a monoidal equivalence F : C → C ′.

Recall that in strict monoidal categories, the associator and unitor natural isomorphisms are all
identities, so all objects are equivalent up to different bracketings and absorbing monoidal units:
we have shed a lot of bureaucracy! So, without loss of generality, we will work with just strict
monoidal categories, and strong monoidal functors between them.

Definition 7.21 (Mon). Mon is the category with strict monoidal categories as objects, and
strong monoidal functors as morphisms.

7.5 Interpretations of, and Free Monoidal Categories over Monoidal
Signatures

For this section, it is useful to keep in mind Takeaway 1:

Takeaway 1: Free and thin categories are two ends of a spectrum, and we can reach parts in
between using equations between arrows.

Definition 7.22 (Interpretations of Monoidal Signatures). Given a monoidal signature Σ (recall
definition 7.12) and a monoidal category K, an interpretation J K : Σ 7→ K consists of:

• An object function J K0 : DΣ(= D) → Ob(K), which extends in a unique way to an object
function J K∗0 : T→ Ob(K), such that:

– JaBK∗0 = JaK0 ⊗K JBK∗0; where a ∈ D (see remark)

– JεK∗0 = IK

• A morphism function J K1, that maps f ∈ Name to JfK1 : Jdom fK0 → Jcod fK0

Remark 3. Regarding uniqueness, Selinger’s original definition is directly transliterated as:

JA⊗BK∗0 = JAK∗0 ⊗K JBK∗0

Which is due to the fact that he uses a non-strict definition, whereas we are working in anticipation
of a generalisation in strict monoidal categories. The codomain of his interpretation function is
free algebra (D,⊗, I), rather than the free monoid, so the splitting point between A and B is
always uniquely defined as the topmost ⊗ connective. In the strict case, the uniqueness condition
is implicitly forbidding situations like JaK = A, JbK = B, JabK = C, whereupon splitting ab as (a, b)
and (ab, ε) yield distinct values. Since what we really want is a coalgebra on lists [Jac16, §2.4],
we have adapted this rule to reflect the structure of the initial coalgebra on lists, with no loss of
generality, since we will be working exclusively with strict monoidal categories.

Now that we have defined interpretations, we can define ‘freeness’. Selinger, again paraphrasing
Joyal and Street, defines free monoidal categories over a monoidal signature as follows:

16oddly difficult to track down the original source for MacLane’s Coherence Theorem.
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Definition 7.23 (Free monoidal categories). A monoidal categoryK is a free monoidal category
over a monoidal signature Σ if it is equipped with an interpretation J K0 : Σ 7→ K such that for
any monoidal category J and interpretation J K : Σ 7→ J , there exists a strong monoidal functor
F : K → J , such that J K = J K0;F , and F is unique up to a unique monoidal natural isomorphism.

Freeness so conceived is a universal property (specifically, initiality) in a suitable category of
interpretations.

Definition 7.24 (Category of strict interpretations of a monoidal signature Σ). Given a monoidal
signature Σ, the category Mon(Σ) is defined to have:

• Objects pairs (ι,D) of interpretations ι : Σ → D, and strict monoidal categories D, (which,
recalling remark ??, determine strict monoidal subcategories of D)

• Morphisms strong monoidal functors between the objects

Observe that Mon(Σ) is evidently a subcategory of Mon.

The following theorem relates the free monoidal category over a monoidal category to the
graphical calculus:

Theorem 4. [Sel10, Thm. 3.3] The graphical language of monoidal categories over a monoidal
signature Σ, up to planar isotopy of diagrams, forms a free monoidal category over Σ.

Takeaway 5: The consequence of definition 10 and theorem 4 is that any category that we
can prove is initial in Mon(Σ) is monoidally equivalent to the category formed by the graphical
language over Σ.

7.6 General Monoidal Signatures

Now we recount the last four takeaways, to motivate our gameplan moving forward.

Takeaway 2: The data of functors can be encoded as equivalence classes of morphisms in the the
codomain category.

Takeaway 3: Monoidal Signatures provide a basic stock of named objects and morphisms, and
we can expand the stock of named objects by expanding the algebraic signature.

Takeaway 4: Structure consists of natural transformations, which may introduce type construc-
tors, and equations that hold between natural transformations. The type constructors are passed
to the algebra in the monoidal signature, and the natural transformations and equations between
them can be expressed graphically. Conversely, graphical equations between natural transforma-
tions induce structural constrants on categories.

Takeaway 5: The consequence of definition 10 and theorem 4 is that any category that we
can prove is initial in Mon(Σ) is monoidally equivalent to the category formed by the graphical
language over Σ.

Suppose we have a (without loss of generality) strict monoidal category K, which possesses
some specified structural properties S. We know that K is equivalently specified up to monoidal
natural isomorphism by some strong monoidal functor K from the free monoidal category over Σ,
which is the category of diagrams. By takeaway 4, the structural properties S may be expressed
graphically. By takeaway 3, the type constructors of S may be included by expanding the underly-
ing algebraic signature appropriately. By takeaway 2, the strong monoidal functor K must induce

51



equivalence classes of diagrams such that the structural equations of S are respected. Moreover,
knowing these equivalence classes means knowing ‘everything’ about K, by the initiality of the
free category over Σ.

Now suppose we have a system to construct objects and morphisms between them, and we feed
this system the data from Σ, such that the category of derivable terms is the free category over Σ.
By takeaway 5, any such system is equivalent to the category formed by the graphical language
over Σ, so the system would be a source code for building diagrams. Suppose further that we
may also derive equations between terms within the system, and we feed the system data from K
and S (expanding the algebraic signature of Σ as necessary) such that the derivable equivalence
classes of objects and morphisms are precisely those induced by K and S: we would have a system
equivalent to the graphical calculus with equations that capture the specific properties of the
monoidal category K. Finally, suppose that we have a method to encode extra structural properties
T in the source code, such that the diagrams generated may contain novel objects and morphisms
not originally present in the signature of K, but such that one can still reason graphically.

Definition 7.25 (General Monoidal Signatures). Given a monoidal signature Σ, which consists
of:

• an algebraic signature σ with at least a nullary I and binary ⊗
• object variables Σ0

• morphism variables Σ1 with domain and codomains in the free algebra (Σ0)σ

and structural properties S, which consists of:

• A set of type constructors for objects, each of which is interpreted as a function symbol with
associated arity in σ

• A set of natural transformations ?, such that each type constructor is used in at least one.
These include the associators and unitors.

• A system of graphical equations Str that involve the natural transformations

and a strong monoidal functor K from the free monoidal category on Σ to a target category
M, which induces an equivalence relation Den on morphisms in the free monoidal category on Σ
that, by Proposition 2, also captures the action of K on objects of the free category over Σ,

define the associated general monoidal signature S to have data:

• the algebraic signature σ

• object variables Σ0

• morphism variables Σ1, with accompanying domain and codomain data

• structural morphisms ?, freely instantiated over (Σ0)σ

• an equivalence relation =Den+Str defined on morphisms in the free monoidal category over Σ
plus all components of the natural transformations ? instantiated freely over (Σ0)σ, which is
the reflexive, symmetric, and transitive closure of the two equivalence relations Den and Str

Let’s hack diagrams.
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8 The calculus Mon(S)

We adopt the convention that lowercase romans a, b, c, d are used whenever the side condition
states “For all a, b, c, d ∈ (Σ0)σ”. Uppercase romans occurring in the premise and conclusion of
rules are contexts requiring syntactic matches. Lowercase romans f, g are used for general con-
structed morphisms. We include a copy of the rules in the appendix for easy reference.

Object and Morphism constructors:

Initial sequents:

(Id)
a

ida→ a
(Unit)

I
1→ I

(Den-Id) [If ida =Den+Str idb; X can be either a or b]
a

idX→ b

(Name) [For all f ∈ Σ1]
cod(f)

f→ dom(f)
(?) [For all ω in ?]

cod(ω(
→
a))

ωa→ dom(ω(
→
a))

(λ)
(I ⊗ a)

λa→ a
(ρ)

(a⊗ I)
ρa→ a

(α)
((a⊗ b)⊗ c)

αa,b,c→ (a⊗ (b⊗ c))

(λ−1)
a
λ−1
a→ (I ⊗ a)

(ρ−1)
a
ρ−1
a→ (a⊗ I)

(α−1)

(a⊗ (b⊗ c))
α−1
a,b,c→ ((a⊗ b)⊗ c)

Non-initial sequents:

A
f→ B B

g→ C(;)
A

(f ;g)→ C

A
f→ B C

g→ D(⊗)
(A⊗ C)

(f⊗g)→ (B ⊗ C)

Equation constructors:

Equality Axioms:

A
f→ B(R)

A
f=f→ B

A
f=g→ B(S)

A
g=f→ B

A
f=g→ B A

g=h→ B(T)
A

f=h→ B

Categorical Structure: (double line indicates reversible rule)

A
(idA;f)=g→ B(Left Unitality)
A

f=g→ B

A
(f ;idB)=g→ B(Right Unitality)
A

f=g→ B

A
((f ;g);h)=j→ B

(Assoc)

A
(f ;(g;h))=j→ B

(Strict) Monoidal Structure:
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A
f→ X X

g→ C (A⊗B)
((f ;g)⊗(h;j))=k→ C ⊗D B

h→ Y Y
j→ D

(Interchange)
(A⊗B)

((f⊗h);(g⊗j))=k→ (C ⊗D)

(Id-Tensor)

(a⊗ b)
id(a⊗b)=(ida⊗idb)

→ (a⊗ b)

(λ=)
(I ⊗ a)

λa=id(I⊗a)→ a
(ρ=)

(a⊗ I)
ρa=id(a⊗I)→ a

(α=)
((a⊗ b)⊗ c)

αa,b,c=id((a⊗b)⊗c)→ (a⊗ (b⊗ c))

(λ−1
= )

a
λ−1
a =ida→ (I ⊗ a)

(ρ−1
= )

a
ρ−1
a =ida→ (a⊗ I)

(α−1
= )

(a⊗ (b⊗ c))
α−1
a,b,c=id(a⊗(b⊗c))→ ((a⊗ b)⊗ c)

Diagram Manipulation:

A
f=f ′→ B (A⊗ C)

(f⊗g)=h→ (B ⊗D) C
g=g′→ D

(=↔)
(A⊗ C)

(f ′⊗g′)=h→ (B ⊗D)

A
f=f ′→ B A

(f ;g)=h→ C B
g=g′→ C(=l)

A
(f ′;g′)=h→ C

Denotations and Structure:

A
f→ B C

g→ D(Den) [For all f =Den g]
A

f=g→ D

A
f→ B A

g→ B(Str) [For all f =Str g]
A

f=g→ B

8.1 A guided tour of Mon(S)

This sequent calculus is a simple type theory, which takes contexts from the free algebra (Σ0)σ:
the arrows can also be read as turnstiles. The calculus only keeps one context on each side of the
arrow, which reflects the property that every derivation is meant to be of a particular diagram.

