Physics from Computer Science
— a position statement —

SAMSON ABRAMSKY* BoB CoeckEe!t

Oxford University Computing Laboratory, UK

Received 17 December 2005; In final form 17 March 2006

In this statement we provide some examples of transdiseipli
journeys, from one field to another, and back. In particule,
guantum informatic endeavor is not just a matter of feedimgsp
ical theory into the general field of natural computatiort,ddso
one of using high-level methods developed in Computer $eien
to improve on the quantum physical formalism itself, and the
understanding thereof. We highlight a seemingly conttadyjc
phenomenon: passing to an abstract, categorical quanfom in
matic formalism leads directly to a simple and elegant giegh
formulation of quantum theory itself, which for example reak
the design of some important quantum informatic protocois-c
pletely transparent. It turns out that essentially all & tjuan-
tum informatic machinery can be recovered from this graghic
calculus. But in turn, this graphical formalism providesralge
between methods of logic and computer science, and some of th
most exciting developments in the mathematics of the past tw
decades: namely those arising from the Jones polynomiatiinv
ant of knots and links, the Temperley-Lieb Algebra and szlat
structures.
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1 WHERE SCIENCES INTERACT

We are, respectively, a computer scientist interestedaéndpic and seman-
tics of computation, and a physicist interested in the fa@tioths of quantum
mechanics. Currently we are pursuing what we consider tovseyafruitful
collaboration as members of the same Computer Sciencetdegar How
has this come about? It flows naturally from the fact that veeveorking in
a field of Computer Science where physical theory startsdag alkey role,
that is,natural computationwith, of courseguantum computatioas a spe-
cial case. But there is more. Our joint researchathresearch on semantics
for distributed and hybrid non-von Neumann architectueag] on the ax-
iomatic foundations of physical theories. This dual chaaof our work
comes without any compromise, and proves to be very fruitbmputer
Science hasomething more to offer to the other sciences than the camput
In particular, in the mathematical and logical understagdif fundamen-
tal transdisciplinary scientific concepts such as intévacttoncurrency and
causality, synchrony and asynchrony, compositional miodeand reason-
ing, open versus closed systems, qualitative versus datwei reasoning,
operational methodologies, continuous versus discrafaridh systems and
more, Computer Science is far ahead of many other scienaesndart to
the challenges arising from the amazing rapidity of the neddgy change
and development it is constantly being confronted with. @méd claim that
computer scientists (maybe without realizing it) constitanavant-garddor
the sciences in terms of providing fresh paradigms and nastho

In our own recent work, we recast the standard mathemataaldwork
of quantum mechanics (which is essentially due to John vamiden [45])
in terms of categorical semantics [6], using formal tooldolhwere devel-
oped in Computer Science for analyzing linearity and resegensitivity, the
geometry of interacting components, and the foundatiom®onfurrency. At
the same time, this results in a graphical calculus, whiclpresent in Sec-
tion 3. This calculus stands in a long line of work, with soniengering
ideas by Penrose [38], and extensive developments by nusieaiegory-
theorists, geometers and mathematical physicists, imguidelly, Laplaza,
Joyal, Street, Freyd, Yetter, and Turaev [34, 25, 28, 44, 3@hat is par-
ticularly novel and striking about our approach is that weehshown how
directly and fruitfully such a calculus can be applied to themulation of
basic Quantum Mechanics itself, and how well this fits thedsed Quantum
Informatics.

