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1 Introduction

History

I loved everything about being a graduate student except going to class, doing
homework, taking exams, fulfilling requirements associated with earning a
degree and being severely underpaid. What I especially loved was being able
to do mathematics. One semester I signed up for a course on domain theory. I
went to the first lecture and heard about dcpo’s and the fixed point theorem:
every Scott continuous map f : D → D on a dcpo D with a least element ⊥
has a least fixed point given by

fix(f) :=
⊔
n≥0

fn(⊥)

I thought it was neat, so I skipped the rest of my classes that day and im-
mediately went home to try it out and see how it worked. I wrote down an
example of a function on the interval domain D = IR, this one: for a contin-
uous f : R→ R on the real line, define

splitf : C(f)→ C(f)

splitf [a, b] =
{

left[a, b] if left[a, b] ∈ C(f);
right[a, b] otherwise,

where C(f) is the subset of IR where f changes sign,

C(f) = {[a, b] : f(a) · f(b) ≤ 0},

and left[a, b] = [a, (a + b)/2] and right[a, b] = [(a + b)/2, b]. If we begin from
any interval [a, b] ∈ C(f) on which f changes sign, then⊔

n≥0

splitnf [a, b]

is a fixed point of splitf , just like the fixed point theorem says it should be.
Because fix(splitf ) = {x ∈ IR : splitf (x) = x} = {[r] : f(r) = 0}, iterating
splitf is a scheme for calculating a solution of the equation f(x) = 0.

The problem was: splitf was not Scott continuous, so the fixed point the-
orem could not be used to explain its behavior on IR. And there was an
especially easy way to see it: plenty of functions f have more than one zero on
a given interval x – but if splitf is Scott continuous, its least fixed point on ↑x
is unique (being maximal), implying that f has only one zero on x. So then
the question became: why did this function behave as though it were contin-
uous? I set about to find an answer. In the process, I became so interested in
domain theory that I never went back to class again.

What I learned was that there was a reason that this function behaved as
though it were continuous: it wasn’t, but its measure was. Its measure was
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an important thing: the length function µ[a, b] = b − a was different from
other functions. I later learned that all recursive functions could be modeled
in this way and that the measurement µ was intertwined with the structure
of the domain itself. It provided a measure of information content and one
could use this idea to measure the ‘rate’ at which a process on a domain
manipulated information and to do more things than should be mentioned in
an introduction.

I was never really able to finish telling the story in my doctoral thesis the
way I thought it should have been told. Nevertheless, at two hundred pages, I
decided to stop typing and go to sunny England, where the theory advanced,
with the same structure found in computation (domains and measurements)
also being found in quantum mechanics and general relativity. Later, it was
realized that the same structure was also present in information theory: there
was a domain of binary channels, for instance, with capacity as a measure-
ment. In all these cases, there are neat applications and new perspectives
offered on ideas we previously misled ourselves into believing we understood.
The interaction between these areas is what makes the study of domains and
measurements very exciting.

That brings us to now. This is a ‘tutorial’ on domain theory and measure-
ment. It is about what we believe we know today. It’s also about what we
believe we don’t know today. There are also new results and ideas here never
published before.

Overview

In Section 2, the basic elements of domains and measurements are introduced
where our goal is to explain partiality and content as concepts and to explain
how one models them with domains and measurements in practice so that
new problems can be solved. In essence, the goal is to teach “the method”
of finding domains and measurements in nature. A dozen or so basic exam-
ples are given. In Section 3, we give an important example of what one does
with domains and measurements: applies fixed point theorems. Applications
include numerical methods and fractals. In Section 4, we give more advanced
examples of partiality and content: the domain of real analytic mappings,
the domain of finite probability distributions, the domain of quantum mixed
states and from general relativity, the domain of spacetime intervals. Appli-
cations of these domains are to the computation of real analytic mappings,
the maximum entropy state in statistical mechanics, classical and quantum
communication and to the reconstruction of spacetime from a countable set,
including its geometry.

In Section 5, we discuss the informatic derivative: when an operator on a
domain iterates to a fixed point, its informatic derivative measures the rate
at which the iterates converge. Applications are to numerical analysis, to the
computation of the Holevo capacity in quantum information theory and to
the complexity of list algorithms. The informatic derivative applies to both
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continuous and discrete data. In Section 6, we discuss additional models of
‘process’ that have proven themselves useful in the measurement formalism:
the renee equation, trajectories, vectors. Applications include showing that
each order on a domain gives rise to a natural notion of computability, such
as the primitive and partial recursive functions; the analysis of algorithms as
trajectories on domains, such as Grover’s algorithm for quantum searching,
whose complexity is the amount of time it takes a trajectory to reach its maxi-
mum in the information order; an analysis of how noise affects communication
with qubits; the derivation of lower bounds on the complexity of algorithms
such as sorting and searching and the fixed point theorem: entropy is the least
fixed point of the copying operator that is above algorithmic complexity.

In Section 7, we give a brief overview of where things currently stand in the
study of domains and measurements, and try to persuade domain theorists in
search of a decent job to send us an email.

To the student

A student is any person young enough at heart to be open to new ideas.
This paper is written for students. We have tried to strike a balance between
philosophy, mathematics and applicability. Philosophy: what is the big picture?
Mathematics: how do we learn about the big picture? Applicability: what can
the big picture teach us about the world we live in? Philosophy is good because
thinking is good. Mathematics is good because knowing what you are thinking
about is good. Applicability is good because knowing why you are thinking
what you are thinking about is good. It is pretty rare that a set of ideas
starts off with all three of these in equal measure. Sometimes there is only
philosophy, sometimes only math, sometimes only a question. But as a set of
ideas evolves, one hopes to see the appearance of all three.

2 The basic elements

Most newcomers to domain theory stop reading when they see domains pre-
sented as a seemingly endless list of axioms satisfied by partial orders. If this
is your first time reading about domain theory, perhaps you should consider
a different approach. Try first reading Section 2.1 to understand the ideas
intuitively. Then go to Section 2.2, but ignore the technical definitions and
just look at the dozen or so examples given instead. After those examples,
have a look at Section 4, where there are more involved examples. Then ask
yourself a question: given the intuitions on partiality and information content
combined with the numerous instances of the idea that you have seen, how
would you formally capture those ideas?

If you find a formal mathematical definition of domain and measurement
that captures all of the examples, compare it to the formalizations given in
Sections 2.2 and 2.3. If your formalization differs, it might be time to stop
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reading these notes and to pursue your own direction. If it is the same, then
you will understand the basic definitions of domain theory and measurement
in a way few people do. And if you are unable to come up with a formalization
that captures the basic examples, then you will better appreciate definitions
like ‘continuous dcpo’ and ‘measurement’ – you will see them for what they
are: a significant step toward a mathematical definition of ‘information’.

Major references: [1, 15].

2.1 Intuition

A domain (D,v) is a set of objects D together with a partial order v that
has certain intrinsic notions of completeness and approximation defined by
the order. The order v is thought of as an information order. Intuitively,
x v y means “x contains information about y” or that “x carries information
about y.” We might also say y is at least as informative as x – though this
is really just mathematical uptightness that obscures the essence of the idea:
when talking to one’s friends, people always just say that x v y means y is
more informative than x. Elements that compare in the information order are
comparable and the thing to remember about comparable elements is that one
of them carries information about the other.

The completeness in a domain refers to the fact that certain results gen-
erated by processes have ‘limits’. For instance, if a process generates a se-
quence (xn) of elements that increase with respect to the information order,
xn v xn+1 for all n, then it should ‘go somewhere’ i.e.

x1 v x2 v . . . =⇒
⊔
n∈N

xn ∈ D

The element
⊔
n≥N xn is not only above each xn in the information order,

it is the ‘best’ such object. Intuitively, if the process generating (xn) is an
algorithm repeatedly producing iterates xn, then

⊔
n≥N xn is the final answer.

The notion of approximation is a special case of the information order.
If x approximates y, we write x � y. What it means intuitively is that x
carries essential information about y. But what does “essential” mean? One
view of essential is that any process that produces a sequence (xn) of values
with

⊔
xn = y must satisfy x v xn for all but a finite number of the xn.

That is, we cannot compute y without first computing in finite time an object
that x carries information about. Thus, x can also be thought of as a finite
approximation of y. Put yet another way, x � y means that all informatic
paths to y must pass through x.

An ideal (or total) object x in a domain D is one that we can only get
to using a process that constructs a sequence of finite approximations. For
example, a maximal element x ∈ D is an object that cannot be improved
upon i.e.

(∀y ∈ D) x v y ⇒ x = y.
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Each maximal element is an example of an ideal element. Any object that is
not ideal (or total) is called partial. Let us give several intuitive examples of
ideal and partial objects.

A compact interval [a, b] of the real line provides a partial description of
a real number; a one point interval [x, x] is total. The uniform probability
distribution ⊥ = (1/n, . . . , 1/n) provides incomplete information on the ex-
pected outcome of an experiment, while the finite probability distribution
(1, 0, . . . , 0) predicts the outcome with certainty. The polynomial 1 + x is a
finite approximation of the analytic mapping ex. A pure state |ψ〉〈ψ| in quan-
tum mechanics is total; a mixed state like ⊥ = I/n is partial. An infinite
set of natural numbers is total while a finite subset of it provides a finite
approximation.

A measurement µ : D → [0,∞) is a function on a domain D that to each
informative object x ∈ D assigns a number µx that measures the amount of
partiality in x. The amount of partiality, or uncertainty, in an object is also
called its information content. For instance, we would expect uncertainty to
decrease as we move up in the information order,

x v y ⇒ µx ≥ µy.

If a process calculates x =
⊔
xn, we would expect

µ

(⊔
n∈N

xn

)
= lim
n→∞

µxn.

If x and y are comparable and µx = µy, then this means that one carries
information about the other and that they have the same information content,
so we would expect x = y. In particular, if µx = 0, so that x is an object with
no uncertainty, then we would expect that x cannot be improved upon. That
is, we would expect x to be maximal in the information order.

2.2 Domains

In this section, we give several basic examples of domains, including the formal
definition of a continuous dcpo. At no point in this section will we define
“domain,” though we will quite frequently make statements like “such and
such is an example of a domain.” There is a good reason for our vagueness,
but at this point in time, we intend to remain vague about it.

The intrinsic notion of completeness in a domain is at least partially cap-
tured by the fact that it forms a dcpo:

Definition 1. Let (P,v) be a partially ordered set or poset. A nonempty
subset S ⊆ P is directed if (∀x, y ∈ S)(∃z ∈ S)x, y v z. The supremum

⊔
S

of S ⊆ P is the least of its upper bounds when it exists. A dcpo is a poset in
which every directed set has a supremum.
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One way to formalize the intrinsic notion of approximation possessed by
a domain is continuity:

Definition 2. Let (D,v) be a dcpo. For elements x, y ∈ D, we write x � y
iff for every directed subset S with y v

⊔
S, we have x v s, for some s ∈ S.

We set

• ↓↓x := {y ∈ D : y � x} and ↑↑x := {y ∈ D : x� y}
• ↓x := {y ∈ D : y v x} and ↑x := {y ∈ D : x v y}

A set B ⊆ D is a basis when B ∩ ↓↓x is directed with supremum x for each
x ∈ D. A dcpo is continuous when it has a basis and ω-continuous when it
has a countable basis.

Remark: Any continuous dcpo is an example of a domain.

Example 1. The collection of compact intervals of the real line

IR = {[a, b] : a, b ∈ R & a ≤ b}

ordered under reverse inclusion

[a, b] v [c, d]⇔ [c, d] ⊆ [a, b]

is an ω-continuous dcpo:

• For directed S ⊆ IR,
⊔
S =

⋂
S,

• I � J ⇔ J ⊆ int(I), and
• {[p, q] : p, q ∈ Q & p ≤ q} is a countable basis for IR.

The domain IR is called the interval domain. If we replace R by [0, 1], then
we obtain the interval domain I[0, 1] over the unit interval.

A binary channel has two inputs (“0” and “1”) and two outputs (“0” and
“1”). An input is sent through the channel to a receiver. Because of noise in
the channel, what arrives may not necessarily be what the sender intended.
The effect of noise on input data is modelled by a noise matrix u. If data is
sent through the channel according to the distribution x, then the output is
distributed as y = x · u. The noise matrix u is given by

u =
(
a ā
b b̄

)
where a = P (0|0) is the probability of receiving 0 when 0 is sent and b = P (0|1)
is the probability of receiving 0 when 1 is sent and x̄ := 1 − x for x ∈ [0, 1].
Thus, the noise matrix of a binary channel can be represented by a point (a, b)
in the unit square [0, 1]2 and all points in the unit square represent the noise
matrix of some binary channel.
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Example 2. Binary channels. The set of nonnegative noise matrices

N =
{

(a, b) =
(
a ā
b b̄

)
: a ≥ b & a, b ∈ [0, 1]

}
is in bijective correspondence with I[0, 1] via (a, b) 7→ [b, a]. With the order it
inherits from I[0, 1], N is called the domain of binary channels.

Example 3. Let X be a locally compact Hausdorff space. Its upper space

UX = {∅ 6= K ⊆ X : K is compact}

ordered under reverse inclusion

A v B ⇔ B ⊆ A

is a continuous dcpo:

• For directed S ⊆ UX ,
⊔
S =

⋂
S, and

• A� B ⇔ B ⊆ int(A).

Example 4. Given a metric space (X, d), the formal ball model [6]

BX = X × [0,∞)

is a poset when ordered via

(x, r) v (y, s)⇔ d(x, y) ≤ r − s.

The approximation relation is characterized by

(x, r)� (y, s)⇔ d(x, y) < r − s.

The poset BX is continuous. However, BX is a dcpo iff the metric d is com-
plete. In addition, BX has a countable basis iff X is a separable metric space.

Definition 3. An element x of a poset is compact if x � x. A poset is alge-
braic if its compact elements form a basis; it is ω-algebraic if it has a countable
basis of compact elements.

Example 5. The powerset of the naturals

Pω = {x : x ⊆ ω}

ordered by inclusion x v y ⇔ x ⊆ y is an ω-algebraic dcpo:

• For directed set S ⊆ Pω,
⊔
S =

⋃
S,

• x� y ⇔ x v y & x is finite, and
• {x ∈ Pω : x is finite} is a countable basis for Pω.
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Example 6. Binary strings. The collection of functions

Σ∞ = { s | s : {1, . . . , n} → {0, 1}, 0 ≤ n ≤ ∞ }

ordered by extension

s v t⇔ |s| ≤ |t| & ( ∀ 1 ≤ i ≤ |s| ) s(i) = t(i),

where |s| is the cardinality of dom(s), is an ω-algebraic dcpo:

• For directed S ⊆ Σ∞,
⊔
S =

⋃
S,

• s� t⇔ s v t & |s| <∞,
• {s ∈ Σ∞ : |s| <∞} is a countable basis for Σ∞,
• The least element ⊥ is the unique s with |s| = 0.

A partial function (or partial map) on a set X is a function f : A → X
where A ⊆ X. We write dom(f) = A and denote partial maps as f : X ⇀ X.
They are equivalent to functions of the form f : X → X ∪ {⊥}. The next
domain is of central importance in recursion theory:

Example 7. The set of partial mappings on the naturals

[N ⇀ N] = { f | f : N ⇀ N is a partial map}

ordered by extension

f v g ⇔ dom(f) ⊆ dom(g) & f = g on dom(f)

is an ω-algebraic dcpo:

• For directed set S ⊆ [N ⇀ N],
⊔
S =

⋃
S,

• f � g ⇔ f v g & dom(f) is finite, and
• {f ∈ [N ⇀ N] : dom(f) finite} is a countable basis for [N ⇀ N].

Algebraic domains may seem ‘discrete’ in some sense, or at least more
discrete than domains that are continuous but not algebraic, such as IR.
However, the reader should not go around believing that the continuous and
the discrete are irreversibly divided – they are not. In domain theory and
measurement, it is often possible to take a unified view of the two. To partially
illustrate this point, let us now consider a continuous extension of the finite
powerset P{1, . . . , n} to the set of finite probability distributions

∆n :=
{
x ∈ [0, 1]n :

∑
xi = 1

}
.

Each set A ∈ P{1, . . . , n} has a characteristic map χA : {1, . . . , n} → {0, 1}
defined by

χA(i) :=
{

1 if i ∈ A;
0 otherwise.
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for which we have
A ⊇ B ⇐⇒ χA ≥ χB

where ≥ is the pointwise order on functions of type {1, . . . , n} → {0, 1} and
1 ≥ 0. But each A ∈ P{1, . . . , n} \ {∅} corresponds to a canonical x ∈ ∆n

given by

xi :=
{
x+ if i ∈ A;
0 otherwise,

where x+ refers to the largest probability in x. Thus, we can think of any
x ∈ ∆n as having a characteristic function χx : {1, . . . , n} → [0, 1] given by

χx(i) :=
{

1 if xi = x+;
xi otherwise.

Example 8. The set of classical states

∆n :=
{
x ∈ [0, 1]n :

∑
xi = 1

}
is a continuous dcpo in its implicative order [23]

x v y ≡ χx ≥ χy.

The implicative order can also be characterized as

x v y ≡ (∀i) xi < yi ⇒ xi = x+

where again x+ refers to the largest probability in x. Thus, only a maximum
probability is allowed to increase as we move up in the information order on
∆n. If the maximum probability refers to a solution of a problem, then moving
up in this order ensures that we are getting closer to the answer.

Example 9. The set of decreasing classical states

Λn := {x ∈ ∆n : (∀1 ≤ i < n) xi ≥ xi+1}

with the majorization relation ≤ given by

x ≤ y ≡ (∀k < n)
k∑
i=1

xi ≤
k∑
i=1

yi

is a continuous dcpo (Λn,≤). If the implicative v order is restricted to Λn,
then we have (Λn,v) ⊆ (Λn,≤), and this inclusion is strict.

A list over S is a function x : {1, ..., n} → S for n ≥ 0 and the set of all
such x is denoted [S]. The length of a list x is |domx|. A list x can be written
as [x(1), ..., x(n)], where the empty list (the list of length 0) is written [ ]. We
can also write lists as a :: x, where a ∈ S is the first element of the list a :: x
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and x ∈ [S] is the rest of the list a :: x. For example, the list [1, 2, 3] can be
written 1 :: [2, 3].

A set K ⊆ N is convex if a, b ∈ K & a ≤ x ≤ b ⇒ x ∈ K. Given a finite
convex set K ⊆ N, the map scale(K) : {1, ..., |K|} → K given by

scale(K)(i) = min K + i− 1

relabels the elements of K so that they begin with one.

Example 10. The domain of finite lists. The set of finite lists [S] with v given
by reverse convex containment

x v y ≡ (∃ convex K ⊆ {1, . . . , length(y)}) y ◦ scale(K) = x.

is an algebraic dcpo in which all elements are compact. If x v y, we say that
y is a sublist of x.

For instance, if L = [1, 2, 3, 4, 5, 6], then [1, 2, 3], [4, 5, 6], [3, 4, 5], [2, 3, 4],
[3, 4], [5] and [ ] are all sublists of L, while [1, 4, 5, 6], [1, 3] and [2, 4] are not
sublists of L. The set [S] is also called the free monoid over S.

Example 11. Products of domains. If D and E are dcpo’s then

D × E := {(d, e) : d ∈ D & e ∈ E}

is a dcpo in the pointwise order

(x1, y1) v (x2, y2) ≡ x1 v x2 & y1 v y2.

If D and E are both continuous, then so is D × E, where

(x1, y1)� (x2, y2) ≡ x1 � x2 & y1 � y2.

Having discussed the information order, let us turn now to the question of
information content.

2.3 Measurement

From Section 2.1, a measurement µ : D → [0,∞) should satisfy:

1. For all x, y ∈ D, x v y ⇒ µx ≥ µy, and
2. If (xn) is an increasing sequence in D, then

µ

⊔
n≥1

xn

 = lim
n→∞

µxn.

On all the domains that we will work with, a mapping will have these two
properties exactly when it is Scott continuous.
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Definition 4. For a subset X ⊆ D of a dcpo D, define

↑X :=
⋃
x∈X
↑x & ↓X :=

⋃
x∈X
↓x

A subset U ⊆ D of a dcpo D is Scott open when it is an upper set U = ↑U
that is inaccessible by directed suprema:⊔

S ∈ U ⇒ S ∩ U 6= ∅

for all directed S ⊆ D.

The Scott open sets on a dcpo form a topology. A subset C ⊆ D is Scott closed
when it is a lower set C = ↓C that contains the supremum of every directed
set it contains. Of particular importance for us is that the Scott topology on
a continuous dcpo has the collection {↑↑x : x ∈ D} as a basis. That is, it is a
topology determined by approximation.

Example 12. A basic Scott open set in I[0, 1] is

↑↑[a, b] = {x ∈ I[0, 1] : x ⊆ int([a, b])}.

In the domain of binary channels N = {(a, b) : a ≥ b & a, b ∈ [0, 1]}, drawn
with a on the x-axis and b on the y-axis, such a set forms a right triangle whose
hypotenuse lies along the diagonal, but whose other two sides are removed.

Definition 5. A function f : D → E between dcpo’s is Scott continuous if
the inverse image of a Scott open set in E is Scott open in D.

Scott continuity can be characterized order theoretically [1]:

Theorem 1. A function f : D → E is Scott continuous iff f is monotone,

(∀x, y ∈ D)x v y ⇒ f(x) v f(y),

and preserves directed suprema:

f(
⊔
S) =

⊔
f(S),

for all directed S ⊆ D.

Thus, on the very reasonable assumption that the domains which arise in
practice always allow us to replace directed sets with increasing sequences, a
measurement should at least be a Scott continuous function µ : D → [0,∞)∗,
where [0,∞)∗ is the domain of nonnegative reals in its dual order:

x v y ≡ y ≤ x

and ≤ refers to the usual way of ordering real numbers. But there is more to
the story of content than just continuity.
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Imagine that we would like to compute an ideal element x ∈ D in some
domain D that cannot be computed exactly. How accurately would we like
to calculate it? We wish to calculate it to within an accuracy of a� x. Now
we proceed to calculate, using some process to determine a sequence of values
x1, . . . , xn . . . each xi containing information about x, that is, xi v x. When
do we stop? We stop when some measure of information content µ says that
we are ‘close enough’ to the answer x. How does µ say this?

It tells us that if xn contains information about x and if x and xn are
close enough in information content, then we have succeeded in calculating
x to within the desired accuracy. That is, we have found an xn such that
a� xn. In symbols,

(∃ε > 0)(∀n)(xn v x & |µx− µxn| < ε⇒ a� xn)

Now the thing to realize is that other computations may take other paths (xn)
to x and that we may also be interested in other levels of accuracy a. Since
we want µ to guarantee accuracy for these processes too, we want µ to satisfy

(∀a� x)(∃ε > 0)(∀y ∈ D)(y v x & |µx− µy| < ε⇒ a� y)

If µ can provide this for the element x ∈ D, then µ must be measuring the
information content of x. If the last statement holds, then it also holds when
we can quantify over all Scott open sets U since sets of the form ↑↑a are a basis
for the Scott topology at x. For a dcpo D, we arrive at the following:

Definition 6. A Scott continuous µ : D → [0,∞)∗ is said to measure the
content of x ∈ D if for all Scott open sets U ⊆ D,

x ∈ U ⇒ (∃ε > 0)x ∈ µε(x) ⊆ U

where
µε(x) := {y ∈ D : y v x & |µx− µy| < ε}

are called the ε-approximations of x.

We often refer to µ as simply ‘measuring’ x ∈ D or as measuring X ⊆ D when
it measures each element of X. Minimally, a measurement should measure the
content of its kernel:

Definition 7. A measurement µ : D → [0,∞)∗ is a Scott continuous map
that measures the content of ker(µ) := {x ∈ D : µx = 0}.

The order on a domain D defines a clear sense in which one object has
‘more information’ than another: a qualitative view of information content.
The definition of measurement attempts to identify those monotone map-
pings µ which offer a quantitative measure of information content in the sense
specified by the order. The essential point in the definition of measurement
is that µ measure content in a manner that is consistent with the particular
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view offered by the order. There are plenty of monotone mappings that are not
measurements – and while some of them may measure information content in
some other sense, each sense must first be specified by a different information
order. The definition of measurement is then a minimal test that a function µ
must pass if we are to regard it as providing a measure of information content.

