
Limit Datalog:
A Declarative Query Language for Data Analysis

Bernardo Cuenca Grau
University of Oxford

Ian Horrocks
University of Oxford

Mark Kaminski
University of Oxford

Egor V. Kostylev
University of Oxford

Boris Motik
University of Oxford

ABSTRACT
Motivated by applications in declarative data analysis,
we study DatalogZ—an extension of Datalog with strat-
ified negation and arithmetics over integers. Reasoning
in this language is undecidable, so we present a frag-
ment, called limit DatalogZ, that is powerful enough
to naturally capture many important data analysis tasks.
In limit DatalogZ, all intensional predicates with a nu-
meric argument are limit predicates that keep only the
maximal or minimal bounds on numeric values. Rea-
soning in limit DatalogZ is decidable if multiplication
is used in a way that satisfies our linearity condition.
Moreover, fact entailment in limit-linear DatalogZ is
∆EXP

2 -complete in combined and ∆P
2 -complete in data

complexity, and it drops to coNEXP and coNP, respec-
tively, if only (semi-)positive programs are considered.
We also propose an additional stability requirement, for
which the complexity drops to EXP and P, matching the
bounds for usual Datalog. Limit DatalogZ thus provides
us with a unified logical framework for declarative data
analysis and can be used as a basis for understanding the
expressive power of the key data analysis constructs.

1. INTRODUCTION
Analysing complex datasets is a hot topic in infor-

mation systems. The term ‘data analysis’ covers a
broad range of tasks such as data aggregation, prop-
erty verification, and query answering. Such tasks
are usually realised in practice using imperative pro-
gramming languages. However, there has recently
been considerable interest in declarative solutions,
where the definition of the task is clearly separated
from its implementation [1, 18, 25, 26, 29]. The
main idea is that users should describe what the
desired output is, rather than how to compute it.
For example, instead of computing shortest paths
in a graph using a concrete algorithm, one first de-
scribes what a path length is and then selects the
paths of minimum length. Such a specification is in-

dependent of evaluation details, allowing analysts to
focus on their task at hand. An evaluation strategy
can be selected independently, typically by reusing
efficient general algorithms ‘for free’.

An essential ingredient of declarative data analy-
sis is a suitable logic-based language for represent-
ing the relevant analysis tasks. Datalog [8] is a
prime candidate due to its support for recursion,
which is needed to express common analysis prob-
lems such as shortest path. However, in addition to
standard features of Datalog, even basic data anal-
ysis tasks often require integer arithmetic or aggre-
gation to capture quantitative aspects of data (e.g.,
the length of a shortest path). Research on extend-
ing recursive rule languages with means for captur-
ing numeric computations dates back to the ’90s [3,
6, 12, 16, 20, 22, 28], and is currently experiencing
a revival [11, 19, 31]. This large body of work, how-
ever, focuses primarily on integrating recursion with
arithmetic and aggregation in a coherent seman-
tic framework, where technical difficulties arise due
to nonmonotonicity. Surprisingly, little is known
about the computational properties of languages in-
tegrating recursion with arithmetic, other than the
fact that a straightforward combination is undecid-
able [8]. This result applies also to the languages
of existing Datalog-based tools such as BOOM [1],
DeALS [30], LogicBlox [2], Myria [29], SociaLite [25],
Overlog [17], Dyna [9], and Yedalog [4].

The aim of this article is to lay the foundation for
Datalog-based declarative data analysis by develop-
ing new extensions of Datalog that are powerful and
flexible enough to naturally capture many impor-
tant analysis tasks, and that yet exhibit favourable
computational properties of reasoning. These lan-
guages can provide a formal basis for the develop-
ment of reasoning engines that support complex an-
alytical tasks and provide correctness, robustness,
scalability, and extensibility guarantees. They can

also serve as a unified logical framework providing a
basis for understanding the expressive power of the
key data analysis constructs.

We take as a starting point DatalogZ—a well-
known extension of Datalog with stratified negation
as failure, integer arithmetic, and comparisons. Af-
ter reviewing basic definitions in Section 2, in Sec-
tion 3.1 we present limit DatalogZ, which can be
equivalently seen as either a semantic or a syntactic
restriction of DatalogZ. In limit DatalogZ, all inten-
sional predicates with numeric arguments are limit
predicates that keep maximal or minimal bounds on
the numeric value for each tuple of the other argu-
ments. For example, if we encode a directed graph
with edge lengths using a ternary predicate E , then
Rules (1) and (2), where dst is a min limit predi-
cate, compute the length of a shortest path from a
source node as to each node in the graph.

→ dst(as , 0) (1)

dst(x,m) ∧ E (x, y, n)→ dst(y,m+ n) (2)

Rule (2) intuitively says that, if x is reachable from
as with length at most m and (x, y) is an edge of
length n, then y is reachable from as with length
at most m+ n. If these rules and a dataset entail
dst(a, `), then the length of a shortest path from
as to a is at most `; thus, dst(a, k) holds for each
k ≥ ` since the length of a shortest path is also at
most k. This is different from ordinary DatalogZ,
where dst(a, `) and dst(a, k) are not semantically
connected. In Section 3.2, we show that fact entail-
ment remains undecidable for limit DatalogZ pro-
grams. To ensure decidability, we introduce limit-
linear DatalogZ, which disallows multiplication of
numeric variables that are used in the same stra-
tum. In Section 3.3, we present several examples
that show how limit-linear DatalogZ can capture
many practically relevant data analysis tasks.

In Section 4, we establish decidability of fact en-
tailment for limit-linear DatalogZ and design worst-
case optimal algorithms for positive (i.e., negation-
free), semi-positive (i.e., with negation only in front
of extensional atoms), and arbitrary (i.e., with strat-
ified negation) limit-linear programs. Our results
are obtained by a reduction to the evaluation prob-
lem for sentences of a specific shape in Presburger
arithmetic. In particular, in Section 4.1 we first de-
sign a fact entailment algorithm for positive limit-
linear programs with coNEXP and coNP upper com-
plexity bounds in combined and data complexity,
respectively, and then show that these bounds are
worst-case optimal. In Section 4.2, we first show
that fact entailment for semi-positive programs can
be reduced in polynomial time to the positive case

and then design a fact entailment algorithm for ar-
bitrary limit-linear programs that materialises the
input stratum by stratum, by relying at each stage
on an oracle computing the materialisation of a
semi-positive program corresponding to the previ-
ous strata. This algorithm provides ∆EXP

2 and ∆P
2

upper complexity bounds, and we show that these
bounds are also worst-case optimal.

The results of Section 4 establish intractability of
reasoning over limit-linear programs. In Section 5,
we identify fragments of our language for which rea-
soning is tractable in data complexity, and which
are therefore well-suited for data-intensive applica-
tions. In particular, using the idea of cyclic depen-
dency detection, in Section 5.1 we introduce sta-
ble programs that allow reasoning to become EXP-
complete in combined complexity and P-complete
in data complexity (i.e., no harder than for ordi-
nary Datalog). Stability, however, is a semantic
condition that is hard to check; thus, in Section 5.2,
we identify a syntactic type-consistency condition,
which implies stability and can be easily checked
rule by rule. We then argue that all analysis tasks
discussed in our examples can be captured using
type-consistent DatalogZ programs.

Finally, in Section 6, we compare our language
with the formalisms underpinning several existing
rule-based systems for data analysis.

This paper summarises the results reported in
two conference publications [14, 15], and we refer
to them for further details.