But of course this is not a one-way street. Physical thednigsired by



computational theories are much better tailored for CorpBtience appli-
cations as compared to their low-level counterparts. Famgle, the current
tools available for developing quantum algorithms andquols are deficient
on two main levels. Firstly, they are too low-level. Quantatgorithms
are currently mainly described using the ‘network modelfresponding to
circuits in classical computation. One finds a plethora ofi@d calculations
with ‘bras’ and ‘kets’, normalizing constants, matrices. éthe arguments for
the benefits of a high-level, conceptual approach to dasigmrogramming
and reasoning about quantum computational systems aragustmpelling
as for classical computation. At a more fundamental letxel Mon Neumann
formalism is actually insufficiently comprehensive foraniatic purposes.
In describing a protocol such as quantum teleportationngroantum pro-
cess in which the outcome of a measurement is used to detesuirsequent
actions, the von Neumann formalism does not capture the flanfarmation
from the classical or macroscopic level, where the restiltseasurements of
the quantum-mechanical system are recorded, back to timéuqndevel. This
flow, and the accompanying use of ‘classical informatiorijch plays a key
role in protocols such as teleportation, must thereforearalled informally.
As quantum protocols and computations grow more elaboratecamplex,
this point is likely to prove of increasing importance. Ourrlyields a se-
mantics and logic which is appropriate for developing hig¥el tools for
quantum computation and information. It provides a cartéidalution for

? ~ high-level language
von Neumann quantum formalism — low-level language *

Below we proceed as follows. In the next section we discusdidhd of
Quantum Informatics as we see it. Then we introduce our geaptalculus,
which comes hand in hand with the categorical semantics. &keodstrate
the logical power of this calculus, and illustrate its paianby redesigning
the quantum teleportation protocol in an almost trivialhiag. Next, we
mention some emerging and very promising connections legtireese ideas
and some of the key themes of contemporary research at éréaice between
mathematical physics and topology. In particular, we discconnections
with the Jones polynomial invariant of knots, and the Tergyekieb algebra.
We conclude by suggesting some possible future develogment

2 THE NEED FOR HIGH-LEVEL QUANTUM INFORMATICS

The development of Quantum Informatics is both a mattareafessityand
one of manyopportunities



a. As the scale of the miniaturization of IT components reathegjuan-
tum domain, taking quantum phenomena into account will brecon-
avoidable.

b. On the other hand, the emerging field of Quantum Informates h
brought new computational possibilities to light, some dfieh en-
danger current cryptographic encoding schemes, but somvkioh at
the same time provide the corresponding remedy in terms afrse
guantum cryptographic and communication schemes.

Quantum Informatics emerged from the recognition that guarphenom-
ena and “quantum weirdness’—Einstein’s “spooky action distance”™—
should be seen not adagbut as deature Some first fruits of this were the
BB84 and Ekert 91 public key distribution schemes, the Dedtazsa, Shor
and Grover algorithms, the quantum teleportation protacal several vari-
ants [36]. But while the attitude has changed, many of thénout remained
the same, and the manipulations of complex numbers, vemtarmatrices in
“computational bases” built frorkets|0) and|1) bear some comparison with
the acrobatics with bits and bytes in the early days of coerpptogram-
ming. On the other hand, many important questions on Quahiformatics
remain unanswered, and it is unlikely that the curiemt-levelmethods of
Quantum Informatics will provide the capabilities to answieem. For ex-
ample, new quantum computational models such as the measotdased
one-way-modedf Briegel et al. [39] challenge the whole conception of wdnat
quantum computation fundamentaiy and hence what its limits are. In par-
ticular, a deep and clear structural understanding of therghmic speed-up
and the informatic quantum-classical interaction has mbtyeen achieved.
Also, while logic has taken a prominent place in (non-quantComputer
Science, the quest forquantum logichas (until very recently) been largely a
story of failure. Our (admittedly ambitious) ultimate intens are:

1. To open up Quantum Informatics research to a wider commuasty
compared to its current profile of being hard and completeygcessi-
ble to the uninitiated. This requires aruitive, simpleandeasily com-
municableformalism for Quantum Informatics, and hence for quantum
mechanics itself.

2. To turn Quantum Informatics research intsystematic disciplinavhich
can provide a sound basis fautomated design and development tools
This requires a quantum formalism which admits analoguéssaur-
rently availablehigh-level method$érom Computer Science such as



types, semantically well-founded calculi, program loggts.

3. To blend Quantum Informatics research with the currentiyilable
and successful high-level methods for dealing vdigtributed hybrid
andembedded systemdhis requires compatibility of the high-level
guantum concepts with their classical counterparts.

Addressing these challenges requires new insights intsttbeture of quan-
tum information, of its flow, and of its interaction with otheomputational
resources such as classical information flow, space, tigenta, knowl-
edge/belief etc. Our work in [6] initiated a new kind of answethe question:

e What is the structure of quantum mechanics?

