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Abstract. Several centralised RDF systems support datalog reasoning
by precomputing and storing all logically implied triples using the well-
known seminäıve algorithm. Large RDF datasets often exceed the capac-
ity of centralised RDF systems, and a common solution is to distribute
the datasets in a cluster of shared-nothing servers. While numerous dis-
tributed query answering techniques are known, distributed seminäıve
evaluation of arbitrary datalog rules is less understood. In fact, most
distributed RDF stores either support no reasoning or can handle only
limited datalog fragments. In this paper, we extend the dynamic data
exchange approach for distributed query answering by Potter et al. [12]
to a reasoning algorithm that can handle arbitrary rules while preserving
important properties such as nonrepetition of inferences. We also show
empirically that our algorithm scales well to very large RDF datasets.

1 Introduction

Reasoning with datalog rules over RDF data plays a key role on the Semantic
Web. Datalog can capture the structure of an application domain using if-then
rules, and OWL 2 RL ontologies can be translated into datalog rules. Datalog
reasoning is supported in several RDF management systems such as Oracle’s
database [7], GraphDB,1 Amazon Neptune,2 VLog [17], and RDFox [10].3 All of
these system use a materialisation approach to reasoning, where all facts implied
by the dataset and the rules are precomputed and stored in a preprocessing
step. This is usually done using the seminäıve algorithm [2], which ensures the
nonrepetition property : no rule is applied to the same facts more than once.

Many RDF management systems are centralised in that they store and pro-
cess all data on a single server. To scale to workloads that cannot fit into a
single server, it is common to distribute the data in a cluster of interconnected,
shared-nothing servers and use a distributed query answering strategy. Abdelaziz
et al. [1] present a comprehensive survey of 22 approaches to distributed query

1 http://graphdb.ontotext.com/
2 http://aws.amazon.com/neptune/
3 http://www.cs.ox.ac.uk/isg/tools/RDFox/
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answering, and Potter et al. [12] discuss several additional systems. There is con-
siderable variation between these approaches: some use data replication, some
compute joins on a dedicated server, others use distributed join algorithms, and
many leverage big data frameworks such as Hadoop and Spark for data storage
and query processing. In contrast, distributed datalog materialisation is less well
understood, and it is more technically challenging. Newly derived facts must be
stored so that they can be taken into account in future rule applications, but
without repeating derivations. Moreover, synchronisation between rule applica-
tions should be reduced to allow parallel computation.

Several theoretical frameworks developed in the 90s aim to address these
questions [4, 19, 13, 15, 21]. As we discuss in more detail in Section 3, they con-
strain the rules so that that each server performs only certain rule applications,
and they send the derived facts to all servers where these facts could participate
in further rule applications. Thus, the same facts can be stored on more than
one server, which can severely limit the scalability of such systems.

The Semantic Web community has recently developed several RDF-specific
approaches. A number of them are hardwired to fixed datalog rules, such as
RDFS [18, 6] or the so-called ter Horst fragment [16, 5]. Focusing on a fixed
set of rules considerably simplifies the problem. PLogSPARK [20] and SPOWL
[9] handle arbitrary rules, but they do not seem to use seminäıve evaluation.
Finally, several probabilistic algorithms aim to handle large datasets [11, 9], but
these approaches are approximate and are thus unsuitable for many applications.
Distributed SociaLite [14] is the only system we are aware of that provides sem-
inäıve evaluation for arbitrary datalog rules. It uses a custom graph model, but
the approach can readily be adapted to RDF. Moreover, its rules must explicitly
encode the communication and storage strategy, which increases complexity.

In this paper we present a new technique for distributed materialisation of
arbitrary datalog rules. Unlike SociaLite, we do not require any distributed pro-
cessing hints in the rules. We also do not duplicate any data and thus remove an
obstacle to scalability. Our approach is based on the earlier work by Potter et al.
[12] on distributed query answering using dynamic data exchange, from which it
inherits several important properties. First, inferences that can be made within a
single server do not require any communication; coupled with careful data parti-
tioning, this can very effectively minimise network communication. Second, rule
evaluation is completely asynchronous, which promotes parallelism. This, how-
ever, introduces a complication: to ensure nonrepetition of inferences, we must
be able to partially order rule derivations across the cluster, which we achieve
using Lamport timestamps [8]. We discuss the motivation and the novelty in
more detail in Section 3, and in Section 4 we present the approach formally.

We have implemented our approach in a new prototype system called DMAT,
and in Section 5 we present the results of our empirical evaluation. We compared
DMAT with WebPIE [16], investigated how it scales with increasing data loads,
and compared it with RDFox to understand the impact of distribution on con-
currency. Our results show that DMAT outperforms WebPIE by an order of
magnitude (albeit with some differences in the setting), and that it can han-
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dle well increasing data loads; moreover, DMAT’s performance is comparable to
that of RDFox on a single server. Our algorithms are thus a welcome addition
to the techniques for implementing truly scalable semantic systems.

2 Preliminaries

We now recapitulate the syntax and the semantics of RDF and datalog. A con-
stant is an IRI, a blank node, or a literal. A term is a constant or a variable. An
atom a has the form a = 〈ts, tp, to〉 over terms ts (subject), tp (predicate), and
to (object). A fact is an variable-free atom. A dataset is a finite set of facts.

Since the focus of our work is on datalog reasoning, we chose to follow ter-
minology commonly used in datalog literature. Constants are often called RDF
terms in RDF literature, but we do not use this notion to avoid confusion with
datalog terms, which include variables. For the sake of consistency, we then use
the datalog notions of atoms, facts, and datasets, instead of the corresponding
RDF notions of triple patterns, triples, and RDF graphs, respectively.

We define the set of positions as Π = {s, p, o}. Then, for a = 〈ts, tp, to〉 and
π ∈ Π, we define a|π = tπ—that is, a|π is the term that occurs in a at position
π. A substitution σ is a partial function that maps finitely many variables to
constants. For α a term or an atom, ασ is the result of replacing with σ(x) each
occurrence of a variable x in α on which σ is defined.

A query Q is a conjunction of atoms a1 ∧ · · · ∧ an. Substitution σ is an answer
to Q on a dataset I if aiσ ∈ I holds for each 1 ≤ i ≤ n.

A datalog rule r is an implication of the form h← b1 ∧ · · · ∧ bn, where h is the
head atom, all bi are body atoms, and each variable occurring in h also occurs in
some bi. A datalog program is a finite set of rules. Let I be a dataset. The result
of applying r to I is r(I) = I ∪ {hσ | σ is an answer to b1 ∧ · · · ∧ bn on I}. For P
a program, let P (I) =

⋃
r∈P r(I); let P 0(I) = I; and let P i+1(I) = P (P i(I)) for

i ≥ 0. Then, P∞(I) =
⋃
i≥0 P

i(I) is the materialisation of P on I. This paper
deals with the problem of computing P∞(I) where I is distributed across of a
cluster of servers such that each fact is stored in precisely one server.