2. DATALOGZ

We first recapitulate the well-known definition of
Datalog with stratified negation and arithmetic over
the set of integers Z, which we call DatalogZ. Our
formalism is standard and closely related to con-
straint logic programming (CLP) over the structure
(Z,≤, <,+,−,×, 0,±1,±2, . . .) [7, 8].

We assume countably infinite and mutually dis-
joint sets of objects, object variables, numeric vari-
ables, and predicates. Each predicate has a nonneg-
ative integer arity, and each position of a predicate
is of object or numeric sort. We call predicates ≤
and < with two numeric positions comparison pred-
icates, and we call all remaining predicates stan-
dard. An object term is an object or an object vari-
able. A numeric term is an integer, a numeric vari-
able, or an expression of the form s1 + s2, s1 − s2 or
s1 × s2, where s1 and s2 are numeric terms, and +,
− and × are the usual arithmetic functions. A con-
stant is an object or an integer. A standard atom is
an expression of the form A(t1, . . . , tv), where A is a
standard predicate of arity v and each ti is a term of

the sort of position i in A. A comparison atom is an
expression of the form (s1 ≤ s2) or (s1 < s2), where
s1 and s2 are numeric terms. We use (s1 ≥ s2) for
(s2 ≤ s1), (s1

.
= s2) for (s1 ≤ s2) ∧ (s2 ≤ s1), and

so on. A positive literal is a standard or a compar-
ison atom, a negative literal is an expression of the
form notα for α a standard atom, and a literal is a
positive or a negative literal.

A rule ρ is of the form ϕ → α, where the head
α of ρ is a standard atom and the body ϕ of ρ is a
conjunction of literals. We consider only safe rules,
where each variable occurs in a positive body lit-
eral. A fact is a rule with the empty body and in
which all terms are constants (i.e., it mentions nei-
ther variables nor arithmetic functions); we usually
omit ‘→’ in facts. A dataset is a finite set of facts.

We use the usual stratification condition [8] to en-
sure that negation is ‘well-behaved’. A finite set P
of rules is stratifiable if it can be partitioned into dis-
joint subsets P[1], . . . ,P[h] called strata such that,
for each i ∈ [1, h], each predicate occurring in P[i]
does not occur in the head of a rule in any P[j]
with j > i, and each predicate occurring in a nega-
tive body literal of a rule in P[i] does not also occur
in the head of a rule in P[i]. When such a stratifi-
cation exists, we say that P admits h strata.

A (DatalogZ) program P is a finite stratifiable
set of rules. A standard predicate A is intensional
(IDB) in P if it occurs in P in the head of a rule that
is not a fact; otherwise, A is extensional (EDB) in
P. Program P is positive if it does not use negative
literals (so P admits a single stratum), and it is
semi-positive if the predicate of each negative literal
is EDB in P (thus, P admits two strata).

We discuss the semantics of DatalogZ only infor-
mally as it is the same as for usual Datalog with
stratified negation [8]. An interpretation I is a (not
necessarily finite) set of facts. If all the rules of a
program P are satisfied in I (under the usual se-
mantics of first-order logic with integer arithmetic,
assuming that all variables in rules are universally
quantified), then I is a model of P and we write
I |= P. Since P is stratified, there exists a unique
modelM(P) of P that is the smallest with respect
to set inclusion, which we call the materialisation of
P. This name is justified by the fact thatM(P) can
be constructed by iteratively applying the rules of
P stratum by stratum. Specifically, to apply a rule
ρ to an interpretation I, we evaluate the body of ρ
as a query over I, and, for each query answer, we in-
stantiate the head of ρ and add the resulting fact to
I. Then, we can compute M(P) bottom-up as fol-
lows: after initialising M(P) by the empty set, we
consider the strata of P one by one so that, for each

i in the increasing order, we first apply the rules of
the stratum P[i] to M(P) as long as possible (i.e.,
until no new facts can be derived) and then move
on to the next stratum P[i+ 1]. Program P entails
a fact γ, written P |= γ, if γ ∈M(P) holds. Given
such P and γ, checking whether P |= γ holds is a
key problem in Datalog and DatalogZ applications,
and it is the main subject of this paper.

If program P does not use arithmetic functions,
then such construction ofM(P) always terminates,
and this procedure is used for checking fact entail-
ment in many practical Datalog engines. This, how-
ever, no longer holds if P uses arithmetic.

Example 2.1. Let P be a DatalogZ program con-
taining a fact B(0) and rule B(m)→ B(m+ 1),
where predicate B has a single numeric position.
Applying P iteratively derives B(1), B(2), . . . with-
out stopping. As a result, the materialisationM(P)
contains B(k) for each k ≥ 0 and is thus infinite. �

Despite Example 2.1, the construction ofM(P) is
still well defined if we consider the possibly infinite
‘limit’ of rule application for each P[i]. However,
such a ‘computation’ of M(P) does not give us an
algorithm for checking fact entailment in DatalogZ
with full arithmetic. Moreover, one can exploit the
fact that M(P) can be infinite to show that check-
ing fact entailment is undecidable even for posi-
tive programs without multiplication and subtrac-
tion that use standard predicates with at most one
numeric position [8, 14]. Our goal is thus to identify
restrictions that, on the one hand, provide us with
languages rich enough to capture interesting data
analysis problems and, on the other hand, support
decidable or even tractable fact entailment.

3. LIMIT-LINEAR DATALOGZ

In this section, we first introduce limit DatalogZ,
which can be seen as either a semantic or a syntactic
restriction of DatalogZ. To overcome the undecid-
ability of entailment, we then restrict the use of mul-
tiplication and thus arrive to limit-linear programs.
Finally, we present several application examples.

3.1 Limit Programs
As illustrated in Example 2.1, one of the main

problems in DatalogZ is that the materialisation of
a program can be infinite. Towards a decidable frag-
ment of DatalogZ, we first introduce limit programs.
As we shall see, the materialisations of such pro-
grams can be represented using finite structures.

Definition 3.1. A predicate is object if it has
only object positions, and it is numeric if its last

position is numeric and all its other positions are
object; moreover, each numeric predicate is either
exact or limit, and each limit predicate is either min
or max. A limit (DatalogZ) program is a program
that uses only object and numeric predicates, and
where all exact predicates are EDB.

The notions in Definition 3.1 transfer to atoms
and literals in the obvious way; for example, a stan-
dard atom is max if its predicate is max.

The intuition behind limit predicates is that they
keep only the upper, in case of max, or only the
lower, in case of min, bounds on the numeric values
for each tuple of object arguments. For example, as-
sume that a program P consists only of facts C(a, 5)
and C(a, 7), where C is a numeric predicate and a
is an object. If P is an ordinary DatalogZ program,
then the materialisationM(P) coincides with P. If,
however, P is limit and C is max, then the seman-
tics of limit DatalogZ ensures that every model of P
contains the fact C(a, k) for each k ≤ 7, and more-
over M(P) consists precisely of these facts. Thus,
7 is the limit value of C on a inM(P), and we can
finitely represent M(P) as just C(a, 7).

The semantics of a limit program P is defined
model theoretically by considering only limit-closed
interpretations—that is, interpretations I that, for
each fact C(a, `) ∈ I with C a max predicate (in
P), contain C(a, k) for each k ≤ `; and analogously
for min predicates. Alternatively, the semantics of
limit predicates can be axiomatised in DatalogZ by
extending the program with Rule (3) for each max
predicate C and analogously for min predicates.

