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In this statement we provide some examples of transdisciplinary
journeys, from one field to another, and back. In particular,the
quantum informatic endeavor is not just a matter of feeding phys-
ical theory into the general field of natural computation, but also
one of using high-level methods developed in Computer Science
to improve on the quantum physical formalism itself, and the
understanding thereof. We highlight a seemingly contradictory
phenomenon: passing to an abstract, categorical quantum infor-
matic formalism leads directly to a simple and elegant graphical
formulation of quantum theory itself, which for example makes
the design of some important quantum informatic protocols com-
pletely transparent. It turns out that essentially all of the quan-
tum informatic machinery can be recovered from this graphical
calculus. But in turn, this graphical formalism provides a bridge
between methods of logic and computer science, and some of the
most exciting developments in the mathematics of the past two
decades: namely those arising from the Jones polynomial invari-
ant of knots and links, the Temperley-Lieb Algebra and related
structures.
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1 WHERE SCIENCES INTERACT

We are, respectively, a computer scientist interested in the logic and seman-
tics of computation, and a physicist interested in the foundations of quantum
mechanics. Currently we are pursuing what we consider to be avery fruitful
collaboration as members of the same Computer Science department. How
has this come about? It flows naturally from the fact that we are working in
a field of Computer Science where physical theory starts to play a key role,
that is,natural computation, with, of course,quantum computationas a spe-
cial case. But there is more. Our joint research isbothresearch on semantics
for distributed and hybrid non-von Neumann architectures,and on the ax-
iomatic foundations of physical theories. This dual character of our work
comes without any compromise, and proves to be very fruitful. Computer
Science hassomething more to offer to the other sciences than the computer.
In particular, in the mathematical and logical understanding of fundamen-
tal transdisciplinary scientific concepts such as interaction, concurrency and
causality, synchrony and asynchrony, compositional modelling and reason-
ing, open versus closed systems, qualitative versus quantitative reasoning,
operational methodologies, continuous versus discrete, hybrid systems and
more, Computer Science is far ahead of many other sciences, due in part to
the challenges arising from the amazing rapidity of the technology change
and development it is constantly being confronted with. Onecould claim that
computer scientists (maybe without realizing it) constitute anavant-gardefor
the sciences in terms of providing fresh paradigms and methods.

In our own recent work, we recast the standard mathematical framework
of quantum mechanics (which is essentially due to John von Neumann [45])
in terms of categorical semantics [6], using formal tools which were devel-
oped in Computer Science for analyzing linearity and resource sensitivity, the
geometry of interacting components, and the foundations ofconcurrency. At
the same time, this results in a graphical calculus, which wepresent in Sec-
tion 3. This calculus stands in a long line of work, with some pioneering
ideas by Penrose [38], and extensive developments by numerous category-
theorists, geometers and mathematical physicists, including Kelly, Laplaza,
Joyal, Street, Freyd, Yetter, and Turaev [34, 25, 28, 44, 30]. What is par-
ticularly novel and striking about our approach is that we have shown how
directly and fruitfully such a calculus can be applied to theformulation of
basic Quantum Mechanics itself, and how well this fits the needs of Quantum
Informatics.

But of course this is not a one-way street. Physical theoriesinspired by
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computational theories are much better tailored for Computer Science appli-
cations as compared to their low-level counterparts. For example, the current
tools available for developing quantum algorithms and protocols are deficient
on two main levels. Firstly, they are too low-level. Quantumalgorithms
are currently mainly described using the ‘network model’ corresponding to
circuits in classical computation. One finds a plethora of adhoc calculations
with ‘bras’ and ‘kets’, normalizing constants, matrices etc. The arguments for
the benefits of a high-level, conceptual approach to designing, programming
and reasoning about quantum computational systems are justas compelling
as for classical computation. At a more fundamental level, the von Neumann
formalism is actually insufficiently comprehensive for informatic purposes.
In describing a protocol such as quantum teleportation, or any quantum pro-
cess in which the outcome of a measurement is used to determine subsequent
actions, the von Neumann formalism does not capture the flow of information
from the classical or macroscopic level, where the results of measurements of
the quantum-mechanical system are recorded, back to the quantum level. This
flow, and the accompanying use of ‘classical information’, which plays a key
role in protocols such as teleportation, must therefore be handled informally.
As quantum protocols and computations grow more elaborate and complex,
this point is likely to prove of increasing importance. Our work yields a se-
mantics and logic which is appropriate for developing high-level tools for
quantum computation and information. It provides a candidate solution for

?
von Neumann quantum formalism

≃ high-level language

low-level language
.

