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Abstract

There is currently a growing interest in techniques for hiding parts of the signature
of an ontology Kh that is being reused by another ontology Kv. Towards this goal, in
this paper we propose the import-by-query framework, which makes the content of Kh

accessible through a limited query interface. If Kv reuses the symbols from Kh in a certain
restricted way, one can reason over Kv ∪ Kh by accessing only Kv and the query interface.
We map out the landscape of the import-by-query problem. In particular, we outline the
limitations of our framework and prove that certain restrictions on the expressivity of Kh

and the way in which Kv reuses symbols from Kh are strictly necessary to enable reasoning
in our setting. We also identify cases in which reasoning is possible and we present suitable
import-by-query reasoning algorithms.

1. Introduction

Ontologies—formal conceptualizations of a domain of interest—have become increasingly
important in computer science. They play a central role in many applications, such as the
Semantic Web and biomedical information systems. The most widely used ontology lan-
guages are the Web Ontology Language (OWL) (Horrocks, Patel-Schneider, & van Harme-
len, 2003) and its revision OWL 2 (Cuenca Grau, Horrocks, Motik, Parsia, Patel-Schneider,
& Sattler, 2008), which have been standardized by the World Wide Web Consortium (W3C).
The formal underpinning of the OWL family of languages is provided by description log-
ics (DLs) (Baader, Calvanese, McGuinness, Nardi, & Patel-Schneider, 2007)—knowledge
representation formalisms with well-understood computational properties.

Constructing ontologies is a labor-intensive task, so reusing (parts of) well-established
ontologies is seen as key to reducing ontology development cost. Consequently, the problem
of ontology reuse has recently received significant attention (Stuckenschmidt, Parent, &
Spaccapietra, 2009; Lutz & Wolter, 2010; Lutz, Walther, & Wolter, 2007; Cuenca Grau,
Horrocks, Kazakov, & Sattler, 2008, 2007; Doran, Tamma, & Iannone, 2007; Jiménez-Ruiz,
Cuenca Grau, Sattler, Schneider, & Berlanga Llavori, 2008).

We discuss the problems of ontology reuse by means of an example from the health-care
domain. In particular, ontologies are currently being used in several countries to describe
electronic patient records (EPR). The representation of patients’ data typically involves
ontological descriptions of human anatomy, medical conditions, drugs and treatments, and
so on. The latter domains have already been described in well-established reference ontolo-
gies, such as SNOMED-CT, GALEN, or the Foundational Model of Anatomy (FMA). In
order to save resources, increase interoperability between applications, and rely on experts’
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knowledge, these and other reference ontologies should be reused whenever possible. For
example, assume that some reference ontology Kh describes concepts such as the “ventricu-
lar septum defect”; then, one might reuse the terms from Kh in order to define an ontology
Kv of concepts such as “patients having a ventricular septum defect,” which might then be
embedded in an EPR application.

To enable ontology reuse, OWL provides an importing mechanism: an ontology Kv
can import another ontology Kh, and the result is logically equivalent to Kv ∪ Kh. OWL
reasoners deal with imports by loading both ontologies and merging their contents, thus
requiring physical access to the axioms of Kh. The vendor of Kh, however, may be reluctant
to distribute (parts of) the contents of Kh, as doing so might allow competitors to plagiarize
Kh. Moreover, Kh may contain information that is sensitive from a privacy point of view.
Finally, one may want to impose a varying cost on the reuse of different parts of Kh.

Rather than publishing the entire ontology, the vendor of Kh might want to freely
distribute the symbols that describe organs and medical conditions, but without distributing
the axioms describing these symbols. Furthermore, the vendor might want to completely
hide the sensitive information from Kh, such as the information about treatments. It should,
however, be possible to reuse the published part of Kh without affecting the ontology’s
consequences; that is, if a part of Kh is used to construct an ontology Kv, then any query
q mentioning only symbols from Kv should be answered over Kv and the respective part of
Kh in the same way as this would be done over Kv ∪ Kh. To stipulate that Kh should not
be publicly available, we call the ontology Kh hidden and, by analogy, we call Kv visible.

Motivated by such scenarios, several approaches to hiding a subset Υ of the signature of
Kh have been developed. For example, one possible approach is to publish an Υ-interpolant
ofKh—an ontology that contains no symbols from Υ and that coincides withKh on all logical
consequences formed using the symbols not in Υ (Konev, Walther, & Wolter, 2009; Wang,
Wang, Topor, Pan, & Antoniou, 2009; Wang, Wang, Topor, & Pan, 2008; Wang, Wang,
Topor, & Zhang, 2010; Wang et al., 2008; Lutz & Wolter, 2011; Nikitina, 2011). Publishing
an interpolant ensures that the sensitive information in Kh (i.e., the information about the
symbols from Kh not mentioned in the interpolant) is not exposed in any way; furthermore,
interpolants preserve all consequences of symbols not in Υ and have the additional advantage
that the developers of Kv can reason over the union of Kv and the interpolant using off-the-
shelf reasoners. The interpolation approach may, however, exhibit several drawbacks. First,
an interpolant may exist only if Kh is expressed in a relatively weak ontology language and if
it satisfies certain syntactic conditions (Konev et al., 2009). Second, although interpolants
preserve logical consequences formed using symbols not in Υ, they are not robust under
replacement (Sattler, Schneider, & Zakharyaschev, 2009)—that is, the union of Kv and an
Υ-interpolant of Kh is not guaranteed to yield the same consequences as Kh ∪ Kv for a query
q involving only symbols from Kv. Finally, an Υ-interpolant of Kh can be exponentially
larger than Kh, and it may reveal more information than what is strictly needed. We refer
the reader to Section 7 for a detailed discussion of the related work.

In this paper, we propose a novel approach to ontology reuse that addresses the problems
outlined above by making Kh accessible via a limited query interface called an oracle. The
oracle advertises a public subset Γ of the signature of Kh (e.g., all symbols describing organs
or medical conditions), and it can answer queries over Kh that are expressed in a particular
query language and that use only the symbols from Γ. Under certain assumptions, a so-

198



Reasoning over Ontologies with Hidden Content

called import-by-query algorithm can reason over Kv ∪ Kh (e.g., determine the satisfiability
of Kv ∪ Kh) by posing queries to the oracle for Kh, and without accessing any of the axioms
from Kh. Furthermore, reasoning can be performed without making the axioms of Kv
available to Kh, which is beneficial as Kv might also contain sensitive information from a
privacy point of view. Finally, our framework can be applicable even in cases when the
relevant interpolant for Kh does not exist.

In order to achieve these benefits, however, Kv must reuse the symbols from Γ only
in a syntactically restricted way, and the formal properties of import-by-query algorithms
and the specific restrictions necessary for an import-by-query algorithm to exist depend on
the oracle query language and the ontology languages used to express Kv and Kh. In this
paper, we explore the properties of import-by-query reasoning with languages ranging from
the lightweight description logic EL (Baader, Brandt, & Lutz, 2005) to the expressive logic
ALCHOIQ (Horrocks & Sattler, 2005), combined with the following types of oracles.

• Queries for concept satisfiability oracles are concepts constructed using the symbols
in Γ expressed in a particular DL; for each query, the oracle decides the satisfiability
of the query concept w.r.t. Kh.

• Queries for ABox satisfiability oracles are ABoxes constructed using the symbols in
Γ; for each query, the oracle decides the satisfiability of the query ABox w.r.t. Kh.

• Queries for ABox entailment oracles consist of an ABox and an assertion, both con-
structed using the symbols in Γ; for each query, the oracle determines whether the
assertion is entailed by Kh and the query ABox.

Concept satisfiability, ABox satisfiability, and ABox entailment have been implemented in
most state-of-the-art DL reasoners, so the above mentioned query languages seem like a
natural foundation for practical implementations of our framework.

The main contributions of this paper are as follows:

1. We present the import-by-query framework, formalize the notions of an oracle and an
import-by-query algorithm, and establish the connections between import-by-query
algorithms based on different types of oracles.

2. We explore the limitations of our framework for a wide range of description logics and
formulate precise conditions under which import-by-query algorithms fail to exist.

3. We identify sufficient conditions on the visible ontology Kv for which an import-by-
query algorithm can be obtained.

4. We present a general hypertableau-based (Motik, Shearer, & Horrocks, 2009) import-
by-query algorithm that relies on ABox satisfiability oracles and that is applicable to
Kv and Kh given in the expressive description logic ALCHIQ (Horrocks & Sattler,
1999), provided that Kv satisfies our sufficient conditions.

5. Our general algorithm, however, is unlikely to be suitable for practice due to a high
degree of nondeterminism. Therefore, we present a practical (goal-oriented) variant
that is applicable whenever Kh is expressed in a Horn DL. This algorithm can be
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readily applied to ontologies expressed in the lightweight description logic EL, but
it is not guaranteed to be computationally optimal. Therefore, we also present a
practical and computationally optimal algorithm that can be used if both Kv and Kh
are expressed in EL.

6. We establish the lower bounds on the size and the number of queries that an import-
by-query algorithm may need to ask an oracle in order to solve a reasoning task.

Our results provide flexible and useful ways for ontology designers to ensure selective
access to their ontologies, as well as a family of reasoning algorithms that provide a starting
point for implementation and optimization. Furthermore, we believe our techniques can
also be adapted to other settings, such as distributed ontology reasoning, or collaborative
ontology development scenarios in which ontology developers have restricted access to the
parts of the ontology developed by others.

2. Preliminaries

In this section, we recapitulate the description logic notation used in this paper, we present
an overview of various hypertableau reasoning algorithms for description logics (Motik et al.,
2009), and we recapitulate various notions of modular ontology reuse (Lutz, Walther, &
Wolter, 2007; Cuenca Grau, Horrocks, Kazakov, & Sattler, 2008; Konev, Lutz, Walther, &
Wolter, 2008).

2.1 Description Logics

The syntax of the description logic ALCHOIQ is defined w.r.t. pairwise-disjoint countably
infinite sets of atomic concepts NC , atomic roles NR, and named individuals NI . Set NC

contains a distinguished infinite subset NO ⊆ NC of nominal concepts (or simply nominals).
A role is either an atomic role or an inverse role R− for R an atomic role.

The set of concepts is the smallest set containing >, A, ¬C, C1 uC2, ∃R.C (existential
restriction), and ≥nR.C (cardinality restriction), for A an atomic concept, C, C1, and
C2 concepts, R a role, and n a nonnegative integer. Furthermore, ⊥, C1 t C2, ∀R.C,
and ≤nR.C are abbreviations of ¬>, ¬(¬C1 u ¬C2), and ¬(∃R.¬C), and ¬(≥n+1R.C),
respectively. We also often treat concepts of the form ∃R.C as abbreviations of ≥ 1R.C.

A concept inclusion axiom has the form C1 v C2 for C1 and C2 concepts, a concept
equivalence C1 ≡ C2 is an abbreviation for C1 v C2 and C2 v C1, and a concept definition
is a concept equivalence of the form A ≡ C with A an atomic concept. A role inclusion
axiom has the form R1 v R2 for R1 and R2 roles. A TBox axiom is either a concept
inclusion axiom or a role inclusion axiom. A TBox T is a finite set of TBox axioms. An
assertion has the form C(a), R(a, b), ¬R(a, b), a ≈ b, or a 6≈ b, for C a concept, R a role,
and a and b individuals. An ABox A is a finite set of assertions. An ABox is normalized
if it contains only assertions of the form A(a), ¬A(a), R(a, b), ¬R(a, b), and a 6≈ b, where
A is an atomic concept and R is an atomic role. An axiom is either a TBox axiom or an
assertion. A knowledge base K = T ∪ A consists of a TBox T and an ABox A.
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Table 1: Model-Theoretic Semantics of ALCHOIQ
Interpretation of Roles

(R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI}
Interpretation of Concepts

>I = 4I

(¬C)I = 4I \ CI
(C1 u C2)I = CI1 ∩ CI2

(∃R.C)I = {x | ∃y : 〈x, y〉 ∈ RI ∧ y ∈ CI}
(≥nR.C)I = {x | ]{y | 〈x, y〉 ∈ RI ∧ y ∈ CI} ≥ n}

Satisfaction of Axioms in an Interpretation

I |= C v D iff CI ⊆ DI

I |= R1 v R2 iff RI1 ⊆ RI2
I |= C(a) iff aI ∈ CI
I |= R(a, b) iff 〈aI , bI〉 ∈ RI
I |= ¬R(a, b) iff 〈aI , bI〉 /∈ RI
I |= a ≈ b iff aI = bI

I |= a 6≈ b iff aI 6= bI

A signature is a set of atomic concepts and atomic roles. For α a concept, a role, an
axiom, or a set of axioms, the signature of α, written sig(α), is the set of atomic concepts
and atomic roles occurring in α.1

The cardinality of a set S is written ]S. An interpretation I = (4I , ·I) consists of a
nonempty domain set4I and a function ·I that assigns an object aI ∈ 4I to each individual
a, a set AI ⊆ 4I to each atomic concept A such that A ∈ NO implies ]AI = 1, and a
relation RI ⊆ 4I ×4I to each atomic role R. Table 1 defines the extension of ·I to roles
and concepts, as well as the satisfaction of axioms in I. An interpretation I is a model of
K, written I |= K, if I satisfies all axioms in K; if such I exists, then K is satisfiable. A
concept C is satisfiable w.r.t. K if a model I of K exists such that CI 6= ∅.

Sometimes, nominal concepts are defined as having the form {a} for a an individual, and
such a concept is interpreted as ({a})I = {aI}; that is, a nominal concept contains precisely
the given individual. The drawback of such a definition is that it blurs the distinction
between concepts and individuals at the syntactic level. Such a distinction is important
for the import-by-query framework since our framework supports sharing concepts, but not
individuals. In this paper we thus use the above given alternative definition, where nominals
are “special” atomic concepts with a singleton interpretation. It is well known that these
two definitions are equally expressive (Baader et al., 2007).

Some of our results use a general notion of a description logic. Formally, we define a
description logic DL as a pair consisting of a set of concepts and a set of knowledge bases.
We call the elements of the former set DL-concepts and the elements of the latter set DL-
knowledge bases. Each concept in a DL-knowledge base must be a DL-concept. A DL-TBox
(resp. DL-ABox ) is a DL-knowledge base containing no assertions (resp. no TBox axioms).

1. Note that we are treating nominals as special atomic concepts (and not as individuals); hence, sig(α)
includes the nominals, but not the individuals occurring in α.
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A DL-TBox axiom (resp. DL-assertion) is a TBox axiom (resp. assertion) that occurs in
some DL-knowledge base. A description logic DL1 is a fragment of DL2 (or, conversely,
DL2 extends DL1) if each DL1-concept is a DL2-concept and each DL1-knowledge base is
a DL2-knowledge base. Since the “unqualified” notions of a concept and knowledge base
are defined for ALCHOIQ, our definitions imply that each description logic considered in
this paper is a fragment of ALCHOIQ.

Let DL1 and DL2 be description logics. We say that DL1 allows for DL2-definitions
if, for each DL1-knowledge base K, each atomic concept A, and each DL2-concept C, we
have that K ∪ {A ≡ C} is a DL1-knowledge base. Furthermore, DL1 has the finite model
property if each satisfiable DL1-knowledge base has a model with a finite domain.

The description logic ALC is obtained from ALCHOIQ by disallowing nominal concepts
(O), inverse roles (I), role inclusion axioms (H), and cardinality restrictions (Q). The
description logics between ALC and ALCHOIQ are named by appending combinations of
letters O, H, I, and Q to ALC.

The DL EL (Baader et al., 2005) (resp. FL0, see Baader et al., 2007) is obtained from
ALC by allowing only concepts of the form >, ⊥, A, C1 u C2, and ∃R.C (resp. ∀R.C) for
A and R atomic, and by allowing only assertions of the form C(a) or R(a, b), with C an
EL (resp. FL0) concept and R an atomic role. In recent years, significant effort has been
devoted to the development of DL languages with good computational properties, such as
EL, DL-Lite (Calvanese, De Giacomo, Lembo, Lenzerini, & Rosati, 2007), and Horn-SHIQ
(Hustadt, Motik, & Sattler, 2005). An ALCHIQ knowledge base is Horn if it is expressed
in the Horn-SHIQ fragment of ALCHIQ.

For an ABoxA, with G(A) we denote the graph whose nodes are precisely the individuals
occurring in A, and that contains an undirected edge between individuals a and b if and
only if a = b or both a and b occur together in an assertion in A. Individuals a and b are
connected in A if a and b are connected in G(A); furthermore, A is connected if all pairs of
individuals occurring in A are connected. An ABox A′ ⊆ A is a connected component of A
if G(A′) is a connected component of G(A).

2.2 Hypertableau Reasoning Algorithm

The hypertableau calculus by Motik et al. (2009) decides the satisfiability of an ALCHOIQ
knowledge base K. As we show in Section 4.1, the presence of nominals precludes the
existence of an import-by-query algorithm; hence, in this section we present an overview of
a simplified version of the algorithm that is applicable if K is an ALCHIQ knowledge base.