Lemma 1. Let µ : D → [0,∞)∗ be a measurement.

(i) If x ∈ ker(µ), then x ∈ max(D) = {x ∈ D : ↑x = {x}}.
(ii) If µ measures the content of y ∈ D, then

(∀x ∈ D) x v y & µx = µy ⇒ x = y.

These results say (i) elements with no uncertainty are maximal in the
information order and (ii) comparable elements with the same information
content are equal. The converse of (i) is not true and there are many important
cases (see Section 3.4 for instance) where the applicability of measurement is
greatly heightened by the fact that kerµ need not consist of all maximal
elements.

Example 13. Canonical measurements.

(i) (IR, µ) the interval domain with the length measurement µ[a, b] = b− a.
(ii) (Pω, | · |) the powerset of the naturals with | · | : Pω → [0,∞)∗ given by

|x| = 1−
∑
n∈x

1
2n+1

.

(iii) ([N ⇀ N], µ) the partial functions on the naturals with

µf = |dom(f)|

where | · | is the previous measurement on Pω.
(iv) (Σ∞, 1/2|·|) the binary strings where | · | : Σ∞ → [0,∞] is the length of a

string.
(v) (UX ,diam) the upper space of a locally compact metric space (X, d) with

diamK = sup{d(x, y) : x, y ∈ K}.

(vi) (BX,π) the formal ball model of a complete metric space (X, d) with

π(x, r) = r

(vii) (∆n, µ) the classical states in their implicative order with µx = 1 − x+.
Shannon entropy

H(x) = −
n∑
i=1

xi log2(xi)

is also a measurement on ∆n.
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(viii) (N, c) the nonnegative binary channels with capacity from information
theory (Shannon)

c(a, b) = log2

(
2

āH(b)−b̄H(a)
a−b + 2

bH(a)−aH(b)
a−b

)
where c(a, a) := 0 and H(x) = −x log2(x) − (1 − x) log2(1 − x) is the
binary entropy.

(ix) ([S], length) lists with length as a measurement
(x) Products: if (D,µ) and (E, λ), are domains with measurements, thenD×E

is a domain with max{µ, λ} and µ+ λ as measurements1.

In each case, we have kerµ = max(D).

We will see other examples in Section 4, including the domains of analytic
mappings, quantum states and spacetime intervals. The reader who is impa-
tient to find out what one does with a measurement can skip ahead to any
of the other sections as long as they promise to eventually return. The reader
interested in understanding the ideas should continue reading.

The view of information content taken in the study of measurement is
that of a structural relationship between two classes of objects which, generally
speaking, arises when one class may be viewed as a simplification of the other.
The process by which a member of one class is simplified and thereby ‘reduced’
to an element of the other is what we mean by ‘the measurement process’ in
domain theory [16]. One of the classes may well be a subset of real numbers,
but the ‘structural relationship’ underlying content should not be forgotten.
Here is the definition of measurement in this more general case:

Definition 8. A Scott continuous map µ : D → E between dcpo’s is said to
measure the content of x ∈ D if

x ∈ U ⇒ (∃ε ∈ σE)x ∈ µε(x) ⊆ U,

whenever U ∈ σD is Scott open and

µε(x) := µ−1(ε)∩ ↓x

are the elements ε close to x in content. The map µ measures X if it measures
the content of each x ∈ X.

Definition 9. A measurement is a Scott continuous map µ : D → E between
dcpo’s that measures kerµ := {x ∈ D : µx ∈ max(E)}.

In the case E = [0,∞)∗, the new definition of “measures the content of
x” is equivalent to the one given earlier, so we reserve the right to denote
the set µ[0,ε)(x) by µε(x) in contrast to how we first defined µε(x), though

1 In principle, it is possible to measure the dcpo of Scott continuous maps [D → E].
In practice, though, the question is how to do so simply. See [21, 43] for more.
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we will always be clear about how we are using this notation. In addition,
Lemma 1 remains valid in this more general case; the ‘reflective’ nature of
measurement is covered in more detail in [15]. In addition, with the more
abstract formulation of measurement, it becomes clear that measurements
compose. That, for example, is why it was easy to measure the domain [N ⇀ N]
of partial functions in the last example.

2.4 Distance, content and topology

Why should there be any relation between topology and information content?
To answer this, we have to remember that we are not just talking about any
topology, but rather, the Scott topology, which as we have seen is the topol-
ogy of approximation. Second, we have to recall the subtle relation between
information content and the desire to obtain accurate approximations of ideal
elements discussed in the last section.

As it turns out, one way to think of a measurement is essentially as being
the informatic analogue of ‘metric’ for domain theory. There are several senses
in which this is true. Let us consider one by returning to the elements ε close
to x ∈ D, abbreviated to

µε(x) := µ[0,ε)(x) = {y ∈ D : y v x & µy < ε},

for ε > 0.

Theorem 2. Let D be a continuous dcpo. If µ : D → [0,∞)∗ measures
X ⊆ D, then

{↑µε(x) ∩X : x ∈ X, ε > 0}

is a basis for the relative Scott topology on X.

Thus, in the presence of a measurement, we can understand the Scott
topology as being derived from ε-approximations of points, similar to the way
the topology of a metric space is specified.

To further develop the analogy between metric and measurement hinted
at in the last result, suppose that a continuous dcpo D has the property that
for any x, y ∈ D there is z ∈ D with z v x, y. Notice that in Example 13,
domains (i)–(ix) all have this property. If we encounter a continuous dcpo
that does not have this property, we can always adjoin a bottom element ⊥,
and scale the measurement so that µ⊥ = 1. See chapter five of [15] for more.
Then we can define d : D2 → [0,∞)∗ given by

d(x, y) = inf{µz : z � x, y} = inf{µz : z v x, y}

Because µ is monotone, d is Scott continuous. Because µ is Scott continuous,
we have d(x, y) = µx when x v y. The distance function d associated to µ is
sometimes denoted d(µ).
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Definition 10. For a monotone map µ : D → [0,∞)∗ on a continuous dcpo
D with d = d(µ) defined,

Bε(x) := {y ∈ D : d(x, y) < ε}

for all x ∈ D, ε > 0.

Happily, distance and content are related as follows.

Theorem 3. If µ : D → [0,∞)∗ is Scott continuous on a continuous dcpo D
with d = d(µ) defined, then

Bε(x) = ↑µε(x),

for each x ∈ D and ε > 0. Consequently,

{Bε(x) ∩X : x ∈ X, ε > 0}

is a basis for the relative Scott topology on X whenever µ measures X.

Example 14. For (IR, µ),

d([a], [b]) = |a− b|,

for all a, b ∈ R. Because d is the Euclidean metric on R, we can conclude that
max(IR) in its relative Scott topology is homeomorphic to R.

The last example is also true for I[0, 1]. But now something interesting
happens, because Theorem 3 says that any measurement on I[0, 1] induces the
Euclidean topology on its kernel. Recalling that the capacity c : N→ [0, 1]∗ of
a binary channel

c(a, b) = log2

(
2

āH(b)−b̄H(a)
a−b + 2

bH(a)−aH(b)
a−b

)
is a measurement on the domain of binary channels N ' I[0, 1] from Exam-
ple 13(viii), its associated distance function on ker(c) = max(N) is

ρ([a], [b]) = c(a, b) = c(b, a)

Then, just like Euclidean distance, capacity c : [0, 1]2 → [0, 1] also has the
following three properties:

(i) c(a, b) = c(b, a),
(ii) c(a, b) = 0 iff a = b,
(iii) The sets {y ∈ [0, 1] : c(x, y) < ε} for ε > 0 form a basis for the Euclidean

topology on [0, 1].
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Capacity does not satisfy the triangle inequality, so it is not a priori obvious
that the sets in (iii) form a basis for any topology, let alone the Euclidean
topology. Let us state this another way: the topology of certain spaces can be
derived from a notion of distance that is defined in terms of the amount of
information that can be transmitted between two points [29].

Now we consider another sense in which measurements are the domain
theoretic counterpart to metrics.

Definition 11. A measurement µ : D → [0,∞)∗ on a continuous dcpo D
satisfies the triangle inequality if for all consistent pairs x, y ∈ D, there is an
element z v x, y such that µz ≤ µx+ µy.

When a measurement satisfies the triangle inequality, its corresponding
notion of distance is a metric on the set of elements with measure zero.

Theorem 4. Let (D,µ) be a domain with a measurement satisfying the tri-
angle inequality. Then d(µ) : ker(µ)×ker(µ)→ [0,∞) is a metric which yields
the relative Scott topology on ker(µ).

For instance, many of the measurements in Example 13 satisfy the triangle
inequality, including (i)–(v) and (xi). More generally, the class of Lebesgue
measurements, discussed in Section 3.4, allows one to conclude that ker(µ) is
metrizable. In fact, in most cases, we can construct a metric from µ, though
the construction is more involved. One such case is when there is an element
z v x, y with µz ≤ 2 ·max{µx, µy}, see chapter five of [15] for more on this.

The relation between measurement and topology does not end with the
observation that they are like metrics. It turns out that measuring a domain
is equivalent to being able to generate a certain topology.

Definition 12. The µ topology on a continuous dcpo D has

{↑↑a ∩ ↓x : a, x ∈ D}

as a basis.

Unexpectedly, the µ topology is always zero dimensional and Hausdorff.

Theorem 5. Let D be a continuous dcpo. A Scott continuous µ : D → [0,∞)∗

measures D iff {µε(x) : x ∈ D & ε > 0} is a basis for the µ topology.

In the above result, µε(x) = µ[0,ε) is defined as it was earlier in this section.
We pause for a moment now to look at a few of the things one does with
domains and measurements.



20 Keye Martin

3 Fixed points

A least element in a dcpo D is an element ⊥ such that ⊥ v x for all x ∈ D.
The first theorem I ever heard about in domain theory is:

Theorem 6. Let D be a dcpo with a least element ⊥. If f : D → D is Scott
continuous, it has a least fixed point given by

fix(f) :=
⊔
n≥0

fn(⊥)

A useful corollary is that f has a least fixed point on ↑x if x v f(x).
Exercise: Prove that splitf from the introduction is not Scott continuous

by showing that it is not monotone. (Hint: Cheat, by reading this section).
Major references: [15]

3.1 Fixed points of nonmonotonic mappings

Ordinarily, this discussion would be deferred to the section “forms of process
evolution” but we include it here so that the reader gets some quick examples
of what one does with measurement.

Definition 13. A splitting on a dcpo D is a function s : D → D with x v s(x)
for all x ∈ D.

Theorem 7. Let D be a dcpo with a measurement µ that measures D. If
I ⊆ D is closed under directed suprema and s : I → I is a splitting whose
measure

µ ◦ s : I → [0,∞)∗

is Scott continuous, then

(∀x ∈ I)
⊔
n≥0

sn(x) is a fixed point of s.

Moreover, the set of fixed points fix(s) = {x ∈ I : s(x) = x} is a dcpo.

In applications, a slightly weaker formulation can be useful: if for every
increasing sequence (xn) in I we have

µs
(⊔

xn

)
= lim
n→∞

µs(xn),

then ⊔
n≥0

sn(x) ∈ fix(s),

for every x ∈ I. In addition, fix(s) = I ∩ ker(µ) iff µs(x) < µx for all x ∈ I
with µx > 0. The point being: we do not need to check that µ ◦ s is monotone
in order to establish the existence of fixed points.
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Example 15. Let f : R→ R be a continuous map on the real line. Denote by
C(f) the subset of IR where f changes sign, that is,

C(f) = {[a, b] : f(a) · f(b) ≤ 0}.

The continuity of f ensures that this set is closed under directed suprema,
and the mapping

splitf : C(f)→ C(f)

given by

splitf [a, b] =
{

left[a, b] if left[a, b] ∈ C(f);
right[a, b] otherwise,

is a splitting where left[a, b] = [a, (a+ b)/2] and right[a, b] = [(a+ b)/2, b]. The
measure of this mapping

µ splitf [a, b] =
µ[a, b]

2

is Scott continuous, so Theorem 7 implies that⊔
n≥0

splitnf [a, b] ∈ fix(splitf ).

However, fix(splitf ) = {[r] : f(r) = 0}, which means that iterating splitf is
a scheme for calculating a solution of the equation f(x) = 0. This numerical
technique is called the bisection method.

Proposition 1. For a continuous selfmap f : R → R which has at least one
zero, the following are equivalent:

(i) The map splitf is monotone.
(ii) The map f has a unique zero r and

C(f) = {[a, r] : a ≤ r} ∪ {[r, b] : r ≤ b}.

That is, if splitf is monotone, then in order to calculate the solution r of
f(x) = 0 using the bisection method, we must first know the solution r.

Example 16. A function f : [a, b]→ R is unimodal if it has a maximum value
assumed at a unique point x∗ ∈ [a, b] such that

(i) f is strictly increasing on [a, x∗], and
(ii) f is strictly decreasing on [x∗, b].

Unimodal functions have the important property that

x1 < x2 ⇒
{
x1 ≤ x∗ ≤ b if f(x1) < f(x2),
a ≤ x∗ ≤ x2 otherwise.
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This observation leads to an algorithm for computing x∗. For a unimodal map
f : [a, b]→ R with maximizer x? ∈ [a, b] and a constant 1/2 < r < 1, define a
dcpo by

Ix∗ = {x̄ ∈ IR : [a, b] v x̄ v [x∗]},

and a splitting by
maxf : Ix∗ → Ix∗

maxf [a, b] =
{

[l(a, b), b] if f(l(a, b)) < f(r(a, b));
[a, r(a, b)] otherwise,

where l(a, b) = (b − a)(1 − r) + a and r(a, b) = (b − a)r + a. The measure
of maxf is Scott continuous since µ maxf (x̄) = r · µ(x̄), for all x̄ ∈ Ix∗ . By
Theorem 7, ⊔

n≥0

maxnf (x̄) ∈ fix(maxf ),

for any x̄ ∈ Ix∗ . However, any fixed point of maxf has measure zero, and the
only element of Ix∗ with measure zero is [x∗]. Thus,

⊔
maxnf [a, b] = [x∗], which

means that iterating maxf yields a method for calculating x∗. This technique
is called the r-section search.

Finally, observe that maxf is not monotone. Let -1 < α < 1 and f(x) =
1−x2. The function f is unimodal on any compact interval. Since maxf [-1, 1] =
[-1, 2r − 1], we see that

maxf [-1, 1] v maxf [α, 1] ⇒ 1 ≤ 2r − 1 or r(α, 1) ≤ 2r − 1
⇒ 1 ≤ r or α+ 1 ≤ r(α+ 1)
⇒ r ≥ 1,

which contradicts r < 1. Thus, for no value of r is the algorithm monotone.

The previous examples make it clear that there are natural and important
examples of processes on domains that are fundamentally nonmonotonic but
which nevertheless have fixed points whose existence can be easily established
by measurement based results. Moreover, the previous fixed point theorem is
a strict generalization of the usual fixed point theorem in domain theory:

Example 17. If f : D → D is a Scott continuous map on a dcpo D with a
measurement µ that measures D, then we consider its restriction to the set
of points where it improves

I(f) = {x ∈ D : x v f(x)}.

This yields a splitting f : I(f) → I(f) on a dcpo with continuous measure.
By Theorem 7,

(∀x ∈ I(f))
⊔
n≥0

fn(x) is a fixed point of f.
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For instance, if D is ω-continuous with basis {bn : n ∈ N}, then

µx = |{n : bn � x}|

defines such a measurement. Notice, however, that with this construction we
normally have kerµ = ∅.

3.2 Numerical methods

Numerical methods provide an interesting application of domains and mea-
surements. The two examples in the last section, the bisection and the golden
section search, really only scratch the surface of what is possible in this regard.
So in this section, we take a closer look.

A topological question: what the **** are we computing?

By Theorem 2, a measurement µ allows one to derive the Scott topology on
ker(µ). This fundamental fact ensures that what appears to be computation
actually is computation.

Example 18. Recall the bisection method splitf : C(f) → C(f) from Exam-
ple 15. By Theorem 7, ⊔

n≥0

splitnf (x) ∈ fix(splitf ),

for all x ∈ C(f). But fix(splitf ) = {[r] : f(r) = 0}, which means that iterating
splitf is a scheme for calculating a zero of f . Right?

Well, almost. Let’s take a closer look at things. In the zero finding problem,
the desired result is a number that approximates the zero r, not an interval.
In practice, we calculate a small enough interval x, and then choose a point
within it as an approximation of r. The true reason that splitf is an algorithm
for computing r is that if we begin with any x ∈ C(f), and then choose any
sequence xn ∈ splitnf (x), we always have

|xn − r| ≤ µ splitnf (x) ≤ µx

2n
,

and hence xn → r in the usual topology on the real line.
Then what we need to know is that computation on a domain actually cor-

responds to computation in reality. For the splittings of Prop. 7, the following
result confirms exactly this.
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Proposition 2. Let D be a continuous dcpo with a map µ that measures D,
I ⊆ D a set closed under suprema of increasing sequences and s : I → I a
splitting with µs ≤ c · µ for a constant 0 ≤ c < 1. Then for all x ∈ I, if
xn ∈↑sn(x) ∩ kerµ, we have

xn →
⊔
n≥0

sn(x) ∈ fix(s) ⊆ kerµ,

in the relative Scott topology on kerµ.

For instance, in the case of the interval domain IR, we have

kerµ = max(IR) = {[x] : x ∈ R} ' R

where the homemorphism is between the relative Scott topology on kerµ and
the usual topology on the real line. Thus, to say that

⊔
n≥0 splitnf (x) computes

a zero of f means exactly the same thing as it does in numerical analysis.

Numerical methods and the information order

Some numerical methods manipulate information in a manner that is funda-
mentally different than a bracketing method, such as the bisection, or a one
point method, like Newton’s method. Each way of manipulating information
corresponds to a different information order.

Example 19. Let D = [0, 1] be the unit interval in its usual order. Then

PC(D) = {[a, b] : a, b ∈ [0, 1] & a ≤ b}

is called the convex powerdomain over D and its order is given by

[a, b] v [x, y]⇔ a ≤ x & b ≤ y.

We can measure this object by

µ[a, b] = (1− a) + (1− b).

Note that kerµ = max(PC(D)) = {[1]}.

The measurement above has a natural explanation [19].

One point methods

A one point method amounts to iterating a continuous f : [a, b]→ [a, b] until
we reach a fixed point, so it should come as no surprise that we can model
them domain theoretically with a copy of [a, b] ' [0, 1] in its usual order.
However, there is another way. We can exploit the fact that

[0, 1] ' {[x] : x ∈ [0, 1]} ⊆ PC [0, 1].

This subset we name the total reals and for this reason we refer to the other
elements of PC [0, 1] as partial reals.
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Example 20. Let f be concave increasing on [a, b] with f(a) < 0 and f(b) > 0.
Then consider the partial function If : PC [a, r] ⇀ PC [a, r] given by

[x] 7→ [x− f(x)/f ′(x)],

which is defined only on the subset of total reals. By Theorem 7,⊔
n≥0

Inf [x] ∈ fix(If ) = {[r]},

and so Newton’s method converges for any initial guess x ∈ dom(If ).

One of the standard reasons for avoiding Newton’s method is that it requires
the calculation of a derivative. A common method for overcoming this dif-
ficulty is to approximate the derivative by calculating a difference quotient
using two values which simultaneously also serve to approximate the zero r.
The most famous of the interpolation methods, as they are called, is probably
the secant method.

An analysis of the secant method

One point methods are nothing more than iterating a function on some part of
the real line, so domain theory is not necessary for describing them. However,
with multi-point or interpolation methods, i.e., those which use more than one
point to determine the next approximation in an iterative scheme, we arrive
at our first example where pursuit of the uniformity ideal mandates a domain
theoretic approach.

Example 21. The secant method. If we have a real valued function f , the fol-
lowing scheme is very useful for zero finding: choose two initial guesses x0 and
x1 and then proceed inductively according to

xn+1 = xn − f(xn) · xn − xn−1

f(xn)− f(xn−1)

for n ≥ 1. The hope is that this sequence converges to a zero of f .

At each iteration of this algorithm, instead of one value, as with Newton’s
method, there are two values to be used in calculating the next approximation.
We visualize it as a sequence of intervals:

[x0, x1]→ [x1, x2]→ [x2, x3]→ · · ·

The arrow indicates that we are moving up in the information order. These
intervals are almost never nested. Happily, though, they often form an in-
creasing sequence in the domain PC [a, b] of partial reals.

If we have a function f , its derivative df [x] = f ′(x) can be extended from
the total reals to the set of all partial reals PC [a, b] by
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df [x, y] =
f(y)− f(x)

y − x
if y > x.

And just like that, we can model the secant method.

Theorem 8. Let f be concave and increasing on [a, b] with a zero r ∈ (a, b).
Then iterating the splitting secf : PC [a, r]→ PC [a, r] given by

secf [x, y] =
[
y, y − f(y)

df [x, y]

]
is an algorithm for calcuating r. That is,⊔

n≥0

secnf (x) = [r],

for any x ∈ PC [a, r].

For a total real [x], we have secf [x] = [x, x − f(x)/f ′(x)], which says
that the secant method arises as the extension of a reversible formulation of
Newton’s method from the set of total reals to the set of all partial reals.

An interesting consequence here is that if we are able to compute the value
of f ′ at just one x ∈ [a, r), then the problem of generating two initial guesses
for the secant method is eliminated: given such an [x], we are then assured
that we have enough information to calculate the partial real secf [x], and
from there, Theorem 8 ensures that the iterates secnf [x] converge to [r].

So we have seen enough to find it plausible that the one point methods, the
bracketing methods and the interpolation methods all have natural domain
theoretic models and that the question of their correctness amounts in all cases
to proving that some operator has a fixed point. Notice that numerical analysis
only uses the fixed point approach for one point methods. This provides a
nice uniform approach. But to really be able to believe in it, we need domain
theory to teach us something new and significant about zero finding – perhaps
something that someone other than a domain theorist would care about.

A new method for zero finding

The zero finding problem really is one of the great problems in the history of
mathematics: given a real valued function f on an interval [a, b], find a zero
of f , that is, a number x such that f(x) = 0. Evariste Galois proved that one
must resort to algorithms in solving this problem by showing that polynomials
of degree five and higher have no solution by radicals, i.e., their zeroes are not
in general expressible by a formula.

If one assumes nothing about f except continuity, then there are many
senses in which the bisection method is the optimal algorithm for zero finding
([3][12]). However, for a class of Lipschitz mappings [4], the bisection method
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is no longer optimal. But Lipschitz mappings have derivatives almost every-
where [38]. In addition, the optimal algorithm makes use of the Lipschitz
constant [4], which is a bound on its derivative. Another case in which bisec-
tion is not optimal is the class of convex mappings [8]. But there again, one
finds that convex mappings are differentiable everywhere except on a count-
able set [38]. These two examples raise the following question: If we have a
nontrivial class C of functions and a zero finding algorithm which is better
than the bisection for the members of C, must the functions in C possess some
amount of differentiability? In short, is differentiability in some form necessary
in order to beat the bisection method?

We are going to prove that the answer to this question is no. For the class
of Hölder continuous mappings, which contains all of the well-known examples
of nowhere differentiable functions, including those arising in the analysis of
Brownian motion and fractals [7], we use domain theory and measurement to
design and analyze a new algorithm for zero finding which is better than the
bisection method at every iteration.

We will design the method for Hölder continuous functions which have a
simple zero on a compact interval [a, b].

Definition 14. A map f : [a, b]→ R is Hölder continuous if there are positive
constants c > 0 and α > 0 such that

|f(x)− f(y)| ≤ c · |x− y|α

for all x, y ∈ [a, b].

Example 22. Weierstrass’s function. The function introduced in 1872 by Weier-
strass,

f(x) =
∞∑
n=0

an cos (bnπx),

is nowhere differentiable for 0 < a < 1 and b an odd integer with ab > 1+3π/2.
It is Hölder continuous [46] with α = log(1/a)/ log b.

Definition 15. A function f : [a, b]→ R has a simple zero r ∈ [a, b] if

sgn f(x) = sgn(x− r)

for x ∈ [a, b], where sgn(x) = x/|x| for x 6= 0, and sgn(0) = 0. Write

2f := {x ∈ IR : [a, b] v x v [r]}

for the set of intervals where f changes sign.