Below we proceed as follows. In the next section we discuss the field of
Quantum Informatics as we see it. Then we introduce our graphical calculus,
which comes hand in hand with the categorical semantics. We demonstrate
the logical power of this calculus, and illustrate its potential by redesigning
the quantum teleportation protocol in an almost trivial fashion. Next, we
mention some emerging and very promising connections between these ideas
and some of the key themes of contemporary research at the interface between
mathematical physics and topology. In particular, we discuss connections
with the Jones polynomial invariant of knots, and the Temperley-Lieb algebra.
We conclude by suggesting some possible future developments.

2 THE NEED FOR HIGH-LEVEL QUANTUM INFORMATICS

The development of Quantum Informatics is both a matter ofnecessityand
one of manyopportunities:
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a. As the scale of the miniaturization of IT components reachesthe quan-
tum domain, taking quantum phenomena into account will become un-
avoidable.

b. On the other hand, the emerging field of Quantum Informatics has
brought new computational possibilities to light, some of which en-
danger current cryptographic encoding schemes, but some ofwhich at
the same time provide the corresponding remedy in terms of secure
quantum cryptographic and communication schemes.

Quantum Informatics emerged from the recognition that quantum phenom-
ena and “quantum weirdness”—Einstein’s “spooky action at adistance”—
should be seen not as abugbut as afeature. Some first fruits of this were the
BB84 and Ekert 91 public key distribution schemes, the Deutch-Jozsa, Shor
and Grover algorithms, the quantum teleportation protocoland several vari-
ants [36]. But while the attitude has changed, many of the methods remained
the same, and the manipulations of complex numbers, vectorsand matrices in
“computational bases” built fromkets|0〉 and|1〉 bear some comparison with
the acrobatics with bits and bytes in the early days of computer program-
ming. On the other hand, many important questions on QuantumInformatics
remain unanswered, and it is unlikely that the currentlow-levelmethods of
Quantum Informatics will provide the capabilities to answer them. For ex-
ample, new quantum computational models such as the measurement-based
one-way-modelof Briegel et al. [39] challenge the whole conception of whata
quantum computation fundamentallyis, and hence what its limits are. In par-
ticular, a deep and clear structural understanding of the algorithmic speed-up
and the informatic quantum-classical interaction has not yet been achieved.
Also, while logic has taken a prominent place in (non-quantum) Computer
Science, the quest for aquantum logichas (until very recently) been largely a
story of failure. Our (admittedly ambitious) ultimate intentions are:

1. To open up Quantum Informatics research to a wider community, as
compared to its current profile of being hard and completely inaccessi-
ble to the uninitiated. This requires anintuitive, simpleandeasily com-
municableformalism for Quantum Informatics, and hence for quantum
mechanics itself.

2. To turn Quantum Informatics research into asystematic discipline, which
can provide a sound basis forautomated design and development tools.
This requires a quantum formalism which admits analogues tothe cur-
rently availablehigh-level methodsfrom Computer Science such as
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types, semantically well-founded calculi, program logicsetc.

3. To blend Quantum Informatics research with the currently available
and successful high-level methods for dealing withdistributed, hybrid
andembedded systems. This requires compatibility of the high-level
quantum concepts with their classical counterparts.

Addressing these challenges requires new insights into thestructure of quan-
tum information, of its flow, and of its interaction with other computational
resources such as classical information flow, space, time, agents, knowl-
edge/belief etc. Our work in [6] initiated a new kind of answer to the question:

• What is the structure of quantum mechanics?

This forms the basis of an ongoing research programme [5].