This forms the basis of an ongoing research programme [5].

3 CONCRETE PICTURES FROM ABSTRACT CATEGORIES

We have benefited from the currently available categorigalantics for Gi-
rard’slinear logic[42], a resource sensitive logic developed in the late eight
ies. A key distinction between classical and quantum coatmut is indeed
the inability to copy and delete unknown guantum states 437, and the
ability to take such an inability into account was exactlg tonceptual core
of linear logic. At a more refined level, we also relied on thedy of a par-
ticular categorical structure calledmpact closed categori¢34] which had
initially been introduced for purely mathematical reasenasut which had
subsequently been found useful by one of us for modellirgséital) concur-
rent computation [9]. Surprisingly, afteefiningcompact closure tstrong
compact closurg6, 7], we were able to recover the key quantum mechani-
cal notions ofinner-product, unitarity, full and partial trace, Hilbef&chmidt
inner-product and map-state duality, projection, posiyivmeasuremenand
Born rule (which provides the quanturobabilitieg, axiomatically at this
high level of abstraction and generality. Moreover, we vadrke to derive the
correctness of protocols such as quantum teleportatidanglement swap-
ping and logic-gate teleportation [12, 27, 48] in a transpaand very con-
ceptual fashion. Also, while at this level of abstractioarthis no underlying
field of complex numbers, theigstill an intrinsic notion of ‘scalar’, and we
could still make sense dfansposition vs. adjoinf6, 7], global phase and
elimination thereqfvectorial vs. projective formalisifl7]. Peter Selinger
recoverednixed state, complete positivitypd Jamiolkowski map-state dual-
ity [43]. Recently, in collaboration with Dusko Pavlovic andd&Paquette,



decoherence, generalized measuremeantsNaimark's theorenhave been
recovered [20, 19], and Ross Duncan has exposed some foamaladtruc-
tures forMeasurement-Based quantum computaf28] — cf. [39, 40, 21].

This high-level ofabstractionalso comes with an intuitive and simple
graphical calculus/notation This “strongly compact closed graphical cal-
culus” can be seen as a very substantial 2-dimensional @gtenf Dirac’s
bra-ketnotation [22], and relying on category-theoretic resutisfree con-
structions of these categories [3, 28, 34, 43] one can shatathequational
statement is derivable in the graphical calculus if and dfityis derivable
from categorical algebra. An informal introduction to tliglculus is pro-
vided in [15, 16, 18].

In the graphical calculus we depict physical processes xgfcand we
label the inputs and outputs of these boxesymeswhich tell on which kind
of system these boxes act cf. one qubit, several qubitssicidsdata etc.
Sequential composition (in time) is depicted by conneativagching outputs
and inputs by wires, and parallel composition (tensor) lbglimg entities side
by side e.g.

lu:A—A f:A—>B gof 1481 f[fRlc [fRg (f®g)oh

forg: B— Candh: E — A ® B are respectively depicted as:

C B |C

B [“gﬂ B B |c |;|§Z|

A f B A |B C fll g A [B
[A f A A [B h
[A [E

— i.e. the ‘upward’ vertical direction represents progresime. A spe-
cial role is played by boxes with either no input or no outpaspectively
calledstatesandcostateqcf. Dirac’s kets and bras [22]) which we depict by
triangles. Finally, we also need to consider diamonds whiite by post-
composing a state with a matching costate (cf. inner-prodiubirac’s bra-

T v oA e-d

that is, algebraically,

Y:1— A m:A—1 moy:1—1



wherel is the tensor uniti.eA®I ~ A ~ I® A. Extra structure is represented
by (i) assigning a direction to the wires, where reversalhid tlirection is
denoted by — A*, (ii) allowing reversal of boxes (cf. thedjointfor vector
spaces), and, (iii) assuming that for each tyjpnere exists a special bipartite
Bell-stateand its adjoinBell-costate

g {a

A |A
A YA* f £ % %
L T

that is, algebraically,

A A f:A-B fl:B—=A na:1-A®A gl :A*0A-1

Hence, bras and kets are adjoint and the inner product hésrthé—)f o (—)
on states. The solxiomwe impose is:

Febet

that is, algebraically,

(N ®14) 0 (1a®na)=14.