First we consider the morphism constructors. The initial sequent (Id) is moonlighting as a
type declaration a : Type ` a : Type; we choose to omit explicit type declarations, as we will not
consider dependent type theories. (Unit) is a special case of (Id) for the monoidal unit.

(Den-Id) is worth elaborating: we will later take equivalence classes of objects in (Σ0)σ as
objects in a strict monoidal category on the basis of whether ida = idb is derivable. The side
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condition splits this rule into two, allowing either the domain or codomain to claim the identity.
The function of (Den-Id) in the calculus is to license type-changes in the domain or codomain, in
conjunction with (Left Unitality) and (Right Unitality). The broader purpose of (Den-Id) is to
reflect the objects identified by the interpreting strong monoidal functor K over the free category:
recalling example 15, we may wish to have that left and right adjoints of objects cancel via equa-
tions a = (aL)R, which (Den-Id) implements.

(Name) allows us to introduce named morphisms from Σ1 as basic vocabulary elements for
building morphisms, and (?) allows the introduction of instantiated components of the natu-

ral transformations carried in the structure S:
→
a is shorthand for a nonempty list of objects

ai ∈ (Σ0)σ. For a concrete example, supposing that S is symmetric structure in the form of a twist
natural transformation θ : X ⊗ Y → Y ⊗X, the (?)-rule would allow initial sequents of the form
θa,b : (a⊗ b)→ (b⊗ a) for every pair of objects a, b from the free algebra (Σ0)σ. Worth remarking
is that the structure S may contain nullary function symbols, which introduce named objects in
whatever category possess that structure (such as the monoidal unit!) While we will generally not
consider such cases, such cases are easy to accommodate by subsuming them under the (Id)-rule
much like (Unit).

The remaining initial sequents are the associator and unitor natural isomorphisms, presented
with their inverses. Using these rules invokes a particular component of that natural transforma-
tion, much like (?).

The only two rules for building new morphisms out of old are to vertically (;) and horizontally
(⊗) compose them, respecting domains and codomains in the case of vertical composition.

It should be evident by inspection that the derivable morphisms are precisely those of the free
monoidal category over Σ (if we do not include any extra data from K and S.) Even if that isn’t
convincing, we will prove freeness by other means later. Before moving onto the equation con-
structors, we remark on a very important property of the morphism building rules: analyticity.
The name of every constructed morphism in a premiss appears in the constructed morphism in
the conclusion. Further, since the ; and ⊗ connectives are introduced by unique rules and properly
bracketed, just by looking at the syntax of any derived morphism, one can reconstruct the entire
unique proof tree that built it.

The equality axioms are in the form required to make = an equivalence relation on morphisms,
and are straightforward.

The categorical structure rules enforce the equalities that we want present in any category, and
will suffice to prove that the term category we eventually construct really is a category.

The rules for strict monoidal structure require some elaboration. The first two rules govern
the interaction of the ; and ⊗ connectives, as the interaction of the two forms of composition must
respect the bifunctoriality of the tensor product functor ⊗. The presentation of the two rules is a
translation of the conditions from [Sel10, §3.1]. (Id-Tensor) enforces coherence of identities with
the ⊗ functor. (Interchange) enforces the the Interchange Law, which only holds when the partic-
ipating morphisms form two ⊗-separable ;-chains. We could have equivalently placed the typing
requirements in a side condition, but we have avoided that here to preserve a form of analyticity
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we will remark upon later. The placement of the participating morphisms in the wings is purely
aesthetic; the arrangement doesn’t matter.

The remaining strict monoidal structure equality rules simply force the associators, unitors,
and their inverses to be identities, which we have presented explicitly here. Alternatively, we
could have explicitly encoded the property of isomorphism (e.g. α;α−1 = id) and the triangle and
pentagon equations as such rules, which would have worked just as well. It is worth remarking that
in each case, we have given possession of the identity to the codomain, but this is not important,
as we can always derive an equality between the identity on the domain and the identity on the
codomain. We give an example below:

Example 16 (Equalities between identities).

(λ=)
(I ⊗ a)

λa=id(I⊗a)→ a

(λ)
(I ⊗ a)

λa→ a
(Id)

a
ida→ a

(;)
(I ⊗ a)

(λa;ida)→ a
(R)

(I ⊗ a)
(λa;ida)=(λa;ida)→ a

(Id)
a

ida→ a(R)
a

ida=ida→ a
(=l)

(I ⊗ a)
(id(I⊗a);ida)=(λa;ida)

→ a
(S)

(I ⊗ a)
(λa;ida)=(id(I⊗a);ida)

→ a

Continuing and compressing for space:

(λ=)
(I ⊗ a)

λa=id(I⊗a)→ a

...

(I ⊗ a)
(λa;ida)=(id(I⊗a);ida)

→ a

(Id)
a

ida→ a(R)
a

ida=ida→ a
(=l)

(I ⊗ a)
(id(I⊗a);ida)=(id(I⊗a);ida)

→ a
(Left Unitality)

(I ⊗ a)
ida=(id(I⊗a);ida)

→ a
(S)

(I ⊗ a)
(id(I⊗a);ida)=ida→ a

(Right Unitality)
(I ⊗ a)

id(I⊗a)=ida→ a

One can see by the length of the proofs the cost of parsimonious rules! Note that in the above
proof, we make use of the (=l) rule, which allows replacement of vertical slices in a diagram on
the basis of derivable equalities. Its sister rule (=↔) licenses replacements of horizontal slices.
We’ll just remark that by using the rules judiciously, one can perform targeted replacement of
subdiagrams, chiefly by the (Assoc) and (α) rules. We won’t pursue such an avenue, because we
will show that the eventual category we build out of terms is equivalent to the category formed
by the graphical calculus by other means, but the proof sketch of replacement of ‘subdiagrams’
purely within the logic, along with other lemmas, are in the appendix material.

The final rule (Den/Str) introduces equalities between derivable terms, reflecting the equations
in Den and Str. There are some features to note. Firstly, the domains and codomains do
not necessarily match, reflecting the fact that in general, functors K may map type-mismatched
morphisms in a source category to the same image morphism in the target. However, by proposition
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2, whenever A 6= C syntactically, we will also have a (Den-Id)-rule A
id→ C, which will resolve

morphism typing when we take equivalence classes. While in the conclusion of the rule we have set
the equality between the codomain of the ‘first’ premiss and the domain of the ’second’ premise, we
allow the premisses to occur in either order, and using the present (Den-Id)-rules, we can always
derive any combination of domain and codomain we wish, for example:

Example 17 (Choosing domains and codomains for (Den)).

(Den-Id)
A

idA→ C(R)
A

idA=idA→ C

(Id)
A

idA→ A

...(f)

A
f→ B(; )

A
idA;f→ B(R)

A
idA;f=idA;f→ B(L.U.)
A

f=idA;f→ B(S)
A

idA;f=f→ B

...(g)

C
g→ D

...(f)

A
f→ B(Den)

C
g=f→ B(R)

C
f=g→ B (=l)

A
idA;g=f→ B(L.U.)
A

g=f→ B

8.2 Useful notions and Lemmas for later

Definition 8.1 (Derivability). Write Mon(S) ` A f→ B if there is a proof of A
f→ B in Mon(S).

We say then that the name f is derivable in Mon(S). Write Mon(S) ` A f=g→ B if there is a proof

of A
f=g→ B in Mon(S) for some A and B. We say then that the equation f = g is derivable in

Mon(S).

The derivable names f are terms composed of bracketed binary ; and ⊗ operations, and atomic
names provided by S. For instance, we might have ((f ; g);h) and (f ; (g;h)) as (so far) distinct
derivable names. Next we interpret the equality relation to get rid of the bureaucracy of brackets.

Definition 8.2 (S-Equivalence). Given A ∈ (Σ0)σ, we write [A]S for the set of all objects B ∈
(Σ0)σ for which idA = idB is derivable in Mon(S). Explicitly:

[A]S := {B ∈ (Σ0)σ | Mon(S) ` idA = idB}
Similarly, given a constructed morphism f , we write [f ]S for the set of all morphisms g for

which f = g is derivable in Mon(S). Explicitly,

[f ]S := {g | Mon(S) ` f = g}

Further, we write A =S B if [A]S = [B]S, and f =S g if [f ]S = [g]S.

Now, we want to show that what we have defined is indeed an equivalence relation, for which
we establish the following lemma.

Definition 8.3 (Names). f is a name if it is a well-bracketed substring without the = symbol
appearing over an arrow in a proof.

Lemma 5. Let f be the name on one side = in the conclusion of a proof tree of A
f=g→ B. Then

there exists a derivable (hence analytic) morphism A
f ′→ B such that A

f ′=f→ B is derivable. Further,
f ′ differs from f at most up to pre- and post-composed identities in subnames.
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Proof. We can construct f ′ from the proof tree of the equality f = g by an inductive argument on
proofs. Throughout, we denote syntactic equality with ≡. The equality rules induce the following
cases for the final step in proving the equality f = g. The inductive hypothesis is the claim of the
lemma.

• Base cases:

– If the final proof step is (R), f required to be derivable, and hence f = f is derivable by
the (R) rule.

– If the final proof step is a (ω=)-rule (where ω is an associator, unitor, or an inverse of
either), or (Id-Tensor), f is either an associator, unitor, or identity, all of which are deriv-
able by initial sequents for morphisms. Applying (R) satisfies the inductive hypothesis.

– If the final proof step is (Den), f appears unchanged as a name on one side of a premiss
equality, but possibly with differing domain or codomain. Without loss of generality by
symmetry, we obtain f ′ by the transforming the (Den) rule instance as follows:

...