3 CONCRETE PICTURES FROM ABSTRACT CATEGORIES

We have benefited from the currently available categorical semantics for Gi-
rard’s linear logic [42], a resource sensitive logic developed in the late eight-
ies. A key distinction between classical and quantum computation is indeed
the inability to copy and delete unknown quantum states [37,47], and the
ability to take such an inability into account was exactly the conceptual core
of linear logic. At a more refined level, we also relied on the study of a par-
ticular categorical structure calledcompact closed categories[34] which had
initially been introduced for purely mathematical reasons— but which had
subsequently been found useful by one of us for modelling (classical) concur-
rent computation [9]. Surprisingly, afterrefiningcompact closure tostrong
compact closure[6, 7], we were able to recover the key quantum mechani-
cal notions ofinner-product, unitarity, full and partial trace, Hilbert-Schmidt
inner-product and map-state duality, projection, positivity, measurement, and
Born rule (which provides the quantumprobabilities), axiomatically at this
high level of abstraction and generality. Moreover, we wereable to derive the
correctness of protocols such as quantum teleportation, entanglement swap-
ping and logic-gate teleportation [12, 27, 48] in a transparent and very con-
ceptual fashion. Also, while at this level of abstraction there is no underlying
field of complex numbers, thereis still an intrinsic notion of ‘scalar’, and we
could still make sense oftransposition vs. adjoint[6, 7], global phase and
elimination thereof, vectorial vs. projective formalism[17]. Peter Selinger
recoveredmixed state, complete positivityandJamiolkowski map-state dual-
ity [43]. Recently, in collaboration with Dusko Pavlovic and Eric Paquette,
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decoherence, generalized measurementsandNaimark’s theoremhave been
recovered [20, 19], and Ross Duncan has exposed some foundational struc-
tures forMeasurement-Based quantum computation[23] — cf. [39, 40, 21].

This high-level ofabstractionalso comes with an intuitive and simple
graphical calculus/notation. This “strongly compact closed graphical cal-
culus” can be seen as a very substantial 2-dimensional extension of Dirac’s
bra-ketnotation [22], and relying on category-theoretic results on free con-
structions of these categories [3, 28, 34, 43] one can show that an equational
statement is derivable in the graphical calculus if and onlyif it is derivable
from categorical algebra. An informal introduction to thiscalculus is pro-
vided in [15, 16, 18].

In the graphical calculus we depict physical processes by boxes, and we
label the inputs and outputs of these boxes bytypeswhich tell on which kind
of system these boxes act cf. one qubit, several qubits, classical data etc.
Sequential composition (in time) is depicted by connectingmatching outputs
and inputs by wires, and parallel composition (tensor) by locating entities side
by side e.g.

1A : A→ A f : A→ B g◦f 1A⊗1B f⊗1C f⊗g (f⊗g)◦h

for g : B → C andh : E → A⊗B are respectively depicted as:

f
B

A

g
C

f
B

B

g
f
B

A

C

A

f
B

A

E

h
A

C

A B f
B

B

g
C

A

— i.e. the ‘upward’ vertical direction represents progressof time. A spe-
cial role is played by boxes with either no input or no output,respectively
calledstatesandcostates(cf. Dirac’s kets and bras [22]) which we depict by
triangles. Finally, we also need to consider diamonds whicharise by post-
composing a state with a matching costate (cf. inner-product or Dirac’s bra-
ket):

ψ
A

A

π
ψ

A
π

π ψo

=

that is, algebraically,

ψ : I→ A π : A→ I π ◦ ψ : I→ I
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whereI is the tensor unit i.e.A⊗I ≃ A ≃ I⊗A. Extra structure is represented
by (i) assigning a direction to the wires, where reversal of this direction is
denoted byA 7→ A∗, (ii) allowing reversal of boxes (cf. theadjoint for vector
spaces), and, (iii) assuming that for each typeA there exists a special bipartite
Bell-stateand its adjointBell-costate:

fA A* f
A

A

B

B
A

A

A*

A*

†

that is, algebraically,

A A∗ f : A→ B f † : B → A ηA : I→ A∗⊗A η
†
A : A∗⊗A→ I.

Hence, bras and kets are adjoint and the inner product has theform (−)† ◦ (−)

on states. The soleaxiomwe impose is:

A AA* = A

that is, algebraically,

(η†A∗ ⊗ 1A) ◦ (1A ⊗ ηA) = 1A .