If we extend the graphical notation of Bell-(co)states to:

A* A N
~ A* A
we obtain a clear graphical interpretation for the axiom:
A
A 1)

* Underlying this graphical presentation is the formal défini of a strongly compact closed
category: it is a symmetric monoidal category in which thieré) an involution A — A* on
objects, (ii) a strict identity-on-objects contravariambnoidal involutionf — fT, (i) a given
morphismn, : I — A*® A for each object4, such that the equivalent diagram to pict{t¢
commutes (which can be found in [7]). We assume moreoverahéie natural isomorphisms
of the structure arenitary, i.e.U o Ut = UT o U = 1. Examples of these categories can be
foundin [3, 6, 7].



which now tells us that we are allowedyankthe black line:

— we called this line thguantum information flod 6]. The intuitive graph-
ical calculus is an important benefit of the categorical mdtics. Other ad-
vantages can be found in [6, 2, 5].

4 QUANTUM NON-LOGIC VS. QUANTUM HYPER-LOGIC

The termquantum logids usually understood in connection with the 1936
Birkhoff-von Neumann proposal [13, 41] to consider the $eld) linear sub-
spaces of a Hilbert space ordered by inclusion as the formpaéssion of the
logical distinction between quantum and classical physiile in classi-
cal logic we have deduction, the linear subspaces of a Hikgace form a
non-distributive lattice and hence there is no obviousamtif implication or
deduction. Quantum logic was therefore always seen asdibhgicery weak,

or even a non-logic. In addition, it has never given a sattsfy account of
compound systems and entanglement.

On the other hand;ompact closed logim a sense goes beyond ordinary
logic in the principles it admits. Indeed, while in ordinargtegorical logic
“logical deduction” implies thamorphisms internalize as elemeigtghich
above we referred to above sinted i.e.

Iﬂ»BéC

B-1.¢

(wherel is the®-unit), in compact closed logithey internalizéothas states
andas costates i.e.

Bec- Y1 = p Lo = 1Y pec
where we introduce the following notation:

Tf1=(a-®f)ona:1— A*®B Lfi=nh.o(f®1p): A©B* — 1.

It is exactly this dual internalization which allows tlkanking axiorin pic-
ture(1) to be expressed. In the graphical calculus this is witnelsgéele fact
that we can define both a state and a costate
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for each operatiorf. Physically, costates form the (destructive partgody
jectors i.e. branches of projective measurements.

Compositionality. The semantics is obviously compositional, both with re-
spect to sequential composition of operations and paradieiposition of
types and operations, allowing the description of systenetbuilt up from
smaller components. But we also have something more speaifiarm of
compositionality with direct applications to the analysisompound entan-
gled systems. Since we have:

i.e. composition of operationsternalizesin the behavior of entangled states
and costates, and note in particular the interesting phenomof ‘apparant
reversal of the causal order’ which is the source of manyequigstical inter-
pretations of quantum teleportation in terms of ‘travelbagkward in time’
— cf. [35]. Indeed, while on the left, physically, we first pege the state
labeledg and then apply the costate labelgdthe global effect iss if we
first appliedf itself first, and only therg.

i
W

we obtain:

)

Derivation of quantum teleportation. This is the most basic application
of compositionality in action. Immediately from pictufg) we can read the



gquantum mechanical potential for teleportation:

I I £

Alice Bob Alice Bob Alice Bob

This is not quite the whole story, because of the non-detestic nature of
measurements. But it suffices to introduce a unitary cdmectsing picture
(3) the full description of teleportation becomes:

where theclassical communicatiois now implicit in the fact that the index
is both present in the costate (= measurement-branch) arabthection, and
hence needs to be send from Alice to Bob.

Related work. In [14] Braunstein, D'Adriano, Milburn and Sacchi extend
Dirac notation to obtain results similar to the composiility result ex-
pressed in pictur€3), in the concrete setting of Hilbert spaces. In [32] Louis
Kauffman relies on very similar topological ideas to dettlie teleportation
protocol. In [11] John Baez discusses structures closedagicompact clo-
sure and compares these to models of topological quantuirtiiebries.