3 Motivation and Related Work

We can compute P∞(I) using the definition in Section 2: we evaluate the body
of each rule r ∈ P as a query over I and instantiate the head of r for each query
answer, we eliminate duplicate facts, and we repeat the process until no new
facts can be derived. However, since P i(I) ⊆ P i+1(I) holds for each i ≥ 0, such
a näıve approach repeats in each round of rule applications the work from all
previous rounds. The semı̈naive strategy [2] avoids this problem: when matching
a rule r in round i + 1, at least one body atom of r must be matched to a
fact derived in round i. We next discuss now these ideas are implemented in
the existing approaches to distributed materialisation, and then we present an
overview of our approach and discuss its novelty.
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3.1 Related Approaches to Distributed Materialisation

Several approaches to distributed reasoning partition rule applications across
servers. For example, to evaluate rule 〈x,R, z〉 ← 〈x,R, y〉 ∧ 〈y,R, z〉 on ` servers,
one can let each server i with 1 ≤ i ≤ ` evaluate rule

〈x,R, z〉 ← 〈x,R, y〉 ∧ 〈y,R, z〉 ∧ h(y) = i, (1)

where h(y) is a partition function that maps values of y to integers between 1
and `. If h is uniform, then each server receives roughly the same fraction of
the workload, which benefits parallelisation. However, since a triple of the form
〈s,R, o〉 can match either atom in the body of (1), each such triple must be
replicated to servers h(s) and h(o) so they can participate in rule applications.
Based on this idea, Ganguly et al. [4] show how to handle general datalog;
Zhang et al. [21] study different partition functions; Seib and Lausen [13] identify
programs and partition functions where no replication of derived facts is needed;
Shao et al. [15] further break rules in segments; and Wolfson and Ozeri [19]
replicate all facts to all servers. The primary motivation behind these approaches
seems to be parallelisation of computation, which explains why the high rates of
data replication were not seen as a problem. However, high replication rates are
not acceptable when data distribution is used to increase a system’s capacity.

Materialisation can also be implemented without any data replication. First,
one must select a triple partitioning strategy: a common approach is to assign
each 〈s, p, o〉 to server h(s) for a suitable hash function h, and another popular
option is to use a distributed file system (e.g., HDFS) and thus leverage its parti-
tioning mechanism. Then, one can evaluate the rules using a suitable distributed
query algorithm and distribute the newly derived triples using the partitioning
strategy. These principles were used to realise RDFS reasoning [18, 6], and they
are also implicitly present in approaches implemented on top of big data frame-
works such as Hadoop [16] and Spark [5, 20, 9]. However, most of these can
handle only fixed rule sets, which considerably simplifies algorithm design. For
example, seminäıve evaluation is not needed in the RDFS fragment since these
nonrepetition of inferences can be ensured by evaluating rules in a particular or-
der [5]. PLogSPARK [20] and SPOWL [9] handle arbitrary rules using the näıve
algorithm, which can be detrimental when programs are moderately complex.

Distributed SociaLite [14] is the only system known to us that implements
distributed seminäıve evaluation for general datalog. It requires users to ex-
plicitly specify the data distribution strategy and communication patterns. For
example, by writing a fact R(a, b) as R[a](b), one can specify that the fact is to
be stored on server h(a) for some hash function h. Rule (1) can then be written
in SociaLite as R[x](z)← R[x](y) ∧R[y](z), specifying that the rule should be
evaluated by sending each fact R[a](b) to server h(b), joining such facts with
R[b](c), and sending the resulting facts R[a](c) to server h(a). While the eval-
uation of some of these rules can be parallelised, all servers in a cluster must
synchronise after each round of rule application.
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3.2 Dynamic Data Exchange for Query Answering

Before describing our approach to distributed datalog materialisation, we next
recapitulate the earlier work by Potter et al. [12] on distributed query answering
using dynamic data exchange, which provides the foundation for our work.

This approach to query answering assumes that all triples are partitioned
into ` mutually disjoint datasets I1, . . . , I`, with ` being the number of servers.
The main objectives of dynamic exchange are to reduce communication and
eliminate synchronisation between servers. To achieve the former goal, each
server k maintains three occurrence mappings µk,s, µk,p, and µk,o. For each
constant c occurring in Ik, set µk,s(c) contains all servers where c occurs in the
subject position, and µk,p(c) and µk,o(c) provide analogous information for the
predicate and object positions. To understand how occurrences are used, con-
sider evaluating Q = 〈x,R, y〉 ∧ 〈y,R, z〉 over datasets I1 = {〈a,R, b〉, 〈b, R, c〉}
and I2 = {〈b, R, d〉, 〈d,R, e〉}. Both servers evaluate Q using index nested loop
joins. Thus, server 1 evaluates 〈x,R, y〉 over I1, which produces a partial answer
σ1 = {x 7→ a, y 7→ b}. Server 1 then evaluates 〈y,R, z〉σ1 = 〈b, R, z〉 over I1 and
thus obtains one full answer σ2 = {x 7→ a, y 7→ b, z 7→ c}. To see whether 〈b, R, z〉
can be matched on other servers, server 1 consults its occurrence mappings for
all constants in the atom. Since µ1,s(b) = µ1,p(R) = {1, 2}, server 1 sends the
partial answer σ1 to server 2, telling it to continue matching the query. After
receiving σ1, server 2 matches atom 〈b, R, z〉 in I2 to obtain another full answer
σ3 = {x 7→ a, y 7→ b, z 7→ d}. However, server 2 also evaluates 〈x,R, y〉 over I2,
obtaining partial answer σ4 = {x 7→ b, y 7→ d}, and it consults its occurrences to
determine which servers can match 〈y,R, z〉σ4 = 〈d,R, z〉. Since µ2,s(d) = {2},
server 2 knows it is the only one that can match this atom, so it proceeds without
any communication and computes σ5 = {x 7→ b, y 7→ d, z 7→ e}.

This strategy has several important benefits. First, all answers that can be
produced within a single server, such as σ5 in our example, are produced without
any communication. Second, the location of every constant is explicitly recorded,
rather than computed using a fixed rule such as a hash function. We use this
to partition a graph based on its structural properties and thus collocate highly
interconnected constants. Combined with the first property, this can significantly
reduce network communication. Third, the system is completely asynchronous:
when server 1 sends σ1 to server 2, server 1 does not need to to wait for server 2
to finish, and server 2 can process σ1 whenever it can. This eliminates the need
for synchronisation between servers, which is beneficial for parallelisation.

3.3 Our Contribution

In this paper we extend the dynamic data exchange framework to datalog materi-
alisation. We draw inspiration from the work by Motik et al. [10] on parallelising
datalog materialisation in centralised, shared memory systems. Intuitively, their
algorithm considers each triple in the dataset, identifies each rule and body atom
that can be matched to the triple, and evaluates the rest of the rule as a query.
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This approach is amenable to parallelisation since distinct processors can simul-
taneously process distinct triples; since the number of triples is generally very
large, the likelihood of workload skew among processors is very low.

Our distributed materialisation algorithm is based on the same general prin-
ciple: each server matches the rules to locally stored triples, but the resulting
queries are evaluated using dynamic data exchange. This approach requires no
synchronisation between servers, and it reduces communication in the same way
as described in Section 3.2. We thus expect our approach to exhibit the same
good properties as the approach to query answering by Potter et al. [12].

The lack of synchronisation between servers introduces a technical complica-
tion. Remember that, to avoid repeating derivations, at least one body atom in a
rule must be matched to a fact derived in the previous round of rule application.
However, due to asynchronous rule application, there is no global notion of a
rule application round (unlike, say, in SociaLite). A näıve solution would be to
associate each fact with a timestamp recording when the fact has derived in hope
that the order of fact derivation could be recovered by comparing timestamps.
However, this would require maintaining a high coherence of server clocks in
the cluster, which is generally impractical. Instead, we use Lamport timestamps
[8], which provide us with a simple way of determining a partial order of events
across a cluster. We describe this technique in more detail in Section 4.