A
f→ B

...

C
g→ D(Den)

A
f=g→ Dww�

...

A
f→ B

(Den-Id) [†]
B

idD→ D(;) [‡]
A

f ;idD→ D(R)
A

f ;idD=f ;idD→ D(R.U.)
A

f=f ;idD→ D

The presence of the † (Den-Id) rule is guaranteed by Proposition 2 and the definition of
S. The derivation at ‡ gives us f ′ ≡ f ; idD, and the conclusion of the proof gives us a
derivation of f ′ = f . A symmetric argument follows for g. The cases above are the only
rules that introduce =, and so cover the base cases for the induction.

• Inductive cases:

– If the final proof step is (S), (T), or (Str), f appears unchanged as a name on one side
of a premiss equality, so the inductive hypothesis carries.

– If the final proof step is (Assoc), without loss of generality, write f ≡ (g; (h; j)). By
the inductive hypothesis, the other bracketing ((g;h); j) is derivable. By analyticity of
morphism building, without loss of generality in typing, we know that the construction
of ((g;h); j) terminates as below:

...

A
g→ B

...

B
h→ C(;)

A
(g;h)→ C

...

C
j→ D(;)

A
((g;h);j)→ D

Where g, h, j are derivable, so we can construct a proof of f ≡ (g; (h; j)) as follows:
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...

A
g→ B

...

B
h→ C

...

C
j→ D(;)

B
(h;j)→ D(;)

A
(g;(h;j))→ D

And we may derive the equality A
((g;h);j)=(g;(h;j))→ D by (R), (Assoc), and (T). Recall that

the (Assoc) rule is reversible, so the alternative bracketing case is settled symmetrically.

– If the final proof step is (Interchange), without loss of generality, write f ≡ (g⊗j); (h⊗k).
The inductive hypothesis grants that (g;h) ⊗ (j; k) is derivable, and the form of the
(Interchange)-rule grants that g, h, j, k are each themselves derivable. (g ⊗ j); (h⊗ k) is
evidently derivable by the latter fact, and the conjunction of the two facts gives us that
(g ⊗ j); (h ⊗ k) = (g;h) ⊗ (j; k) is derivable, by joining the derivations with the (R),
(Assoc), (T) strategy outlined in the previous case.

– If the final proof step is (=↔), then either:

∗ f appears unchanged in some premiss, in which case the inductive hypothesis carries.

∗ f ≡ (f1 ⊗ f2). By the inductive hypothesis, there exists a derivable f ′1 such that
f ′1 = f1 is derivable, and symmetrically an f ′2 for f2. So, we have the following proof
tree:

...(Ind.Hyp.)

A
f ′1=f
→ B

...(Ind.Hyp.)

A
f ′1→ B

...(Ind.Hyp.)

C
f ′2→ D(⊗) [†]

(A⊗B)
(f ′1⊗f ′2)
→ (C ⊗D)

(R)
(A⊗B)

(f ′1⊗f ′2)=(f ′1⊗f ′2)
→ (C ⊗D)

...(Ind.Hyp.)

C
f ′2=f2→ D

(=↔)
(A⊗B)

(f1⊗f2)=(f ′1⊗f ′2)
→ (C ⊗D)

The † step and the conclusion of the proof satisfy the inductive hypothesis.

– If the final proof step is (=l), the proof is very similar to the (=↔) case, so we omit it.

– If the final proof step is (Left Unitality) or (Right Unitality), either f remains unchanged
in the premiss, or, without loss of generality by symmetry, the inductive hypothesis
grants that id; f is derivable. By analyticity, we know that the proof of id; f terminates
with an (Id) and (;) rule, and that f by itself is derivable. Thus id; f = f is derivable
maintaining codomain and domain types by appending (R), (S), and (Left Unitality)
rules to a derivation of f .

We can observe by the cases constructing f ′ that it differs from f at most up to pre- and post-
composed identities in subnames, which only occurs when a (Den) rule base case is reached.

Proposition 6. =S is an equivalence relation on derivable objects and morphisms.

Proof. Ensured by the reflexivity, symmetry, and transitivity rules, and the definition of derivable
equations.

For reflexivity of objects, since the (Id) rule draws objects from the free algebra, the following
proof demonstrates that idA = idA is always derivable. Reflexivity for morphisms follows in the

59



same way, replacing the (Id)-rule with an arbitrary derived morphism.

(Id)
A

idA→ A(R)
A

idA=idA→ A

For symmetry, it suffices to show that if idA = idB is derivable, so is the reverse. The case for
morphisms is again similar.

...

X
idA=idB→ Y(S)

X
idB=idA→ Y

Transitivity requires some subtlety. The case for objects is settled by the proof strategy used
in Example 16, by replacing the λs with (Den-Id)-rules. One can repeat that proof strategy to
demonstrate the equality of identities for all objects in a denotationally induced equivalence class.

For morphisms, in general we will have A
f=g→ B and C

g=h→ D, and writing ≡ for syntactic equality,
we are not guaranteed that A ≡ C and B ≡ D due to the presence of (Den-Id) and (Den) rules, so
we cannot apply (T) directly. Since we have settled the case for objects, replace every object name

A with a symbolic representative for [A]S denoted A@ across the proofs of A
f=g→ B and C

g=h→ D.
Observe that by choosing representatives for equivalence classes, (Den-Id) is indistinguishable from
(Id), and (Den) is indistinguishable from (T). In this setting, Lemma 5 applies, so we granted some

derivable X@ g′→ Y @ such that X@ g′=g→ Y @, and by applying the lemma again for the f and h, we
must have A@ = X@ = C@ and B@ = Y @ = D@ (i.e., that A =S C and B =S D), and hence
that the (T) rule can be used to prove transitive closure for morphisms. Note that this also proves
that taking equivalence classes under objects and morphisms at once preserves well-typedness of
domains and codomains of equivalence classes of morphisms.

9 The Monoidal Category M(S)

With these notions in hand, we can define a term model. As remarked at the close of the proposition
above, we already have that the codomains and domains of equivalence classes of morphisms are
well-defined.

Definition 9.1 (The strict monoidal categoryM(S)). Given S, with prestructure Σ, objects D,
types T, named morphisms Name, and equations Den and Str, we define the categoryM(S) as
follows:

• The objects of M(S) are the equivalence classes (Σ0)σ under =S

• Given objects [A]S, [B]S, the morphisms M(S)
[
[A]S, [B]S

]
are equivalence classes of deriv-

able morphisms with matched domain and codomain. Explicitly:

M(S)
[
[A]S, [B]S

]
:= {[f ]S | Mon(S) ` C f→ D and A =S C,B =S D}

• The identity morphism on each object [A]S is [idA]S
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• For morphisms [f ]S : [A]S → [B]S and [g]S : [B]S → [C]S, composition is defined as:

[f ]S; [g]S := [(f ; g)]S

• The Monoidal Unit is [I]S

• The Tensor product functor ⊗M(S) :M(S)×M(S)→M(S) is defined...

– ...on objects as: [A]S ⊗M(S) [B]S := [(A⊗B)]S
– ...on morphisms as: [f ]S ⊗M(S) [g]S := [(f ⊗ g)]S

• The associator and unitor natural isomorphisms are all identities.

Proposition 7. M(S) is a category

Proof. We need to check unitality and associativity. Conveniently, we have rules in place for that.

Unitality: For any derivable morphism f , we can construct the following proof for left unitality.

(Id)
A

idA→ A

...

A
f→ B(;)

A
idA;f→ B(R)

A
idA;f=idA;f→ B(Left Unitality)
A

f=idA;f→ B

So so we have, by definition of composition, [idA]S; [f ]S = [idA; f ]S, and we have just shown
[idA; f ]S = [f ]S, so left unitality holds. A symmetric argument applies for right unitality.

Associativity: While we were a little lax with bracketing for the previous exercise, this one is
nothing but syntax, so we’ll be a little more careful. For well-typed derivable morphisms f, g, h,
we have the following proof tree:

...

A
f→ B

...

B
g→ C(;)

A
(f ;g)→ C

...

C
h→ D(;)

A
((f ;g);h)→ D(R)

A
((f ;g);h)=((f ;g);h)→ D(Assoc)

A
(f ;(g;h))=((f ;g);h)→ D

So, we have:

([f ]S; [g]S); [h]S

= [(f ; g)]S; [h]S Composition

= [((f ; g);h)]S Composition

= [(f ; (g;h))]S Proof Tree

= [f ]S; [(g;h)]S Composition

= [f ]S; ([g]S; [h]S) Composition
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As required.

Let’s be sure that the tensor product we have defined really is a bifunctor, and not a pun.
Though, since we are building a category out of syntax, we are literally playing with words.

Proposition 8. ⊗ :M(S)×M(S)→M(S) is a bifunctor.

Proof. Recall that the product category M(S)×M(S) consists of:

• Objects pairs ([A]S, [B]S) of objects [A]S, [B]S ∈M(S)

• Morphisms between ([A]S, [B]S), ([C]S, [D]S) pairs ([f ]S, [g]S) of morphisms [A]S
[f ]S→ [C]S, [B]S

[g]S→
[D]S of M(S). For the following, we’ll drop the nesting [ ]Ss.

• Identities as pairs of identities: id(A,B) = (idA, idB)

• Composition defined componentwise: (f, g); (f ′, g′) := (f ; f ′, g; g′)

Now, we need to check that our definition preserves composition and identities. We will write the
functor ⊗ outfix, to distinguish it from the syntactic ⊗

Identities: For a pair of objects (A,B) ofM(S), we aim to show that⊗(id(A,B)) = [id⊗((A,B))]S =
[idAB]S. We have:

⊗ (id(A,B))

= ⊗(([idA]S, [idB]S)) Product Category Identity

= [idA ⊗ idB]S Functor

= [id(A⊗B)]S

Where the final equality follows from the proof tree below:

(Id)
A

idA→ A
(Id)

B
idB→ B(⊗)

(A⊗B)
idA⊗idB→ (A⊗B)

(R)
(A⊗B)

idA⊗idB=idA⊗idB→ (A⊗B)
(Id-Unit)

(A⊗B)
id(A⊗B)=idA⊗idB→ (A⊗B)

Composition: We need to show that⊗(([f ]S, [h]S); ([g]S, [j]S)) = ⊗(([f ]S, [h]S));⊗(([g]S, [j]S)).
Note that the composition in the left is that within the product category, and that composition in
the right is within the plain M(S). We have, as desired:

⊗ (([f ]S, [h]S); ([g]S, [j]S))

= ⊗(([f ]S; [g]S, [h]S; [j]S)) Product Composition

= ⊗(([(f ; g)]S, [(h; j)]S)) Composition in M(S)

= [(f ; g)⊗ (h; j)]S Functor

= [(f ⊗ h); (g ⊗ j)]S Proof Tree

= [(f ⊗ h)]S; [(g ⊗ j)]S Composition in M(S)

= ⊗(([f ]S, [h]S));⊗(([g]S, [j]S)) Functor definition
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Where the proof tree in question is as follows. We omit the typing of the morphisms in the
wings for display, and we rely on the fact that if a morphism is derivable, it is multiply so.

