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Abstract

Building on existing compositional distributional models of meaning [12, 47],
we present an adaptation of the Integrated Connectionist/Symbolic Archi-
tecture (ICS) introduced in [52]. In particular, we build a novel compositional
distributional model of cognition (DISCOG) that resolves representational is-
sues in ICS via mapping of same-type symbolic structures to a finite shared
meaning space. In addition, we further improve on ICS by means of an impor-
tant extension to genuine meaning vectors. What’s more, we give a functional
account of harmony in DISCOG derived from our categorical setting.
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The mind is like an iceberg, it floats with one-seventh
of its bulk above water.

— Sigmund Freud

1
∣∣∣∣ Introduction

Attempts to understand the mind and its operation date back to Ancient Times.
According to Plato, the mind is independent of the body and belongs to the world
of Forms1. Plato’s belief that the mind is separate from the body provides an expla-
nation for the nature of human knowledge: in view of being aspatial and atemporal,
the mind can experience true reality, and therefore access universal truths [45]. For
Aristotle, the mind is a property of the body, but intellect is unique, i.e. aspatial,
because the bounds of human consciousness are not restricted in the same sense
that human faculties of perception are [2]. Since the early days of philosophical
thought, thinkers have failed to agree on a theory of the mind, and the debate
continues today. At present, the study of the mind has become the purview of
not only philosophers, but also psychologists, neuroscientists, anthropologists, lin-
guists, and computer scientists. Cognitive science is the interdisciplinary scientific
investigation of the mind and its processes. The central tenet of cognitive science
is that ‘thinking’ can best be understood in terms of representational structures in
the mind and computational procedures that operate on those structures. There is
much dispute regarding the nature of the representations and computations that
constitute ‘thinking’. That being said, most work in cognitive science assumes that
representations in the mind are analogous to computer data structures, and com-
putational procedures in the mind are similar to computational algorithms. As
such, cognitive science boils down to the task of answering one question: What
type of computer is the human mind/brain?

1Forms are non-material abstract ideas, existing neither in space nor time, that realize genuine
knowledge.

1
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1.1 Background

In the cognitive science community, there are two competing approaches to the
computational modelling of the mind: connectionist and combinatorial. The connec-
tionist, i.e. distributional, approach models the mind/brain as a massively parallel
computer consisting of billions of basic processing units, i.e. neurons. Each unit
has an activation level and is linked to other units by way of weighted connec-
tions. The activation value of an unit is a simple function of the activation values
of neighboring units and the corresponding connection weights. Learning is the
determination of correct weights via statistical analysis of experience. The frame-
work used to manipulate these structures is the mathematics of vector and matrix
algebra. The combinatorial, i.e. symbolic or compositional, strategy is to treat the
mind/brain as a serial device that manipulates discrete structures consisting of
abstract symbols to compute recursive functions.2 A fundamental theoretical ques-
tion in cognitive science is: Can the connectionist and combinatorial approaches be
integrated in a useful and meaningful fashion?

Traditional thought supports the position that the connectionist and combina-
torial approaches are orthogonal. While the former presents the mind/brain as a
noisy, massively parallel numerical computer, the latter depicts the mind/brain as
a well-organized, rule-governed processor of discrete symbolic structures. How-
ever, recent developments in cognitive science suggest that there is some middle
ground on which we can view the mind/brain as a matter of both parallel dis-
tributed processing architecture and symbolic architecture.

[52] proposes a novel solution to unify the connectionist and symbolic architec-
tures. The new architecture is called the Integrated Connectionist/Symbolic Archi-
tecture (ICS). What distinguishes ICS from other computational models of mind is
an account of two methods of decomposing representations corresponding to two
different levels of structure: one is functionally relevant, the other process-relevant.
In this split-level architecture, connectionist and symbolic computational descrip-
tions each play an essential role in overall cognitive explanation.

At the functional level, the relevant decomposition of representations is into
constituents, just as in symbolic theory. Representations are associated in the way
the combinatorial strategy requires, and this is what provides the explanation of
cognitive productivity3. The decomposition of representations into constituents is

2The principle of compositionality states that the meaning of a complex expression is deter-
mined by the meaning of its parts and the rules used for combining them.

3Cognitive productivity refers to our ability to process an unbounded number of distinct inputs.
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also what specifies the meaning of representations.
However, at the process level, the relationships among representations are not

established in a serial, constituent-by-constituent process, as required by the com-
binatorial strategy. There is no step-by-step algorithm defined over constituents
that describes the moment-by-moment mechanisms underlying cognition. The
latter requires algorithms that are defined via the process-relevant decomposition
which decomposes a representation not into its constituents, but into its activation
values. The dynamics of cognition must be characterized by connectionist algo-
rithms.

What makes ICS possible is the discovery that there is a formal equivalence or
isomorphism between constituent decomposition in symbolic representations and
in vectorial representations. This isomorphism is codified in tensor product represen-
tations. In ICS, a crucial transformation occurs between higher and lower sublevels
of the computational level: the higher sublevel aligns with symbolic constituents,
the lower sublevel aligns with individual neurons. ICS provides a fully formal
reduction, as required by a computational theory: a formal mapping from sym-
bolic structures to activity vectors, another formal mapping from activity vectors
to individual unit activity values, and finally (in principle) a formal mapping from
unit activities to neural activities. Hence, ICS reduces abstract cognitive functions
to elementary operations that fall within the computational capabilities of neural
networks, i.e. linear associators:

o = W · i (1.1)

An understanding of how cognition can arise in a brain is of great philosophical
and practical importance. Knowledge of the primitive operations made available
by a brain, to which complex cognitive functions must be reduced by computa-
tional theories, constitutes a significant advancement in cognitive science that is of
interest to areas of application in artificial intelligence, such as natural language
processing (NLP), computer vision, and robotics, to name but a few.

1.2 Motivation

The design of ICS is a promising and exciting development in the computational
modelling of the mind. The tensor product representations used in [52] for com-
bining connectionist and symbolic representations extend to any structure that can
be represented in terms of filler/role bindings (more on this later). However, the
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tensor product representations do admit some weaknesses. Firstly, the represen-
tational space for a concept grows in size as more elements are added to the com-
pound. This means that compounds can become unwieldy since concepts exist
in an unbounded representational space. Secondly, it is only possible to com-
pare symbolic representations of the same type, where type here refers to the tuple
of compositional relations obtained by traversing the symbolic structure in some
canonical order. This means that in a NLP task, for instance, the symbolic rep-
resentations (e.g. a parse tree, a dependency graph, a set of predicate argument
relations, etc.) of Comedians tell jokes and Comedians tell funny jokes cannot be com-
pared at the sentence level.

S

VP

NP

jokes

Vt

tell

NP

Comedians

S

VP

NP

NP

jokes

Adj

funny

Vt

tell

NP

Comedians

Figure 1.1: Example parse trees

[8] introduces the compositional distributional (DISCO) model of semantics,
which represents the meaning of words as vectors and uses the tensor product to
combine words and their grammatical roles in sentences. The suggestion is that the
limitations of the tensor product representations can be overcome by using a more
abstract representation. The mathematical theory of quantum mechanics (QM)
is based on Hilbert spaces, and composite systems in QM, formed by interacting
quantum-mechanical systems, are realized using tensor products. The objects in
which [8] situates representations is Hilbert spaces. Moreover, the operator pro-
posed for combining representations is the tensor product, as suggested in [52].
This link indicates that ICS which uses vector spaces may benefit from borrowing
more from the well-developed mathematical theory of QM.

QM inspired models of meaning view concepts as subspaces of a vector space.
Similarity of one concept to another is measured by the projection of one concept
onto another. [7, 12] develop the DISCO model by utilising grammar in order to
use composite spaces without increase in size of the resulting meaning space. The
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meaning of a composite concept arises from the meaning of its constituents me-
diated by grammar, i.e. by accounting for the interaction of its constituents via
their relational roles. This allows composite concepts to be directly compared with
their constituents, and the meaning of sentences of varying length and type to be
compared. What’s more, the DISCO model of semantics provides natural expla-
nations for qualitative phenomena, such as the ‘Pet Fish’ phenomenon [36], which
constitutes important progress in characterizing human concept use.

The DISCO account of semantics unifies compositional descriptions of seman-
tics, where the meaning of a sentence is seen as a function of the meanings of the
individual words of the sentence4, and distributional descriptions of semantics,
where the meaning of individual words are characterized as vectors5.

Syntactic Analysis Semantic Interpretation
S→ NP VP VP(NP)

NP→ Adj NP Adj(NP)
NP→ comedians, jokes, book, etc. comedians, etc.
Adj→ funny, loud, bright, etc. λx. f unny(x), etc.

VP→ Vt NP Vt(NP)
Vt→ tell, bring, make, etc. λy.λx.tell(x, y), etc.

Table 1.1: A simple compositional semantic model

comedian

joke

improv

funny stand-up

ac
to

r

Figure 1.2: A simple distributional semantic model

4Montague’s central assertion captures the spirit of the model-theoretic approach to semantics:
“I reject the contention that an important theoretical difference exists between formal and natural
languages” [40].

5Firth’s famous dictum neatly expresses the idea behind the distributional hypothesis: “You
shall know a word by the company it keeps” [15].
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The compositional and distributional descriptions are linked by the fact that
they share the common structure of a compact closed category. This enables the com-
positional rules of the (pregroup) grammar to be applied in the vector space model
to map syntactically well-formed strings of words into one shared meaning space.
The mathematical structure employed admits a purely diagrammatic calculus (i.e.
string diagrams) which exposes information flow between constituents.

n nr s nl n

Comedians tell jokes

Figure 1.3: Example pregroup parse

N N S N N

Comedians tell jokes

Figure 1.4: Example string diagram

Our proposal is that the interaction of QM and ICS is a fruitful area of research
for cognitive science. The power of ICS derives from the novel aspects of the ar-
chitecture: connectionist computation is made more powerful in order to meet the
strong constraint that it serve as the lower-level platform for what emerges as sym-
bolic computation at a higher level of description, and symbolic theory is enriched
because the symbolic level emerges from a lower-level connectionist substrate. Of
particular interest are connectionist computational properties which percolate up
to the symbolic level, enriching it with novel concepts, much like the manner by
which, in physics, gas – a continuous, extended system defined by properties like
volume, pressure, temperature, and entropy – is a higher-level description of a sys-
tem that on a lower level is described as a collection of discrete, point-like atoms
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individually possessing none of these properties but others instead, such as ve-
locity. The central such property addressed in [52] is optimization. Connection-
ist computation often computes representations that optimize well-formedness or
harmony. Optimization turns out to provide many novel conceptual and technical
tools for formally characterizing the nature of knowledge. We set out to build a
concrete QM model of ICS based on the DISCO framework (DISCOG) and recover
this fundamental notion of harmony.

N ⊗ N

Wtell

S

f

Figure 1.5: Example filler/role binding in DISCOG

1.3 Scope and Contribution

In this thesis, we present an adaptation of ICS derived from the DISCO model
of semantics. Our new model of cognition, DISCOG, solves the representational
problems of ICS via mapping of same-type symbolic structures to a finite shared
meaning space. Furthermore, in that DISCOG works with authentic meaning vec-
tors in contrast to generic ones as in ICS, our model improves on ICS by means of
an important extension to genuine meaning representations. We achieve these re-
sults by reformulating the DISCO model of semantics as the recursive realization
of filler/role bindings which allows us to give a connectionist account of com-
positional distributional information flow. In addition, we provide simple algo-
rithms to construct linear associators characterizing these primitive compositional
operations. We then discuss the problem of unbinding (fillers from roles) and put
forward a provisional solution based on the Moore-Penrose pseudo inverse. This
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allows us to demonstrate how massively parallel distributed processing at the con-
nectionist level realizes arbitrarily complex (recursive) functions at the symbolic
level. Lastly, we give a functional account of harmony in DISCOG extracted from
our categorical setting.

1.4 Structure

Here, we outline the structure of this work. We begin with an extensive presen-
tation of the ICS model introduced in [52] (Harmonic Mind). Next, we give an
overview of the DISCO model of semantics [12] and a relevant extension concern-
ing Frobenius algebra [47] (Compositional Distributional Model of Semantics).
We then present our entirely new model of cognition, DISCOG (Compositional
Distributional Cognition). We end with a brief recap of our results and some
suggestions for further investigations (Conclusion and Future Work).



When you come to a fork in the road, take it.
— Yogi Berra

2
∣∣∣∣ Harmonic Mind

What type of computer is the human mind/brain? The answer [52] proposes is:
The mind is a symbol-manipulating computer, an abstract virtual machine real-
ized in a brain performing connectionist computation. This characterizes the core
of higher cognition, the particularly challenging and important realm of cognitive
faculties operating in domains like abstract reasoning, planning, and language –
faculties that are highly developed primarily in the human mind/brain. Generally,
cognitive phenomena are understood at various levels of description, i.e. high- and
low-level cognitive processes. Whereas high-level cognition is mostly ascribed to
human cognitive processing, low-level cognition, such as sensory processing, ex-
ists in virtually all animal species. The difference between high- and low-level cog-
nition can be symbolized by the contrast between Auguste Rodin’s “The Thinker”
(Figure 2.1a) and a Braitenberg vehicle (Figure 2.1b). “The Thinker” being deep
in thought while completely immobilized embodies the decoupling of high-level
cognitive processing and actions in the world. Contrary to this, a Braitenberg vehi-
cle represents a direct interaction of sensory processing and corresponding actions,
and is therefore an example of pure low-level cognition [31].

Here, we introduce the formal foundations of the Integrated Connectionist/Sy-
mbolic Architecture (ICS) presented in [52]. ICS is defined by general principles
that relate the aggregate properties of connectionist representations and processes
with symbolic representations and processes. These principles identify optimiza-
tion as a central organizing principle that spans the levels of both the connectionist
and the symbolic descriptions. This work provides the first abutment of the bridge
– linking cognitive science and quantum mechanics – which we ultimately aim to
build.

9
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(a) The Thinker (b) Braitenberg vehicle

Figure 2.1: Contrasting high- and low-level cognition

2.1 Representation

Information is represented in the mind/brain by massively distributed activity
patterns that, for prominent aspects of higher cognition, possess global structure
describable through symbolic discrete data structures. The isomorphism between
activation values of connectionist units and symbolic mental representations is
codified in tensor product representations.

2.1.1 Linear Approximation

The most basic question about representation concerns realizations of composite
structures in distributed activation vectors.1 The value of an operation used to
combine elements rests in its compatibility with developing connectionist struc-
turing operations. In this regard, with respect to central phenomena of higher cog-
nition, the linear approximation suffices for the analysis of the network realization
of symbolic representations. However, future work on ICS theory will no doubt
pursue nonlinear extensions of the methods developed up until now.

Definition 2.1 (Superposition Principle). The realization of the set {A,B} is the super-
position or vector sum of the activation vectors realizing A and B.

1Jerome Feldman’s two-horse problem colorfully poses the issue underlying the realization of
composite structures: “If the representation of one horse fills up an entire network, how is it possible
to represent two horses?”[14].
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2.1.2 Inverting Superposition

The Superposition Principle presents the following question: In what sense does
a single composite pattern represent multiple elements? Representation in ICS
ensures that given an activity pattern realizing a set of symbols, there is one and
only one set of symbols realized by that pattern. Hence, an ICS network processes
composite representations in a way that is sensitive to the presence of individual
parts.

Definition 2.2 (Linear Independence). A subset of vectors {v1, v2, . . . , vn} is linearly
independent if no non-trivial linear combination of them vanishes, i.e.

c1v1 + c2v2 + · · ·+ cnvn = 0 (2.1)

only if c1 = c2 = · · · = cn = 0.

Definition 2.3 (Independence Assumption). In a connectionist realization of symbolic
computation, the activation vectors realizing the atomic symbols, and those realizing the
role vectors, are (linearly) independent.

2.1.3 Filler/Role Binding

A set is an unstructured collection of elements. Thus, for example, {A,B} and
{B,A} denote the same set. When we move to true symbol structures, we must
start to distinguish among the different roles in the overall structure played by dif-
ferent symbol tokens. To overcome the A + B = B + A problem (i.e. the commu-
tative property of vector addition), symbol tokens are bound to variable roles to
individuate a particular structure within a general class. The class of a structure is
determined by its roles (e.g. the class of strings is determined by positional roles).

Definition 2.4 (Filler/Role Decomposition). A structure is a set of bindings of various
structural roles to their fillers.

The internal structure of a vector that realizes the binding of a symbol token to
a role is the tensor product of the filler and role vectors.

Definition 2.5 (Tensor Product of Vectors). Let v, w be vectors of dimension m and n,
respectively. Their tensor product v⊗w is the mn-dimensional vector with components

[v⊗w]ij = [v]i[w]j (2.2)



12 Chapter 2. Harmonic Mind

where

[v]i (2.3)

is the ith component of v.

Definition 2.6 (Tensor Product Binding). The binding f/r of a filler f to a role r is
realized as a vector

f/r = f⊗ r (2.4)

that is the tensor product of a vector f realizing f with a vector r realizing r.

Claim 2.1 (Binding Independence). Let the independence assumption be satisfied. Then
it follows that the binding vectors f⊗ r – as f ranges over the realizations of all the atomic
symbols, and r over the realizations of all the roles – will form a linearly independent set.

Proof. The tensor product of vectors preserves their linear independence. If the
vectors {v1, . . . , vm} and {w1, . . . , wn} are, respectively, linearly independent, then
the vectors {vi ⊗wj}ij are also linearly independent.

2.1.4 Recursive Connectionist Realization

Embedding and recursion requires the tensor product representation to handle em-
bedded structure, where the filler is itself a complex structure, and not an atomic
symbol. The solution presented is to recursively use tensor product realization
for the complex fillers (or roles). The case of binary trees is used for relevance to
linguistics and computer data structures.