Then a function has a simple zero r if it is positive to the right of r and
negative to the left of r. We will make use of the following operators on IR:



28 Keye Martin

Definition 16.

• l : IR→ R :: [a, b] 7→ a
• m : IR→ R :: [a, b] 7→ (a+ b)/2
• r : IR→ R :: [a, b] 7→ b

These are abbreviated lx := l(x), rx := r(x) and mx := m(x).

For instance, if f : [a, b]→ R has a simple zero r on [a, b], then the bisection
splitf : 2f → 2f can be written compactly as

splitf (x) =
{

[lx,mx] if f(mx) > 0;
[mx, rx] otherwise.

This formulation of the bisection will help us understand its relation to the
new method:

Theorem 9. Let f : [a, b] → R be a Hölder continuous map with a simple
zero r. Then iterating the splitting sf : 2f → 2f given by

sf (x) =


[
lx,mx − (f(mx)/c)1/α

]
if f(mx) > 0;

[
mx + (|f(mx)|/c)1/α

, rx

]
otherwise;

is an algorithm for computing r. That is,⊔
n≥0

snf (x) = [r],

for all x ∈ 2f . Thus, for all x ∈ 2f , if xn ∈ snf (x) for each n, then xn → r.

The method also easily extends to the case where |fx − fy| ≤ c · g(|x − y|),
for a left invertible g : [0,∞)→ [0,∞) satisfying g(0) = 0.

A comparison with the bisection

If s1 and s2 are two algorithms, then a natural intuition stemming from do-
main theory is to say that s2 is a better algorithm than s1 if

s1 v s2 ≡ (∀x) s1(x) v s2(x).

However, in the analysis of numerical techniques, one should not expect to be
able to make absolute statements such as “Algorithm 1 is better than Algo-
rithm 2 always and there is nothing more to be said.” For instance, sometimes
the bisection method is better than Newton’s method, if the derivatives of a
function are difficult (or impossible) to calculate, while an advantage of New-
ton’s method is its quadratic convergence when close enough to the root. Aside
from the fact that our method requires one to determine the constants α and
c – which is not necessarily a simple matter – we can in a lot of cases say that
sf is simply better than the bisection:
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Proposition 3. Let f : [a, b]→ R be a Hölder continuous map with a simple
zero r. Then splitf v sf and for any x ∈ 2f ,

µsf (x) = µ splitf (x)−
(
|f(mx)|

c

)1/α

≤ µ splitf (x),

with equality only in the unlikely event that mx = r.

For instance, if r is a computable irrational and we begin with an input x
having rational endpoints, then sf is a strict improvement over the bisection.

Corollary 1. Let f : [a, b] → R be a Hölder continuous map with a simple
irrational zero r. Then for any x ∈ 2f with rational endpoints lx, rx ∈ Q,

µsnf (x) < µ splitnf (x),

for all iterations n ≥ 1.

And in general we can see the same is true anytime the input interval does
not contain r as its midpoint: once sf gains an advantage over the bisection,
it keeps this advantage forever. While the qualitative statement splitf v sf
is certainly a strong one for numerical methods, when taken on its own, it
leaves something to be desired: how are we to know the inputs where they are
equal? Even if we know that splitf v sf and splitf 6= sf , they may only differ
on a single input, which doesn’t say very much.

But when we incorporate the quantitative as well, then the clarity of what
we are saying improves greatly: splitf and sf are equal iff their measures
are iff one can magically choose an input whose midpoint is the zero (which
amounts to guessing the answer). This provides a simple and clear example of
the “extra something” that measurement adds to the standard order theoretic
setting and illustrates how precise an analysis is possible when the qualitative
and quantitative are united.

To summarize, domain theory and measurement provides a language for
expressing zero finding algorithms which renders the verification process sys-
tematic and uniform: it enables us to turn the question of correctness into one
about fixed points for all zero finding methods, whereas this is only normally
achieved in numerical analysis for one point schemes like Newton’s method.
And because it also produced something new, it is okay to believe in it now
if you want to.

3.3 Unique fixed points

So measurement can be used to generalize the Scott fixed point theorem so as
to include important nonmonotonic processes. But it can also improve upon
it for monotone maps as well, by giving a technique that guarantees unique
fixed points.
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Definition 17. Let D be a continuous dcpo with a measurement µ. A mono-
tone map f : D → D is a contraction if there is a constant c < 1 with

µf(x) ≤ c · µx

for all x ∈ D.

Theorem 10. Let D be a continuous dcpo with a measurement µ such that

( ∀ x, y ∈ kerµ )( ∃ z ∈ D ) z v x, y.

If f : D → D is a contraction and there is a point x ∈ D with x v f(x), then

x? =
⊔
n≥0

fn(x) ∈ max(D)

is the unique fixed point of f on D. Furthermore, x? is an attractor in two
different senses:

(i) For all x ∈ kerµ, fn(x)→ x? in the Scott topology on kerµ, and
(ii) For all x v x?,

⊔
n≥0 f

n(x) = x?, and this supremum is a limit in the
Scott topology on D.

When a domain has a least element, the last result is easier to state.

Corollary 2. Let D be a domain with least element ⊥ and measurement µ.
If f : D → D is a contraction, then

x? =
⊔
n≥0

fn(⊥) ∈ maxD

is the unique fixed point of f on D. In addition, the other conclusions of
Theorem 10 hold as well.

Example 23. Let f : X → X be a contraction on a complete metric space
X with Lipschitz constant c < 1. The mapping f : X → X extends to a
monotone map on the formal ball model f̄ : BX → BX given by

f̄(x, r) = (fx, c · r),

which satisfies
πf̄(x, r) = c · π(x, r),

where π : BX → [0,∞)∗ is the standard measurement on BX, π(x, r) = r.
Now choose r so that (x, r) v f̄(x, r). By Theorem 10, f̄ has a unique attractor
which implies that f does also because X ' kerπ.

We can also use the upper space (UX ,diam) to prove the Banach contraction
theorem for compact metric spaces by applying the technique of the last ex-
ample. In [17], a domain theoretic result is given which generalizes the Banach
contraction theorem. Next up: probably the most overused example of a Scott
continuous map in domain theory. Here is something new about it:
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Example 24. Consider the well-known functional

φ : [N ⇀ N]→ [N ⇀ N]

φ(f)(k) =
{

1 if k = 0,
kf(k − 1) if k ≥ 1 & k − 1 ∈ dom f.

which is easily seen to be monotone. Applying µ : [N ⇀ N] → [0,∞)∗, we
compute

µφ(f) = |dom(φ(f))|

= 1−
∑

k∈dom(φ(f))

1
2k+1

= 1−

 1
20+1

+
∑

k−1∈dom(f)

1
2k+1


= 1−

1
2

+
∑

k∈dom(f)

1
2k+2


=

1
2

1−
∑

k∈dom(f)

1
2k+1


=
µf

2

which means φ is a contraction on the domain [N ⇀ N]. By the contraction
principle, ⊔

n∈N
φn(⊥) = fac

is the unique fixed point of φ on [N ⇀ N], where ⊥ is the function defined
nowhere.

3.4 Fractals

We now consider certain nontrivial examples of contractions and some of their
fixed points: fractals. By induction, a continuous map µ : D → [0,∞)∗ is a
measurement iff for all finite F ⊆ kerµ and all open sets U ⊆ D,

F ⊆ U ⇒ (∃ ε > 0)(∀x ∈ F ) µε(x) ⊆ U.

If we require this to hold, not only for finite sets F , but for all compact sets
K, we have exactly a Lebesgue measurement.

Definition 18. A Lebesgue measurement µ : D → [0,∞)∗ is a continuous
map such that for all compact sets K ⊆ kerµ and all open sets U ⊆ D,

K ⊆ U ⇒ (∃ ε > 0)(∀x ∈ K) µε(x) ⊆ U.
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Not all measurements are Lebesgue (Example 5.3.2 of [15]). The existence
of a Lebesgue measurement on a domain implies an important relationship
between the Scott topology and the Vietoris topology:

Definition 19. The Vietoris hyperspace of a Hausdorff space X is the set of
all nonempty compact subsets Pcom(X) with the Vietoris topology: it has a
basis given by all sets of the form

σ(U1, · · · , Un) := {K ∈ Pcom(X) : K ⊆
n⋃
i=1

Ui and K ∩ Ui 6= ∅, 1 ≤ i ≤ n},

where Ui is a nonempty open subset of X, for each 1 ≤ i ≤ n.

Given a finite number of contractions on a domain (D,µ) with a Lebesgue
measurement µ, their union is modelled by a contraction on the convex pow-
erdomain which then has a unique fixed point and yields the following result
from [24]:

Theorem 11. Let D be a continuous dcpo such that

(∀x, y ∈ D )(∃ z ∈ D ) z v x, y.

If f : D → D and g : D → D are contractions for which

(∃x ∈ D ) x v f(x) & x v g(x),

then there is a unique K ∈ Pcom(kerµ) such that f(K) ∪ g(K) = K. In
addition, it is an attractor:

(∀C ∈ Pcom(kerµ)) (f ∪ g)n(C)→ K,

in the Vietoris topology on Pcom(kerµ).

In order to apply these results, we need a simple and clear way to recognize
Lebesgue measurements. Let f : [0,∞)2 → [0,∞) be a function such that
f(xn, yn)→ 0 whenever xn, yn → 0.

Theorem 12. If µ : D → [0,∞)∗ is a measurement such that for all pairs
x, y ∈ D with an upper bound,

( ∃ z v x, y ) µz ≤ f(µx, µy),

then µ is a Lebesgue measurement.

The value of this result is that it identifies a condition satisfied by many of
the Lebesgue measurements encountered in practice. For instance, just con-
sider the number of examples covered by f(s, t) = 2 ·max{s, t}.



Domain theory and measurement 33

Example 25. Lebesgue measurements.

(i) The domain of streams (Σ∞, 1/2|·|).
(ii) The powerset of the naturals (Pω, | · |).

(iii) The domain of partial maps ([N ⇀ N], |dom|).
(iv) The interval domain (IR, µ).
(v) The upper space (UX ,diam) of a locally compact metric space (X, d).

(vi) The formal ball model (BX,π) of a complete metric space (X, d).

In fact, f(s, t) = s+ t applies to (i)–(v), the triangle inequality.
We are now going to apply Theorem 11 to obtain the classical result of

[11] for hyperbolic iterated function systems on complete metric spaces.

Definition 20. An iterated function system (IFS) on a space X is a nonempty
finite collection of continuous selfmaps onX. We write an IFS as (X; f1, . . . , fn).

Definition 21. An IFS (X; f1, . . . , fn) is hyperbolic if X is a complete metric
space and fi is a contraction for all 1 ≤ i ≤ n.

Definition 22. Let (X, d) be a metric space. The Hausdorff metric on Pcom(X)
is

dH(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A), }

for A,B ∈ Pcom(X).

Hyperbolic iterated function systems are used to model fractals: Given a
fractal image, one searches for a hyperbolic IFS which models it. But what
does it mean to model an image? The answer is given by Hutchinson’s funda-
mental result [11].

Theorem 13 (Hutchinson). If (X; f1, . . . , fn) is a hyperbolic IFS on a com-
plete metric space X, then there is a unique nonempty compact subset K ⊆ X
such that

K =
n⋃
i=1

fi(K).

Moreover, for any nonempty compact set C ⊆ X, (
⋃n
i=1 fi)

k(C) → K in the
Hausdorff metric dH as k →∞.

At this stage, we can see that what will be most difficult in proving such a
result is the convergence in the Hausdorff metric. Luckily, this topology is
independent of the metric d on X.

Theorem 14. Let (X, d) be a metric space. Then the topology induced by the
Hausdorff metric dH on Pcom(X) is the Vietoris topology on Pcom(X).

In [6], the formal ball model BX is used to give a domain theoretic proof
of the existence and uniqueness of the set K in Theorem 13 for any complete
metric space (X, d). What is missing from that discussion is the important
issue that K is also an attractor with respect to the Hausdorff metric dH .
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Example 26. If we have two contractions f, g : X → X on a complete metric
space X, they have Scott continuous extensions

f̄ , ḡ : BX → BX

which are contractions on BX with respect to π(x, r) = r. But π is a Lebesgue
measurement on a domain which has the property that for all (x, r), (y, s) ∈
BX, there is an element z = (x, r + s+ d(x, y)) ∈ BX with z v (x, r), (y, s).
In addition, for any x ∈ X, choosing r so that

r ≥ d(x, fx)
1− cf

and r ≥ d(x, gx)
1− cg

,

where cf , cg < 1 are the Lipschitz constants for f and g, respectively, gives a
point (x, r) v f̄(x, r), ḡ(x, r). By Theorem 11,

(∃!K ∈ Pcom(kerπ) ) f̄(K) ∪ ḡ(K) = K.

However, because kerπ ' X and the mappings f̄ , ḡ extend f and g, it is clear
that

(∃!K ∈ Pcom(X) ) f(K) ∪ g(K) = K

Finally, by Theorems 11 and 14, K is an attractor for f ∪ g on Pcom(X).

If a space may be realized as the kernel of a Lebesgue measurement on a
continuous dcpo D, then Theorem 11 implies that Hutchinson’s result holds for
any finite family of contractions which extend to D. Necessarily, two questions
arise:

• Which spaces arise as the kernel of a Lebesgue measurement?
• When does a domain admit a Lebesgue measurement?

The answer to the first question is that a space is completely metrizable iff it is
the kernel of a Lebesgue measurement on a continuous dcpo, and metrizable
iff it is the kernel of a Lebesgue measurement on a continuous poset. The
answer to the second question, for an ω continuous dcpo D, is that the set of
maximal elements max(D) is regular iff it is metrizable iff it is the kernel of a
Lebesgue measurement on D.

All of this is explained in more detail in [24]. Such results also have inter-
esting implications for general relativity [27].

4 Instances of partiality

We now consider four examples of domains whose descriptions are nontrivial.
Our first example is from analysis: the domain of real analytic mappings. The
basic idea is to be able to write things like
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1 v 1 + x v 1 + x+
x2

2!
v . . . v

⊔
n≥0

(
1 + . . .+

xn

n!

)
= ex

Here the polynomials (1+ . . .+xn/n!) in a Taylor expansion are partial, while
the analytic map ex is total. On this domain, we see that analytic mappings
arise as fixed points of monotone operators which provide schemes for how to
compute them as a limit of ‘finite approximations’ (polynomials).

Our second example concerns finite probability distributions or classical
states: e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, . . . , 1) are total,
while all others are partial; in particular, the least informative distribution is
⊥ = (1/n, . . . , 1/n), which we expect to be a least element in the ‘domain’
of classical states. On this domain, the maximum entropy state of statistical
mechanics arises as the least fixed point of a Scott continuous operator that
gives a scheme for calculating it.

Our third example is the quantum analogue of the second: the domain of
quantum states. In it, pure states |ψ〉〈ψ| are total, while all others (the mixed
states) are partial; in particular, its least element is the completely mixed state
⊥ = I/n. On this domain, unital quantum channels will be seen to have the
same domain theoretic properties as binary symmetric channels from classical
information theory: they are Scott continuous and have a Scott closed set of
fixed points. Later, after we have studied the informatic derivative, we will see
that this domain enables us to calculate the Holevo capacity of a unital qubit
channel. The domain of quantum states can also be used to recover classical
and quantum logic in a unified manner.

Our fourth example is from general relativity: the domain of spacetime
intervals. In it, single events [x, x] are total, while nontrivial intervals [p, q]
are partial, in a manner completely analogous to the interval domain IR. In
fact, these two domains have the exact same formal structure, as we will see.
The domain of spacetime intervals is used to explain how spacetime, including
its geometry, can be reconstructed in a purely order theoretic manner begin-
ning from only a countable dense set. This result may be of interest to those
concerned with the causal set approach to quantum gravity.

References: The results in this section are from the following sources:
Section 3.1 is from some of the author’s unpublished notes (1998), Section 3.2
is from [5, 31], 3.3 is from [5, 30] and 3.4 is from [26, 32, 27].

4.1 Analytic mappings

Real analytic mappings will be represented as infinite lists of rational numbers.

Definition 23. A list over Q is a function x : {0..., n} → Q for n ∈ N∪ {∞}.
The length of a list x is |dom(x)|. Q∞ is the set of both finite and infinite lists
over Q.

A finite list x is usually written as a vector [x0, ..., xn], where xi = x(i).
The empty list has been excluded above because there is no empty polynomial.
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Definition 24. The prefix order v on Q∞ is given by

x v y ≡ dom(x) ⊆ dom(y) and (∀i ∈ dom(x))xi = yi.

In this way, Q∞ is an ω-algebraic Scott domain whose compact elements are
exactly Qfin .

Definition 25. The norm of a power series

f(x) =
∞∑
n=0

an x
n

is

‖f‖(x) =
∞∑
n=0

|an xn|

provided that this sum exists.

To say that a power series has a norm on [a, b] means exactly that it
converges absolutely on [a, b].

Lemma 2. If a function f is defined by an absolutely convergent power series
on [a, b], then f and ‖f‖ are both continuous on [a, b].

Recall that C[a, b] denotes the space of continuous real value function
defined on [a, b].

Definition 26. The degree of a list p is |p| := (length p)− 1, with the under-
standing that the degree of an infinite list is∞. For a list of rationals a ∈ Q∞,
we set

(σa)x =
|a|∑
n=0

an x
n,

whenever such a sum exists for all x ∈ [a, b]. This gives a partial map-
ping σ : Q∞ → C[a, b]. A list p is analytic on [a, b] if ‖(σp)r‖ < ∞ where
r = max{|a|, |b|}.

Observe that σ is defined for any analytic list.

Corollary 3. For every analytic p ∈ Q∞, σp ∈ C[a, b] & ‖σp‖ ∈ C[a, b].

For f, g ∈ C[a, b], the uniform metric is

d(f, g) = sup{|f(x)− g(x)| : x ∈ [a, b]}

With these preliminaries out the way, we can now order analytic mappings:
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Definition 27. The set

P∞[a, b] := {(p, r) : p analytic, r ∈ [0,∞)∗}

is ordered by

(p, r) v (q, s) ≡ p v q and d(‖σp‖, ‖σq‖) ≤ r − s.

Theorem 15. P∞[a, b] is an ω-continuous dcpo with a countable basis given
by

{(p, r) : p finite, r ∈ Q & r ≥ 0}.

Its approximation relation is

(p, r)� (q, s)⇔ p finite & d(||σp||, ||σq||) < r − s

and its natural measurement µ : P∞[a, b]→ [0,∞)∗ given by

µ(p, r) = r +
1

2|p|

measures all of P∞[a, b], has kerµ = max(P∞[a, b]) and satisifies the triangle
inequality: for all pairs x, y ∈ P∞[a, b] with an upper bound, there is z v x, y
with µz ≤ µx+ µy.

We adopt the convention of writing

Pf in[a, b] = {(p, r) ∈ P∞[a, b] : p finite, r ≥ 0}

Proposition 4. If f : Pf in[a, b] → E is a monotone map into a dcpo such
that

f(p, r) =
⊔
f(p, r + 1/n)

for p finite, then f may be extended uniquely to a Scott continuous map on all
of P∞[a, b].

A mapping f of the type discussed in the previous result is said to be
invariant on polynomials.

Example 27. The unary operation addition by 1

(p, r) 7→ ([a0 + 1, . . . , an], r)

is monotone and invariant on polynomials, so it extends uniquely to P∞[a, b].

At times we may blur the distinction between polynomials and lists of
rational numbers, that is, we will treat them as one and the same for the
purpose of illustrating various points about mappings on P∞[a, b] and the
functions they act on. Now for a nontrivial example.
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Example 28. Let [a, b] be an interval containing 0 and define

I : Pf in[a, b]→ P∞[a, b]

I(p, r) = (
∫ x

0

p(t) dt,m · r)

where m = max{|a|, |b|} and
∫ x

0
p(t) dt is the list operation taking p =

[a0, ..., an] to [0, a0, ..., an/(n + 1)]. This mapping is monotone and invariant
on polynomials so it has a unique Scott continuous extension to all of P∞[a, b],
which we denote by

∫ x
0

.

From a symbolic definition of integral for polynomials, the one we normally
program when implementing the polynomial data type, we systematically ob-
tain a definition of integral for analytic mappings.

Example 29. The exponential map. Consider the operator

exp : P∞[−c, c]→ P∞[−c, c]

exp(p, r) = 1 +
∫ x

0

(p, r)

for 0 < c < 1, the Scott continuous map
∫ x

0
composed with the unary Scott

continuous operator that adds 1. Since (1, r) v exp(1, r) for r ≥ 1, Scott
continuity gives a fixed point

fix(exp) =
⊔
n≥0

expn(1, 1)

that is easily seen to be the exponential map ex. This fixed point is unique.
First, because exp is a contraction with respect to the natural measurement

µ with µ(exp) ≤ max{c, 1/2} · µ, any other fixed point exp(p, r) = (p, r)
yields µ(p, r) = 0. But any fixed point (p, 0) must also have 1 v p. Let
r := d(1, ‖σp‖) + 1 ≥ 1. Then since (1, r) v (p, 0), we have a lower bound for
both (p, 0) and fix(exp), which gives (p, 0) = fix(exp) since exp is a contraction.

Notice that expn(1, 1) is the nth-degree Taylor approximation of the max-
imal element ex. In addition, the smaller the interval [−c, c], the smaller that
c is, the quicker that exp converges to ex. Thus, using the domain of ana-
lytic mappings we see that fewer terms of the Taylor series are required to
approximate ex on the interval [−c/2, c/2] than on the interval [−c, c].

In a similar way one can realize the sine and cosine functions as unique
fixed points of Scott continuous mappings.

Example 30. The trigonometric functions. The operator for the sine is

φ(p, r) = x−
∫ x

0

∫ y

0

(p, r).
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The operator for the cosine is

φ(p, r) = 1−
∫ x

0

∫ y

0

(p, r).

The iteration for the first begins with the polynomial x, and the second begins
with the polynomial 1.

4.2 Classical states

Definition 28. Let n ≥ 2. The classical states are

∆n :=

{
x ∈ [0, 1]n :

n∑
i=1

xi = 1

}
.

A classical state x ∈ ∆n is pure when xi = 1 for some i ∈ {1, . . . , n}; we
denote such a state by ei.

Pure states {ei}i are the actual states a system can be in, while general
mixed states x and y are epistemic entities. Imagine that one of n different
outcomes is possible. If our knowledge of the outcome is x ∈ ∆n, and then
by some means we determine that outcome i is not possible, our knowledge
improves to

pi(x) =
1

1− xi
(x1, . . . , x̂i, . . . , xn+1) ∈ ∆n,

where pi(x) is obtained by first removing xi from x and then renormalizing.
The partial mappings which result, pi : ∆n+1 ⇀ ∆n with dom(pi) = ∆n+1 \ {ei},
are called the Bayesian projections and lead one to the following relation on
classical states.

Definition 29. For x, y ∈ ∆n+1,

x v y ≡ (∀i)(x, y ∈ dom(pi)⇒ pi(x) v pi(y)).

For x, y ∈ ∆2,

x v y ≡ (y1 ≤ x1 ≤ 1/2) or (1/2 ≤ x1 ≤ y1) .

The relation v on ∆n is called the Bayesian order.

As we can see, the definition of ∆n+1 from ∆n is natural. The order on ∆2,
is derived from the graph of entropy H(x) = −x log2(x)− (1− x) log2(1− x)
as follows:

-

6H

x flip−→

(1, 0) (0, 1)

⊥ = ( 1
2 ,

1
2 )
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It is canonical in the following sense:

Theorem 16. There is a unique partial order on ∆2 that satisfies the mixing
law

x v y and p ∈ [0, 1] ⇒ x v (1− p)x+ py v y

and has ⊥ := (1/2, 1/2) as a least element. It is the Bayesian order on classical
two states.

The Bayesian order was discovered in [5] where the following is proven:

Theorem 17. (∆n,v) is a dcpo with least element ⊥ := (1/n, . . . , 1/n) and
max(∆n) = {ei : 1 ≤ i ≤ n}. It has Shannon entropy

µx = −
n∑
i=1

xi log xi

as a measurement of type ∆n → [0,∞)∗.

A more subtle example of a measurement on ∆n in its Bayesian order is
the retraction r : ∆n → Λn which rearranges the probabilities in a classical
state into descending order.