If we extend the graphical notation of Bell-(co)states to:

A

A

A*

A*

we obtain a clear graphical interpretation for the axiom:⋆

=
(1)

⋆ Underlying this graphical presentation is the formal definition of a strongly compact closed
category: it is a symmetric monoidal category in which thereis (i) an involutionA 7→ A∗ on
objects, (ii) a strict identity-on-objects contravariantmonoidal involutionf 7→ f†, (iii) a given
morphismηA : I → A∗

⊗ A for each objectA, such that the equivalent diagram to picture(1)
commutes (which can be found in [7]). We assume moreover thatall the natural isomorphisms
of the structure areunitary, i.e. U ◦ U†

= U† ◦ U = 1. Examples of these categories can be
found in [3, 6, 7].
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which now tells us that we are allowed toyankthe black line:

=

— we called this line thequantum information flow[16]. The intuitive graph-
ical calculus is an important benefit of the categorical axiomatics. Other ad-
vantages can be found in [6, 2, 5].

4 QUANTUM NON-LOGIC VS. QUANTUM HYPER-LOGIC

The termquantum logicis usually understood in connection with the 1936
Birkhoff-von Neumann proposal [13, 41] to consider the (closed) linear sub-
spaces of a Hilbert space ordered by inclusion as the formal expression of the
logical distinction between quantum and classical physics. While in classi-
cal logic we have deduction, the linear subspaces of a Hilbert space form a
non-distributive lattice and hence there is no obvious notion of implication or
deduction. Quantum logic was therefore always seen as logically very weak,
or even a non-logic. In addition, it has never given a satisfactory account of
compound systems and entanglement.

On the other hand,compact closed logicin a sense goes beyond ordinary
logic in the principles it admits. Indeed, while in ordinarycategorical logic
“logical deduction” implies thatmorphisms internalize as elements(which
above we referred to above asstates) i.e.

B
f
- C

≃
←→ I

⌈f⌉
- B⇒C

(whereI is the⊗-unit), in compact closed logicthey internalizebothas states
andas costates i.e.

B ⊗ C∗ ⌊f⌋
- I

≃
←→ B

f
- C

≃
←→ I

⌈f⌉
- B∗⊗ C

where we introduce the following notation:

pfq = (1A∗⊗f)◦ηA : I→ A∗⊗B xfy = η
†
B∗ ◦(f⊗1B∗) : A⊗B∗ → I .

It is exactly this dual internalization which allows theyanking axiomin pic-
ture(1) to be expressed. In the graphical calculus this is witnessedby the fact
that we can define both a state and a costate
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=: f =:

fff

(2)

for each operationf . Physically, costates form the (destructive parts of)pro-
jectors, i.e. branches of projective measurements.

Compositionality. The semantics is obviously compositional, both with re-
spect to sequential composition of operations and parallelcomposition of
types and operations, allowing the description of systems to be built up from
smaller components. But we also have something more specific: a form of
compositionality with direct applications to the analysisof compound entan-
gled systems. Since we have:

=f

g

= f

g

f

g

=

f

g

we obtain:

f

g

=

f

g

(3)

i.e. composition of operationsinternalizesin the behavior of entangled states
and costates, and note in particular the interesting phenomenon of ‘apparant
reversal of the causal order’ which is the source of many quite mystical inter-
pretations of quantum teleportation in terms of ‘travelingbackward in time’
— cf. [35]. Indeed, while on the left, physically, we first prepare the state
labeledg and then apply the costate labeledf , the global effect isas if we
first appliedf itself first, and only theng.

Derivation of quantum teleportation. This is the most basic application
of compositionality in action. Immediately from picture(1) we can read the
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quantum mechanical potential for teleportation:

Alice Bob

=
ψ ψ

Alice Bob Alice Bob

= ψ

This is not quite the whole story, because of the non-deterministic nature of
measurements. But it suffices to introduce a unitary correction. Using picture
(3) the full description of teleportation becomes:

f

=

fi i

fi
-1

fi
-1 =

where theclassical communicationis now implicit in the fact that the indexi
is both present in the costate (= measurement-branch) and the correction, and
hence needs to be send from Alice to Bob.

Related work. In [14] Braunstein, D’Adriano, Milburn and Sacchi extend
Dirac notation to obtain results similar to the compositionality result ex-
pressed in picture(3), in the concrete setting of Hilbert spaces. In [32] Louis
Kauffman relies on very similar topological ideas to derivethe teleportation
protocol. In [11] John Baez discusses structures close to strong compact clo-
sure and compares these to models of topological quantum field theories.