C(x,m) ∧ (n ≤ m)→ C(x, n) (3)

We introduce a useful syntactic shortcut: for C
a limit predicate, t a tuple of object terms of ap-
propriate size, and s a numeric term, the least up-
per bound (LUB) expression dC(t, s)e abbreviates
C(t, s) ∧ notC(t, s+ k), where k = 1 if C is max
and k = −1 if C is min. Since LUB expressions
contain negative literals, dC(t, s)e can be used in a
stratum P[i] of a limit program P only if C does
not occur in a rule head in P[j] for each j ≥ i.

The following example illustrates the intuitions
of the definitions we presented thus far.

Example 3.2. Let P be the program containing
Rules (1) and (2) from Section 1, and the facts that
describe a directed graph with edge lengths using
predicate E. When computing the lengths of the
shortest paths from as, we need not remember the
length of each path from as: it suffices to keep just
the lengths of the shortest paths found so far. Thus,
we can make dst a min predicate, which is tanta-

mount to extending P with the following rule.

dst(x,m) ∧ (m ≤ n)→ dst(x, n)

As a consequence of this change, a fact dst(a, `)
follows from P if and only if the distance from the
source node as to a is at most `; hence, each dst(a, k)
with k ≥ ` then follows as well. Note that only dst
is a limit predicate: predicate E is EDB and so it
can be exact, which is in fact necessary to correctly
encode the graph structure. Finally, using an LUB
expression we can query the exact length of a short-
est path: P entails ddst(a, `)e if and only if ` is the
exact length from as to a. �

We now discuss the technical challenges of deal-
ing with limit predicates. First, note that any limit-
closed interpretation containing a fact over a limit
predicate is infinite. In particular, the materiali-
sation of the program from Example 2.1 does not
change even if we make B a min predicate. A key
insight is that the interpretation of a limit predicate
is ‘contiguous’ for each tuple of object arguments;
hence, instead of keeping all of these facts, we can
remember only the limit values. Moreover, the limit
value may not exist; for example, if we make B a
max predicate in Example 2.1, thenM(P) contains
B(k) for each integer k. However, we can represent
such cases using a special symbol ∞. This moti-
vates the following definition.

Definition 3.3. A pseudofact is either a fact or
an expression of the form C(a,∞) for C a limit
predicate and a a tuple of objects. A pseudointer-
pretation is a set J of pseudofacts such that `1 = `2
for all limit pseudofacts C(a, `1) and C(a, `2) in J .

We stress an important point of Definition 3.3.
Intuitively, pseudofacts represent limit values, so
two different pseudofacts for the same predicate and
object arguments should not appear in any pseu-
dointerpretation together; for example, a pseudoin-
terpretation for the program in Example 3.2 can
contain either dst(a, 5) or dst(a, 7), but never both.
This, however, leads us to an important observa-
tion: a pseudointerpretation is finite whenever the
numbers of predicates and object constants are fi-
nite. This property of pseudointerpretations is es-
sential for our decidability results in Section 4.

Moreover, it is easy to see that limit-closed inter-
pretations and pseudointerpretations naturally cor-
respond to each other. For example, to convert a
pseudointerpretation J to a limit-closed interpreta-
tion I, we replace each max (pseudo)fact C(a, `) in
J with ` ∈ Z by all facts C(a, k) with k ≤ `, each
such min fact by all C(a, k) with k ≥ `, and each
limit pseudofact C(a,∞) by all C(a, k) with k ∈ Z.

Conversion in the other direction can be done in a
similar way. This allows us to transfer all defini-
tions and notations for limit-closed interpretations
to pseudointerpretations; for example, a pseudoint-
erpretation J entails a fact γ if the corresponding
limit-closed interpretation I entails γ, J is a pseu-
domodel of a limit program P if I |= P, and the
pseudomaterialisation N (P) is the pseudointerpre-
tation corresponding to the materialisation M(P).

Finally, we observe that each limit program can
be easily rewritten into an equivalent homogeneous
program that uses only max (or only min) predi-
cates. This can be done by replacing all min predi-
cates with fresh max predicates of the same arities
and negating the corresponding numeric arguments
in atoms with the replaced predicates.

3.2 Limit-Linear Programs
The ability to finitely represent materialisations

does not, however, ensure decidability.

Theorem 3.4. The fact entailment problem for
positive limit programs is undecidable.

Theorem 3.4 is due to the fact that limit programs
allow multiplication of numeric variables, which we
use to reduce the well-known undecidable problem
of solving Diophantine equations (i.e., finding inte-
ger roots of polynomials) to fact entailment. This
motivates the following linearity restriction.

Definition 3.5. A numeric variable m is guard-
ed in a rule if it occurs in the rule body in either
a function-free positive exact literal or an LUB ex-
pression of the form dC(t,m)e. A rule or program is
limit-linear (LL-) if, in each multiplication, at most
one argument mentions an unguarded variable.

Intuitively, a guarded variable m in a rule of an
LL-program P can be matched only to finitely many
integers during the evaluation of P. To see this, first
note that all exact predicates are EDB in P; thus,
if m is guarded because it occurs in a function-free
positive literal over an exact predicate, then m can
be matched only to facts explicitly mentioned in
P. Second, if m is guarded because it occurs in an
LUB expression dC(t,m)e, then variable m can be
matched to the limit value of C for each valuation
of t; moreover, since dC(t,m)e abbreviates a con-
junction containing notC(t,m+ k) for k = ±1, the
limit values for C are fully determined by the strata
of P preceding the stratum of the rule. Note that
atoms with other numeric terms involving m, such
as B(t,m+ 1), do not make m guarded.

To understand how guarded variables are used to
ensure decidability, consider an LL-rule ρ contain-
ing a numeric term m× n with numeric variables

m and n. Since ρ is limit-linear, at least one of
m and n must be guarded. If m is guarded, then,
by the previous paragraph, m can be matched to
finitely many integers k1, . . . , kv and hence we can
replace ρ with its v instances where the term m× n
is replaced by ki × n. We have thus reduced multi-
plication of variables m× n to linear multiplication
ki × n, which allows us to obtain decidability in Sec-
tion 4 using methods from Presburger arithmetic.

To simplify the discussion in the rest of this pa-
per, we assume that each LL-program is normalised
so that each exact atom is function-free. This can
be achieved by replacing each positive exact body
atomB(a, s) with s containing functions by the con-
junction B(a,m) ∧ (m

.
= s) with m a fresh numeric

variable. Moreover, we note that all exact atoms
in rule heads are function-free: the predicates in all
these atoms are EDB, and so all such rules are facts.

3.3 Application Examples
Despite the restrictions of Definitions 3.1 and 3.5,

LL-programs can still naturally capture many inter-
esting data analysis tasks. We next present five such
examples motivated by practical applications.