The algorithm first preprocesses K into a set of rules R—implications interpreted un-
der first-order semantics—and a normalized ABox A such that K is equisatisfiable with
R ∪ A. Preprocessing consists of three steps. First, transitivity axioms are eliminated
from K by encoding them using concept inclusions. Second, axioms are normalized and
complex concepts are replaced with atomic ones in a way similar to the structural trans-
formation for first-order logic. Third, the normalized axioms are translated into rules by
using the correspondence between description and first-order logic. We omit the details
of the preprocessing for the sake of brevity; Motik et al. (2009) present all the relevant
details. Preprocessing produces so-called HT-rules—syntactically restricted rules on which
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the hypertableau calculus is guaranteed to terminate; the precise syntactic form of HT-rules
is described in Section 2.2.1.

After preprocessing, the satisfiability ofR∪A is decided using the hypertableau calculus,
which is described in Section 2.2.2.

2.2.1 HT-Rules

Let NV be a set of variables disjoint with the set of individuals NI . An atom is an expression
of the form C(s) (a concept atom), R(s, t) (a role atom), or s ≈ t (an equality atom), where
s, t ∈ NV ∪NI , C is a concept, and R is a role. A rule is an expression of the form

U1 ∧ . . . ∧ Um → V1 ∨ . . . ∨ Vn (1)

where Ui and Vj are atoms, m ≥ 0, and n ≥ 0. Conjunction U1 ∧ . . . ∧ Um is called the body,
and disjunction V1 ∨ . . . ∨ Vn is called the head of the rule. The empty body and the empty
head are written as > and ⊥, respectively. Rules are interpreted as universally quantified
FOL implications in the usual way. A rule is Horn if it contains at most one head atom.

An HT-rule is a rule of the form∧
Ai(x) ∧

∧
Rij(x, yi) ∧

∧
Sij(yi, x) ∧

∧
Bij(yi)→∨

Ci(x) ∨
∨
R′ij(x, yi) ∨

∨
S′ij(yi, x) ∨

∨
Dij(yi) ∨

∨
yi ≈ yj

(2)

where Rij , Sij , R
′
ij , and S′ij are atomic roles; Ai, Bij , and Dij are atomic concepts; and

Ci are either atomic concepts or concepts of the form ≥nR.A or ≥nR.¬A. In addition,
each variable yi occurring in an HT-rule is required to occur in a body atom of the form
Rij(x, yi) or Sij(yi, x). Intuitively, the body and the head of HT-rules can be seen as being
star-shaped: “center variable” x represents the center of the star, and “branch variables” yi
can be connected to the center only through role atoms. Such shape ensures that satisfiable
HT-rules will always have a tree-like model—a property that can be used to explain the
good computational properties of many DLs.

As Motik et al. (2009) have shown, the preprocessing of K produces an equisatisfiable
set of HT-rules and a normalized ABox; furthermore, if K is Horn, then the resulting set
contains only Horn HT-rules. Furthermore, if certain description logic constructors are not
used in K, then R satisfies certain syntactic restrictions as discussed next.

• If K does not use cardinality restrictions, then no HT-rule % ∈ R contains an atom of
the form yi ≈ yj in the head.

• If K does not use inverse roles, then no HT-rule % ∈ R contains an atom of the form
S′ij(yi, x) in the head or an atom of the form Sij(yi, x) in the body.

• If K does not use role hierarchies, then no HT-rule % ∈ R contains a role atom in the
head.

As an example, consider the following knowledge base K and the corresponding set of
HT-rules R obtained from K.

A v ∃R.B  A(x)→ ∃R.B(x) (3)

A v ∃R.C  A(x)→ ∃R.C(x) (4)
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> v ≤ 1R.>  R(x, y1) ∧R(x, y2)→ y1 ≈ y2 (5)

B u C v D  B(x) ∧ C(x)→ D(x) (6)

∃R.D v E  R(x, y) ∧D(y)→ E(x) (7)

Note that R is a set of Horn HT-rules. Note also that K uses a cardinality restriction
≤ 1R.>, so R contains a rule with an equality atom in the head. Furthermore, K does not
use role hierarchies, so no rule in R contains a role atom in the head. Finally, K does not
use inverse roles, so each role atom occurring in the body of a rule in R contains the center
variable x in the first position and a branch variable yi in the second position.

When applied to an EL knowledge base, the transformation by Motik et al. (2009)
produces EL-rules—HT-rules of the form (8) in which C is either an atomic concept or a
concept of the form ∃R.A with A an atomic concept.

k∧
i=1

Ai(x) ∧
m∧
i=1

Ri(x, yi) ∧ mi∧
j=1

Bij(yi)

→ C(x) (8)

Note that all the rules in our previous example except for the third one (which uses equality
in the head) are EL-rules.

2.2.2 Hypertableau Calculus for HT-Rules

Given an arbitrary set of HT-rules R and a normalized ABox A, satisfiability of R∪A can
be decided using the calculus described in Definition 1.

Definition 1. Individuals. For a set of named individuals NI , the set of all individuals
NX is inductively defined as the smallest set such that NI ⊆ NX and, if x ∈ NX , then
x.i ∈ NX for each integer i. The individuals in NX \NI are unnamed. An individual x.i is
a successor of x, and x is a predecessor of x.i; descendant and ancestor are the transitive
closures of successor and predecessor, respectively.

Pairwise Anywhere Blocking. The label LA(s) of an individual s and the label
LA(s, t) of an individual pair 〈s, t〉 in an ABox A are defined as follows:

LA(s) = {A | A(s) ∈ A and A is atomic}
LA(s, t) = {R | R(s, t) ∈ A}

Let ≺ be a strict ordering on NX containing the ancestor relation. By induction on ≺, we
assign to each individual s in A a blocking status as follows.

• Individual s is directly blocked by individual t iff the following conditions hold, for s′

and t′ the predecessors of s and t, respectively:

– s and t are unnamed, t is not blocked, and t ≺ s;2

– LA(s) = LA(t) and LA(s′) = LA(t′); and

– LA(s, s′) = LA(t, t′) and LA(s′, s) = LA(t′, t).

2. When blocking is used with ALCHOIQ knowledge bases, individuals s′ and t′ are also required to be
unnamed; however, this restriction is not needed for ALCHIQ knowledge bases.
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Table 2: Hypertableau Derivation Rules
Derivation Rules for HT-rules

Hyp-rule

If 1. % ∈ R of the form (1) and
2. a mapping σ from the variables in % to the individuals in A exists where
2.1 σ(x) is not indirectly blocked for each variable x in %,
2.2 σ(Ui) ∈ A for each 1 ≤ i ≤ m, and
2.3 σ(Vj) 6∈ A for each 1 ≤ j ≤ n,

then A1 = A ∪ {⊥} if n = 0;
Aj := A ∪ {σ(Vj)} for 1 ≤ j ≤ n otherwise.

≥-rule

If 1. ≥nR.C(s) ∈ A such that s is not blocked in A and
2. no individuals u1, . . . , un in A exist such that

{ar(R, s, ui), C(ui) | 1 ≤ i ≤ n} ∪ {ui 6≈ uj | 1 ≤ i < j ≤ n} ⊆ A,
then A1 := A ∪ {ar(R, s, ti), C(ti) | 1 ≤ i ≤ n} ∪ {ti 6≈ tj | 1 ≤ i < j ≤ n}

where t1, . . . , tn are fresh successors of s.

≈-rule

If 1. s ≈ t ∈ A such that s 6= t and neither s not t is indirectly blocked
then A1 := mergeA(s→ t) if t is named or s is a descendant of t, and

A1 := mergeA(t→ s) otherwise.

⊥-rule

If 1. s 6≈ s ∈ A or {A(s),¬A(s)} ⊆ A or {R(s, t),¬R(s, t)} ⊆ A
such that neither s nor t is indirectly blocked and

2. ⊥ 6∈ A
then A1 := A ∪ {⊥}.

The ∃-rule for EL-rules

∃-rule
If ∃R.A(s) ∈ A and {R(s, aA), A(aA)} 6⊆ A
then A1 := A ∪ {R(s, aA), A(aA)}

• Individual s is indirectly blocked iff its predecessor is blocked.

• Individual s is blocked iff it is either directly or indirectly blocked.

Pruning and Merging. The ABox pruneA(s) is obtained from A by removing all as-
sertions containing a descendant of s. The ABox mergeA(s→ t) is obtained from pruneA(s)
by replacing s with t in all assertions.

Clash. An ABox A contains a clash if ⊥ ∈ A; otherwise, A is clash-free.
Derivation Rules. The derivation rules consist of the Hyp-, ≥-, ≈-, and ⊥-rule from

Table 2, which, given R and a clash-free ABox A, derive the ABoxes 〈A1, . . . ,An〉. In the
Hyp-rule, σ(U) is obtained from U by replacing each variable x with σ(x). For a role R and
individuals s and t, function ar(R, s, t) returns assertion R(s, t) if R is atomic, or assertion
S(t, s) if R is an inverse role and R = S−.

Derivation. A derivation for R and A is a pair (T, ρ) where T is a finitely branching
tree and ρ labels the nodes of T with ABoxes such that ( i) ρ(ε) = A for ε the root, and
( ii) for each node t, if a derivation rule is applicable to R and ρ(t), then t has children
t1, . . . , tn such that 〈ρ(t1), . . . , ρ(tn)〉 are the result of applying one derivation rule to R and
ρ(t). The algorithm returns t if some derivation for R and A has a leaf node labeled with
a clash-free ABox, and f otherwise.
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The Hyp-rule is similar to the one of the hypertableau calculus for first-order logic: given
an HT-rule of he form (1) and an ABox A, the Hyp-rule tries to unify the atoms U1, . . . , Um
with a subset of the assertions in A; if a unifier σ is found, the rule nondeterministically
derives σ(Vj) for some 1 ≤ j ≤ n. For example, given the rule A(x)→ ∃R.C(x) ∨D(x)
and an assertion A(a), the Hyp-rule derives either ∃R.C(a) or D(a). The ≥-rule deals with
existential quantifiers; for example, given ∃R.C(a), the rule introduces a fresh individual
t and derives R(a, t) and C(t). The ≈-rule deals with equality; for example, given a ≈ b,
the rule replaces the individual a in all assertions with the individual b. Finally, the ⊥-rule
detects obvious contradictions such as A(a) and ¬A(a), R(a, b) and ¬R(a, b), or a 6≈ a.

Since ALCHIQ allows for cyclic concept inclusions of the form C v ∃R.C, termination
of the hypertableau calculus requires a blocking mechanism to prevent the ≥-rule from
generating infinite sequences of successors. When an individual s is directly blocked by
another individual t, the ≥-rule is no longer applicable to s, which prevents the introduction
of fresh successors of s. Furthermore, all descendants of s are then indirectly blocked, which
prevents the application of any of the rules in Table 2 to the descendants of s.

If a derivation for R and A exists in which a leaf node is labeled with a clash-free ABox
A′, then a model of R ∪ A can be constructed from A′ via a well-known technique called
unraveling. Models of R∪A obtained in such a way are called canonical forest models, and
Motik et al. (2009) discuss in depth the properties of such models.

Let R be the set of HT-rules (3)–(7) given in Section 2.2.1, and let A = {A(a),¬E(a)};
we next show how to demonstrate using the hypertableau algorithm that R∪A is unsat-
isfiable. By applying the Hyp-rule to A(a), we derive ∃R.B(a) and ∃R.C(a). Next, by
applying the ≥-rule to ∃R.B(a) we derive R(a, t1) and B(t1); and by applying the ≥-rule
to ∃R.C(a) we derive R(a, t2) and C(t2). Individuals t1 and t2 are fresh successors of s and
are actually of the form s.1 and s.2; however, for clarity we write them simply as t1 and
t2. By applying the Hyp-rule to R(a, t1) and R(a, t2), we derive t1 ≈ t2. Furthermore, to
apply the ≈-rule to t1 ≈ t2, we must replace t1 with t2 in all assertions; thus, we replace
R(a, t1) and B(t1) with R(a, t2) and B(t2), respectively. Next, by applying the Hyp-rule
to B(t2) and C(t2) we derive D(t2). Next, by applying the Hyp-rule to R(a, t2) and D(t2)
we derive E(a). Finally, by applying the the ⊥-rule to E(a) and ¬E(a) we derive ⊥. We
have thus constructed a derivation for R and A whose (only) leaf contains a clash, and so
R∪A is unsatisfiable.

2.2.3 Hypertableau Algorithm for EL-rules

Since any EL knowledge base is an ALCHIQ knowledge base as well, the hypertableau
algorithm can straightforwardly be applied to EL KBs. Motik and Horrocks (2008) showed,
however, that a worst-case optimal algorithm can be obtained by modifying the ≥-rule.
This modified algorithm works on a set R of EL-rules.

The following algorithm checks satisfiability of R ∪A, for R a set of EL-rules and A a
normalized ABox.

Definition 2. For each named individual a ∈ NI and each atomic concept A ∈ NC , let aA
be a fresh individual that is uniquely associated with a and A. The hypertableau algorithm
for EL is the same as the one described in Definition 1, but the derivation rules include the
Hyp-, ⊥-, and ∃-rule from Table 2.
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2.3 Modularity

Let Kv be a knowledge base that reuses a knowledge base Kh, and let Γ be the subset of
sig(Kh) that is being reused in Kv—that is, Γ = sig(Kh) ∩ sig(Kv). It is often beneficial if
Kv reuses Kh in a modular way; intuitively, this is the case if the knowledge base Kv does
not “affect the meaning” of the symbols in Γ (Lutz, Walther, & Wolter, 2007; Cuenca Grau,
Horrocks, Kazakov, & Sattler, 2008; Konev, Lutz, Walther, & Wolter, 2008). Two different
notions of modularity have been considered in literature, each providing a different formal
account of what it means for Kv to “affect the meaning” of the symbols in Γ.

A knowledge base Kv is deductively modular w.r.t. a signature Γ if, for all concepts C
and D expressed in the same description logic as Kv such that sig(C) ⊆ Γ and sig(D) ⊆ Γ,
we have that Kv |= C v D implies ∅ |= C v D. That is, the axioms of Kv must not give
rise to nontrivial logical consequences that involve only the symbols from Γ.

A knowledge base Kv is semantically modular w.r.t. a signature Γ if, for each interpre-
tation I = (4I , ·I) for the symbols in Γ, there exists an interpretation J = (4J , ·J) such
that 4I = 4J , XI = XJ for each X ∈ Γ, and J |= Kv. That is, the axioms of Kv are not
allowed to impose any constraints on the interpretation of the symbols from Γ.

Semantic modularity is stronger than the deductive one: if Kv is semantically modular
w.r.t. Γ, then it is also deductively modular w.r.t. Γ; the converse does not hold necessarily.
Deciding whether a knowledge base Kv is deductively or semantically modular w.r.t. a
signature Γ is a very hard computational problem for most DLs, and it is often undecidable
(Lutz et al., 2007; Konev et al., 2008). Cuenca Grau, Horrocks, Kazakov, and Sattler
(2008) have defined several practically useful sufficient syntactic conditions that guarantee
semantic modularity.

3. The Import-by-Query Framework

In this section we introduce our framework. We first present a motivating example, after
which we proceed with a formalization of the import-by-query problem.

Consider a medical research company (MRC) that has developed a knowledge base of
human anatomy. This knowledge base contains concepts describing organs such as Heart
and TV (tricuspid valve); medical conditions such as CHD (congenital heart defect), VSD
(ventricular septum defect), and AS (aortic stenosis); and treatments such as Surgery. The
roles part, con, and treatment relate organs with their parts, medical conditions, and
treatments, respectively, and they are used to define concepts such as VSD Heart (a
heart with a ventricular septum defect) and Sur Heart (a heart that requires surgical
treatment). We focus on reusing schema knowledge, so we assume that the knowledge
base consists only of a TBox Th, which is shown in Table 3. Assume that MRC wants to
freely distribute information about organs and conditions, but hide the information about
treatments. Thus, MRC identifies a set Γ of public symbols of Th; we write these symbols
in bold, and the remaining private symbols in sans serif. MRC does not want to distribute
the axioms of Th, as this might allow competitors to copy parts of Th; therefore, we say that
knowledge base Th is hidden.