Another complication is due to the fact that the occurrence mappings stored
in the servers may need to be updated due to the derivation of new triples. For
completeness, it is critical that all servers are updated before such triples are
used in rule applications. Our solution to this problem is fully asynchronous,
which again benefits parallelisation.

Finally, since no central coordinator keeps track of the state of the compu-
tation of different servers, detecting when the system as a whole can terminate
is not straightforward. We solve this problem using a well-known termination
detection algorithm based on token passing [3].

4 Distributed Materialisation Algorithm

We now present our distributed materialisation algorithm and prove its correct-
ness. We present the algorithm in steps. In Section 4.1 we discuss data structures
that the servers use to store their triples and implement Lamport timestamps.
In Section 4.2 we discuss the occurrence mappings. In Section 4.3 we discuss
the communication infrastructure and the message types used. In Section 4.4
we present the algorithm’s pseudocode. In Section 4.5 we discuss how to detect
termination. Finally, in Section 4.6 we argue about the algorithm’s correctness.

4.1 Adding Lamport Timestamps to Triples

As already mentioned, to avoid repeating derivations, our algorithm uses Lam-
port timestamps [8], which is a technique for establishing a causal order of events
in a distributed system. If all servers in the system could share a global clock,



Distributed Datalog Materialisation 7

we could trivially associate each event with a global timestamp, which would al-
low us to recover the ‘happens-before’ relationship between events by comparing
timestamps. However, maintaining a precise global clock in a distributed system
is technically very challenging, and Lamport timestamps provide a much simpler
solution. In particular, each event is annotated an integer timestamp in a way
that guarantees the following property (∗):

if there is any way for an event A to possibly influence an event B, then
the timestamp of A is strictly smaller then the timestamp of B.

To achieve this, each server maintains a local integer clock that is incremented
each time an event of interest occurs, which clearly ensures (∗) if A and B occur
within one server. Now assume that A occurs in server s1 and B occurs in s2;
clearly, A can influence B only if s1 sends a message to s2, and s2 processes this
message before event B takes place. To ensure that property (∗) holds in such a
case as well, server s1 includes its current clock value into the message it sends to
s2; moreover, when processing this message, server s2 updates its local clock to
the maximum of the message clock and the local clock, and then increments the
local clock. Thus, when B happens after receiving the message, it is guaranteed
to have a timestamp that is larger than the timestamp of A.

To map this idea to datalog materialisation, a derivation of a fact corresponds
to the notion of an event, and using a fact to derive another fact corresponds to
the ‘influences’ notion. Thus, we associates facts with integer timestamps.

More precisely, each server k in the cluster maintains an integer Ck called
the local clock, a set Ik of the derived triples, and a partial function Tk : Ik → N
that associates triples with natural numbers. Function Tk is partial because
timestamps are not assigned to facts upon derivation, but during timestamp
synchronisation. Before the algorithm is started, Ck must be initialised to zero,
and all input facts (i.e., the facts given by the user) partitioned to server k should
be loaded into Ik and assigned a timestamp of zero.

To capture formally how timestamps are used during query evaluation, we
introduce the notion of an annotated query as a conjunction of the form

Q = a./11 ∧ · · · ∧ a./nn , (2)

where each a./ii is called an annotated atom and it consists of an atom ai and a
symbol ./i which can be < or ≤. An annotated query requires a timestamp to
be evaluated. More precisely, a substitution σ is an answer to Q on Ik and Tk
w.r.t. a timestamp τ if (i) σ is an answer to the ‘ordinary’ query a1 ∧ · · · ∧ an on
Ik, and (ii) for each 1 ≤ i ≤ n, the value of Tk is defined for aiσ and it satisfies
Tk(aiσ) ./ τ . For example, let Q, I, and T be as follows, and let τ = 2.

Q = 〈x,R, y〉< ∧ 〈y, S, z〉≤ I = {〈a,R, b〉, 〈b, S, c〉, 〈b, S, d〉, 〈b, S, e〉}
T = {〈a,R, b〉 7→ 1, 〈b, S, c〉 7→ 2, 〈b, S, d〉 7→ 3}

Then, σ1 = {x 7→ a, y 7→ b, z 7→ c} is an answer to Q on I and T w.r.t. τ . In
contrast, σ2 = {x 7→ a, y 7→ b, z 7→ d} is not an answer to Q on I and T w.r.t. τ
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due to T (〈b, S, d〉) ≥ 2, and σ3 = {x 7→ a, y 7→ b, z 7→ e} is not an answer because
the timestamp of 〈b, S, e〉 is undefined.

To incorporate this notion into our algorithm, we assume that each server
can evaluate a single annotated atom. Specifically, given an annotated a./, a
timestamp τ , and a substitution σ, server k can call Evaluate(a./, τ, Ik, Tk, σ).
The call returns each substitution ρ defined over the variables in a and σ such
that σ ⊆ ρ holds, aρ ∈ Ik holds, and Tk is defied on aρ and it satisfies T (aρ) ./ τ .
In other words, Evaluate matches a./ in Ik and Tk w.r.t. τ and it returns each
extension of σ that agrees with a./ and τ . For efficiency, server k should index
the facts in Ik; any RDF indexing scheme can be used, and one can modify index
lookup to simply skip over facts whose timestamps do not match τ .

Finally, we describe how rule matching is mapped to answering annotated
queries. Let P be a datalog program to be materialised. Given a fact f , function
MatchRules(f, P ) considers each rule h← b1 ∧ · · · ∧ bn ∈ P and each body
atom bp with 1 ≤ p ≤ n, and, for each substitution σ over the variables of bp
where f = bpσ, it returns (σ, bp, Q, h) where Q is the annotated query

b<1 ∧ · · · ∧ b<p−1 ∧ b
≤
p+1 ∧ · · · ∧ b≤n . (3)

Intuitively, MatchRules identifies each rule and each pivot body atom bp
that can be matched to f via substitution σ. This σ will be extended to all body
atoms of the rule by matching all remaining atoms in nested loops using function
Evaluate. The annotations in (3) specify how to match the remaining atoms
without repetition: facts matched to atoms before (resp. after) the pivot must
have timestamps strictly smaller (resp. smaller or equal) than the timestamp of
f . As is usual in query evaluation, the atoms of (3) may need to be reordered to
obtain an efficient query plan. This can be achieved using any known technique,
and further discussion of this issue is out of scope of this paper.

4.2 Occurrence Mappings

To decide whether rule matching may need to proceed on other servers, each
server k must store indexes µk,s, µk,p, and µk,o, called occurrence mappings,
that map constants to sets of server IDs. We say that a constant c is local to
server k is c occurs in Ik at any position. To ensure scalability, µk,s, µk,p, and µk,o
need only to be defined on local constants: if, say, µk,s is not defined on constant
c, we will assume that c can occur on any server. However, these mappings will
need to be correct during algorithm’s execution: if a constant c is local to Ik,
and if c occurs on some other server j in position π, then µk,π must be defined
on c and it must contain j. Moreover, all servers will have to know the initial
locations of all constants occurring in the heads of the rules in P .

Storing only partial occurrences at each server introduces a complication:
when a server processes a partial match σ received from another server, its local
occurrence mappings may not cover some of the constants in σ. Potter et al. [12]
solve this by accompanying each partial match σ with a vector λλλ = λs, λp, λo
of partial occurrences. Whenever a server extends σ by matching an atom, it
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also records in λλλ its local occurrences for each constant added to σ so that this
information can be propagated to subsequent servers.