...
f

...
g

...

A
f→ X

...

X
g→ C(;)

A
f ;g→ C

...

B
h→ Y

...

Y
j→ D(;)

Y
h;j→ D(⊗)

(A⊗B)
(f ;g)⊗(h;j)→ (C ⊗D)

(R)
(A⊗B)

(f ;g)⊗(h;j)=(f ;g)⊗(h;j)→ (C ⊗D)

...
h

...
j

(Interchange)
(A⊗B)

(f⊗h);(g⊗j)=(f ;g)⊗(h;j)→ (C ⊗D)

Though it looks obvious, we may as well prove that this category is monoidal, and in fact,
strict. Our workload is halved, as we have made all the associators and unitors identities, so we
already have coherence for objects, as each object is an equivalence class that contains all possible
⊗ bracketings. However, the morphisms we are constructing have not escaped the bureaucracy
of brackets, so we still have to demonstrate that different bracketings in constructing morphisms
with ⊗ are equal.

Proposition 9. M(S) is a strict monoidal category.

Proof. As mentioned, we don’t need to show coherence for objects, so as shorthand, we will write
A ⊗ B as the concatenation AB, and we will treat the monoidal unit as the empty string ε. By
MacLane’s Theorem, for strictness and monoidal structure in one go, we need only demonstrate
that (f ⊗ g)⊗ h =S f ⊗ (g ⊗ h) and 1⊗ f =S f =S f ⊗ 1, where f, g, h are arbitrary well-typed
derivable terms.

For the associator equation, we use the following proof tree, omitting precomposition with the
associator α, as it is an identity.

...

A
f→ B

...

C
g→ D(⊗)

AC
(f⊗g)→ BD

...

E
h→ F(⊗)

ACE
(f⊗g)⊗h→ BDF(R)

ACE
(f⊗g)⊗h=(f⊗g)⊗h→ BDF(α)

ACE
f⊗(g⊗h)=(f⊗g)⊗h→ BDF

Since we have established the bifunctoriality of ⊗, we will treat ourselves to the infix notation
for the following. Using the proof tree above, we have:

[f ]S ⊗ [g]S)⊗ [h]S

= [(f ⊗ g)⊗ h]S Functor

= [f ⊗ (g ⊗ h)]S Proof Tree

= [f ]S ⊗ ([g]S)⊗ [h]S) Functor
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For the unitor equations, we just show one case, as the other follows symmetrically, and we
will reason informally. By (Id-Tensor), [1⊗ idA]S = [idI⊗A], and we have that A =S I ⊗ A, so:

1⊗ [f ]S

= [1⊗ f ]S Functor

= [f ]S By precomposition with identity and unitality

Now we have a nice theorem relating Mon(S) and M(S).

Theorem 10 (Mon(S) is sound and complete for M(S)). For objects or morphisms Φ,Ψ

[Φ]S = [Ψ]S in M(S) ⇐⇒ Φ =S Ψ

Proof. By definitions of M(S) and =S.

10 Interpretations of S in Monoidal Categories

We perform a comparative reading of the definition of general monoidal signatures with that of
monoidal interpretations (Definition 7.22), and that of free monoidal categories over a signature
(Definition 10) given earlier from [Sel10, p. 12], which is itself a non-strict paraphrase of the
original given by Joyal and Street. We recall the definitions for convenience below.

Definition (General Monoidal Signatures). Define the associated general monoidal signature
S to have data:

• the algebraic signature σ, containing at least nullary I and binary ⊗
• object variables Σ0

• morphism variables Σ1, with accompanying domain and codomain data

• structural morphisms ?, freely instantiated over (Σ0)σ

• an equivalence relation =Den+Str defined on morphisms in the free monoidal category over Σ
plus all components of the natural transformations ? instantiated freely over (Σ0)σ, which is
the reflexive, symmetric, and transitive closure of the two equivalence relations Den (obtained
from an interpretation functor) and Str (obtained by graphical equations)

Definition (Interpretations of Monoidal Signatures). Given a monoidal signature Σ (recall defi-
nition 7.12) and a monoidal category K, an interpretation J K : Σ 7→ K consists of:

• An object function J K0 : DΣ(= D) → Ob(K), which extends in a unique way to an object
function J K∗0 : T→ Ob(K), such that:

– JaBK∗0 = JaK0 ⊗K JBK∗0; where a ∈ D
– JεK∗0 = IK

• A morphism function J K1, that maps f ∈ Name to JfK1 : Jdom fK0 → Jcod fK0
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Definition (Free monoidal categories). A monoidal category K is a free monoidal category
over a monoidal signature Σ if it is equipped with an interpretation J K0 : Σ 7→ K such that for
any monoidal category J and interpretation J K : Σ 7→ J , there exists a strong monoidal functor
F : K → J , such that J K = J K0;F , and F is unique up to a unique monoidal natural isomorphism.

The first observation is that if a general monoidal signature S is only provided a monoidal
signature Σ, M(S) is the free monoidal category over Σ.

Proposition 11. If S and Σ express the same data, M(S) is the free monoidal category over Σ.

Proof. Equip M(S) with the interpretation J K0 : Σ 7→ M(S), which we specify as follows:

• J K0 embeds object variables a ∈ Σ0 as a ∈ (Σ0)σ = Ob(M(S)). This embedding extends
uniquely to an embedding (the identity) from (Σ0)σ in Ob(M(S))

• J K0 maps f ∈ Σ1 to [f ]S ∈ Mor(M(S))[Jcod/fK0, Jdom fK0]

Observe that if S is only provided Σ, in the form of object variables Σ0 and typed morphism
variables Σ1, the derivable equations in Mon(S) are restricted to those of categorical and strict
monoidal structure, as there is no data for (Den-Id), (?), (Den), and (Str) rules. Thus J K0 is
the identity map on (Σ0)σ, so for any other object map J K : (Σ0)σ → Ob(J ) obtained by an
interpretation J K : Σ 7→ J for some strict monoidal category J , we may write the factorisation
J K = J K0; J K. The same holds for morphism variable maps.

What remains to be shown is that the data in an arbitrary interpretation J K : Σ 7→ J corre-
sponds to a strict monoidal functor F :M(S)→ J , and that this functor is unique up to unique
monoidal isomorphism.

For the first task, recall that a functor is defined as a pair of functions, from the objects of the
source category to the objects of the target category, and ditto for the morphisms. For objects
X ∈ Mon(S), which we write as strings in Σ0, define a function Fob from (Σ0)σ into objects of the
target category J recursively as follows:

Fob(X) :=


IJ if X =S I ∈ (Σ0)σ 〈†〉
JxK if X = a ∈ (Σ0)σ

F (A)⊗J F (B) if X = (A⊗B) ∈ (Σ0)σ

SinceM(S) and J are both strict, and the objects ofM(S) are equivalence classes from (Σ0)σ

up to bracketing by design, by coherence we have a function from Ob(M(S)) to Ob(J ).

For morphisms, define the following function from Mor(M(S)) into Mor(J ).

Fmor([f ]S) :=


idFob(X) if f = [idX ]S

JfK if f ∈ Σ1 〈‡〉
F (g);J F (h) if f = [g;h]S 〈‡‡〉
F (g)⊗J F (h) if f = [g ⊗ h]S 〈††〉

Note that the [idX ]S identify all well-formed bracketings, and by strictness of the two cate-
gories, it is a well-defined map. By design of M(S), one can pick any derivable morphisms f

65



and g to begin the recursive translation above, and by soundness and completeness of Mon(S),
f =S g =⇒ [f ]S = [g]S =⇒ F ([f ]S) = F ([g]S), so we have a well defined function for mor-
phisms.

The marked ‡ and ‡‡ clauses together guarantee that the pair of functions we have defined
are a functor. The † and †† clauses implement the coherence maps that make this a monoidal
functor. The † coherence is one-to-one, and since [g]S ⊗M(S) [h]S := [g ⊗ h]S, the †† coherence is
also invertible, hence we have a strong monoidal functor. Also since [g]S⊗M(S) [h]S := [g⊗h]S, we
have actually defined F as the componentwise action of a monoidal natural transformation from
the identity functor onM(S), so we have that F is unique up to unique natural isomorphism.

Now, recall Theorem 4.

Theorem. The graphical language of monoidal categories over a monoidal signature Σ, up to
planar isotopy of diagrams, forms a free monoidal category over Σ.

By the definition of free monoidal categories over Σ as initial objects, we are immediately
granted the following.

Proposition 12 (M(Σ) is the graphical language over Σ). If S and Σ express the same data,
M(S) is monoidally equivalent to the graphical language of monoidal categories over Σ

Proof. By proposition 11, Theorem 4, and definition of initiality.

So, by freeness qua initiality, when we have a monoidal signature to provide a basic stock
of named objects and morphisms, an arbitrary monoidal category over this signature, such as
nameable portion of Set, is obtained by a functor from the category of diagrams in the graphical
calculus. As we have elucidated, the role of the functor is to enforce denotational equations: so
functors provide equations between diagrams in the graphical calculus to reflect calculation within
particular monoidal categories.

Proposition 13. Any monoidal category K over a monoidal signature Σ is monoidally equivalent
to M(S) for S constructed from the data Σ and the unique (up to unique natural isomorphism)
strong monoidal functor K from the free monoidal category over Σ to K.