Definition 2.7 (Connectionist Realization). A symbolic structure s is defined by a col-
lection of structure roles {ri} each of which may be occupied by a filler fi. s is a set
of constituents, each a filler/role binding fi/ri. The connectionist realization of s is an
activation vector

s = ∑
i

fi ⊗ ri (2.5)

that is the sum of vectors realizing the filler/role bindings.
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Let s = [NP VP] be a binary tree with left and right subtrees NP and VP:

s

VPNP

VP

NPVt

Figure 2.2: Example binary trees

Let s, v1, v2 be the vectors realizing the trees s,NP,VP. The connectionist realiza-
tion of s is:

s = v1 ⊗ r0 + v2 ⊗ r1 (2.6)

If VP is a tree rather than an atomic symbol, it can be expressed in terms of its
left and right subtrees VP = [Vt NP]. Let v3, v4 be the vectors realizing the trees
Vt, NP:

v2 = v3 ⊗ r0 + v4 ⊗ r1 (2.7)

Therefore, the structure s = [NP [Vt NP]]:

s

VP

NPVt

NP

Figure 2.3: Graphical representation of s

has the following connectionist representation:

s = v1 ⊗ r0 + v2 ⊗ r1 (2.8)

= v1 ⊗ r0 + (v3 ⊗ r0 + v4 ⊗ r1)⊗ r1 (2.9)

= v1 ⊗ r0 + (v3 ⊗ r0)⊗ r1 + (v4 ⊗ r1)⊗ r1 (2.10)

= v1 ⊗ r0 + v3 ⊗ (r0 ⊗ r1) + v4 ⊗ (r1 ⊗ r1) (2.11)

≡ v1 ⊗ r0 + v3 ⊗ r01 + v4 ⊗ r11 (2.12)

Representations (2.8) and (2.12) contrast the complex filler and complex role
perspectives. This expansion of vectors realizing trees into the vectors realizing
their subtrees may be recursively continued until the atomic symbols at the leaves
of the tree have been reached.
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Definition 2.8 (Recursive Role Vectors for Binary Trees). Let x be a bit string, where
|x| denotes the number of bits (|ε| = 0). Then

rle f t−child(x) = r0x = r0 ⊗ rx rright−child(x) = r1x = r1 ⊗ rx (2.13)

Regardless of the representation (i.e. complex filler or complex role), it is un-
clear in what vector space this addition is performed. Symbols at depth d in a
binary tree are realized by S(d), the FRd-dimensional vector space formed from
vectors of the form f ⊗ ri ⊗ rj ⊗ · · · ⊗ rk with d role vectors. A vector space con-
taining all the vectors in S(d) for all d is the direct sum:

S∗ ≡ S(0) ⊕ S(1) ⊕ S(2) ⊕ · · · (2.14)

A vector s in this space is a sequence of vectors (s(0); s(1); s(2); · · · ) where s(d) is a
vector in S(d). s is also written s(0) ⊕ s(1) ⊕ s(2) ⊕ · · · . So (2.11) can be interpreted
as:

s = [v1 ⊗ r0]⊕ [v3 ⊗ (r0 ⊗ r1) + v4 ⊗ (r1 ⊗ r1)] (2.15)

Alternatively, it is natural to view each s(d) as embedded in S∗. Calling the
embedded vector ‘s(d)‘:

‘s(d)‘ ≡ 0(0) ⊕ 0(1) ⊕ · · · ⊕ 0(d−1) ⊕ s(d) ⊕ 0(d+1) ⊕ · · · (2.16)

where 0(k) is the zero vector of S(k). That is, ‘s(d)‘ is the element of S∗ with s(d) in
the sequence position appropriate for its space S(d), and zero everywhere else. So
(2.11) can also be interpreted as:

s = ‘[v1 ⊗ r0]‘⊕ ‘[v3 ⊗ (r0 ⊗ r1) + v4 ⊗ (r1 ⊗ r1)]‘ (2.17)

Writing this equation out explicitly in terms of sequences of vectors gives (2.18):

(s(0); s(1); s(2); s(3); · · · )
‘v1 ⊗ r0‘ = (0(0); v1 ⊗ r0; 0(2); 0(3); · · · )

+ ‘v3 ⊗ (r0 ⊗ r1)‘ = (0(0); 0(1); v3 ⊗ (r0 ⊗ r1); 0(3); · · · )
+ ‘v4 ⊗ (r1 ⊗ r1)‘ = (0(0); 0(1); v4 ⊗ (r1 ⊗ r1); 0(3); · · · )

s = (0(0); v1 ⊗ r0; v3 ⊗ (r0 ⊗ r1) + v4 ⊗ (r1 ⊗ r1); 0(3); · · · )
(2.18)

Thus interpreted, the only type of vector sum to employ is the ordinary operation:
add corresponding numerical components.
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2.2 Processing

Information is processed in the mind/brain by widely distributed connection pat-
terns (i.e. weight matrices) that, for central aspects of higher cognition, possess
global structure describable through symbolic expressions for recursive functions.

2.2.1 Linear Processing

Activation vectors encode information in connectionist networks. Information
processing in parallel distributed processing (PDP) networks is the spread of acti-
vation. This process utilizes the central operation of vector space theory – matrix-
vector multiplication – by applying the matrix of connection weights to the vector
of activations. In its purest form, PDP simply is matrix multiplication.

Definition 2.9 (Linear Associator). The core connectionist processing operation is the
multiplication of the input activity vector i by the matrix of connection strengths W

o = W · i (2.19)

where ‘ · ‘ denotes matrix-vector multiplication and

oβ = ∑
α

Wβαiα ≡Wβ1i1 + Wβ2i2 + · · · (2.20)

where Wβα is the weight of the connection to output unit β from input unit α.

2.2.2 Symbolic Computation

The mathematical isomorphism between symbolic structure and vector structure
that is exploited by the tensor product representations extends to the basic opera-
tions of symbolic computation. These operations can be realized as the simplest
type of connectionist operation, multiplication by a weight matrix. That is, they
can be computed by the simplest type of connectionist network, the linear associ-
ator.

The most fundamental operations on binary tree structures, for instance, are
those of extracting the left subtree (ex0), extracting the right subtree (ex1), and
constructing a new tree by embedding two given trees as the left and right subtrees
of the new tree (cons).
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Let s be the vector realizing s = [NP VP], with v1 and v2 the vectors realizing
s’s left and right subtrees NP = ex0(s) and VP = ex1(s). Then there exist two
matrices Wex0 and Wex1 obeying (2.22):

NP = ex0(s) VP = ex1(s) (2.21)

v1 = Wex0 · s v2 = Wex1 · s (2.22)

Now let v2 be the vector realizing VP = [Vt NP], with v3 and v4 the vectors
realizing VP’s left and right subtrees Vt = ex0(VP) and NP = ex1(VP). If we
successively perform a sequence of two extraction operations, first extracting the
right child of s, getting VP, then extracting the left child of VP, we get a structure
Vt:

VP = ex1(s) Vt = ex0(ex1(s)) (2.23)

v2 = Wex1 · s v3 = Wex0 · (Wex1 · s) (2.24)

By the rules of matrix multiplication, two successive matrix products are equiva-
lent to a single matrix product. So (2.24) can be interpreted as (2.26):

Wex0 · (Wex1 · s) = (Wex0 ·Wex1) · s (2.25)

= Wex01 · s (2.26)

where

Wfρ ≡Wf[ρ]1 ·Wf[ρ]2 · . . . ·Wf[ρ]n (2.27)

ρ ∈ Bn (2.28)

This can be recursively repeated to any depth. Thus, the extraction of any subcon-
stituent, no matter how deep in the tree, is achieved by multiplication of a single
appropriate matrix. Such a matrix has a special structure – that of a product of
instances of the fundamental matrices Wex0 and Wex1.

Like extracting constituents from an existing tree, constructing new binary trees
from existing constituents can be performed by linear operations based on two
fundamental matrices, Wcons0 and Wcons1. To return to our example above, the
vector realizing the composed tree s = [NP VP] = [NP [Vt NP]] is:

s = Wcons0 · v1 + Wcons1 · v2 (2.29)

= Wcons0 · v1 + Wcons1 · (Wcons0 · v3 + Wcons1 · v4) (2.30)

= Wcons0 · v1 + Wcons10 · v3 + Wcons11 · v4 (2.31)
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(2.29) is actually equivalent to (2.6), which defined a recursive connectionist
realization. It is repeated as (2.32):

s = v1 ⊗ r0 + v2 ⊗ r1 (2.32)

This is because the matrices Wcons0 and Wcons1 are defined so that taking their ma-
trix product with a vector v achieves the same result as taking the tensor product
of v with r0 and r1, respectively.

Definition 2.10 (Kronecker Delta). The Kronecker δ is defined by

δ
j
i ≡

{
1 i = j
0 i 6= j

(2.33)

Definition 2.11 (Tensor Product of Matrices). Let A and B be matrices of dimension
m× n and p× q, respectively. Their tensor product A⊗B is the mp× nq matrix

A⊗B =

 a11B · · · a1nB
... . . . ...

am1B · · · amnB

 (2.34)

Claim 2.2 (Matrix Multiplication of Tensor Products). Let A, B, C, and D be matrices
of dimension m× n, p× q, n× r, and q× s, respectively. Then (A⊗B) · (C⊗D) is the
mp× rs matrix

(A⊗B) · (C⊗D) = (A ·C)⊗ (B ·D) (2.35)

Proof.

(A⊗B) · (C⊗D) =

 a11B · · · a1nB
... . . . ...

am1B · · · amnB

 ·
c11D · · · c1rD

... . . . ...
cn1D · · · cnrD

 (2.36)

=

∑n
i=1 a1ici1(B ·D) · · · ∑n

i=1 a1icir(B ·D)
... . . . ...

∑n
i=1 amici1(B ·D) · · · ∑n

i=1 amicir(B ·D)

 (2.37)

= (A ·C)⊗ (B ·D) (2.38)

Corollary 2.1 (Matrix-Vector Multiplication over Tensor Products). Let A and B be
matrices of dimension m× n and p× q, respectively. Let v and w be vectors of dimension
n and q, respectively. Then (A⊗B) · (v⊗w) is the mp-dimensional vector

(A⊗B) · (v⊗w) = (A · v)⊗ (B ·w) (2.39)
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Proof. Replace C and D in (2.36) with v and w, respectively. (2.39) then follows
from an identical argument.

Definition 2.12 (Feed-Forward Recursion Matrix). The feed-forward recursion ma-
trix is defined by

I ≡ 1 + 1R + 1⊗2
R + 1⊗3

R + · · · (2.40)

=
∞

∑
k=0

1⊗k
R (2.41)

I is the identity matrix on the total role vector space, including all tree depths.

Proposition 2.1 (Construction). The cons operation for building the realization of a
binary tree from that of its two subtrees is defined by

s = cons(p,q)⇒ s = p⊗ r0 + q⊗ r1 (2.42)

= Wcons0 · p + Wcons1 · q (2.43)

≡ cons(p, q) (2.44)

where

Wcons0 = I⊗ 1F ⊗ r0 Wcons1 = I⊗ 1F ⊗ r1 (2.45)

I =



1 · · ·

12

14

18

... . . .



(2.46)
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p, q ∈ VF (2.47)

r0, r1 ∈ VR (2.48)

Proof. Assuming a two-dimensional role vector space VR, suppose b is a depth-d
binding, b ∈ S(d). For any binding b ≡ fx ⊗ rx, the effect of multiplying b by
Wcons0 must be to produce:

Wcons0 · b ≡ b′ (2.49)

≡ fx ⊗ rx0 (2.50)

= fx ⊗ (rx ⊗ r0) (2.51)

= (fx ⊗ rx)⊗ r0 (2.52)

= b⊗ r0 (2.53)

Therefore, Wcons0 · b = b′ = b⊗ r0 is a depth-d + 1 binding in S(d+1), with com-
ponents:

[b′]φρd+1ρd···ρ2ρ1 =
[
[Wcons0 · b](d+1)

]
φρd+1ρd···ρ2ρ1

(2.54)

= [b⊗ r0]φρd+1ρd···ρ2ρ1 (2.55)

= [b]φρd+1ρd···ρ2 [r0]ρ1 (2.56)

Wcons0 must take b ∈ S(d) into b′ ∈ S(d+1) in such a way as to retain all values
of components except to multiply each by the ρth

1 component of r0, adding one
additional index ρ1. Thus, the nonzero elements of the matrix Wcons0 must be:

[Wcons0
(d)
(d+1)]

φρd+1ρd···ρ2
φρd+1ρd···ρ2ρ1

= [r0]ρ1 (2.57)

(2.57) defines Wcons0
(d)
(d+1), a submatrix of Wcons0 that takes symbols at depth d in

p and puts them at depth d + 1 in the new tree s = cons(p,q). (2.58) shows the
block structure of the matrix Wcons0:

Wcons0 =



– – – –
[Wcons0]

(0)
(1) – – –

– [Wcons0]
(1)
(2) – –

– – [Wcons0]
(2)
(3) –

...
... – . . .


(2.58)

And so, in the general case:

[Wcons0
(d)
(d+1)]

φ′ρ′d+1ρ′d···ρ
′
2

φρd+1ρd···ρ2ρ1
= δ

ρ′d+1
ρd+1 δ

ρ′d
ρd · · · δ

ρ′2
ρ2 δ

φ′

φ [r0]ρ1 (2.59)
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The elements {δφ′

φ } form the identity matrix 1F in the filler vector space VF of vec-

tors realizing atoms, while the elements {δρ′
ρ } constitue the identity matrix 1R in

the space VR of role vectors. So (2.59) can be interpreted as:

[Wcons0
(d)
(d+1)]

φ′ρ′d+1ρ′d···ρ
′
2

φρd+1ρd···ρ2ρ1
= [1R]

ρ′d+1
ρd+1 [1R]

ρ′d
ρd · · · [1R]

ρ′2
ρ2 [1F]

φ′

φ [r0]ρ1 (2.60)

Using the tensor product of matrices, we can write Wcons0
(d)
(d+1) more succinctly, by

expressing (2.60) as:

Wcons0
(d)
(d+1) = 1R ⊗ · · · ⊗ 1R ⊗ 1F ⊗ r0 (2.61)

where there are d factors of 1R. We will also write (2.61) as:

Wcons0
(d)
(d+1) = 1⊗d

R ⊗ 1F ⊗ r0 (2.62)

The full matrix Wcons0 has one such block for each depth d:

Wcons0 = [1F ⊗ r0] + [1R ⊗ 1F ⊗ r0] + [1⊗2
R ⊗ 1F ⊗ r0] + · · · (2.63)

= (1 + 1R + 1⊗2
R + · · · )⊗ 1F ⊗ r0 (2.64)

= (
∞

∑
k=0

1⊗k
R )⊗ 1F ⊗ r0 (2.65)

= I⊗ 1F ⊗ r0 (2.66)

We can interpret (2.66) as stating that Wcons0 is the recursive version of the opera-
tion of multiplying by r0. The weight matrix pushes or embeds a tensor realizing
a tree into the role of left child of the root of a new tree. The matrix Wcons1 satis-
fies the analogous equation, with r0 replaced by r1. Combining Wcons0 and Wcons0

gives the cons operation (2.44).

Whereas constructing a new binary tree from two subtrees is defined as the
superposition of tensor product bindings, extracting a tree’s left or right subtree
is equivalent to unbinding r0 or r1. Assuming the role vectors to be linearly inde-
pendent, these unbinding operations can be performed accurately via linear op-
erations ex0 and ex1: a kind of inner product of s with an unbinding vector u0 or
u1.

Definition 2.13 (Basis). A set V = {v1, v2, . . . , vn} of n linearly independent vectors in
an n-dimensional vector space V is called a basis of V.
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Definition 2.14 (Dual Basis). The basis dual to V = {v1, v2, . . . , vn} (a set of n linearly
independent vectors) is the set V+ = {v+

1 , v+
2 , . . . , v+

n } of (basis) vectors where

〈vi | v+
j 〉 = δ

j
i (2.67)

Theorem 2.1 (Unbinding Theorem). Let s be a tensor product realization induced by a
role decomposition with single-valued roles. Suppose the vectors realizing the roles bound
in a structure s are all linearly independent. Then each role can be unbound with complete
accuracy, i.e. for each bound role ri there is an operation that takes s realizing s into the
vector fi realizing the filler fi bound to ri.

Proof. If the role vectors {ri} are linearly independent, then they form a basis of
the subspace of VR that they span. With respect to this basis, there exists a corre-
sponding dual basis {ui} ≡ {r+i }. That is, the inner (dot) product with ui ∈ VR

maps the single role vector ri to 1 and all other role vectors to 0. Call {ui} the un-
binding vectors for roles {ri}. (The matrix formed by combining all vectors {ui} is
just the inverse of the matrix formed from the vectors {ri}.) Now let s be the tensor
product realization of a structure in which the roles {ri} are respectively bound to
the fillers {fi}. Then we can extract fj from s, or unbind rj, by the inner product
in VR of s with the unbinding vector uj, defined as follows:

s · uj =
(
∑

i
fi ⊗ ri

)
· uj (2.68)

≡∑
i

fi〈ri | uj〉 (2.69)

= ∑
i

fiδ
j
i (2.70)

= fj (2.71)

Proposition 2.2 (Extraction). The ex operations for extracting the subtrees of a binary
tree are defined by

p = ex0(s)⇒ p = ex0(s) (2.72)

= ex0(p⊗ r0 + q⊗ r1) (2.73)

≡Wex0 · (p⊗ r0 + q⊗ r1) (2.74)

q = ex1(s)⇒ q = ex1(s) (2.75)
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= ex1(p⊗ r0 + q⊗ r1) (2.76)

≡Wex1 · (p⊗ r0 + q⊗ r1) (2.77)

where

Wex0 = I⊗ 1F ⊗ uT
0 Wex1 = I⊗ 1F ⊗ uT

1 (2.78)

I =



1 · · ·

12

14

18

... . . .



(2.79)

p, q ∈ VF (2.80)

r0, r1 ∈ VR (2.81)

{ui} ≡ {r+i } (2.82)

Proof. Assuming a two-dimensional role vector space VR, the effect of multiplica-
tion in S∗ by the matrix Wex0 must be to map tree depth d + 1 in s to depth d in
ex0(s) for all tree depths:

Wex0 · s = Wex0 · (p⊗ r0 + q⊗ r1) (2.83)

= (I⊗ 1F ⊗ uT
0 ) · (p⊗ r0 + q⊗ r1) (2.84)

= ([I⊗ 1F]⊗ uT
0 ) · (p⊗ r0 + q⊗ r1) (2.85)

= ([I⊗ 1F] · p)⊗ (uT
0 · r0) + ([I⊗ 1F] · q)⊗ (uT

0 · r1) (2.86)

= ([I⊗ 1F] · p)〈u0 | r0〉+ ([I⊗ 1F] · q)〈u0 | r1〉 (2.87)
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= ([I⊗ 1F] · p)δ0
0 + ([I⊗ 1F] · q)δ1

0 (2.88)

= [I⊗ 1F] · p (2.89)

= p (2.90)

The matrix Wex1 satisfies the analogous argument, with u0 replaced by u1.

A crucial property of the primitive matrices realizing the cons and ex opera-
tions is that that their form – I⊗M – is preserved under matrix multiplication. For
instance, an ex operation followed by a cons operation gives (2.94):

Wconsi ·Wexj = (I⊗ [1F ⊗ ri]) · (I⊗ [1F ⊗ uT
j ]) (2.91)

= (I · I)⊗ ([1F ⊗ ri] · [1F ⊗ uT
j ]) (2.92)

= (I · I)⊗ [(1F · 1F)⊗ (ri · uT
j )] (2.93)

= I⊗ [1F ⊗ (ri · uT
j )] (2.94)

In fact, this result is general.