Example 3.6 (Diffusion in networks).
Consider a social network of agents connected by
the ‘follows’ relation. Agent as introduces (tweets)
a message, and each agent a retweets the message if
at least ka agents that a follows tweet this message,
where ka is a positive threshold associated with a.
We can determine which agents tweet the message
eventually using limit-linear DatalogZ as follows.
We encode the network structure as a dataset Dtw

consisting of the object fact tw(as) saying that as
introduces a message, object facts fol(a, a′) saying
that a follows a′, and exact facts thshld(a, ka) saying
that the threshold of a is ka. We also assume that
Dtw is ordered—that is, it contains facts fst(a1),
nxt(a1, a2), . . . , nxt(ac−1, ac), lst(ac) for some enu-
meration a1, . . . , ac of all objects (i.e., agents) in
Dtw . The LL-program Ptw , consisting of Rules (4)–
(8), encodes message propagation. Here, ac is an
‘accumulating’ max predicate such that ac(a, a′,m)
is true if there are at least m agents tweeting the
message among the agents that a follows and that
(inclusively) precede a′ in the dataset order.

fol(x, y′) ∧ fst(y)→ ac(x, y, 0) (4)

tw(y) ∧ fol(x, y) ∧ fst(y)→ ac(x, y, 1) (5)

ac(x, y′,m) ∧ nxt(y′, y)→ ac(x, y,m) (6)

tw(y) ∧ fol(x, y) ∧
ac(x, y′,m) ∧ nxt(y′, y)→ ac(x, y,m+ 1) (7)

thshld(x,m) ∧ ac(x, y,m)→ tw(x) (8)

Then, Ptw ∪ Dtw |= tw(a) if and only if an agent a
tweets the message according to Dtw . �

Example 3.7 (Bill of materials).
Let Dbm be a dataset describing parts needed to
manufacture an end product. Specifically, for each
part a and each subpart a′ of a, Dbm contains object
facts pt(a) and pt(a′), and an exact fact dsp(a, a′, k)
indicating that a needs k copies of a′; also, let Dbm

be ordered as in Example 3.6. The graph formed
by predicate dsp is acyclic and has positive edge
weights. Rules (9)–(14) form the LL-program Pbm .
They compute, using max predicates ac and sp, how
many copies of each subpart are used for each part
in total. Intuitively, ac(a, a′, b, k) is true if part a
contains at least k copies of subpart a′ in all direct
subparts of a that precede part b in the order.

pt(x)→ sp(x, x, 1) (9)

pt(x) ∧ pt(y) ∧ fst(z)→ ac(x, y, z, 0) (10)

dsp(x, z, n1) ∧ sp(z, y, n2) ∧
fst(z)→ac(x, y, z, n1×n2) (11)

ac(x, y, z′,m)∧nxt(z′, z)→ ac(x, y, z,m) (12)

dsp(x, z, n1) ∧ sp(z, y, n2) ∧
ac(x, y, z′,m)∧nxt(z′, z)→ ac(x, y, z,m+n1×n2)

(13)

ac(x, y, z,m)→ sp(x, y,m) (14)

Then, Pbm ∪ Dbm |= sp(a, a′, k) if and only if a
contains at least k copies of a′. Program Pbm is
limit-linear since n1 occurs in positive exact literals
over dsp and is thus guarded in (11) and (13). �

Example 3.8 (Counting paths).
Limit-linear DatalogZ can also count the paths be-
tween pairs of nodes in a directed acyclic graph. We
encode such a graph in the obvious way as a dataset
Dcp that uses a unary object predicate nd for nodes
and a binary object predicate E for edges; more-
over, Dcp is ordered as before. The LL-program
Pcp , consisting of Rules (15)–(20) with max pred-
icates pn and ac, counts the paths. Intuitively,
ac(a, a′, b, k) is true if the sum of the numbers of
paths from each node b′ preceding node b (accord-
ing to the dataset order) to node a′ for which there
exists an edge from node a to b′ is at least k.

nd(x)→ pn(x, x, 1) (15)

nd(x) ∧ nd(y) ∧ fst(z)→ ac(x, y, z, 0) (16)

E (x, z) ∧ pn(z, y, n) ∧ fst(z)→ ac(x, y, z, n) (17)

ac(x, y, z′,m) ∧ nxt(z′, z)→ ac(x, y, z,m) (18)

E (x, z) ∧ pn(z, y, n) ∧
ac(x, y, z′,m) ∧ nxt(z′, z)→ ac(x, y, z,m+ n)

(19)

ac(x, y, z,m)→ pn(x, y,m) (20)

Then, Pcp ∪ Dcp |= pn(a, a′, k) if and only if there
are at least k paths from node a to node a′. �

All examples provided thus far use positive LL-
programs. In contrast, the following two examples
demonstrate the use of stratified negation.

Example 3.9 (Shortest paths).
We modify the program from Section 1 to compute
not just the shortest distance, but also the actual
paths from a given source node as to a given target
node at in a directed graph with weighted edges.
We assume that a dataset Dcsp encodes a directed
graph with positive edge weights using a ternary ex-
act predicate E as before, and that it identifies the
source and target nodes using object facts src(as)
and tgt(at), respectively. The LL-program Pcsp ,
consisting of Rule (2) and Rules (21)–(23), com-
putes a directed acyclic graph G with source as and
target at , encoded using a binary object predicate
spE , such that every maximal path in G is a short-
est path from as to at in the original graph.

src(x)→ dst(x, 0) (21)

ddst(x,m)e ∧ E (x, y, n) ∧
ddst(y,m+ n)e ∧ tgt(y)→ spE (x, y) (22)

ddst(x,m)e ∧ E (x, y, n) ∧
ddst(y,m+ n)e ∧ spE (y, z)→ spE (x, y) (23)

The first stratum consists of Rules (2) and (21),
and computes the length of a shortest path from as
to each other node using the min predicate dst ; in
particular, we have that Pcsp ∪ Dcsp |= ddst(a, k)e
if and only if k is the length of a shortest path from
as to a. Then, the second stratum, consisting of
Rules (22) and (23), computes predicate spE such
that Pcsp ∪Dcsp |= spE (a, a′) if the edge (a, a′) is a
part of a shortest path from as to at . �

Example 3.10 (Closeness centrality).
The closeness centrality of a node in a strongly con-
nected directed graph G with weighted edges is a
measure of how central the node is in the graph [23].
Variants of this measure are useful, for example,
for the analysis of market potential. The closeness
centrality of a node a is 1

/∑
a′ node in G Ω(a, a′),

where Ω(a, a′) is the length of a shortest path from
a to a′; the sum in the denominator is often called
the farness centrality of a. We next present an
LL-program Pcc that identifies a node of maximal
closeness centrality in a strongly connected directed
graph with weighted edges. We encode such a graph
as an ordered datasetDcc using a unary object pred-
icate nd and a ternary exact predicate E . Program

Pcc consists of Rules (24)–(32), where dst , fns and
fns ′ are min, and cntr and cntr ′ are object.

nd(x)→ dst(x, x, 0) (24)

dst(x, y,m) ∧ E (y, z, n)→ dst(x, z,m+n) (25)

nd(x)∧fst(y)∧dst(x, y, n)→ fns ′(x, y, n) (26)

fns ′(x, y,m)∧nxt(y, z) ∧
dst(x, z, n)→ fns ′(x, z,m+n) (27)

fns ′(x, y, n) ∧ lst(y)→ fns(x, n) (28)

fst(x)→ cntr ′(x, x) (29)

cntr ′(x, z) ∧ nxt(x, y) ∧ dfns(z,m)e ∧
dfns(y, n)e ∧ (n < m)→ cntr ′(y, y) (30)

cntr ′(x, z) ∧ nxt(x, y) ∧ dfns(z,m)e ∧
dfns(y, n)e ∧ (m ≤ n)→ cntr ′(y, z) (31)

cntr ′(x, z) ∧ lst(x)→ cntr(z) (32)

The first stratum consists of Rules (24)–(28); Rules
(24) and (25) compute the distance between any two
nodes, and Rules (26)–(28) then compute the far-
ness centrality of each node based on the aforemen-
tioned distances. In the second stratum, (29)–(32),
Pcc uses negation (hidden inside the LUB expres-
sions) to compute a node of minimal farness cen-
trality (and hence of maximal closeness centrality),
which is recorded using the cntr predicate. �

4. COMPLEXITY OF LL-PROGRAMS
We now discuss the complexity of fact entail-

ment in limit-linear DatalogZ. We consider com-
bined complexity, where the input consists of an LL-
program P and a fact γ, and data complexity, where
we assume that P = P ′ ∪ D for a dataset D and a
fixed LL-program P ′ (i.e., only D and γ are given
as input). We assume binary coding of integers and
write ‖P‖ for the size of the representation of a pro-
gram P; however, our results also hold for unary
coding. We show that, for the full language, the
problem is complete for ∆EXP

2 = EXPNP in combined
and for ∆P

2 = PNP in data complexity, while, for
the positive and semi-positive fragments, it is com-
plete for coNEXP and for coNP, respectively. Thus,
(semi-)positive LL-programs have the same com-
plexity as answer-set programming [24], and are one
level above the usual (semi-)positive Datalog, which
is EXP- and P-complete [8]. Moreover, in terms of
complexity, LL-programs are between the usual and
disjunctive answer-set programming, where the lat-
ter is complete for ΠEXP

2 and ΠP
2 [10].