Occurrence mappings are initialised on each server k for each constant that
initially occurs in Ik, but they may need to be updated as fresh triples are
derived. To ensure that the occurrences correctly reflect the distribution of con-
stants at all times, occurrence mappings of all servers must be updated before a
triple can be added to the set of derived triples of the target server.

Our algorithm must decide where to store each freshly derived triple. It is
common practice in distributed RDF systems to store all triples with the same
subject on the same server. This is beneficial since it allows subject–subject
joins—the most common type of join in practice—to be answered without any
communication. We follow this well-established practice and ensure that the
derived triples are grouped by subject. Consequently, we require that µk,s(c),
whenever it is defined, contains exactly one server. Thus, to decide where to
store a derived triple, the server from the subject’s occurrences is used, and, if
the subject occurrences are unavailable, then a predetermined server is used.

4.3 Communication Infrastructure and Message Types

We assume that the servers can communicate asynchronously by passing mes-
sages: each server can call Send(m, d) to send a message m to a destination
server d. This function can return immediately, and the receiver can processes
the message later. Also, our core algorithm is correct as long as each sent mes-
sage is processed eventually, regardless of whether the messages are processed
in the order in which they are sent between servers. We next describe the two
types of message used in our algorithm. The approach used to detect termination
can introduce other message types and might place constraints on the order of
message delivery; we discuss this in more detail in Section 4.5.

Message PAR[i, σ,Q, h, τ,λλλ] informs a server that σ is a partial match ob-
tained by matching some fact with timestamp τ to the body of a rule with head
atom h; moreover, the remaining atoms to be matched are given by an anno-
tated query Q starting from the atom with index i. The partial occurrences for
all constants mentioned in σ are recorded in λλλ.

Message FCT[f,D, kh, τ,λλλ] says that f is a freshly derived fact that should be
stored at server kh. Set D contains servers whose occurrences must be updated
due to the addition of f . Timestamp τ corresponds to the time at which the
message was sent. Finally, λλλ are the partial occurrences for the constants in f .

Potter et al. [12] already observed PAR messages correspond to partial join
results so a large number of such messages can be produced during query evalu-
ation. To facilitate asynchronous processing, the PAR messages may need to be
buffered on the receiving server, which can easily require excessive space. They
also presented a flow control mechanism that can be used to restrict memory
consumption at each server without jeopardising completeness. This solution is
directly applicable to our problem as well, so we do not discuss it any further.
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4.4 The Algorithm

With these definitions in mind, Algorithms 1 and 2 comprise our approach to
distributed datalog materialisation. Before starting, each server k loads its sub-
set of the input RDF graph into Ik, sets the timestamp of each fact in Ik to zero,
initialises Ck to zero, and receives the copy of the program P to be materialised.
The server then starts an arbitrary number of server threads, each executing
the ServerThread function. Each thread repeatedly processes either an un-
processed fact f in Ik or an unprocessed message m; if both are available, they
can be processed in arbitrary order. Otherwise, the termination condition is
processed as we discuss later in Section 4.5.

Function Synchronise updates the local clock Ck with a timestamp τ . This
must be done in a critical section (i.e., two threads should not execute it simul-
taneously). The local clock is updated if Ck ≤ τ holds; moreover, all facts in Ik
without a timestamp are timestamped with Ck since they are derived before the
event corresponding to τ . Assigning timestamps to facts in this way reduces the
need for synchronising access to Ck between threads.

Function ProcessFact kickstarts the matching of the rules to fact f . After
synchronising the clock with the timestamp of f , the function simply calls the
MatchRules function to identify all rules where one atom matches to f , and
then it calls the FinishMatch function to finish matching the pivot atom.

A PAR message is processed by matching atom a./ii of the annotated query
in Ik and Tk w.r.t. τ , and forwarding each match to FinishMatch.

A FCT message informs server k that fact f will be added to the set Ikh
of facts derived at server kh. Set D lists all remaining servers that need to be
informed of the addition, and partial occurrences λλλ are guaranteed to correctly
reflect the occurrences of each constant in f . Server k updates its µk,π(c) by
appending λπ(c) (line 19). Since servers can simultaneously process FCT mes-
sages, server k adds to D all servers that might have been added to µk,π(c) since
the point when λπ(c) had been constructed (line 18), and it also updates λπ(c)
(line 19). Finally, the server adds f to Ik if k is the last server (line 20), and
otherwise it forwards the message to another server d form D.

Function FinishMatch finishes matching atom alast by (i) extending λλλ with
the occurrences of all constants that might be relevant for the remaining body
atoms or the rule head, and (ii) either matching the next body atom or deriving
the rule head. For the former task, the algorithm identifies in line 30 each vari-
able x in the matched atom that either occurs in the rule head or in a remaining
atom, and for each π it adds the occurrences of xσ to λπ. Now if Q has been
matched completely (line 31), the server also ensures that the partial occurrences
are correctly defined for the constants occurring in the rule head (lines 32–33), it
identifies the server kh that should receive the derived fact as described in Sec-
tion 4.2, it identifies the set D of the destination servers whose occurrences need
to be updated, and it sends the FCT message to one server from D. Otherwise,
atom ai+iσ must be matched next. To determine the set D of servers that could
possibly match this atom, server k intersects the occurrences of each constant
from ai+iσ (line 44) and sends a PAR message to all servers in D.
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Algorithm 1 Distributed Materialisation Algorithm at Server k

1: function ServerThread
2: while cannot terminate do
3: if Ik contains an unprocessed fact f , or a message m is pending then
4: ProcessFact(f) or ProcessMessage(m), as appropriate
5: else if the termination token has been received then
6: Process the termination token

7: function ProcessFact(f)
8: Synchronise(Tk(f))
9: for each (σ, a,Q, h) ∈MatchRules(f, P ) do

10: FinishMatch(0, σ, a,Q, h, Tk(f),∅∅∅)

11: function ProcessMessage(PAR[i, σ,Q, h, τ,λλλ]) where Q = a./11 ∧ · · · ∧ a./nn
12: Synchronise(τ)
13: for each substitution σ′ ∈ Evaluate(a./ii , τ, Ik, Tk, σ) do
14: FinishMatch(i, σ′, ai, Q, h, τ,λλλ)

15: function ProcessMessage(FCT[f,D, kh, τ,λλλ])
16: Synchronise(τ)
17: for each constant c in f and each position π ∈ Π do
18: D := D ∪

[
µk,π(c) \ λπ(c)

]
19: λπ(c) := µk,π(c) := λπ(c) ∪ µk,π(c)

20: if D = ∅ then Add f to Ik
21: else
22: Remove an element d from D, preferring any element over kh if possible
23: Send(FCT[f,D, kh, Ck,λλλ], d)

24: function Synchronise(τ) (must be executed in a critical section)
25: if Ck ≤ τ then
26: for each fact f ∈ Ik such that Tk is undefined on f do Tk(f) := Ck

27: Ck := τ + 1

4.5 Termination Detection

Since no server has complete information about the progress of any other server,
detecting termination is nontrivial; however, we can reuse an existing solution.

When messages between each pair of servers are guaranteed to be delivered
in order in which they are sent (as is the case in our implementation), one can
use Dijkstra’s token ring algorithm [3], which we summarise next. All servers in
the cluster are numbered from 1 to ` and are arranged in a ring (i.e., server 1
comes after server `). Each server can be black or white, and the servers will
pass between them a token that can also be black or white. Initially, all servers
are white and server 1 has a white token. The algorithm proceeds as follows.