Theorem 2.2 (Feed-Forward Recursion Theorem). Suppose W = I⊗W and X =

I⊗X, where W and X are matrices of dimension m× n and p× q, respectively. Then

W ·X = I⊗Y (2.95)

where

Y ≡


W · [1⊗∆ ⊗X] ∆ ≡ n− p > 0
[1⊗∆′ ⊗W] ·X ∆′ ≡ p− n > 0
W ·X ∆ = ∆′ = 0

(2.96)

Proof. (2.95) and (2.96) follow from (2.35) and (2.41).

I takes the finite number of elements in W that govern rearrangements near
the root of a tree and ‘copies’ them unboundedly to fill up W, creating a matrix
that performs the same rearrangement at unbounded depths in a tree. The ideal-
ization to unboundedly deep trees realized in unbounded (or infinite) networks or
W matrices is immediate. The infinite behavior of recursive function evaluation is
generated through the finite specification (or knowledge) W.
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The significance of the feed-forward recursion theorem is that we have a means
of constructing simple networks which compute arbitrarily complex symbolic (re-
cursive) functions. We can prove that they do indeed correctly compute such func-
tions, and therefore we can explain with complete precision and certainty how they
do so. Yet such an explanation is not possible simply by means of symbolic algo-
rithms. Explanations must use the connectionist algorithm of a linear associator
(2.19), with a weight matrix possessing special global structure.

As an example, consider a structure-sensitive function f that maps an input
tree s to its corresponding output tree t:

f(s) = cons(ex1(ex0(ex1(s))),

cons(ex1(ex1(ex1(s))),ex0(s))) (2.97)

f takes as input the tree structure of an English sentence in the passive voice and
produces as output a tree structure encoding a predicate calculus form of the se-
mantic interpretation of the input sentence:

s

VP

PP

Subjby

Vt

VtAux

Obj

7→

t

Arg

ObjSubj

Vt

Jokes are told by comedians tell(comedians, jokes)

Figure 2.4: f :: s -> t

The connectionist realization of the symbol-manipulating function f is a sequence
of interleaved extraction and construction operations combined into a single com-
posite matrix W:

W = Wcons0 · (Wex1 ·Wex0 ·Wex1)

+ Wcons1 · (Wcons0 · (Wex1 ·Wex1 ·Wex1) + Wcons1 · (Wex0)) (2.98)

The fact that f is correctly realized by (2.98) is explained by the fact that W pos-
sesses certain global structure: W is a certain product and sum of fundamental
matrices Wex0, Wex1, Wcons0, and Wcons1. The correspondence between the inter-
nal structure of the expressions for f and W is evident.
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The example above provides a simple illustration of the ICS computational per-
spective. At a lower level of analysis, we have a connectionist network in which
mental representations are distributed over many processing units, and outputs
are computed from inputs by massively parallel spreading activation. At a higher
level of analysis, the global structure inherent in the activation vectors, and the
weight matrices that process them, entails that the network, W, provably com-
putes a particular recursive function, f. This function can be described with a sym-
bolic expression, as in (2.97), but the network does not compute the function in the
step-by-step fashion standardly used to interpret such expressions. Rather, all the
symbol manipulation is done in one step, in a massively parallel and distributed
fashion. The computational resources required by the processing correspond to
the number of units and weights needed, the precision with which individual units
must operate, and the number of steps of activation spreading required to compute
the output (i.e. 1) – not the number of symbols used, or the number of symbolic
operations performed in interpreting the symbolic expression.

(2.98) is representative of one important class of connectionist networks: feed-
forward networks, where there are no closed loops of activation flow. The other
class consists of the networks that do have such loops: recurrent networks. Of partic-
ular interest is a subclass of these networks which perform optimization: harmonic
networks. Harmonic networks can realize essential kinds of symbolic functions, in-
cluding those determined by grammars. Like the weight matrices of feed-forward
networks, the weight matrices of recurrent networks have a special structure.

Definition 2.15 (Dualizer Matrix). The dualizer matrix is defined by

D =
[
d0 d1

]T (2.99)

where

d0 ≡ [u0]0u0 + [u1]0u1 d1 ≡ [u0]1u0 + [u1]1u1 (2.100)

Claim 2.3 (Symmetry of Dualizer Matrix). D is symmetric, i.e.

DT = D (2.101)

Proof.

DT ≡
[
d0 d1

]
(2.102)

=

[
[d0]0 [d1]0
[d0]1 [d1]1

]
(2.103)
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and

D ≡
[
d0 d1

]T (2.104)

=

[
[d0]0 [d0]1
[d1]0 [d1]1

]
(2.105)

Hence, DT = D if and only if [d0]1 = [d1]0. But,

[d0]1 ≡ [[u0]0u0 + [u1]0u1]1 (2.106)

= [u0]0[u0]1 + [u1]0[u1]1 (2.107)

and

[d1]0 ≡ [[u0]1u0 + [u1]1u1]0 (2.108)

= [u0]1[u0]0 + [u1]1[u1]0 (2.109)

= [d0]1 (2.110)

Claim 2.4 (Dualizer). Suppose |x| = k, where k > 0. Then

D⊗k · rx = ux (2.111)

(D is an ‘r to r+ ≡ u converter’.)

Proof. (Base case) Suppose k = 1. Since row i of D is dT
i , the ith component of D · r0

is

[D · r0]i = dT
i · r0 (2.112)

= ([u0]iu0 + [u1]iu1)
T · r0 (2.113)

= [u0]i(uT
0 · r0) + [u1]i(uT

1 · r0) (2.114)

= [u0]i〈u0 | r0〉+ [u1]i〈u1 | r0〉 (2.115)

= [u0]iδ
0
0 + [u1]iδ

0
1 (2.116)

= [u0]i (2.117)

Hence, D · r0 = u0. An identical argument shows D · r1 = u1. (Induction) Assume
(2.111) holds for some value of k. Suppose rx = riy, where |x| = k + 1, |y| = k, and
|i| = 1. Then

D⊗(k+1) · rx = (D⊗D⊗k) · riy (2.118)
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≡ (D⊗D⊗k) · (ri ⊗ ry) (2.119)

= (D · ri)⊗ (D⊗k · ry) (2.120)

= ui ⊗ uy (2.121)

≡ uiy (2.122)

≡ ux (2.123)

Definition 2.16 (Recurrent Recursion Matrix). The recurrent recursion matrix is de-
fined by

R ≡ 1 + D + D⊗2 + D⊗3 + · · · (2.124)

=
∞

∑
k=0

D⊗k (2.125)

Definition 2.17 (Recursive Weight Matrix). The weight matrix W of a symmetric re-
current network is recursive if it obeys the recursion equation

W = W + W⊗D (2.126)

where W is a finite root matrix such that for all C, t,

C/rT
x ·W · t = 0 (2.127)

unless x = ε (i.e. root position).

Theorem 2.3 (Recursive Weight Matrix Theorem). A recursive weight matrix W of
a symmetric recurrent network has the form

W = W⊗R (2.128)

where W is a root matrix and R is the recurrent recursion matrix, which solves the recur-
sion equation

R = 1 + R⊗D (2.129)

Proof. Substituting (2.126) into itself recursively yields

W = [W] + W⊗D (2.130)

= [W] + (W + W⊗D)⊗D (2.131)

= [W] + [W⊗D] + W⊗D⊗D (2.132)
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= [W] + [W⊗D] + (W + W⊗D)⊗D⊗D (2.133)

= [W] + [W⊗D] + [W⊗D⊗D] + W⊗D⊗D⊗D (2.134)

= · · · (2.135)

= [W] + [W⊗D] + [W⊗D⊗D] + · · · (2.136)

= W⊗ (1 + D + D⊗2 + · · · ) (2.137)

≡W⊗R (2.138)

An analogous argument verifies that R itself solves R = 1 + R⊗D.

Central aspects of many higher cognitive domains (including language) are re-
alized via recursive processing. Feed-forward networks and recurrent networks
provide a mechanism to compute a large class of cognitive functions with recursive
structure. In either case, W is a finite matrix of weights that specifies a particular
function. I and R are the respective recursion matrices. These are simply-defined
unbounded matrices that are fixed – i.e. the same for all cognitive functions – as
shown in (2.41) and (2.125).

2.3 Harmony

In a number of cognitive domains, information processing in the mind/brain con-
structs an output for which the pair (input,output) is optimal. This kind of pro-
cessing maximizes a connectionist well-formedness measure called harmony. The
harmony function encapsulates knowledge as a set of conflicting soft constraints
of varying strengths. Harmony maximization ensures that the output achieves the
optimal degree of simultaneous satisfaction of these constraints.

The harmony of an activation vector in a connectionist network is a numerical
measure of the degree to which the vector respects the constraints encoded in the
connection matrix, i.e. the degree to which the completion of an input vector is
well-formed, according to the network’s connections. The result of spreading ac-
tivation, therefore, is the generation of a pattern of activity that best satisfies a set
of parallel soft constraints. The constraints are ‘soft’ in the sense that each may be
overruled by other constraints, and hence violated in the final pattern. The cost of
constraint violation is the lowering of harmony, by an amount depending on the
strength of the violated constraint and the degree of violation.
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Definition 2.18 (Harmony of an Activation Vector). The harmony of an activation
vector a is defined by

H(a) = ∑
βα

Hβα (2.139)

= ∑
βα

aβWβαaα (2.140)

= aT ·W · a (2.141)

where ∑βα means ‘sum over all pairs of units β, α’ and W is a recursive weight matrix
encoding a set of network constraints, i.e. W = W⊗R.

The importance of harmony is that it allows connectionist principles to in-
form higher levels of analysis. Using representations subserving higher cognition
which possess tensor product structure, we can derive a symbolic interpretation of
(2.141).

Proposition 2.3 (Harmony of a Symbolic Representation). Suppose a is a tensor prod-
uct vector realizing a symbolic structure s with constituents {ci}. Then

H(s) ≡ H(a) (2.142)

= ∑
i≤j

H(ci,cj) (2.143)

where H(ci,cj) – the harmony resulting from the co-occurrence of ci and cj in the same
structure – is a constant for all s.

Proof. Let {ci} be the vectors realizing the constituents {ci} (filler/role bindings)
of a symbolic structure s realized by a. Then

H(a) = aT ·W · a (2.144)

= (∑
i

ci)
T ·W · (∑

i
ci) (2.145)

= ∑
k

cT
k ·W · ck + ∑

i 6=j
cT

i ·W · cj (2.146)

= ∑
k

H(ck,ck) + ∑
i 6=j

cT
i ·W · cj (2.147)

= ∑
k

H(ck,ck) + [∑
i<j

cT
i ·W · cj + ∑

i>j
cT

i ·W · cj] (2.148)

= ∑
k

H(ck,ck) + [∑
i<j

cT
i ·W · cj + ∑

i>j
cT

j ·WT · ci] (2.149)
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= ∑
k

H(ck,ck) + [∑
i<j

cT
i ·W · cj + ∑

j>i
cT

i ·WT · cj] (2.150)

= ∑
k

H(ck,ck) + [∑
i<j

cT
i · (W + WT) · cj] (2.151)

= ∑
k

H(ck,ck) + ∑
i<j

H(ci,cj) (2.152)

= ∑
i≤j

H(ci,cj) (2.153)

where

H(ck,ck) ≡ cT
k ·W · ck H(ci,cj) ≡ cT

i · (W + WT) · cj (2.154)

(2.143) reveals that the harmony a symbolic structure s is simply the summa-
tion of the individual harmonies arising from the co-occurrence of constituents in
s. In other words, if s contains the constituents ci and cj, then add the numer-
ical quantity H(ci,cj) to H(s). Furthermore, (2.152) shows that the individual
harmonies in a symbolic structure can be divided into two groups: H(ck,ck) and
H(ci,cj), where i 6= j. H(ck,ck) can be interpreted as the self-harmony of ck: a
measure of the degree to which the internal structure of the activation pattern ck

realizing the symbolic constituent ck conforms to the soft constraints embodied in
the network’s connections. H(ci,cj), where i 6= j, can be interpreted as the inter-
action harmony of the pair (ci,cj): the additional harmony (positive or negative)
arising from the co-presence of ci and cj beyond the sum of their individual har-
monies in isolation. This result is a simple kind of (automatic) compositionality: the
harmony of a structure as a whole is the sum of the harmonies contributed by all
of its constituents. What’s remarkable is the sheer simplicity of the computation.
In the case where the quantities H(ci,cj) are known, no reference to the connec-
tionist description’s activation vectors and weight matrices is required! The entire
computation can be performed on the basis of the symbolic constituents alone,
since the numbers H(ci,cj) encapsulate the details of the lower-level weights and
activations into a form directly usable at the higher-level.

2.4 Harmonic Grammar

Among the cognitive domains falling under harmony maximization are central
aspects of knowledge of language – grammar. In this setting, the specification of
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the harmony function is called a harmonic grammar. So (2.143) can be interpreted as
a collection of soft rules. These rules define a harmonic grammar. To then determine
the harmony of a structure s, we simply find all the rules that apply to s and add
up all the corresponding harmony contributions.

Definition 2.19 (Harmonic Grammar). Let Rij be a soft rule defined by

Rij ≡ If s simultaneously contains the constituents ci and cj,

then add the numerical quantity H(ci,cj) to H(s). (2.155)

Then the collection of rules {Rij} define a harmonic grammar. Equivalently, soft rules
can be recast as soft constraints. Let Cij be a soft constraint defined by

Cij ≡



s does not simultaneously contain
the constituents ci and cj H(ci,cj) < 0
(with strength wij)

s simultaneously contains
the constituents ci and cj H(ci,cj) ≥ 0
(with strength wij)

(2.156)

where

wij ≡ |H(ci,cj)| (2.157)

Then the collection of constraints {Cij} define a harmonic grammar. In this formulation,
H(s) is computed by adding the strengths of all the positive constraints that s satisfies
and subtracting the strengths of all the negative constraints that it violates.

As an example, consider the context-free rewrite-grammar rule expressing a
sentence (S) as a noun phrase (NP) followed by a verb phrase (VP):

S→ NP VP (2.158)

This rule asserts the grammaticality of the local tree:

S

VPNP

Figure 2.5: Graphical representation of soft rules

Two corresponding soft rules, for instance, are:
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1. RNP/S ≡ If s contains a constituent labeled S and its left subconstituent is
labeled NP, then add +2 to H.

2. RS\VP ≡ If s contains a constituent labeled S and its right subconstituent is
labeled VP, then add +4 to H. (Verb phrases are usually considered first-class
citizens of sentences.)

That these rules instantiate the general soft rule schema for Rij is evident. In
RNP/S, for example, the constituent ci is an S at some node in the parse tree, while
the second constituent cj is an NP at a node that is the left-child node of the S. The
harmony contribution from this pair, H(ci,cj), is +2. That this quantity is posi-
tive means that this pair of constituents is well formed according to the grammar
encoded in the network’s connections W.

Given the ability to assess the harmony of any symbolic structure – which, of
course, are realized by tensor product representations – it is now (in principle)
straightforward to determine the functioning of a grammar. An harmonic gram-
mar assigns to an input vector i the output symbolic structure (‘parse’) s with
maximal harmony, among those which are completions of i. This computation
is achieved via activation flow from the input units to other units, whereby each
unit repeatedly updates its activation value in response to input from other units.
Typically, this eventually settles and the overall activation vector a of the entire
network, no longer changes. The input vector i (and also the output vector o) is
part of the total activation vector a, since the input units (and the output units) are
part of the total population of units in the network. For context-free grammars, the
parse is a tree whose terminal symbols give the input string, and whose structure
shows how the input symbols are grouped into constituent phrases. For formal
grammars, we can arbitrarily impose a threshold of acceptable harmony (e.g. 0)
for the parse in order for an input string to be judged sufficiently well-formed by
the grammar to be admitted into the language.



If I have seen further than others, it is by standing on
the shoulders of giants.

— Isaac Newton

3
∣∣∣∣ Compositional Distributional

Model of Semantics

The Integrated Connectionist/Symbolic Architecture (ICS) presented in [52] is a
compelling proposal to resolve the problem of competing symbolic and connec-
tionist models of mind. While the former are compositional but only qualitative,
the latter are non-compositional but quantiative. ICS manages to combine the
two approaches and therefore (in principle) get the best out of both paradigms.
However, as we have seen, ICS does admit some weaknesses. Not only do sym-
bolic structures exist in an unbounded representational space S∗, but also symbolic
structures of the same type (e.g. a sentence) can manifest different representations,
i.e. live in conflicting mental spaces, depending on the grammar of the respective
instances.

Interestingly, a similar problem has been encountered within the context of nat-
ural language processing (NLP) concerning the unification of compositional and
distributional theories of semantics [8]. [7, 12] introduce a mathematical formal-
ism aimed at solving this problem. The approach involves adapting a category-
theoretic model, originally used to describe information flow in quantum mechan-
ics (QM), to the task of composing semantic vectors. Category theory provides
the sufficient tools to relate the structures used to represent grammatical types, i.e.
pregroup grammars, and the structures used to represent distributional meaning, i.e.
vector spaces, which are both concrete instances of a compact closed category. As such,
the framework enables the computation of the meaning of a well-typed sentence
from the meaning of its constituents. Importantly, meanings of whole sentences
live in a single space, independent of the grammatical structure of the sentence.
Hence, the inner product can be used to compare meanings of arbitrary sentences,
as it is for comparing the meaning of words in distributional models.

33
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Here, we introduce the compositional distributional (DISCO) model of seman-
tics presented in [7, 12] along with its diagrammatic calculus and recent extension
regarding the modelling of pronouns [47]. Our proposal is that the interaction of
QM and ICS is an encouraging new direction for the computational modelling of
the mind, of which the DISCO framework forms the basis. This work provides the
second abutment of the bridge – linking cognitive science and quantum mechanics
– which we ultimately aim to build.

3.1 Competing Models of Semantics

First, we give a brief overview of two prominent domains of computational lin-
guistics: compositional semantics and distributional semantics. Whereas compo-
sitional models are based on logical formalisms, distributional models represent
meaning as vectors within an empirically learned semantic space. The difference
between these two approaches reduces to a simple question concerning the foun-
dational structure of semantics: Is meaning functional or contextual?

3.1.1 Compositional Semantics

Compositional semantics provides methods for mapping natural language to logi-
cal formulae. The key idea behind formal models is that the meaning of a sentence
is a function of its words and their syntax. Lambda expressions are used to model
meanings of words as functions, and function application serves as the compo-
sition operation which relates the meanings of individual words and returns the
meaning of a larger phrase. In layman’s terms, the mapping from natural language
to logic consists of pairing syntactic analysis rules with semantic interpretation
rules (and applying β-reduction where necessary).

There is much appeal to compositional semantics. For one, a formal approach
to linguistics captures the desirable feature of compositionality. What’s more,
the model-theoretic basis of formal semantics provides the required framework
to characterize the notion of a true sentence and the notion of entailment [39]. The
denotation of a sentence characterizes in which worlds a sentence is true, and en-
tailment spans all possible worlds.