The Bayesian order has a more direct description: the symmetric formu-
lation. Let S(n) denote the group of permutations on {1, . . . , n} and

Λn := {x ∈ ∆n : (∀i < n)xi ≥ xi+1}

denote the collection of monotone decreasing classical states. It can then be
shown [5] that for x, y ∈ ∆n, we have x v y iff there is a permutation σ ∈ S(n)
such that x · σ, y · σ ∈ Λn and

(x · σ)i(y · σ)i+1 ≤ (x · σ)i+1(y · σ)i

for all i with 1 ≤ i < n. Thus, (∆n,v) can be thought of as n! many copies of
the domain (Λn,v) identified along their common boundaries, where (Λn,v)
is

x v y ≡ (∀i < n)xiyi+1 ≤ xi+1yi.

It should be remarked though that the problems of ordering Λn and ∆n are
very different, with the latter being far more challenging, especially if one
also wants to consider quantum mixed states. Let us now consider an impor-
tant application of the Bayesian order to give a method for calculating the
maximum entropy state of statistical mechanics.
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The maximum entropy principle

The possible outcomes of an event are a1, . . . , an. It is repeated many times
and an average value of E is observed. What is the probability pi of ai?
The maximum entropy principle provides an approach to solve this problem:
because Shannon entropy has a maximum value on the set{

p ∈ ∆n :
n∑
i=1

pi · ai = E

}

that is assumed at exactly one point, one possibility is to use this state as the
probability distribution that models our observed data. Beautiful – but how
do we calculate this distribution?

Define

f(x) =
∑n
i=1 aie

xai∑n
i=1 e

xai
− E, If (x) = x− f(x)

(an − a1)2

for any x ∈ R. Define λ : ∆n → R ∪ {±∞} by

λ(x) =


log

“
sort(x)1
sort(x)2

”
an−an−1

if If (0) > 0;

log
“

sort(x)1
sort(x)2

”
a1−a2

otherwise.

with the understanding for pure states that λx = ∞ in the first case and
λx = −∞ in the other. The map sort puts states into decreasing order.

Theorem 18. Let a1 < E < an. The map

φ : ∆n → ∆n

given by

φ(x) = (eIf (λx)a1 , . . . , eIf (λx)an) · 1
Z(x)

Z(x) =
n∑
i=1

eIf (λx)ai

is Scott continuous in the Bayesian order. Its least fixed point is the maximum
entropy state.

The maximum entropy principle has been successfully applied to perform
image reconstruction from noisy data, probabilistic link extraction from in-
telligence data, natural language processing, stock price volatility, thermody-
namics.
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4.3 Quantum states

Let Hn denote an n-dimensional complex Hilbert space with specified inner
product 〈·|·〉.

Definition 30. A quantum state is a density operator ρ : Hn → Hn, i.e., a
self-adjoint, positive, linear operator with tr(ρ) = 1. The quantum states on
Hn are denoted Ωn.

Definition 31. A quantum state ρ on Hn is pure if

spec(ρ) ⊆ {0, 1}.

The set of pure states is denoted Σn. They are in bijective correspondence
with the one dimensional subspaces of Hn.

Classical states are distributions on the set of pure states max(∆n). By
Gleason’s theorem, an analogous result holds for quantum states: Density
operators encode distributions on the set of pure states Σn.

Definition 32. A quantum observable is a self-adjoint linear operator e :
Hn → Hn.

An observable of a physical system is anything about it that we can mea-
sure. For example, energy is an observable. Observables in quantum mechanics
are represented mathematically by self-adjoint operators.

If we have the operator e representing the energy observable of a system
(for instance), then its set of eigenvalues spec(e), called the spectrum of e,
consists of the actual energy values a system may assume. If our knowledge
about the state of the system is represented by density operator ρ, then quan-
tum mechanics predicts the probability that a measurement of observable e
yields the value λ ∈ spec(e). It is

pr(ρ→ eλ) := tr(pλe · ρ),

where pλe is the projection corresponding to eigenvalue λ and eλ is its associ-
ated eigenspace in the spectral representation of e.

Definition 33. Let e be an observable on Hn with spec(e) = {1, . . . , n}. For
a quantum state ρ on Ωn,

spec(ρ|e) := (pr(ρ→ e1), . . . ,pr(ρ→ en)) ∈ ∆n.

We assume that all observables e have spec(e) = {1, . . . , n}. For our pur-
poses it is enough to assume |spec(e)| = n; the set {1, . . . , n} is chosen for
the sake of aesthetics. Intuitively, then, e is an experiment on a system which
yields one of n different outcomes; if our a priori knowledge about the state
of the system is ρ, then our knowledge about what the result of experiment e
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will be is spec(ρ|e). Thus, spec(ρ|e) determines our ability to predict the result
of the experiment e.

Let us point out that spec(ρ) = Im(spec(ρ|e)) and spec(σ) = Im(spec(σ|e))
are equivalent to [ρ, e] = 0 and [σ, e] = 0, where [a, b] = ab − ba is the
commutator of operators.

Definition 34. Let n ≥ 2. For quantum states ρ, σ ∈ Ωn, we have ρ v σ
iff there is an observable e : Hn → Hn such that [ρ, e] = [σ, e] = 0 and
spec(ρ|e) v spec(σ|e) in ∆n.

This is called the spectral order on quantum states.

Theorem 19. (Ωn,v) is a dcpo with maximal elements max(Ωn) = Σn and
least element ⊥ = I/n, where I is the identity matrix. It has von Neumann
entropy

σρ = −tr(ρ log ρ)

as a measurement of type Ωn → [0,∞)∗.

Another natural measurement on Ωn is the map q : Ωn → Λn which assigns
to a quantum state its spectrum rearranged into descending order. It can be
thought of as an important link between classical and quantum information
theory.

There is one case where the spectral order can be described in an elemen-
tary manner.

Example 31. The 2× 2 density operators Ω2 can be represented as points on
the unit ball in R3 :

Ω2 ' {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1}.

For example, the origin (0, 0, 0) corresponds to the completely mixed state
I/2, while the points on the surface of the sphere describe the pure states.
The order on Ω2 then amounts to the following: x v y iff the line from the
origin ⊥ to y passes through x.

Let us now consider an application of Ω2 to the study of communication.

Classical and quantum communication

The classical channels f : ∆2 → ∆2 which increase entropy (H(f(x)) ≥ H(x))
are exactly those f with f(⊥) = ⊥. They are the strict mappings of domain
theory, which are also known as binary symmetric channels in information
theory. Similarly, the entropy increasing qubit channels are exactly those chan-
nels2 ε : Ω2 → Ω2 for which ε(⊥) = ⊥. These are called unital in quantum
information theory.
2 Quantum channels are completely positive and convex linear, see [35] for more.
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Definition 35. A qubit channel ε : Ω2 → Ω2 is unital if ε(⊥) = ⊥.

Theorem 20.

• A classical channel f : ∆2 → ∆2 is binary symmetric iff it is Scott con-
tinuous and its set of fixed points is Scott closed.
• A quantum channel f : Ω2 → Ω2 is unital if and only if it is Scott

continuous and its set of fixed points is Scott closed.

In fact, this last result hints at how to establish the uniqueness of Ω2, in
a manner completely similar to the corresponding result for ∆2:

Theorem 21. There is a unique partial order on Ω2 with the following three
properties:

(i) It has least element ⊥ = I/2,
(ii) It satisfies the mixing law: if r v s, then r v tr + (1 − t)s v s, for all

t ∈ [0, 1],
(iii) Every unital channel f : Ω2 → Ω2 is Scott continuous and has a Scott

closed set of fixed points.

It is the spectral order, and gives Ω2 the structure of a Scott domain.

Finally, let us turn to one last application of the spectral order.

Classical and quantum logic

The logics of Birkhoff and von Neumann consist of the propositions one can
make about a physical system. Each proposition takes the form “The value
of observable e is contained in E ⊆ spec(e).” For classical systems, the logic
is P{1, . . . , n}, while for quantum systems it is Ln, the lattice of (closed)
subspaces of Hn. In each case, implication of propositions is captured by
inclusion, and a fundamental distinction between classical and quantum –
that there are pairs of quantum observables whose exact values cannot be
simultaneously measured at a single moment in time – finds lattice theoretic
expression: P{1, . . . , n} is distributive; Ln is not.

Remarkably, the classical and quantum logics can be derived from the
Bayesian and spectral orders using the same order theoretic technique.

Definition 36. An element x of a dcpo D is irreducible when∧
(↑x ∩max(D)) = x

The set of irreducible elements in D is written Ir(D).

The order dual of a poset (D,vD) is written D∗; its order is x v y ⇔
y vD x.
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Theorem 22. For n ≥ 2, the classical lattices arise as

Ir(∆n)∗ ' P{1, . . . , n} \ {∅},

and the quantum lattices arise as

Ir(Ωn)∗ ' Ln \ {0}.

4.4 Spacetime intervals

General relativity is Einstein’s theory of gravity in which gravity is understood
not in terms of mysterious “universal” forces but rather as part of the geom-
etry of spacetime. It is profoundly beautiful and beautifully profound from
both the physical and mathematical viewpoints and it teaches us clear lessons
about the universe in which we live that are easily explainable. For example,
it offers a wonderful explanation of gravity: if an apple falls from a tree, the
path it takes is not determined by the Newtonian ideal of an “invisible force”
but instead by the curvature of the space in which the apple resides: gravity is
the curvature of spacetime. In addition, the presence of matter in spacetime
causes it to “bend” and Einstein even gives us an equation that relates the
curvature of spacetime to the matter present within it. However.

Since everything attracts everything else, a gravitating mass of sufficient
size will eventually collapse. In 1965, Penrose [36] showed that any such col-
lapse eventually leads to a singularity where the mathematical description of
spacetime as a continuum breaks down. This leads to the need to reformulate
gravity. It is hoped that the elusive quantum theory of gravity will resolve
this problem.

Since the first singularity theorems [36, 10], causality has played a key
role in understanding spacetime structure. The analysis of causal structure
relies heavily on techniques of differential topology [37]. For the past decade
Sorkin and others [42] have pursued a program for quantization of gravity
based on causal structure. In this approach the causal relation is regarded as
the fundamental ingredient and the topology and geometry are secondary.

In this section, we will see that the causal structure of spacetime is cap-
tured by a domain and learn the surprising connection between measurement,
the Newtonian concept of time, and the geometry of spacetime.

Definition 37. A continuous poset (P,≤) is bicontinuous if

• For all x, y ∈ P , x� y iff for all filtered S ⊆ P with an infimum,∧
S ≤ x⇒ (∃s ∈ S) s ≤ y,

and
• For each x ∈ P , the set ↑↑x is filtered with infimum x.
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We tend to prefer the notation ≤ for the order on a poset that is known
to be bicontinuous. For x, y in a poset (P,≤),

x < y ≡ x ≤ y & x 6= y.

In general, < and � are completely different ideas.

Example 32. (R,≤), (Q,≤) are bicontinuous.

Definition 38. The interval topology on a continuous poset P exists when
sets of the form

(a, b) = {x ∈ P : a� x� b} & ↑↑x = {y ∈ P : x� y}

form a basis for a topology on P .

Notice that on a bicontinuous poset, the interval topology exists and has

(a, b) := {x ∈ P : a� x� b}

as a basis.
A manifold M is a locally Euclidean Hausdorff space that is connected

and has a countable basis. Such spaces are paracompact. A Lorentz metric
on a manifold is a symmetric, nondegenerate tensor field of type (0, 2) whose
signature is (−+ ++).

Definition 39. A spacetime is a real four-dimensional3 smooth manifold M
with a Lorentz metric gab.

Let (M, gab) be a time-orientable spacetime. Let Π+
≤ denote the future

directed causal curves, and Π+
� denote the future directed time-like curves.

Definition 40. For p ∈M,

I+(p) := {q ∈M : (∃π ∈ Π+
�)π(0) = p, π(1) = q}

and
J+(p) := {q ∈M : (∃π ∈ Π+

≤ )π(0) = p, π(1) = q}

Similarly, we define I−(p) and J−(p).

We write the relation J+ as

p ≤ q ≡ q ∈ J+(p).

The “Alexandroff topology” on a spacetime has {I+(p) ∩ I−(q) : p, q ∈M}
as a basis; a spacetime M is strongly causal iff its Alexandroff topology
is Hausdorff iff its Alexandroff topology is the manifold topology. Penrose
has called globally hyperbolic spacetimes “the physically reasonable space-
times [44].”
3 The results in the present paper work for any dimension n ≥ 2 [26].
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Definition 41. A spacetime M is globally hyperbolic if it is strongly causal
and if ↑a ∩ ↓b is compact in the manifold topology, for all a, b ∈M.

Theorem 23. IfM is globally hyperbolic, then (M,≤) is a bicontinuous poset
with � = I+ whose interval topology is the manifold topology.

This result motivates the following definition:

Definition 42. A poset (X,≤) is globally hyperbolic if it is bicontinuous and
each interval [a, b] = {x : a ≤ x ≤ b} is compact in the interval topology.

Globally hyperbolic posets have rich enough structure that we can de-
duce many properties of spacetime from them without appealing to differen-
tiable structure or geometry, such as the compactness of the space of causal
curves [27]. We can also deduce new aspects of spacetime. Globally hyperbolic
posets are very much like the real line. In fact, a well-known domain theoretic
construction pertaining to the real line extends in perfect form to the globally
hyperbolic posets:

Theorem 24. The closed intervals of a globally hyperbolic poset X

IX := {[a, b] : a ≤ b & a, b ∈ X}

ordered by reverse inclusion

[a, b] v [c, d] ≡ [c, d] ⊆ [a, b]

form a continuous domain with

[a, b]� [c, d] ≡ a� c & d� b.

The poset X has a countable basis iff IX is ω-continuous. Finally,

max(IX) ' X

where the set of maximal elements has the relative Scott topology from IX.

In fact, more is true: in [26] it is shown that the category of globally
hyperbolic posets is naturally isomorphic to the category of interval domains.
This observation – that spacetime has a canonical domain theoretic model
– teaches us something new: from only a countable set of events and the
causality relation, one can reconstruct spacetime in a purely order theoretic
manner. Explaining this requires domain theory.
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Reconstruction of the spacetime manifold

An abstract basis is a set (C,�) with a transitive relation that is interpolative
from the − direction:

F � x⇒ (∃y ∈ C)F � y � x,

for all finite subsets F ⊆ C and all x ∈ F . Suppose, though, that it is also
interpolative from the + direction:

x� F ⇒ (∃y ∈ C)x� y � F.

Then we can define a new abstract basis of intervals

int(C) = {(a, b) : a� b} =�⊆ C2

whose relation is
(a, b)� (c, d) ≡ a� c & d� b.

Let IC denote the ideal completion of the abstract basis int(C).

Theorem 25. Let C be a countable dense subset of a globally hyperbolic space-
time M and �= I+ be timelike causality. Then

max(IC) 'M

where the set of maximal elements have the Scott topology.

Theorem 25 is very different from results like “Let M be a certain space-
time with relation ≤. Then the interval topology is the manifold topology.”
Here we identify, in abstract terms, a process by which a countable set with a
causality relation determines a space. The process is entirely order theoretic
in nature, spacetime is not required to understand or execute it (i.e., if we
put C = Q and �=<, then max(IC) ' R). In this sense, our understand-
ing of the relation between causality and the topology of spacetime is now
explainable independently of geometry. Ideally, one would now like to know
what constraints on C in general imply that max(IC) is a manifold.

Time and measurement

A global time function t : M → R on a globally hyperbolic spacetime M is
a continuous function such that x < y ⇒ t(x) < t(y) and t−1(r) = Σ is a
Cauchy surface for M, for each r ∈ R.

Theorem 26. For any global time function t : M → R on a globally hyper-
bolic spacetime, the function ∆t :M→ [0,∞)∗ given by ∆t[a, b] = t(b)− t(a)
measures all of I(M). It is a measurement with ker(∆t) = max(I(M)).
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Let d : I(M) → [0,∞)∗ denote the Lorentz distance on a globally hyper-
bolic spacetime

d[a, b] = sup
πab

len(πab)

where the sup is taken over all causal curves that join a to b.
A function between continuous posets is interval continuous when each

poset has an interval topology and the inverse image of an interval open set
is interval open. By the bicontinuity of M, the interval topology on I(M)
exists, so we can consider interval continuity for functions I(M)→ [0,∞)∗.

Theorem 27. The Lorentz distance d : I(M) → [0,∞)∗ has the following
properties:

(i) It is monotone: x ≤ y ⇒ d(x) ≥ d(y),
(ii) It preserves the way below relation: x� y ⇒ d(x) > d(y),

(iii) It is interval continuous and hence, by (i), Scott continuous.

It does not measure I(M) at any point of ker(d).

That the Lorentz distance is not a measurement has all to do with relativity:
it is a direct consequence of the fact that a clock travelling at the speed of
light records no time as having elapsed i.e. the set of null intervals is equal to

ker(d) \max(I(M)) 6= ∅

but measurements µ always satisfy ker(µ) ⊆ max(D) (Lemma 1).
In fact, no interval continuous function µ : I(M)→ [0,∞)∗ can be a mea-

surement: by interval continuity, µx = 0 for any x with ↑↑x = ∅. Then just like
the Lorentz distance, an interval continuous µ will also assign 0 to “null inter-
vals.” In this way, we see that interval continuity captures an essential aspect
of the Lorentz distance: interval continuous functions do not distinguish be-
tween single events and null intervals. In addition, since ∆t is a measurement,
it cannot be interval continuous. This provides a surprising topological dis-
tinction between the Newtonian and relativistic concepts of time: d is interval
continuous, ∆t is not. Put another way, ∆t can be used to reconstruct the
topology of spacetime (Theorem 2), while d is used to reconstruct its geometry.

Reconstruction of spacetime geometry

Specifically, if in addition to int(C) we also begin with a countable collection
of numbers lab chosen for each (a, b) ∈ int(C) in such a way that the map

int(C)→ [0,∞)∗ :: (a, b) 7→ lab

is monotone, then in the process of reconstructing spacetime, we can also
construct the Scott continuous function d : IC → [0,∞)∗ given by

d(x) = inf{lab : (a, b)� x}.
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In the event that the countable number of lab chosen are the Lorentz distances
lab = d[a, b], then the function d constructed above yields the Lorentz distance
for any spacetime interval, the reason being that both are Scott continuous
and are equal on a basis of the domain.

Thus, from a countable dense set of events and a countable set of distances,
we can reconstruct the spacetime manifold together with its geometry in a
purely order theoretic manner.

5 The informatic derivative

Major references: [15, 20, 30]

5.1 In a single measurement

Recall the seemingly innocent definition of the µ topology from Section 2.4:

Definition 43. The µ topology on a continuous dcpo D has as a basis all sets
of the form ↑↑x ∩ ↓y where x, y ∈ D. It is denoted µD.

This also turns out to be the topology one needs to define rates of change
on a domain. This comes as something of a surprise since the µ topology is
always zero-dimensional and Hausdorff.

Definition 44. Let D be a continuous dcpo with a map µ : D → [0,∞)∗ that
measures X ⊆ D. If f : D → D is a function and p ∈ X is not a compact
element of D, then

dfµ(p) := lim
x→p

µf(x)− µf(p)
µx− µp

is called the informatic derivative of f at p with respect to µ, provided that
it exists. The limit above is taken with respect to the µ topology.

If the limit above exists, then it is unique, since the µ topology is Hausdorff,
and we are taking a limit at a point that is not isolated: {p} is µ open iff p is
compact. Notice too the importance of strict monotonicity of µ in Lemma 1:
without it, we could not define the derivative. The definition of informatic
derivative has a simple extension to functions f : D → E between domains
with measurements (D,µ) and (E, λ) [15].

Our first example comes from calculus and provided the first relationship
between domain theory and the differential calculus [15].

Theorem 28. Let f : R→ R be a continuous map on the real line with p ∈ R.
If f ′(p) exists, then

df̄µ[p] = |f ′(p)|

where f̄(x) = f(x) is the canonical extension of f to IR and µ[a, b] = b− a.
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In particular, any iterative process with a classical derivative has an informatic
derivative, and from the complexity viewpoint, they are equal. In fact, it can be
shown that df̄µ exists and is continuous iff f has a continuous first derivative
i.e. the informatic derivative is equivalent to the classical derivative for C1

functions. However, in general, informatic differentiability of f̄ is strictly more
general than classical differentiability [25].

5.2 The derivative at a fixed point

It often happens that partial maps on spaces have fixed points which are
unknown. For example, the polynomial p : R→ R given by p(x) = x3 + x− 1
has a zero on [0, 1] because p(0) · p(1) < 0. Consequently, f(x) = x− p(x) has
a fixed point on [0, 1], even though we are not sure of what it is.

Because a partial map f : X ⇀ X on a space X may have an unknown
fixed point p, methods for calculating it are important. A minimal requirement
is usually that p be an attractor: that there exist an open set U ⊆ X such that
for all x ∈ U , fn(x)→ p. This provides a simple scheme for approximating p:
simply calculate the iterates fn(x) beginning with any x ∈ U .

In Sections 3 and 4 we saw many examples of numerical methods and
monotone maps (when restricted to I(f) = {x : x v f(x)}) which give rise to
partial splittings that converge to fixed points.

Lemma 3. Let s : D ⇀ D be a partial splitting which maps into dom(s). If
s(p) = p and dsµ(p) exists, then dsµ(p) ≤ 1.

So we consider partial maps f with fixed points p such that dfµ(p) ≤ 1.
The identity map 1 : D → D has d(1)µ(p) = 1 at any element which is
not compact, meaning that a map whose derivative is unity need not have
an attractive point. However, if dfµ(p) < 1, then we can say something: for
monotone maps with fixed points in the kernel, we have an attractor in the
Scott topology.

Theorem 29. Let f : (D,µ)→ (D,µ) be a monotone mapping with f(kerµ) ⊆
kerµ. If dfµ(p) < 1 at a fixed point f(p) = p ∈ kerµ, then there is an approx-
imation a� p such that

(i) For all x ∈ D, if a v x v p, then⊔
n≥0

fn(x) = p,

and this is a limit in the µ topology on D.
(ii) The unique fixed point of f on ↑a is p.
(iii) For all x ∈ kerµ ∩ ↑a, fn(x)→ p in the Scott topology on kerµ.

In [15], it is shown that (i) is equivalent to f being µ continuous at p,
so we can take (i) as a definition of µ continuity at a fixed point. The bi-
section method splitf is not necessarily µ continuous at a fixed point if the
corresponding zero of f is not isolated.
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Corollary 4. Let f : R→ R be a continuous map on the real line with a fixed
point f(p) = p. If df̄µ[p] < 1, then there is an ε > 0 such that

(∀x ∈ (p− ε, p+ ε) ) fn(x)→ p.

In particular, this holds if f is differentiable at p and |f ′(p)| < 1.

The last corollary applies to continuous maps on the real line that have infor-
matic derivatives but do not have classical derivatives [25]. As an application
of Theorem 29, we will prove the correctness of Newton’s Method without
using Taylor’s Theorem.

Example 33. Let f : [a, b]→ R be a continuous function with a zero r ∈ (a, b).
If f ′ is nonzero and continuous on [a, b] and f ′′(r) exists, we consider the
continuous map If : [a, b]→ R, given by

If (x) = x− f(x)
f ′(x)

.

It is easy to see that If (r) = r. By extending If to the real line in any way
whatsoever, we appeal to Theorem 28 and obtain

dĪf
dµ

[r] = 0.

By Corollary 4, we see that there is an ε > 0 such that If (x) → r for all
x ∈ (r − ε, r + ε).

But what is achieved by avoiding Taylor’s theorem? To prove the correctness
of Newton’s method using Taylor’s theorem, we must assume that f ′′ exists
on an open interval containing the zero r. The proof we gave in Example 33
assumes only that f ′′(r) exists. This gives one definite advantage to using
Theorem 29 in place of Taylor’s theorem: we can prove that Newton’s method
works on a larger class of functions.

Of course, once we know that an iterative process works correctly, the next
question inevitably concerns the rate at which it works. In classical numerical
analysis, the efficiency of an iterative algorithm is determined by calculating
its order of convergence.