5 CATEGORICAL ALGEBRA

A purely algebraic category-theoretic version of our picture story is in [6],
where the ‘branching due to measurements’ is captured bybiproducts. In this
approach, the right-hand side of the diagram
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Q =============== Q

produce EPR-pair

Q ⊗ (Q∗⊗ Q)

(1 ⊗ ηQ) ◦ ρQ

?

spatial relocation

(Q ⊗ Q
∗) ⊗ Q

ASSOC

?

Bell-base measurement

“

⊕
i=4

i=1
I
”

⊗ Q

˙

xβiy
¸i=4

i=1
⊗ 1Q

?

classical communication

⊕i=4

i=1
Q

(⊕i=4

i=1
λ
−1

Q
)◦ DIST

?

unitary correction

⊕i=4

i=1
Q

〈 1Q〉i=4

i=1

?

=========== ⊕i=4

i=1
Q

⊕i=4

i=1
β
−1

i

?

gives acomplete description of the teleportation protocol, as thesequence of
operations:

(1⊗ ηQ) ◦ ρQ ; ASSOC ;
〈

xβiy
〉i=4

i=1
⊗ 1Q ; (⊕i=4

i=1λ
†
Q)◦ DIST ;⊕i=4

i=1β
†
i

where⊕ is the biproduct connective and〈−〉 the correspondingpairing op-
eration. In particular, the propagation of classical information from Alice to
Bob on the outcome of the measurement is expressed bydistributivity of the
tensor product over the biproduct:

DIST : (A1 ⊗A2)⊕B
∼=
- (A1 ⊗B)⊕ (A2 ⊗B) .

This then allows the dependence of the subsequent unitary correction on the
outcome of the measurement to be expressed directly in the formalism, e.g.
by the further (quantum) action

(1⊗ U1)⊕ (1 ⊗ U2).

The left-hand side of the teleportation diagram expresses the intended be-
havior, which is the identity in each of the four pictures, so that the qubit
is successfully transmitted in all cases, whatever the result of the measure-
ment. In [6] we proved correctness, i.e.the diagram commutes, using the
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usual diagram-chasing methods of category theory. A similar derivation of
Gottesman-Chuang logic-gate teleportation, both graphically and category-
theoretically, uses the full power of(3) since in this caseg will be the tele-
ported gate. A logical approach to proving such facts, usingnormalization
of proof-nets, is developed in [8]. An alternative axiomatization, whichuses
coalgebraic structure instead of biproducts, was recentlydeveloped in [20].

6 FROM CUT-ELIMINATION TO KNOT THEORY VIA QUANTUM
MECHANICS

We shall also mention briefly some beautiful connections which are begin-
ning to emerge between our categorical approach to quantum mechanics and
quantum information, and work of the past two decades relating knot theory,
topological quantum field theory, and statistical physics [31]. A huge swathe
of mathematical developments linking all these fields and more were initi-
ated by Vaughan Jones’ discovery of his new polynomial invariant of knots
and links. Jones’ approach was algebraic; a central role wasplayed by what
has come to be known as theTemperley-Lieb algebra. (The original work
of Temperley and Lieb was in discrete lattice models of statistical physics.
In finding exact solutions for a certain class of systems, they had identified
the same class of relations which Jones, quite independently, found later in
his work). This was originally presented, rather forbiddingly, in terms of ab-
stract generators and relations. It was recast in beautifully elementary and
conceptual terms by Louis Kauffman as aplanar diagram algebra.

Generators:

· · ·

· · ·

1 2 3 n

1′ 2′ 3′ n′

U1

· · ·

· · ·

· · ·

1 n

1′ n′

Un−1

Relations:

=

U1U2U1 = U1

=

U2
1 = δU1
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=

U1U3 = U3U1

We start with two parallel rows ofn dots. The general form of an element of
the algebra (actually of the basic multiplicative monoid: the algebra is then
constructed freely over this as the “monoid algebra”) is obtained by “joining
up the dots” in a planar fashion. Multiplicationxy is defined by identifying
the bottom row ofx with the top row ofy. In general loops may be formed
— these are “scalars”, which can float freely across these figures, represented
symbolically byδ above.