Proof. Let M(Σ) denote the free monoidal category over Σ, obtained by giving the general
monoidal signature only the data from Σ. By initiality, there exists a strong monoidal functor
from M(Σ) to K, unique up to unique natural isomorphism. Call this functor K. Construct S
out of the data of Σ and K, recalling the definition of general monoidal signatures. The objects
and morphisms ofM(S) are precisely the equivalence classes on objects and morphisms inM(Σ)
induced by K17 so we have a monoidal equivalence in the obvious way. Further observe that
applying natural isomorphisms to K does not change the construction of S in this way.

The above proposition extends to any reasonable conception of monoidal categories that satisfy
graphical equations, as we can always take the forgetful inclusion functor from any reasonably
conceived ‘category of strict monoidal categories that satisfy additional graphical equations’ into
Mon. In the next sections, we expand upon structure S induced by graphical equations, and
construct a reasonable category SMon.

17Another way to think about it is that we have an epi-mono factorisation of the object and morphism maps of
K through M(S)
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11 Denotational Capture, Structural Augmentation, Free

graphical completion

11.0.1 Examples of Structure

Recall that a general monoidal structure S carries a stock of what we have called ‘structural data’
in the data Str and ?. In the logic Mon(S), this is reflected in eponymous rules:

(?) [For all ω in ?]
cod(ω(

→
a))

ωa→ dom(ω(
→
a))

A
f→ B A

g→ B(Str) [For all f =Str g]
A

f=g→ B

The form of the rules above is perhaps too abstract to glean intuition, so we provide a stock of
examples. The underlying idea is very simple: (?) implements natural transformations, and (Str)
enforces equalities that hold between them.

Example 18 (Twists). Recall that a braided monoidal category is braided in virtue of a twist
natural isomorphism θAB : A ⊗ B → B ⊗ A, which must satisfy two ‘hexagon axioms’, shown in
Figure 46. The equations are captured diagrammatically in Figure 49[Sel10, p. 14-15].

A⊗ (B ⊗ C) (B ⊗ C)⊗ A

(A⊗B)⊗ C B ⊗ (C ⊗ A)

(B ⊗ A)⊗ C B ⊗ (A⊗ C)

(A⊗B)⊗ C C ⊗ (A⊗B)

A⊗ (B ⊗ C) (C ⊗ A)⊗B

A⊗ (C ⊗B) (A⊗ C)⊗B

θ

αα

θ ⊗ id

α

id⊗ θ

θ

α−1α−1

id⊗ θ

α−1

θ ⊗ id

Figure 46: The hexagon axioms
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Figure 47: The braiding morphism is drawn as a wire crossing under another.

Figure 48: The fact that it’s a natural isomorphism can be expressed by the equation between the first
two diagrams, where we draw the inverse of braiding as the right wire going under the left. Note that
we can’t derive the equation between the second and third.
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Figure 49: The hexagon axioms, diagrammatically. The big gap in the second is due to the braiding
occuring between A and (B ⊗ C).
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We can equivalently capture these conditions in a suitably augmented S, which induces the
following rules in Mon(S). For the final rule, all morphisms are typed (A⊗B)⊗C → B⊗ (C⊗A).

(θ)
(a⊗ b) θab→ (b⊗ a)

θab; θba id(a⊗b)
(Braid-Iso)

θab; θba = id(a⊗b)

(θA,B ⊗ idC);αA,B,C ; (idB ⊗ θA,C) αA,B,C ; θB,(C⊗A);αB,C,A
(Hex.)

(θA,B ⊗ idC);αA,B,C ; (idB ⊗ θA,C) = αA,B,C ; θB,(C⊗A);αB,C,A

Both rules draw a, b from the free algebra (Σ0)σ, and in this way simulate naturality qua
family of morphisms parameterised by all objects present in a category. We have lapsed on the
arrow-overset notation for the latter for brevity. The (Non-Braid) rule ‘eliminates’ occurrences of
θAB; θBA by establishing their equality with identities. Not that (Str) must factorise identities,
but it may. Note that there is no rule that ‘eliminates’ θAB; θAB, which actually braids wires,
so properly braided morphisms cannot be equated with identity wires. Note that since we are
dealing with strict categories, we have actually implemented the hexagon axioms via this equality,
by totally capturing the graphical equation associated with braiding,

Example 19 (“Weakening”). (To see that this actually provides the structure of weakening in a
logic, see the appendix that proves the admissibility of PRO-composition in Mon(S))

(∆)
a

∆a→ (a⊗ a)

f ; ∆dom(f) ∆cod(f); (f ⊗ f)
(Copy)

f ; ∆dom(f) = ∆cod(f); (f ⊗ f)

(∆a; (ida ⊗∆a)) (∆a; (∆a ⊗ ida))
(CoComm)

(∆a; (ida ⊗∆a)) = (∆a; (∆a ⊗ ida))

Example 20 (“Contraction”).

(Discard)
a

da→ I
f ; ddom(f) dcod(f)

(Causality)
f ; ddom(f) = dcod(f)

A
(∆A;(dA⊗idA))→ A A

idA→ A(Left Counitality)
A

(∆A;(dA⊗idA))=idA→ A

Right counitality is symmetric.
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Figure 50: Graphically, we’ll represent the copy operation like so.

Figure 51: The (Copy) rule stipulates that all derivable morphisms are homomorphisms with respect to
the ∆ structure.

Figure 52: Observe the nice fact that ∆I = 1 is derivable by use of the equational rules enforcing
strictness, so we can copy states leaving no trace of the structural morphism ∆.
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Figure 53: However, the (Copy) rule by itself leaves ∆A; (idA ⊗ ∆A) and ∆A; (∆A ⊗ idA) in distinct
equivalence classes of morphisms: while it is extensionally the same thing to make three copies by first
making one copy, and then either copying on the left or right, the two are procedurally different. We
can explicitly encode cocommutativity as follows above, but it’s not strictly necessary.

Figure 54: (d) refers to ‘discard’, and (Causality) to a similar global-homomorphism condition as in
the case of (Copy) – cf. causal categories and processes [KU17] [BC17, §6]. We depict the discard
morphism as on the right diagram.

Figure 55: We can also specify counitality with respect to copy, if we’d like.
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Remark 4. We put Weakening and Contraction in quotation marks, because we are working in the
opposite direction to the regular approach to categorial logic [AT10, p. 74], and this makes sense:
instead of using proof rules backwards to reduce the task of proving a sequent to various subtasks,
we are using the proof rules forwards to construct morphisms.

Example 21 (Autonomous structure). We have already introduced the graphical calculus of
autonomous monoidal categories in the first part. The cup and cap we can capture with the
following rules.

(ηL)
I
ηLa→ (aL ⊗ a)

(εL)
(a⊗ aL)

εLa→ I

The yanking equations we can capture as follows:

(ηLa ⊗ idaL); (idaL ⊗ εL) idaL(Yank)
(ηLa ⊗ idaL); (idaL ⊗ εL) = idaL

(ida ⊗ ηLa ); (εL ⊗ ida) ida

(ida ⊗ ηLa ); (εL ⊗ ida) = ida

The case for right adjoints is symmetric, but we are not technically done yet: we still have
to dictate how the type constructors (−)L and (−)R interact with the tensor structure: if we
do not ‘break up’ tensors nested in adjoints, we admit multiple tensor structures, such as the
multiplicative connective of linear logic. Here we actually have two choices. Orthodox autonomy
is captured by the following rule: we force (A⊗B)L =S B

L ⊗ AL in M(S).

id(A⊗B)(L/R) idB(L/R) ⊗ idA(L/R)

(L/R : ⊗)
id(A⊗B)(L/R) = idB(L/R) ⊗ idA(L/R)

Figure 56: If we take ((A⊗ B))L = (A)L ⊗ (B)L, we have a perfectly serviceable ‘covariant’ cup and
cap, which preserves the order of types. We can draw these as twisted cups and caps.
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Figure 57: Otherwise, if we take the orthodox route, ((A⊗B))L = (B)L ⊗ (A)L, it’s easy to see by a
strong induction argument that this reverses the order of types. We can draw these as nested cups and
caps.
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The first observation is that graphical equations that govern natural transformations have their
wires labelled with placeholder object variables, reflecting the naturality of the morphisms involved.

The second observation is that all graphical equations we consider are well-typed, in that the
placeholder variables in the source and target of the two sides of the equations match.

The third observation is that we also allow placeholder morphism variables in the statement of
graphical equations, in the case of equations governing homomorphism properties. However, thus
far we have considered examples that obey an implicit ‘semantic monotonicity’ condition, which is
an intuitive property of structural morphisms. At length, if we have derived a diagram that con-
tains some specific named morphisms – which we may think of as carrying some form of semantic
information – alongside structural morphisms, we may spatially rearrange, duplicate and discard
the semantic information we have (cf. the structural rules of classical logic), but it shouldn’t be the
role of structure to introduce novel semantic elements. This separation of concerns between seman-
tics and structure/syntax is reflected in naturality qua morphisms parameterised over all objects
in a category: for a graphical equation involving natural transformations to introduce a specific
– rather than arbitrary – named morphism on one side presupposes that a monoidal signature
has been provided such that the named morphism can even be named. So we ask that graphical
equations are ‘semantically monotonous’ with respect to morphism variables, more succinctly ex-
pressed as the constraint that the set of morphism variables appearing on one side of a graphical
equation is either a superset or subset of the set of morphism variables appearing on the other side.

Definition 11.1 (Structural Graphical Equations). A structural graphical equation governing
monoidal structural natural isomorphisms ω ∈ ? equates two diagrams from the strict monoidal
category obtained from the general monoidal signature which takes:

• object variables Σ0 to be a fresh set of placeholder object variables

• algebraic signature σ containing I, ⊗, and whatever type constructors are warranted by the
natural transformations ω – such as unary left and right adjoint constructors in the case of
autonomous structure

• morphism variables Σ1 to be the union of:

– a fresh set of placeholder morphism variables, arbitrarily many for each choice of
codomain and domain from the free algebra (Σ0)σ

– the morphisms ?, each of which has a particular codomain and domain in (Σ0)σ

We consider graphical equations up to α-equivalence. We require at least one side of the equa-
tion must contain an occurrence of some morphism from ?. If both sides do, we call the equation
computational. If only one side does, we call the equation evaluative. Further, we require that
the domain and codomain of the two diagrams of any equation must be equal up to strictness of
monoidal structure.