5 CATEGORICAL ALGEBRA

A purely algebraic category-theoretic version of our pietstory is in [6],
where the ‘branching due to measurements’ is capturddgrgducts In this
approach, the right-hand side of the diagram

10



Q=—=-x=40
(1®mng)opao produce EPR-pair
Qe ®Q)

ASSOC spatial relocation

QREQ)®Q

( 1Q>i:11 <Lﬁu>22? ® 1g Bell-base measurement
(eizineQ

(@ij{x\él)o DIsT | classical communication

®Z1Q

1=4 n—1 . .
®i=18; unitary correction

BITIQ =———— 9iZiQ

gives acomplete description of the teleportation protgcs thesequence of
operations

i =4 P :
(1 ®mnq) o pg ; ASSOC; @@4)221 ®1g; (@ﬁ;‘f)\g)o DIST ; @ﬁ;‘fﬂg

where is the biproduct connective ar{é-) the correspondingairing op-
eration. In particular, the propagation of classical infation from Alice to
Bob on the outcome of the measurement is expresselishybutivity of the
tensor product over the biproduct:

DIST : (A; ® A2) & B — (A1 ® B) & (A @ B).

This then allows the dependence of the subsequent unitamyation on the
outcome of the measurement to be expressed directly in theafism, e.g.
by the further (quantum) action

1eU)) & (1 Us).

The left-hand side of the teleportation diagram expredseintended be-
havior, which is the identity in each of the four pictures, so tha tubit
is successfully transmitted in all cases, whatever theltre§the measure-
ment. In [6] we proved correctness, ithe diagram commutesising the

11



usual diagram-chasing methods of category theory. A sirdigivation of
Gottesman-Chuang logic-gate teleportation, both gratliyiand category-
theoretically, uses the full power ¢8) since in this case will be the tele-
ported gate. A logical approach to proving such facts, usimgnalization
of proof-netsis developed in [8]. An alternative axiomatization, whickes
coalgebraic structure instead of biproducts, was recel@igloped in [20].

6 FROM CUT-ELIMINATION TO KNOT THEORY VIA QUANTUM
MECHANICS

We shall also mention briefly some beautiful connectionscivlzire begin-
ning to emerge between our categorical approach to quantechanics and
quantum information, and work of the past two decades rej&not theory,
topological quantum field theory, and statistical phys&H [ A huge swathe
of mathematical developments linking all these fields andenveere initi-
ated by Vaughan Jones’ discovery of his new polynomial iiawverof knots
and links. Jones’ approach was algebraic; a central rolepleg®d by what
has come to be known as tlilemperley-Lieb algebra(The original work
of Temperley and Lieb was in discrete lattice models of stigdl physics.
In finding exact solutions for a certain class of systemsy treed identified
the same class of relations which Jones, quite indeperydémiind later in
his work). This was originally presented, rather forbidginin terms of ab-
stract generators and relations. It was recast in bedytégmentary and
conceptual terms by Louis Kauffman aplanar diagram algebra
Generators:

1 2 3 on 1 n
\) \)
1 2" 3 n’ 1’ n'
Uy Un—1
Relations:
\) \) \) \)
_ O = 0
T n N
N N
U1U2U1 = U1 U12 = 5U1

12



ne = AN

U,U3 = UsUs
We start with two parallel rows of dots. The general form of an element of
the algebra (actually of the basic multiplicative monoide &lgebra is then
constructed freely over this as the “monoid algebra”) isaoi#d by “joining
up the dots” in a planar fashion. Multiplicatiary is defined by identifying
the bottom row ofr with the top row ofy. In general loops may be formed
— these are “scalars”, which can float freely across thesedigjuepresented
symbolically bys above.

It should be clear that this diagram algebra is closely eel&b the graph-
ical calculus described above. In fact, it arises by takimpa-symmetric
version of the calculus (no crossings), with only one baggriferating” type
A, which is taken to be self-duald = A*. The “cups” and “caps” of the
Temperley-Lieb algebra correspond to the basic triandl#seagraphical cal-
culus.