That being said, compositional semantics leaves much to be desired. While
logical analysis does produce {true, f alse}-valuations, no notion of semantics is
communicated beyond truth conditions. In this sense, compositional semantics
reduces the richness of natural language to a single bit (∈ B), overlooking more
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complex and realistic notions of semantic representation. Furthermore, as with
any logic, a description of symbols and valuation functions must be given. This
leaves open the question of how we might learn the meaning of natural language
using such a model, rather than merely use it.

Syntactic Analysis Semantic Interpretation
S→ NP VP VP(NP)

NP→ Adj NP Adj(NP)
NP→ comedians, jokes, book, etc. comedians, etc.
Adj→ funny, loud, bright, etc. λx. f unny(x), etc.

VP→ Vt NP Vt(NP)
Vt→ tell, bring, make, etc. λy.λx.tell(x, y), etc.

⇓

tell(comedians, jokes)

λx.tell(x, jokes)

jokesλy.λx.tell(x, y)

Comedians

Figure 3.1: From natural language to logic

3.1.2 Distributional Semantics

In contrast to compositional semantics, distributional semantics represents mean-
ings of words as vectors in a high-dimensional semantic space. Distributional rep-
resentations are computed via analysis of word co-occurrence statistics which are
learned from corpora. More concretely, the meaning of a word is defined by the
words with which it occurs and the degree with which it occurs with said words
within a certain context. In this way, word meaning is truly distributional: the se-
mantic content of a word corresponds to the pattern in which language spreads it
among a set of context words. Hence, the meaning of a word is just a sample of its
true distribution within language.

In simple models, (orthogonal) basis vectors of the semantic space make up a
set {ci}i of context words, where c ∈ Rn and n = |{ci}i|. The representation of a
given word is then a vector w in the semantic space Rn where the ith component
[w]i is the normalized co-occurrence (i.e. frequency) count of the words w and ci

describe within a certain context window evaluated over a collection of texts. The
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semantic vector of a word can therefore be characterized as the weighted superpo-
sition of basis vectors, i.e. w = ∑i cici where ci ∈ R.

There are several advantages to distributional semantics. For one, meaning
can be learned. What’s more, unlike pure logic, vector representations are able
to capture complex notions of semantic similarity. For example, a basic measure
of similarity between two (normalized) word representations w1 and w2 is eas-
ily modelled as an inner product, or cosine measure, in the semantic space, i.e.
〈w1 | w2〉 ∈ [0, 1].

word stand-up funny actor
comedian 1000 1000 500

joke 2500 1250 0
improv 100 0 350

⇓
w = cstand-upstand-up + c f unnyfunny + cactoractor

⇓

{comedian =
[2

3
2
3

1
3

]T , joke =
[

2√
5

1√
5

0
]T

, improv =
[

2√
53

0 7√
53

]T
}

⇓

comedian

joke

improv

funny stand-up

ac
to

r

⇓
〈comedian | improv〉 = 11

3
√

53

Figure 3.2: From natural language to vector spaces

Be that as it may, the distributional approach to linguistics does have weak-
nesses. Distributional semantics operates almost entirely at the word level. This is
because there is no practical method to collect meaningful co-occurrence statistics
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at the sentence level. Rather, to go from word vectors to sentence vectors we must
provide a composition operation. However, no obvious procedure exists. Another
limitation of the distributional model is the lack of any notion of entailment. Inter-
estingly, the weaknesses of distributional semantics are precisely the strengths of
compositional semantics and vice versa. It is in this sense that the compositional
and distributional approaches to semantics have traditionally been viewed to be
orthogonal.

3.2 Pregroup Grammar

Pregroup grammars are a class of type-logical grammar [32, 33]. A pregroup gram-
mar consists of atomic grammatical types which can combine to freely generate
compound types. A series of application rules permit type reductions (i.e. composi-
tion) and type introductions. These rules form the basis of syntactic analysis.

Definition 3.1 (Partially Ordered Monoid). A partially ordered monoid (P,≤, ·, 1)
is a partially ordered set, equipped with a monoid multiplication − · − with unit 1 where
for p, q, r ∈ P

p ≤ q ⇒ r · p ≤ r · q and p · r ≤ q · r (3.1)

Definition 3.2 (Pregroup). A pregroup (P,≤, ·, 1, (−)l, (−)r) is a partially ordered
monoid whose each element p ∈ P has a left adjoint pl and a right adjoint pr obeying the
inequalities

pl · p ≤ 1 ≤ p · pl and p · pr ≤ 1 ≤ pr · p (3.2)

Let us unravel this definition. P is simply a set of objects {p, q, r, . . .}. ≤ denotes
a partial ordering on P, i.e. an ordering relation between the elements of P. − · −
is an associative, non-commutative monoid multiplication operator which can be
thought of as a function − · − : P × P → P. For instance, if p, q ∈ P, then we
have p · q ∈ P. This means that P is closed under this operation. 1 ∈ P is the unit,
satisfying p · 1 = 1 = 1 · p for p ∈ P, and is self-adjoint, i.e. 1r = 1 = 1l. Finally,
(−)l and (−)r are the adjoint generators, which can be thought of as functions
(−)l : P→ P and (−)r : P→ P such that for p ∈ P, pl, pr ∈ P. Adjoints are further
described by a number of properties:

1. Adjoints are unique.
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2. Adjoints are order reversing: p ≤ q⇒ qr ≤ pr and ql ≤ pl.

3. Multiplication is self-adjoint: (p · q)r = qr · pr and (p · q)l = ql · pl.

4. Opposite adjoints annihilate each other: (pl)r = p = (pr)l.

5. Same adjoints iterate: pll · pl ≤ 1 ≤ prr · pr, plll · pll ≤ 1 ≤ prrr · prr, . . . .

Pregroups are useful because they allow us to formalize grammar. (Hence-
forth, we use an arrow→ for ≤ and drop − · − between juxtaposed types.) First,
we fix a set of basic grammatical roles, e.g. {n (noun), s (sentence), . . . }, and a
partial ordering between them. Next, we freely generate a pregroup of these
types, e.g. {. . . , nnl (adjective), nrsnl (transitive verb), . . . }, via application of ad-
joints and juxtaposition to form compound types from atomic types. A type (atomic
or compound) is then assigned to each word of a lexicon depending on its syntac-
tic role. We define a string of words to be grammatical if there exists a reduction
from the type of the expression to the basic type s, i.e. sentence.

As an example, consider the sentence Comedians tell jokes. Comedians and jokes
are nouns of type n, and tell is a transitive verb of type nrsnl.1 Therefore, the type
of Comedians tell jokes is:

Comedians tell jokes
n (nrsnl) n

(3.3)

and the expression is grammatical because of the following reduction:

n(nrsnl)n→ (nnr)s(nln)→ 1s1→ s (3.4)

We can depict reductions more conveniently using a diagrammatic notation. Re-
ductions are represented by underlinks between contracting types (and introduc-
tions are represented by overlinks between expanding types). So (3.3) and (3.4)
together can be interpreted as:

n nr s nl n

Comedians tell jokes

(3.5)

1When dealing with compound types, it is helpful to consider an adjoint pr as expressing, “Ex-
pects type p on the left”, and an adjoint pl as expressing, “Expects type p on the right” (and vice
versa).
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(3.5) illustrates rather neatly how noun arguments compose with a transitive verb
to produce a sentence. What’s more, we can see how word order contributes to
semantics: Comedians on the left is the subject argument and jokes on the right is the
object argument.

3.3 Basic Category Theory

The mathematical model of language we present is category-theoretic. Category
theory is a branch of pure mathematics which formalizes mathematical structure
and its concepts in terms of a collection of objects and morphisms. Its simplicity and
compact conceptual language make category theory both general and specific. Cat-
egorical axioms allow the deduction of new specific properties of existing theories,
and shared categorical representations enable communication between properties
of unconnected theories. The power of category theory is precisely its capacity to
pass information within and across mathematical structures. The DISCO model
of semantics harnesses this potential in order to unify the seemingly orthogonal
compositional and distributional models of semantics.

3.3.1 Monoidal Categories

Definition 3.3 (Monoidal Category). A (strict) monoidal category C is defined by

1. A family |C| of object such that

(a) For each ordered pair of objects (A, B), there is a corresponding set C(A, B) of
morphisms. We denote f ∈ C(A, B) by f : A→ B.

(b) For each ordered triple of objects (A, B, C), each f : A → B, and g : B → C,
there is a sequential composite g ◦ f : A→ C. We moreover required that

(h ◦ g) ◦ f = h ◦ (g ◦ f ) (3.6)

(c) For each object A, there is an identity morphism 1A : A→ A. For f : A→ B
we moreover require that

f ◦ 1A = f 1B ◦ f = f (3.7)

2. For each ordered pair of objects (A, B), there is a composite object A⊗ B. We more-
over require that

(A⊗ B)⊗ C = A⊗ (B⊗ C) (3.8)
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3. There is a unit object I which satisfies

I⊗ A = A = A⊗ I (3.9)

4. For each ordered pair of morphisms ( f : A → C, g : B → D), there is a parallel
composite f ⊗ g : A⊗ B→ C⊗ D. We moreover require bifunctoriality, i.e.

(g1 ⊗ g2) ◦ ( f1 ⊗ f2) = (g1 ◦ f1)⊗ (g2 ◦ f2) (3.10)

Monoidal categories admit an intuitive operational interpretation. We can think
of objects as types of systems and morphisms as processes which take systems of
one type (i.e. input) to systems of another type (i.e. output). Composition of mor-
phisms is then just sequential application of processes, and compound types, e.g.
A⊗ B, represent joint systems. We can think of I as the trivial system, i.e. ‘nothing’,
and so the morphisms β : I→ A and θ : A→ I correspond to states (or elements) of
A and co-states of A, respectively.

An interesting property of monoidal categories is that they are equipped with
a beautiful, purely diagrammatic calculus in the sense that a provable equational
statement between morphisms in a monoidal category must be derivable in the
graphical language [51]. In fact, this is true not only for monoidal categories,
but also for those with additional structure, including compact closed categories
(which we will encounter shortly). In this graphical calculus, we depict morphisms
as boxes, with incoming and outgoing wires labelled with corresponding types.
Sequential composition is conveyed via connecting matching outputs and inputs,
and parallel composition is illustrated by juxtaposing boxes side by side. Identity
is seen as a naked wire, and the unit is an empty diagram, i.e. ‘nothing’. (Follow-
ing convention, we depict information flow from top to bottom.) For example, the
morphism f : A → B and an object A with the identity 1A : A → A are depicted
as:

f

A

B

A

(3.11)
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The object A⊗ B and the morphisms f ⊗ g and h ◦ f , where f : A→ B, g : C → D,
and h : B→ C, are depicted as:

f

A

B D

g

C

A B

f

B

C

h

A

(3.12)

The morphisms β : I→ A, θ : A→ I, and θ ◦ β : I→ I, are depicted as:

= A
β

β

θ

θ ◦ β

θ

A

A

(3.13)

3.3.2 Compact Closed Categories

Definition 3.4 (Compact Closed Category). A monoidal category is compact closed
if for each object A there are also objects Ar, Al, and morphisms

ηl : I→ A⊗ Al εl : Al ⊗ A→ I ηr : I→ Ar ⊗ A εr : A⊗ Ar → I (3.14)
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which satisfy (the ‘yanking’ equations)

(1A ⊗ εl) ◦ (ηl ⊗ 1A) = 1A (εr ⊗ 1A) ◦ (1A ⊗ ηr) = 1A

(εl ⊗ 1Al) ◦ (1Al ⊗ ηl) = 1Al (1Ar ⊗ εr) ◦ (ηr ⊗ 1Ar) = 1Ar (3.15)

Diagrammatically, ε maps are depicted by ‘cups’ (i.e. underlinks) and η maps
by ‘caps’ (i.e. overlinks). Their composition boils down to ‘yanking wires’. For
instance, εl : Al ⊗ A → I, ηl : I → A⊗ Al, and (εl ⊗ 1Al) ◦ (1Al ⊗ ηl) = 1Al are
depicted as:

Al

A Al

A

Al A Al

=
Al

(3.16)

3.4 A Pregroup as a Compact Closed Category

By the compositional hypothesis, the particular model of meaning we want to use
is type-logical. Let P be a pregroup. P is an example of a posetal category, i.e. a
category which is also a partially ordered set. For any two objects in P there is
either one or no morphism between them. For example, the morphism A → B
is written as A ≤ B. For ‘objects’ p, q, r ∈ P, [p ≤ q] is the singleton {p ≤ q}
whenever p ≤ q and the empty set otherwise. Furthermore, if p ≤ q and q ≤ r,
p ≤ r is naturally defined as the composite of the ‘morphisms’ p ≤ q and q ≤ r. In
addition, P is equipped with associative monoid multiplication which behaves as
tensor on objects. As such, for p ≤ r and q ≤ s, we have p · q ≤ r · s by monotonicity
of monoid multiplication. Again, p · q ≤ r · s is naturally defined as the tensor of
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‘morphisms’ [p ≤ r] and [q ≤ s]. Moreover, we define 1 as the monoidal unit and
note that bifunctoriality is trivially satisfied since there can only be one morphism
between any two objects. In sum, the underlying category is given by the partial
order, and its monoidal structure is induced by the anatomy of the pregroup.

Proposition 3.1 (Compact Closure in P). P is a compact closed category.

Proof. Recalling that each object p ∈ P has unique left and right adjoints, P is a
compact closed category for

ηl = [1 ≤ p · pl] ηr = [1 ≤ pr · p]
εl = [pl · p ≤ 1] εr = [p · pr ≤ 1] (3.17)

The axioms of compact closure are trivially satisfied. Examining the first ‘yanking’
equation, we have

(1⊗ εl) ◦ (ηl ⊗ 1) :: p = 1 · p (3.18)

≤ (p · pl) · p (3.19)

= p · (pl · p) (3.20)

≤ p · 1 (3.21)

= p (3.22)

Similar calculations verify that the other ‘yanking’ equations also hold. Note that,
diagrammatically, the underlinks (and overlinks) representing type reductions (and
introductions) in pregroup grammars are exactly the ‘cups’ (and ‘caps’) of the com-
pact closed structure.

3.5 Vector Spaces, Linear Maps, and Tensor Product as
a Compact Closed Category

By the distributional hypothesis, the particular model of meaning we want to use
is vector spatial. Let FVect be the category of vector spaces over the base field R

with linear maps (between vectors spaces) as morphisms, the vector space tensor
product as the monoidal tensor, and the base field R as the monoidal unit. Fur-
thermore, let us assume that each vector space V comes with an inner product
operation 〈 | 〉 : V × V → R (a fixed basis canonically induces an inner prod-
uct). In FVect, the tensor is commutative, i.e. V ⊗W ∼= W ⊗ V, since any tensor
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is isomorphic to its permutations. Moreover, adjoints are degenerate in FVect, i.e.
V l = Vr, so we denote either by V∗, which is the identity map, i.e. V∗ = V. This is
because the adjoint of a vector space is its co-vector space – the elements of which
are the conjugate transpose of the elements of the original vector space – but the
conjugate transpose of a real-valued vector is just its transpose.

Proposition 3.2 (Compact Closure in FVect). FVect is a compact closed category.

Proof. Given a vector space V with basis {ei}i, we can verify that compact closure
arises via setting V l = Vr = V

ηl = ηr : R→ V ⊗V :: 1 7→∑
i

ei ⊗ ei (3.23)

and

εl = εr : V ⊗V → R :: ∑
ij

cijvi ⊗wj 7→∑
ij

cij〈vi | wj〉 (3.24)

Now consider the third ‘yanking’ equation. Letting v ∈ V, we have

(εl ⊗ 1V) ◦ (1V ⊗ ηl) :: v 7→ v⊗ (∑
i

ei ⊗ ei) (3.25)

= ∑
i
(v⊗ ei)⊗ ei (3.26)

7→∑
i
〈v | ei〉ei (3.27)

= v (3.28)

Diagrammatically, we can interpret (3.25)→ (3.28) as:

V V V
=

V

v v

(3.29)

Similar calculations verify that the other ‘yanking’ equations also hold.
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3.6 From Syntax to Semantics

Up until this point, we have described two aspects of language in terms of mathe-
matical structures which realize compact closure: grammar and meaning. Pregroups
can be used to characterize the grammatical architecture underlying a language,
and vector spaces can be used to assign meanings to words of a language. It is use-
ful to think of these two compact closed categories as structures we can project out
of language (P is the free pregroup generated from the atomic types of a natural
language):

language

PFVect

grammarmeaning

Figure 3.3: Projecting grammar and meaning out of language

The aim of the DISCO model of semantics is to unify both of these aspects of
language. This requires either the compositional structure of pregroups to lift to
the level of assigning meaning to sentences and their constituents, or dually, a
mechanism to compute the meaning of a sentence from the structure of assign-
ing meaning to words. The symmetry of FVect, i.e. V l = Vr = V, renders the
singular compact closed structure too primitive for this task. What’s more, the ex-
istence of canonical isomorphisms V ⊗W → W ⊗ V implies that meaning is pre-
served under different word ordering – in general, (at least in English language)
we model meaning to be dependent on word order (e.g. we expect different se-
mantic interpretations of Comedians tell jokes and Jokes tell comedians). A method
sophisticated enough to combine grammar and language must refine types to re-
tain the full grammatical content obtained from the pregroup analysis. [12] pro-
poses a simple solution to the problem: rather than objects in FVect, we consider
objects in the product category FVect× P. Specifically, FVect× P is the category
which has pairs (V, p), with V a vector space and p ∈ P, as objects, and pairs
( f ,≤) : (V, p) → (W, q), with f a linear map and ≤ a pregroup ordering relation,
as morphisms, which we can also write as ( f : V → W, p ≤ q). There exists a
morphism ( f ,≤) : (V, p) → (W, q) only if there exists a morphism f : V → W in
FVect and an ordering relation p ≤ q in P.
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language

PFVect

grammarmeaning

FVect× P
πm πg

Figure 3.4: FVect× P

Since both FVect and P are compact closed, it is straightforward to show that
FVect× P is as well. The compact closed structure of FVect and P lifts component-
wise to the product category FVect× P.

Proposition 3.3 (Compact Closure in FVect × P). FVect × P is a compact closed
category.

Proof. Given a vector space V with basis {ei}i, and recalling that each object p ∈ P
has unique left and right adjoints, FVect× P is a compact closed category for

(ηl,≤) : (R, 1)→ (V ⊗V, p · pl) (ηr,≤) : (R, 1)→ (V ⊗V, pr · p)
(εl,≤) : (V ⊗V, pl · p)→ (R, 1) (εr,≤) : (V ⊗V, p · pr)→ (R, 1) (3.30)

Now consider the second ‘yanking’ equation. Letting v ∈ V, we have

((εr,≤)⊗ (1V , 1)) ◦ ((1V , 1)⊗ (ηr,≤)) :: (v, p) 7→ (v⊗ (∑
i

ei ⊗ ei), p · (pr · p))

(3.31)

= (∑
i
(v⊗ ei)⊗ ei, (p · pr) · p)

(3.32)

7→ (∑
i
〈v | ei〉ei, 1 · p) (3.33)

= (v, p) (3.34)

Analogous computations verify that the other ‘yanking’ equations also hold.