If a collection of graphical equations specified in this way are such that it is possible to derive
an equation between homotopically distinct diagrams only composed of placeholder morphism
variables, we consider the structure nondeterministic. Otherwise, we say that the structure is
deterministic

75



Remark 5. Determinism is a nice condition for graphical equations to obey, as it guarantees that
if one is able to eliminate all occurrences of ?-morphisms by applying particular series of graphical
equations, the resulting diagram is unique up to planar isotopy for any other sequence of rewrites.
Demonstrating necessary and sufficient conditions on graphical equations such that this graphical
Church-Rosser condition holds is beyond the scope of this work. However, there are two particular
necessary condition that we would draw attention to.

If the equation is evaluative, we require that the set of morphism variables appearing on the
side with no ?-morphisms is a subset of the set of morphism variables appearing on the other side.

This condition is fairly straightforward: if it were possible to introduce a novel placeholder
morphism with such an equation, that placeholder morphism can eventually be instantiated with
every morphism that satisfies codomain and domain typing, which merges equivalence classes of
distinct diagrams.

If the equation is computational, the set of placeholder morphism variables appearing on one
side of a structural graphical equation must be either a superset or subset of the set of placeholder
morphism variables occurring in the other.

Again, the same motivation applies. We observe that just about every graphical calculus with
structural equations obey these rules, but one doesn’t need to study a collection of rules to arrive
at these conditions: if one accepts semantic monotonicity as an a priori requirement of ‘structure’,
one can easily arrive at the same conditions.

Thus, by the soundness and completeness of the monoidal graphical calculus, any system of
structural natural isomorphisms whose properties can be specified by graphical equations can be
faithfully captured with (?) and (Str) rules from a suitable S up to planar isotopy of diagrams,
and conversely.

The reason we have made the computational/evaluative distinction in structural equations re-
flects the purposes in mind we have for graphical augmentation of a monoidal category K: we would
like for ‘well-formed’ diagrams in the graphical language of K augmented with additional structural
morphisms to evaluate via graphical equations to a diagram that contains only graphical elements
from the calculus of K. With this teleology in mind, graphical equations that do not eliminate the
foreign graphical elements are intermediate steps in a computation towards evaluation.

11.1 Monoidal Categories with Structure S

While we were able to define arbitrary monoidal categories as arising from strong monoidal functors
from the free monoidal category over a monoidal signature, we cannot directly lift the definition to
define arbitrary monoidal categories with some structure S as defined by strong monoidal functors
from a general monoidal signature with data S. For a counterexample, suppose that there is a
monoidal category K with only two objects that enjoy a symmetry morphism in the presence of
other objects that don’t, and suppose that this monoidal category is defined over a monoidal signa-
ture Σ. We can define a strong monoidal functor from the general monoidal signature S made up
of Σ and symmetry structure Sym whose image is just the two objects that enjoy symmetry in K.
On some reading, this is satisfactory, and perhaps even desirable, but we have lost the naturality
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→
Fa

→
Fb,

F
→
a F

→
b

ωD→
Fa

µ→
Fa

µ→
Fb

FωC→
a

Figure 58: We have superscripted the structural natural isomorphism placeholder ω assuming F : C →
D, according to where ω lives.

→
a is shorthand for cod(ω), which is generally of the form

⊗
ai. Similarly,

→
b is shorthand for dom(ω).

→
Fa denotes

⊗
F (ai), and F

→
a denotes F (

⊗
ai). The µ are composites

of coherence maps F (a) ⊗ F (b) → F (a ⊗ b), which are required to be invertible, since F is a strong
monoidal functor.

of structural data.

What we desire is an interpretation of every structural natural transformation component as a
native morphism of the category: i.e. one that is derivable from just a general monoidal signature
with denotations and no structural data. For example, when we write the symmetry-twist θA,B in
Set, we know from experience that there is a native morphism in Set that interprets it, namely
the function θA,B := (a, b) 7→ (b, a) : a ∈ A, b ∈ B.

Suppose we have some structural data S, arbitrary but fixed. We will approach by defining
an augmentation functor A :M(S∅) 7→ M(SS), which maps free monoidal categories on general
monoidal signatures with no structural data to free monoidal categories on the same signatures
with structural data S appended. Since every strict monoidal category is monoidally equivalent to
someM(S∅), we will have a functor from Mon to ‘something’. Since allM(SS) have structure S
by fiat, this ‘something’ is halfway to becoming a category of monoidal categories with structure S.
Recalling that we want interpretations of natural transformation components as native morphisms,
we have the following provisional definition.

Definition 11.2 (SMon). Given structural natural isomorphisms and equations expressed in data
S, let the category SMon consist of:

• Objects all monoidal categories equivalent to some M(SS)

• Morphisms strong monoidal functors, such that the diagram in Figure 58 commutes for all
structural natural transformations ω in S

An immediate consequence of this definition is that the action of functors on objects in the
target category determines the action of functors on natural transformations in the source category:

F (ωC→
a
) = µ−1

→
F (a)

;ωD→
F (a)

;µ →
F (b)

Remark 6. The constraint on functors in the definition of SMon ‘the obvious thing to do’; we
are just asking that the functor and natural transformation data cohere. One can see that this
definition subsumes that of symmetric monoidal functors [Johb, p. 4-5]: we have just powered up
the definition to apply to all natural transformations present. We further discuss this definition in
the discussion section.

77



M(S∅) M(SS)Id

A

D

Figure 59: The motivation for the definition of SMon is the diagram above. If we have a functor A
that grantsM(S∅) extra morphisms that implement structure, and there exists a ‘denotational’ strong
monoidal functor D that interprets/equates all named natural transformation components as native to
M(S∅) such that A;D = Id, then we say M(S∅) has structure S to begin with.

11.1.1 Denotational Capture

When we perform graphical augmentation, we do so with respect to a general monoidal signature
with no structural data. The claim in this section is that given a general augmented monoidal
structure SS with structural morphisms and equations, captured by data S, we can always con-
struct a monoidal signature SS

∅, with no structural morphisms and equations, such that M(SS
∅)

is monoidally equivalent to M(SS). The title of this section ought to be suggestive of the cheap
trick we are about to pull: we simply replace all (?)-rule instances with new (Name)-rule instances,
and all (Str)-rule instances with new (Den)-rule instances, expanding the monoidal signature as
necessary.

Definition 11.3 (SS
∅). Given SS with structural data S in the form of morphisms ? and equa-

tions Str, obtain SS
∅ by taking the same object variables Σ0 and algebraic signature σ from S,

but replacing the type constructors of S with fresh function symbols of the same arity. We assume
that these name changes propagate forwards for the remainder of the definition, with respect to
typing the domains and codomains of morphisms.

Define the morphism variables of SS
∅ as follows:

NameSS
∅

:= NameS ∪ ?((Σ0)σ)

Where ?((Σ0)σ) is the collection of morphisms obtained by freely instantiating the contextual
slots in the domain and codomain of each ω ∈ ? with objects from (Σ0)σ, and assigning a fresh
morphism variable for each such instantiation. Similarly define DenSS

∅
by freely instantiating

equations in StrS with morphisms derivable in Mon(S) and replacing instances of natural trans-
formations ω with appropriately instantiated morphism variables from ?((Σ0)σ). Leave ?SS

∅
and

StrSS
∅

empty, such that SS
∅ is a monoidal signature with denotations.

Proposition 14. Where Ξ is a morphism or equation,

Mon(SS) ` Ξ ⇐⇒ Mon(SS
∅) ` Ξ

Up to syntactic representation of instanted ω natural transformations from SS in the morphism
variables of SS

∅.

Proof. Proof by proof-tree horticulture. Let ω(
→
a)◦ denote the unique novel morphism variable

in SS
∅ obtained by instantiating ω in SS with the nonempty list

→
a of objects from (Σ0)σ. Note

further that by construction, ◦ is one-to-one, and the domains and codomains of ω(
→
a)◦ and ω(

→
a)
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match. First let us consider the case for morphisms. In the proof tree for any morphism f in
Mon(S), we have the following one-to-one correspondence for every instance of (?)-rule in proofs.

(?)
cod(ω(

→
a))

ωa→ dom(ω(
→
a))~www�

(Name?)
cod(ω(

→
a)◦)

ω◦a→ dom(ω(
→
a)◦)

Where the latter proof lives in Mon(SS
∅), and (Name?) is just a notational indication that this is

a captured (?)-rule. Each such transformation evidently preserves well-formedness of proof trees,

since we have by construction that cod(ω(
→
a)◦) = cod(ω(

→
a)) and dom(ω(

→
a)◦) = dom(ω(

→
a)) by

construction. The case for the (Str) rule follows similarly.

11.2 Graphical Completions

Definition 11.4 (Augmenting General Monoidal Signatures with S). When a general monoidal
signature S has no structural data, we write it S∅. SS is the general monoidal signature obtained
from the data of S∅ and S, expanding the algebraic signature of S∅ with type constructors as
necessary to support S.

Proposition 15. For objects or names Φ and Ψ only recruiting syntactic elements contained in
S∅, for any deterministic structure S,

Φ =S∅ Ψ ⇐⇒ Φ =SS
Ψ

Proof. The forward direction is easy, as any proof in Mon(S∅) is also a proof in Mon(SS). For
the reverse implication, we prove the contrapositive. It will suffice to prove the statement for
morphisms, as the definition of =S for objects follows by equivalence between identity morphisms.
Suppose that Φ = Ψ is derivable in Mon(SS). We aim to show that such a derivation can be
performed without invoking (?) and (Str). In general, suppose that the equality is achieved by the
existence of a Γ containing novel syntactic elements introduced by S, such that Φ = Γ and Γ = Ψ
are derivable in Mon(SS). Moreover, we know there must exist some name ∆ that does not contain
novel syntactic elements such that Γ = ∆ is derivable, since we must at least have that Φ = Γ and
Γ = Ψ. By the determinism of S, if Γ = ∆ and Γ = ∆′ are derivable in Mon(SS), and both ∆ and
∆′ only contain syntactic elements from S∅, then ∆ =S∅ ∆′: as all equations that aren’t planar
isotopies are achieved by (Den)-rules, which are shared by Mon(S∅) and Mon(SS). Thus Φ =S∅ Ψ
as required.