Consider also a health-care provider (HCP) that reuses Th to describe types of patients
such as VSD Patient (patients with a ventricular septum defect), HS Patient (patients
requiring heart surgery), AS Patient (patients with aortic stenosis), EA Patient (patients
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Table 3: Example Knowledge Bases
Hidden Knowledge Base Th
γ1 Heart v Organ u ∃part.TV
γ2 VSD v CHD
γ3 AS v CHD
γ4 VSD Heart ≡ Heart u ∃con.VSD
γ5 VSD Heart v ∃treatment.Surgery
γ6 Sur Heart ≡ Heart u ∃treatment.Surgery

Visible Knowledge Base Kv
δ1 VSD Patient ≡ Patient u ∃hasOrg .VSD Heart
δ2 HS Patient ≡ Patient u ∃hasOrg .Sur Heart
δ3 AS Patient ≡ Patient u ∃hasOrg .(Heart u ∃con.AS)
δ4 Ab TV v TV
δ5 Dis TV v Ab TV
δ6 EA Heart ≡ VSD Heart u ∃part.Dis TV
δ7 EA Patient ≡ Patient u ∃hasOrg .EA Heart
δ8 Ab TV Heart ≡ Heart u ∃part.Ab TV
δ9 TVD Patient ≡ Patient u ∃hasOrg .Ab TV Heart

with Ebstein’s anomaly), and TVD Patient (patients with a tricuspid valve defect). Since
the TBox Th does not describe Ebstein’s anomaly, HCP defines EA Heart as a heart with
a ventricular septum defect and with a displaced tricuspid valve Dis TV ; furthermore, it
defines a displaced tricuspid valve as abnormal, and Ab TV Heart as a heart with an ab-
normal tricuspid valve. In general, HCP’s knowledge base could contain ABox assertions,
so we denote the knowledge base with Kv and call it visible. The axioms of Kv are shown
in Table 3, and the private symbols of Kv are written in italic. HCP can use the combined
knowledge base Kv ∪ Th to deduce that VSD Patient v HS Patient (patients with ventric-
ular septum defect require heart surgery) and EA Patient v TVD Patient (patients with
Ebstein’s anomaly are a kind of patients with a tricuspid valve defect).

To support such scenarios, we propose the import-by-query framework. Instead of pub-
lishing (a subset of) the axioms of Th, MRC can publish an oracle for Th—a service that
advertises a set Γ of public symbols in Th and a query language L, and that can answer
L-queries over Th provided that these queries use only symbols in Γ. A so-called import-by-
query algorithm can then reason with Kv ∪ Th (e.g., determine the satisfiability of Kv ∪ Th)
without having physical access to the contents of Th, by just asking queries to the oracle.
The existence of such an algorithm, however, depends on the oracle’s query language, the
DLs used to express Kv and Th, and the way in which the symbols from Γ are reused in Kv.

One of the most popular query languages in description logics is concept satisfiability,
which is available in all DL reasoners known to us. It is thus natural to consider concept
satisfiability oracles, which advertise a signature Γ and check the satisfiability w.r.t. Th of
(not necessarily atomic) concepts formed using the symbols in Γ. Later on we show that
import-by-query algorithms based on concept satisfiability oracles exist only if rather strong
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restrictions are imposed on the way Kv reuses the symbols from Γ; roughly speaking, it is
not possible to mix roles from Γ with concepts private to Kv in existential and universal
restrictions. In our example, this means that axioms δ6 and δ8 from Table 3 would not be
allowed in Kv. To overcome the limitations of concept satisfiability oracles, we consider two
additional types of (closely related) oracles that are more powerful than the oracles based on
concept satisfiability. An ABox satisfiability oracle is given an ABox A with sig(A) ⊆ Γ, and
it checks the satisfiability of A ∪ Th. An ABox entailment oracle is given an ABox A and
an assertion α with sig(A) ⊆ Γ and sig(α) ⊆ Γ, and it checks whether A ∪ Th |= α. ABox
satisfiability and entailment have been implemented in most state-of-the-art DL reasoners,
so oracles based on such inferences seem natural.

In practice, it is natural to express oracle queries in the same DL as Th; however, for
the sake of generality we allow queries to be expressed in an arbitrary description logic L.
Intuitively, this allows Kv to “learn more about the structure of the models of Th,” which
allows us to obtain more general results about nonexistence of import-by-query algorithms.
Definition 3 formally introduces different types of oracles.

Definition 3. Let Th be a TBox, let Γ be a signature, and let L be a description logic.
The concept satisfiability oracle for Th, Γ, and L is the Boolean function Ωc

Th,Γ,L that,
for each L-concept C with sig(C) ⊆ Γ, returns t if and only if C is satisfiable w.r.t. Th.

The ABox satisfiability oracle for Th, Γ, and L is the Boolean function Ωa
Th,Γ,L that, for

each connected L-ABox A with sig(A) ⊆ Γ, returns t if and only if Th ∪ A is satisfiable.
The ABox entailment oracle for Th, Γ, and L is the Boolean function Ωe

Th,Γ,L that, for
each connected L-ABox A such that sig(A) ⊆ Γ and each L-assertion α that mentions only
the individuals in A such that sig(α) ⊆ Γ, returns t if and only if Th ∪ A |= α.

We use the generic term oracle for either a concept satisfiability, an ABox satisfiability,
or an ABox entailment oracle. Furthermore, if L is the same as the description logic of Th,
we abbreviate ΩTh,Γ,L to ΩTh,Γ. Finally, we often refer to the oracle arguments (i.e., the
concepts C, the ABoxes A, and the pairs 〈A, α〉 in the case of concept satisfiability, ABox
satisfiability, and ABox entailment oracles, respectively) as oracle queries.

We next formally define import-by-query algorithms using the well-known notion of an
oracle Turing machine. A precise definition of the latter is given by Papadimitriou (1993);
we next present just an informal overview of the main ideas. An oracle Turing machine T
has a separate query tape, on which it can write arbitrary strings over a given alphabet. At
any point in time, T can enter a special state q?, upon which a black-box oracle Ω checks
whether the string currently written on the query tape belongs to the language associated
with Ω; if that is the case, then T enters a special state qyes , and otherwise T enters a special
state qno . This allows the oracle’s answers to affect the computation of T . A combination
of T and Ω is usually written as TΩ. This definition assumes that the computation of T
depends only on the input and the oracle’s answers; that is, if Ω1 and Ω2 are two distinct
oracles, the computations of TΩ1 will be indistinguishable from the computations of TΩ2 if
Ω1 and Ω2 return the same answers to queries encountered in computations. In the rest of
this paper, we do not make any assumptions on the type of T : any “reasonable” Turing
machine model can be used. We merely assume that T is equipped with a suitable notion
of a run which captures the computation of TΩ on each input. A run can (but does not
need to) accept or reject the input.
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Definition 4. A class of inputs C is a class of triples of the form 〈ΓC ,KCv , T Ch 〉 where ΓC is
a signature, KCv is a knowledge base, and T Ch is a TBox such that sig(KCv ) ∩ sig(T Ch ) ⊆ ΓC.
Each triple in C is called an input.

An import-by-query algorithm for a description logic L and a class of inputs C based on
oracles of type x ∈ {a, e, c} is an oracle Turing machine ibqx that can be combined with an
oracle of type x. For each input 〈Γ,Kv, Th〉 ∈ C the following properties must be satisfied,
where ibqx[Th,Γ,L] is the combination of ibqx and the oracle Ωx

Th,Γ,L:

1. whenever ibqx[Th,Γ,L] enters the state q? in a run, the string on the query tape encodes
a query accepted by Ωx

Th,Γ,L;

2. ibqx[Th,Γ,L] has an accepting run on Kv if and only if Kv ∪ Th is satisfiable; and

3. each run of ibqx[Th,Γ,L] on Kv is finite.

Intuitively, the transition relation of ibqx takes into account the possible answers of an
oracle of type x, but ibqx is not “executable” because the actual oracle is unknown. Thus,
ibqx can be seen as a computer program in which a particular subroutine is missing. Given
an input 〈Γ,Kv, Th〉 ∈ C, we can parameterize ibqx by Ωx

Th,Γ,L to obtain ibqx[Th,Γ,L], and
the latter Turing machine can be freely applied to Kv.

In the rest of this paper, whenever the oracle type is not explicitly given, our discussion
applies to all oracle types. We will consider various classes of inputs, each of which can be
defined using the following formulation:

C is the largest class of triples 〈ΓC ,KCv , T Ch 〉 where sig(KCv ) ∩ sig(T Ch ) ⊆ ΓC and
ΓC , KCv , and T Ch satisfy some condition.

Usually, however, we abbreviate such formulations as follows:

C[ΓC ,KCv , T Ch ] is a class of inputs where ΓC , KCv , and T Ch satisfy some condition.

Definition 4 straightforwardly implies the following property, which essentially just re-
formulates the idea that the runs of a Turing machine are determined only by the oracles’
answers, and not the oracles themselves.

Proposition 1. Let ibq be an import-by-query algorithm for a description logic L and a
class of inputs C, let 〈Γ,Kv, T 1

h 〉 be an arbitrary input from C, and let Q1, . . . , Qn be the
oracle queries encountered in all possible runs of ibq[T 1

h ,Γ,L] on Kv. Then, for each T 2
h

such that 〈Γ,Kv, T 2
h 〉 ∈ C and ΩT 1

h ,Γ,L
(Qi) = ΩT 2

h ,Γ,L
(Qi) for each 1 ≤ i ≤ n, each run of

ibq[T 1
h ,Γ,L] on Kv is a run of ibq[T 2

h ,Γ,L] on Kv and vice versa.

In Section 4 we will identify DLs defining the oracle query language and classes of
inputs for which no import-by-query algorithm based on oracles of a particular type exists.
The following proposition shows that it suffices to prove nonexistence results for the most
expressive DL and the smallest class of inputs; then, analogous results then hold for each
weaker DL and each larger class of inputs.

Proposition 2. Let L1 be a description logic and let L2 be a fragment of L1; let C1 and C2

be classes of inputs such that each triple in C1 also belongs to C2; and let x ∈ {a, c, e} be an
oracle type. If there is no import-by-query algorithm for L1 and C1 based on oracles of type
x, then there is also no import-by-query algorithm for L2 and C2 based on oracles of type x.
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Proof. We prove the contrapositive claim. Let ibqx be an import-by-query algorithm for
L2 and C2. Since each triple in C1 is also contained in C2, ibqx is clearly an import-by-
query algorithm for L2 and C1. Let 〈Γ,Kv, Th〉 ∈ C1 be an arbitrary input, and let Q be an
arbitrary L2-query encountered in a run of ibqx[Th,Γ,L] on Kv. Since L2 is a fragment of
L1, Q is an L1-query as well. Thus, ibqx is an import-by-query algorithm for L1 and C1.

The following theorem shows that oracles of certain types can simulate oracles of other
types. This is important because if Ω1 can simulate Ω2 and we show that no import by
query algorithm exists for a particular class of inputs applicable to Ω1, then also no such
algorithm exists that is applicable to Ω2.

Theorem 1. Let ≤ be the smallest partial order on the class of all oracles that satisfies the
following conditions for each TBox Th, each signature Γ, and each description logic L:

1. Ωc
Th,Γ,L ≤ Ωa

Th,Γ,L ≤ Ωe
Th,Γ,L; and

2. if for each L-ABox A and each L-assertion α we have that A ∪ {¬α} is an L-ABox,
then Ωe

Th,Γ,L ≤ Ωa
Th,Γ,L holds as well.

Let L be a description logic, let C be a class of inputs, and let x1, x2 ∈ {a, c, e} be oracle
types such that Ωx1

Th,Γ,L ≤ Ωx2
Th,Γ,L for each 〈Γ,Kv, Th〉 ∈ C. Then, each import-by-query al-

gorithm ibqx1 for L and C can be transformed into an import-by-query algorithm ibqx2 for
L and C such that, for each input 〈Γ,Kv, Th〉 ∈ C, ibqx1 [Th,Γ,L] has a run on Kv with n
oracle queries if and only if ibqx2 [Th,Γ,L] has a run on Kv with n oracle queries.

Proof. Let ibqx1 be an arbitrary import-by-query algorithm for L and C, and consider
an arbitrary input 〈Γ,Kv, Th〉 ∈ C. Conditions 1 and 2 ensure that Ωx1

Th,Γ,L is reducible
to Ωx2

Th,Γ,L in the sense that a computable total function f exists from the domain of
Ωx1
Th,Γ,L to the domain of Ωx2

Th,Γ,L such that for each query Q accepted by Ωx1
Th,Γ,L, we have

Ωx1
Th,Γ,L(Q) = Ωx2

Th,Γ,L(f(Q)). In particular, an ABox satisfiability oracle is reducible to an
ABox entailment oracle via f(A) = (A,⊥) for each ABox A. Furthermore, if Condition
2 holds, then an ABox entailment oracle is reducible to an ABox satisfiability oracle via
f(A, α) = A∪ {¬α}. Finally, a concept satisfiability oracle is reducible to an ABox satisfi-
ability oracle via f(C) = {C(a)} for a a fresh individual.

Algorithm ibqx2 can then simply simulate ibqx1 on each input 〈Γ,Kv, Th〉 ∈ C; further-
more, whenever ibqx1 [Th,Γ,L] poses a query Q to Ωx1

Th,Γ,L, then ibqx2 [Th,Γ,L] computes
f(Q) and poses the query f(Q) to Ωx2

Th,Γ,L. Since ibqx1 is an import-by-query algorithm for
L and C, so is ibqx2 . Furthermore, for each input, there is a one-to-one correspondence be-
tween the runs of both algorithms with corresponding runs posing exactly the same number
of oracle queries.

We next show that, if the shared signature Γ contains only atomic concepts, there is a
close correspondence between ABox and concept satisfiability oracles.

Theorem 2. Let L be a description logic and let C[ΓC ,KCv , T Ch ] be a class of inputs where ΓC

contains only atomic concepts. Then, each import-by-query algorithm ibqa for L and C can
be transformed into an import-by-query algorithm ibqc for L and C such that the following
statements hold for each input 〈Γ,Kv, Th〉 ∈ C.
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• For each run of ibqa[Th,Γ,L] on Kv with n oracle queries and m the maximum number
of individuals in a query ABox, a run of ibqc[Th,Γ,L] on Kv with at most n×m oracle
queries exists.

• For each run of ibqc[Th,Γ,L] on Kv with n oracle queries, a run of ibqa[Th,Γ,L] on
Kv with at most n oracle queries exists.

Proof. Let ibqa be an import-by-query algorithm for L and C. We define ibqc such that,
on each input 〈Γ,Kv, Th〉 ∈ C, algorithm ibqc[Th,Γ,L] simulates the steps of algorithm
ibqa[Th,Γ,L]; furthermore, when ibqa[Th,Γ,L] queries Ωa

Th,Γ,L with an ABox A, algorithm
ibqc[Th,Γ,L] proceeds as follows.

1. The algorithm transforms A into an ABox A′ by iterating over all assertions of the
form a ≈ b in A and, for each such assertion, replacing one individual (say a) with
the other one (say b) in all assertions.

2. IfA′ contains an individual a such that a 6≈ a ∈ A′ or Ωc
Th,Γ,L(B1 u . . . uBn) = f where

B1, . . . , Bn are all concepts such that Bi(a) ∈ A′, then ibqc[Th,Γ,L] proceeds in the
same way as ibqa[Th,Γ,L] for Ωa

Th,Γ,L(A) = f; otherwise, ibqc[Th,Γ,L] proceeds in the
same way as ibqa[Th,Γ,L] for Ωa

Th,Γ,L(A) = t.

There is an obvious correspondence between the runs of ibqa[Th,Γ,L] and ibqc[Th,Γ,L] on
Kv; furthermore, whenever ibqa[Th,Γ,L] issues a query to Ωa

Th,Γ,L, then ibqc[Th,Γ,L] issues
at most m queries to Ωc

Th,Γ,L in order to determine how to proceed. Finally, note that the
second statement in the theorem directly follows from Theorem 1.

We finally show that we can without loss of generality assume Kv to contain no concept
such as ∃con.AS in axiom δ3 in Table 3.

Definition 5. Let Γ be a signature. A concept C is Γ-modal if sig(C) ⊆ Γ and C is of the
form ∃R.D, ∀R.D, ≥nR.D, or ≤nR.D.

Intuitively, Γ-modal concepts can always be treated as “atomic” from the point of view
of Kv, so we can rely on the oracle to compute all relevant consequences of such concepts.

Theorem 3. Let L, DL1, and DL2 be description logics such that each DL1-concept is
also an L-concept and DL2 allows for DL1-definitions; let x ∈ {a, c, e}; let C[ΓC ,KCv , T Ch ]
be a class of inputs where KCv is a DL1-knowledge base and T Ch is a DL2-TBox; and let
D[ΓD,KDv , T Dh ] be the class of inputs consisting of all triples 〈Γ,Kv, Th〉 in C[ΓC ,KCv , T Ch ] in
which Kv contains no Γ-modal concepts. Then, each import-by-query algorithm ibqx2 for L
and D can be transformed into an import-by-query algorithm ibqx1 for L and C.

Proof. For Γ a signature, C a concept, and α a concept, axiom, or knowledge base, we
say that C is Γ-outermost in α if C is Γ-modal and C does not occur in α as a proper
subconcept of another Γ-modal concept.