4.1 Positive Fragment
We first consider the problem of checking entail-

ment P |= γ of a fact γ by a positive LL-program

P. Reasoning algorithms for usual Datalog often
start with computing the program grounding—that
is, replacing all variables with constants in the pro-
gram in all possible ways. This variable elimination
simplifies rule application, but with a cost of an
exponential blow-up (in the size of the program).
Our algorithms use a similar preprocessing step.
However, grounding in a usual way would require
replacing each numeric variable in an LL-program
with every integer, which would result in an infi-
nite grounding. To avoid working with infinite pro-
grams, we need to adapt the notion of grounding.

Definition 4.1. An LL-rule or LL-program is
object-and-guarded-ground (OG-ground) if it has
neither object nor guarded numeric variables. The
canonical OG-grounding of an LL-program P is the
OG-ground program G(P) that contains the OG-
ground instance ρσ for each rule ρ ∈ P and each
substitution σ mapping all object and guarded nu-
meric variables of ρ to constants in P.

To produce G(P) for a positive LL-program P,
we replace, in all possible ways, all object variables
in P with objects in P and all guarded numeric
variables with integers in P. The discussion in Sec-
tion 3.2 explains why considering only the integers
from P suffices. It is easy to see that P and G(P)
are equivalent in the sense thatM(P) =M(G(P)),
so P |= γ if and only if G(P) |= γ for each fact γ.

Now we show how to apply a positive OG-ground
rule ρ to a pseudointerpretation J . A minor prob-
lem is that, if we derive a fact C(a, `) with C max
and we already have a fact C(a, k) with k < `, then
we must remove C(a, k), and similarly if C is min.
More importantly, identifying the substitutions that
match the body of ρ to J is considerably more com-
plex than for ordinary interpretations. For exam-
ple, the body of the rule C1(m) ∧ C2(m)→ C(m)
where C1 and C2 are max predicates does not match
to the pseudointerpretation {C1(7), C2(5)} directly,
but the rule is applicable and it derives C(5). We
address this difficulty by reducing the problem of a
positive OG-ground rule application to integer lin-
ear optimisation. Specifically, to match ρ to J , we
can transform ρ into a system of integer linear in-
equalities ψ(ρ,J) whose solutions encode exactly
the substitutions obtained by matching of the body
of ρ to (the limit-closed interpretation correspond-
ing to) J . Thus, to compute the consequences of ρ
with a limit atom in the head, we just need the solu-
tion that optimises the numeric term in this atom.

Unfortunately, as shown in Example 2.1, itera-
tive rule application may not terminate even for
OG-ground programs. So, while one can formally

describe a process that constructs the (finite) pseu-
domaterialisation by iteratively applying rules, this
process may be infinite and thus does not provide
us with a decision procedure for fact entailment.

We next discuss a key insight about positive LL-
programs, which we use to bound the magnitudes
of integers in pseudomaterialisations. We exploit
a connection with Presburger arithmetic—a theory
of first-order formulas with numeric variables (i.e.,
all variables range over integers) where all atoms
are comparisons of the form (s1 ≤ s2) or (s1 < s2)
(i.e., as in DatalogZ) with multiplication-free nu-
meric terms s1 and s2. Due to the lack of multipli-
cation, reasoning in this theory is decidable.

Now, to check entailment P |= γ for a positive
LL-program P and a fact γ, we encode P as a Pres-
burger formula ξP so that each pseudomodel of P
corresponds to a valuation of the free variables of
ξP that makes ξP true. We analogously encode γ as
a formula ξγ , and we thus reduce P |= γ to check-
ing whether the Presburger sentence ∀v. (ξP → ξγ),
where v are the free variables of ξP and ξγ , is true.
To illustrate a simplified version of our encoding,
consider an LL-program P consisting of a fact C(2)
and a rule C(m)→ D(m+ 2), and a fact γ = D(3),
where both C and D are max. We encode the val-
ues of C and D in a pseudomodel of P using vari-
ables vC and vD, respectively. Fact C(2) says ‘the
value of C in each pseudomodel is at least 2’, so
we encode it as ξ1 = (2 ≤ vC). We also encode the
rule as ξ2 = ∀m. (m ≤ vC)→ (m+ 2 ≤ vD), and γ
as ξγ = (3 ≤ vD). Clearly, P |= γ if and only if
∀vC∀vD. (ξP → ξγ) is true for ξP = ξ1 ∧ ξ2. Follow-
ing this idea, our encoding uses additional variables
to represent undefined and unbounded values.

Thus, entailment P |= γ for a positive LL-prog-
ram P and fact γ is decidable since Presburger arith-
metic is decidable; however, the complexity bounds
derived from the standard reasoning algorithms for
Presburger arithmetic are not optimal. Instead, by
analysing the structure of our encoding and ap-
plying the results by Chistikov and Haase [5], we
show that ∀v. (ξP → ξγ) is true if and only if it
is true when the sentence is evaluated over inte-
gers with magnitudes at most double exponential in
‖P‖+ ‖γ‖, and at most exponential in ‖D‖+ ‖γ‖,
where D is the dataset part of P.1 So, each integer
can be written in binary using number of bits expo-
nential in ‖P‖+ ‖γ‖ and polynomial in ‖D‖+ ‖γ‖.

Since the valuations of the free variables of ξP en-
code the pseudomodels of P, nonentailment P 6|= γ
is witnessed by a pseudomodel J of P where the

1We thank Christoph Haase for providing the proof of
a key lemma for this statement.

integers are bounded in the same way (note that
∞ is not an integer so J can contain ∞). Thus,
we can decide P 6|= γ by first guessing a pseudoin-
terpretation J over the signature of P with inte-
gers bounded as explained, and then checking that
J |= G(P) and J 6|= γ. Overall, ‖J ‖ is at most ex-
ponential in ‖P‖ + ‖γ‖ and at most polynomial in
‖D‖+‖γ‖. Moreover, to check J |= G(P), we apply
the rules of G(P) to J and verify that no new fact is
derived, which requires solving integer optimisation
problems. Thus, our algorithm works in NEXP in
combined and in NP in data complexity.