So, given any monoidal category J over a monoidal signature Σ, and structural data S, we may
define SS as the general monoidal structure obtained from Σ, the denotational equations obtained
from the unique functor fromM(Σ) to J , and the structural data S. The above proposition grants
that when S is deterministic, there is a faithful inclusion functor from diagrams of J to diagrams of
M(SS), and so that any derivation in the graphical calculus ofM(SS) that ends with a diagram
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with elements only from J is really referring to that diagram in J .

Put another way, if J is taken to be an arbitrary monoidal category that represents semantics–
we might interpret the meanings of words as morphisms in J – we may take any deterministic
structure S and treat morphisms in M(SS) as syntax. The syntactically well-formed morphisms
in M(SS) are those that we can eventually reduce – by means of graphical equations granted by
J and S – to diagrams that live in J .

This generality is significant, because it removes the requirements upon the semantic category
to carry interpretations of all structural natural transformations that may be required by syntax.
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12 Discussion

12.1 What did we do?

Figure 60: What we did.

12.2 Is it a free construction?

Generally, no. At least not in the sense of forming an obvious free-forgetful adjunction.
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While we can describe the augmentation process as a functor from Mon to SMon (appendix
material), there is no obvious candidate partner functor SMon to Mon that would make this a
free-forgetful adjunction in the general case. I have considered ‘inclusion’ and ‘structural-deletion’
functors as candidates, and have considered weakening adjunction to ‘adjunction up to adjunc-
tion’18, but I have not pursued these paths to fruition.

The primary reason for this failure is that most structures aren’t uniquely determined in a
category, so augmentation with a structure S with respect to a monoidal category that already
carries that structure is generally not the trivial operation. The functor D in Figure 59, which
interprets the components of natural transformations, was originally conceived as the (pointwise)
left Kan extension of the identity functor over A. D is necessarily a little opaque, because it might
have to make a lot of choices under the hood. Consider a monoidal category with two syntactically
distinct ‘copy’ natural transformations. Augmentation with another ‘copy’ structure will yield a
new monoidal category with three syntactically distinct but extensionally equivalent ‘copy’ natural
transformations, and the work of the functor D is to choose interpretations from the first two for
the newly introduced third, for each object.

It is only in the event that some structure is uniquely defined in a monoidal category – such as
dual structure – that augmentation with the same structure is the trivial operation. So, although
our approach follows Delpeuch’s, we cannot claim ‘free graphical completion’ as he did ‘free au-
tonomous completion’: if a monoidal category already possesses autonomous structure by virtue of
exact pairings for all objects [AR93], adding formal duals that satisfy the same graphical equations
does nothing, because duals are unique. The same does not hold for ‘accidental’ structures of the
general kind.

12.3 On definitional choices

It is unclear what the correct definition of SMon is, which frustrated attempts to prove freeness.
As far as we are aware, there aren’t notions in the literature similar to general monoidal signatures
supporting arbitrary graphical equations. We are wary that our given definition is heavy handed
and crude: having a ‘one-sided’ equivalence in the manner sketched in Figure 59 is problematic,
so we have powered up the definition to equivalences.

Defining S-monoidal categories in this way however respects the spirit, if not the letter, of Joyal
and Street’s autonomous signatures: as we have defined general monoidal signatures to encode the
data of the free S-structured monoidal category in its algebraic signature and structural equations,
and we have encoded the action of a functor from the free category in the denotational equations.

Though general monoidal signatures as we have defined them allowed us the freedom to spec-
ify additional graphical equations in a monoidal category, we would have liked to carry out this
work with more high-powered categorical tools, such as colored PROs[Yau08, §2.2], or in terms
of enriched category theory. Regarding the latter, we considered viewing this construction as ‘en-
richment in proofs’ of a thin category of algebraic terms as objects and derivability as morphisms
(as in pregroups). Explicitly interpreting inequalities as monoidal natural transformations would
then allow us to recast ‘enrichment in proofs’ as ‘enrichment in diagrams’.

18Lax 2-Adjunction on nLab.
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We have dealt mostly with equalities and strict categories for ease of reasoning. The type-
theoretic approach we have taken can be extended to interpret an inequality relation, which would
have (crudely) captured the notion of diagrammatic homotopies. Extending the logic in this way
would permit formalisation of process theories with irreversible transformations.

The definitions of nondeterministic and deterministic collections of graphical equations hide
a painful amount of complexity, and one may rightly argue that without a sound procedure to
determine whether a given collection of graphical equations are deterministic, their utilisation in
directing semantic composition is suspect. Determining Church-Rosser for one-dimensional rewrite
systems is hard enough, but two?

12.4 What can we do with it?

Rather than start with a particular monoidal category and develop a graphical calculus supported
by the category, we can now work the other way around: draw pictures first, and ask questions
later.

12.4.1 Semantics in residuated pregroup grammars

With strategically introduced ‘control modalities’, we can make arbitrary monoidal semantics
compatible with a residuated monoidal type system. The trick is, we explicitly interpret the
application interpretation rules as (natural) morphisms, except we give them extra duties with
respect to control modalities that ‘sandwich’ processes we wish to treat as semantic elements.

Figure 61: The two structures on the left column implement the application inference rule, where we
use the lollipop rather than slashes out of personal preference. The associated control modalities for
each application rule lie in the same row.
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Figure 62: This is the structural equation that allows us to smuggle in arbitrary semantics. The other
equation follows symmetrically with the other control modality, though strictly speaking one control
modality is enough for both left and right application. Note how appending a state to the available
wire on the bottom right of the left diagram resolves to composition on the right diagram.

Figure 63: Observe the similarity of our trick to this diagram from [baezrosetta p33] for taking names
and evaluating in closed monoidal categories. A cup is more than strictly sufficient to ‘bend back’ the
input wire of the morphism f : we use a control modality. Our lollipop notation matches with Baez’s
‘clasp’ notation.
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Figure 64: We may apply above visual recipe to turn semantic morphisms into typed states, such that
there is a natural correspondence between the typing of words and their process-theoretic semantic
interpretations.
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12.4.2 Delayed Symmetries

Figure 66: We take the above four morphisms in the context of a symmetric monoidal category, or one
that is also suitably augmented with symmetric structure. We draw the ‘control modalities’ in this case
as wiggly wires.

Figure 67: We factorise the symmetry twist like so.

Figure 68: But we also grant the wiggly emissions a unitality property. In this way, in the course of a
generative grammar that models both active and passive verb forms, it can be decided during generation
whether a twist is warranted, and the twist itself is delayed and ‘transmittable’ long distance across the
production tree.
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12.4.3 Portals and the weirdness of nondeterministic graphical equations

As discussed, when a system of graphical equations is nondeterministic, even after we eliminate
all novel graphical elements from a diagram in the augmented calculus, we may end up with
equations between morphisms in our original category that did not hold before. This is not always
an undesirable phenomenon. Consider the following nondeterministic graphical equation:

Figure 69: We have a ‘black hole’ and ‘white hole’ structure, which behave like portals.

Figure 70: On states, the effect is that of teleportation, but only if there is exactly one entrance and
exit.
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12.4.4 Frobenius?

Figure 72: The frobenius equations. There is a monoid and comonoid that interact in the manner
specified above, and both are unital as in the bottom equation. Frobenius algebras admit a graphical
normal form as spiders [pqp spiders].

Figure 73: Frobenius structure implies a very strong form of compact closure: we can specify cups and
caps (the equation above follows from the frobenius axioms) such that all objects are their own duals.
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Figure 75: Resolving the previous diagram as far as we can, we reach a dead end here. Note that there
remains one frobenius comonoid and one frobenius counit. Frobenius algebras are intimately related
to orthonormal bases in vector spaces [coeckedusko], which Set simply doesn’t have. We propose two
possible directions for exploration.

Figure 76: If we grant extra equations allowing all structures to be homomorphisms with respect to the
frobenius structure, we may take one step further to arrive at the above diagram. This is a problem
on several fronts. Firstly, we have an uninterpretable scalar on the right (as it still carries a frobenius
counit, not to mention that Set has only one scalar.) Secondly, the sentence is either meant to be
a proposition to be evaluated truth theoretically, or a statement of fact meant as an update to some
epistemic state. In the former case, if it is not true that chickens cross roads, it is inappropriate to allow
the chickens state to pass through on the left, and it is unclear how the scalar could stop this from
occurring. In the latter case, we commit ourselves to a view where the chickens ‘state’ stands for an
arbitrary chicken, and it is unclear how the scalar is to interpret a property of the arbitrary chicken.
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Figure 77: If we take a truth-theoretic view of the function providing the semantics for cross, a priori,
we know roughly what we want: {x ∈ N | cross(x, roads) = 1}. We’re asking for a pullback of
sorts, so a possible hack is to work in the category of pointed sets (sets with a special ‘basepoint’
element, which we will take as a standin for a ⊥ element), and declare the above equation, where f?
is the characteristic function on those chickens that do cross roads, sending all other chickens to the
basepoint. This solution is not nice, and further raises the spectre of dependent types in the general
case of pullbacks, as we are essentially asking for the typing of the outgoing wire on the left to be
dependent on the particular morphism f . Another option is to work instead in the richer monoidal
category Cat of categories and functors between them, where there is the possibility of treating the
diagram on the left as a database query, but the details must be left for future work. For now, we must
concede that frobenius algebras are indispensable until proven otherwise!
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A Mon(S)

Side conditions, coherence maps and equations omitted, tensor writen as concatenation.