How does this connect to knots? Again, a key conceptual lgggdue
to Kauffman, who saw how to recast the Jones polynomial imetgary
combinatorial form in terms of hisracket polynomialThe basic idea of the
bracket polynomial is expressed by the following equation:

O = (=) - X) D

Each over-crossing in a knot or link is evaluated to a weidsten of the two
possible planar smoothings. With suitable choices for tedficientsA and
B (as Laurent polynomials), this is invariant under the selcamd third Rei-
demeister moves. With an ingenious choice of normaliziotpfait becomes
invariant under the first Reidemeister move — and yields trees polyno-
mial! What this means algebraically is that the braid groap & represen-
tation in the Temperley-Lieb algebra — the above brackefuatimn shows
how the basic generators of the braid group are mapped iatde¢mperley-
Lieb algebra. Every knot arises as the closure of a braidintreiant arises
by mapping the open braid into the Temperley-Lieb algebnd, taking the
trace there.

Moreover, it turns out that this connection can itself cantgresting in-
formation between the Computer Science ideas and the ggoarat alge-
bra. Indeed, using Computer Science methods it is possildée/é the first

13



direct presentatiorfno quotients) of the Temperley-Lieb algebra, using log-
ical methods. In fact, the elements of the Temperley-Ligfelata are com-
pletely determined by the relations they induce on the “g@tsd planarity
can be characterized using only the ordering relations®twb rows of dots.
Moreover, the multiplication of the algebra can be descdrea form of Cut-
Elimination, using the methods developed in the “Geometrinteraction”
[26, 1, 3].

We give a brief indication of the ideas. A diagram joining upw of n
dots with a row ofm dots is formalized as a fixed-point free involution on
[n]°P <1 [m], where[n] is the linear order

1<2<---<n

and P < @ is the concatenation of linear orders. Planarity is captirethe
following axiom:

i<j<f(i) = i<[f(y)<fli).

Composition. Consider a may : [n] + [m] — [n] 4+ [m]. Each input lies
in either[n] or [m] (exclusive or), and similarly for the corresponding output
This leads to a decomposition éfinto four disjoint partial maps

frn+[n) — [n] frm : [n] — [m]
fmn : [m] — [n] fmm : Im] — [m]

so thatf can be recovered as the disjoint union of these four mapsislin
involution, then these maps will be partial involutions.

Now suppose we have maps [n]+ [m] — [n]+[m] andg : [m]+[p] —
[m] + [p]. We write the decompositions gfandg as above in matrix form:

= (Jom I = (o o
fm,n fm,m 9p,m Ip,p

The “Execution Formula”. We can view these maps bmary relationson
[n] + [m] and[m] + [p] respectively, and use relational algebra (unida S,

relational compositior?; S and reflexive transitive closurB*) to define a
new relation 6 on[n] + [p]. If we write

0 0
0 — ( n,n n,p>
9?7" 9?7?

14



so thatd is the disjoint union of these four components, then we céinelé
component-wise as follows:

o U fom; gmoms; (fm,m; gm,m)*; fmn
n = fn,m; (gm,m§fm,m)*§gm,p
9p,m; (fm,m? gm,m)*; fmn
Ipp Y Ip,ms Fmms (Gmms Fm,m)™s Gmop-

n

3 s 03

p,

DD DD DD

iS]

p,

Thus for exampld,, ,, specifies which dots in the top row will be joined up
after we multiply the two diagrams. This happesither if they were joined
up by f (the first term of the union}r if f joins theith dot in the top row to
some dotj; in the middle rowg joins j; to j» in the middle row, ..., and so
on until f joins j (k even) to a dot in the top row. The other components of
# can be read similarly.

This form of composition is standard in the Geometry of latgion liter-
ature, and arises in a canonical way in constructing thedoeepact closed
category from a traced monoidal category [29, 1].

Proposition 1 If f andg are planar, so ig.