FVect × P provides a mathematical structure rich enough to integrate gram-
mar and meaning in natural language such that we can compute the meaning of a
sentence from the meanings of words. In fact, this procedure is just a morphism in
FVect× P.
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Definition 3.5 (Meaning Space). We refer to an object (W, p) of FVect× P as a mean-
ing space. This consists of a vector space W in which the meaning of a word lives w ∈W
and the grammatical type p of the word.

Definition 3.6 (From Syntax to Semantics). We define the vector−−−−−→w1 · · ·wn of the mean-
ing of a string of words w1 · · ·wn to be

−−−−−→w1 · · ·wn ≡ f (w1 ⊗ · · · ⊗wn) (3.35)

where for (Wi, pi) meaning space of the word wi, the linear map f is built by substituting
each pi in [p1 · · · pn ≤ s] with Wi.

Thus, for ∆ = [p1 · · · pn → s] a morphism in P and f = ∆[pi\Wi] a linear map in
FVect, the following is a morphism in FVect× P:

(W1 ⊗ · · · ⊗Wn, p1 · · · pn)
( f ,≤)−→ (S, s) (3.36)

We call f the ‘from-meanings-of-words-to-meaning-of-a-sentence’ map.

The key idea behind the linear map f – taking us from meanings of words to
meaning of a sentence – is that the pregroup reductions guide the order in which
the compact closure maps are applied to the vector spaces. In other words, syntax
guides semantics.

Example 3.1 (Simple Positive Transitive Sentence). Consider the sentence

Comedians tell jokes. (3.37)

Comedians and jokes are both nouns of type n, and so Comedians, jokes ∈ N. tell
is a (positive) transitive verb of type nrsnl, and so tell ∈ N ⊗ S⊗ N.2 Therefore,
the linear map f encodes the following structural morphism in FVect× P:

(N ⊗ (N ⊗ S⊗ N)⊗ N, n(nrsnl)n)
( f ,≤)−→ (S, s) (3.38)

and arises from the syntactic reduction map (3.39):

f = εN ⊗ 1S ⊗ εN : N ⊗ (N ⊗ S⊗ N)⊗ N → S (3.39)

In graphical notation, the linear map of meaning f is depicted as:

2We can think of the meaning vector of a transitive verb as a function that inputs a subject from
N, an object from N, and outputs a sentence S.
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N N S N N

(3.40)

The matrix of f has dim(N)2 × dim(S)× dim(N)2 columns and dim(S) rows, and
its entries are either 0 or 1. When applied to the vectors of the meanings of the
words, i.e. f (Comedians⊗ tell⊗ jokes) ∈ S, we obtain:

N N S N N

Comedians tell jokes

(3.41)

Letting Comedians = ∑i cini, tell = ∑jkl cjklnj ⊗ sk ⊗ nl, and jokes = ∑m cmnm,
where {ni}i and {sj}j are orthonormal bases of N and S respectively, we have

−−−−−−−−−−−−→
Comedians tell jokes ≡ f (Comedians⊗ tell⊗ jokes) (3.42)

= εN ⊗ 1S ⊗ εN(Comedians⊗ tell⊗ jokes) (3.43)

= εN ⊗ 1S ⊗ εN((∑
i

cini)⊗ (∑
jkl

cjklnj ⊗ sk ⊗ nl)⊗ (∑
m

cmnm))

(3.44)

= εN ⊗ 1S ⊗ εN( ∑
ijklm

cicjklcmni ⊗ nj ⊗ sk ⊗ nl ⊗ nm) (3.45)

= ∑
ijklm

cicjklcm〈ni | nj〉sk〈nl | nm〉 (3.46)

= ∑
ijklm

cicjklcmδ
j
i skδm

l (3.47)

= ∑
k

sk ∑
il

ciciklcl (3.48)

∈ S (3.49)

where (3.46)→ (3.47) makes use of the fact that {ni}i forms an orthonormal basis
of N.
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Finally, we note that the diagrammatic calculus tells us that:

v F w
=

w

F

v

(3.50)

We call this the ‘swing’ rewrite rule. This simplifies the expression we need to com-
pute. With respect to our example (3.37), the right-hand side of (3.50) corresponds
to (3.46).

Example 3.2 (Complex Positive Transitive Sentence). Consider the sentence

Comedians tell funny jokes. (3.51)

Following on from the previous example, and recognizing that funny is an adjective
of type nnl with funny ∈ N⊗N, the linear map f encodes the following structural
morphism in FVect× P:

(N ⊗ (N ⊗ S⊗ N)⊗ (N ⊗ N)⊗ N, n(nrsnl)(nnl)n)
( f ,≤)−→ (S, s) (3.52)

and arises from the syntactic reduction map (3.53):

f = εN ⊗ 1S ⊗ εN ⊗ εN : N ⊗ (N ⊗ S⊗ N)⊗ (N ⊗ N)⊗ N → S (3.53)

The matrix of f has dim(N)2 × dim(S)× dim(N)2 × dim(N)2 columns and dim(S)
rows. When applied to the vectors of the meanings of the words we obtain:

N N S N N

Comedians tell funny jokes

NN

(3.54)
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Letting Comedians = ∑i cini, tell = ∑jkl cjklnj ⊗ sk ⊗ nl, funny = ∑mn cmnnm ⊗
nn, and jokes = ∑o cono, where {ni}i and {sj}j are orthonormal bases of N and S
respectively, we have

−−−−−−−−−−−−−−−−→
Comedians tell funny jokes ≡ f (Comedians⊗ tell⊗ funny⊗ jokes) (3.55)

= ∑
ijklmno

cicjklcmnco〈ni | nj〉sk〈nl | nm〉〈nn | no〉 (3.56)

= ∑
k

sk ∑
iln

ciciklclncn (3.57)

∈ S (3.58)

Hence, both of our examples (3.37) and (3.51) get mapped to a shared meaning
space via syntactically guided collapsing of tensor spaces. This is precisely the
power of the DISCO model of semantics: all well-formed strings of words, i.e.
sentences, exist within a common semantic space. An implication of this result is
that we can use the inner product to compare semantic vectors. This measure
is known as a degree of similarity, or cosine measure, between meanings of words in
distributional approaches to semantics [50]. The DISCO model of semantics allows
an extension of this measure to meanings of strings of words, such as (3.48) and
(3.57).

Definition 3.7 (Degree of Similarity). Two strings of words w1 · · ·wk and w′1 · · ·w′l
have a degree of similarity, or cosine distance, m – if and only if their pregroup reductions
result in the same grammatical type – where

m =
1

N × N′
〈

f (w1 ⊗ · · · ⊗wk) | f ′(w′1 ⊗ · · · ⊗w′l)
〉

(3.59)

for

N = | f (w1 ⊗ · · · ⊗wk)| N′ = f ′(w′1 ⊗ · · · ⊗w′l) (3.60)

and

|v|2 = 〈v | v〉 (3.61)

with f and f ′ defined as the meaning maps.



3.7. Frobenius Algebra 51

3.7 Frobenius Algebra

A recent extension to the field of compositional distributional semantics concerns
an account of subject and object relative pronouns within the categorical frame-
work [47]. The difficulty with modelling pronouns in a distributional setting is that
contextual analysis fails to provide adequate semantic representations. This is be-
cause pronouns tend to appear near a great number of words, and so co-occurrence
statistics naturally produce dense general vectors. [47] develops a semantic model
of relative pronouns using the general operations of a Frobenius algebra over vec-
tor spaces. In this interpretation, relative pronouns play purely structural roles
involved in the passing of information between clauses, as well as the combining,
copying, and deleting of components of the relative clause.

In the category of finite dimensional vector spaces and linear maps FVect, a
vector space V with a fixed basis {vi}i has a Frobenius algebra over it, explicitly
given by:

∆ :: vi 7→ vi ⊗ vi ι :: vi 7→ 1

µ :: vi ⊗ vj 7→ δ
j
i vi =

{
vi, i = j
0, i 6= j

ζ :: 1 7→∑
i

vi (3.62)

where the Frobenius condition is:

(µ⊗ 1A) ◦ (1A ⊗∆) = ∆ ◦ µ = (1A ⊗ µ) ◦ (∆⊗ 1A) (3.63)

Furthermore, Frobenius algebras over vector spaces with orthonormal bases are
commutative and special. A commutative Frobenius algebra satisfies the following
two conditions for σ : A⊗ B→ B⊗ A (the ‘swap’ morphism):

σ ◦∆ = ∆ µ ◦ σ = µ (3.64)

A special Frobenius algebra satisfies the following axiom:

µ ◦∆ = 1 (3.65)

The vector spaces considered in the DISCO model of semantics have fixed or-
thonormal bases. As such, commutative and special Frobenius algebras exist over
them.
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Diagrammatically, we can depict the monoid and comonoid morphisms as:

(µ, ζ)(∆, ι)

(3.66)

The Frobenius condition is depict as:

= =

(3.67)

What’s more, the definitions of a commutative special Frobenius algebra ensure
that any graphical depiction of a Frobenius operation can reduced to a normal
form dependent solely on the number of input and output connections of the nodes
(independent of their topology). These normal forms can be simplified to ‘spiders’:

=

· · ·

· · ·
· ·
·

· · ·

(3.68)

The pregroup types of relative pronouns – e.g. who(m), which, that – are nrnsln
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(subject) and nrnnllsl (object). These types result in the following reductions:

nr s nl nn nr n sl n

Subject Rel-Pr Verb Object

(3.69)

nr s nlnn nr n nll sl

Object Rel-Pr Subject Verb

(3.70)

The semantic role that relative pronouns play are revealed in their categorical vec-
tor space meaning. Relative pronouns serve to pass information from a clause to
a head noun via η maps, combine information via the µ map, and also discard a
clause via the ζ map, thus returning a modified noun via 1N.

The diagram of a meaning vector of a subject relative clause composing with a
head noun is:

N S N NN N NN S

Subject Rel-Pronoun Verb Object

(3.71)
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which reduces to:

N S N NN

Subject Verb Object

(3.72)

The diagram of a meaning vector of an object relative clause is:

N S NNN N NN S

Object Rel-Pronoun Subject Verb

(3.73)

which reduces to:

N S N NN

Subject Verb Object

(3.74)
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Example 3.3 (Subject Relative Pronoun). Consider the sentence

Comedians who tell jokes. (3.75)

Letting Comedians = ∑i cini, tell = ∑jkl cjklnj ⊗ sk ⊗ nl, and jokes = ∑m cmnm,
where {ni}i and {sj}j are orthonormal bases of N and S respectively, we have

−−−−−−−−−−−−−−−→
Comedians who tell jokes ≡ f (Comedians⊗who⊗ tell⊗ jokes) (3.76)

= µN ⊗ ιS ⊗ εN(Comedians⊗ tell⊗ jokes) (3.77)

= µN ⊗ ιS(Comedians⊗ (∑
jkl

cjklclnj ⊗ sk)) (3.78)

= µN(Comedians⊗ (∑
jkl

cjklclnj)) (3.79)

= ∑
ij

δ
j
i cini ∑

kl
cjklcl (3.80)

= ∑
i

cini ∑
kl

ciklcl (3.81)

∈ N (3.82)

(3.81) gives us an intuitive distributional representation of (3.75): the sum of the
subject individuals (i.e. comedians) weighted by the degree to which they have
acted on the object individuals (i.e. jokes) via the verb (i.e. tell).

Example 3.4 (Object Relative Pronoun). Consider the sentence

Jokes which comedians tell. (3.83)

Letting Jokes = ∑i cini, comedians = ∑j cjnj, and tell = ∑klm cklmnk ⊗ sl ⊗ nm,
where {ni}i and {sj}j are orthonormal bases of N and S respectively, we have

−−−−−−−−−−−−−−−−→
Jokes which comedians tell ≡ f (Jokes⊗which⊗ comedians⊗ tell) (3.84)

= εN ⊗ ιS ⊗ µN(comedians⊗ tell⊗ Jokes) (3.85)

= ιS ⊗ µN((∑
jlm

cjcjlmsl ⊗ nm)⊗ Jokes) (3.86)

= µN((∑
jlm

cjcjlmnm)⊗ Jokes) (3.87)

= ∑
im

δm
i cini ∑

jl
cjcjlm (3.88)

= ∑
i

cini ∑
jl

cjcjli (3.89)

∈ N (3.90)



The question of whether computers can think is like the
question of whether submarines can swim.

— Edsger Dijkstra

4
∣∣∣∣ Compositional Distributional

Cognition

[52] presents a view of cognition that incorporates two distinct but related lev-
els of formal description: “the continuous, numerical lower-level description of
the brain”, characterized in terms of a connectionist network, and “the discrete,
structural higher-level description of the mind”, characterized in terms of sym-
bolic rules [41]. The design of the Integrated Connectionist/Symbolic Architecture
(ICS) – a unified connectionist and symbolic cognitive architecture – is a novel ap-
proach to the computational modelling of the mind with much promise. However,
the tensor product representations used to codify the isomorphism between con-
nectionist and symbolic representations reveal a number of shortcomings. Firstly,
the representational space of a concept grows in size as more elements are added to
the compound. Secondly, only symbolic representations with the same underlying
structure can be compared.

As we have seen, [12] introduces a mathematical framework for a unification of
the distributional theory of meaning in terms of vector space models and the com-
positional theory of grammatical types. The compositional distributional (DISCO)
model of semantics utilises grammar in order to use composite spaces without in-
crease in size of the resulting meaning space and allows composite concepts to be
directly compared with their constituents, as well as the meaning of sentences of
varying length and structure to be compared. The similarities between the linguis-
tic problem motivating the DISCO model of semantics and the drawbacks of ICS
suggest that the interaction of quantum mechanics (QM) and cognitive science is
a fruitful area of research for artificial intelligence (AI). In our case, we aim to take
advantage of the DISCO architecture in order to harness the potential of ICS.

56
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ICS DISCO

f ∈ VF f w ∈W
rx ∈ V⊗|x|R rx p ∈ P

fi ⊗ rxi fi/rxi ( f ,≤) : (V, p)→ (W, q)

s = ∑i fi ⊗ rxi ∈ S∗ s = {fi/rxi} (W1 ⊗ · · · ⊗Wn, p1 · · · pn)
( f ,≤)−→ (S, s)

Table 4.1: Space of descriptions in ICS and DISCO

Here, we present the DISCO model of mind: compositional distributional cog-
nition (DISCOG). Specifically, we build a concrete QM model of ICS based on the
DISCO framework, putting together all the basic components of ICS – i.e. repre-
sentation, processing, harmony, and harmonic grammar – with a view to explor-
ing the results of a more sophisticated mathematical analysis. This work provides
the main deck of the bridge – linking cognitive science and quantum mechanics –
which we ultimately aim to build.

4.1 Unpacking Grammar

DISCOG hinges on adapting the approach layed out in [12] to allow grammatical
types describing ICS-like roles to be easily represented in a vector space.

4.1.1 ICS versus DISCO

Consider the sentence

Comedians tell jokes. (4.1)

At the process level in ICS, (4.1) corresponds to (4.3):

s = Comedians⊗ r0 + (tell⊗ r0 + jokes⊗ r1)⊗ r1 (4.2)

= Comedians⊗ r0 + tell⊗ r01 + jokes⊗ r11 (4.3)

In the DISCO model of semantics, (4.1) corresponds to (4.7):

−−−−−−−−−−−−→
Comedians tell jokes ≡ f (Comedians⊗ tell⊗ jokes) (4.4)

= εN ⊗ 1S ⊗ εN(Comedians⊗ tell⊗ jokes) (4.5)

= ∑
ijklm

cicjklcm〈ni | nj〉sk〈nl | nm〉 (4.6)

= ∑
k

sk ∑
il

ciciklcl (4.7)
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The tensors (Comedians⊗ r0), (tell⊗ r01), and (jokes⊗ r11) in (4.3) are pure ten-
sors and thus can be interpreted as pairs of vectors, i.e. (Comedians, r0), (tell, r01),
and (jokes, r11). These are pairs of a meaning of a word and its grammatical role
and almost identical to the pairs considered in the DISCO approach, i.e. those of
a meaning space of each word. A minor notational difference between the repre-
sentations is that, in ICS, the grammatical role rx is a genuine vector, whereas in
the DISCO model p remains a grammatical type. A major qualitative difference
between the two approaches, however, is that ICS treats all words as simple vec-
tors (∈ VF), whereas in the DISCO model the vector of a verb itself lives in a tensor
space, e.g. tell ∈ N ⊗ S ⊗ N, as do adjectives and other words with compound
types. Seeing that ICS realizes filler/role bindings via tensor product representa-
tions, this variance between the respective models is not so extreme. Still, intuition
tells us that certain words, such as adjectives and verbs, have fundamentally dif-
ferent structure to nouns and therefore warrant a more sophisticated treatment.

What’s important to remember is that, in ICS, information in the mind/brain
is processed by widely distributed connection patterns, i.e. weight matrices:

P(s) = W · s (4.8)

= (I⊗W) · s (4.9)

The reason why ICS provides a means of constructing simple networks which
compute arbitrarily complex symbolic (recursive) functions is due to the fact that
W possesses certain global structure: W is a certain product and sum of funda-
mental matrices, e.g. Wex0, Wex1, Wcons0, and Wcons1 in the case of a binary tree.
These matrices are precisely the kind of linear maps ICS employs to compute sym-
bolic representations. So (4.2) can be interpreted as:

Wcons0 · Comedians + Wcons1 · (Wcons0 · tell + Wcons1 · jokes) (4.10)

(4.10) makes clear how compositionality is achieved in ICS: fundamental matrices,
e.g. Wconsx, encode compositional rules.