Let 〈Γ,Kv, Th〉 ∈ C be an arbitrary input in C, let S be the set of all Γ-outermost concepts
in Kv, and let XC be a fresh atomic concept uniquely associated with each C ∈ S. We define
Γ′, T ′h, and K′v as follows: Γ′ = Γ ∪ {XC | C ∈ S}; K′v is obtained from Kv by replacing each
C ∈ S with XC ; and T ′h = Th ∪ {XC ≡ C | C ∈ S}. Clearly, Kv ∪ Th is equisatisfiable with
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K′v ∪ T ′h, and 〈Γ′,K′v, T ′h〉 ∈ D. Let ibqx2 be an arbitrary import-by-query algorithm for L
and D. We define ibqx1 as the algorithm that on each 〈Γ,Kv, Th〉 ∈ C simulates the steps of
ibqx2 on input 〈Γ′,K′v, T ′h〉 ∈ D, but with the following modifications:

• ibqx1 [Th,Γ,L] treats all concepts in S as if they were atomic; and

• whenever ibqx2 [T ′h,Γ′,L] queries Ωx
T ′
h,Γ

′,L with a query Q′, then ibqx1 [Th,Γ,L] queries

Ωx
Th,Γ,L with a query Q obtained from Q′ by replacing each occurrence of XC with C.

There is an obvious correspondence between the runs of ibqx2 [T ′h,Γ′,L] and ibqx1 [Th,Γ,L] on
Kv, so ibqx1 is an import-by-query algorithm for L and C.

4. Limitations of the Import-by-Query Framework

In this section, we explore the limitations of the import-by-query framework and show that
import-by-query algorithms do not exist under certain conditions. Our negative results
apply to classes of input where Kv and Th are expressed in a description logic DL that is
as lightweight as possible, the oracle is based on ABox satisfiability, and the oracle accepts
queries expressed in a description logic L that is as expressive as possible. By Theorem 1
and Proposition 2, our results also apply to all other oracle types, queries expressed in a
fragment of L, and all classes of input where Kv and Th are expressed in a description logic
that extends DL.

In particular, in Section 4.1 we establish the following general limitations of the import-
by-query framework.

• The presence of nominals in Th may preclude the existence of an import-by-query
algorithm even if Γ = ∅ (cf. Theorem 4).

• Deductive modularity of the TBox of Kv w.r.t. Γ is a necessary condition for the
existence of an import-by-query algorithm (cf. Theorem 5).

• Deductive modularity, however, is not sufficient, even if Kv and Th are in EL and Γ
is allowed to contain only atomic concepts (cf. Theorem 6).

In response to these negative results, all import-by-query algorithms proposed in this paper
are subjected to the following restrictions:

R1. Th is not allowed to contain nominals.

R2. The TBox of Kv is required to be semantically modular w.r.t. Γ.

We show in Section 5.1 that these two restrictions are sufficient to guarantee the existence
of an import-by-query algorithm for Kv in ALCHIQ and Th in ALCHIQ, provided that Γ
contains only atomic concepts.

In Section 4.2, however, we show that further restrictions on the input are necessary if Γ
is allowed to contain atomic roles. Roughly speaking, restrictions R1 and R2 are insufficient
since the axioms in Kv can arbitrarily propagate information about the symbols private to
Kv via a role in Γ to a “hidden” part of the canonical model of Kv∪Th (that is, a part of the
canonical model that cannot be constructed using only the axioms in Kv); such propagation
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can occur both via existential (cf. Theorem 7) and universal quantification (cf. Theorem 8).
To overcome these negative results, we define in Section 5.1 the HT-safety condition that,
on the one hand, ensures semantic modularity and, on the other hand, prevents arbitrary
transfer of information about the symbols private to Kv to hidden parts of the canonical
model via a role in Γ. This condition, however, is still insufficient to enable import-by-
query reasoning if Th contains universal quantifiers, inverse roles, and functional roles, and
Kv entails cyclic axioms of the form A v ∃R.A for R ∈ Γ and A 6∈ Γ (cf. Theorem 9).
To overcome this negative result, in Section 5.1 we introduce an acyclicity condition that
together with HT-safety guarantees the existence of an import-by-query algorithm based
on ABox satisfiability oracles for Kv and Th expressed in ALCHIQ.

Finally, in Section 4.3 we show that no import-by-query algorithm based on concept
satisfiability oracles exists for the class of inputs C[ΓC ,KCv , T Ch ] where KCv is in EL and it
satisfies the HT-safety condition, and T Ch is in EL (cf. Theorem 10). In Section 5.2.2,
however, we present an algorithm based on ABox entailment oracles that applies to this
class of inputs C. Thus, practically relevant cases exist for which import-by-query reasoning
is impossible with concept satisfiability oracles, but it becomes feasible with ABox oracles.

4.1 General Limitations

We first show that the presence of nominals in the hidden knowledge base precludes the
existence of an import-by-query algorithm if the visible knowledge base is satisfiable only in
infinite models. Expressive DLs used in practice often do not have the finite model property,
and our negative result holds even if the shared signature is empty; thus, in the rest of this
paper we do not further consider DLs with nominals, and we leave an investigation of
conditions that enable import-by-query reasoning with such DLs for future work.

Theorem 4. For each description logic DL without the finite model property, no import-
by-query algorithm based on ABox satisfiability oracles exists for L = ALCHOIQ and the
class of inputs C[ΓC ,KCv , T Ch ] where ΓC = ∅, KCv is a DL-knowledge base, and T Ch is an
ALCHOIQ-TBox.

Proof. Let C be an arbitrary class of inputs and let ibqa be an arbitrary import-by-query
algorithm such that C and ibqa both satisfy the theorem’s assumptions. Furthermore, let
〈Γ,Kv, T 1

h 〉 ∈ C be an arbitrary input where KCv is satisfiable only in infinite models, Γ = ∅,
and T 1

h = ∅. Since all runs of ibqa[T 1
h ,Γ,L] on Kv are finite, the number of individuals

occurring in a query ABox in each such run is bounded by some integer n. Let T 2
h be as

follows, where O1, . . . , On are fresh nominal concepts:

T 2
h = {> v O1 t . . . tOn} (9)

Clearly, Kv ∪ T 1
h is satisfiable, but Kv ∪ T 2

h is not. Consider now an arbitrary query ABox
A occurring in a run of ibqa[T 1

h ,Γ,L]. Since Γ = ∅, A consists only of assertions of the form
a ≈ b or a 6≈ b; furthermore, A contains at most n individuals, so Ωa

T 1
h ,Γ

(A) = t implies

Ωa
T 2
h ,Γ

(A) = t, and the converse holds by the monotonicity of first-order logic. But then, by

Proposition 1, the runs of ibqa[T 1
h ,Γ,L] on Kv coincide with the runs of ibqa[T 2

h ,Γ,L] on
Kv, which contradicts the fact that Kv ∪ T 1

h is satisfiable but Kv ∪ T 2
h is not.
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We next present a very strong result: deductive modularity is a necessary requirement
for the existence of an import-by-query algorithm; that is, no import-by-query algorithm
exists for any class of inputs that contains a triple 〈Γ,Kv, Th〉 such that the TBox of Kv
is not deductively modular w.r.t. Γ. Intuitively, without deductive modularity, Kv can
arbitrarily influence the consequences of Th, and the oracle cannot take this into account
since it does not have access to the axioms of Kv. For the sake of generality, we do not
impose any conditions on Γ.

Theorem 5. Let DL1 be an arbitrary fragment of ALCHIQ; let DL2 be an arbitrary
description logic that extends EL and allows for DL1-definitions; let Γ be an arbitrary
signature; and let Kv be an arbitrary satisfiable DL1-knowledge base whose TBox is not
deductively modular w.r.t. Γ. Then, no import-by-query algorithm based on ABox satisfia-
bility oracles exists for L = ALCHIQ and the class of inputs C[ΓC ,KCv , T Ch ] where ΓC = Γ,
KCv = Kv, and T Ch is a DL2-TBox.

Proof. Let C be a class of inputs satisfying the theorem’s conditions, and let 〈Γ,Kv, T 1
h 〉 ∈ C

be an input where T 1
h = ∅. Since Kv is not deductively modular w.r.t. Γ, possibly com-

plex DL1 concepts C1 and C2 exist such that sig(C1) ⊆ Γ, sig(C2) ⊆ Γ, Tv |= C1 v C2, and
∅ 6|= C1 v C2. Let ibqa be an import-by-query algorithm for L = ALCHIQ and C. Finally,
let T 2

h be as follows, where A, B1, B2, and R do not occur in Γ.

T 2
h = { B1 ≡ C1, B2 ≡ C2, > v ∃R.(A uB1), A uB2 v ⊥ } (10)

Clearly, Kv ∪ T 1
h is satisfiable, but Kv ∪ T 2

h is not. Consider now an arbitrary L-ABox
A such that sig(A) ⊆ Γ. If A ∪ T 1

h is unsatisfiable, so is A ∪ T 2
h . Conversely, assume

that A ∪ T 1
h is satisfiable in a model I ′ = (4I′ , ·I′). Since ∅ 6|= C1 v C2, an interpretation

I ′′ = (4I′′ , ·I′′) and a domain element x ∈ 4I′′ exist such that x ∈ CI′′1 but x 6∈ CI′′2 . With-
out loss of generality we assume that 4I′ ∩4I′′ = ∅. Let I be the following interpretation:

4I = 4I′ ∪4I′′

aI = aI
′

for each individual a occurring in A
AI = {x}
BI

1 = CI
′

1 ∪ CI
′′

1

BI
2 = CI

′
2 ∪ CI

′′
2

RI = {〈o, x〉 | o ∈ 4I}
XI = XI′ ∪XI′′ for each atomic concept or role X ∈ Γ

Now for each ALCHIQ-concept E such that sig(E) ⊆ Γ, since 4I′ and 4I′′ are disjoint, by
a straightforward induction on the structure of E one can show that EI

′
= EI ∩4I′ and

EI
′′

= EI ∩4I′′ . Furthermore, SI
′ ⊆ SI for each atomic role S ∈ Γ. Thus I |= A, and it is

straightforward to check that I |= T 2
h . Consequently, Ωa

T 1
h ,Γ,L

(A) = Ωa
T 2
h ,Γ,L

(A) for each L-

ABox A with sig(A) ⊆ Γ. Hence, by Proposition 1, the runs of ibqa[T 1
h ,Γ,L] on Kv coincide

with the runs of ibqa[T 2
h ,Γ,L] on Kv, which contradicts the fact that Kv ∪ T 1

h is satisfiable
but Kv ∪ T 2

h is not.

While Theorem 5 shows that deductive modularity is a necessary requirement for an
import-by-query algorithm to exist, the following theorem shows that it is not a sufficient

215



Cuenca Grau & Motik

requirement, even if Γ contains only atomic concepts, Kv is an EL-knowledge base, and Th
is an EL-TBox.

Theorem 6. No import-by-query algorithm based on ABox satisfiability oracles exists for
L = ALCHIQ and the class of inputs C[ΓC ,KCv , T Ch ] where ΓC contains only atomic concepts,
KCv and T Ch are in EL, and the TBox of KCv is deductively modular w.r.t. ΓC.

Proof. Let ibqa be an import-by-query algorithm satisfying the theorem’s assumptions, let
Γ = {A,B,C}, and let Kv, T 1

h , and T 2
h be the following EL knowledge bases:

Kv = { A(a), B v ∃R.C } (11)

T 1
h = { C v ⊥ } (12)

T 2
h = T 1

h ∪ { A v ∃S.B } (13)

The TBox of Kv is clearly deductively modular w.r.t. Γ, so 〈Γ,Kv, T ih 〉 ∈ C for i ∈ {1, 2};
furthermore, Kv ∪ T 1

h is satisfiable, whereas Kv ∪ T 2
h is not. Consider now an arbitrary

query ABox A such that sig(A) ⊆ Γ; since A contains only assertions of the form X(a),
¬X(a), a ≈ b, and a 6≈ b where sig(X) ⊆ Γ, we have Ωa

T 1
h ,Γ,L

(A) = Ωa
T 2
h ,Γ,L

(A). But then,

by Proposition 1, the runs of ibqa[T 1
h ,Γ,L] on Kv coincide with the runs of ibqa[T 2

h ,Γ,L]
on Kv, which contradicts the fact that Kv ∪ T 1

h is satisfiable but Kv ∪ T 2
h is not.

While deductive modularity is not sufficient, semantic modularity is sufficient in some
cases: in Section 5.1 we present an import-by-query algorithm that can be applied to the
case when Γ contains only atomic concepts, Kv and Th are in ALCHIQ, and the TBox of
Kv is semantically modular w.r.t. Γ.

4.2 Limitations of Importing Atomic Roles

In this section, we establish the limitations of the import-by-query framework for the cases
when Γ is allowed to contain atomic roles. In particular, we show that semantic modularity
is not sufficient to guarantee existence of an import-by-query algorithm.

Theorems 7 and 8 demonstrate problems that arise due to certain fundamental lim-
itations of our oracle query languages. To understand the intuition behind these results,
assume that the shared signature Γ contains one atomic role R. Even in the relatively simple
DL EL, knowledge base Th can imply existence of arbitrarily long R-chains using an axiom
such as C v ∃R.C. All of the oracle languages that we consider, however, can examine only
bounded prefixes of such chains. For example, assume that we use an ABox satisfiability or-
acle and a query language based on ALCHIQ. Each concept in a query ABox corresponds
to a first-order formula, and it is well known that the satisfiability of such a formula in a
first-order interpretation depends on the formula’s quantifier depth. Since the number of
oracle calls in a run of an import-by-query algorithm must be bounded, an import-by-query
algorithm can examine only a bounded prefix of a model of Th. But this leads us to a
fundamental problem: if Th is changed so that it has “interesting consequences” that can
be detected only by examining longer R-chains, then such consequences will go undetected
by our algorithm and render the algorithm incorrect. Theorem 7 exploits the fact that the
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“interesting consequences” of Th are detected by Kv using axioms with existentially quan-
tified concepts (i.e., our proof uses axiom ∃R.B2 v B2), whereas Theorem (8) analogously
uses axioms with universally quantified concepts (i.e., B v ∀R.B).

An alternative intuitive explanation of the results in Theorems 7 and 8 is to think
of the culprit axioms ∃R.B2 v B2 and B v ∀R.B in Kv as propagating information from
Kv into Th. In order not to miss the “interesting consequences” of Th, an import-by-query
algorithm must examine a “sufficiently large” portion of the hidden part of a canonical model
of Kv ∪ Th in order to correctly evaluate the culprit axioms. This, however, is impossible
because no bound on the portion size can be determined from the algorithm’s inputs.

Theorem 7. No import-by-query algorithm based on ABox satisfiability oracles exists for
L = ALCHIQ and the class of inputs C[ΓC ,KCv , T Ch ] where ΓC is arbitrary, KCv and T Ch are
expressed in EL, and the TBox of KCv is semantically modular w.r.t. ΓC.

Proof. Let ibqa be an import-by-query algorithm satisfying the theorem’s assumptions, let
Γ = {A1, A2, R}, and let Kv be the following EL knowledge base:

Kv = { B1(a), B1 v ∃S.A1, A2 v B2, ∃R.B2 v B2, ∃S.B2 v ⊥ } (14)

The TBox of Kv is semantically modular w.r.t. Γ: for each interpretation I of the symbols
in Γ, the interpretation J such that XJ = XI for each X ∈ Γ, BJ

1 = ∅, BJ
2 = 4J , and

SJ = ∅ is a model of the TBox of Kv. Let T 1
h be the following EL TBox:

T 1
h = { A1 v C, C v ∃R.C } (15)

Since each run of ibqa[T 1
h ,Γ,L] on Kv is finite, an integer n exists such that each query

ABox occurring in a run contains concepts of quantifier depth at most n. Let T 2
h be the

following EL TBox:

T 2
h = {A1 v ∃R . . .∃R︸ ︷︷ ︸ .A2 }

n+ 1 times
(16)

Clearly, Kv ∪ T 1
h is satisfiable, whereas Kv ∪ T 2

h is not. Consider an arbitrary query ABox
A occurring in a run of ibqa[T 1

h ,Γ,L]. We next show that Ωa
T 1
h ,Γ,L

(A) = Ωa
T 2
h ,Γ,L

(A).

Assume that T 1
h ∪ A is satisfiable. Since A is expressed in ALCHIQ and T 1

h is in EL, a
canonical forest model I = (4I , ·I) of T 1

h ∪ A exists (e.g., such a model can be obtained by
applying the hypertableau algorithm to T 1

h and A). Due to (15), for each x ∈ AI1, an infinite
sequence {αx0 , αx1 , αx2 , . . .} ⊆ 4I exists such that αx0 = x and 〈αxi , αxi+1〉 ∈ RI for each 0 ≤ i.
Let J = (4J , ·J) be the interpretation defined as follows:

4J = 4I AJ2 = AI2 ∪ {αxn+1 | x ∈ AI1} XJ = XI for each X 6= A2

Clearly, J |= T 2
h . Furthermore, since I |= A, A contains concepts of quantifier depth at

most n, and I and J “coincide up to depth n,” we have J |= A. Thus, T 2
h ∪ A is satisfiable.