– When server 1 has the token and it becomes idle (i.e., it has no pending
work or messages), it sends a white token to the next server in the ring.
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Algorithm 2 Distributed Materialisation Algorithm at Server k (Continued)

28: function FinishMatch(i, σ, alast , Q, h, τ,λλλ) where Q = a./11 ∧ · · · ∧ a./nn
29: for each var. x occurring in alast and in h or aj with j > i, and each π ∈ Π do
30: Extend λπ with the mapping xσ 7→ µk,π(xσ)

31: if i = n then
32: for each constant c occurring in h and each π ∈ Π do
33: Extend λπ with the mapping c 7→ µk,π(c)

34: kh := the owner server for the derived fact
35: D := {kh}
36: for each position π ∈ Π and c = hσ|π where kh 6∈ λπ(c) do
37: Add kh to λπ(c)
38: for each π′ ∈ Π do Add λπ′(c) to D

39: Remove an element d from D, preferring any element over kh if possible
40: if d = k then ProcessMessage(FCT[hσ,D, kh, Ck,λλλ])
41: else Send(FCT[hσ,D, kh, Ck,λλλ], d)

42: else
43: D := the set of all servers
44: for each position π ∈ Π where ai+1σ|π is a constant c do D := D ∩ λπ(c)

45: for each d ∈ D do
46: if d = k then ProcessMessage(PAR[i+ 1, σ,Q, h, τ,λλλ])
47: else Send(PAR[i+ 1, σ,Q, h, τ,λλλ], d)

– When a server other than 1 has the token and it becomes idle, the server
changes the token’s colour to black if the server is itself black (and it leaves
the token’s colour unchanged otherwise); the server forwards the token to
the next server in the ring; and the server changes its colour to white.

– A server i turns black whenever it sends a message to a server j < i.
– All servers can terminate when server 1 receives a white token.

The Dijkstra–Scholten algorithm extends this approach to the case when the
order of message delivery cannot be guaranteed.

4.6 Correctness

We next prove that our algorithm is correct and that it exhibits the nonrepetition
property. We present here only an outline of the correctness argument, and give
the full proof in the appendix.

Let us fix a run of Algorithms 1 and 2 on some input. First, we show that
Lamport timestamps capture the causality of fact derivation in this run. To
this end, we introduce four event types relating to an arbitrary fact f . Event
addk(f) occurs when f is assigned a timestamp on server k in line 26. Event
processk(f) occurs when server k starts processing a new fact in line 8. Event
PARk(f, i) occurs when server k completes line 12 for a PAR message with index i
originating from a call to MatchRules on fact f . Finally, event FCTk(f) occurs
when server k completes line 16 for a FCT message for fact f . We write e1  e2 if
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event e1 occurs chronologically before event e2; this relation is clearly transitive
and irreflexive. Since each fact is stored and assigned a timestamp on just one
server, we define T (f) as Tk(f) for the unique server k that satisfies f ∈ Ik.
Lemma 1 then essentially says that the ‘happens-before’ relationship between
facts and events on facts agrees with the timestamps assigned to the facts.

Lemma 1. In each run of the algorithm, for each server k, and all facts f1 and
f2, we have T (f1) < T (f2) whenever one of the following holds:

– PARk(f1, i) addk(f2) for some i,
– processk(f1) FCTk(f2), or
– PARk(f1, i) FCTk(f2) for some i.

Next, we show that then the occurrence mappings µk,π on each relevant server
k are updated whenever a triple is added to some Ij . This condition is formally
captured in Lemma 2, and it ensures that partial answers are sent to all relevant
servers that can possibly match an atom in a query. Note that the implication
in Lemma 2 is the only relevant direction: if µk,π(c) contains irrelevant servers,
we can have redundant PAR messages, but this does not affect correctness.

Lemma 2. At any point in the algorithm’s run, for all servers k and j, each
position π ∈ Π, and each constant c that is local to server k and that occurs in
Ij at position π, property j ∈ µk,π(c) holds at that point.

Using Lemmas 1 and 2, we prove our main claim.

Theorem 1. For I1, . . . , I` the sets obtained by applying Algorithms 1 and 2 to
an input set of facts I and program P , we have P∞(I) = I1 ∪ · · · ∪ I`. Moreover,
the algorithm exhibits the nonrepetition property.

5 Evaluation

To evaluate the practical applicability of our approach, we have implemented
a prototype distributed datalog reasoned that we call DMAT. We have used
RDFox—a state-of-the-art centralised RDF system—to store and index triples in
RAM, on top of which we have implemented a mechanism for associating triples
with timestamps. To implement the Evaluate function, we use the interface of
RDFox for answering individual atoms and then simply filter out the answers
whose timestamp does not match the given one. For simplicity, DMAT currently
uses only one thread per server, but this limitation will be removed in future.

We have evaluated our system’s performance in three different ways, each
aimed at analysing a specific aspect of the problem. First, to establish a baseline
for the performance of DMAT, as well as to see whether distributing the data can
speed up the computation, we compared DMAT with RDFox on a relatively small
dataset. Second, to compare our approach with the state of the art, we compared
DMAT with WebPIE [16]—a distributed RDF reasoner based on MapReduce.
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Third, we studied the scalability of our approach by proportionally increasing
the input data and the number of servers.

Few truly large RDF datasets are publicly available, so the evaluation of
distributed reasoning is commonly based on the well-known LUBM4 benchmark
(e.g., [16, 9, 20]). Following this well-established practice, in our evaluation we
used LUBM datasets of sizes ranging from 134 M to 6.5 G triples. We also used
the lower bound program, which was obtained by extracting the OWL 2 RL
portion of the LUBM ontology and translating it into datalog. The executable of
DMAT and the datalog program we used are available online,5 and the datasets
can be reproduced using the LUBM generator.

We conducted all tests with DMAT on the Amazon Elastic Compute Cloud
(EC2). We used the r4.8xlarge servers,6 each equipped with a 2.3 GHz Intel
Broadwell processors and 244 GB of RAM; such a large amount of RAM was
needed since we use RDFox to store triples, and RDFox is RAM-based. An ad-
ditional, identical server stored the dictionary (i.e., a data structure mapping
constants to integers): this server did not participate in materialisation, but was
used only to distribute the program and the data to the cluster. The servers
were connected using 10 Gbps network. In all tests apart from the ones where
we compared DMAT to WebPIE, we partitioned the dataset by using the graph
partitioning approach by Potter et al. [12]: this approach aims to place strongly
connected constants on the same server and thus reduce communication over-
head. Unfortunately, our graph partitioning algorithm ran out of memory on the
very large datasets we used to compare DMAT with WebPIE, so in these tests
we partitioned the data using subject hashing. For each test, we loaded the input
triples and the program into all servers, and computed the materialisation while
recording the wall-clock time. Apart from reporting this time, we also report the
reasoning throughput measured in thousands of triples derived per second and
worker (ktps/w). We next discuss the results of our experiments.