As we have already noted, ICS represents all atomic fillers as simple vectors.
As such, learning compositionality amounts to learning the entries of fundamental
matrices which are general to a certain cognitive task. This is achieved via appli-
cation of a learning procedure to the underlying connectionist network. In the
DISCO model, analysis of word co-occurrence statistics gives us vectors which live
in tensor spaces for words with compound grammatical types (e.g. verbs, adjec-
tive, etc.). That being so, the DISCO model makes no difference in its approach
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to learning compositionality from conventional methods used in distributional se-
mantics to learn simple word vectors, i.e. linguistic fillers in ICS. Conceptually,
the contrast between the two approaches boils down to a choice between learning
algorithms: our implicit claim is that the former’s neural network model is biologi-
cally inspired and thus closer to cognitive learning. While a discussion on the pros
and cons of the respective learning algorithms is beyond the scope of this work,
the analysis thus far helps to shed light on how to endow grammatical types char-
acterizing ICS-like roles with vector space structure in order to formalize a DISCO

adaption of ICS which fundamentally rests on connectionist principles.
Examining (4.6), we recognize that cjkl, nj, and nl encode how the action com-

ponent sk of a transitive verb interacts, or composes, with its subject and object, or
arguments, respectively, to produce a sentence s ∈ S. Therefore, when shifting from
the DISCO model of semantics to ICS, we must faithfully represent these composi-
tional rules in a general way and in doing so extract a simple connectionist repre-
sentation of a transitive verb as well as other compound grammatical types. While
it may be tempting to separate the composite state tell – which is a linear combi-
nation of many separable tensors – we must be mindful of the fact that entangled
states are necessary to allow the flow of information between different subsystems
[28]. More concretely, to compute the meaning of the whole sentence, the meaning
of the verb will need to interact with the meaning of both the subject and the object,
so it cannot be decomposed into three disconnected entities:

u vF w
6=

Figure 4.1: Entanglement of a composite state

If all relational words were represented by separable tensors, the normalized mean-
ing of all sentences with verb as the verb would be identical and equivalent to the
S component of verb. Clearly, this is an undesirable property since Comedians tell
jokes and Reporters tell facts should not have the same meaning.1

The inherent difference between compound types and atomic types suggests
that our adaption of ICS must treat words like verbs in a distinct manner to nouns.

1Euclidian distance also detects differences in magnitude and therefore fairs marginally better
than the usual cosine measure, however, this metric has been shown to be inadequate for distribu-
tional models of meaning.
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Given that nouns are represented as simple vectors in both ICS and the DISCO

model of semantics, it seems appropriate to preserve their interpretation as atomic
(linguistic) fillers (∈ VF). As further motivation, intuition tells us that nouns are
the building blocks of language. Without nouns, we have no way of describing ob-
jects and therefore no method for ascribing properties to the fabric of the universe.
For this reason, we are inclined to model compound types – which correspond to
tensors in FVect via the linear map f – as roles.

This definition is, in fact, very natural. Realizations of compound types are
essentially functional arguments that encode entanglement. As such, they are
the perfect candidates for occupying roles which govern compositional rules in
DISCOG.2 A neat way to think about realizations of compound types is with ref-
erence to function pointers in programming languages. Instead of holding data
values, function pointers point to executable code within memory. When derefer-
enced, a function pointer invokes the function it points to and passes along argu-
ments just like a routine function call. In our case, realizations of the same com-
pound type point to some canonical function – equating to the logical aspect of
compositional semantics – however, pass unique arguments specified by entangle-
ment encoding – coinciding with the distributional approach to semantics.

4.1.2 Tensors as Roles

Let us reiterate that the point of modelling compound types as roles is to derive
a simple connectionist representation of the DISCO model of semantics. Doing
so will give us a semantic representation that we can then transfer over to our
adaptation of ICS, DISCOG. The hope is that our new computational model of
mind will solve the basic representational problems with ICS and, at the same
time, recover the fundamental connectionist notion of harmony. As a reminder,
the general cognitive representations considered in ICS are of the form:

W · f (4.11)

(4.11) denotes a filler/role binding f/r, where W is the realization of a role r and
f is the realization of a filler f.

Returning to our example (4.1), we now dissect the DISCO model of seman-
tics formulation (4.5) in order to extract a filler/role representation of meaning.
(Henceforth, we readily use the graphical notation which simplifies meaning com-
putations to a great extent and exposes information flow in a manner ideal for a

2The hint is in the name!
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rigorous, yet high level analysis.) In particular, we reduce (4.5) to (4.17) using the
diagrammatic calculus:

N N S N N

Comedians tell jokes

(4.12)

NSN

sk

N

Comedians jokes

N

nj nl

∑jkl cjkl

=

(4.13)

Comedians

∑jkl cjkl

jokes

nl

S

nj

sk

NN=

(4.14)
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∑jkl cjkl

=

nj

N

Comedians

N

S
nl

jokes

sk

(4.15)

Wtell

S

N

jokesComedians

N=

(4.16)

≡ N ⊗ N

Wtell

S

f

(4.17)
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Let us walk through this derivation. (4.12) is simply the application of the
meaning map f to the vectors of the meanings of the words: Comedians, tell, and
jokes. (4.13) then follows from unpacking the definition of tell. (4.14) is the result
of the ‘swing’ graphical rewrite rule. Next, (4.15) amounts to ‘sliding’ the summa-
tion and all of its components down the page. Since the topology of the structure
is preserved, (4.15) is equivalent to (4.14). We arrive at (4.16) via grouping together
the individual parts of the summation (on bottom) in (4.15) and defining a matrix
Wtell such that the equality holds (more on this later). Finally, we group together
the fillers (on top) in (4.16) to obtain (4.17) and define:

f ≡ Comedians⊗ jokes (4.18)

(4.17) gives us a nice representation derived from the DISCO model of seman-
tics that mirrors the filler/role perspective at the heart of ICS. Symbolically, we
can depict these pairings of fillers and roles as a dependency tree:

tell

Comedians

Subj

jokes

Obj

Figure 4.2: Example dependency tree

What is especially attractive about (4.17) is the immediate visualization of the pro-
cess by which connectionist properties percolate up3 to the symbolic level. Much in
the same way that system calls interface between a kernel-level operating system
and user-level applications in computer architecture, weight matrices that are real-
izations of roles connect the two layers of abstraction in our cognitive architecture:
the lower-level underlying connectionist network, i.e. central nervous system, and
the higher-level symbol manipulating computer, i.e. mind. Like an operating sys-
tem kernel, the connectionist network has privileged access to the hardware of the
brain with its own kind of CPU, memory, and I/O. Akin to user-level applications,
the mind – a rule-governed serial device – has its own set of registers and working
memory. In this sense, the weight matrices that realize roles in DISCOG form the
context boundary, or API, separating two very different modes of cognition.

3In our graphical notation, connectionist properties percolate down to the symbolic level since
by convention information flows from top to bottom in the diagrammatic calculus of monoidal
categories.
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It still remains to describe the internal structure of Wtell to establish the equality
between (4.15) and (4.16). Wtell is very closely related to the matrix of the linear
map f which takes us from meanings of words to meaning of a sentence. As we
have seen before, the matrix of f for our running example – Comedians tell jokes –
has dim(N)2 × dim(S)× dim(N)2 columns and dim(S) rows as shown in (4.19):

N N S N N

(4.19)

The difference between Wtell and the matrix of f boils down to our decision to par-
tition tensors and (simple) vectors into roles and fillers respectively – a procedure
that will ultimately prove to be crucial for distilling a simple ICS-like connection-
ist representation of compositionality inherent within the DISCO model. We now
illustrate the passage from f to Wtell.

Recall that {ni}i and {sj}j are orthonormal bases of N and S respectively. By
the rules of matrix algebra, we have

[∑
k

sk ∑
jl

cjcjklcl]n = ∑
jl

cjcjnlcl (4.20)

= ∑
jl

cjnlcjcl (4.21)

where [v]n is the nth component of a vector v. Setting cabc = cword
a:b:c and dV =

dim(V), we wan rewrite (4.21) as (4.23):

[
ctell

1:n:1 · · · ctell
j:n:l · · · ctell

dN :n:dN

]
· (


cComedians

1
...

cComedians
j

...
cComedians

dN

⊗


cjokes
1

...
cjokes

l
...

cjokes
dN


) (4.22)

≡ [Wtell]n · (Comedians⊗ jokes) (4.23)

where [Wtell]n is the nth row of the matrix Wtell with dim(N)× dim(N) columns
and dim(S) rows. Let [Wtell]

c
r denote the 1× dN-dimensional submatrix occupying

block entry row r column c of Wtell, i.e.

[Wtell]n =
[
[Wtell]

1
n [Wtell]

2
n · · · [Wtell]

dN
n

]
(4.24)
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Furthermore, let [tell](m,m+dN ] denote the ith dN-dimensional subvector of tell where
m = (i− 1)× dN with i = [1, dNdS], i.e.

tell =



[tell](0,dN ]

[tell](dN ,2dN ]
...

[tell][(m,m+dN ]
...

[tell](d2
NdS−dN ,d2

NdS]


(4.25)

where

[tell](m,m+dN ] =
[
ctell

j:k:1 · · · ctell
j:k:dN

]T
(4.26)

for j = d i
dS
e and k = i− [(j− 1)× dS]. We can construct Wtell from tell ∈ N⊗ S⊗

N via the equality:

[tell](m,m+dN ] = [Wtell]
c
r
T (4.27)

for i = [(c− 1)× dS] + r. (In other words, [Wtell]
c
r is the transpose of the ith dN-

dimensional subvector of tell that fills block entry row r column c of Wtell for
i = [(c− 1)× dS] + r.) Therefore, we have

tell =



[Wtell]
1
1

T

[Wtell]
1
2

T

...
[Wtell]

c
r
T

...

[Wtell]
dN
dS

T


(4.28)

where

Wtell =


[Wtell]

1
1 [Wtell]

2
1 · · · [Wtell]

dN
1

[Wtell]
1
2 [Wtell]

2
2 · · · [Wtell]

dN
2

...
... . . . ...

[Wtell]
1
dS

[Wtell]
2
dS
· · · [Wtell]

dN
dS

 (4.29)

=

 [Wtell]1
...

[Wtell]dS

 (4.30)



66 Chapter 4. Compositional Distributional Cognition

Hence, our final semantic representation for Comedians tell jokes is realized by (4.32):
−−−−−−−−−−−−→
Comedians tell jokes = Wtell · (Comedians⊗ jokes) (4.31)

≡Wtell · f (4.32)

∈ S (4.33)

where Wtell faithfully represents the compositional rules encoded in tell and f is
the tensor of atomic (linguistic) fillers, i.e. Comedians and jokes.

In sum, we have arrived at a simple connectionist representation of composi-
tionality derived from the DISCO model that is identical to the general cognitive
representations considered in ICS. As such, (4.17) offers some insight concerning
how realizations of well-formed symbols comprised of pairings of fillers and roles
can be mapped to a shared meaning space. This kind of approach will help us solve
the shortcomings encountered in ICS because realizations of symbolic represen-
tations no longer need live in an unbounded representational space S∗. What’s
more, symbolic representations with different underlying structures can now be
compared. It is important to note that from the standpoint of ICS and DISCOG,
cjkl in (4.17) are initially unknown.4 These values – which encode entanglement
– will be learned by the underlying connectionist network via backpropagation.
Nonetheless, a presentation of the formal equivalence between representations in
the DISCO model of semantics and DISCOG remains necessary.

4.2 An Alternative Connectionist Realization

Here, we formalize the ideas discussed in the previous section. First, we give a
connectionist account of the (ε, ι, and µ) maps required for information flow in
DISCOG.5 We then present an alternative connectionist realization taking us from
activation values to symbols that not only resolves the representational issues en-
countered in ICS, but also offers a more sophisticated notion of compositionality.
Our new realization notably differs from ICS in that our definition is recursive on
the matrix-vector multiplication operation. Thereafter, we work through a number
of linguistic examples which demonstrate the validity of our model and provide
explanatory value.

4A reasonable strategy could be to initialize cjkl with values learned from co-occurrence statis-
tics, as opposed to straightforward random initialization. However, such an approach would seem
to undermine the realism of our model of mind. Having said that, there is much debate in philos-
ophy of language regarding the extent to which language is innate. Hatching up an answer to this
question is a task for neuroscientists, biologists, linguists, philosophers, and the like.

5In the following sections, we assume the notation dV = dim(V).
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4.2.1 Information Flow

To enable compositional distributional information flow – which we believe to be
an elegant form of spreading activation – in the underlying connectionist network
of our cognitive architecture, we must offer a formal equivalence between the re-
duction maps used in the DISCO model of semantics and the mechanisms imple-
mented in DISCOG. This entails transforming the ε, ι, and µ maps into elementary
connectionist operations – linear associators. Once we have this basic instruction
set for linear processing in our network, we can then begin to explore the passage
from activation values to symbolic structures. In addition to proving the equiva-
lence between our fundamental connectionist operations and the pertinent com-
pact closure/Frobenius algebra maps, we provide supplementary computational
algorithms to construct our linear associators.

Proposition 4.1 (ε Map in FVect as Matrix-Vector Multiplication). For a tensor

t = v⊗ r⊗w (4.34)

∈ V ⊗ (V ⊗ S⊗W)⊗W (4.35)

with

r = (∑
ijk

cijkvi ⊗ sj ⊗wk) (4.36)

∈ V ⊗ S⊗W (4.37)

and {vi}i ≡ V, {sj}j ≡ S, and {wk}k ≡W, the ε map is defined by

εV ⊗ 1S ⊗ εW :: t 7→W · (v⊗w) (4.38)

where

W =


[W]11 [W]21 · · · [W]dV

1
[W]12 [W]22 · · · [W]dV

2
...

... . . . ...
[W]1dS

[W]2dS
· · · [W]dV

dS

 (4.39)

and

r =



[W]11
T

[W]12
T

...
[W]mn

T

...

[W]dV
dS

T


(4.40)
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where [W]mn is the transpose of the ith dW-dimensional subvector of r that fills block entry
row n column m of W for i = [(m− 1)× dS] + n.

Proof. (4.38) follows from (4.20)→ (4.30). (We can easily construct W by looping
through dW-dimensional chunks of r and inserting the transpose of each chunk in
the next available slot in W, where we index bottom-down right-to-left.)

Algorithm 1 Constructing ε in FVect
Require: r is a tensor (i.e. multi-dimensional array) in V ⊗ S⊗W

1: function ε(r)
2: dV ← LENGTH(r)
3: dS ← LENGTH(r[1])
4: dW ← LENGTH(r[1][1])
5: n← dS . n: # of rows
6: m← dV . m: # of block columns
7: W← [[[⊥]× dW for 1 to m] for 1 to n] . ⊥: empty
8: v← 1
9: s← 1

10: for i← 1 to m do . i: right-to-left
11: for j← 1 to n do . j: bottom-down
12: W[j][i]← TRANSPOSE(r[v][s])
13: s← s + 1
14: if s > dS then
15: v← v + 1
16: s← 1
17: return W . W: reduce matrix

Corollary 4.1 (Recursive ε Map Application in FVect). For a rank-(m+ 1+ n) tensor
r, the recursive application of m-left and n-right ε map reductions via a left-sided tensor
product argument (p1 ⊗ · · · ⊗ pm) and a right-sided tensor product argument (q1 ⊗
· · · ⊗ qn), i.e.

(p1 ⊗ · · · ⊗ pm)⊗ r⊗ (q1 ⊗ · · · ⊗ qn) (4.41)

is defined by

W · (pm ⊗ · · · ⊗ p1 ⊗ qn ⊗ · · · ⊗ q1) (4.42)

where

W = ε(r) (4.43)
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is our reduce matrix.

Proof. Recall that the underlinks representing type reductions in pregroup gram-
mars are exactly the ‘cups’ of a compact closed structure. Framing our recursive ε

map reductions in the diagrammatic calculus of pregroup analysis, we have

pm pr
m s ql

1
q1pr

1p1 ql
n qn

· · · · · · · · ·· · ·

(4.44)

Applying m + n ‘swing’ rewrite rules and remembering that the ε map takes us to
R in FVect (and 1 in P), we obtain

pm

pr
m s ql

1

q1

pr
1

p1

ql
n

qn

· · · · · ·

· · ·· · ·

(4.45)

pr
m · · · pr

1ql
n · · · ql

1 (on top) corresponds to the columns of W (i.e. entanglement val-
ues) and s corresponds to the rows of W (i.e. output). Likewise, pm · · · p1qn · · · q1

(on bottom) corresponds to the well-oriented tensor argument (i.e. filler values)
that W requires to ensure the correct connections between components in our
matrix-vector multiplication reformulation of the ε map. Hence, we arrive at

W · (pm ⊗ · · · ⊗ p1 ⊗ qn ⊗ · · · ⊗ q1) (4.46)

where W = ε(r) is our reduce matrix. The structure of W paired with the reverse
tensor product of the left- and right-sided arguments preserves the correct topol-
ogy of recursive ε map reductions. (Given the ε maps carry out most of the work
in computing symbolic meanings from constituent meanings, this result should
prove to be rather useful.)

Proposition 4.2 (ι Map in FVect as Matrix-Vector Multiplication). For a tensor

t = ∑
ijk

cijkvi ⊗ sj ⊗wk (4.47)
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∈ V ⊗ S⊗W (4.48)

with {vi}i ≡ V, {sj}j ≡ S, and {wk}k ≡W, the ι map is defined by

1V ⊗ ιS ⊗ 1W :: t 7→W · t (4.49)

where W is a matrix with dV × dS × dW columns and dV × dW rows and the nth row of
W, [W]n, has column entries

[W]mn =

{
1, m = ‘ijk′

0, m 6= ‘ijk′
(4.50)

where ‘ijk′ denotes entry [[(i− 1)× dS × dW ] + k] + [(j− 1)× dW ] for n = [(i− 1)×
dW ] + k and j = [1, dS] (i and k are fixed).

Proof.

1V ⊗ ιS ⊗ 1W :: t = ∑
ijk

cijkvi ⊗ sj ⊗wk (4.51)

7→∑
ijk

cijkvi ⊗wk (4.52)

where

[∑
ijk

cijkvi ⊗wk]n = ∑
j
[t]‘ijk′ (4.53)

= [W]n · t (4.54)

(The result of applying the ι map is a tensor – or simple vector – where for each
component we collapse, i.e. sum over, a given space.)

Proposition 4.3 (µ Map in FVect as Matrix-Vector Multiplication). For vectors

v = ∑
i

ciei (4.55)

w = ∑
j

c′jej (4.56)

in a vector space V with a fixed basis {ei}i, the µ map is defined by

µ :: v⊗w 7→W ·w (4.57)

where

W =


c1 0 · · · 0
0 c2 · · · 0
...

... . . . ...
0 0 · · · cdV

 (4.58)
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Proof.

µ :: v⊗w = (∑
i

ciei)⊗ (∑
j

c′jej) (4.59)

= ∑
ij

ciei ⊗ c′jej (4.60)

7→∑
ij

δ
j
i cic′jei (4.61)

= ∑
i

cic′iei (4.62)

=


c1 0 · · · 0
0 c2 · · · 0
...

... . . . ...
0 0 · · · cdV

 ·


c′1
c′2
...

c′dV

 (4.63)

= W ·w (4.64)

(When v⊗w ∈ V ⊗V is represented as a matrix, the result of applying the µ map
is a vector in V consisting of only the diagonal elements of v⊗w.)