Assume that T 2
h ∪A is satisfiable. Then a canonical forest model I = (4I , ·I) of T 2

h ∪A
exists. Due to (16), for each x ∈ AI1, a finite sequence {αx0 , αx1 , αx2 , . . . , αxn+1} ⊆ 4I exists
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such that αx0 = x and 〈αxi , αxi+1〉 ∈ RI for each 0 ≤ i < n. Let J = (4J , ·J) be the interpre-
tation defined as follows:

4J = 4I RJ = RI ∪ {〈αxn+1, α
x
n+1〉 | x ∈ AI1}

CJ = {αx0 , . . . , αxn+1 | x ∈ AI1} XJ = XI for each X 6∈ {R,C}

Clearly, J |= T 1
h . Furthermore, since I |= A, C 6∈ sig(A), A contains only concepts of

quantifier depth at most n, and I and J “coincide up to depth n”, we have J |= A. Thus,
T 1
h ∪ A is satisfiable.

By Proposition 1, the runs of ibqa[T 1
h ,Γ,L] on Kv coincide with the runs of ibqa[T 2

h ,Γ,L]
on Kv, which contradicts the fact that Kv ∪ T 1

h is satisfiable but Kv ∪ T 2
h is not.

Theorem 8. No import-by-query algorithm based on ABox satisfiability oracles exists for
L = ALCHIQ and the class of inputs C[ΓC ,KCv , T Ch ] where ΓC is arbitrary, KCv is expressed
in FL0, T Ch is expressed in EL, and the TBox of KCv is semantically modular w.r.t. ΓC.

Proof. Let ibqa be an import-by-query algorithm satisfying the theorem’s assumptions, let
Γ = {A1, A2, R}, and let Kv be the following FL0 knowledge base.

Kv = { A1(a), B(a), B v ∀R.B, A2 uB v ⊥ } (17)

The TBox of Kv is semantically modular w.r.t. Γ: for each interpretation I for Γ, the
interpretation J such that XJ = XI for each X ∈ Γ and BJ = ∅ is a model of the TBox
of Kv. Let T 1

h be the EL TBox (15) given in the proof of Theorem 7. Since each run of
ibqa[T 1

h ,Γ,L] on Kv is finite, an integer n exists such that each query ABox occurring in
a run contains concepts of quantifier depth at most n. Let T 2

h be the the EL TBox (16)
from Theorem 7. Clearly, Kv ∪ T 1

h is satisfiable, whereas Kv ∪ T 2
h is not. Using arguments

analogous to those from the proof of Theorem 7, one can show that Ωa
T 1
h ,Γ,L

(A) = Ωa
T 2
h ,Γ,L

(A)

for each query ABox A occurring in a run of ibqa[T 1
h ,Γ,L]. By Proposition 1, the runs of

ibqa[T 1
h ,Γ,L] on Kv coincide with the runs of ibqa[T 2

h ,Γ,L] on Kv, which contradicts the
fact that Kv ∪ T 1

h is satisfiable but Kv ∪ T 2
h is not.

A possible way to overcome these negative results is to prevent the axioms in Kv from
propagating information via the roles in Γ into the hidden part of a canonical model of
Kv ∪ Th. In Section 5.1, we achieve this by requiring Kv to be HT-safe. Roughly speaking,
such Kv is semantically modular w.r.t. Γ, but, in addition, it can be translated into a set of
HT-rules Rv where variables x and y in each role atom of the form R(x, y) with R ∈ Γ are
“guarded” by suitable concepts. For example, although the knowledge base Kv in (17) is
semantically modular w.r.t. Γ = {A1, A2, R}, the axiom B v ∀R.B ∈ Kv violates the HT-
safety condition since the body of its corresponding HT-rule B(x) ∧R(x, y)→ B(y) does
not contain a “guard” concept atom for variable y. In order to streamline the presentation
and ensure that all notions needed to enable import-by-query reasoning are defined in one
place, we formalize HT-safety in Definition 6 in Section 5.1. Unfortunately, as Theorem 9
shows, HT-safety alone does not ensure existence of an import-by-query algorithm.

Theorem 9. No import-by-query algorithm based on ABox satisfiability oracles exists for
L = ALCHIQ and the class of inputs C[ΓC ,KCv , T Ch ] where ΓC is arbitrary, KCv is expressed
in EL, T Ch is expressed in Horn-ALCIF , and the TBox of KCv is HT-safe w.r.t. ΓC.
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Proof. Let ibqa be an import-by-query algorithm satisfying the theorem’s assumptions, let
Γ = {B,R}, and let Kv be the following EL knowledge base:

Kv = { A(a), B(a), A v ∃R.A } (18)

The TBox of Kv is semantically modular w.r.t. Γ: for each interpretation I for Γ, the
interpretation J such that XJ = XI for each X ∈ Γ and AJ = ∅ is a model of the TBox
of Kv. According to Definition 6, the TBox of Kv is then HT-safe as well. Let T 1

h be the
following Horn-ALCIF TBox:

T 1
h = { B u C v ⊥, B v ∀R.C, C v ∀R.C, > v ≤ 1R− } (19)

Since each run of ibqa[T 1
h ,Γ,L] on Kv is finite, integers n and m exist such that each query

ABox occurring in a run contains at most n individuals and concepts of quantifier depth at
most m. Let k = n+m and let D0, . . . , Dk be distinct and fresh atomic concepts. Let T 2

h

be the following Horn-ALC TBox:

T 2
h = T 1

h ∪ { Di uDj v ⊥, | 0 ≤ i < j ≤ k } ∪ { Dj−1 v ∀R.Dj | 1 ≤ i ≤ k }
∪ { B v D0, Dk v ⊥ }

(20)

Clearly, Kv ∪ T 1
h is satisfiable, whereas Kv ∪ T 2

h is not. Consider an arbitrary query
ABox A occurring in a run of ibqa[T 1

h ,Γ,L]. We next show that Ωa
T 1
h ,Γ,L

(A) = Ωa
T 2
h ,Γ,L

(A).

This clearly holds if T 1
h ∪A is unsatisfiable, so assume that T 1

h ∪A is satisfiable. Then, there
exists a canonical forest model I = (4I , ·I) of T 1

h ∪ A. Consider now an arbitrary domain
element x ∈ BI . We say that a domain element y ∈ 4I is reachable from x in ` steps if a
sequence of domain elements α0 = x, α1, α2, . . . , α` = y exist such that 〈αi, αi+1〉 ∈ RI for
each 1 ≤ i < `. For each such x and y, the axioms of T 1

h ensure the following properties:

1. Each such sequence is unique and it consists of unique domain elements. This is
because RI is an inverse-functional relation so, for each 0 ≤ i < `, domain element αi is
the only element such that 〈αi, αi+1〉 ∈ RI , so αi 6= αj for 0 < i < j ≤ `; furthermore,
α0 ∈ BI and α0 6∈ CI , and αi ∈ CI for 0 < i ≤ `, which ensures α0 6= αi for 0 < i ≤ `.

2. No x′ ∈ BI distinct from x exists such that y is reachable form x′. This is because
xi 6∈ BI for each 0 < i ≤ ` and RI is inverse-functional.

3. ` < k. This is because A contains at most n individuals and all concepts in A are of
quantifier depth at most m.

Let J = (4J , ·J) be an interpretation defined as follows:

4J = 4I XJ = XI for each X ∈ sig(T 1
h ) DJ

k = ∅
DJ
i =

⋃
x∈BI

{y ∈ 4I | y is reachable from x in i steps } for each 0 ≤ i < k

Interpretations I and J coincide on the symbols from T 1
h , so J |= A ∪ T 1

h . Furthermore, if
y ∈ DI

i with i < k, by properties 1–3 then y 6∈ DI
j for each j 6= i, so J |= A ∪ T 2

h . But then,

by Proposition 1, the runs of ibqa[T 1
h ,Γ,L] on Kv coincide with the runs of ibqa[T 2

h ,Γ,L]
on Kv, which contradicts the fact that Kv ∪ T 1

h is satisfiable but Kv ∪ T 2
h is not.
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The proof of Theorem 9 uses Kv that implies A v ∃Rn.A for arbitrary n, where A 6∈ Γ
and R ∈ Γ. Furthermore, axioms in Th containing universally quantified concepts propa-
gate information along an R-chain to an unknown level m. An import-by-query algorithm
cannot determine the depth to which it must examine a model of Kv, which precludes the
termination requirement of Definition 4. In Section 5.1, we present a sufficient acyclicity
restriction on Kv that bounds n and ensures the existence of an import-by-query algorithm.

4.3 ABox vs. Concept Satisfiability Oracles

In this section we show that, for Kv an EL-knowledge base and and Th an EL-TBox, no
import-by-query algorithm based on concept satisfiability oracles exists, even if Kv is HT-
safe w.r.t. Γ. This is interesting because in Section 5.2.2 we present an algorithm based on
ABox entailment oracles that can handle such a case. Thus, ABox oracles are strictly more
expressive than concept satisfiability oracles.

Theorem 10. No import-by-query algorithm based on concept satisfiability oracles exists
for L = ALCHIQ and the class of inputs C[ΓC ,KCv , T Ch ] where ΓC is arbitrary, KCv and T Ch
are expressed in EL, and the TBox of KCv is HT-safe w.r.t. ΓC.

Proof. Let ibqc be an import-by-query algorithm satisfying the theorem’s assumptions, let
Γ = {R}, and let Kv be the following EL knowledge base:

Kv = { A(a), A v ∃R.A } (21)

By Definition 6, the TBox of Kv is HT-safe. Let T 1
h = ∅. Each run of ibqc[T 1

h ,Γ,L] on Kv
is finite, so an integer n exists such that each query concept occurring in a run contains
concepts of quantifier depth at most n. Let T 2

h be the following EL TBox:

T 2
h = { ∃R. . . .∃R︸ ︷︷ ︸ .> v ⊥ }

n+ 1 times
(22)

Clearly, Kv ∪ T 1
h is satisfiable, whereas Kv ∪ T 2

h is not. Furthermore, it is straightforward
to see that, for each ALCHIQ concept C of quantifier depth at most n with sig(C) ⊆ Γ,
we have T 1

h |= C v ⊥ if and only if T 2
h |= C v ⊥, so Ωc

T 1
h ,Γ

(C) = Ωc
T 2
h ,Γ

(C). But then, by

Proposition 1, the runs of ibqc[T 1
h ,Γ,L] on Kv coincide with the runs of ibqc[T 2

h ,Γ,L] on
Kv, which contradicts the fact that Kv ∪ T 1

h is satisfiable but Kv ∪ T 2
h is not.

Note that the knowledge base Kv used in the proof of Theorem 10 is analogous to the
one from the proof of Theorem 9—that is, it entails a cyclic axiom of the form A v ∃R.A
with R ∈ Γ but A 6∈ Γ. The negative result from Theorem 9, however, does not apply in this
case because Th is expressed in EL. The algorithm presented in Section 5.2.2 can handle
such knowledge bases via an ABox entailment oracle. Intuitively, this is because ABoxes
can encode cyclic structures, whereas concepts cannot.

5. Import-by-Query Algorithms

In this section, we identify several cases in which import-by-query algorithms exist. For
simplicity, throughout this section we assume that Kv does not contain Γ-modal concepts;
by Theorem 3 this is without loss of generality.
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To overcome the negative results from Section 4, in Sections 5.1.1 and 5.1.2 we introduce
the HT-safety and acyclicity conditions, respectively, that Kv must satisfy in order to pre-
vent the undesirable interactions between the axioms of Kv and Th. Furthermore, in the rest
of this paper we assume that Kv is preprocessed as described by Motik et al. (2009) into the
corresponding set of HT-rules Rv and ABox Av; this will be convenient because HT-rules
do not contain nested quantifiers. We thus formulate HT-safety and acyclicity in terms of
Rv and Av, and we define Kv as being HT-safe (resp. acyclic) if the corresponding Rv and
Av are HT-safe (resp. acyclic). All our algorithms take as inputs Rv and Av, and we specify
the allowed inputs using classes C[ΓC ,RCv ∪ ACv , T Ch ] of triples 〈ΓC ,RCv ∪ ACv , T Ch 〉 where Rv
is a set of HT-clauses, Av is a normalized ABox, and sig(RCv ∪ ACv ) ∩ sig(T Ch ) ⊆ ΓC .

In Section 5.1 we present a general import-by-query algorithm based on ABox satisfi-
ability oracles that is applicable to the case when Kv imports both atomic concepts and
roles, and Kv and Th are expressed in ALCHIQ. In order for the algorithm to be applicable,
however, Kv must be both HT-safe and acyclic. If Γ contains only atomic concepts, then
acyclicity is vacuously satisfied for each Kv and HT-safety becomes equivalent to semantic
modularity; thus, if only atomic concepts are shared, our algorithms is applicable whenever
Kv is semantically modular w.r.t. Γ.

The algorithm from Section 5.1, however, is unlikely to be suitable for practice due to a
high degree of nondeterminism. Therefore, in Section 5.2.1 we present an import-by-query
algorithm based on ABox entailment oracles that, we believe, is suited for implementation
and optimization. The algorithm requires Th to be a Horn knowledge base, which allows
the algorithm to be more goal-oriented.

The practical algorithm from Section 5.2.1 can readily be applied to EL knowledge bases,
but it is not guaranteed to be optimal. Therefore, in Section 5.2.2 we present an EL-specific
import-by-query algorithm for the case when Kv and Th are expressed in EL. In addition
to being optimal on EL knowledge bases, this EL-specific algorithm does not require Kv to
be acyclic and it somewhat relaxes the HT-safety requirement.

5.1 Import-by-Query in ALCHIQ

We next present an import-by-query algorithm based on ABox satisfiability oracles that is
applicable to a set of HT-rules Rv and a TBox Th in ALCHIQ. No assumptions are made
on the type of symbols in Γ: Rv can reuse both atomic concepts and roles from Th.

5.1.1 HT-Safety

We now define the HT-safety condition that allows us to overcome the negative results of
Theorems 7 and 8, and that also guarantees semantic modularity required to overcome the
negative results of Theorems 5 and 6. If Γ contains only atomic concepts, then HT-safety
reduces to the semantic modularity of Rv w.r.t. Γ.

The notion of HT-safety forRv consists of the following building blocks. We first identity
the safe concepts—that is, concepts private to Rv that should not be “propagated” into
the models of Th. Next, we transform Rv into a reduct by replacing in Rv all safe concepts
with ⊥, and we require the reduct to be semantically modular w.r.t. Γ. The latter property
ensures that any interpretation for the symbols in Γ can be extended to an interpretation of
the symbols in Rv by interpreting safe concepts as the empty set. Finally, as motivated in
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Section 4.2, we impose a syntactic restriction on each HT-rule % ∈ Rv: for each body atom
R(x, y) in % with R ∈ Γ, we require variables x and y to be “guarded” by a safe concept.

Definition 6. Let Rv be a set of HT-rules and let Γ be a signature. The set of safe concepts
of Rv and Γ is the smallest set safe(Rv,Γ) such that, for each HT-rule % ∈ Rv whose body
contains an atom of the form R(x, yi) or R(yi, x) with R ∈ Γ and an atom of the form A(x)
or A(yi) with A 6∈ Γ, we have A ∈ safe(Rv,Γ).

The reduct of Rv w.r.t. Γ is the set of rules obtained from Rv by removing each rule
containing a concept in safe(Rv,Γ) in the body, and then removing from the head of the
remaining rules each atom containing a concept in safe(Rv,Γ).

The set Rv is HT-safe w.r.t. Γ if

1. the reduct of Rv w.r.t. Γ is semantically modular w.r.t. Γ, and

2. for each rule % ∈ Rv and each body atom of % of the form R(x, yi) or R(yi, x) with
R ∈ Γ, the body of % contains atoms A(x) and B(yi) such that A,B ∈ safe(Rv,Γ).

HT-safety invalidates the proofs of Theorems 7 and 8: the knowledge bases Kv used
in the proofs of these two theorems are not HT-safe w.r.t. the respective signatures Γ. In
particular, consider Kv used in the proof of Theorem 7. The set of HT-rules Rv obtained
from the TBox of Kv is shown below.

B1 v ∃S.A1  B1(x)→ ∃S.A1(x) (23)

A2 v B2  A2(x)→ B2(x) (24)

∃R.B2 v B2  R(x, y) ∧B2(y)→ B2(x) (25)

∃S.B2 v ⊥  S(x, y) ∧B2(y)→ ⊥ (26)

Now safe(Rv,Γ) = {B2}. It is straightforward to see that the reduct of Rv w.r.t. Γ, shown
below, is not semantically modular w.r.t. Γ = {A1, A2, R}.

B1(x)→ ∃S.A1(x) (27)

A2(x)→ ⊥ (28)

Consider now Kv used in the proof of Theorem 8. The set of HT-rules Rv obtained from
the TBox of Kv is shown below.

B v ∀R.B  B(x) ∧R(x, y)→ B(y) (29)

A2 uB v ⊥  A2(x) ∧B(x)→ ⊥ (30)

Now safe(Rv,Γ) = {B}, so the reduct ofRv w.r.t. Γ is empty and thus semantically modular
w.r.t. Γ = {A1, A2, R}; however, the first HT-rule does not satisfy Condition 2 from Defini-
tion 6 since the rule body does not contain an atom of the form A(y) with A ∈ safe(Rv,Γ).