(Id)
a

ida→ a
(Unit)

I
1→ I

(Den-Id)
a

idX→ b

(Name)
cod(f)

f→ dom(f)
(?)

cod(ω(
→
a))

ωa→ dom(ω(
→
a))

A
f→ B B

g→ C(;)
A

(f ;g)→ C

A
f→ B C

g→ D(⊗)
AC

(f⊗g)→ BD

A
f→ B(R)

A
f=f→ B

A
f=g→ B(S)

A
g=f→ B

A
f=g→ B A

g=h→ B(T)
A

f=h→ B

A
(idA;f)=g→ B(L.U.)
A

f=g→ B

A
(f ;idB)=g→ B(R.U.)
A

f=g→ B

A
((f ;g);h)=j→ B

(Assoc)

A
(f ;(g;h))=j→ B

A
f→ X X

g→ C AB
((f ;g)⊗(h;j))=k→ CD B

h→ Y Y
j→ D(Interchange)

AB
((f⊗h);(g⊗j))=k→ CD

(Id-Tensor)

ab
id(a⊗b)=(ida⊗idb)

→ ab

A
f=f ′→ B AC

(f⊗g)=h→ BD C
g=g′→ D(=↔)

AC
(f ′⊗g′)=h→ BD

A
f=f ′→ B A

(f ;g)=h→ C B
g=g′→ C(=l)

A
(f ′;g′)=h→ C

A
f→ B C

g→ D(Den)
A

f=g→ D

A
f→ B A

g→ B(Str)
A

f=g→ B
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B The Functor A : Mon→ SMon

Before we define the augmentation functor, we’ll show how our definition SMon allows us to lift
strong monoidal functors Mon to functors in SMon. Throughout, we suppose that some arbitrary
but fixed S is provided.

Definition B.1 (Lifting Functors). For any functor F : J → K between J , K in Mon, ap-
ply unique monoidal isomorphisms by Proposition 13 to obtain G : M(S∅) → M(T∅). Define
AG :M(SS)→M(TS) on objects as:

AG[X]SS
=


[I]TS

if X = I[
AG[A]SS

⊗ AG[A]SS

]
TS

if X = (A⊗B)[
ρ(AG[A1]SS

, . . . ,AG[An]SS
)
]
TS

if X = ρ(A1, . . . , An), ρ ∈ σ[
G[a]SS

]
TS

(=
[
G[a]S∅

]
T∅

) if X = a ∈ Σ0

And on morphisms:

AG[X]SS
=



[idAGA]TS
if X = idA[

AG[f ]SS
;AG[g]SS

]
TS

if X = (f ; g)[
AG[f ]SS

⊗ AG[g]SS

]
TS

if X = (f ⊗ g)[
G[f ]SS

]
TS

(=
[
G[f ]S∅

]
T∅

) if X = f ∈ Σ1[
ω→
Ga

]
TS

if X = ω→
a
, ω ∈ ?

Remark 7. Lifting functors in this way is basically an algebra homomorphism on the objects and
morphisms, with respect to the algebraic signature and (; ,⊗) structure.

Definition B.2 (A: the augmentation functor). As shorthand, we write JS for the S-augmentation
of the monoidal category J . Given a structure S, we define A : Mon→ Smon to take monoidal
categories J to JS, and strong monoidal functors F : K → L to their lift AF : KS → LS, as
described above.

C More Lemmas for Mon(S)

We can actually leverage Lemma 5 into more powerful forms. At the moment, f ′ and f may still
differ up to associativity, and unitality. We can sharpen the statement of the Lemma to make f ′

agree with f up to just unitality.

Lemma 16 (Each side of derivable equation is derivable up to type-matching identities). If f = g
is derivable, then f ′′ and f ′′ = f are derivable, where f ′′ differs from f at most up to pre- and
post-composition of type-matching identities from (Den-Id) in subnames of f ′′.

Proof. We will just focus on f , as the argument for g is symmetric. In the proof strategy of Lemma
5, we have observed that in the construction of f ′ in the cases associativity and interchange, both
syntactic variants are derivable: i.e. in the derivation of f ′ corresponding to an (Assoc) equality
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in the induction, if f ′ ≡ ((g;h); j), we may also derive (g; (h; j)) by transforming the proof tree,
and similarly for interchange. In this way we may derive an f ′′ by transforming the proof tree
of f ′, such that f ′′ agrees with f up to pre- and post-composition of type-matching identities. A
similar proof strategy as Lemma 5 grants that f ′′ = f .

Recall that in a sequent calculus, a new rule is admissible if any derivation in a system with the
addition of that rule is also derivable without it. We consider a particularly admissible rule: where
Γ〈f〉 denotes that f is a subname appearing as a (located) substring of a name Γ, we consider the
following (Cut&Paste) rule.

Lemma 17 (Replacement is Admissible). The following rule is admissible

A
Γ〈f〉→ B C

f=g→ D(Cut&Paste)
A

Γ〈g′〉→ B

Where g′ and g′ = g is derivable, and g′ differs from g at most up to pre- and post-composition
of type-matching (Den-Id) identities in subnames occuring in g.

Proof. Firstly, since f occurs as a well-bracketed subname, by analyticity, a derivation of A′
f→ B′

occurs as a unique subproof in the derivation of A
Γ〈f〉→ B. By Lemma 5, a derivation of C

f=g→ D

yields a derivation of C
g′→ D such that g′ = g is derivable. By the well-definedness of =S on

objects, we can pre- and postcompose g′ with type-matching identities from (Den-Id) to obtain a

derivation of A′
g′′→ B′, by matching C with A′ and D with B’. Now we can replace the subproof

of A′
f→ B′ in that of A

Γ〈f〉→ B by the derivation of A′
g′′→ B′, and the remainder of the derivation

will yield A
Γ〈g′′〉→ B as desired.

Of note is that the new proof constructed in the lemma above no longer contains a derivation
of the replaced f .

Proposition 18 (Cut and Paste for Equations). If Γ〈f〉, Γ〈f〉 = h and f = g are derivable, then
Γ〈g′〉 = h is derivable, where g′ and g′ = g is derivable, and g′ differs from g at most up to pre-
and post-composition of type-matching (Den-Id) identities in subnames occuring in g.

Proof. We can consider the proof of Γ〈f〉 = h to ‘leave Γ〈f〉 unmolested’ in every equality step:
it is derived once, introduced into an equality, and then travels syntactically unchanged towards
the conclusion Γ〈f〉 = h. In light detail, we can achieve this by eliminating occurrences of (As-
soc), (Interchange), and diagram manipulation equality rules as in the proof strategies outlined in
Lemmas 5 and 16. We can also consider the proof of Γ〈f〉 = h to contain no instances of Left and
Right Unitality rules that alter Γ〈f〉. An informal argument for this second point is to consider the
length of name to be the number of connectives and atomic name symbols obtained from initial
morphism sequents in that name, and to note that after eliminating instances of (=↔), (=l) as
above, all equality rules either preserve or monotonically decrease (in the case of left and right
unitality) the length of names they operate upon. Since Γ〈f〉 is derivable, it is analytic, and hence
contains all its type-matching identities explicitly, so we know that no left and right unitality rules
operate upon Γ〈f〉 on its way to the conclusion.
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In this proof form of Γ〈f〉 = h, we have a unique derivation of Γ〈f〉 that travels unmolested
to the conclusion. We can then use the admissible (Replacement) rule to convert derivations of
Γ〈f〉 = h and f = g into a derivation of Γ〈g′〉 = h, which must also be a valid proof, because
by specification, Γ〈f〉 is unmolested, so replacing it with Γ〈g′〉 still grants safe passage to the
conclusion.

Now consider the base cases. The first is where Γ〈f〉 is introduced as one side of an equality
by a (Den) rule, but this is easily dealt with: We can prove by (R) that Γ〈f〉 = Γ〈f〉, and by a
strong inductive argument on proof tree length, assuming the claim as the inductive hypothesis,
we may derive Γ〈f〉 = Γ〈g′〉, with which we can apply the (T) rule to the (Den) case. The case
where Γ〈f〉 is introduced into an equality by the (R) rule follows similarly.

The above lemma allows graphical reasoning by replacement of equal subdiagrams (so long as
one trusts that judicious use of interchange and associativity can isolate any well-typed subdia-
gram)

C.1 PRO-composition

PROs are PROPs (product and permutation categories) without symmetry. We have essentially
been working with coloured-PROs throughout. There does not appear to be a definition of PRO-
composition in the literature, so we are only taking this name for its suggestivity. What we wish
to specify is a liberal form of composition for lists of objects from a set of colours, such that a list
of domain variables X may compose with a list of codomain variables Y if either: X contains Y
as a sublist, Y contains X as a sublist, a prefix of X is equal to a suffix of Y , or a suffix of X is
equal to a prefix of Y . Graphically, the options correspond to the essentially different ways two
planar diagrams can be pasted together sequentially without crossing wires.

Figure 78: The four options for vertical composition of processes f and g, corresponding to the four
possibilities expressed in terms of sublists and prefixes

It is in general insufficient to state just the matched sublists, as we may have a situation where
a domain BCCD must be matched with a codomain C, in which case there is ambiguity. The
solution is to specify just the prefix and postfix of unmatched outputs of the domain, which does
uniquely specify the sublist where composition is performed. So we write fB +D g to indicate the
PRO-composition of f with g, where B and D are a prefix and postfix of the domain type of f ,
replacing either B or D with − if the sublist is empty. For the following, we will omit tensors, and
just write concatenations.

Proposition 19. PRO-composition is admissible.
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Proof. The idea is to tensor in sufficiently many identity wires in the plain calculus such that
PRO-composition becomes plain composition. There are essentially three distinct cases of the
PRO-composition rule:

• The first case is where the codomain of s strictly contains the domain of t, which, without
loss of generality, appears as such:

...

A
s→ BC

...

CD
t→ E

sB +D t : A→ BCD

Instances of this form can be replaced by trees of the following form:

...

A
s→ BCD

(Id)
B

idB→ B

...

C
t→ E

(Id)
D

idD→ D (⊗× 2)
BCD

idB⊗t⊗idD→ BED (+)
sB +D t : A→ BCD

• The second case is where the codomain of s strictly partially overlaps the domain of t, which
can either be from the left or the right. Without loss of generality, this appears as such:

...

A
s→ BC

...

CD
t→ E

sB +− t : AD → BE

Instances of this form can be replaced by trees of the following form:

...

A
s→ BC

(Id)
D

idD→ D(⊗)
AD

s⊗idD→ BCD

(Id)
B

idB→ B

...

CD
t→ E (⊗)

BCD
idB⊗t→ BE (+)

sB +− t : AD → BE

• The third case is where the codomain of s is strictly contained within the domain of t, which,
without loss of generality, appears as such.

...

A
s→ C

...

BCD
t→ E

s− +− t : BAD → E

Instances of this form can be replaced by trees of the following form:

(Id)
B

idB→ B

...

A
s→ C

(Id)
D

idD→ D(⊗× 2)
BAD

idB⊗s⊗idD→ BCD

...

BCD
t→ E (+)

s− +− t : BAD → E
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