Definition 45. Let (xn) be a sequence of reals with xn → p. If

0 < lim
n→∞

|xn+1 − p|
|xn − p|α

= r <∞,

for some α ≥ 1, then α is called the order of convergence of the sequence. If
α = 1 then r is called the rate of convergence of (xn).
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In this definition, the sequence (xn) is generated by a numerical algorithm
designed to calculate p. The larger that α is, the quicker the convergence of
(xn) to p, the better the algorithm.

If α = 1, the algorithm is said to converge linearly. For α = 2, the con-
vergence is quadratic. Two linearly convergent algorithms may be compared
based on their rates of convergence.

Notice that orders of convergence are calculated using the uncertainty
|xn− p|. To extend the idea to the setting of domains with measurements, we
consider sequences (xn) which converge to their suprema p in the µ topology
on D, and replace |xn − p| with |µxn − µp|.

Definition 46. Let D be a dcpo and let µ measure X ⊆ D. If (xn) is a
sequence in D which converges to its supremum p ∈ X in the µ topology and

0 < lim
n→∞

µxn+1 − µp
(µxn − µp)α

= r <∞,

for some α ≥ 1, then α is called the order of convergence of the sequence. If
α = 1 then r is called the rate of convergence of (xn).

An increasing sequence (xn) converges to its supremum p in the µ topol-
ogy. We begin with linear processes: the informatic derivative enables the
systematic computation of rates of convergence.

Lemma 4. Let s : (D,µ) ⇀ (D,µ) be a partial map which maps into dom(s)
and has a fixed point p =

⊔
snx in the µ topology. If dsµ(p) exists, then

lim
n→∞

µsn+1(x)− µp
µsn(x)− µp

=
ds

dµ
(p),

provided µsn(x)− µp > 0 for all n ≥ 0.

Thus, to find the rate at which a linear algorithm s converges to a fixed point
p, we find its derivative at p. But why is this a measure of efficiency?

Proposition 5. Let s : (D,µ) ⇀ (D,µ) be a partial map which maps into
dom(s). If s is µ continuous at a fixed point p and 0 < dsµ(p) < 1, then for
all 0 < ε < 1− dsµ(p), there is an a� p such that for all x ∈ dom(s),

a v x v p and n ≥ log(ε/(µx− µp))
log (dsµ(p) + ε)

⇒ snx v p and |µsnx− µp| < ε,

provided x 6= p and n ≥ 1.

Prop. 5 gives an upper bound on the number of iterations a linear process
must do before it achieves ε accuracy. In order that this estimate hold, the
input x must be sufficiently close. However, even in the presence of this math-
ematical annoyance, we can still use it to understand why rate of convergence
is a measure of efficiency.
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Suppose we have two linear processes s, t which have a common fixed point
p and that 0 < dsµ(p) < dtµ(p) < 1. Let ε > 0. Imagine we have different
inputs for s and t which both have measure λ and that λ − µp > ε. (If
λ− µp ≤ ε, each process is already ε close.) Then

log(ε/(λ− µp))
log (dsµ(p) + ε)

<
log(ε/(λ− µp))
log (dtµ(p) + ε)

,

that is, the number of iterations which ensure t is ε close to p also guarantee
that s is ε close to p. However, it may be that s can achieve ε accuracy with
fewer iterations than t. Roughly speaking, s is a better algorithm than t for
calculating p.

The estimate on the number of iterations in Prop. 5 is useful because
of its generality. However, we often encounter linear processes which satisfy
µs(x)−µs(p) ≤ (dsµ(p))(µx−µp) for x v p. In this case, we use the estimate

n ≥ log (ε/(µx− µp))
log dsµ(p)

.

One question which springs to mind is: How can we know the values of
µp and dsµ(p) when p itself is unknown? Though we cannot always calcu-
late these quantities independent of p, the estimates given for the number of
iterations are still useful for comparing processes, as we saw above. On the
other hand, in the case of Newton’s Method, we actually know a priori that
µp = dsµ(p) = 0. We can also calculate these quantities independent of p for
the bisection method, the golden section search and for contraction mappings
on complete metric spaces.

Example 34. For a continuous map f : R → R, the bisection method is cap-
tured by the partial splitting

splitf : IR ⇀ IR

and the data

• dom(splitf ) = C(f) = {[a, b] ∈ IR : f(a) · f(b) ≤ 0}
• fix(splitf ) = {[r] : f(r) = 0}
• d(splitf )µ[r] = 1/2 for all [r] ∈ fix(splitf )

If r is an isolated zero of f , then splitf is µ continuous at the associated fixed
point [r]. By the remarks following Prop. 5, if r is an isolated zero of f and
x ∈ C(f) is a sufficiently small input around r, then

splitnfx for n ≥ log(ε/µx)
log (1/2)

is an ε-approximation of r.
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The estimate for the number of iterations given in the last example can fail
without µ continuity. If we take f(x) = x · sin(1/x) for x 6= 0 and f(0) = 0,
then there are arbitrarily small intervals x̄ ∈ C(f) with x̄ v [0], but for which
splitf x̄ 6v [0]. Beginning with any one of these intervals as input, and then
doing n ≥ log(ε/µx)/ log (1/2) iterations of splitf , leaves an interval of length
< ε. The problem is that we are now on track to calculate a different zero [r],
rather than the one we intended to calculate, [0].

The point is this: an estimate for the number of iterations is of little use if
we do not know what we are calculating. This is why zeroes are normally as-
sumed isolated in numerical analysis, as in Newton’s method, where we assume
f ′(r) 6= 0. Thus, we expect iterative numerical methods to be µ continuous at
fixed points when realized as partial maps on domains.

Example 35. The Golden Section Search. In Example 16, given a function
f : R→ R and a constant 1/2 < r < 1, we defined the splitting

maxf : IR→ IR

maxf [a, b] =
{

[l(a, b), b] if f(l(a, b)) < f(r(a, b)),
[a, r(a, b)] otherwise.

where l(a, b) = (b− a)(1− r) + a and r(a, b) = (b− a)r + a.
If f is unimodal on [a, b] and its unique maximizer is x∗ ∈ int[a, b], then

maxf is µ continuous at [x∗] because

[a, b]� x̄ v [x∗]⇒ maxf x̄ v [x∗],

which was shown in Example 16, and because it has a derivative at [x∗], given
by

d(maxf )
dµ

[x∗] = r.

Thus, if f is unimodal on [a, b] and x∗ ∈ int[a, b], then

maxnf [a, b] for n ≥ log(ε/(b− a))
log(r)

is an ε-approximation of x∗.

Example 36. Contraction maps. If f : X → X is a contraction on a complete
metric space (X, d) with constant 0 < c < 1, its extension to the formal ball
model

f̄ : BX → BX, f̄(x, r) = (fx, c · r)
has derivative df̄π(p) = c, for all p ∈ BX. The map f̄ is Scott continuous and
hence µ continuous at all points. If we take any x ∈ X and r ≥ d(x, fx)/(1−c),
then

f̄ n(x, r) for n ≥ log(r/ε)
log c

is an ε-approximation of the unique attractor of f .
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The presence of informatic linearity in the last three examples enables
us to use the estimate mentioned after Prop. 5. The next example is more
interesting.

Example 37. The Regula Falsi Method. For a function f : [a, b]→ R such that

(i) f(a) < 0 and f(b) > 0,
(ii) f ′(x) > 0 for all x ∈ [a, b], and

(iii) f ′′(x) ≥ 0 for all x ∈ [a, b],

we define the partial mapping

rf : IR ⇀ IR

rf [x, b] =
[
b− f(b)

(
b− x

f(b)− f(x)

)
, b

]
whose domain is

dom(rf ) = {[x, b] : a ≤ x ≤ r}

where r ∈ (a, b) is the unique zero of f on [a, b].
The map rf is a Scott continuous splitting which maps the dcpo dom(rf )

into itself. For if a ≤ x ≤ y ≤ r, we have the string of inequalities

a ≤ x ≤ b− f(b)
(

b− x
f(b)− f(x)

)
≤ b− f(b)

(
b− y

f(b)− f(y)

)
≤ r,

where the second follows from f(x) ≤ 0, and the last two follow from

f(b)− f(x)
b− x

≤ f(b)− f(y)
b− y

≤ f(b)− f(r)
b− r

,

which is a consequence of the fact that f ′ is nondecreasing. This proves that
rf is a monotone splitting which takes dom(rf ) into itself. Finally, rf is Scott
continuous because its measure is Scott continuous.

By Proposition 7, if x̄ ∈ dom(rf ), then⊔
n≥0

rnf (x̄) ∈ fix(rf ),

but it is easy to see that fix(rf ) = {[r, b]}. Thus, iterating rf is an algorithm
for approximating r, called the Regula Falsi method. But how efficient is it?

To answer this question, we calculate the informatic derivative of rf at the
fixed point [r, b] as follows:
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drf
dµ

[r, b] = lim
x̄→[r,b]

µrf (x̄)− µrf [r, b]
µx̄− µ[r, b]

= lim
x→r−

f(b)(r − x) + f(x)(b− r)
(f(b)− f(x))(r − x)

= lim
x→r−

[
f(b)

f(b)− f(x)
+
f(x)− f(r)

r − x
· b− r
f(b)− f(x)

]
=

f(b)
f(b)− f(r)

+ (−1)f ′(r) · b− r
f(b)− f(r)

= 1− f ′(r)(b− r)
f(b)

.

By monotonicity of rf , this derivative is nonnegative, and hence a number in
the interval [0, 1). In fact, we can see that

d(rf )µ[r, b]→ 0 as b→ r

so the efficiency of this algorithm is determined by the closeness of b to r.
Notice that it does not depend on a.

Once we have the derivatives of two different algorithms which solve the
same problem, we can compare them to understand their respective strengths
and weaknesses.

Example 38. The Bisection versus Regula Falsi. If f : R → R is a continuous
map and [a, b] is an interval such that f(a) < 0 and f(b) > 0, f ′ > 0 on [a, b]
and f ′′ ≥ 0 on [a, b], then⊔

n≥0

splitnf [a, b] = [r] and
⊔
n≥0

rnf [a, b] = [r, b]

are both schemes for calculating the unique zero r of f on [a, b]. But which
one is better? We consider two examples.

If f(x) = x2 − x− 1 and [a, b] = [1, 2], then r = (1 +
√

5)/2. Thus,

d(splitf )[r] =
1
2

and d(rf )[r, b] =
7− 3

√
5

2
≈ 0.145898,

which means that eventually µrf (x) − µ[r, b] ≈ 0.14(µx − µ[r, b]), as com-
pared to µ splitf (x)− µ[r] = 0.5(µx− µ[r]) for the bisection. In other words,
eventually the Regula Falsi method reduces the uncertainty in an interval by
about 86%, while for the bisection uncertainty is always reduced by 50%. This
suggests that rf is preferable in this case. Six iterations of each gives

split6
f [1, 2] = [1.59375, 1.625] and r6

f [1, 2] ≈ [1.618025, 2].

The approximation of r offered by the bisection is the midpoint of split6
f [1, 2],

1.609375, while the approximation given by the Regula Falsi method is the
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left endpoint of r6
f [1, 2], around 1.618025. Thus, the Regula-Falsi method is

accurate to four decimal places, while the bisection is only accurate to one.
This supports the intuition offered by the informatic derivatives calculated
above: rf converges faster than splitf in this case.

If f(x) = x6 − x − 1 and [a, b] = [1, 2], then r ≈ 1.13472. The informatic
derivatives in this case are

d(splitf )[r] =
1
2

and d(rf )[r, b] ≈ 0.85407,

which suggests that now it is splitf which converges faster. If we do sixteen
iterations of each, we find that

split16
f [1, 2] ≈ [1.134719, 1.134735] and r16

f [1, 2] ≈ [1.121308, 2].

Thus, the bisection gives the approximation r ≈ 1.13472, while the Regula
Falsi method is only accurate to one decimal place. In fact, it is only after
68 iterations that the Regula Falsi method can duplicate what the bisection
achieves in 16:

r68
f [1, 2] ≈ [1.13472, 2].

The intuition imparted by informatic derivative is also correct in this instance.

Example 39. The secant method. Recall from Theorem 8, the secant method
secf : PC [a, r]→ PC [a, r] given by

secf [x, y] =
[
y, y − f(y)

df [x, y]

]
yields an algorithm for calculating r with f(r) = 0 given by⊔

n≥0

secnf (x) = [r],

for any x ∈ PC [a, r]. For the secant method secf , we have d(secf )[r] = 0.
Let x̄ = [x, y] v [r] with µx̄ > 0. Then by the mean value theorem and

the triangle inequality,

0 ≤ µ secf (x̄)
µx̄

≤ 2(r − y)
r − x+ r − y

+
|f(y)|

f ′(c)(r − x+ r − y)
,

where c ∈ x̄. But since r− x+ r− y ≥ 2(r− y) and r− x+ r− y ≥ r− y, the
expression on the right is bounded by

2(r − y)
2(r − y)

+
|f(y)|

f ′(c)(r − y)
= 1− |f(y)− f(r)|

f ′(c)(y − r)
.

As x̄→ [r] in the µ topology, we have x, y → r and c→ r. Hence,

0 ≤ lim
x̄→[r]

µ secf (x̄)
µx̄

≤ lim
c,y→r

(
1− |f(y)− f(r)|

f ′(c)(y − r)

)
= 1− 1 = 0,

proving the claim.
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Thus, the convergence of the secant method is superlinear, in agreement
with numerical analysis. This is an interesting example. The function secf does
not correspond to iterating a classical real valued function, and the informatic
derivative is not a classical derivative: the formula in Example 21 takes two
real numbers as input, but returns only one as output.

Thus, to prove that a numerical method works correctly, we show it iter-
ates to a fixed point. To go along with this uniform approach to the problem
of correctness, we now have a uniform method for calculating rates of conver-
gence of linear processes: simply take the informatic derivative of a map on
a domain at a fixed point. This extends what is done is numerical analysis,
enabling a unified treatment not previously possible. For instance, the secant
method, the golden section search and the bisection method are iterative pro-
cesses which have no classical descriptions as differentiable functions on the
real line. Nevertheless, we have seen that they may be naturally described as
mappings on domains which possess informatic derivatives.

5.3 Rates of change in the communication process

A classical binary channel f : ∆2 → ∆2 takes an input distribution to an
output distribution. In a similar way, a qubit channel is a function of the
form ε : Ω2 → Ω2 that is convex linear and completely positive [35]. For our
purposes, there is no need to get lost in too many details of the Hilbert space
formulation: qubit channels can be represented as linear selfmaps on the unit
ball in Euclidean three space as follows.

There is a 1-1 correspondence between density operators on a two dimen-
sional state space and points on the unit ball B3 = {x ∈ R3 : |x| ≤ 1}: each
density operator ρ : H2 → H2 can be written uniquely as

ρ =
1
2

(
1 + rz rx − iry
rx + iry 1− rz

)
where r = (rx, ry, rz) ∈ R3 satisfies |r| =

√
r2
x + r2

y + r2
z ≤ 1. The vector

r ∈ B3 is called the Bloch vector associated to ρ. Bloch vectors have a number
of aesthetically pleasing properties.

If ρ and σ are density operators with respective Bloch vectors r and s,
then (i) the eigenvalues of ρ are (1± |r|)/2, (ii) the von Neumann entropy of
ρ is Sρ = H((1 + |r|)/2) = H((1− |r|)/2), where H : [0, 1]→ [0, 1] is the base
two Shannon entropy, (iii) if ρ and σ are pure states and r+s = 0, then ρ and
σ are orthogonal, and thus form a basis for the state space; conversely, the
Bloch vectors associated to a pair of orthogonal pure states form antipodal
points on the sphere, (iv) the Bloch vector for a convex sum of mixed states is
the convex sum of the Bloch vectors, (v) the Bloch vector for the completely
mixed state I/2 is 0 = (0, 0, 0).

Because of the correspondence between Ω2 and B3, let us now regard these
two as equal.
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A standard way of measuring the capacity of a quantum channel in quan-
tum information is the Holevo capacity; it is sometimes called the product
state capacity since input states are not allowed to be entangled across two
or more uses of the channel.

Definition 47. For a quantum channel f , the Holevo capacity is given by

C(f) = sup
{xi,ρi}

[
S

(
f

(∑
i

xiρi

))
−
∑
i

xi · S(f(ρi))

]

where the supremum is taken over all ensembles {xi, ρi} of possible input
states ρi to the channel.

The possible input states ρi to the channel are in general mixed and the xi
are probabilities with

∑
i xi = 1. If f is the Bloch representation of a qubit

channel, the Holevo capacity of f is given by

C(f) = sup
{xi,ri}

[
H

(
1 + |f (

∑
i xiri) |

2

)
−
∑
i

xi ·H
(

1 + |f(ri)|
2

)]

where ri are Bloch vectors for density operators in an ensemble, and we recall
that eigenvalues of a density operator with Bloch vector r are (1± |r|)/2.

Recall that the classical channels f : ∆2 → ∆2 which increase entropy
(H(f(x)) ≥ H(x)) are exactly those f with f(⊥) = ⊥. They are the strict
mappings of domain theory, which are also known as binary symmetric chan-
nels in information theory. Similarly, the entropy increasing qubit channels
are exactly those f for which f(⊥) = ⊥. These are called unital in quantum
information theory.

Theorem 30. Let µ(x) = 1 − |x| denote the standard measurement on Ω2.
For any unital channel f and any p ∈ Ω2 different from ⊥,

dfµ(p) =
|f(p)|
|p|

Thus, the Holevo capacity of f is determined by the largest value of its infor-
matic derivative. Explicitly,

C(f) = 1−H

(
1
2

+
1
2

sup
x∈ ker(µ)

dfµ(x)

)

Then C(f) = 1 for any rotation f since dfµ = 1. Notice that dfµ ≡ 1 iff
f is a rotation. For each p ∈ [0, 1], the unique channel f v 1 with dfµ = p is
the depolarization channel f = dp = p · I, so that C(dp) = 1−H((1 + p)/2).
In fact, there is an isomorphism from binary symmetric channels onto the
depolarization channels. The only unital qubit channel with capacity zero is
0 itself.



Domain theory and measurement 61

Example 40. The two Pauli channel in Bloch form is

ε(r) = p r +
(

1− p
2

)
sx(r) +

(
1− p

2

)
sy(r)

where sx and sy are the Bloch representations of the unitary channels derived
from the Pauli spin operators σx and σy. This simplifies to

ε(rx, ry, rz) = (prx, pry,−(1− p)rz)

The matrix associated to ε is diagonal, so the diagonal element (eigenvalue)
that has largest magnitude also yields the largest value of its informatic deriva-
tive. The capacity of the two Pauli channel is then

1−H
(

1 + max{p, 1− p}
2

)
where p ∈ [0, 1].

The set of unital channels U is compact hence closed and thus forms a
dcpo as a subset of the domain [Ω2 → Ω2].

Corollary 5. The Holevo capacity C : U → [0, 1] is Scott continuous.

Thus, the ability of a unital qubit channel to transmit information is de-
termined by the largest value of its informatic derivative.

5.4 The derivative at a compact element: a discrete derivative.

If one looks closely at the definition of the informatic derivative above, it has
a computationally restrictive aspect: the requirement that p not be isolated
in the µ topology. This is equivalent to saying that p must not be a compact
element of D. From the mathematical viewpoint, one does not object to this:
mathematics offers us no way of obtaining unique ‘limits’ at isolated points
of topological spaces. Nevertheless, computationally, it is easy to write down
simple examples of mappings on domains which should have derivatives, but
are excluded simply because they work only with compact elements.

For instance, on the domain of lists [S], the map rest: [S] → [S] which
removes the first element from a nonempty list and sends the empty list to
itself, satisfies

µ rest(x) = µ(x)− 1

for x 6= [ ], where µ is the length measurement. Thus, we ought to be able to
say that d(rest)µ(x) = 1 for x 6= [ ].

We now consider an extension of the definition of informatic derivative
which applies at compact elements as long as they are not minimal. One
of the benefits of this extension is that we are finally able to understand the
sense in which the asymptotic notions of complexity used in numerical analysis
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(rates of convergence) are the same as those used in the analysis of ‘discrete’
algorithms (for example, list processing). Another is the identification of an
idea which allows us to systematically calculate both of these complexity
notions in a uniform manner: informatic rates of change apply in both the
continuous and discrete realms.

The informatic derivative at a compact element

Defining the informatic derivative of a selfmap on a domain D really only
depends on our ability to define it for functions of the form f : D → R. If we
set

dfµ(p) = lim
x→p

f(x)− f(p)
µx− µp

then for f : D → D, we can set dfµ(p) = d(µf)µ(p), obtaining the usual
definition of the informatic derivative. Of course, the problem is that this is
only works when p is not compact i.e. when

p 6∈ K(D) := {x ∈ D : x� x}

These are precisely the points that are not isolated in the µ topology. The
reason we must work with points which are not isolated is that there must
be enough nontrivial µ open sets around p so that we can take a limit in the
formal sense of topology – without enough nontrivial open sets, a limit may
not be unique.

However, any point p 6∈ min(D) := {x ∈ D : ↓x = {x}} can be approxi-
mated from below using the nontrivial µ open subsets ofD which are contained
in ↓p and which themselves contain p and at least one other element:

approxµ(p) = {V ∈ µD : p ∈ V ⊆↓p and V 6= {p}}.

Thus, the existence of approximations is not the problem – the problem is
that we need a concept more applicable than ‘limit’.

Definition 48. Let f : D → R be a function and p ∈ D. We set

d+fµ(p) := sup{c : (∃V ∈ approxµ(p))(∀x ∈ V ) f(x)− f(p) ≥ c · (µx− µp)}

and

d−fµ(p) := inf{c : (∃V ∈ approxµ(p))(∀x ∈ V ) f(x)− f(p) ≤ c · (µx− µp)},

provided p is not a minimal element of D, i.e., p 6∈ min(D).

The existence of the informatic derivative of a real-valued function in the
usual case is expressible entirely in terms of d+fµ and d−fµ as follows:

Theorem 31. Let f : D → R be a function with p ∈ D \K(D). Then dfµ(p)
exists iff d+fµ(p) exists, d−fµ(p) exists and d−fµ(p) ≤ d+fµ(p). In either
case, we have dfµ(p) = d+fµ(p) = d−fµ(p).
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The previous theorem justifies the following definition.

Definition 49. Let f : D → R be a function on a continuous dcpo D with
a measurement µ which measures D at p ∈ D \ min(D). If d−fµ(p) exists,
d+fµ(p) exists and d−fµ(p) ≤ d+fµ(p), then we define

dfµ(p) := d+fµ(p)

and call this number the informatic derivative of f at p.

By Theorem 31, the new definition and the old definition agree in the con-
tinuous case (p 6∈ K(D)). We now turn our attention to the discrete case
(p ∈ K(D)).

Theorem 32. Let f : D → R be a function on an algebraic dcpo D with a
measurement µ that measures D at p ∈ K(D) \ min(D). Then the following
are equivalent:

(i) The derivative dfµ(p) exists.
(ii) The supremum

sup
{
f(x)− f(p)
µx− µp

: x ∈ K(D)∩ ↓p, x 6= p

}
exists and the infimum

inf
{
f(x)− f(p)
µx− µp

: x ∈ K(D)∩ ↓p, x 6= p

}
exists.

In either case, the value of d+fµ(p) is the supremum in (ii), while the value
of d−fµ(p) is the infimum in (ii).

Finally, the definition of derivative for selfmaps on a domain D.

Definition 50. Let f : D → D be a function on a domain (D,µ) with a map
µ that measures D at p ∈ D \min(D). If d(µf)µ(p) exists, then we write

dfµ(p) := d(µf)µ(p)

and call this number the informatic derivative of f at p with respect to µ. We
also set d∗fµ(p) := d∗(µf)µ(p) for ∗ ∈ {+,−}.

It is easy to extend this definition for a map f : (D,µ)→ (E, λ), as was done
for the original formulation of the derivative in the continuous case [15], but
in the present paper there are no applications warranting such an abstraction.
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Example 41. Derivatives of list operations.

(i) The map first : [S]→ [S], first(a :: x) = [a], first[ ] = [ ]. Using Theorem 32,

d(first)µ(x) = d+(first)µ(x) = d−(first)µ(x) = 0,

for all x 6= [ ]. At x = [ ], d(first)µ(x) = d+(first)µ(x) = 1 ≥ 0 =
d−(first)µ(x).