Note that, if Γ contains only atomic concepts, then safe(Rv,Γ) = ∅. The reduct of Rv
w.r.t. Γ is then equal to Rv, so Condition 1 from Definition 6 holds if and only if Rv is
semantically modular w.r.t. Γ; furthermore, Condition 2 vacuously holds for Rv. Thus,
HT-safety reduces to semantic modularity w.r.t. Γ if only atomic concepts are shared. The
following proposition shows that, given an interpretation for the symbols in Γ, we can obtain
a model of Rv by interpreting safe concepts as the empty set.
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Proposition 3. Let Rv be a set of HT-rules that is HT-safe w.r.t. Γ. Then, for each
interpretation I of the symbols in Γ, a model J of Rv exists such that 4J = 4I , XJ = XI

for each symbol X ∈ Γ, and XJ = ∅ for each atomic concept X ∈ safe(Rv,Γ).

Proof. Let I be an interpretation for the symbols in Γ, and let R′v be the reduct of Rv w.r.t
Γ. Since R′v is semantically modular w.r.t. Γ, a model I ′ of R′v exists such that 4I′ = 4I

and XI′ = XI for each symbol X ∈ Γ. Let J be the interpretation obtained from I ′ by
setting XJ = ∅ for each X ∈ safe(Rv,Γ). Consider now an arbitrary HT-rule % ∈ Rv. If
some A ∈ safe(Rv,Γ) occurs in the body of %, then AJ = ∅ clearly implies J |= %. Otherwise,
let %′ ∈ R′v be the rule obtained by removing in % all head atoms that contain a safe concept;
then I ′ |= %′ clearly implies J |= %. Consequently, J |= Rv.

Finally, note that HT-safety is not a syntactic condition; in fact, checking HT-safety is
undecidable in general because it requires checking semantic modularity of a set of HT-rules
w.r.t. a signature. As mentioned in Section 2.3, however, several practically useful syntactic
conditions are known that guarantee semantic modularity (Cuenca Grau, Horrocks, Kaza-
kov, & Sattler, 2008), and any such condition can be used to obtain a purely syntactic
HT-safety notion.

5.1.2 Acyclicity

The negative result of Theorem 9 relies on Kv containing a cyclic axiom A v ∃R.A with
R ∈ Γ and A 6∈ Γ. We next present a sufficient condition that can detect such cycles in
polynomial time.

Our test involves a set of function-free first-order formulae with equality D(Rv,Av)
whose consequences “summarize” the models ofRv ∪ Th ∪ Av; more precisely, the projection
of each canonical model of Rv ∪ Th ∪ Av to the symbols in sig(Rv) can be homomorphically
embedded into the set of ground facts entailed by D(Rv,Av). Intuitively, since the axioms of
Th are not available, the facts entailed by D(Rv,Av) should reflect all possible consequences
of Th and all information that can be derived using Rv ∪ Av. Theory D(Rv,Av) also keeps
track of the paths in the “visible” part of the canonical models of Rv ∪ Th ∪ Av by using
two special binary predicates: Succ keeps track the “successorship” relation between domain
elements, and Γ-Desc keeps track the “descendant” relation via roles contained in Γ. The
acyclicity condition then checks whether the Γ-Desc relation as entailed by D(Rv,Av) is
cyclic; if this is not the case, we can establish a bound on the length of paths of roles in Γ.

Definition 7. Let Rv be a set of HT-rules, let Av be an ABox, and let Γ be a signature. For
each atomic concept A ∈ sig(Rv) ∪ sig(Av), let vA and v¬A be individuals uniquely associated
with A and ¬A, respectively; furthermore, let Succ and Γ-Desc be binary predicates not
occurring in Rv or Av. Function tt(·) maps each atom α occurring in Rv ∪ Av into a
conjunction of atoms as follows, where z is an arbitrary term:

• tt(¬A(z)) = >;

• tt(≥nR.C(z)) = ar(R, z, vC) ∧ tt(C(vC)) ∧ Succ(z, vC); and

• tt(α) = α for each atom α of the form not covered by the above two cases.
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Furthermore, D(Rv,Av) is the set of function-free formulas of first-order logic with
equality defined as follows, where all variables are implicitly universally quantified.

• For each assertion α ∈ Av, set D(Rv,Av) contains tt(α).

• For each individual c occurring in Av and each atomic concept A ∈ Γ, set D(Rv,Av)
contains A(c).

• For each HT-rule % ∈ Rv of the form (1) and each 1 ≤ j ≤ n, set D(Rv,Av) contains
the following formula:

tt(U1) ∧ . . . ∧ tt(Um)→ tt(Vj) (31)

• For each atomic concept A ∈ Γ, set D(Rv,Av) contains the following formula:

Succ(z1, z2)→ A(z2) (32)

• For all atomic roles R,R′ ∈ Γ, set D(Rv,Av) contains the following formulae:

R′(z1, z2)→ R(z1, z2) (33)

R′(z1, z2)→ R(z2, z1) (34)

R(z, z1) ∧R′(z, z2)→ z1 ≈ z2 (35)

R(z1, z) ∧R′(z2, z)→ z1 ≈ z2 (36)

R(z1, z) ∧R′(z, z2)→ z1 ≈ z2 (37)

• For each atomic role R ∈ Γ, set D(Rv,Av) contains the following formulae:

Succ(z1, z2) ∧R(z1, z2)→ Γ-Desc(z1, z2) (38)

Γ-Desc(z1, z2) ∧ Γ-Desc(z2, z3)→ Γ-Desc(z1, z3) (39)

Set D(Rv,Av) contains a harmful cycle if D(Rv,Av) |= Γ-Desc(vC , vC) for some vC . Fur-
thermore, Rv ∪ Av is acyclic w.r.t. Γ if D(Rv,Av) does not contain a harmful cycle.

The set of formulae D(Rv,Av) can be straightforwardly transformed into an equiva-
lent datalog program with equality using the well-known equivalences of first-order logic;
therefore, we often refer to D(Rv,Av) as a datalog program.

Acyclicity allows us to express axioms δ6 and δ8 from Table 3. Intuitively, acyclicity
ensures that the “visible parts” of the canonical forest models ofRv ∪ Th ∪ Av do not contain
infinite chains of roles from Γ; we use this property in our algorithm to define a suitable
blocking condition. We explain this intuition by means of an example. Let Γ = {C,R,U}
where C is a concept and R and U roles, Av = {A(a)}, and Rv contains the following HT-
rules; the corresponding formulae in D(Rv,Av) are shown after the “ ” symbol. Note that
Rv is HT-safe w.r.t. Γ.

A(x)→ ∃R.B(x)  A(x)→ R(x, vB) ∧B(vB) ∧ Succ(x, vB) (40)

A(x)→ ∃S.C(x)  A(x)→ S(x, vC) ∧ C(vC) ∧ Succ(x, vC) (41)

224



Reasoning over Ontologies with Hidden Content

A

B,C

C,D A

a

b

c d

R

U

S

S

(a) Model

A

B,C,E

C,D A

A,C

a

b

c d

e

R

U

S

S

R

U

(b) Extended Model

A,C

B,C

C,D

a
vA

vB

vC
vD

R
U

R
U

S

S

(c) Acyc. Check

A,C

B,C,D

a
vA

vBvC
vD

R
U
S

R
U
S

(d) Acyc. Check (I)

A,C

B,C,E

C,D

a
vA

vB
vE

vC
vD

R
U

R
U

S

S

(e) Acyc. Check (II)

Figure 1: Canonical Models and Acyclicity

A(x)→ ∃S.D(x)  A(x)→ S(x, vD) ∧D(vD) ∧ Succ(x, vD) (42)

S(x, y1) ∧ S(x, y2)→ y1 ≈ y2  S(x, y1) ∧ S(x, y2)→ y1 ≈ y2 (43)

C(x) ∧D(x)→ ∃S.A(x)  C(x) ∧D(x)→ S(x, vA) ∧A(vA) ∧ Succ(x, vA) (44)

Consider also the following hidden TBox expressed in ALCHIQ:

Th = { > v ≤ 1R.>, R v U−, ∃U.> v C } (45)

Figure 1(a) shows a canonical model I of Rv ∪Th∪Av. Furthermore, Figure 1(c) shows the
ground atoms entailed by D(Rv,Av) represented as a graph G in which solid arrows show
roles R, U , and S, and dashed arrows show the special predicate Γ-Desc; for clarity, the
atoms involving the special predicate Succ have not been included in this and the following
figures. Note that D(Rv,Av) entails R(vA, vB) and R(a, vB); these atoms, together with
rules (34) and (35), entail vA ≈ va; consequently, vA and va are represented in Figure 1(c)
by the same node. Structure G “summarizes” I in the sense that I can be homomorphically
embedded into G. The repetitive structure of I is represented in G as a cycle over nodes vA
and vC via S; however, since S is not a shared symbol (i.e., S 6∈ Γ), this does not give rise
to a harmful cycle. Consequently, Rv ∪ Av is acyclic w.r.t. Γ, which guarantees that the
“visible” part of a model of Rv ∪ Th ∪ Av does not contain R-chains of unbounded length,
regardless of the contents of Th. Accordingly, the canonical model I of Rv ∪ Th ∪Av shown
in Figure 1(a) contains no such R-chains.
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Note, however, that G overestimates the canonical model I; for example, G contains an
individual vA that is an instance of both A and C, which is not reflected in I. Now let us
assume that R′v is Rv extended with the following HT-rule:

A(x) ∧ C(x)→ ∃R.C(x)  A(x) ∧ C(x)→ R(x, vC) ∧ C(vC) ∧ Succ(x, vC) (46)

The canonical model of R′v ∪ Th ∪ Av is clearly the same as that of Rv ∪ Th ∪ Av; however,
D(R′v,Av) contains a harmful cycle, as shown in Figure 1(d). Intuitively, D(R′v,Av) provides
us with a conservative overestimate of the canonical models, which can in some cases detect
“cycles” that do not really exist in canonical models. This is a necessary consequence of
the fact that acyclicity can be checked in polynomial time.

Definition 7, however, provides us with a sufficient check. For example, let R′′v be Rv
extended with the following HT-rules:

A(x)→ ∃R.E(x)  A(x)→ R(x, vE) ∧ E(vE) ∧ Succ(x, vE) (47)

B(x) ∧ C(x) ∧ E(x)→ ∃R.A(x)  
B(x) ∧ C(x) ∧ E(x)→

R(x, vA) ∧A(vA) ∧ Succ(x, vA)
(48)

The canonical model of R′′v∪Th∪Av and the ground atoms entailed by D(R′′v ,Av) are shown
in Figures 1(b) and 1(e), respectively. The HT-rules in R′′v \Rv enforce the existence of an
infinite R-chain, which is reflected as a harmful cycle (e.g., the self-loop on vA).

Acyclicity can indeed be checked in polynomial time, as shown next.

Proposition 4. Acyclicity of Rv ∪ Av w.r.t. Γ can be checked in polynomial time.

Proof. Let D(Rv,Av) be as specified in Definition 7. The number of fresh individuals of
the form vA and v¬A is clearly linear in the size of Rv, Av, and Γ, so the size of D(Rv,Av)
is polynomial in the size of Rv, Av, and Γ.

We can compute the set of all positive ground atoms that follow from D(Rv,Av) in
polynomial time using forward chaining. All predicates in D(Rv,Av) are of bounded arity,
so the number of such atoms is polynomial in the size of D(Rv,Av). This straightfor-
wardly implies the claim of this proposition if we show that, given a set of facts and a rule
% ∈ D(Rv,Av), we can compute the set of entailed facts in polynomial time. Rules not of
the form (31) contain a bounded number of variables, so the set of entailed facts can be
computed in polynomial time by simply considering all possible mappings of variables to
individuals. Assume now that % is of the form (31). The number of variables in % is linear
in the size of Rv, so there are exponentially many mappings of variables to individuals. We
can, however, determine the values for x and yi that make the body true as follows. For
each variable yi, let Pi be a binary relation that initially contains all pairs of individuals
occurring in D(Rv,Av); this relation will eventually contain all pairs of values for x and yi
that make the body of % true. We then remove from each Pi all pairs that do not satisfy all
body atoms of % that contain only variables x and yi. Next, for all Pi and Pj , we remove
all pairs 〈c, c′〉 from Pi for which no c′′ exists such that 〈c, c′′〉 ∈ Pj . We then consider each
consequent atom α of %; if α contains only variables x and yi, we infer all ground atoms
obtained by replacing x with c and yi with c′ for each 〈c, c′〉 ∈ Pi; if α contains only variables
yi and yj , we infer all ground atoms c′ ≈ c′′ such that an individual c exists where 〈c, c′〉 ∈ Pi
and 〈c, c′′〉 ∈ Pj . This can clearly be done by polynomially many steps in the number of
individuals in D(Rv,Av) and the maximal number of variables in a rule in Rv.
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Table 4: Additional Derivation Rules

A-cut

If an individual s in A and an atomic concept A ∈ Γ exist such that
1. s is not indirectly blocked in A and
2. {A(s),¬A(s)} ∩ A = ∅

then A1 := A ∪ {A(s)} and A2 := A ∪ {¬A(s)}.

R-cut

If individuals s and t in A and atomic roles R,R′ ∈ Γ exist such that
1. neither s nor t is indirectly blocked in A,
2. R′(s, t) ∈ A, and
3. {R(s, t),¬R(s, t)} ∩ A = ∅

then A1 := A ∪ {R(s, t)} and A2 := A ∪ {¬R(s, t)}.

R−-cut

If individuals s and t in A and atomic roles R,R′ ∈ Γ exist such that
1. neither s nor t is indirectly blocked in A,
2. R′(s, t) ∈ A, and
3. {R(t, s),¬R(t, s)} ∩ A = ∅,

then A1 := A ∪ {R(t, s)} and A2 := A ∪ {¬R(t, s)}.

≈-cut

If individuals s, s1, and s2 in A exist such that
1. none of s, s1, and s2 is indirectly blocked in A,
2. {s1 ≈ s2, s1 6≈ s2} ∩ A = ∅, and
3. atomic roles R,R′ ∈ Γ exist such that
3.1 {R(s, s1), R′(s, s2)} ⊆ A or
3.2 {R(s1, s), R

′(s2, s)} ⊆ A or
3.2 {R(s1, s), R

′(s, s2)} ⊆ A
then A1 := A ∪ {s1 ≈ s2} and A2 := A ∪ {s1 6≈ s2}.

Ωa-rule
If 1. ⊥ 6∈ A and

2. a connected component A′ of A|Γ exists such that Ωa
Th,Γ(A′) = f

then A1 := A ∪ {⊥}.

5.1.3 An Import-by-Query Algorithm

We next present our import-by-query algorithm applicable to Rv ∪ Av that is HT-safe and
acyclic w.r.t. Γ. The algorithm modifies the standard hypertableau algorithm as follows.
First, several cut rules nondeterministically guess all “relevant” assertions involving the
symbols in Γ. Second, the Ωa-rule checks whether the guesses are indeed consistent with
Th. Third, a relaxed blocking condition ensures termination.

Definition 8. Let C[ΓC ,RCv ∪ACv , T Ch ] be the class of inputs where RCv ∪ ACv is acyclic w.r.t.
ΓC, RCv is HT-safe w.r.t. ΓC, and T Ch is an ALCHIQ TBox. The ALCHIQ Ωa-algorithm
takes a triple 〈Γ,Rv ∪ Av, Th〉 ∈ C and is obtained by modifying Definition 1 as follows.

Blocking. An unnamed individual s is blocking-relevant in A if, for s′ the predecessor
of s, we have

LA(s, s′) ∩ Γ = LA(s′, s) ∩ Γ = ∅.

Then, each individual s in an ABox A is assigned a blocking status in the same way as in
Definition 1, with the difference that s is directly blocked by t if, in addition to the conditions
in Definition 1, both s and t are blocking-relevant.
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Figure 2: Completeness of the ALCHIQ Ωa-algorithm

Derivation Rules. The derivation rules are given in Tables 2 and 4, where A|Γ is the
ABox obtained from A by removing each assertion containing an indirectly blocked individual
and each assertion α such that sig(α) 6⊆ Γ.

In Section 5.1.4 we show that some of the cut rules in Table 4 are not needed if we know
that Th is expressed in a description logic between ALC and ALCHIQ. Our algorithm is
indeed an import-by-query algorithm, as we show next.

Theorem 11. The ALCHIQ Ωa-algorithm is an import-by-query algorithm based on ABox
satisfiability oracles for the class of inputs C[ΓC ,RCv ∪ ACv , T Ch ] from Definition 8. The al-
gorithm can be implemented such that it runs in N2ExpTime in N , and the total number
of oracle queries and the size of each query are both at most exponential in N , where
N = |Rv ∪ Av|+ |Γ| for the input Rv, Av, and Γ.