Cycles. Givenf € P(n,m), g € P(m,p), we definex(f, g9) := fm,m; Gm,m-
Note thatx(f, )¢ = (gm.m; fm,m), and

X(f,9); x(£,9)° € Ly, x(f,9)5x(f,9) € L)

Thusx(f, g) is apartial bijection However, in general it is neither an invo-
lution, nor fixpoint-free. Theyclic elementsf x(f, g) are those elements of
[m] which lie in the intersection

x(f,9)" N 1y,

Thus ifi is a cyclic element, there is a ledst> 0 such thaty(f, ¢)* (i) = 1.
The correspondingycleis

{i, x(£,9)@), ..., x(f,9)" ' ()}

Distinct cycles are disjoint. We writ8( f, ¢) for the number of distinct cycles
of x(f,9)-

The Temperley-Lieb categoryTL. Givenf € P(n,m), g € P(m,p), we
write g ® f € P(n,p) for the planar map constructed as above.

15



The objects of the Temperley-Lieb category are the naturaibers. A
morphismn — m is a pair(s, f) wheres is a natural number (representing
the number of loops), anfl€ P(n, m) is a planar map. Finally, we define the
composition of morphisms iT'L. Given(s, f) : n — mand(¢, g) : m — p:

(t,g)o (s, f)=(s+t+2(f,9),90 f).

There seems some potential here for a non-trivial intesadietween ge-
ometrical and computational/logical ideas, at a founatidevel. Further
details will appear in a forthcoming paper [4].

7 CONCLUDING REMARKS

We see an exciting agenda for future research at the ineebfatsveen Com-
puter Science and Physics. This seems to be the right cdotexdidressing
many issues which are fundamental to future developmer@uantum In-
formation and Computation, such as:

Q. What are the precise structural relationships betweerllplism, entan-
glement and mixedness as quantum informatic resources?

Q. Which features of quantum mechanics account for differeinteompu-
tational and informatic power as compared to classical egatjpn?

Q. How do quantum and classical information interact with eaitter, and
with a spatio-temporal causal structure?

Q. Which quantum control features (e.g. iteration) are pdssihd what ad-
ditional computational power can they provide?

Q. What is the precise logical status and axiomatics of (N@i)lg and
(No-)Deleting, and more generally, of the quantum mectafidzmal-
ism as a whole?

The connections to geometry briefly sketched in the prevsegtion also
merit further investigation, and raise many interestisgés. Note firstly that
the Temperley-Lieb category can be characterized as teanfyre-symmetric
strongly compact closed category over a single, self-deiaégator 4 = A*).
(More precisely, the frepivotal category25] over one self-dual generator.)
This gives an immediate connection to our categorical aagrdimmatic ap-
proach to Quantum Mechanics. It also leads to a number afuiitrg ques-
tions:

16



If we take planarity as a constraint on Geometry of Intecagtiand
the corresponding logics we may interpret, what impact dioisshave
on expressiveness? For example, can we still representlgHtime
functions subject to this constraint?

We can ask the same kind of question with respect to Quantum In
formatics. it seems in practice that few naturally occigriuantum
protocols require the use of the symmetry maps. How much a@ihQu
tum Informatics can be done in the plane? What is the signifieaf
this constraint?

Beyond the planar world we habeaiding, which carries 3-dimensional
geometric information. Does this information have some pota-
tional significance? Some ideas in this direction have bepioeed
by Kauffman and Lomonaco [33], but no clear understandirgyyed
been achieved.

Beyond this, we have the general setting of TQFT (Topoldgiten-
tum Field Theories) [46, 10] and related notions. This maydbevant
to Quantum Informatic concerns in (at least) two ways:

1. A novel and promising paradigm @bpological Quantum Com-
putinghas recently been proposed [24].

2. As the issues arising frodistributed quantum computinguan-
tum security protocolgtc. are investigated, the interactions be-
tween quantum informatics and spatio-temporal structuitens
evitably need to be considered.

There are arich set of questions here, which will surely piefertile ground
for research involving both the Computer Science and Pegsimmunities.

8 ACKNOWLEDGMENTS

This work is supported by the EPSRC grant EP/C500032/1 Higrel Meth-
ods in Quantum Computation and Quantum Information.
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