Algorithm 2 Constructing ι in FVect
Require: t is a tensor (i.e. multi-dimensional array) in V ⊗ S⊗W

1: function ι(t)
2: dV ← LENGTH(t)
3: dS ← LENGTH(t[1])
4: dW ← LENGTH(t[1][1])
5: n← dV × dW . n: # of rows
6: m← dV × dS × dW . m: # of columns
7: W← [[0 for 1 to m] for 1 to n]
8: for i← 1 to dV do
9: for k← 1 to dW do

10: r← [(i− 1)× dW ] + k . r: row
11: b← [(i− 1)× dS × dW ] + k . b: start column
12: for j← 1 to dS do
13: c← b + [(j− 1)× dW ] . c: column
14: W[r][c]← 1
15: return W . W: delete matrix

The results presented in this subsection give us simple connectionist represen-
tations of information flow in compositional distributional semantics. These sup-
ply the basic operations at the heart of DISCOG. It is important to note that only
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Algorithm 3 Constructing µ in FVect
Require: v is a vector of length n

1: function µ(v)
2: W← [[0 for 1 to n] for 1 to n]
3: for i← 1 to n do
4: W[i][i]← v[i] . v[i]: ci

5: return W . W: match matrix

matrices which encode entanglement, i.e. reduce matrices, are fit to be learned via
backpropogation in the underlying connectionist network. (Our delete and match
matrices solely serve to discard and pair information respectively and so are purely
structural, following from the treatment of relative pronouns in [47].)

4.2.2 From Activation Values to Symbolic Structures

Now, we are ready to define the connectionist realization of a symbolic structure s
within our adapted model of ICS based on the DISCO framework.

Definition 4.1 (Matrix-Vector Binding). The binding f/r of a filler f to a role r is
realized as a vector f/Wr that is the matrix-vector multiplication of a matrix Wr realizing
r with a vector f realizing f,

f/Wr = Wr · f (4.65)

Definition 4.2 (Alternative Connectionist Realization). A symbolic structure s is de-
fined by a collection of structural roles {ri} each of which may be occupied by a filler fi,
where the realization f1 of f1 is the tensor product of a collection of realizations of atomic
fillers {aj} where aj ∈ VF (e.g. nouns in language). s is a set of constituents, each a
filler/role binding fi/ri. The connectionist realization of s is an activation vector

s = Wrn · fn (4.66)

that is the recursive matrix-vector multiplication of a matrix Wri realizing ri with a vector
fi realizing a filler/role binding fi−1/ri−1, i.e.

Wrn · fn = Wrn · (Wn−1 · frn−1) (4.67)

= Wrn · (Wrn−1 · (· · ·Wr1 · (a1 ⊗ · · · ⊗ am) · · · )) (4.68)
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To unpack (4.68), Wri encode entanglement and realize pregroup reductions
(i.e. information flow), while {aj} provide simple distributional arguments (i.e. the
building blocks of task-specific cognitive representations). As a sanity check, we
can verify that our alternative connectionist realization holds for our example Co-
medians tell funny jokes. Our analysis of ε maps in FVect as matrix-vector multipli-
cation tells us that

−−−−−−−−−−−−−−−−→
Comedians tell funny jokes = Wtell · (Comedians⊗

−−−−−−→
funny jokes) (4.69)

= Wtell · (Comedians⊗ [Wfunny · jokes]) (4.70)

= Wtell · ([IdN · Comedians]⊗ [Wfunny · jokes]) (4.71)

= Wtell · (IdN ⊗Wfunny) · (Comedians⊗ jokes) (4.72)

= Wtell ·W′ · (Comedians⊗ jokes) (4.73)

= W′′ · (Comedians⊗ jokes) (4.74)

where W′ = IdN ⊗Wfunny and W′′ = Wtell ·W′. Note that (4.69) and (4.74)
contrast the respective complex filler and complex role perspectives in our new
model. Since the realizations of Comedians tell jokes and Comedians tell funny jokes
now exist within a common semantic space thanks to the DISCO framework, we
can measure their similarity using the cosine distance:

〈
−−−−−−−−−−−−→
Comedians tell jokes |

−−−−−−−−−−−−−−−−→
Comedians tell funny jokes〉

|
−−−−−−−−−−−−→
Comedians tell jokes||

−−−−−−−−−−−−−−−−→
Comedians tell funny jokes|

(4.75)

Given our analysis from before, (4.75) reduces to:

〈
−−→
jokes |

−−−−−−→
funny jokes〉

|
−−→
jokes||

−−−−−−→
funny jokes|

(4.76)

Hence, the similarity between the two sentences boils down to the similarity be-
tween jokes and funny jokes.

So what have we achieved with our DISCOG representation in relation to ICS?
Well, the benefit of this new recursive representation is that filler/role bindings (i.e.
constituents) living in different subspaces of S∗ that make up a symbolic structure
s are now composed in such a way that all well-formed s, with respect to a cer-
tain cognitive task, are realized in a finite shared meaning space. This means that
we have a model of representation in higher cognition that is a combination of
filler/role bindings based on connectionist principles – as in ICS – which at the
same time leverages the power of the DISCO framework to resolve the problem of
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an unbounded representational space. Notably, the fillers and roles we consider
in DISCOG are genuine meaning vectors (e.g. Comedians, jokes, Wtell, etc.) as op-
posed to generic ones (e.g. noun, verb, WS→NP VP, etc.) as in ICS. In this sense,
DISCOG is a significant extension of ICS. In addition, our approach allows the com-
parison of well-formed symbolic structures with different underlying ‘grammati-
cal’6 structures – a feature that ICS is unable to achieve. Ultimately, we can repre-
sent these matrices of compositional rules in a neural network and learn them via
backpropagtion. This reflects (we believe) a practical development with respect to
implementation of DISCO models. Looking at the bigger picture, the value in hav-
ing general matrix representations of compositional rules for a particular cognitive
task is that we can determine a formal equivalence between massively parallel dis-
tributed computations at a lower level in the cognitive architecture and arbitrarily
complex (recursive) symbolic functions at a higher level in the cognitive architec-
ture.

4.2.3 Toy Examples

Here, we walk through a number of toy linguistic examples to give the reader
a chance to verify the results presented in the previous subsections and to clar-
ify any confusion over the definitions of binding and connectionist realization in
DISCOG. We use simple toy distributional representations shown in (4.77) for our
computations. We assume N = R2 = S and let {ni}i and {sj}j denote orthonor-
mal bases of N and S respectively. comedians, jokes ∈ N, tell ∈ N ⊗ S⊗ N, and
funny ∈ N ⊗ N. Reading (4.77) is straightforward, e.g. [jokes]1 = 5, [tell]212 = 9,
[funny]12 = 7, and so on.

comedians jokes
7 5
4 1

tell
3 8 4 1
6 2 9 5

funny
2 6
7 3

(4.77)

Example 4.1 (Simple Positive Transitive Sentence). Consider the sentence

Comedians tell jokes. (4.78)

From (3.48), we know that the meaning vector of (4.78) is:
−−−−−−−−−−−−→
Comedians tell jokes = ∑

k
sk ∑

il
cComedians

i ctell
ikl cjokes

l (4.79)

6Here, ‘grammatical’ means the rules via which fillers may be composed in any cognitive task
that can be decomposed into a set of filler/role bindings, not limited to language understanding.
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=

[
7 · [(3 · 5) + (6 · 1)] + 4 · [(4 · 5) + (9 · 1)]
7 · [(8 · 5) + (2 · 1)] + 4 · [(1 · 5) + (5 · 1)]

]
(4.80)

=

[
263
334

]
(4.81)

From (4.66), we know that the meaning vector of (4.78) is:

−−−−−−−−−−−−→
Comedians tell jokes = Wtell · (Comedians⊗ jokes) (4.82)

= ε(tell) ·


7 · 5
7 · 1
4 · 5
4 · 1

 (4.83)

=

[
3 6 4 9
8 2 1 5

]
·


35
7

20
4

 (4.84)

=

[
263
334

]
(4.85)

Hence, (4.81) and (4.86) are the same.

Example 4.2 (Complex Positive Transitive Sentence). Consider the sentence

Comedians tell funny jokes. (4.86)

From (3.57), we know that the meaning vector of (4.87) is:

−−−−−−−−−−−−−−−−→
Comedians tell funny jokes = ∑

k
sk ∑

iln
cComedians

i ctell
ikl cfunny

ln cjokes
n (4.87)

= ∑
k

sk ∑
il

cComedians
i ctell

ikl c
−−−−−−→
funny jokes
l (4.88)

=

[
7 · [(3 · 17) + (6 · 33)] + 4 · [(4 · 17) + (9 · 33)]
7 · [(8 · 17) + (2 · 33)] + 4 · [(1 · 17) + (5 · 33)]

]
(4.89)

=

[
3203
2142

]
(4.90)

where

−−−−−−→
funny jokes = ∑

i
ni ∑

j
cfunny

ij cjokes
j (4.91)

=

[
(2 · 5) + (7 · 1)
(6 · 5) + (3 · 1)

]
(4.92)
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=

[
17
33

]
(4.93)

From (4.66), we know that the meaning vector of (4.87) is:

−−−−−−−−−−−−−−−−→
Comedians tell funny jokes = Wtell · ((IdN ⊗Wfunny) · (Comedians⊗ jokes))

(4.94)

= ε(tell) · (IdN ⊗ ε(funny)) · (Comedians · jokes)
(4.95)

=

[
3 6 4 9
8 2 1 5

]
·


2 7 0 0
6 3 0 0
0 0 2 7
0 0 6 3

 ·


35
7

20
4

 (4.96)

=

[
42 39 44 55
28 62 32 22

]
·


35
7

20
4

 (4.97)

=

[
3203
2142

]
(4.98)

Hence, (4.90) and (4.98) are the same.

Example 4.3 (Subject Relative Pronoun). Consider the phrase

Comedians who tell jokes. (4.99)

From (3.81), we know that the meaning vector of (4.99) is:

−−−−−−−−−−−−−−−→
Comedians who tell jokes = ∑

i
cComedians

i ni ∑
kl

ctell
ikl cjokes

l (4.100)

=

[
7 · [(3 · 5) + (6 · 1) + (8 · 5) + (2 · 1)]
4 · [(4 · 5) + (9 · 1) + (1 · 5) + (5 · 1)]

]
(4.101)

=

[
441
156

]
(4.102)

Let tellObj indicate that the role tell composes only with an object argument. As
such, our ε function assigns n ← dV × dS and m ← 1 on lines 5 and 6 of the
algorithm respectively – think of the argument tensor as r ∈ 1 ⊗ (V ⊗ S) ⊗W.
From (4.66), we know that the meaning vector of (4.99) is:

−−−−−−−−−−−−−−−→
Comedians who tell jokes = WComedians · (Wι · (WObj

tell · (jokes))) (4.103)
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= µ(Comedians) · ι(tellObj) · ε(tellObj) ·
[

5
1

]
(4.104)

=

[
7 0
0 4

]
·
[

1 1 0 0
0 0 1 1

]
·


3 6
8 2
4 9
1 5

 · [5
1

]
(4.105)

=

[
7 7 0 0
0 0 4 4

]
·


3 6
8 2
4 9
1 5

 · [5
1

]
(4.106)

=

[
77 56
20 56

]
·
[

5
1

]
(4.107)

=

[
441
156

]
(4.108)

Hence, (4.108) and (4.102) are the same.

Example 4.4 (Object Relative Pronoun). Consider the phrase

Jokes which comedians tell. (4.109)

From (3.89), we know that the meaning vector of (4.109) is:

−−−−−−−−−−−−−−−−→
Jokes which comedians tell = ∑

i
cJokes

i ni ∑
jl

ccomedians
j ctell

jli (4.110)

=

[
5 · [(7 · 3) + (7 · 8) + (4 · 4) + (4 · 1)]
1 · [(7 · 6) + (7 · 2) + (4 · 9) + (4 · 5)]

]
(4.111)

=

[
485
112

]
(4.112)

Let tellSubj indicate that the role tell composes only with a subject argument. As
such, our ε function assigns n ← dW × dS and m ← 1 on lines 5 and 6 of the algo-
rithm respectively – think of the argument tensor as r ∈ 1⊗ (W ⊗ S)⊗ V, hence
as a preprocessing step we switch subject and object indices (i.e. [tellSubj]kji =

[tell]ijk). From (4.66), we know that the meaning vector of (4.109) is:

−−−−−−−−−−−−−−−−→
Jokes which comedians tell = WJokes · (Wι · (WSubj

tell · (comedians))) (4.113)

= µ(Jokes) · ι(tellSubj) · ε(tellSubj) ·
[

7
4

]
(4.114)

=

[
5 0
0 1

]
·
[

1 1 0 0
0 0 1 1

]
·


3 4
8 1
6 9
2 5

 · [7
4

]
(4.115)
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=

[
5 5 0 0
0 0 1 1

]
·


3 4
8 1
6 9
2 5

 · [7
4

]
(4.116)

=

[
55 25
8 14

]
·
[

7
4

]
(4.117)

=

[
485
112

]
(4.118)

Hence, (4.118) and (4.112) are the same.

As such, these examples should give the reader confidence in our passage from
the DISCO model of semantics to DISCOG. It should be evident that our set of el-
ementary connectionist operations allows for an effortless application of the com-
positional distributional approach to ICS on account of our filler/role perspective.
Significantly, this approach enables the mapping of realizations of same-type sym-
bolic structures made up of filler/role bindings to a shared meaning space inde-
pendent of ‘grammatical’ structure, e.g. (4.78) and (4.86). What’s more, DISCOG

exploits the reductions (i.e. collapsing of high-dimensional vector spaces) of the
DISCO model to solve the headache of an unbounded representational space S∗ in
ICS, while at the same time extending filler representation to authentic meaning
vectors.

4.3 Unbinding Problem

One of the central assumptions of ICS is the respective linear independence of re-
alizations of filler and roles. This assumption guarantees that fillers and roles form
bases of their respective spaces which allows for a simple unbinding procedure.
The availability of an unbinding mechanism is essential to the hypothesis that con-
necetionist algorithms can precisely realize symbolic functions at a higher-level in
the cognitive architecture. Here, we detail the problems of the linear independence
assumption in DISCOG and offer a provisional solution.

4.3.1 A Case against Linear Independence

For a vector space V of dimension n, there can be at most n linearly independent
vectors. When we think about distributional representations this becomes a ma-
jor problem because the number of representations in a given space most certainly
exceeds the size of the space. As an example, the evolution of language which
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generates an ever-expanding lexicon highlights the falsehood of such an assump-
tion in the context of distributional word representation. The reason why [52] puts
forward the linear independence assumption is because the fillers considered in
ICS are of generic form, e.g. noun, verb, sentence, and so on. In this setting, there
are exponentially fewer fillers, so it is reasonable to claim that they are linearly in-
dependent. However, in that DISCOG is an extension of ICS working with bona
fide meaning vectors, we cannot enforce such a requirement without greatly re-
stricting say our vocabulary within a linguistic task. Ultimately, the issue of linear
independence is a trade-off between space and expressiveness. Since our model
exists in a finite-dimensional vector space corresponding to a finite connectionist
network, we will need some notion of approximate unbinding to recover many of
the important features of ICS.

4.3.2 Approximate Unbinding

In DISCOG, symbolic representations are realized via filler/role bindings. A role
r is realized as a matrix Wr and a filler f is realized as a vector f. Unbinding is
the procedure where we extract a filler from a binding. To achieve this, we require
a method to invert Wr. Inverting Wr poses some difficulty because we cannot
ensure Wr is invertible! The majority of Wr aren’t even square, e.g. Wtell which
has dim(N)× dim(N) columns and dim(S) rows (assuming dim(N)× dim(N) 6=
dim(S)). Given this, we propose using the generalized inverse for performing ap-
proximate unbinding [35].

Definition 4.3 (Moore-Penrose Pseudo Inverse). For M ∈ Rm×n, there exists a
unique M+ ∈ Rn×m such that the following conditions are satisfied:

1. M ·M+ ·M = M

2. M+ ·M ·M+ = M+

3. (M ·M+)T = M ·M+

4. (M+ ·M)T = M+ ·M

While the proofs of these equations is beyond the scope of this work, we note
some pertinent properties of the Moore-Penrose pseudo inverse:

1. If m = n and M is full rank, M+ = M−1.
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2. For

M · a = b (4.119)

where M ∈ Rm×n, a ∈ Rn, and b ∈ Rm

(a) If m > n, c = M+ · b is the solution that minimizes ||b − (M · c)||.
In other words, the Moore-Penrose pseudo inverse provides the least
squares solution to (4.119), i.e. c is such that M · c is the solution ‘closest’
to the desired solution vector b.

(b) If m < n, c = M+ · b is the solution that minimizes ||c||.

Using the Moore-Penrose pseudo inverse, we can now define our approximate
unbinding procedure.

Definition 4.4 (Approximate Unbinding). For a binding f/r of a filler f to a role r
realized as a vector f/Wr that is the matrix-vector multiplication of a matrix Wr realizing
r with a vector f realizing f, i.e. Wr · f, we approximately unbind f from r by application
of the Moore-Penrose pseudo inverse of Wr

W+
r · (Wr · f) ≈ f (4.120)

4.4 Parallel Distributed Processing

Given our presentation of an alternative connectionist realization and the availabil-
ity of an approximate unbinding procedure, it now seems appropriate to illustrate
how connectionist principles in our new model percolate up to the symbolic level.
The importance of this property is that we ensure our model can compute arbi-
trarily complex (recursive) symbolic functions in a massively parrallel distributed
fashion just like in ICS. As an example, we will define a simple function f that
takes a symbolic structure s representing a simple transitive sentence and returns
a symbolic structure t representing a complex transitive sentence where an adjec-
tive is applied to the object of s.

Example 4.5 (Object Adjective Application). Let the realization s of a simple posi-
tive transitive sentence s be

s = Wtrans · (subj⊗ obj) (4.121)
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where subj, obj ∈ N. To construct a complex positive transitive sentence t, we
apply an adjective realized by a matrix Wadj to obj:

t = Wtrans · (subj⊗ [Wadj · obj]) (4.122)

Claim 4.1 (Connectionist Realization of a Symbolic Function). The connectionist re-
alization of the symbolic function f :: s→ t is defined by

F (Wadj, s) = WF · s (4.123)

where

WF = Wtrans · (IdN ⊗Wadj) ·W+
trans (4.124)

Proof.