Comparison with RDFox. First, we ran RDFox and DMAT on a fixed dataset
while increasing the number of threads for RDFox and the numbers of servers for
DMAT. Since RDFox requires the materialised dataset to fit into RAM of a sin-
gle server, we used a small input dataset of just 134 M triples. The results, shown
in Table 1, provide us with two insights. First, the comparison on one thread es-
tablishes a baseline for the DMAT’s performance. In particular, DMAT is slower
than RDFox, which is not surprising: RDFox is a mature and tuned system,
whereas DMAT is just a prototype. However, DMAT is still competitive with
RDFox, suggesting that our approach is free of any overheads that might make it
uncompetitive. Second, the comparison on multiple threads shows how effective
our approach is at achieving concurrency. RDFox was specifically designed with
that goal in mind in a shared-memory setting. However, as one can see from our
results, DMAT also parallelises computation well: in some cases the speedup is

4 http://swat.cse.lehigh.edu/projects/lubm/
5 http://krr-nas.cs.ox.ac.uk/2019/distributed-materialisation/
6 http://aws.amazon.com/ec2/instance-types/
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Table 1: Comparison of Centralised and Distributed Reasoning

Threads/Servers
1 2 4 8

RDFox DMAT RDFox DMAT RDFox DMAT RDFox DMAT

Times (s) 86 256 56 140 35 82 16 53
Speed-up 1.0x 1.0x 1.5x 1.8x 2.5x 3.1x 5.4x 4.8x

Size 134M → 182M

Table 2: Comparison with WebPIE

Dataset
Sizes (G) WebPIE (64 workers) DMAT (12 servers)

Input Output Time (s) ktps/w Time (s) ktps/w

4K 0.5 0.729 1920 4.1 224 85
8K 1 1.457 2100 7.5 461 81

36K 5 6.516 3120 24.9 2087 71

Table 3: Scalability Experiments

Input Output Time Rate
Workers Dataset size (G) size (G) (s) (ktps/w)

2 4K 0.5 0.73 646 212
6 12K 1.6 2.19 769 173
10 20K 2.65 3.64 887 151

larger than in the case of RDFox. This seems to be the case mainly because data
partitioning allows each server to handle an isolated portion of the graph, which
can reduce the need for synchronisation.

Comparison with WebPIE. Next, we compared DMAT with WebPIE to see how
our approach compares with the state of the art in distributed materialisation.
To keep the experimentation effort manageable, we did not rerun WebPIE our-
selves; rather, we considered the same input dataset sizes as Urbani et al. [16]
and reused their published results. The setting of these experiments thus does
not quite match our setting: (i) WebPIE handles only the ter Horst fragment
of OWL and thus cannot handle all axioms in the OWL 2 RL subset of the
LUBM ontology; (ii) experiments with WebPIE were run on physical (rather
than virtualised) servers with only 24 GB of RAM each; and (iii) WebPie used
64 workers, while DMAT used just 12 servers. Nevertheless, as one can see from
Table 2, despite using more than five times fewer servers, DMAT is faster by
an order of magnitude. Hadoop is a disk-based system so lower performance is
to be expected to some extent, but this may not be the only reason: triples in
DMAT are partitioned by subject so, unlike WebPIE, DMAT does not perform
any communication on subject–subject joins.

Scalability Experiments. Finally, to investigate the scalability of DMAT, we mea-
sured how the system’s performance changes when the input data and the num-
ber of servers increase proportionally. The results are shown in Table 3. As



16 T. Ajileye et al.

one can see, increasing the size of the input does introduce an overhead for
each server. Our analysis suggests that this is mainly because handling a larger
dataset requires sending more messages, and communication seems to be the
main source of overhead in the system. This, in turn, leads to a moderate reduc-
tion in throughout. Nevertheless, the system still exhibits very high inferences
rates and clearly scales to very large inputs.

6 Conclusion

In this paper, we have presented a novel approach to datalog reasoning in dis-
tributed RDF systems. Our work extends the distributed query answering al-
gorithm by Potter et al. [12], from which it inherits several benefits. First, the
servers in our system are asynchronous, which is beneficial for concurrency. Sec-
ond, dynamic data exchange is effective at reducing network communication,
particularly when input data is partitioned so that related triples are co-located.
Third, we have shown empirically that our prototype system is an order of mag-
nitude faster than WebPIE [17], and that it scales to increasing data loads.

We see several interesting avenues for our future work. First, we shall extend
our evaluation to cover a broader range of systems, datasets, and rule sets. Sec-
ond, better approaches to partitioning the input data are needed: hash partition-
ing does not guarantee that joins other than subject–subject ones are processed
on one server, and graph partitioning cannot handle large input graphs. Third,
supporting more advanced features of datalog, such as stratified negation and
aggregation is also needed in many practical applications.
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A Proofs

Lemma 1. In each run of the algorithm, for each server k, and all facts f1 and
f2, we have T (f1) < T (f2) whenever one of the following holds:

– PARk(f1, i) addk(f2) for some i,
– processk(f1) FCTk(f2), or
– PARk(f1, i) FCTk(f2) for some i.

Proof. Consider an arbitrary run of Algorithms 1 and 2, arbitrary server k,
arbitrary facts f1 and f2, and arbitrary events as specified in the lemma.

Assume that PARk(f1) addk(f2) holds. After the call to Synchronise in
line 12, the local clock of server k has a value that is strictly larger than T (f1).
Thus, when f2 is assigned a timestamp, T (f2) > T (f1) holds.

If processk(f1) FCTk(f2) (resp. PARk(f1) FCTk(f2)) holds, then after
the call to Synchronise in line 8 (resp. 12), the local clock of server k has a
value that is strictly larger than T (f1). Server k reads this value into the FCT
message for f2 in line 41 or line 23. Before f2 is added to Ik′ on a destination
server k′, server k′ calls Synchronise in line 16, which in turn ensures that
T (f2) > T (f1) holds, as required. ut

Before proceeding, for a fact f ∈ P∞(I) and a constant c occurring in f , let
L(f, c) be the set of servers defined as follows.

– If f ∈ I (i.e., f occurs in the input), then L(f, c) =
⋃
π∈Π µj,π(c), where j

is the server that contains f at algorithm’s start, and µj,π are the initial
occurrence mappings.

– If f ∈ P∞(I) \ I (i.e., f is derived), then L(f, c) =
⋃
π∈Π λπ(c), where λs,

λp, and λo are partial occurrences from lines 36–38 at the point when a FCT
message is sent for fact f in line 40 or 41.

Moreover, given facts f and g, we say f supports g if f is matched to a body
of a rule that derives g in the run of our algorithm. We next show that L(f, c)
satisfies the following two auxiliary properties.

Lemma A.1. For all facts f, g ∈ P∞(I) such that f supports g, and for each
constant c that occurs in f and g, property L(f, c) ⊆ L(g, c) holds.

Proof. Consider arbitrary facts f, g ∈ P∞(I) such that f supports g, and con-
sider arbitrary constant c that occurs in f and g. Furthermore, consider an
arbitrary server k ∈ L(f, c). We consider the following two cases.

Assume f ∈ I. By the definition of L(f, c), there exists π ∈ Π such that
k ∈ µj,π(c), where j is the server that initially contains f , and µj,π is the initial
occurrence mapping. Now if c occurs in the head of the atom that derives g,
then k is added to λπ in line 33, so k ∈ L(g, c) holds. Otherwise, the rule that
derives g contains a variable x that is matched to f and that occurs in the head
atom deriving g, so k is added to λπ in line 30 and k ∈ L(g, c) holds as well.
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Assume f ∈ P∞(I) \ I. By the definition of L(f, c), there exists π ∈ Π such
that k ∈ λπ(c), where λπ is the partial occurrence mapping from lines 36–38
at the point when a FCT message is sent for fact f in line 40 or 41. Fact f is
eventually sent to its host server `, where λπ(c) is merged into µ`,π(c) in line 19.
But then, k is added to L(g, c) analogously as in the previous case. ut

Lemma A.2. For all facts f1, f2 ∈ P∞(I) and each constant c that occurs in
both f1 and f2, property L(f1, c) ∩ L(f2, c) 6= ∅ holds.