(ii) The map rest : [S]→ [S], rest(a :: x) = x, rest[ ] = [ ]. Using Theorem 32,

d(rest)µ(x) = d+(rest)µ(x) = d−(rest)µ(x) = 1,

for all x 6= [ ]. At x = [ ], d(rest)µ(x) = d+(rest)µ(x) = 1 ≥ 0 =
d−(rest)µ(x).

There is something worth pointing out before we focus on the derivative in
the discrete case. The definition of dfµ(p) splits into two cases, the continuous
(p 6∈ K(D)) and the discrete (p ∈ K(D)). From this bifurcation appears a
remarkable duality: In the continuous case the inequality df+

µ (p) ≤ df−µ (p)
always holds, but df−µ (p) ≤ df+

µ (p) may not; in the discrete case the opposite
is true, df−µ (p) ≤ df+

µ (p) always holds, but df+
µ (p) ≤ df−µ (p) may not.

The results of this section allow for only one interpretation of this phe-
nomenon: In the continuous case, the derivative is determined by local proper-
ties of the function; in the discrete case, the derivative is determined by global
properties of the function.

Measuring the length of an orbit

Throughout this section, we assume that (D,µ) is an algebraic dcpo whose
compact elements K(D) form a lower set K(D) = ↓K(D). Some important
examples of this are N∗, N∞ = N∪{∞}, [S], Pω, Σ∞, and [N ⇀ N]. Compu-
tationally, this is not much of an assumption.

Theorem 33 (The Mean Value Theorem). Let f : D → D be a function
on (D,µ) such that dfµ(p) exists at a compact element p. Then

(µx− µp) · d−fµ(p) ≤ µf(x)− µf(p) ≤ d+fµ(p) · (µx− µp),

for all x v p.

If a splitting r has a compact fixed point p reachable by iteration
⊔
rn(x) = p,

then the derivative of r at p can be used to provide a precise measure of the
number of iterations required to get to p from an input of x. Later we will see
that such quantities can play an integral role in determining the complexity
of certain algorithms.
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Definition 51. Let r : D → D be a splitting. An orbit is a sequence of iterates
(rnx). An orbit is compact if ⊔

n≥0

rn(x) ∈ K(D).

The length of a compact orbit (rnx) is

|(rnx)| := inf{n ≥ 0 : rn+1(x) = rn(x)}.

A compact orbit is nontrivial when |(rnx)| > 0; otherwise it is a fixed point.

In this new language, we can say that we are interested in determining the
length of nontrivial compact orbits of splittings. If (rnx) is a compact orbit,
then rl(x) is a fixed point of r where l = |(rnx)|. For this reason, we say that
the orbit (rnx) ends at p = rl(x).

Lemma 5. If a splitting r : D → D has a nontrivial compact orbit which ends
at p ∈ K(D), and drµ(p) exists, then 0 ≤ drµ(p) ≤ 1.

Theorem 34. Let r be a splitting with a nontrivial compact orbit (rnx) that
ends at p. If drµ(p) = 0, then r(x) = p. If 0 < drµ(p) < 1, then

n ≥
⌈

log((µx− µp)/ε)
log(1/drµ(p))

⌉
+ 1⇒ |µrn(x)− µp| < ε,

for any ε > 0.

By the compactness of p, there is a choice of ε > 0 which will ensure that
|µrn(x)− µp| < ε⇒ rn(x) = p, but at this level of generality we cannot give
a precise description of it. It depends on µ. For lists, the value is ε = 1.

Example 42. Let r be a splitting on [S] with 0 < drµ(p) < 1 at any fixed point
p. Then for any x, there is some k ≥ 0 such that rk(x) = p is a fixed point.
By the last result, doing

n >

⌈
log(µx− µp)
log(1/drµ(p))

⌉
iterations implies that rn(x) = p.

Let’s consider an important example of this type.

Example 43. Contractive list operations. For a positive integer x > 0, define

m(x) =
{
x/2 if x even;
(x+ 1)/2 if x odd.

Consider the splittings
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left(x) = [x(1), · · · , x(m(µx)− 1)]

right(x) = [x(m(µx) + 1), · · · , x(µx)]

each of which takes lists of length one or less to the empty list [ ]. Each has a
derivative at its unique fixed point [ ] as follows.

First, since both of these maps are splittings and p = [ ] has measure
µp = 0, each has a derivative at p – it is simply a matter of determining d+

at [ ] in each case. For this, if x 6= [ ], then

µ left(x)
µx

≤ (µx/2)− (1/2)
µx

=
1
2
·
(

1− 1
µx

)
≤ 1

2

µ right(x)
µx

≤ µx/2
µx

=
1
2

which means d(left)µ[ ] = d(right)µ[ ] = 1/2.
Notice that the case of ‘left’ is much more interesting than the case of

‘right.’ In the former, the value of the derivative is never attained by any of
the quotients µ left/µ – it is determined by a ‘limit’ process which extracts
global information about the mapping left.

Already we notice a relationship to processes in numerical analysis: the
case drµ(p) = 0 is an extreme form of superlinear convergence (extreme since
in one iteration the computation finishes), while the case 0 < drµ(p) < 1 be-
haves just like ordinary linear convergence. However, unlike numerical analy-
sis, we can actually say something about the case drµ(p) = 1.

To do this is nontrivial, and in what follows, we seek only to illustrate
the value of the informatic derivative in the discrete case by showing that the
precise number of iterations required to calculate a fixed point p by iteration
of a map r can be determined when drµ(p) = 1 – a case in which classical
derivatives are notorious for yielding no information.

A compact element p that is not minimal has a natural set of predecessors,
these are formally defined as the set of maximal elements in the dcpo ↓p\{p}:

pred(p) = max(↓p \ {p}).

To see that this makes sense, notice that ↓p \ {p} is nonempty since p is not
minimal, and is closed in the µ topology, as the intersection of µ closed sets.
But a µ closed set is closed under directed suprema, and so must have at least
one maximal element.
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Theorem 35. Let r : D → D be a splitting on (D,µ) with a compact fixed
point p = r(p) such that

(∀x)x v p⇒
⊔
n≥0

rn(x) = p.

If d+rµ(x) = 1 for all x v p and d−rµ(x) = 1 for all x v p with x 6= p, then
for all x v p with x 6= p, there is q ∈ pred(p) such that

rn(x) = p⇔ n =
µx− µp
µq − µp

.

It is interesting to notice in the last result that if d−rµ(p) = 1, then we must
have r(x) = x for all x v p. Of course, our hypotheses on r rule this out since
the fixed point p must be an attractor on ↓p.

Example 44. In Example 41, we saw that the map rest : [S] → [S] is an
example of the sort hypothesized in Theorem 35 with p = [ ]. The predecessors
of p are the one element lists

pred(p) = {[x] : x ∈ S}.

Thus, the last theorem says that

restn(x) = [ ]⇔ n = µx,

for any x 6= [ ].

Complexity

We briefly consider how the informatic derivative offers a new perspective on
the complexity of algorithms.

Example 45. Linear search. To search a list x for a key k consider

search : [S]× S → {⊥,>}

given by
search([ ], k) = ⊥
search(x, k) = > if first x = k,
search(x, k) = search(rest x, k) otherwise.

Let D = [S] × S[ – the product of [S] with the set S ordered flatly. We
measure this domain as µ(x, k) = µx. Let r : D → D be the splitting r(x, k) =
(restx, k).

On input (x, k) in the worst case, the number of comparisons n done by
this algorithm is the same as the number of iterations needed to compute
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rn(x, k) = ([ ], k). Since d+rµ(x) = 1 for all x and d−rµ(x) = 1 for all x 6=
([ ], k), Theorem 35 applies to give

rn(x, k) = ([ ], k)⇔ n = µ(x, k) = µx,

which helps us understand how the complexity of a discrete algorithm can be
determined by the derivative of a splitting which models its iteration mecha-
nism.

Example 46. Binary search. To search a sorted list x for a key k, we use

bin : [S]× S → {⊥,>}

given by
bin([ ], k) = ⊥
bin(x, k) = > if midx = k,
bin(x, k) = bin(leftx, k) if midx > k,
bin(x, k) = bin(rightx, k) otherwise.

where midx := x(m(µx)). Again D = [S] × S[ and µ(x, k) = µx. This time
we consider the splitting r : D → D by

r(x, k) =
{

(leftx, k) if midx > k;
(rightx, k) otherwise.

On input (x, k) in the worst case, the number of comparisons n must satisfy
rn(x, k) = ([ ], k). In this case, we have drµ([ ], k) = 1/2, so by Theorem 34,

n ≤
⌈

log(µx)
log(2)

⌉
+ 1 = dlog2(µx)e+ 1,

since we know that the expression on the right is a number m that satisfies
rm(x, k) = ([ ], k) but that n is the least of all such natural numbers because
it was produced by the algorithm bin.

To summarize these simple examples: we have two different algorithms
which solve the same problem recursively by iterating splittings r and s, re-
spectively, on a domain (D,µ) in an effort to compute a fixed point p. If
drµ(p) < dsµ(p), then the algorithm using r is faster than the one which uses
s. In the case of linear search we have dsµ(p) = 1, while for binary search
we have drµ(p) = 1/2. As we have already seen, this is identical to the way
one compares zero finding methods in numerical analysis – by comparing the
derivatives of mappings at fixed points.

Thoughts on the discrete derivative

Theorem 31 is crucial in that it characterizes differentiability independent of its
continuous component. Taking only this result as motivation for the definition
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of derivative leaves a few distinct possibilities. For instance, if we had called
the derivative the interval [d−fµ(p), d+fµ(p)], we might notice more clearly the
tendency of continuous information to collapse at a point. Another possibility
is to say that the derivative is d−fµ(p). The author chose d+fµ because it
makes the most sense from an applied perspective. As an illustration, consider
the intuitions we have about it: algorithms r with drµ(p) = 0 belong to O(1),
those with 0 < drµ(p) < 1 belong to O(log n), while drµ(p) = 1 indicates a
process is in O(n).

At first glance, an extension of the informatic derivative to the case of
discrete data (compact elements) seems like an absurd idea. To begin, we
have to confront the issue of essentially defining unique limits at isolated
points. But even if we assume we have this, we need the new formulation
to extend the previous, which means spotting a relationship between limits
in the continuous realm versus finite sequences of discrete objects. But the
truth is that all of this only sounds difficult because of what we are taught:
that the continuous and discrete are ‘fundamentally different’ and that one of
the crucial distinctions between the two is the sensibility of the limit concept
for continuous objects, as compared to the discrete case where ‘limit’ has no
meaning. From this, we conclude that math students should spend less time
attending lectures and more time coming up with new ideas.

The existence of a derivative in the discrete case means much more than
it does in the continuous case. Most results on discrete derivatives do not
hold in the continuous case. Just consider a quick example: let r : D → D
be any continuous map with p = r(p) ∈ K(D) and drµ(p) = 0. If x v p,
then r(x) = p. Now compare this to the continuous case (like calculus on
the real line), where one can only conclude that there is an a � p such that
rn(x) → p for all x with a � x v p. Again, this sharp contrast is due to the
fact that discrete derivatives make use of global information, while continuous
derivatives use only local information. Nevertheless, each is an instance of a
common theme.

6 Forms of process evolution

6.1 Intuition

The idea in the measurement formalism is to analyze processes: a process is
a thing that evolves in a space of informatic objects. The space of informatic
objects is formally described by a domain with a measurement. By contrast,
the measurement formalism allows for considerable flexibility in formalizing
the notion of process. We have already seen one such notion of process: a
function f : D → D that on input x produces iterates (fn(x)) which converge
to a fixed point

⊔
fn(x). This discrete form of evolution has various general-

izations within the measurement formalism. We consider a few more of them
in this section. The renee equation, which is a discrete extension of iteration,
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can be used to define recursion on general domains while still maintaining
a first order view of evolution. The trajectory leads one to daydream about
a kinematics of computation: for instance, the complexity of an algorithm is
the amount of time it takes its trajectory in informatic space to achieve its
order theoretic maximum. Lastly, we consider a third notion of process, one
grounded on a ‘thermodynamical’ view of evolution, very different from the
first two. The basic idea is this: before a process evolves, there are several pos-
sible states it may evolve to; when it finishes evolving, we gain information,
but the acquisition of information is not free – how much does it cost?

Major references: [15, 22, 28, 29]

6.2 The renee equation

The renee equation is a model of recursion. After introducing this equation, we
discuss two major results. The first is that every renee equation has a unique
solution. The second is that the partial and primitive recursive functions on
the naturals may be captured by taking closure under renee equations on the
domains N∞ and N∗ – the naturals in their usual and opposite orders, respec-
tively. This suggests that the information order on a domain determines a
natural notion of computability, and that the renee equation yields a system-
atic method for determining this notion of computability. We will also see that
one renee equation describing an algorithm leads to another which captures
its complexity. This provides a qualitative and quantitative first order view
of computation, one very much in line with actual program development.

Unique solvability of the equation

Recall the definition of the µ topology from Section 2.4.

Definition 52. Let (X,+) be a Hausdorff space with a binary operation that
is associative. If (xn) is a sequence in X, then its infinite sum is∑

n≥1

xn := lim
n→∞

(x1 + · · ·+ xn)

provided that the limit of the partial sums on the right exists.

Definition 53. Let + : D2 → D be a binary operation on a continuous dcpo.
A point x ∈ D is idle if there is a µ open set σ(x) around x such that

(i) (σ(x),+) is a semigroup, and
(ii) If (xn) is any sequence in σ(x) which converges to x in the µ topology,

then ∑
n≥1

xn exists and lim
n→∞

∑
k≥n

xk = lim
n→∞

xn.

The operation + is said to be idle at x.
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An idle point is one where the “unwinding” of a recursive definition stops.
For example, 0 ∈ N, or the empty list.

Definition 54. Let D be a continuous dcpo. A µ continuous operation
+ : D2 → D is iterative if it has at least one idle point.

Here are a few simple examples of iterative operations.

Example 47. Data types.

(i) ([S], ·) concatenation of lists. The idle points are {[ ]}.
(ii) (N∗,+) addition of natural numbers. The idle points are {0}.

(iii) (N∗,×) multiplication of natural numbers. The idle points are {0, 1}.
(iv) ({⊥,>},∨) Boolean ‘or.’ The idle points are {⊥,>}.
(v) ({⊥,>},∧) Boolean ‘and.’ The idle points are {⊥,>}.

The µ topology on each domain above is discrete. The fixed points of a
function f : P → P are fix(f) = {x ∈ P : f(x) = x}.

Definition 55. A splitting r : D → D on a dcpo D is inductive if for all
x ∈ D,

⊔
rnx ∈ fix(r).

Definition 56. Let D be a dcpo and (E,+) be a domain with an iterative
operation. A function δ : D → E varies with an inductive map r : D → D
provided that

(i) For all x ∈ fix(r), δ(x) is idle in E, and
(ii) For all x ∈ D, δ(rnx)→ δ(

⊔
rnx) in the µ topology on E.

The function δ interprets the recursive part r of an algorithm in the domain
(E,+). A fixed point of r is mapped to an idle point in E: A point where
recursion stops.

Definition 57. Let D be a dcpo and (E,+) be a domain with an iterative
operation. A renee equation on D → E is one of the form

ϕ = δ + ϕ ◦ r

where δ : D → E varies with an inductive map r : D → D.

Theorem 36 (Canonicity). The renee equation

ϕ = δ + ϕ ◦ r

has a unique solution which varies with r and agrees with δ on fix(r).

Please stop and read the last theorem again. Thank you. The importance
of ϕ varying with r is that it enables a verification principle [15]. Here are a
few basic instances of the renee equation.



72 Keye Martin

Example 48. The factorial function

fac : N→ N

is given by
fac 0 = 1
fac n = n× fac(n− 1).

Let D = N∗ and E = (N∗,×). Define δ : D → E by

δ(n) =
{

1 if n = 0,
n otherwise.

and pred : D → D by pred(n) = n− 1, if n > 0, and pred(0) = 0. The unique
solution of

ϕ = δ × ϕ ◦ pred

which satisfies ϕ(0) = 1 is the factorial function.

Example 49. The length of a list

len : [S]→ N

is given by
len [ ] = 0
len a :: x = 1 + len x.

Let D = [S] and E = (N∗,+). Define δ : D → E by

δ(x) =
{

0 if x = [ ],
1 otherwise.

and rest : D → D by rest(a :: x) = x and rest([ ]) = [ ]. The unique solution of

ϕ = δ + ϕ ◦ rest

which satisfies ϕ([ ]) = 0 is the length function.

Example 50. The merging of two sorted lists of integers

merge : [int]× [int]→ [int]

is given by the following ML code

fun merge( [ ], ys ) = ys : int list
| merge( xs, [ ] ) = xs
| merge( x :: xs, y :: ys ) = if x ≤ y then

x :: merge( xs, y :: ys )
else
y :: merge( x :: xs, ys );



Domain theory and measurement 73

Let D = [int]× [int] and E = ([int], ·). Define δ : D → E by

δ(x, [ ]) = x
δ([ ], y) = y
δ(x, y) = [min(first x, first y)], otherwise.

and π : D → D by

π(x, [ ]) = ([ ], [ ])
π([ ], y) = ([ ], [ ])
π(x, y) = (rest x, y), if first x ≤ first y;
π(x, y) = (x, rest y), otherwise.

The unique solution of
ϕ = δ · ϕ ◦ π

satisfying ϕ([ ], [ ]) = [ ] is merge.

The last example is interesting because solving the equation yields a new
iterative operation on [int]. We shall make use of this fact in the next example
to solve an equation for sorting. In this way, we see that algorithms can be
built up by solving sequences of renee equations.

Example 51. The prototypical bubblesort of a list of integers

sort : [int]→ [int]

is given by
sort [ ] = [ ]
sort x = merge( [first x], sort rest x )

Let D = [int] and E = ([int],+) where

+ : [int]2 → [int]

(x, y) 7→ merge(x, y)

is the merge operation of Example 50. Define δ : D → E by

δ(x) =
{

[ ] if x = [ ]
[first x] otherwise

and let rest : [int]→ [int] be the usual splitting. The unique solution of

ϕ = δ + ϕ ◦ rest

satisfying ϕ[ ] = [ ] is sort.
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Computability from the information order

In this section, we will see that the primitive and partial recursive functions
can both be captured using the renee equation: each arises as a canonical
notion of computability derivable from a given information order.

Definition 58. Let N⊥ denote the set N ∪ {⊥}, where ⊥ is an element that
does not belong to N.

For instance, one could take ⊥ = {N}, should the need arise.

Definition 59. A partial function on the naturals is a function

f : Nn → N⊥,

where n ≥ 1. We say that f is undefined at x exactly when f(x) = ⊥.

Thinking of f as an algorithm, f(x) = ⊥means that the program f crashed
when we sent it input x.

Definition 60. The composition of a partial map f : Nn → N⊥ with partial
mappings gi : N k → N⊥, 1 ≤ i ≤ n, is the partial map

f(g1, · · · , gn) : N k → N⊥

f(g1, · · · , gn)(x) =
{
f(g1(x), · · · , gn(x)) if (∀i) gi(x) 6= ⊥;
⊥ otherwise.

That is, if in the process of trying to run the program f , the computation
of one of its inputs fails, then the entire computation fails.

Definition 61. A partial map f : Nn+1 → N⊥ is defined by primitive recur-
sion from g : Nn → N⊥ and h : Nn+2 → N⊥ if

f(x̄, y) =
{
g(x̄) if y = 0;
h(x̄, y − 1, f(x̄, y − 1)) otherwise.

where we have written x̄ ∈ Nn.

Computationally, primitive recursion is a counting loop.

Definition 62. The class of primitive recursive functions on the naturals is
the smallest collection of functions f : Nn → N which contains the zero
function, the successor, the projections, and is closed under composition and
primitive recursion.

The analogue of a ‘while’ loop is provided by minimization.
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Definition 63. The minimization of a partial function f : Nn+1 → N⊥ is the
partial function

µf : Nn → N⊥
µf(x) = min{y ∈ N : (∀z < y) f(x, z) 6= ⊥ & f(x, y) = 0}

with the convention that µf(x) = ⊥ if no such y exists.

Definition 64. The class of partial recursive functions on the naturals is the
smallest collection of partial maps f : Nn → N⊥ which contains the zero func-
tion, the successor, the projections, and is closed under composition, primitive
recursion, and minimization.

Let D be a domain which as a set satisfies N ⊆ D ⊆ N ∪ {∞}.

Definition 65. The sequence of domains (Dn)n≥1 is given inductively by

D1 = D,
Dn+1 = Dn ×D1, n > 0.

We extend a few simple initial functions to D.

Definition 66. The initial functions.

(i) Addition of naturals + : D2 → D given by

(x, y) 7→
{
x+ y if x, y ∈ N;
∞ otherwise.

(ii) Multiplication of naturals × : D2 → D given by

(x, y) 7→
{
x× y if x, y ∈ N;
∞ otherwise.

(iii) The predicate ≤: D2 → D given by

(x, y) 7→
{
x ≤ y if x, y ∈ N;
∞ otherwise.

(iv) The projections πni : Dn → D, for n ≥ 1 and 1 ≤ i ≤ n, given by

(x1, · · · , xn) 7→
{
xi if (x1, · · · , xn) ∈ Nn;
∞ otherwise.

A map r : Dn → Dn may be written in terms of its coordinates
ri : Dn → D, for 1 ≤ i ≤ n, as r = (r1, · · · , rn).
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Definition 67. Let C(D) be the smallest class of functions f : Dn → D with
the following properties:

(i) C(D) contains +, ×, ≤, and πni , for n ≥ 1 and 1 ≤ i ≤ n,
(ii) C(D) is closed under substitution: If f : Dn → D is in C(D) and gi :

Dk → D is in C(D), for 1 ≤ i ≤ n, then

f(g1, · · · , gn) : Dk → D is in C(D),

and
(iii) C(D) is closed under iteration: If δ : Dn → D and + : D2 → D are in
C(D), and r : Dn → Dn is a map whose coordinates are in C(D), then

ϕ = δ + ϕ ◦ r ∈ C(D)

whenever this is a renee equation on Dn → D.

C(D) contains maps of type Dn → D. To obtain functions on the naturals,
we simply restrict them to Nn . In general, we obtain partial maps on the
naturals, depending on whether or not D contains ∞.

Definition 68. The restriction of a mapping f : Dn → D to Nn is

|f | : Nn → N⊥

|f |(x) =
{
f(x) if f(x) ∈ N;
⊥ otherwise.

Let N∞ denote the domain of naturals in their usual order with∞ as a top
element, N∗ denote the domain of naturals in their dual order and N[ denote
the domain of naturals ordered flatly: x v y ≡ x = y.

The information order on a domain determines a notion of computability
because it determines our ability to iterate.

Theorem 37.

(i) |C(N∞)| is the class of partial recursive functions.
(ii) |C(N∗)| is the class of primitive recursive functions.

(iii) |C(N[)| is the smallest class of functions containing the initial functions
which is closed under substitution.

A renee equation for algorithmic complexity

One renee equation describing an algorithm leads to another describing its
complexity. If we have an algorithm ϕ = δ + ϕ ◦ r, then in order to calcu-
late ϕ(x), we must calculate δ(x), r(x), ϕ(rx) and δ(x) + ϕ(rx). Thus, the
cost cϕ(x) of calculating ϕ(x) is the sum of the four costs associated with
computing δ(x), r(x), ϕ(rx) and δ(x) + ϕ(rx). In symbols,

cϕ(x) = cδ(x) + cr(x) + cϕ(rx) + c+(δ(x), ϕ(rx)).

When the functions (cδ, c+, cr) actually describe the complexity of an algo-
rithm, the equation above can be solved uniquely for cϕ.
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Proposition 6. Let ϕ = δ + ϕ ◦ r be a renee equation on D → E. If
cδ : D → N∗, cr : D → N∗ and c+ : E2 → N∗ are functions such that for
all x ∈ D,

lim
n→∞

cδ(rnx) = lim
n→∞

cr(rnx) = lim
n→∞

c+(δ(rnx), ϕr(rnx)) = 0,

then
cϕ = cδ + cr + c+(δ, ϕ ◦ r) + cϕ(r)

is a renee equation on D → (N∗,+).