It should be clear that this diagram algebra is closely related to the graph-
ical calculus described above. In fact, it arises by taking anon-symmetric
version of the calculus (no crossings), with only one basic “generating” type
A, which is taken to be self-dual:A = A∗. The “cups” and “caps” of the
Temperley-Lieb algebra correspond to the basic triangles of the graphical cal-
culus.

How does this connect to knots? Again, a key conceptual insight is due
to Kauffman, who saw how to recast the Jones polynomial in elementary
combinatorial form in terms of hisbracket polynomial. The basic idea of the
bracket polynomial is expressed by the following equation:

= +A B

Each over-crossing in a knot or link is evaluated to a weighted sum of the two
possible planar smoothings. With suitable choices for the coefficientsA and
B (as Laurent polynomials), this is invariant under the second and third Rei-
demeister moves. With an ingenious choice of normalizing factor, it becomes
invariant under the first Reidemeister move — and yields the Jones polyno-
mial! What this means algebraically is that the braid group has a represen-
tation in the Temperley-Lieb algebra — the above bracket evaluation shows
how the basic generators of the braid group are mapped into the Temperley-
Lieb algebra. Every knot arises as the closure of a braid; theinvariant arises
by mapping the open braid into the Temperley-Lieb algebra, and taking the
trace there.

Moreover, it turns out that this connection can itself carryinteresting in-
formation between the Computer Science ideas and the geometry and alge-
bra. Indeed, using Computer Science methods it is possible to give the first
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direct presentation(no quotients) of the Temperley-Lieb algebra, using log-
ical methods. In fact, the elements of the Temperley-Lieb algebra are com-
pletely determined by the relations they induce on the “dots”; and planarity
can be characterized using only the ordering relations on the two rows of dots.
Moreover, the multiplication of the algebra can be described as a form of Cut-
Elimination, using the methods developed in the “Geometry of Interaction”
[26, 1, 3].

We give a brief indication of the ideas. A diagram joining up arow of n
dots with a row ofm dots is formalized as a fixed-point free involution on
[n]op

� [m], where[n] is the linear order

1 < 2 < · · · < n

andP �Q is the concatenation of linear orders. Planarity is captured by the
following axiom:

i < j < f(i) ⇒ i < f(j) < f(i).

Composition. Consider a mapf : [n] + [m] −→ [n] + [m]. Each input lies
in either[n] or [m] (exclusive or), and similarly for the corresponding output.
This leads to a decomposition off into fourdisjoint partial maps:

fn,n : [n] −→ [n] fn,m : [n] −→ [m]

fm,n : [m] −→ [n] fm,m : [m] −→ [m]

so thatf can be recovered as the disjoint union of these four maps. Iff is an
involution, then these maps will be partial involutions.

Now suppose we have mapsf : [n]+[m]→ [n]+[m] andg : [m]+[p]→

[m] + [p]. We write the decompositions off andg as above in matrix form:

f =

(

fn,n fn,m

fm,n fm,m

)

g =

(

gm,m gm,p

gp,m gp,p

)

The “Execution Formula”. We can view these maps asbinary relationson
[n] + [m] and[m] + [p] respectively, and use relational algebra (unionR∪S,
relational compositionR;S and reflexive transitive closureR∗) to define a
new relation θ on [n] + [p]. If we write

θ =

(

θn,n θn,p

θp,n θp,p

)
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so thatθ is the disjoint union of these four components, then we can define it
component-wise as follows:

θn,n = fn,n ∪ fn,m; gm,m; (fm,m; gm,m)∗; fm,n

θn,p = fn,m; (gm,m; fm,m)∗; gm,p

θp,n = gp,m; (fm,m; gm,m)∗; fm,n

θp,p = gp,p ∪ gp,m; fm,m; (gm,m; fm,m)∗; gm,p.

Thus for exampleθn,n specifies which dots in the top row will be joined up
after we multiply the two diagrams. This happenseither if they were joined
up byf (the first term of the union),or if f joins theith dot in the top row to
some dotj1 in the middle row,g joins j1 to j2 in the middle row, . . . , and so
on untilf joins jk (k even) to a dot in the top row. The other components of
θ can be read similarly.

This form of composition is standard in the Geometry of Interaction liter-
ature, and arises in a canonical way in constructing the freecompact closed
category from a traced monoidal category [29, 1].