For the matching lower data complexity bound,
we reduce the complement of the canonical NP-
complete problem SAT. Given an arbitrary propo-
sitional formula Φ with h variables, we (arbitrarily)
order all variables of Φ so we can view each vari-
able assignment σ as an integer `(σ) between 0 and
2h − 1. To decide the satisfiability of Φ, we then
can enumerate all assignments σ in the increasing
order of `(σ) until we either find a σ satisfying Φ,
or we find that σmax with `(σmax) = 2h − 1 does
not satisfy Φ. If Φ is encoded in a dataset, this enu-
meration can be simulated by a fixed positive LL-
program that stores `(σ) in the numeric argument
of a max predicate, starting with 0 and increment-
ing if and only if the current σ does not satisfy Φ.
Hence, Φ is unsatisfiable if and only if our encoding
entails a fact with a numeric argument 2h.

As required for data complexity, the program in
this reduction does not depend on input Φ. In con-
trast, this is not necessary for combined complexity,
and the same ideas can be applied to reduce the suc-
cinct version of SAT—a canonical NEXP-complete
problem [21]. We arrive to the following result.

Theorem 4.2. The fact entailment problem for
positive LL-programs is coNEXP-complete in com-
bined and coNP-complete in data complexity.

4.2 Semi-Positive and Full Fragments
We first consider semi-positive programs, where

negation can be used only over EDB predicates. We
reduce our problem to the positive case by comput-
ing the canonical OG-grounding of the given pro-
gram and ‘evaluating’ all negative literals. This idea
is captured by the following definition.

Definition 4.3. The reduct R(P) of a semi-po-
sitive LL-program P is the positive OG-program ob-
tained from G(P) by applying the following to each
rule ρ ∈ G(P) and each negative literal notα in ρ.
– Let α be an object atom. If α /∈ G(P), then delete
notα from ρ, and otherwise delete ρ.

– Let α = B(a, s) be an exact atom and consider all
integers k1 < · · · < kh such that B(a, ki) ∈ G(P)

holds for each i ∈ [1, h]. If h = 0, then delete
notα from ρ; otherwise, replace ρ by h+ 1 rules
obtained by replacing notα in ρ with (s < k1),
(ki−1 < s < ki) for i ∈ [2, h], and (kh < s).

– Let α = C(a, s) be a limit atom and consider the
set S = {` ∈ Z | C(a, `) ∈ G(P)} of integers. If
S = ∅, then delete notα from ρ; otherwise, re-
place notα in ρ with atom (maxS < s) if C is
max, and with atom (minS > s) if C is min.

By construction, M(P) =M(R(P)) for each se-
mi-positive LL-program P, so P |= γ is equivalent
to R(P) |= γ for each fact γ. Moreover, R(P) is
positive and OG-ground, and can be computed with
the same bounds as G(P). Thus, the upper bounds
of Theorem 4.2 transfer to semi-positive programs.

Theorem 4.4. The fact entailment problem for
semi-positive LL-programs is in coNEXP in com-
bined and in coNP in data complexity.

To handle arbitrary LL-programs, we first show
that the integer bound from Section 4.1 applies not
only to some pseudomodel, but also to the pseudo-
materialisation of each positive LL-program. Then,
given a fact γ and an arbitrary LL-program P with
strata P[1], . . . ,P[h], we decide P |= γ as follows.
For each i ∈ [1, h], first, we let P ′i = R(P[i] ∪ Ji−1)
(assuming J0 = ∅); then, we add to the pseudoin-
terpretation Ji each max pseudofact C(a, `) such
that P ′i |= C(a, `) and ` is either ∞ or an integer
bounded as above satisfying P ′i 6|= C(a, `+ 1); fi-
nally, we add to Ji pseudofacts of other types analo-
gously. The pseudofacts in P[i] ∪ Ji−1 can contain
symbol ∞, but Definition 4.3 generalises to such
‘programs’ without change. Clearly, Jh = N (P),
and so P |= γ if and only if Jh |= γ. A näıve com-
plexity bound of this algorithm is nonelementary,
but a fine-grained analysis (in particular, bounding
‖Ji‖) gives the upper bounds of Theorem 4.5.

For the lower bounds, we generalise the ideas of
the positive case. In particular, for data complex-
ity, we reduce the canonical ∆P

2 -complete problem
ODD-MAX-SAT, where the question is if the maxi-
mum value of `(σ) over all assignments σ satisfying
a propositional formula Φ is odd. For the combined
complexity, we use a similar reduction of the ∆EXP

2 -
complete succinct version of ODD-MAX-SAT.

Theorem 4.5. The fact entailment problem for
LL-programs is ∆EXP

2 -complete in combined and ∆P
2 -

complete in data complexity.

5. TRACTABLE FRAGMENTS
Tractability of reasoning in data complexity is im-

portant for problems involving large datasets. We

now present a stability condition on LL-programs
that brings the complexity of reasoning down to
EXP in combined and to P in data complexity, thus
matching the bounds for usual Datalog. We then
present a syntactic type-consistency condition that
ensures stability and is simple to check.

5.1 Stable LL-Programs
The fact entailment algorithm for usual Datalog

computes the materialisation iteratively, which can
be done in polynomial time in the size of data. We
now present a further restriction on LL-programs
that makes such iterative computation viable for
LL-programs. The key difficulty in doing so is to
detect when a numeric argument diverge—that is,
when it increases or decreases indefinitely. Hence,
to ensure tractability, we must be able to detect di-
vergence after polynomially many rule applications.
Example 5.1 illustrates the problem of divergence.

Example 5.1. Consider an LL-program Pst with
the following rules with max predicates C1 and C2.

C1(0) C1(m)→ C2(m) C2(m)→ C1(m+ 1)

Both C1 and C2 diverge when computing pseudo-
materialisation N (Pst) due to a cyclic dependency
between C1 and C2. The existence of such a depen-
dency, however, may not lead to divergence. Let an
LL-program P ′st be obtained from Pst by adding a
fact C(5), for C max, and replacing the second rule
by the following rule.

C1(m) ∧ C(m)→ C2(m)

While C1 and C2 still depend on each other, the
increase in C1 and C2 is bounded by an independent
value of C, so neither C1 nor C2 diverges. �

To capture these ideas formally, we first extend
Z ∪ {∞} with a new symbol ⊥, which indicates
that a fact does not hold for any integer. We also
define ⊥ < k <∞ for each k ∈ Z; ⊥+ ` = ⊥ and
∞+ ` =∞ for each ` ∈ Z ∪ {∞}; and ⊥+∞ = ⊥.

Next we formalise the notion of dependency: a
numeric variable m depends on a numeric variable
n in an OG-ground rule ρ if m = n or m occurs in
an atom in ρ with a variable that depends on n. A
numeric term s2 depends on a numeric term s1 if s2
mentions a variable depending on a variable in s1.

We next introduce a key notion of a value prop-
agation graph. Our definition is based on the sys-
tem of linear inequalitites ψ(ρ,J) from Section 4.1
whose solutions encode matches of the body of an
OG-ground rule ρ to a pseudointerpretation J . So,
if the head of ρ is a limit atom C(a, s), then ψ(ρ,J)

corresponds to an integer linear optimisation prob-
lem ψ∗(ρ,J) that optimises (i.e., maximises or min-
imises, depending on the type of C) the value of s
under ψ(ρ,J). If ψ(ρ,J) is satisfiable (i.e., ρ is ap-
plicable to J), then ψ∗(ρ,J) can either be bounded
and have an optimal integer value, or unbounded.

Definition 5.2. Given an OG-ground program
P and a pseudointerpretation J , the value propa-
gation graph of P over J is the weighted directed
graph (V,E,Ω) with the following components.
– The set of nodes V contains a node 〈Ca〉 for each

limit atom C(a, s) in a rule head in P.
– The set of edges E contains (〈C1a1〉, 〈C2a2〉) for

each rule ρ in P with satisfiable ψ(ρ,J) that pro-
duces the edge—that is, has C1(a1, s1) in the body
and C2(a2, s2) in the head where s2 depends on s1.