Proof. We prove the claim by showing that, for each i, all facts f1, f2 ∈ P i(I),
and each constant c that occurs in both f1 and f2, property L(f1, c) ∩ L(f2, c) 6= ∅
holds. The base case for i = 0 is trivial because L(f1, c) = L(f2, c) holds.

Now assume that the claim holds for some i− 1; we show that the prop-
erty holds for arbitrary facts f1, f2 ∈ P i(I). To this end, we define f ′1 as fol-
lows: if f1 ∈ P i−1(I), then let f ′1 = f1; otherwise, let f ′1 be an arbitrary fact
that supports f1. Either way, these definitions and Lemma A.1 clearly ensure
f ′1 ∈ P i−1(I) and L(f ′1, c) ⊆ L(f1, c). We define f ′2 analogously; in similar vein,
we have f ′2 ∈ P i−1(I) and L(f ′2, c) ⊆ L(f2, c). Moreover, the induction assump-
tion ensures L(f ′1, c) ∩ L(f ′2, c) 6= ∅. But then, all of these observations clearly
ensure L(f1, c) ∩ L(f2, c) 6= ∅, as required. ut

To prove Lemma 2, we introduce another event in addition to the events from
Section 4.6: for f a fact, c a constant in f , and π ∈ Π a position, addOcck(f, c, π)
is the point when µk,π(c) is updated on server k in line 19 while processing an
FCT message for f . We extend relation  to such events as well.

Lemma 2. At any point in the algorithm’s run, for all servers k and j, each
position π ∈ Π, and each constant c that is local to server k and that occurs in
Ij at position π, property j ∈ µk,π(c) holds at that point.

Proof. Consider arbitrary servers k and j, position π, constant c, and a point
during the algorithm’s run such that c local to k and it occurs in Ij at position π.
We show that j ∈ µk,π(c) holds at that point too. If c is local to k and it occurs
in Ij at position π when the algorithm is started, this claim holds because the
occurrence mappings are initialised consistently. Hence, in the rest of this proof,
we assume that either c does not occur in Ij at position π when the algorithm
is started, or c is not local to k when the algorithm is started.

(Case 1 ) Assume that neither of the two conditions hold. Let f be the first
fact containing c in position π that is added to Ij . Moreover, let f ′ be the first
fact containing c in any position that is added to Ik and thus causes c to become
local on k. Let π′ be a position of c in f ′ (i.e., we choose one π′ if c occurs in f ′

more than once). We have the following two possibilities.
If k = j, then the order of the operations in our algorithm ensures that

addOccj(f, c, π) addj(f) holds, so the property of the lemma holds. There-
fore, assume that k 6= j holds. By Lemma A.2, there exists a server ` such that
` ∈ L(f, c) ∩ L(f ′, c) holds. Since f is the first fact containing c in position π
that is added to Ij , set L(f, c) is included into the set D in lines 36–38 and
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so event FCT`(f) occurs on server `. Moreover, f ′ is the first fact containing
c in any position that is added to Ik, so event FCT`(f

′) occurs on server ` for
analogous reasons. Consequently, events addOcc`(f, c, π) and addOcc`(f

′, c, π′)
occur on server ` as well. We have the following possibilities.

– Assume that addOcc`(f
′, c, π′) addOcc`(f, c, π) holds. Line 37 ensures that

k is present in the partial occurrences for f ′, so line 19 adds k to µ`,π′(c).
Consequently, when FCT`(f) is processed, line 18 ensures that k is added
to the set D and so f is eventually forwarded to server k. Consequently, event
addOcck(f, c, π) happens on server k, and so addOcck(f, c, π) addj(f) holds
because f is sent to server j last. Thus, the property of the lemma holds.

– Assume that addOcc`(f, c, π) addOcc`(f
′, c, π′) holds. Line 37 ensures that

j is present in the partial occurrences for f , and so line 19 adds j to µ`,π(c).
Consequently, when FCT`(f

′) is processed, line 19 ensures that j is added
to λπ(c); hence, when f ′ is eventually forwarded to server k, line 19 adds j
to µk,π(c). This also is the point when c becomes local to k, so the property
of the lemma holds.

(Case 2 ) Assume that, when the algorithm starts, c is local to k but it does
not occur in Ij at position π. Let fm be the first facts containing c in position
π that is added to Ij . Clearly, there exists a finite sequence of facts f0, . . . , fm
such that (i) fi contains c for each 0 ≤ i ≤ m, (ii) f0 ∈ I (i.e., f0 occurs in the
input to the algorithm) or f0 is derived by a rule containing c in the head, and
(iii) fi−1 supports fi for each 1 ≤ i ≤ m. Since c to local to k at the start, we have
k ∈ L(f0, c). Moreover, Lemma A.1 ensures L(fi−1, c) ⊆ L(fi, c) for 1 ≤ i ≤ m.
Thus, k ∈ L(fm, c) holds and, consequently, event FCTk(f) happens on server k.
Therefore addOcck(f, c, π) addj(f) holds because f is sent to server j last, so
the property of the lemma holds.

(Case 3 ) Assume that, when the algorithm starts, c is not local to k but it
occurs in Ij at position π. Let fm be the first fact containing c in any position
that is added to Ik and thus causes c to become local to k. Clearly, there exists a
finite sequence of facts f0, . . . , fm such that (i) fi contains c for each 0 ≤ i ≤ m,
(ii) f0 ∈ I (i.e., f0 occurs in the input to the algorithm) or f0 is derived by
a rule containing c in the head, and (iii) fi−1 supports fi for each 1 ≤ i ≤ m.
Since c occurs in Ij at position π at the start, we have j ∈ L(f0, c). Moreover,
Lemma A.1 ensures L(fi−1, c) ⊆ L(fi, c) for 1 ≤ i ≤ m. Thus, j ∈ L(fm, c) holds.
Since fm is the first fact containing c that is added to Ik and thus makes c local,
line 19 adds j to µk,π(c), so the property of the lemma holds. ut

Theorem 1. For I1, . . . , I` the sets obtained by applying Algorithms 1 and 2 to
an input set of facts I and program P , we have P∞(I) = I1 ∪ · · · ∪ I`. Moreover,
the algorithm exhibits the nonrepetition property.

Proof (Soundness). Let P be a program, let I be an input dataset, and let
I1, . . . , I` be the datasets computes after Algorithms 1 and 2 finish on some par-
tition of I to ` servers. The proof is by induction on the construction of sets Ii.
The argument is straightforward so we just present a sketch: when (σ, a,Q, h)
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is returned on some server k in line 9, substitution σ satisfies aσ ∈ Ik; more-
over, as matching of Q progresses, each substitution σ′ returned in line line 13
satisfies aiσ

′ ∈ Ik′ ; consequently, each substitution σ in line 41 is an answer to
the annotated query Q. Thus, each such σ matches all body atoms of the rule
corresponding to (σ, a,Q, h) in P∞(I), and so we clearly have hσ ∈ P∞(I). ut

Proof (Completeness). Let P be a program, let I be an input dataset, and let
I1, . . . , I` be the datasets computed after Algorithms 1 and 2 finish on some
partition of I to ` servers. Our claim follows from the following property:

(∗) for each i and each fact f ∈ P i(I), a server k exists were f ∈ Ik holds.