Proposition 1 If f andg are planar, so isθ.

Cycles. Givenf ∈ P(n,m), g ∈ P(m, p), we defineχ(f, g) := fm,m; gm,m.
Note thatχ(f, g)c = (gm,m; fm,m), and

χ(f, g);χ(f, g)c ⊆ 1[m], χ(f, g)c;χ(f, g) ⊆ 1[m].

Thusχ(f, g) is apartial bijection. However, in general it is neither an invo-
lution, nor fixpoint-free. Thecyclic elementsof χ(f, g) are those elements of
[m] which lie in the intersection

χ(f, g)+ ∩ 1[m].

Thus if i is a cyclic element, there is a leastk > 0 such thatχ(f, g)k(i) = i.
The correspondingcycleis

{i, χ(f, g)(i), . . . , χ(f, g)k−1(i)}.

Distinct cycles are disjoint. We writeZ(f, g) for the number of distinct cycles
of χ(f, g).

The Temperley-Lieb categoryTL. Givenf ∈ P(n,m), g ∈ P(m, p), we
write g ⊙ f ∈ P(n, p) for the planar map constructed as above.
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The objects of the Temperley-Lieb category are the natural numbers. A
morphismn → m is a pair(s, f) wheres is a natural number (representing
the number of loops), andf ∈ P(n,m) is a planar map. Finally, we define the
composition of morphisms inTL. Given(s, f) : n→ m and(t, g) : m→ p:

(t, g) ◦ (s, f) = (s+ t+ Z(f, g), g ⊙ f).

There seems some potential here for a non-trivial interaction between ge-
ometrical and computational/logical ideas, at a foundational level. Further
details will appear in a forthcoming paper [4].

7 CONCLUDING REMARKS

We see an exciting agenda for future research at the interface between Com-
puter Science and Physics. This seems to be the right contextfor addressing
many issues which are fundamental to future developments inQuantum In-
formation and Computation, such as:

Q. What are the precise structural relationships between parallelism, entan-
glement and mixedness as quantum informatic resources?

Q. Which features of quantum mechanics account for differences in compu-
tational and informatic power as compared to classical computation?

Q. How do quantum and classical information interact with eachother, and
with a spatio-temporal causal structure?

Q. Which quantum control features (e.g. iteration) are possible and what ad-
ditional computational power can they provide?

Q. What is the precise logical status and axiomatics of (No-)Cloning and
(No-)Deleting, and more generally, of the quantum mechanical formal-
ism as a whole?

The connections to geometry briefly sketched in the previoussection also
merit further investigation, and raise many interesting issues. Note firstly that
the Temperley-Lieb category can be characterized as the free non-symmetric
strongly compact closed category over a single, self-dual generator (A = A∗).
(More precisely, the freepivotal category[25] over one self-dual generator.)
This gives an immediate connection to our categorical and diagrammatic ap-
proach to Quantum Mechanics. It also leads to a number of intriguing ques-
tions:
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• If we take planarity as a constraint on Geometry of Interaction, and
the corresponding logics we may interpret, what impact doesthis have
on expressiveness? For example, can we still represent all poly-time
functions subject to this constraint?

• We can ask the same kind of question with respect to Quantum In-
formatics. it seems in practice that few naturally occurring quantum
protocols require the use of the symmetry maps. How much of Quan-
tum Informatics can be done in the plane? What is the significance of
this constraint?

• Beyond the planar world we havebraiding, which carries 3-dimensional
geometric information. Does this information have some computa-
tional significance? Some ideas in this direction have been explored
by Kauffman and Lomonaco [33], but no clear understanding has yet
been achieved.

• Beyond this, we have the general setting of TQFT (Topological Quan-
tum Field Theories) [46, 10] and related notions. This may berelevant
to Quantum Informatic concerns in (at least) two ways:

1. A novel and promising paradigm ofTopological Quantum Com-
putinghas recently been proposed [24].

2. As the issues arising fromdistributed quantum computing, quan-
tum security protocolsetc. are investigated, the interactions be-
tween quantum informatics and spatio-temporal structure will in-
evitably need to be considered.

There are a rich set of questions here, which will surely provide fertile ground
for research involving both the Computer Science and Physics communities.†
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