The proof of Theorem 11 is lengthy and quite technical, so we defer it to the appendix
and next discuss only the intuitions. The derivation rules from Table 2 are clearly sound.
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Furthermore, due to acyclicity, the chains of assertions involving roles from Γ are bounded
in length, which enables blocking and ensures termination. We next sketch the completeness
argument. In particular, for completeness we need to show that the existence of a clash-free
ABox in a derivation to which no rule is applicable implies the satisfiability of the input.
Let A be a clash-free ABox labeling the leaf of a derivation for 〈Γ,Rv ∪ Av, Th〉, and let Rh
be the set of HT-rules corresponding to Th. Each model of Rv ∪ A ∪ Th can be extended
to a model of Rv ∪ Av ∪ Th, so it suffices to show the satisfiability of Rv ∪ A ∪ Th. To this
end, we extend A to a clash-free ABox Afin such that no derivation rule of the standard
hypertableau algorithm is applicable toRv ∪Rh and Afin; thus, Rv ∪ Afin ∪ Th is satisfiable,
and since A ⊆ Afin so is Rv ∪ A ∪ Th by monotonicity. The construction of Afin proceeds
as follows:

1. We split the projection A|Γ of A to Γ. In particular, we define Anm as the ABox con-
taining all assertions of A|Γ involving individuals reachable from a named individual;
furthermore, for each nonblocked blocking-relevant individual t, we define At as the
ABox containing all assertions of A|Γ involving individuals reachable from t.

2. We apply the standard hypertableau algorithm to Rh and each of the connected
components of Anm, and Rh and each At; let Anm

fin and Atfin be clash-free ABoxes
labeling leaves of the respective derivations. The Ωa-rule is not applicable to A so
such ABoxes exist.

3. We define Afin as the union of A, Anm
fin , all Atfin, and all assertions C(s) such that s is

blocked in A by the blocker s′, C(s′) ∈ As′fin, and sig(C) ⊆ sig(Rh).

Let us call the individuals from A old, and the individuals introduced in the second step
new ; we then observe the following. (1) Due to the cut rules, the second step above cannot
derive fresh assertions involving only old individuals and the symbols in Γ without leading to
a contradiction. (2) Each of the connected components of Anm and each At are disjoint, so
the HT-rules from Rh can be applied in Afin only to subsets that correspond to a connected
component of Anm and At. (3) Due to (1), no HT-rule from Rv can become applicable to
assertions involving only old individuals. (4) Due to HT-safety, no HT-rule from Rv can
become applicable to an assertion of Afin that involves a new individual. (5) Due to (1) and
the third step from the construction above, if an individual s is blocked in A, Anm

fin , or Atfin,
then s is blocked in Afin as well. Then, (1)–(5) imply that no derivation rule of the standard
hypertableau algorithm is applicable to Rv ∪Rh and Afin, which proves completeness.

We explain this intuition on an example where Γ = {C,R}, Av = {A(a)}, Rv consists
of HT-rules (40)–(44), and Th is defined as follows:

Th = { ∃R.> v C, C v ∃T.C, C v E } (49)

As shown in Section 5.1.2, Rv ∪ Av is acyclic w.r.t. Γ, so the ALCHIQ Ωa-algorithm
is applicable. The algorithm produces a derivation in which a leaf is labeled with the
ABox A shown in Figure 2(a); for readability, we show neither the negative assertions
nor the assertions involving complex concepts. Individual f is directly blocked by c in A,
and assertions C(a) and C(d) are introduced by the A-cut rule. To construct Afin, the
assertions containing a symbol not in Γ are removed, resulting in the ABox A|Γ shown in
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Figure 3: Acyclicity Check for Th in ALCHI

Figure 2(b). This ABox is then split into connected components Anm, Ac, and Ad; note
that c and d are the only nonblocked blocking-relevant individuals. Next, Anm, Ac, and Ad
are completed w.r.t. Rh using the standard hypertableau algorithm; Figure 2(c) shows the
resulting ABoxes Anm

fin , Acfin, and Adfin. Note that C(a) and C(d) in A are consistent with
the axiom ∃R.> v C from Th. Finally, Afin is obtained by taking the union of A, Anm

fin ,
Acfin, and Adfin, and adding E(f); the latter is because f is blocked by c and E(c) ∈ Acfin.
The result is shown in Figure 2(d); clearly, no derivation rule of the standard hypertableau
algorithm is applicable to Afin.

5.1.4 Hidden Ontology in DLs Between ALC and ALCHIQ

The main limitation of the acyclicity condition from Definition 7 stems from the fact that
we must anticipate all possible consequences of Th. Both the acyclicity conditions and
the derivation rules from Table 4 can be simplified if the hidden ontology is known to be
expressed in a description logic between ALC and ALCHIQ.

• If Th is known not to use cardinality restrictions, then we can omit rules (35)–(37) in
the definition of D(Rv,Av), and the ≈-cut rule in Table 4 is not required.

• If Th is known not to use inverse roles, then we can omit rules (34), (36), and (37) in
the definition of D(Rv,Av), the R−-cut rule is not required, and Conditions 3.2 and
3.3 can be removed from the ≈-cut rule.

• If Th is known not to use role hierarchies, then we can omit rules (33) and (34) in
the definition of D(Rv,Av), the R-cut in Table 4 is not required, and the R−-cut rule
need only be applied if R and R′ are the same.

These simplifications allow our approach to be applied to a wider range of visible on-
tologies. For example, consider the set R′′v consisting of HT-rules (40)–(44) and (47)–(48),
for which we obtained a harmful cycle w.r.t. Γ = {C,R,U}, as shown in Figure 1(e). If
Th is known to be expressed in ALCHI (and so does not use cardinality restrictions), we
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can omit formulas of the form (35)–(37) in the definition of D(Rv,Av); the ground atoms
entailed by such D(Rv,Av) are shown in Figure 3. This change makes Rv ∪ Av acyclic
w.r.t. Γ: we can now be sure that, for an arbitrary hidden TBox expressed in ALCHI, no
infinite R-chains need to be considered during reasoning with Rv.

5.2 Practical Import-by-Query Algorithms

The algorithm presented in Section 5.1.3 is not suited for practical implementation because
the derivation rules in Table 4 incur a huge amount of nondeterminism. In this section, we
present practical import-by-query algorithms in which nondeterministic rules are replaced
with “on demand” oracle calls, which makes the algorithms “more goal-oriented.” Our
algorithms make no assumptions about the kinds of symbols contained in Γ: both atomic
concepts and roles can be shared.

5.2.1 Importing Horn Ontologies

In this section, we present a practical algorithm that applies when Th is expressed in the
Horn-ALCHIQ fragment of ALCHIQ. It is well known that Th can then be transformed
into a set of Horn HT-rules. This allows us to eliminate the nondeterministic cut rules,
use an ABox entailment oracle instead of an ABox satisfiability oracle, and define oracle
query rules that deterministically “complete” the query ABox A with the missing assertions
entailed by Th∪A. Such an algorithm issues oracle queries on demand, so it is goal oriented
and thus more amenable to implementation.

Definition 9. Let C[ΓC ,RCv ∪ACv , T Ch ] be the class of inputs where RCv ∪ACv is acyclic w.r.t.
ΓC, RCv is HT-safe w.r.t. ΓC, and T Ch is a Horn-ALCHIQ TBox. The Horn-ALCHIQ Ωe-
algorithm takes a triple 〈Γ,Rv ∪ Av, Th〉 ∈ C and is obtained from Definition 8 by replacing
the derivation rules from Table 4 with those in Table 5.

Our algorithm is indeed an import-by-query algorithm with the same worst-case com-
plexity as the algorithm for the non-Horn case.

Theorem 12. The Horn-ALCHIQ Ωe-algorithm is an import-by-query algorithm based on
ABox entailment oracles for the class of inputs C[ΓC ,RCv ∪ ACv , T Ch ] from Definition 9. The
algorithm can be implemented such that it runs in N2ExpTime in N , and the total number
of oracle queries and the size of each query are both also at most exponential in N , where
N = |Rv ∪ Av|+ |Γ| for the input Rv, Av, and Γ.

The proof of Theorem 12 is obtained by a modification of the one for Theorem 11 and
is given in the appendix.

5.2.2 Import-by-Query in EL

In this section, we present an import-by-query algorithm based on ABox entailment oracles
that can handle the case when both Kv and Th are expressed in EL. In this setting, only
Theorems 5 and 7 provide clues about features that hinder existence of an import-by-query
algorithm. In particular, it is no longer necessary for Kv to be acyclic.

Our algorithm is again based on the hypertableau framework, so Kv is first converted into
a set Rv of EL-rules and a normalized ABox Av. Since EL does not allow for inverse roles
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Table 5: Additional Derivation Rules for Horn KBs

Ωe-concept

If a connected component A′ of A|Γ, an individual s in A′,
and an atomic concept A ∈ Γ ∪ {⊥} exist such that

1. s is not indirectly blocked in A,
2. A(s) 6∈ A, and
3. Ωe

Th,Γ(A′, A(s)) = t

then A1 := A ∪ {A(s)}

Ωe-role

If a connected component A′ of A|Γ, individuals s and t in A′,
and atomic roles R,R′ ∈ Γ exist such that

1. neither s not t is indirectly blocked in A,
2. R′(s, t) ∈ A′ or R′(t, s) ∈ A′,
3. R(s, t) 6∈ A, and
4. Ωe

Th,Γ(A′, R(s, t)) = t

then A1 := A ∪ {R(s, t)}

Ωe-≈

If a connected component A′ of A|Γ and individuals s, s1, and s2 in A′
exist such that

1. none of s, s1, and s2 are indirectly blocked in A,
2. s1 ≈ s2 6∈ A,
3. atomic roles R,R′ ∈ Γ exist such that
3.1 {R(s, s1), R′(s, s2)} ⊆ A or
3.2 {R(s1, s), R

′(s2, s)} ⊆ A or
3.3 {R(s1, s), R

′(s, s2)} ⊆ A, and
4. Ωe

Th,Γ(A′, s1 ≈ s2) = t

then A1 := A ∪ {s1 ≈ s2}

or universal quantification, there is no danger of information propagating from a successor
to a predecessor; therefore, we can relax the HT-safety condition as shown in Definition 10.

Definition 10. Let Rv be a set of EL-rules, and let Γ be a signature Then, Rv is EL-safe
w.r.t. Γ if

• it satisfies Condition 1 from Definition 6, and

• for each rule % ∈ Rv and each body atom of % of the form R(x, yi) with R ∈ Γ, the
body of % contains an atom B(yi) such that B ∈ safe(Rv,Γ).

Our algorithm takes a set Rv of EL-safe rules and a normalized ABox Av. It applies
the standard EL hypertableau derivation rules; furthermore, just like the Horn-ALCHIQ
Ωe-algorithm from Section 5.2.1, it uses the oracle to complete the ABoxes encountered in
a derivation with the relevant concept assertions.

Definition 11. Let C[ΓC ,RCv ∪ACv , T Ch ] be the class of inputs where RCv is a set of EL-rules
that is EL-safe w.r.t. ΓC, ACv is a normalized ABox, and T Ch is an EL TBox. The EL
Ωe-algorithm takes a triple 〈Γ,Rv ∪ Av, Th〉 ∈ C and is obtained by extending the algorithm
from Definition 2 with the Ωe-concept derivation rule shown in Table 5.
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Our algorithm is indeed an import-by-query algorithm, and it can be implemented to run
in polynomial time, as shown by the following theorem. In contrast to algorithms we have
presented thus far, the EL Ωe-algorithm is both optimal and amenable to implementation.

Theorem 13. The EL Ωe-algorithm is an import-by-query algorithm based on ABox entail-
ment oracles for the class of inputs C[ΓC ,RCv ∪ ACv , T Ch ] from Definition 11. The algorithm
can be implemented such that it runs in PTime in N with a polynomial number in N of
calls to Ωe

Th,Γ, where N = |Rv ∪ Av|+ |Γ| for the input Rv, Av, and Γ.

The proof of Theorem 13 is rather technical and lengthy, and it is given in the appendix.
The intuition behind the proof, however, is the same as in the case of the ALCHIQ Ωa-
algorithm, and the differences are due to the fact that the ABoxes produced by the EL
Ωe-algorithm have a specific shape.

6. A Lower Bound on the Complexity of Import-by-Query Reasoning

In this section we show that no import-by-query algorithm that handles the same input as
our ALCHIQ Ωa-algorithm can make only a polynomial number (in |Γ|) of queries each of
which is of polynomial size (in |Γ|). This result applies already if Γ contains only atomic
concepts, so the only requirement for the ALCHIQ Ωa-algorithm to be applicable is that
the TBox of Kv is semantically modular w.r.t. Γ.

Theorem 14. Let C[ΓC ,KCv , T Ch ] be the class of inputs where ΓC contains only atomic con-
cepts, KCv is an ALCHIQ knowledge base that is semantically modular in ΓC, and T Ch is
an ALCHIQ TBox. Then, no import-by-query algorithm ibqa based on ABox satisfiability
oracles for L = ALCHIQ and C exists such that, for each input 〈Γ,Kv, Th〉 ∈ C, the total
number of oracle queries in all possible runs of ibqa[Th,Γ,L] on Kv, as well as the size of
each query, are both polynomial in |Γ|.

Proof. Assume that ibqa is an algorithm that satisfies the theorem’s assumptions; then,
integers c1 and c2 exist such that, for each input 〈Γ,Kv, Th〉 ∈ C, the total number of oracle
queries in all possible runs of ibqa[Th,Γ,L] on Kv is smaller than or equal to |Γ|c1 , and the
maximal size of each query ABox is smaller than or equal to |Γ|c2 .

We next construct a particular input in C for which we show that ibqa violates the above
assumption. Let k be an arbitrary integer such that kc1+c2 < 2k; such k exists since c1 and
c2 are fixed. Let Γ = {A1, . . . , Ak} be arbitrary atomic concepts, and let Z, B, C1, . . ., Ck,
C1, . . ., Ck be atomic concepts not occurring in Γ. Then, we define Kv = Tv ∪ Av such that
Av = {Z(a)} and Tv contains the following axioms:

B v ∃R.B (50)

Z v B u C1 u . . . u Ck (51)

Cj u Cj v ⊥ 1 ≤ j ≤ k (52)

> v (¬C1 t ∀R.C1) u (¬C1 t ∀R.C1) (53)

Cj−1 u ∃R.Cj−1 v (¬Cj t ∀R.Cj) u (¬Cj t ∀R.Cj) 1 < j ≤ k (54)

Cj−1 t (Cj−1 u ∃R.Cj−1) v (¬Cj t ∀R.Cj) u (¬Cj t ∀R.Cj) 1 < j ≤ k (55)

Ci v Ai 1 ≤ i ≤ k (56)
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Ci v ¬Ai 1 ≤ i ≤ k (57)

TBox Tv uses the well-known “integer counting” technique (Tobies, 2000). Consider an
arbitrary model I of Kv. Domain elements of I can be assigned integers between 0 and
2k − 1 by means of 2k atomic concepts C1, . . ., Ck, C1, . . ., Ck. Axiom (51) implies that
aI ∈ (Ck u . . . u C1)I , which “initializes the counter” to 0. Axiom (50) ensures that aI is
an origin of an infinite R-chain. Axioms (52) ensure that no domain element in this chain
is labeled with both Cj and Cj . Axioms (53), (54), and (55) increment the counter over R.
Finally, these axioms together with axioms (56) and (57) ensure that each possible number
between 0 and 2k − 1 is assigned to some domain element of I in the R-chain. Clearly, Tv
is semantically modular w.r.t. Γ since we can extend each interpretation of the symbols of
Γ to a model of Tv by interpreting the symbols not in Γ with the empty set.

Let T 1
h = ∅, let A1, . . . ,Am be the query ABoxes occurring in all possible runs of

ibqa[T 1
h ,Γ,L] on Kv, and let n be the maximal size of Ai for 1 ≤ i ≤ m. By our assumptions,

we have m ≤ kc1 and n ≤ kc2 , which implies m× n = kc1+c2 < 2k due to the way we chose
k. For each 1 ≤ i ≤ m, let A′i be the following ABox equivalent to Ai:

• If Ai is unsatisfiable, then A′i = {⊥}.

• If Ai is satisfiable, let A′i be an ABox that contains for each individual s exactly one
concept assertion of the form D(s) where D is in disjunctive normal form; that is, D
is expressed as a disjunction of concepts of the form (¬)A1 u . . . u (¬)Ak. Such A′i
can be obtained from Ai by applying de Morgan’s laws.