The proof is by induction on i. The base case holds trivially, so we assume
that (∗) holds for some i ≥ 0 and show that it also holds for i+ 1. To this
end, we consider an arbitrary fact f ∈ P i+1(I) \ P i(I). This fact is derived by a
rule h← b0 ∧ · · · ∧ bn ∈ P and substitution σ such that hσ = f and bjσ ∈ P i(I)
for 0 ≤ j ≤ n. Now choose p as the smallest integer between 0 and n such
that T (bp′σ) ≤ T (bpσ) holds for each 0 ≤ p′ ≤ n. Let a0, . . . , an be the body
atoms of the rule rearranged so that a0 = bp is the pivot atom, and the remain-
ing atoms correspond to the annotated query Q = a./11 ∧ · · · ∧ a./nn returned by
MatchRules(bpσ, P ) in line 9 on fact bpσ. Finally, for each 0 ≤ j ≤ n, let σj be
the substitution σ restricted to all variables occurring in atoms a0, . . . , aj and
let τj = T (ajσ); moreover, (∗) holds for i by the induction assumption, so there
exists a server kj such that ajσ ∈ Ikj holds. We next prove the following:

(♦) for each 0 ≤ j ≤ n, function FinishMatch(j, σj , aj , Q, h, τ0,λλλj) is
called for some partial occurrence mapping λλλj .

Property (♦) implies our claim because in lines 31–41 the algorithm then con-
structs a FCT message for hσ and dispatches it to some server kh, so hσ is
eventually added to Ikh in line 20, as required for (∗).

We next prove (♦) by induction on 0 ≤ j ≤ n. For the base case, a0σ ∈ Ik0
ensures that ProcessFact(a0σ) is called on server k0, so MatchRules(a0σ, P )
returns (σ0, a0, Q, h), and FinishMatch(0, σ0, a0, Q, h, τ0,∅∅∅) is called in line 10.
For the induction step, we assume that (♦) holds for some 0 ≤ j < n, and we
show that it holds for j + 1 as well. To this end, we consider several cases.

Assume that event PARkj+1
(a0σ, j + 1) occurs at some point during the al-

gorithm’s run. Server kj+1 then calls Evaluate at line 13 for a
./j+1

j+1 . Note that
aj+1σ ∈ Ikj+1

holds by induction assumption. We next show that server kj+1

contains aj+1σ at the point in time when line 13 is executed. We have the fol-
lowing possibilities.

– If event addkj1 (aj+1σ) never happens, then server kj+1 contains fact aj+1σ
since the algorithm’s start.

– If addkj1 (aj+1σ) PARkj+1
(a0σ, j + 1) holds, then server kj+1 clearly con-

tains fact aj+1σ at this point in time.
– If PARkj+1

(a0σ, j + 1) addkj1 (aj+1σ) were to hold, then Lemma 1 implies
T (a0σ) < T (aj+1σ), contradicting our assumption that T (aj+1σ) ≤ T (a0σ).
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Moreover, if T (aj+1σ) = T (a0σ), since a0 = bp was chosen so that p is the least
index of a body atom matched to a fact with timestamp T (a0σ), the shape of Q
from (3) ensures that ./j+1= ≤. Consequently, the call to Evaluate in line 13
on server kj+1 returns σj+1, so the call in line 14 ensures (♦).

Now assume that event PARkj+1
(a0σ, j + 1) never occurs during the algo-

rithm’s run—that is, server kj never forwards a PAR message to server kj+1.
Then, for some π ∈ Π and c = aj+1σj |π, we have kj+1 6∈ λπ(c) at the point in
time when line 44 is executed on server kj , ensuring that kj+1 is removed from
D. However, this λπ(c) is populated in line 30 when, for some index 0 ≤ s ≤ j of
an atom as, constant c is matched on server ks, so at that point in time we have
kj+1 6∈ µks,π(c). Now if event addkj+1

(aj+1σ) never happens, then server kj+1

would contain aj+1σ when the algorithm starts; but then, since µks,π is defined
on c, Lemma 2 implies kj+1 ∈ µks,π(c), which is a contradiction. Consequently,
event addkj+1(aj+1σ) occurs on server kj+1. Moreover, let α = processks(a0σ) if
s = 0, and otherwise let α = PARks(a0σ, j) if s > 0. By the induction assump-
tion, property (♦) holds for s, so event α occurs on server ks. Let g be the first
fact containing c in position π that is added to Ikj+1

; such a fact exists because
aj+1σ contains c and it is added to Ikj+1

. We have the following two possibilities.

– Assume that ks ∈ L(g, c) holds. Event FCTks(g) occurs on server ks and
line 19 adds kj+1 to µks,π(c). We know that kj+1 6∈ µks,π(c) holds at the point
in time when c is matched by σ, so α FCTks(g) FCTks(aj+1σ) holds.
Thus, regardless of how α is defined, Lemma 1 implies T (a0σ) < T (aj+1σ),
which contradicts our assumption that T (aj+1σ) ≤ T (a0σ) holds.

– Assume that ks 6∈ L(g, c) holds. Let g′ be the first fact added to Iks that
contains c in any position. By applying Lemma A.2 to g and g′, there exists
k′ with k′ ∈ L(g, c) ∩ L(g′, c). Both FCTk′(g) and FCTk′(g

′) occur on k′, in
one of the following two orders. If FCTk′(g) FCTk′(g

′) holds, then kj+1 is
added to µk′,π in line 19 when the first message is processed, and then to λπ
in line 19 when the second message is processed. This event is followed by
FCTks(g′), which adds kj+1 to µks,π(c). We know that kj+1 6∈ µks,π(c) holds
at the point in time when c is matched by σ, so α FCTks(g′) holds and
Lemma 1 ensures T (a0σ) < T (g′). But g′ is the first appearance of c in server
ks, which implies T (a0σ) < T (asσ) and thus contradicts our assumption that
T (asσ) ≤ T (a0σ) holds. If FCTk′(g

′) FCTk′(g) holds, then ks is added to
µk′,π in line 19 when the first message is processed, and then to D in line 18
when the second message is processed; thus, FCTks(g) eventually happens
and we complete the proof as in the first case.

Thus, assuming that PARkj+1(a0σ, j+1) never happens leads to a contradiction,
so PARkj+1(a0σ, j + 1) occurs on server kj+1, thus proving our claim. ut

Proof (Nonrepetition of Derivations). Assume that processFact considers two
facts f1 and f2, both of which matched the same rule and produce the same sub-
stitution σ. Let b1 and Q1 be the pivot atom and the annotated query returned
in line 9 when f1 is processed, and let b2 and Q2 be defined analogously. Thus,
b1σ = f1 and b2σ = f2. Since each fact is processed only once, atoms b1 and b2



Distributed Datalog Materialisation 23

are distinct. Now w.l.o.g. let us assume that b1 occurs before b2 in the body of the
rule; thus, the atom corresponding to b2 in Q1 is annotated with ≤, and the atom
corresponding to b1 in Q2 is annotated with <. But then, f2 is not matched by
Q1 if T (f1) < T (f2) holds, and f1 is not matched by Q2 if T (f1) ≥ T (f2) holds,
which contradicts our assumption that the algorithm repeats inferences. ut