– The weight Ω(e) of each edge e = (〈C1a1〉, 〈C2a2〉)
in E is an element of Z ∪ {⊥,∞} defined as

Ω(e) = max{Ωρ(e) | ρ ∈ P produces e},

where Ωρ(e) is defined as follows, for ` ∈ Z ∪ {∞}
with C1(a1, `) ∈ J (which exists by applicability):
- Ωρ(e) =∞ if ψ∗(ρ,J) is unbounded,
- Ωρ(e) = ⊥ if ψ∗(ρ,J) is bounded and ` =∞,
- Ωρ(e) = (−1)d2 · k − (−1)d1 · ` if ψ∗(ρ,J) has

optimal value k and ` ∈ Z where, for i ∈ {1, 2},
di is 0 if Ci is max and 1 if Ci is min.

The weight Ω(Π) of a path Π in a value propagation
graph is the sum of the edge weights along Π; Π has
positive weight if Ω(Π) is a positive integer or ∞.

Intuitively, graph (V,E,Ω) of a OG-ground pro-
gram P over a pseudointerpretation J describes
how, for each pseudofact C1(a1, `) in J , applying
P propagates ` to other pseudofacts. For exam-
ple, every edge e = (〈C1a1〉, 〈C2a2〉) with max C1

and C2 indicates that a rule is applicable to a fact
C1(a1, `) ∈ J and that it produces C2(a2, `+ Ω(e)).

It is easy to check that the value propagation
graph increases monotonically during rule applica-
tion in the following sense: for each OG-ground pro-
gram P and pseudointerpretations J and J ′ such
that I ⊆ I ′ for the corresponding limit-closed in-
terpretations I and I ′, we always have V = V ′ and
E ⊆ E′ for the graphs (V,E,Ω) and (V ′, E′,Ω′) of
P over J and P over J ′, respectively. This guar-
antees the correctness of the following definition.

Definition 5.3. An OG-ground program P is
stable if, for all pseudointerpretations J and J ′
such that I ⊆ I ′ holds for the corresponding limit-
closed interpretations I and I ′, for the value prop-
agation graphs (V,E,Ω) and (V,E′,Ω′) of P over
J and of P over J ′, respectively, and for each edge
e ∈ E, it is the case that Ω(e) ≤ Ω′(e) holds.

Intuitively, iterative rule applications never de-
crease the edge weights if a program is stable. Pro-
gram Pst in Example 5.1 is stable, while P ′st is not
stable since Ω(e) = 0 and Ω′(e) = −1 for the edge
e = (〈C1〉, 〈C2〉) in the propagation graphs (V,E,Ω)
and (V,E′,Ω′) of P ′st over the pseudointerpretations
{C1(0), C(0)} and {C1(1), C(0)}, respectively.

It can be shown that a positive-weight cycle of
a stable OG-ground program P over a pseudoint-
erpretation J guarantees divergence of numeric ar-
guments along the cycle by repeated application of
the rules of P to J . This allows us to compute the
pseudomaterialisation in a finite number of steps
by applying the rules iteratively, provided that, af-
ter each rule application, we construct the value
propagation graph for the current pseudointerpre-
tation and bump to ∞ the numeric arguments of
all pseudofacts along each positive-weight cycle. It
follows that the number of rule applications needed
to obtain such a cycle can be polynomially bounded
in the size of P, which leads to the following lemma.

Lemma 5.4. For each stable OG-ground program
P, the pseudomaterialisation N (P) can be computed
in time exponential in ‖P‖ and polynomial in ‖D‖,
where D is the dataset component of P.

Using Lemma 5.4, we can decide fact entailment
for stable OG-ground programs in EXP in combined
and in P in data complexity—that is, with the same
complexity as for usual Datalog. We next show how
to extend this result to LL-programs with negation.
We first generalise the notion of stability.

Definition 5.5. An LL-program P is stable if
it can stratified as P[1], . . . ,P[h] such that, for each
i ∈ [1, h] and for the pseudomaterialisation Ji−1
of P[1] ∪ · · · ∪ P[i− 1], the reduct R(P[i]∪Ji−1) is
stable (assuming J0 = ∅ for uniformity).

Combining Lemma 5.4 with the ideas in Theo-
rem 4.5, we obtain the following result.

Theorem 5.6. The fact entailment problem for
stable LL-programs is EXP-complete in combined
and P-complete in data complexity.

5.2 Type-Consistent Programs
Stability identifies a large class of LL-programs

for which reasoning is tractable. Unfortunately, the
condition is semantic, rather than syntactic. More-
over, it is not a local condition in the sense that it
cannot be verified by looking at each rule in isola-
tion but depends on how different rules interact. Fi-
nally, checking stability of an LL-program involves
computing the reduct of each stratum, which de-
pends on the materialisation of the preceding strata

(in fact, even checking stability of an OG-ground
program is coNP-hard). This motivates the follow-
ing sufficient condition for stability.

Definition 5.7. An mm-typing of variables of
an LL-rule partitions all unguarded numeric vari-
ables occurring in positive limit body literals of the
rule into max and min types. Given such a typing,
a numeric term is of type max if it is of the form

s+
(∑v

i=1
ki ×mi

)
−
(∑w

j=1
`j × nj

)
,

for s a numeric term not mentioning any max or
min variables, nonnegative integers v and w, each
mi a max variable with coefficient ki ≥ 1, and each
nj a min variable with coefficient `i ≥ 1. Moreover,
a numeric term is of type min if the same holds
except that each mi is min and each is nj max.

An LL-rule ρ = ϕ→ α is type-consistent if it has
a variable mm-typing with the following properties.
– Each numeric variable in each negative exact lit-

eral in ϕ is guarded.
– The numeric term of each max and each min

atom in ρ is of type max and min, respectively.
– Each comparison in ϕ has the form (s1 < s2) or

(s1 ≤ s2), for s1 of type min and s2 of type max.
– If α = C2(a2, s2) is a limit atom then, for each

positive limit literal C1(a1, s1) in ϕ with s2 de-
pending on s1, terms s1 and s2 have a common
unguarded variable that has coefficient 1 in s1 and
does not occur in any other positive limit liter-
als in ϕ, where dependency is defined as in Sec-
tion 5.1 except that only unguarded numeric vari-
ables are taken into account.

An LL-program is type-consistent if all of its rules
are type-consistent.

Type-consistency can be checked rule by rule in L,
and all programs in Section 3.3 are type-consistent.
Furthermore, the complexity results in Theorem 5.6
apply since type-consistency implies stability.

Theorem 5.8. Each type-consistent LL-program
is stable.

6. RELATED WORK
The closest formalism to limit DatalogZ is the

‘monotonic programs’ of Ross and Sagiv [22]. Their
core fragment extends usual Datalog by predicates
whose last position ranges over partially ordered
cost domains (e.g., integers ordered by ≤) with as-
sociated built-in functions. They allow only for in-
terpretations resembling our pseudointerpretations,
and their programs are required to be monotonic
in the sense that rule applications should produce
only interpretations of the appropriate form and

preserve the orders of all cost domains. Unfortu-
nately, checking monotonicity is undecidable, and
moreover monotonicity does not imply decidability
of fact entailment. Nonetheless, there is a rich com-
mon fragment of monotonic programs and limit-
linear DatalogZ that inherits the decidability, com-
plexity, and tractability of the latter.