Thus, one renee equation describing an algorithm leads to another describ-
ing its complexity. Let’s briefly consider a quick example just to check that
the ideas work the way they should, we calculate the complexity of a sorting
algorithm.

Example 52. Recall the prototypical bubblesort of a list of integers

sort : [int]→ [int]

is given by
sort [ ] = [ ]
sort x = merge( [first x], sort rest x )

Let D = [int] and E = ([int],+) where

+ : [int]2 → [int]

(x, y) 7→ merge(x, y)

is the merge operation mentioned previously. Define δ : D → E by

δ(x) =
{

[ ] if x = [ ]
[first x] otherwise

and let r : D → D be the splitting rx = restx. The unique solution of

ϕ = δ + ϕ ◦ r

satisfying ϕ[ ] = [ ] is sort.
For the worst case analysis of sort = δ+sort◦r the number of comparisons

performed by r and δ on input x is zero. Hence,

cr(x) = cδ(x) = 0,

while the cost of merging two lists x and y can be as great as µx+ µy, so

c+(x, y) = µx+ µy.

By Prop. 6, we have a renee equation
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csort = c+(δ, sort ◦ r) + csort(r)

which should measure the complexity of bubblesort. But does it? By Theo-
rem 36,

csort[ ] = 0,

while for any other list x, we have

csort(x) = c+(δ(x), sort(rx)) + csort(rx)
= µ δ(x) + µ sort(rx) + csort(rx)
= 1 + (µx− 1) + csort(rx)
= µx+ csort(rx).

However, the function f(x) = [µx(µx + 1)]/2 varies with r, agrees with δ on
fix(r), and satisfies the equation above, so by the uniqueness in Theorem 36,
we have

csort(x) =
µx(µx+ 1)

2
,

for all x.

One can go further with these ideas. In [18], the renee equation and mea-
surement combine to provide a practical formal model of what a classical
‘search’ method ϕ = δ+ϕ◦r is. A particular highlight of the approach is that
it does not force one to distinguish between discrete notions of searching, such
as linear and binary searching of lists, and continuous notions of searching,
such as zero finding methods like the bisection. The complexity cϕ of such
methods is then shown to be determined by the number of iterations it takes
r to get ‘close enough’ to a fixed point. Thus, cϕ can also be calculated using
the informatic derivative at a compact element.

6.3 Trajectories

Iterating an operator f : D → D yields a sequence x, f(x), f2(x), . . . , fn(x).
Each fn(x) can be thought of as occuring at time n. It is natural to then
wonder if an element f t(x) exists where t ∈ [0,∞). We would then have a
trajectory x : [0,∞)→ D which describes the effect that f has had on x after
t units of time. We could then take derivatives of x with respect to time and
use them to learn things about a process. For instance, maybe the complexity
of a process would amount to the point in time t when x(s) v x(t) for all s
i.e. the “absolute maximum” of x. Maybe we could graph trajectories on the
t−v axis to learn things about processes that we didn’t know before. Maybe
we should try this.
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Kinematics

Proofs for this section can be found in [22].

Definition 69. A variable on a dcpo is a measurement v : D → [0,∞)∗ such
that for all x, y ∈ D, we have x v y & vx = vy ⇒ x = y.

Definition 70. A curve on a domain D is a function x : dom(x)→ D where
dom(x) is a nontrivial interval of the real line.

Each curve x determines a value of v at time t, which is the number vx(t).

Definition 71. For a curve x and variable v on a dcpo,

ẋv(t) := lim
s→t

vx(s)− vx(t)
s− t

.

We then define
ẍv :=

dẋv
dt

and so on for higher order.

Because ẋv : [0,∞)→ R is an ordinary function, higher order derivatives are
calculated as usual – its the first derivative that requires theory.

Proposition 7. Let x be a curve with ẋv defined on (a, b).

(i) x is monotone increasing on [a, b] iff ẋv ≤ 0 on (a, b) and x[a, b] is a
chain.

(ii) x is monotone decreasing on [a, b] iff ẋv ≥ 0 on (a, b) and x[a, b] is a
chain.

(iii) x is constant on [a, b] iff ẋv = 0 on (a, b) and x[a, b] is a chain.

Notice that the sign of ẋv is an indicator of how uncertainty behaves: If
ẋv ≤ 0, then uncertainty is decreasing, so we are moving up in the order.

Definition 72. A curve x has a relative maximum at an interior point
t ∈ dom(x) if there is an open set Ut containing t such that x(s) v x(t)
for all s ∈ Ut. Relative minimum is defined dually, and these two give rise to
relative extremum.

Notice that a qualitative relative maximum is a point in time where the
quantitative uncertainty is a local minimum.

Lemma 6. If a curve x has a relative extremum at interior point t ∈ dom(x),
then for all variables v, either ẋv(t) = 0, or it does not exist.
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A nice illustration of why the qualitative idea v is important: if a curve
has a derivative with respect to just one variable v, then its set of extreme
points is contained in the set {t : ẋv(t) = 0}. This is quite valuable: we are
free to choose the variable which makes the calculation as simple as possible.

Once we have the extreme points there is also a systematic way in the
informatic setting to determine which (if any) are maxima or minima: the
second derivative test, whose formalization requires one to acknowledge the
qualitative structure on which it is implicitly founded.

Definition 73. A curve x is a trajectory if for all t ∈ dom(x) there is an open
set Ut containing t such that

x(s) v x(t) or x(t) v x(s)

for all s ∈ Ut.
Thus, a trajectory is a curve x with underlying qualitative structure; it is
called C2

v when ẍv is continuous, with respect to variable v.

Proposition 8. Let x be a C2
v trajectory. If ẋv(t) = 0 and ẍv(t) 6= 0 for some

interior point t ∈ dom(x), then x has a relative extremum at t.

(i) If ẍv(t) > 0, then x(t) is a relative maximum.
(ii) If ẍv(t) < 0, then x(t) is a relative minimum.

In this work we will be mostly concerned with the strongest form of ex-
trema on domains:

Definition 74. A curve x has an absolute maximum at t ∈ dom(x) if

x(s) v x(t)

for all s ∈ dom(x). Absolute minimum is defined similarly.

Here is a simple but surprisingly useful way of establishing the existence
of absolute extrema.

Proposition 9. Let v be a variable on D and x : [a, b] → D a curve whose
image is a chain. If vx : [a, b]→ R is Euclidean continuous, then

(i) The map x is continuous from the Euclidean to the Scott topology, and
(ii) The map x assumes an absolute maximum and an absolute minimum on

[a, b]. In particular, its absolute maximum is

x(t∗) =
⊔

t∈[a,b]

x(t)

for some t∗ ∈ [a, b], with a similar expression for the absolute minimum.

A valuable property of absolute maxima: If x(t∗) is an absolute maximum,
then for all variables v,

vx(t∗) = inf{vx(t) : t ∈ dom(x)}.

That is, an absolute maximum is a point on a curve which simultaneously
minimizes all variables.
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Linear searching

Suppose a list has n > 0 elements. Linear search begins with the first element
in the list and proceeds to the next and so on until the key is located. At
time t (after t comparisons), all elements with indices from 1 to t have been
searched. Thus, a trajectory representing the information we have gained is
x(t) = t for t ∈ [0, n]. The natural space of informatic objects is D = [0, n]
whose natural measure of uncertainty is vx = n− x.

�
�
�
�

-

6
v

t
•

(0, 0)

Next is a better example – one where the kinematics of computation will help
us visualize a computation.

Binary searching

This algorithm causes a trajectory on (IR, v) with v[a, b] = b − a. For a
continuous f : R → R, let splitf : IR → IR be the bisection method on the
interval domain defined by

splitf [a, b] :=
{

left[a, b] if f(a) · f((a+ b)/2) ≤ 0;
right[a, b] otherwise.

A given x ∈ IR leads to a trajectory x : [0,∞) → IR defined on natural
numbers by

x(n) = splitnf (x)

and then extended to all intermediate times n < t < n + 1 by declaring x(t)
to be the unique element satisfying

x(n) v x(t) v x(n+ 1) and µx(t) =
vx

2t
.

By definition, the trajectory of binary search is also increasing. But graphing
it is more subtle. It looks like this:

-

6v

t

But why? Using the kinematics of computation, since vx(t) = e−(ln 2)t · vx(0),
we have

ẋv(t) = (− ln 2)vx(t) < 0
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reflecting the fact that x : [0,∞) → IR is increasing. In addition, ẍv(t) > 0,
so the graph is concave down. Notice that as t → ∞, the trajectory should
tend toward the answer as its velocity tends to zero.

Trajectories of classical search algorithms tend to increase with time. All of
the curves basically look the same, so what’s the point? It makes the dream of
a “kinematics of computation” seem out of reach. But then, what is the point
in dreaming of things that are within reach? Those aren’t dreams, they’re just
things you plan to do.

Quantum searching

Grover’s algorithm [9] for searching is the only known quantum algorithm
whose complexity is provably better than its classical counterpart. It searches
a list L of length n (a power of two) for an element k known to occur in L
precisely m times with n > m ≥ 1. The register begins in the pure state

|ψ〉 =
1√
n

n∑
i=1

|i〉

and after j iterations of the Grover operator G

Gj |ψ〉 =
sin(2jθ + θ)√

m

∑
L(i)=k

|i〉+
cos(2jθ + θ)√

n−m
∑

L(i)6=k

|i〉

where sin2 θ = m/n. The probability that a measurement yields i after j
iterations is

sin2(2jθ + θ)/m if L(i) = k

and
cos2(2jθ + θ)/(n−m) if L(i) 6= k.

To get the answer, we measure the state of the register in the basis {|i〉 : 1 ≤ i ≤ n};
if we perform this measurement after j iterations of G, when the state of the
register is Gj |ψ〉, our knowledge about the result is represented by the vector

x(j) =

„
sin2(2jθ + θ)

m
, . . . ,

sin2(2jθ + θ)

m
,

cos2(2jθ + θ)

n−m , . . . ,
cos2(2jθ + θ)

n−m

«
The crucial step now is to imagine t iterations,

x(t) =

„
sin2(2tθ + θ)

m
, . . . ,

sin2(2tθ + θ)

m
,

cos2(2tθ + θ)

n−m , . . . ,
cos2(2tθ + θ)

n−m

«
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Thus, x is a curve on the domain ∆n of classical states in its implicative order
(Section 2.2)

x v y ≡ (∀i) xi < yi ⇒ xi = x+

where x+ refers to the largest probability in x. Thus, only a maximum prob-
ability is allowed to increase as we move up in the information order on ∆n.
If the maximum probability refers to a solution of the search problem, then
moving up in this order ensures that we are getting closer to the answer.

We will now use this trajectory to analyze Grover’s algorithm using the
kinematics of computation. Here are some crucial things our analysis will
yield:

(a) The complexity of the algorithm,
(b) A qualitative property the algorithm possesses called antimonotonicity.

Without knowledge of this aspect, an experimental implementation would
almost certainly fail (for reasons that will be clear later).

(c) An explanation of the algorithm as being an attempt to calculate a clas-
sical proposition.

Precisely now, the classical state x(t) is a vector of probabilities that do
not increase for t ∈ dom(x) = [a, b], a = 0 and b = π/2θ − 1. The image of
x : [a, b]→ Λn is a chain in the implicative order, which is simplest to see by
noting that it has the form

x = (f, . . . , f, g, . . . , g)

so that g(s) ≥ g(t) ⇒ x(s) v x(t); otherwise, x(t) v x(s). We can now
determine the exact nature of the motion represented by x using kinematics.
Because x : [a, b]→ D is a curve on a domain D whose image is a chain and
whose time derivative ẋv(t) exists with respect to a variable v on ∆n, we know
that

(i) The curve x has an absolute maximum on [a, b]: There is t∗ ∈ [a, b] such
that

x(t∗) =
⊔

t∈[a,b]

x(t),

and
(ii) Either t∗ = a, t∗ = b or ẋv(t∗) = 0.

Part of the power of this simple approach is that we are free to choose any
v we like. To illustrate, a tempting choice might be entropy v = H, but then
solving ẋv = 0 means solving the equation

−mḟ(1 + log f)− (n−m)ġ(1 + log g) = 0

and we also have to determine the points where ẋv is undefined, the set
{t : g(t) = 0}. However, if we use
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v = 1−
√
x+,

we only have to solve a single elementary equation

cos(2tθ + θ) = 0

for t, allowing us to conclude that the maximum must occur at t = a, t = b,
or at points in

{t : ẋv(t) = 0} = {b/2}.

The absolute maximum of x is

x(b/2) = (1/m, . . . , 1/m, 0, . . . , 0)

because for the other points we find a minimum of

x(a) = x(b) = ⊥ = (1/n, . . . , 1/n).

The value of knowing the absolute maximum is that it allows us to calculate
the complexity of the algorithm: it is O(b/2), the amount of time required
to move to a state from which the likelihood of obtaining a correct result by
measurement is maximized. This gives O(

√
n/m) using θ ≥ sin θ ≥

√
m/n

and then b/2 ≤ (π/4)
√
n/m− 1/2.

From ẋv(t) ≤ 0 on [a, b/2] and ẋv(t) ≥ 0 on [b/2, b], we can also graph x:

-

6
x

t
•
b/2

This is the ‘antimonotonicity’ of Grover’s algorithm: if j = b/2 iterations will
solve the problem accurately, 2j iterations will mostly unsolve it! This means
that our usual way of reasoning about iterative procedures like numerical
methods, as in “we must do at least j iterations,” no longer applies. We
must say “do exactly j iterations; no more, no less.” As is now clear, precise
estimates like these have to be obtained before experimental realization is
possible.

Finally, as explained in more detail in [23], we can view Grover’s algorithm
as an attempt to calculate as closely as possible the classical proposition

x(b/2) = (1/m, . . . , 1/m, 0, . . . , 0) ∈ Ir(∆n) =
{
x :
∧
↑x ∩max(∆n) = x

}
.

It does so by generating approximations

x(t)� x(b/2)

for all t 6= b/2.
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Amplitude damping

Let H be the state space for a two dimensional quantum system. Two parties
communicate with each other as follows. First, they agree up front on a fixed
basis of H, say {|ψ〉, |φ〉}, which can be expressed in some basis {|0〉, |1〉} as

|ψ〉 = a|0〉+ b|1〉 & |φ〉 = c|0〉+ d|1〉

where the amplitudes a, b, c, d are all complex. The state |ψ〉 is taken to mean
‘0’, while the state |φ〉 is taken to mean ‘1’. The first party, the sender, at-
tempts to send one of these two qubits |∗〉 ∈ {|ψ〉, |φ〉} to the second party, the
receiver. The second party receives some qubit and performs a measurement
in the agreed upon basis. The result of this measurement is one of the qubits
{|ψ〉, |φ〉}, which is then interpreted as meaning either a ‘0’ or a ‘1’.

We say some qubit because as |∗〉 travels, it suffers an unwanted interaction
with its environment, whose effect on density operators can be described as

ε(ρ) = E0ρE
†
0 + E1ρE

†
1

where the operation elements are given by

E0 =
(

1 0
0
√

1− λ

)
& E1 =

(
0
√
λ

0 0

)
This effect is known as amplitude damping and the parameter λ ∈ [0, 1] can
be thought of as the probability of losing a photon. Thus, the receiver does
not necessarily acquire the qubit |∗〉, but instead receives some degradation
of it, describable by the density operator ε(|∗〉〈∗|).

The probability that ‘0’ is received when ‘0’ is sent is

α = P (0|0) = −2|a|4p(λ) + |a|2(λ+ 2p(λ)) + 1− λ

while the probability that ‘0’ is received when ‘1’ is sent is

β = P (0|1) = 2|a|4p(λ) + |a|2(λ− 2p(λ))

where p(λ) = −1+λ+
√

1− λ ≥ 0. Thus, each choice of basis defines a classical
binary channel (α, β). Notice that the probabilities α and β only depend on
|a|2 because |c|2 = |a|2 and |b|2 = |d|2 = 1 − |a|2 by the orthogonality of
|ψ〉 and |φ〉, and because the initial expressions for α and β turn out to only
depend on modulus squared terms. Because the basis is fixed, |a|2 ∈ [0, 1] is
a constant and we obtain a function x : [0, 1]→ N of λ given by

x(λ) = (α(λ), β(λ))

where we recall that N ' I[0, 1] is the domain of binary channels. Its domain
theoretic nature was first established in [29]:
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Proposition 10. The trajectory x : [0, 1]→ N is Scott continuous.

One valuable aspect of x being Scott continuous is that we can now
make precise the connection between quantum information’s intuitive use of
the word ‘noise’ and information theory’s precise account of it: the quantity
C(x(λ)) decreases as λ increases i.e. the amount of information that the two
parties can communicate decreases as the the probability of losing a photon
increases. In the extreme cases,

x(0) = (1, 0) & x(1) = (|a|2, |a|2)

yielding respective capacities of 1 and 0. There is a more fundamental idea
at work in this example and in many others like it: we have learned about
capacity by only examining how the probabilities in the noise matrix change,
and this more than justifies the domain theoretic approach. Imagine what
would happen if we actually tried to calculate C(x(λ)) explicitly: we would
have to substitute α(λ) = −2|a|4p(λ) + |a|2(λ + 2p(λ)) + 1 − λ for a and
β(λ) = 2|a|4p(λ) + |a|2(λ− 2p(λ)) for b into the formula

C(a, b) = log2

(
2

āH(b)−b̄H(a)
a−b + 2

bH(a)−aH(b)
a−b

)
and then seek to show that the resulting quantity decreases as λ increases.

Decoherence over time

One interesting aspect of amplitude damping is that it is not unital. Any unital
qubit channel will lead to a trajectory defined on some nontrivial interval since
all classical channels derived from them are binary symmetric and the binary
symmetric channels form a chain in N. An interesting example in this last
regard is phase damping as a function of time, whose effect on the pure state
|ψ〉 = α|0〉+ β|1〉 with density operator

ρ = |ψ〉〈ψ| =
(
|α|2 αβ∗
α∗β |β|2

)
after t units of time is

ρ(t) =
(

|α|2 αβ∗e−t/td

e−t/tdα∗β |β|2
)

where td is a constant known as the decoherence time. If the qubit decoheres
for t units of time, then a ‘0’ may no longer be a ‘0’ and a ‘1’ may no longer
be a ‘1’. Specifically, the probability that a ‘0’ is still a ‘0’ is

P (0|0) = |a|4 + 2e−t/td |a|2|b|2 + |b|4

while the probability that a ‘1’ changes into a ‘0’ is

P (0|1) = 1− P (0|0).

This gives rise to a binary symmetric channel.
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6.4 Vectors

We can think of domains as a qualitative way of reasoning about informative
objects, and measurement as a way of determining the amount of information
in an object. But neither set of ideas attempts to directly answer the question
“What is information?” In this section, we offer one possible answer to this
question which has pragmatic value and is of interest to computer science.

To begin, we assume that the words ‘complexity’ and ‘information’ are
just that – words. We start from a clean slate, forgetting the various connota-
tions these words have in the sciences, and simply begin talking about them
intuitively. We might say:

• The complexity of a secret is the amount of work required to guess it.
• The complexity of a problem is the amount of work required to solve it.
• The complexity of a rocket is the amount of work required to escape grav-

ity.
• The complexity of a probabilistic state is the amount of work required to

resolve it.

In all cases, there is a task we want to accomplish, and a way of measuring
the work done by a process that actually achieves the task; such a process
belongs to a prespecified class of processes which themselves are the stuff that
science is meant to discover, study and understand. Then there are two points
not to miss about complexity:

(i) It is relative to a prespecified class of processes,
(ii) The use of the word ‘required’ necessitates the minimization of quantities

like work over the class of processes.

Complexity is process dependent. Now, what is information in such a setting?
Information, in seeming stark contrast to complexity, is process indepen-

dent. Here is what we mean: information is complexity relative to the class
of all conceivable processes. For instance, suppose we wish to measure the
complexity of an object x with respect to several different classes P1, . . . , Pn
of processes. Then the complexity of x varies with the notion of process: It
will have complexities c1(x), . . . , cn(x), where ci is calculated with respect to
the class Pi. However, because information is complexity relative to the class
of all conceivable processes, the information in an object like x will not vary.
That is what we mean when we say information is process independent: it is
an element present in all notions of complexity. So we expect

complexity ≥ information

if only in terms of the mathematics implied by the discussion above. For
example, this might allow us to prove that the amount of work you expect to
do in solving a problem always exceeds the a priori uncertainty (information)
you have about its solution: the less you know about the solution, the more
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work you should expect to do. An inequality like the one above could be
valuable.

To test these ideas, we study the complexity of classical states relative to
a class of processes. A class of processes will be derived from a domain (D,µ)
with a measurement µ that supports a new notion called orthogonality. Write
cD(x) for the complexity of a classical state x relative to (D,µ). Then we will
see that

inf
D∈Σ

cD = σ (1)

where σ is Shannon entropy and Σ is the class of domains (D,µ). This equa-
tion provides a setting where it is clear that information in the sense of the
discussion above is σ, and that the class of all conceivable processes is Σ.
By (1), our intuitive development of ‘complexity’ turns out to be capable of
deriving lower bounds on the complexity of algorithms such as sorting and
searching. Another limit also exists,⋂

D∈Σ
≤D = ≤ (2)

where ≤D is a relation on classical states which means x ≤D y iff for all
processes p on (D,µ), it takes more work for p to resolve x than y. This is
qualitative complexity, and the value of the intersection above ≤ just happens
to be the majorization relation from Section 2.2. Muirhead [34] discovered
majorization in 1903, and in the last 100 years his relation has found impres-
sive applications in areas such as economics, computer science, physics and
pure mathematics [2][14]. We will see that the complexity cD is determined
by its value on this subset.

The limits (1) and (2) comprise what we call the universal limit, because
it is taken over the class of all domains. The pair (σ,≤) can also be derived
on a fixed domain (D,µ) provided one has the ability to copy processes. The
mathematics of copying necessitates the addition of algebraic structure ⊗ to
domains (D,µ) already supporting orthogonality. It is from this setting, which
identifies the essential mathematical structure required to execute classical in-
formation theory [41] over the class of semantic domains, that the fixed point
theorem springs forth: as with recursive programs, the semantics of informa-
tion can also be specified by a least fixed point:

fix(Φ) =
⊔
n≥0

Φn(⊥) = σ

where Φ is the copying operator and ⊥ is the complexity cD, i.e., the least fixed
point of domain theory connects complexity in computer science to entropy
in physics. We thus learn that one can use domains to define the complexity
of objects in such a way that information becomes a concept derived from
complexity in a precise and systematic manner: as a least fixed point.
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Processes

To study processes which may result in one of several different outcomes,
we have to know what ‘different’ means. This is what orthogonality does: It
provides an order theoretic definition of ‘distinct.’

Definition 75. A pair of elements x, y ∈ D are orthogonal if µ(↑x∩ ↑y) ⊆ {0}.
This is written x ⊥ y.

The word ‘domain’ in this section means a continuous dcpo D with a least
element ⊥ and a map µ that measures all of D. By replacing µ with µ/µ⊥ if
necessary, we can and will assume that µ⊥ = 1. Finally, we will assume that

µ(
∧
F ) ≥

∑
x∈F

µx

for each finite set F ⊆ D of pairwise orthogonal elements.

Example 53.

(i) I[0, 1] with the length measurement µ is a domain.
(ii) Let p ∈ ∆n be a classical state with all pk > 0 and Σ∞ the strings over

the alphabet Σ = {0, . . . , n−1}. Define µ : Σ∞ → [0,∞)∗ by µ⊥ = 1 and
µi = pi+1 for i ∈ Σ, and then extend it homomorphically by

µ(s · t) = µs · µt

where the inner dot is concatenation of finite strings. The unique Scott
continuous extension, which we call µ, yields a domain (D,µ).

An immediate corollary is the case p = (1/2, 1/2) ∈ ∆2 and Σ = {0, 1} = 2,
the binary strings with the usual measurement: (2∞, 1/2|·|) is a domain. This
is the basis for the study of binary codes. The fact that it is a domain implies
the vital Kraft inequality of classical information theory.

Theorem 38 (Kraft). We can find a finite antichain of Σ∞ which has finite
word lengths a1, a2, . . . , an iff

n∑
i=1

1
|Σ|ai

≤ 1.