WF · s = [Wtrans · (IdN ⊗Wadj) ·W+
trans] · s (4.125)

= [Wtrans · (IdN ⊗Wadj) ·W+
trans] · [Wtrans · (subj⊗ obj)] (4.126)

= Wtrans · (IdN ⊗Wadj) · (W+
trans ·Wtrans) · (subj⊗ obj) (4.127)

≈Wtrans · (IdN ⊗Wadj) · IdN×dN · (subj⊗ obj) (4.128)

= Wtrans · (IdN ⊗Wadj) · (subj⊗ obj) (4.129)

= Wtrans · (IdN · subj)⊗ (Wadj · obj) (4.130)

= Wtrans · (subj⊗ [Wadj · obj]) (4.131)

= t (4.132)

Graphically, we can represent the symbolic function f as (4.133):

s

VP

ObjVt

Subj

7→

t

VP

NP

ObjAdj

Vt

Subj

Comedians tell jokes Comedians tell funny jokes

(4.133)

Hence, we can see how massively distributed and parallel spreading activation in
our underlying connectionist network realizes symbolic step-by-step algorithms at
the higher-level substrate of our cognitive architecture.
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4.5 Functional Harmony

One of the qualities of ICS is the characterization of the connectionist notion of
well-formedness, i.e. harmony. Harmony is a measure of the degree to which an
activation vector – or flow of information – in a connectionist network respects the
constraints encoded in the connections. To return back to our linguistic instance
of a cognitive task, we can think of the harmony of the realization s of a string of
words s as the extent to which s is grammatical, where the connectionist network
in this case is built from the fundamental matrices encoding grammatical composi-
tional rules which have been learned prior. In this sense, lower-level connectionist
principles inform analysis at a higher level in the cognitive architecture.

Conceptually, the matrices W in ICS that encode a set of harmonic constraints
pick out constituents in a representation s that satisfy the general compositional
rules of a ‘grammar’ – rules similar to those found in formal semantics. As we
have seen, the harmony of an activation vector is in fact equivalent to the harmony
of co-occurring constituents (ci,cj) in a symbolic structure s. In our framework, a
string of words s is grammatical if and only if it reduces to type s (i.e. a sentence),
where reductions are defined by a pregroup grammar. As such, it suffices to define
harmony from a higher level of analysis with respect to pregroup grammar and
work our way down to a connectionist definition.

4.5.1 Harmonic Symbols

In the DISCO model of semantics, grammatical rules are implemented via linear
maps. Therefore, it seems natural that our notion of harmony should be shaped in
some manner by harmony values that are assigned to each of the available linear
maps. A naive harmonic grammar could assign one point to each ε reduction:

n nr s nl n

Comedians tell jokes

+1 +1 (4.134)
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n nr s nl n

Comedians tell funny

+1 +1 +1

nl n

jokes

(4.135)

Given this definition, Comedians tell funny jokes (+3) would be more grammatical
than Comedians tell jokes (+2). From a purely symbolic perspective, it doesn’t seem
intuitive to claim that (4.135) is more well-formed than (4.134). Ultimately, both
strings of words reduce to a sentence and therefore should be deemed equally
grammatical. That being said, from a connectionist – or even aesthetic – perspec-
tive, there is an argument that a complex well-formed structure is more harmonic
than a simple well-formed structure since it satisfies more constraints. As an anal-
ogy, consider two computer programs. The first is an empty main() function. The
second is an implementation of VIRTUALMEMORY. Both programs compile. Sym-
bolically, a compiler makes no difference between its grammatical assessments of
the programs. However, at runtime, it would seem that the realizations of the pro-
grams at a lower level would warrant a more sophisticated notion of harmony that
accounts for complexity. But just as well, it is common thought that the simplest
programs are the most beautiful7! In this respect, we are hard-pressed to come
up with a faithful quantification of harmony because, simply put, it is hard to de-
scribe. Nevertheless, returning to (4.134) and (4.135), it would appear that our
naive harmonic grammar is inadequate because ungrammatical sentences with a
large number of ε reductions are assigned high harmony:

n nr s nl

+1

snr nl n n nl n nlnr s

+2+1

· · · · · ·

(4.136)

An obvious solution to this problem is to reframe the goal of harmony maxi-
mization in ICS to the objective of harmony balancing in DISCOG. In this formula-
tion, a symbolic structure is considered well-formed if its harmony value is close
to some point of equilibrium. As such, we could assign positive values to atomic
types (e.g. n, s, etc.) and corresponding negative values to adjoints (e.g. nl, sr, etc.).
Specifically, we want the harmony of a well-formed symbol s to evaluate to the

7We make the assumption that the word beautiful in some sense captures a notion of well-
formedness.
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harmony allocated to the type considered grammatical in a certain cognitive task.
So for language, all well-formed strings of words should have harmony equal to
the harmony value assigned to the type s (i.e. a sentence). We can assign differ-
ent values to different types to help us distinguish symbolic structures of one type
from those of another:

n nr s nl n

Comedians tell jokes

+1
+2
−1 +1−1

(4.137)

−1

n

jokes

+1
+2

tell

s nl

+1

nr

+1−1

funny

−1

nn nl

Comedians

(4.138)

n nr s nl

+1

snr nl n n nl n nlnr s

+1+1

· · · · · ·

+1

+2+2+2 −1

−1 −1−1

−1−1

−1

(4.139)

This kind of scheme attempts to identify a bijective correspondence between fillers
and roles in a symbolic structure as the condition for optimal harmony. As mo-
tivation for this definition, let us briefly remark on our interpretation of fillers as
arguments to functions pointed to by roles. A function is properly invoked when
the correct parameters are supplied. Since roles act as an API interfacing the lower-
and higher-level layers of our cognitive architecture, for a binding to be properly
realized this computational contract must be respected. Therefore, it seems reason-
able to give an account of harmony that rests on the accurate pairing of arguments
with argument slots, i.e. fillers with roles. However, as we can see in (4.139), a
simple summation of harmony values does not capture the notion of correct pair-
ing due to the commutative property of addition. A collection of harmony values
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{+1,+1,+1} – as in (4.139) – indicates the presence of three unbound nouns as
just one possible set of symbolic structures within an infinite space of variations.
Note that these structures do not interact, hence in the functional setting of harmony
balancing, we consider these harmonies separate (more on this coming up).

Nonetheless, it is important to remind ourselves that although well-formedness
is a strict notion, harmony is simply a graded measure that should inform a network
how to fix an activation vector. Given this, we recommend proceeding with our
notion of harmony balancing which seems to be a more fitting characterization of
well-formedness in comparison to harmony maximization. One thing we must al-
ter though is the operation by which harmony values are combined. Since connec-
tionist realization in DISCOG is recursive on matrix-vector binding, the operation
used to compose harmony values should be multiplication. We model harmony
balancing by mapping positive harmony values to values greater than 1 and neg-
ative harmony values to corresponding (reciprocal) values between 0 and 1. The
net effect is the same as in the additive case: the harmony of a well-formed sym-
bolic structure is equal to the harmony value assigned to the first-class type of a
cognitive task (e.g. H(s) in language). We use harmony values which are powers
of 2 for ease of representation and efficiency of bitwise operations (with a view to
implementation at the connectionist level):

n nr s nl n

Comedians tell jokes

2
4

1
2 21

2
(4.140)

1
2

n

jokes

2
4

tell

s nl

2

nr

21
2

funny

1
2

nn nl

Comedians

(4.141)
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n nr s nl

2

snr nl n n nl n nlnr s

22

· · · · · ·

2

444 1
2

1
2

1
2

1
2

1
2

1
2

1
2

(4.142)

Using this multiplicative notion of harmony balancing – which we refer to as func-
tional harmony – we now give a working definition of harmony in DISCOG.

Definition 4.5 (Functional Harmony of a Symbolic Representation). Suppose s is a
symbolic structure with constituents {ci}. Then the functional harmony of s is defined by

H(s) = ×iH(ci) (4.143)

where H(ci) – the harmony resulting from the occurrence of ci – is a constant for all s.

Although not obvious, our definition of harmony fundamentally rests on com-
positional principles. The harmony of a constituent, i.e. H(ci), is defined in relation
to other constituents cj via our recursive definition of connectionist realization.
Suppose the harmony of a (grammatical) transitive sentence s is 4. Then the har-
mony of the fillers it is composed of must multiply to 4, i.e. H(s) = H(f1)×H(f2).
This is because the harmony of a binding represents how well its constituents com-
pose, and the method of composition in DISCOG is matrix-vector binding. As such,
we can think of roles in well-formed structures as the multiplication operators (×)
in (4.143). To elaborate, roles do not ‘have’ harmony in as much as they serve to
inform the relationship by which we can assess the well-formedness of filler com-
position. Examining (4.141), we see that the harmony values ‘assigned’ to tell and
funny evaluate to 1. 1 is the unit of multiplication. Therefore, roles have no effect
on the total harmony of a symbolic structure beyond advising what harmonies of
argument fillers are required to achieve the most harmonic complex filler upon
binding, i.e. a state of equilibrium.

One might worry that our definition allows for a trivial notion of harmony
since if the harmony of a symbolic structure is just the multiplication of constituent
harmonies, any set of the right number of atomic fillers results in a ‘well-formed’
structure. However, this is not the case. We remind the reader that symbolic struc-
tures are formed via a binding mechanism. Thus, if there is no binding, there is no
recursion, and there can only be one constituent in the structure. (To say otherwise
would be equivalent to claiming that an atomic symbol is complex!) It is in this
sense that our definition of harmony is functional.
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Here, we give some simple harmony calculations for further clarification. We
assume that a phrase is well-formed (i.e. a sentence) if it is composed of two nouns.
We denote our harmonic grammar by

HG ≡ {H(s) = H(n)× H(n)} (4.144)

The absence of a multiplication operation (×) between harmony values indicates
harmonies of separate symbolic structures – so we can think of our harmony func-
tion as returning a set of harmony values, i.e. one for each structure.

Example 4.6 (Complex Positive Transitive Sentence). Consider the phrase

Comedians tell funny jokes. (4.145)

Let s represent (4.145). The harmony of s is defined by

H(s) = ×iH(ci) (4.146)

= H(Comedians)× H(tell)× H(funny jokes) (4.147)

= H(Comedians)× 1× [H( f unny)× H(jokes)] (4.148)

= H(Comedians)× [1× H(jokes)] (4.149)

= H(Comedians)× H(jokes) (4.150)

= H(n)× H(n) (4.151)

Hence, (4.145) is well-formed.

Example 4.7 (Noun Phrase). Consider the phrase

Funny jokes. (4.152)

Let s represent (4.152). The harmony of s is defined by

H(s) = ×iH(ci) (4.153)

= H(Funny jokes) (4.154)

= H(Funny)× H(jokes) (4.155)

= 1× H(jokes) (4.156)

= H(jokes) (4.157)

= H(n) (4.158)

Hence, (4.152) is not well-formed. H(s) informs us that to mend s we probably
need some role that allows s to compose with another noun. (This wouldn’t be the
case if s represented Comedians tell because we would just need to insert a right-
sided noun phrase into s.)
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Example 4.8 (Juxtaposed Nouns). Consider the phrase

Jokes comedians. (4.159)

Let s represent (4.159). The harmony of s is defined by

H(s) = ×iH(ci) (4.160)

= H(Jokes) H(comedians) (4.161)

= {H(n), H(n)} (4.162)

≡ {H(s1), H(s2)} (4.163)

Hence, (4.159) is not well-formed. H(s) informs us that to mend s we probably
need some role that allows s1 to compose with s2. (This wouldn’t be the case if
s2 represented Comedians tell because we would just need to permute the order of
structures in s.)

Example 4.9 (Misplaced Adjective). Consider the phrase

Comedians funny tell jokes. (4.164)

Let s represent (4.164). The harmony of s is defined by

H(s) = ×iH(ci) (4.165)

= H(Comedians) H( f unny) [H(tell)× H(jokes)] (4.166)

= H(n) 1 [1× H(n)] (4.167)

= H(n) 1 H(n) (4.168)

= {H(n), 1, H(n)} (4.169)

≡ {H(s1), H(s2), H(s3)} (4.170)

Hence, (4.164) is not well-formed. H(s) informs us that to mend s we probably
need some role other than s2 that allows s1 to compose with s3. (In fact, we just
need to delete s2 from s.)

4.5.2 Harmonic Activation Values

Given the definition of harmony in ICS, the passage to a connectionist definition
of harmony in DISCOG would seem rather difficult. Let us recall that a symbolic
structure s is realized as an activation vector s via a filler/role binding f/Wr.
As such, extracting constituents – which is required for harmony evaluation in
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ICS – amounts to the task of unbinding fillers from roles at different levels in a
symbolic structure (i.e. subspaces of S∗). As we have previously discussed, un-
binding is problematic for DISCOG because unlike ICS our model of cognition
extends to genuine meaning vectors which makes it unfeasible to assume linear
independence. The rule matrices considered in [52] are generic in that they rep-
resent compositional rules for all nouns, verbs, and so on. This entails that the
meaning space under consideration is very small indeed. Because of this, specific
rules can be written out for each construction in a grammar and easily applied.
But with meaning vectors – as in our case – we can’t write out a different rule
for each possible combination of meanings. For example, to replicate a composi-
tional rule decomposing generic sentences into generic nouns and generic verbs
in ICS (i.e. WS→NP VP), we would have to put together a list of rules for every
possible combination of nouns and verbs that results in a sentence in DISCOG

(i.e. {Wtell→Comedians jokes, Wtell→Reporters facts, · · · })! So, not only does our exten-
sion to meaning vectors present problems in terms of precise unbinding, but also
in terms of formulating harmonic grammars in an ICS-like manner at the connec-
tionist level.

That being said, if a harmonic grammar were to be implemented in DISCOG at
the connectionist level, we would simply apply the weights of the harmony val-
ues at the symbolic level to corresponding role matrices at the lower level, e.g.
wtell→Comedians jokesWtell→Comedians jokes = 4Wtell→Comedians jokes (since we want the
harmony of a well-formed phrase arising from the application of two noun ar-
guments to Wtell to reflect that it is a sentence upon (precise) unbinding8). But
in DISCOG, the procedure of applying these weights to corresponding activation
values at the connectionist level is precisely the act of evaluating the harmony of
a symbolic structure! Given that our alternative connectionist realization is re-
cursive on matrix-vector binding, a role cannot be applied to an argument filler
unless that argument respects the API of the functional role. At ‘worst’, a role will
return another role upon invocation in the case where an incomplete set of param-
eters, or fillers, are passed (much like a curried9 function). However, a role will
never compose with an incompatible filler. This is because our roles are derived
from a categorical setting. In ICS, the roles suggested are merely positional, e.g

8Here, we are assuming a harmonic grammar of the sort HG ≡ {H(s) = H(n)× H(n), H(n) =
2, · · · } as in (4.141).

9Currying is the technique of transforming a function that takes multiple arguments into a se-
quence of functions, each taking a single argument (partial application) and returning another func-
tion (if need be).
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r0, r1 in the case of a binary tree. These kinds of roles only ensure the recursive
nature of symbolic structures. Thus, roles in ICS fail to encode the grammar of
a symbolic language beyond ordering. Conversely in DISCOG, our mappings to
meaning spaces are guided by the syntax of (recursive) pregroup grammars which
entails fully grammatical compositional rules. As such, to formulate a notion of
harmony at the connectionist level in DISCOG, we do not require unbinding – we
can directly evaluate the harmony of our meaning space (or meaning spaces in
the case where we are dealing with a collection of unbound, or incompatible, sym-
bolic structures). Since ICS’s connectionist notion of harmony is still very much at
the grammatical level, our analysis of harmony with respect to pregroup grammar
is equivalent with the added value of extending to expressive meaning vectors.
Hence, we arrive at the following definition of harmony at the connectionist level
in DISCOG.

Proposition 4.4 (Functional Harmony of an Activation Vector). Suppose s ∈ S is
an activation vector realizing a symbolic structure s of type s in a pregroup P. Then the
functional harmony of s is defined by

H(s) ≡ H(s) (4.171)

= H(S) (4.172)

Proof. This holds via the homomorphic mapping from P to FVect which assigns
vector spaces to the basic types.

We end by noting that our definition of harmony is in fact identical to that of
ICS in that checking the dimension of the space in which an activation vector lives
so as to apply a harmony value is equivalent to checking the type of a grammatical
object in order to apply a harmony value.



We can only see a short distance ahead, but we can see
plenty there that needs to be done.

— Alan Turing

5
∣∣∣∣ Conclusion and Future Work

Here, we summarize the results of this work and offer some suggestions for further
investigations.

5.1 Discussion

In this thesis, we present an adaptation of the Integrated Connectionist/Symbolic
Architecture (ICS) first introduced in [52]. ICS is a novel approach to the computa-
tional modelling of the mind that unifies connectionist and symbolic architectures
via an isomorphism codified in tensor product representations. The design of ICS
is an exciting development in the field of cognitive science because ICS reduces
abstract cognitive functions to elementary operations that fall within the computa-
tional capabilities of neural networks, i.e. linear associators. However, the tensor
product representations do admit some weaknesses. Firstly, the representational
space for a concept grows in size as more elements are added to the compound.
Secondly, it is only possible to compare symbolic representations with the same
underlying structure. We use a category-theoretic model of meaning – the com-
positional distributional (DISCO) model of semantics [12] – to solve these repre-
sentational issues. Namely, we build a concrete model of ICS based on the DISCO

framework: compositional distributional cognition (DISCOG). First, we reformu-
late the DISCO model of meaning as the recursive realizaton of filler/role bindings
to give a connectionist account of the (ε, ι, and µ) maps required for information
flow in DISCOG. In addition, we provide simple algorithms to construct linear as-
sociators characterizing these primitive compositional operations. We then define
alternative notions of filler/role binding and connectionist realization in DISCOG.
The result is that we produce a model of representation in higher cognition that is
based on connectionist principles, while at the same time resolves the problem of
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an unbounded representational space. Furthermore, our approach allows the com-
parison of well-formed same-type symbolic structures via realization in a (finite)
shared meaning space. Notably, the fillers and roles we consider in DISCOG are gen-
uine meaning vectors in contrast to generic ones as in ICS. Therefore, our model
also improves on ICS by means of an important extension to meaning vectors.
We then discuss the problem of unbinding (fillers from roles) in DISCOG and put
forward a provisional (approximate) solution based on the Moore-Penrose pseudo
inverse. This allows us to demonstrate how massively parallel distributed process-
ing at the connectionist level can realize arbitrarily complex (recursive) functions
at the symbolic level, of which we give an example. Lastly, we give a functional ac-
count of harmony in DISCOG derived from our categorical setting and show that
our definition of harmony is in fact identical to that of ICS.

5.2 Further Investigations

This work represents a small step in linking the respective fields of cognitive sci-
ence and quantum mechanics. An obvious extension investigating quantum prop-
erties in our model of cognition is the modelling of ambiguity with density ma-
trices [43]. Ambiguous fillers (and roles) could be represented as mixed states, i.e.
probability distributions over a set of possible meaning vectors. This would en-
hance the expressivity of DISCOG.

With respect to harmony, there is a question of how best to mend non-optimal
symbolic structures. For this task, we require efficient search algorithms built on
top of basic functions to manipulate cognitive representations, e.g. INSERT, PER-
MUTE, and DELETE.

As a final remark, we have only set up the theoretical foundations of DISCOG.
Hence, a practical implementation of some sort is an evident future course of ac-
tion.
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