Another related formalism is DatalogFS proposed
by Mazuran et al. [19], which extends usual Datalog
with so-called frequency support goals and provides
the formal underpinning for the DeALS system [31].
Similar to the language of Ross and Sagiv, fact en-
tailment in DatalogFS is undecidable, and no practi-
cal decidable fragment has been identified. Finding
such fragments could potentially be accomplished
by transferring some ideas from our work.

DatalogZ is also closely related to constraint logic
programming (CLP). Although a number of decid-
able CLP languages have been identified [7], none
of them allow for recursive numeric value invention,
which is an integral feature of DatalogZ necessary
to capture several examples in Section 3.3.

Finally, note that some examples from Section 3.3
implement aggregation over recursive rules. Sev-
eral attempts were made to provide a generic se-
mantics for such aggregation (including monotonic
programs and DatalogFS considered above in their
full power). However, all these attempts yield solu-
tions either for restricted classes of programs that
are subject to strong monotonicity assumptions, use
only min and max aggregate functions, or have un-
decidable fact entailment [6, 11, 12, 16, 20, 27].

7. CONCLUSION
We have presented several decidable fragments of

DatalogZ that can capture interesting data analysis
problems. For future work, we first aim to system-
atically explore the ability of DatalogZ to express
aggregate functions, which are a necessary compo-
nent of any practical data analytics formalism. Sec-
ond, we plan to extend our results to the context of
descriptive complexity [13]: we believe that the lan-
guages of semi-positive and arbitrary LL-programs
capture coNP and ∆P

2 , respectively. Another avenue
for future work is exploring practical applicability
of our algorithms and their implementation in prac-
tical declarative data analysis systems.

Acknowledgements This research is supported by
EPSRC projects MaSI3, AnaLOG, ED3 and OASIS.

8. REFERENCES
[1] P. Alvaro, T. Condie, N. Conway,

K. Elmeleegy, J. M. Hellerstein, and R. Sears.
BOOM analytics: Exploring data-centric,

declarative programming for the cloud. In
EuroSys, pages 223–236, 2010.

[2] M. Aref, B. ten Cate, T. J. Green,
B. Kimelfeld, D. Olteanu, E. Pasalic, T. L.
Veldhuizen, and G. Washburn. Design and
implementation of the LogicBlox system. In
SIGMOD, pages 1371–1382, 2015.

[3] C. Beeri, S. A. Naqvi, O. Shmueli, and
S. Tsur. Set constructors in a logic database
language. J. Log. Pr., 10(3&4):181–232, 1991.

[4] B. Chin, D. von Dincklage, V. Ercegovac,
P. Hawkins, M. S. Miller, F. J. Och,
C. Olston, and F. Pereira. Yedalog: Exploring
knowledge at scale. In SNAPL, pages 63–78,
2015.

[5] D. Chistikov and C. Haase. The taming of the
semi-linear set. In ICALP, volume 55, pages
128:1–128:13, 2016.

[6] M. P. Consens and A. O. Mendelzon. Low
complexity aggregation in GraphLog and
Datalog. Th. Comp. Sci., 116(1):95–116, 1993.

[7] J. Cox, K. McAloon, and C. Tretkoff.
Computational complexity and constraint
logic programming languages. Ann. Math.
Artif. Intell., 5(2–4):163–189, 1992.

[8] E. Dantsin, T. Eiter, G. Gottlob, and
A. Voronkov. Complexity and expressive
power of logic programming. ACM Comput.
Surv., 33(3):374–425, 2001.

[9] J. Eisner and N. W. Filardo. Dyna:
Extending datalog for modern AI. In Datalog,
pages 181–220, 2011.

[10] T. Eiter, G. Gottlob, and H. Mannila.
Disjunctive datalog. ACM Trans. Database
Syst., 22(3):364–418, 1997.

[11] W. Faber, G. Pfeifer, and N. Leone.
Semantics and complexity of recursive
aggregates in answer set programming. Artif.
Intell., 175(1):278–298, 2011.

[12] S. Ganguly, S. Greco, and C. Zaniolo.
Extrema predicates in deductive databases. J.
Comput. System Sci., 51(2):244–259, 1995.

[13] N. Immerman. Descriptive Complexity.
Springer, 1999.

[14] M. Kaminski, B. Cuenca Grau, E. V.
Kostylev, B. Motik, and I. Horrocks.
Foundations of declarative data analysis using
limit datalog programs. In IJCAI, pages
1123–1130, 2017.

[15] M. Kaminski, B. Cuenca Grau, E. V.
Kostylev, B. Motik, and I. Horrocks.
Stratified negation in limit Datalog programs.
In IJCAI, pages 1875–1881, 2018.

[16] D. B. Kemp and P. J. Stuckey. Semantics of

logic programs with aggregates. In ISLP,
pages 387–401, 1991.

[17] B. T. Loo, T. Condie, M. N. Garofalakis,
D. E. Gay, J. M. Hellerstein, P. Maniatis,
R. Ramakrishnan, T. Roscoe, and I. Stoica.
Declarative networking. Commun. ACM,
52(11):87–95, 2009.

[18] V. Markl. Breaking the chains: On declarative
data analysis and data independence in the
big data era. PVLDB, 7(13):1730–1733, 2014.

[19] M. Mazuran, E. Serra, and C. Zaniolo.
Extending the power of datalog recursion.
VLDB J., 22(4):471–493, 2013.

[20] I. S. Mumick, H. Pirahesh, and
R. Ramakrishnan. The magic of duplicates
and aggregates. In VLDB, pages 264–277,
1990.

[21] C. H. Papadimitriou and M. Yannakakis. A
note on succinct representations of graphs.
Information and Control, 71(3):181–185, 1986.

[22] K. A. Ross and Y. Sagiv. Monotonic
aggregation in deductive databases. J.
Comput. System Sci., 54(1):79–97, 1997.

[23] G. Sabidussi. The centrality index of a graph.
Psychometrika, 31(4):581–603, 1966.

[24] J. S. Schlipf. The expressive powers of the
logic programming semantics. J. Comput.
System Sci., 51(1):64–86, 1995.

[25] J. Seo, S. Guo, and M. S. Lam. SociaLite: An
efficient graph query language based on
datalog. IEEE Trans. Knowl. Data Eng.,
27(7):1824–1837, 2015.

[26] A. Shkapsky, M. Yang, M. Interlandi,
H. Chiu, T. Condie, and C. Zaniolo. Big data
analytics with datalog queries on Spark. In
SIGMOD, pages 1135–1149, 2016.

[27] S. Sudarshan and R. Ramakrishnan.
Aggregation and relevance in deductive
databases. In VLDB, pages 501–511, 1991.

[28] A. Van Gelder. The well-founded semantics of
aggregation. In PODS, pages 127–138, 1992.

[29] J. Wang, M. Balazinska, and D. Halperin.
Asynchronous and fault-tolerant recursive
datalog evaluation in shared-nothing engines.
PVLDB, 8(12):1542–1553, 2015.

[30] M. Yang, A. Shkapsky, and C. Zaniolo.
Scaling up the performance of more powerful
datalog systems on multicore machines.
VLDB J., 26(2):229–248, 2017.

[31] C. Zaniolo, M. Yang, A. Das, A. Shkapsky,
T. Condie, and M. Interlandi. Fixpoint
semantics and optimization of recursive
datalog programs with aggregates. Th. Pract.
Log. Program., 17(5-6):1048–1065, 2017.