Finite antichains of finite words are sometimes also called instantaneous codes.
The inequality in Kraft’s result can be derived as follows:

Example 54. The Kraft inequality. We apply the last example with

p = (1/|Σ|, . . . , 1/|Σ|) ∈ ∆|Σ|.

A finite subset of Σ<∞ is pairwise orthogonal iff it is an antichain. Thus,
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µ(
∧
F ) ≥

∑
x∈F

µx.

In particular, 1 = µ⊥ ≥ µ(
∧
F ), using the monotonicity of µ. Notice that

the bound we derive on the sum of the measures is more precise than the one
given in the Kraft inequality. We call µ the standard measurement and assume
it when writing (Σ∞, µ), unless otherwise specified.

Finally, the order theoretic structure of (D,µ) gives rise to a notion of
process: a set of outcomes which are (a) different and (b) achievable in finite
time.

Definition 76. A process on (D,µ) is a function p : {1, . . . , n} → D such that
pi ⊥ pj for i 6= j and µp > 0. Pn(D) denotes the set of all such processes.

Complexity (quantitative)

There is a natural function − logµ : Pn(D)→ (0,∞)n which takes a process
p ∈ Pn(D) to the positive vector

− logµp = (− logµp1, . . . ,− logµpn).

By considering processes on the domain of binary strings (2∞, µ), it is clear
that the expected work done by an algorithm which takes one of n different
computational paths p : {1, . . . , n} → D is 〈− logµp|x〉. Thus, the complexity
of a state c : ∆n → [0,∞)∗ is

c(x) := inf{〈− logµp|x〉 : p ∈ Pn(D)}.

The function sort+ reorders the components of a vector so that they increase;
its dual sort− reorders them so that they decrease.

Proposition 11. For all x ∈ ∆n,

c(x) = inf{〈sort+(− logµp)|sort−(x)〉 : p ∈ Pn(D)}.

In particular, the function c is symmetric.

So we can restrict our attention to monotone decreasing states Λn.

Definition 77. The expectation of p ∈ Pn(D) is 〈p〉 : Λn → [0,∞)∗ given by

〈p〉x = 〈sort+(− logµp)|x〉.

If the outcomes of process p are distributed as x ∈ Λn, then the work
we expect p will do when taking one such computational path is 〈p〉x. And
finally:
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Definition 78. The complexity of a state h : Λn → [0,∞)∗ is

h(x) = inf{〈p〉x : p ∈ Pn(D)}.

Thus, the relation of h to c is that c(x) = h(sort−(x)) for all x ∈ ∆n. The
Shannon entropy σ : ∆n → [0,∞)

σx := −
n∑
i=1

xi log xi

can also be viewed as a map on Λn, and as a map on all monotone states. Its
type will be clear from the context.

Proposition 12. If (D,µ) is a domain, then the complexity hD : (Λn,≤)→ [0,∞)∗

is Scott continuous and hD ≥ σ where σ is entropy and ≤ is majorization.

We have now proven the following: the amount of work we expect to do when
solving a problem exceeds our a priori uncertainty about the solution. That
is, the less you know about the solution, the more work you should expect to
do:

Example 55. Lower bounds on algorithmic complexity. Consider the problem
of sorting lists of n objects by comparisons. Any algorithm which achieves
this has a binary decision tree. For example, for lists with three elements,
a1, a2, a3, it is

a1 : a2hhhhhhh
(((((((

a1 : a3PPPPP
�����

a2 : a3
aaa

!!!
[a1, a2, a3] [a1, a3, a2]

[a3, a1, a2]

a1 : a3PPPPP
�����

[a2, a1, a3] a2 : a3
aaa
!!!

[a2, a3, a1] [a3, a2, a1]

where a move left corresponds to a decision ≤, while a move right corresponds
to a decision >. The leaves of this tree, which are labelled with lists repre-
senting potential outcomes of the algorithm, form an antichain of n!-many
finite words in 2∞ using the correspondence ≤ 7→ 0 and > 7→ 1. This defines
a process p : {1, . . . , n!} → 2∞. If our knowledge about the answer is x ∈ Λn!,
then

avg. comparisons = 〈− logµp|x〉
≥ 〈p〉(sort−x)
≥ h(sort−x)
≥ σx.

Assuming complete uncertainty about the answer, x = ⊥, we get
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avg. comparisons ≥ σ⊥ = log n! ≈ n log n.

In addition, we can derive an entirely objective conclusion: In the worst case,
we must do at least

max(− logµp) ≥ 〈p〉⊥ ≥ σ⊥ ≈ n log n

comparisons. Thus, sorting by comparisons is in general at least O(n log n).
A similar analysis shows that searching by comparison is at least O(log n).

We have used domain theoretic structure as the basis for a new approach
to counting the number of leaves in a binary tree. Just as different domains
can give rise to different notions of computability (Section 6.2), different do-
mains can also give rise to different complexity classes, for the simple reason
that changing the order changes the notion of process. An example of this is
(L, µ) ⊆ (2∞, µ) which models linear search (Example 57).

Complexity (qualitative)

Each domain (D,µ), because it implicitly defines a notion of process, provides
an intuitive notion of what it means for one classical state to be more complex
than another: x is more complex than y iff for all processes p ∈ Pn(D), the
work that p does in resolving x exceeds the work it does in resolving y. This
is qualitative complexity.

Definition 79. For x, y ∈ Λn, the relation ≤D is

x ≤D y ≡ (∀p ∈ Pn(D)) 〈p〉x ≥ 〈p〉y.

Only one thing is clear about ≤D: The qualitative analogue of Prop. 12.

Lemma 7. For each domain (D,µ), ≤ ⊆ ≤D .

The calculation of ≤D requires knowing more about the structure of D.
We consider domains whose orders allow for the simultaneous description of
orthogonality and composition. In the simplest of terms: These domains allow
us to say what different outcomes are, and they allow us to form composite
outcomes from pairs of outcomes.

Definition 80. A domain (D,µ) is symbolic when it has an associative oper-
ation ⊗ : D2 → D such that µ(x⊗ y) = µx · µy and

x ⊥ u or (x = u & y ⊥ v)⇒ x⊗ y ⊥ u⊗ v

for all x, y, u, v ∈ D.

Notice that ⊗ has a qualitative axiom and a quantitative axiom. One
example of a symbolic domain is (Σ∞, µ) for an alphabet Σ with ⊗ being
concatenation.



Domain theory and measurement 93

Example 56. The ⊗ on I[0, 1] is

[a, b]⊗ [y1, y2] = [a+ y1 · (b− a), a+ y2 · (b− a)].

(I[0, 1],⊗) is a monoid with ⊥⊗ x = x⊗⊥ = x and the measurement µ is a
homomorphism! We can calculate zeroes of real-valued functions by repeatedly
⊗-ing left(⊥) = [0, 1/2] and right(⊥) = [1/2, 1], i.e., the bisection method.

We can ⊗ processes too: If p : {1, . . . , n} → D and q : {1, . . . ,m} → D are
processes, then p⊗ q : {1, . . . , nm} → D is a process whose possible actions
are pi ⊗ qj , where pi is any possible action of p, and qj is any possible action
of q. The exact indices assigned to these composite actions for our purposes is
immaterial. We can characterize qualitative complexity on symbolic domains:

Theorem 39. Let (D,⊗, µ) be a symbolic domain. If there is a binary process
p : {1, 2} → D, then the relation ≤D = ≤.

The universal limit

We now see that ≤ and σ are two sides of the same coin: The former is a
qualitative limit; the latter is a quantitative limit. Each is taken over the class
of domains.

Theorem 40. Let σ : Λn → [0,∞)∗ denote Shannon entropy and Σ denote
the class of domains. Then

inf
D∈Σ

hD = σ

and ⋂
D∈Σ

≤D = ≤

where the relation ≤ on Λn is majorization.

Corollary 6. Shannon entropy σ : (Λn,≤)→ [0,∞)∗ is Scott continuous.

By Theorem 40, the optimum value of (hD,≤D) is (σ,≤). But when does
a domain have a value of (hD,≤D) that is close to (σ,≤)? Though it is subtle,
if we look at the case when ≤D achieves ≤ in the proof of Theorem 39, we see
that a strongly contributing factor is the ability to copy processes – we made
use of this idea when we formed the process

⊗n
i=1 p. We will now see that the

ability to copy on a given domain also guarantees that h is close to σ.

Inequalities relating complexity to entropy

We begin with some long overdue examples of complexity. It is convenient
on a given domain (D,µ) to denote the complexity in dimension n by
hn : Λn → [0,∞).
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Example 57. Examples of h.

(i) On the lazy naturals (L, µ) ⊆ (2∞, µ), where the L is for linear,

hn(x) = x1 + 2x2 + . . .+ (n− 1)xn−1 + (n− 1)xn

which is the average number of comparisons required to find an object
among n using linear search.

(ii) On the domain of binary streams (2∞, µ),

h2(x) ≡ 1

h3(x) = x1 + 2x2 + 2x3 = 2− x1

h4(x) = min{2, x1 + 2x2 + 3x3 + 3x4} = min{2, 3− 2x1 − x2}

In general, hn(x) is the average word length of an optimal code for trans-
mitting n symbols distributed according to x.

(iii) On (I[0, 1], µ), hn(x) = −
∑n
i=1 xi log xi, Shannon entropy.

These examples do little to help us understand the relation of h to σ. What
we need is some math. For each integer k ≥ 2, let

c(k) := inf{max(− logµp) : p ∈ P k(D)}.

Intuitively, over the class P k(D) of algorithms with k outputs, c(k) is the
worst case complexity of the algorithm whose worst case complexity is least.

Theorem 41. Let (D,⊗, µ) be a symbolic domain with a process p ∈ P k(D).
Then

σ ≤ h ≤ c(k)
log k

· (log k + σ)

where h and σ can be taken in any dimension.

The mere existence of a process on a symbolic domain (D,µ) means not
only that ≤D=≤ but also that h and σ are of the same order. Without the
ability to ‘copy’ elements using ⊗, h and σ can be very different: Searching
costs O(n) on L, so hL and σ are not of the same order. We need a slightly
better estimate.

Definition 81. If (D,⊗, µ) is a symbolic domain, then the integer

inf{k ≥ 2 : c(k) = log k}

is called the algebraic index of (D,µ) when it exists.

By orthogonality, c(k) ≥ log k always holds, so to calculate the algebraic
index we need only prove c(k) ≤ log k. The value of the index for us is that:
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Corollary 7. If (D,⊗, µ) is a symbolic domain with algebraic index k ≥ 2,
then

σ ≤ h ≤ log k + σ

where h and σ can be taken in any dimension.

There are results in [28] which explain why the algebraic index is a nat-
ural idea, but these use the Gibbs map and partition function from thermo-
dynamics, which we do not have the space to discuss. But, it is simple to
see that the algebraic index of I[0, 1] is 2, the algebraic index of Σ∞ is |Σ|
and in general, if there is a process p ∈ Pn(D) on a symbolic domain with
(µp1, . . . , µpn) = ⊥ ∈ Λn for some n, then D has an algebraic index k ≤ n.

The fixed point theorem

Let Λ be the set of all monotone decreasing states and let ⊗ : Λ× Λ→ Λ be

x⊗ y := sort−(x1y, . . . , xny).

That is, given x ∈ Λn and y ∈ Λm, we multiply any xi by any yj and use
these nm different products to build a vector in Λnm.

Definition 82. The copying operator ! : X → X on a set X with a tensor ⊗
is

!x := x⊗ x

for all x ∈ X.

If p ∈ Pn(D) is a process whose possible outputs are distributed as x ∈ Λn,
then two independent copies of p considered together as a single process !p
will have outputs distributed according to !x. Now let [Λ → [0,∞)∗] be the
dcpo with the pointwise order f v g ≡ (∀x) f(x) ≥ g(x).

Theorem 42. Let (D,⊗, µ) be a symbolic domain whose algebraic index is
k ≥ 2. Then the least fixed point of the Scott continuous operator

Φ : [Λ→ [0,∞)∗]→ [Λ→ [0,∞)∗]

Φ(f) =
f !
2

on the set ↑ (h+ log k) is

fix(Φ) =
⊔
n≥0

Φn(h+ log k) = σ,

where h : Λ→ [0,∞) is the complexity on all states.
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This iterative process is very sensitive to where one begins. First, Φ has many
fixed points above σ: Consider c ·σ for c < 1. Thus, Φ cannot be a contraction
on any subset containing ↑ h. But Φ also has fixed points below σ: The map
f(x) = log dim(x) = σ⊥dim(x) is one such example. This proves that σ is
genuinely a least fixed point.

The fixed point theorem can be used to derive Shannon’s noiseless coding
theorem [28]. In the proof of Theorem 42, we can regard Λ a continuous dcpo
by viewing it as a disjoint union of domains. But we could just view it as a
set. And if we do, the function space is still a dcpo, the theorem remains valid,
and we obtain a new characterization of entropy:

Corollary 8. Let (D,⊗, µ) be a symbolic domain with algebraic index k ≥ 2.
Then there is a greatest function f : Λ → [0,∞) which satisfies h ≥ f and
f(x⊗ x) ≥ f(x) + f(x). It is Shannon entropy.

The question then, “Does h approximate σ, or is it σ which approximates
h” is capable of providing one with hours of entertainment. In closing, we
should mention that Φ might also provide a systematic approach to defining
information fix(Φ) from complexity h in situations more general than symbolic
domains.

The quantum case

The fixed point theorem also holds for quantum states where one replaces σ
by von Neumann entropy, and ⊗ on domains by the algebraic tensor ⊗ of
operators. (The domain theoretic ⊗ can also be mapped homomorphically
onto the tensor of quantum states in such a way that domain theoretic or-
thogonality implies orthogonality in Hilbert space.) Several new connections
emerge between computer science and quantum mechanics whose proofs com-
bine new results with work dating as far back as Schrödinger [39] in 1936. The
bridge that connects them is domain theory and measurement. One such re-
sult proves that reducing entanglement by a technique called local operations
and classical communication is equivalent to simultaneously reducing the av-
erage case complexity of all binary trees, a major application of Theorem 39
that we could not include in this paper due to space limitations. These and
related results are in [28].

7 Provocation

. . .and accordingly all experience hath shewn,
that mankind are more disposed to suffer, while evils are sufferable,

than to right themselves by abolishing the forms to which they are accustomed.

– Thomas Jefferson, The Declaration of Independence.
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What is a domain?

The ‘domains’ of classical and quantum states are dcpo’s with a definite notion
of approximation, but they are not continuous. Their notion of approximation
is

x� y ≡ (∀ directed S) y =
⊔
S ⇒ (∃s ∈ S)x v s

On a continuous dcpo, the relation above is equivalent to the usual notion of
approximation. In general, they are not equal, and the canonical examples are
(∆n,v) in the Bayesian order and (Ωn,v) in the spectral order. We forgot
to mention this in Section 4 because we wanted to brainwash the reader, to
convince them that the ‘domain’ illusion was real. Of course, in fairness to
the author, we never said that we knew what a domain was exactly, just that
they existed and that we would see lots of examples of them. Another possible
example of a domain, the domain of infinite dimensional quantum states, is
given in [33]. As a final example of something that is probably a domain, let
us consider the circle.

I once had a prominent domain theorist tell me when I was a student that
the circle could not be partially ordered in a natural way. I didn’t believe it
then and I don’t believe it now. But now I have a reason:

The circle

If we have two pure states |ψ〉 and |φ〉 written in a basis |i〉 of n dimensional
Hilbert space Hn,

|ψ〉 =
n∑
i=1

ai|i〉 |φ〉 =
n∑
i=1

bi|i〉

where the ai, bi ∈ C are complex, how can we order them so that (generally
speaking) |ψ〉 v |φ〉 means that the result of measuring the system in state φ
is more predictable than the result of measuring the system in the state ψ?
If we had an order v on classical probability distributions ∆n, and another
order v on phases S1 ∪ {0}, we could answer the question in what looks to
be a natural way:

|ψ〉 v |φ〉 ≡ (|a1|2, . . . , |an|2) v (|b1|2, . . . , |bn|2) & (∀i) phase(ai) v phase(bi).

Many orders on ∆n are known. So the entire question is reduced to the or-
dering of phases.

It’s just a phase

The phase of a complex number is either zero or a point on the circle, so
the problem of ordering phases is really just the question of how to order the
circle.



98 Keye Martin

q>

s⊥1

se1
⊥2 s

se2

⊥3 s
s
e3

s⊥4

se4

One way to order phases is to order the circle so that the arc from any ⊥i
to an adjacent ej is isomorphic to ([0, 1],≤), and that the center of the circle
> = (0, 0) is above everything. Dynamically, if we start at e4 and begin
traversing the circle counterclockwise, then we move down until reaching ⊥1,
at which point we begin moving up until e1, down until ⊥2, up until e2, down
until ⊥3, up until e3, down until ⊥4, and then up until returning to e4. Notice
that this is the kind of domain that Grover’s algorithm, when viewed as acting
on a two dimensional subpsace, seems to ‘move’ in.

Another way to order phases is to use the discrete order: x v y iff x = y
or y = (0, 0). This is very satisfying in that it does not leave one worried
about the meaning of the order in the case where the classical distributions
stay constant but the phases are allowed to vary.

Example 58. The reason that > = (0, 0) is above everything is so that relations
like the following are satisfied:

1√
2

(|0〉+ |1〉) v |0〉

1√
2

(|0〉+ |1〉) v |1〉

What is a measurement?

Though the more general formulation of approximation for domains like Ωn

is certainly meaningful, there are things that are missing. The definition of
‘domain’ that we are looking for should allow one to do things like: prove
sobriety of the Scott topology and give a satisfying definition of measurement.
Yes, I realize that we defined measurement for a dcpo in Section 2.3, but I
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never said that we found the definition entirely convincing. The definition of
measurement has more impact on a continuous dcpo as evidenced by results
like Theorems 2 and 3.

Related to this question are two more pressing issues: (a) systematic meth-
ods for deriving higher order measurements from simpler measurements, and
(b) techniques for proving that a given function is a measurement. For in-
stance, to illustrate (a), if D is a domain and F (D) is some higher order
domain, like a powerdomain or an exponential object, can a measurement on
D be used to simply construct one on F (D)? The question (b) is particularly
urgent in physics and information theory: generally speaking, proving that
functions like entropy and capacity are measurements is about as much fun
as being a domain theorist in search of a decent job4.

References

1. Abramsky, S. and Jung, A. (1994) Domain theory. In In S. Abramsky, D.
M. Gabbay, T. S. E. Maibaum (editors), Handbook of Logic in Computer
Science III, Oxford University Press.

2. P. M. Alberti and A. Uhlmann. Stochasticity and partial order: doubly
stochastic maps and unitary mixing. Dordrecht, Boston, 1982.

3. R. P. Brent, Algorithms for minimization without derivatives. Prentice-Hall,
1973.

4. F. L. Chernous’ko, An optimal algorithm for finding the roots of an approx-
imately computed function. Zh. vychisl. Mat. i mat. Fiz. 8, 4, p. 705–724,
1968, English translation.

5. B. Coecke and K. Martin. A partial order on classical and quantum states.
Oxford University Computing Laboratory Research Report, August 2002.

6. Edalat, A. and Heckmann, R. (1998) A computational model for metric
spaces. Theoretical Computer Science 193, 53–73.

7. K. Falconer, Fractal geometry. John Wiley and Sons, 1990.
8. O. Gross and S. M. Johnson, Sequential minimax search for a zero of a

convex function. Mathematical Tables and Other Aids to Computation,
Vol. 13, Issue 65, p. 44–51, 1959.

9. L. K. Grover. Quantum mechanics helps in searching for a needle in a
haystack. Physical Review Letters, 78:325, 1997.

10. S.W. Hawking and G.F.R. Ellis. The large scale structure of space-time.
Cambridge Monographs on Mathematical Physics. Cambridge University
Press, 1973.

11. Hutchinson, J. E. (1981) Fractals and self-similarity. Indiana University
Mathematics Journal 30, 713–747.

12. M. Kowalski, K. Sikorski and F. Stenger, Selected topics in approximation
and computation. Oxford University Press, 1995.

13. L. G. Kraft. A device for quantizing, grouping and coding amplitude modu-
lated pulses. M.S. Thesis, Electrical Engineering Department, MIT, 1949.

4 Any such domain theorist should send a CV and some recent papers to
keye.martin@nrl.navy.mil immediately.



100 Keye Martin

14. A. W. Marshall and I. Olkin. Inequalities: Theory of majorization and its
applications. Academic Press Inc., 1979.

15. K. Martin (2000) A foundation for computation. Ph.D. Thesis, Tulane Uni-
versity, Department of Mathematics.

16. K. Martin. The measurement process in domain theory. Lecture Notes In
Computer Science, Vol. 1853, Springer-Verlag, 2000.

17. K. Martin (2001) Unique fixed points in domain theory. Electronic Notes
in Theoretical Computer Science.

18. K. Martin (2001) A renee equation for algorithmic complexity, Lecture
Notes in Computer Science, Springer-Verlag, Volume 2215.

19. K. Martin. Powerdomains and zero finding. Electronic Notes in Theoretical
Computer Science, Vol. 59(3), 2001.

20. K. Martin. The informatic derivative at a compact element. Lecture Notes
in Computer Science, Vol. 2303, Springer-Verlag, 2002.

21. K. Martin, B-sides. Oxford University Computing Lab, Research Report,
2003.

22. K. Martin. Epistemic motion in quantum searching. Oxford University
Computing Laboratory, Research Report, 2003.

23. K. Martin. A continuous domain of classical states. Oxford University Com-
puting Laboratory, Research Report, 2003.

24. K. Martin (2004) Fractals and domain theory. Mathematical Structures in
Computer Science, Volume 14, Issue 6, p. 833–851, Cambridge University
Press.

25. K. Martin and J. Ouaknine. Informatic vs. classical differentiation on the
real line. Electronic Notes in Theoretical Computer Science, Vol. 73, 2004.

26. K. Martin and P. Panangaden. A domain of spacetime intervals in gen-
eral relativity. Communications in Mathematical Physics, 267(3):563–586,
November 2006.

27. K. Martin. Compactness of the space of causal curves. Journal of Classical
and Quantum Gravity, 2006.

28. K. Martin. Entropy as a fixed point. Theoretical Computer Science, 2006.
29. K. Martin (2007) Topology in information theory in topology. Theoretical

Computer Science, to appear.
30. K. Martin. A domain theoretic model of qubit channels. To appear, 2008.
31. K. Martin. The maximum entropy state. Logical Methods in Computer

Science, to appear.
32. K. Martin and P. Panangaden. In preparation. 2008.
33. J. Mashburn. A spectral order for infinite dimensional quantum spaces.

Electronic Notes in Theoretical Computer Science, Volume 173, 2007.
34. R. F. Muirhead. Some methods applicable to identities and inequalities of

symmetric algebraic functions of n letters. Proc. Edinburgh Math. Soc.,
21:144-157, 1903.

35. M. Nielsen and I. Chuang, Quantum computation and quantum informa-
tion. Cambridge University Press, 2000.

36. Roger Penrose. Gravitational collapse and space-time singularities. Phys.
Rev. Lett., 14:57–59, 1965.

37. Roger Penrose. Techniques of differential topology in relativity. Society for
Industrial and Applied Mathematics, 1972.

38. H. L. Royden, Real analysis. Third Edition, Macmillan Publishing, 1988.



Domain theory and measurement 101

39. E. Schrödinger. Proceedings of the Cambridge Philosophical Society 32,
446 (1936).

40. D. Scott. Outline of a mathematical theory of computation. Technical Mono-
graph PRG-2, Oxford University Computing Laboratory, November 1970.

41. C. E. Shannon. A mathematical theory of communication. Bell Systems
Technical Journal 27, 379–423 and 623–656, 1948.

42. R. Sorkin. Spacetime and causal sets. In J. D’Olivo et. al., editor, Relativity
and Gravitation: Classical and Quantum. World Scientific, 1991.

43. D. Spreen (2001) On some constructions in quantitative domain theory.
Extended Abstract. http://www.informatik.uni-siegen.de/ spreen/

44. R.M. Wald. General relativity. The University of Chicago Press, 1984.
45. P. Waszkiewicz. Quantitative continuous domains. PhD Thesis, University

of Birmingham, 2002.
46. M. Yamaguti, M. Hata and J. Kigami, Mathematics of fractals. Translations

of Mathematical Monographs, American Math Society, vol. 167, 1997.