Let D1, . . . , D` be all disjunctive concepts that occur in some satisfiable ABox A′i. Each A′i
contains at most n such concepts, so 1 ≤ ` ≤ m× n. Furthermore, let U be the subset of
{D1, . . . , D`} containing precisely those Di that have exactly one disjunct. Finally, let S be
a concept of the form (¬)A1 u . . . u (¬)Ak that does not occur in U ; such S exists because
` ≤ m× n < 2k. Now let T 2

h be the following TBox:

T 2
h = {S v ⊥} (58)

We next show that, for each 1 ≤ j ≤ `, concept Dj is satisfiable w.r.t. T 2
h . The

claim is trivial if Dj does not contain S; otherwise, Dj contains a disjunct S′ 6= S, so an
interpretation satisfying T 2

h and Dj can be obtained by interpreting S′ as a nonempty set.
We next show that Ωa

T 1
h ,Γ,L

(A′i) = Ωa
T 2
h ,Γ,L

(A′i) for each 1 ≤ i ≤ m; since Ai and A′i are

equivalent, then Ωa
T 1
h ,Γ,L

(Ai) = Ωa
T 2
h ,Γ,L

(Ai) as well. The statement clearly holds if A′i is

unsatisfiable, so assume that A′i is satisfiable. Since A′i consists of assertions of the form
D(s) where D is satisfiable w.r.t. T 2

h , an interpretation satisfying A′i ∪ T 2
h can be obtained

as a disjoint union of the interpretations satisfying each D.
By Proposition 1, the runs of ibqa[T 1

h ,Γ,L] on Kv then coincide with the runs of
ibqa[T 2

h ,Γ,L] on Kv; however, it is straightforward to see that Kv∪T 1
h is satisfiable, whereas

Kv ∪ T 2
h is unsatisfiable, which is a contradiction.

7. Related Work

There is currently a growing interest in techniques for hiding parts of an ontology Th. One
possible approach is to hide a subset Υ of the signature of Th by first extracting from Th an Υ-

234



Reasoning over Ontologies with Hidden Content

module MΥ—a subset of Th that preserves all Υ-consequences (i.e., all logical consequences
formed using only the symbols in Υ)—and then publishing the ontology Th \MΥ. In order
to ensure that no sensitive information about Υ is being disclosed, the module MΥ should
be depleting (Kontchakov, Pulina, Sattler, Schneider, Selmer, Wolter, & Zakharyaschev,
2009)—that is, ontology Th \MΥ should be indistinguishable from the empty ontology
w.r.t. Υ-consequences. This approach ensures that no Υ-consequences are disclosed to
external applications and offers the additional advantage that one can reason over the union
of Kv and Th \MΥ using off-the-shelf DL reasoners. Finally, although determining whether
a subset of an ontology is a depleting module for a signature is an undecidable problem for
many DLs (and hence extraction of minimal depleting modules is often computationally
infeasible), several practical techniques for extracting (not necessarily minimal) depleting
modules are known (Cuenca Grau, Horrocks, Kazakov, & Sattler, 2008).

An important disadvantage of this approach is that the module MΥ may also contain
relevant information that is not sensitive (e.g.,MΥ may entail consequences about symbols
Γ not in Υ) and hence the union of Kv (which may use symbols from Γ) and Th \MΥ may
not contain enough information to answer relevant queries. Furthermore, by adopting this
approach, the vendor of Th would distribute a subset of the axioms of Th, which may allow
competitors to plagiarize parts of Th. Finally, the published axioms might mention symbols
in Υ (even if they do not entail any Υ-consequence) and external applications would be
aware of the presence of those symbols in the ontology.

Some of these drawbacks can be overcome by publishing an Υ-interpolant of Th—an
ontology that contains no symbols from Υ and that coincides with Th on all logical conse-
quences formed using the symbols not in Υ (Konev et al., 2009; Wang et al., 2009, 2008;
Lutz & Wolter, 2011; Nikitina, 2011). In contrast to the module extraction approach, pub-
lishing an interpolant ensures that the sensitive information in Th (i.e., the information
about the symbols from Th not mentioned in the interpolant) is not exposed in any way
to external applications; furthermore, interpolants preserve all consequences of symbols not
in Υ. Similarly to the module extraction approach, using interpolation has the additional
advantage that the developers of Kv can reason over the union of Kv and the interpolant
using off-the-shelf DL reasoners.

The interpolation approach may, however, have several drawbacks. First, an interpolant
may exist only if Th is expressed in a relatively weak DL and satisfies certain syntactic
conditions (Konev et al., 2009). In contrast, import-by-query is often possible even if an
interpolant of Th for the signature of interest does not exist.

Second, although interpolants preserve logical consequences formed using symbols not
in Υ, they are not robust under replacement (Sattler et al., 2009)—that is, the union of Kv
and an Υ-interpolant of Th is not guaranteed to yield the same consequences as Th ∪ Kv for a
query q involving no symbols from Υ. For example, given Υ = {R} and Th = {A v ∃R.B},
the empty ontology is an Υ-interpolant (it preserves all consequences of the form C v D with
C and D arbitrary boolean concepts over the signature {A,B}); however, for Kv = {B v ⊥}
we have that Kv ∪ Th entails the consequence A v ⊥, whereas the union of Kv and the
(empty) interpolant does not. Thus, once an interpolant has been published, it cannot be
imported into Kv with the guarantee that all relevant consequences will be preserved, unless
suitable restrictions are imposed to Kv.
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Finally, an Υ-interpolant of Th can be exponentially larger than Th, and may reveal
more information than what is strictly needed. Although import-by-query algorithms can
also formulate in the worst-case exponentially many queries to the oracle, our algorithms
may limit the flow of irrelevant information from Th to Kv, especially if Th is expressed in
a Horn DL, in which case our import-by-query algorithms issue queries “on demand.” For
example, for Γ = {R,C}, Υ = ∅, Kv = {A v ∃R.B,B v C} and Th = {∃R.∃R.C v C}, the
Υ-interpolant is equal to Th and thus publishing the interpolant reveals entire contents of Th.
In contrast, our import-by-query algorithm for EL would not reveal any positive information
about Th, as it would only disclose the fact that an ABox of the form {R(a, b), C(b)} is
satisfiable w.r.t. Th.

The idea of accessing an ontology through an oracle is similar in spirit to the proposal by
Calvanese, De Giacomo, Lembo, Lenzerini, and Rosati (2004) for query answering in a peer-
to-peer setting. The authors consider the problem of answering a conjunctive query q over
KBs Kv and Kh and mappings M by reformulating q as queries that can be evaluated over
Kv and Kh in isolation. The query reformulation algorithm accesses only Kv and M , so q
can be answered using an oracle for Kh. In this setting, however, the focus is on the reuse of
data, rather than schema. Since a satisfiable Kh cannot affect the subsumption of concepts
in Kv, the results by Calvanese et al. (2004) are not applicable to schema reasoning.

8. Conclusion

In this paper, we have proposed and studied the import-by-query framework. Our results
provide a flexible way for ontology designers to ensure selective access to their ontologies.
Our framework thus provides key theoretical insights into the issues surrounding ontology
privacy. Furthermore, we believe our algorithms to be practicable when applied to Horn
ontologies; thus, our results provide a starting point for the development of practical import-
by-query systems.

The problem of import-by-query is novel, and we see many open questions. For example,
a problem that is relevant to both theory and practice is to allow the hidden ontology to
selectively export data and not just schema statements.
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Appendix A. Proof of Theorem 11

We will use the following definitions and intermediate results to prove the theorem.

Definition 12. An ABox A is an HT-ABox if all of its assertions satisfy the following
conditions, for B an atomic or a negated atomic concept, S a role, R an atomic role, a and
b named individuals, s an individual, and i and j integers.

1. Each concept assertion in A is of the form B(s) or ≥nS.B(s).

2. Each role assertion in A is of the form R(a, b), R(s, s.i), or R(s.i, s).

3. If an individual s.i occurs in an assertion in A, then A contains a role assertion of
the form R(s, s.i) or R(s.i, s).

4. Each equality in A is of the form s.i ≈ s.j, s.i.j ≈ s, s ≈ s, or a ≈ b.i.
Furthermore, an extended HT-ABox A is additionally allowed to contain assertions of the
form R(s, s) and s.i ≈ s.
Lemma 1. Let R be a set of HT-rules and let A be an ABox. Then, each ABox labeling a
node of a derivation for R and A is an HT-ABox.

Proof. The proof is a straightforward modification of the proof of Lemma 4 by Motik et al.
(2009), which are due the following observations: since HT-rules do not allow for atoms of
the form R(x, x) in the head, one cannot derive atoms of the form R(s, s); this, in turn,
guarantees that one cannot derive equalities of the form s.i ≈ s.

Lemma 2. (Motik et al., 2009, Lemma 6) Let R be a set of HT-rules and let A be a clash-
free extended HT-ABox not containing indirectly blocked individuals. If no derivation rule
is applicable to R and A, then R∪A is satisfiable.

Definition 13. The weakened pairwise anywhere blocking, abbreviated w-blocking, is the
same as in Definition 1, with the difference that the following condition is used instead of
LA(s′) = LA(t′):

For each HT-rule % ∈ R containing a body atom of the form R(x, y) or R(y, x)
with R an atomic role such that R ∈ LA(s, s′) ∪ LA(s′, s), and for each atomic
concept A occurring in %, we have A ∈ LA(s′) if and only if A ∈ LA(t′).

Lemma 3. Lemma 2 holds even if the derivation for R and A uses w-blocking.

Proof (Sketch). Let A′ be an ABox labeling a leaf of a derivation for R and A; let s be an
individual that is blocked in A′ by t by w-blocking; and let s′ and t′ be the parents of s and
t. For the proof by Motik et al. (2009, Lemma 6) to hold, we must show that no HT-rule
is applicable to an interpretation obtained by unraveling A′. Let % ∈ R be an arbitrary
HT-rule. If % does not contain in the body a role atom with a role R ∈ LA(s, s′) ∪ LA(s′, s),
then the Hyp-rule cannot be applied to % with mapping σ(x) = s. Furthermore, if % does
not contain an atomic concept A, then the fact that A ∈ LA(s′) but A 6∈ LA(t′) or vice versa
cannot affect the applicability of %. Thus, by a straightforward modification of the proof by
Motik et al. (2009, Lemma 6), we can construct a model for A and R by unraveling A′.

It is straightforward to see that the derivation rules in Table 4 do not invalidate Lemma
1—that is, given an HT-ABox, they always produce an HT-ABox.
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A.1 Termination

We first show that the logical consequences of the datalog program D(Rv,Av) from Defi-
nition 7 “overestimate” the ABoxes produced by the hypertableau algorithm; that is, we
show that each ABox ρ(t) labeling a derivation node can be homomorphically embedded
into the set of ground facts entailed by D(Rv,Av).

If s′ = s.i and either R(s, s′) ∈ ρ(t) or R(s′, s) ∈ ρ(t) with R ∈ Γ, we say that s′ is a
Γ-successor of s.

Lemma 4. Let Rv be a set of HT-rules, let Av be an ABox, let Γ be a signature, let
D(Rv,Av) be as given in Definition 7, let Th be an ALCHIQ TBox, and let (T, ρ) be a
derivation for 〈Γ,Rv ∪ Av, Th〉. Then, for each derivation node t ∈ T , a mapping µ from
the individuals in ρ(t) to the individuals in D(Rv,Av) exists satisfying all of the following
properties for all individuals s and s′ occurring in ρ(t):

1. A(s) ∈ ρ(t) with A an atomic concept implies D(Rv,Av) |= A(µ(s)).

2. R(s, s′) ∈ ρ(t) implies D(Rv,Av) |= R(µ(s), µ(s′)).

3. If s′ is a successor of s in ρ(t), then D(Rv,Av) |= Succ(µ(s), µ(s′)).

4. If s′ is a Γ-successor of s in ρ(t), then D(Rv,Av) |= Γ-Desc(µ(s), µ(s′)).

5. If ≥nR.C(s) ∈ ρ(t) with R a possibly inverse role, then the following conditions hold:

(a) if C is an atomic concept, then D(Rv,Av) |= C(vC);

(b) D(Rv,Av) |= ar(R,µ(s), vC);

(c) D(Rv,Av) |= Succ(µ(s), vC); and

(d) if R ∈ Γ, then D(Rv,Av) |= Γ-Desc(µ(s), vC).

6. If s ≈ s′ ∈ ρ(t), then D(Rv,Av) |= µ(s) ≈ µ(s′).

7. If s is an unnamed individual in ρ(t), an atomic concept A ∈ sig(Rv) ∪ sig(Av) exists
such that µ(s) = vA or µ(s) = v¬A.

Proof. We prove the lemma by induction on the structure of the derivation. For ε ∈ T
the root node of the derivation, let µ map each individual in Av to itself. ABox ρ(ε) = Av
trivially satisfies Properties 3, 4, and 7 since Av contains only named individuals. Properties
5 and 6 also hold trivially because ρ(ε) is a normalized ABox and hence it does not contain
assertions of the form ≥nR.C(s) or of the form s ≈ s′. Finally, Properties 1 and 2 hold
because ρ(ε) ⊆ D(Rv,Av).

For the induction step, assume that, for some derivation node t ∈ T , ABox ρ(t) satisfies
the claim for some mapping µ. For each child node t′ of t in T , we consider the possible
ways ρ(t′) can be derived from ρ(t).

• Ωa-rule: All properties hold trivially for ρ(t′) and µ.
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• A-cut: All properties hold trivially for ρ(t′) and µ except for Property 1 in case
ρ(t′) = ρ(t) ∪ {A(s)} with A ∈ Γ. If s is a named individual in ρ(t), then s oc-
curs in Av and Property 1 holds because D(Rv,Av) contains the assertion A(s) for
each A ∈ Γ and each s occurring in Av. If s is unnamed, then s is the succes-
sor of some individual s′ in ρ(t); by the induction hypothesis (Property 3) we have
D(Rv,Av) |= Succ(µ(s′), µ(s)); however, D(Rv,Av) contains the formula (32) for each
A ∈ Γ, so we have D(Rv,Av) |= A(µ(s)), as required.

• R-cut: All properties hold trivially for ρ(t′) and µ except for Property 2 in case
ρ(t′) = ρ(t) ∪ {R(s, s′)} with R ∈ Γ. By Condition 2 of R-cut we have R′(s, s′) ∈ ρ(t)
for some atomic role R′ ∈ Γ, so we have D(Rv,Av) |= R′(µ(s), µ(s′)) by the induction
assumption. Since R,R′ ∈ Γ and D(Rv,Av) contains formulae (33) for all roles in Γ,
we have D(Rv,Av) |= R(µ(s), µ(s′)), so ρ(t′) satisfies Property 2 for µ.

• R−-cut: All properties hold trivially for ρ(t′) and µ except for Property 2 in case
ρ(t′) = ρ(t) ∪ {R(s′, s)} with R ∈ Γ. By Condition 2 of R−-cut we have R′(s, s′) ∈ ρ(t)
for some atomic role R′ ∈ Γ, so we have D(Rv,Av) |= R′(µ(s), µ(s′)) by the induction
assumption. Since R,R′ ∈ Γ and D(Rv,Av) contains formulae (34) for all roles in Γ,
we have D(Rv,Av) |= R(µ(s′), µ(s)), so ρ(t′) satisfies Property 2 for µ.

• ⊥-rule: All properties hold trivially for ρ(t′) and µ.

• ≥-rule: Assume that ρ(t′) is defined as follows, where ≥nR.C(s) ∈ ρ(t), si are fresh
successors of s, and C is a possibly negated atomic concept:

ρ(t′) = ρ(t) ∪ { ar(R, s, si), C(si) | 1 ≤ i ≤ n } ∪ { si 6≈ sj | 1 ≤ i < j ≤ n }

Let µ′ = µ ∪ {si 7→ vC | 1 ≤ i ≤ n}. Properties 5 and 6 hold trivially for ρ(t′) and µ′,
and it is obvious that Property 7 holds as well. Hence, we focus on showing Prop-
erties 1—4. For Property 1, assume that C is an atomic concept; since Property
5(a) holds for ρ(t) and µ by the induction assumption, we have D(Rv,Av) |= C(vC),
as required. For Property 2, since Property 5(b) holds for ρ(t) and µ by the in-
duction assumption, we have D(Rv,Av) |= ar(R,µ(s), vC), as required. For Property
3, since Property 5(c) holds for ρ(t) and µ by the induction assumption, we have
D(Rv,Av) |= Succ(µ(s), vC), so Property 3 holds for ρ(t′) and µ′. For Property 4,
assume that R ∈ Γ; Property 5(d) holds for ρ(t) and µ by the induction assumption,
we have D(Rv,Av) |= Γ-Desc(µ(s), vC), so Property 4 holds for ρ(t′) and µ′.

• Hyp-rule: Assume that ρ(t′) = ρ(t) ∪ {α} for α the head atom of an HT-rule % of
the form (2). Properties 3, 4, and 7 hold trivially for ρ(t′) and µ, so we focus on
the remaining properties. By Condition 2 of the Hyp-rule, ρ(t) contains individuals
s, s1, . . . , sn such that the statements from the left column from the following table
holds. But then, by the induction assumption, the statements from the right column
hold as well.

Ai(s) ∈ ρ(t) ⇒ D(Rv,Av) |= Ai(µ(s))
Rij(s, si) ∈ ρ(t) ⇒ D(Rv,Av) |= Rij(µ(s), µ(si))
Sij(si, s) ∈ ρ(t) ⇒ D(Rv,Av) |= Sij(µ(si), µ(s))
Bij(si) ∈ ρ(t) ⇒ D(Rv,Av) |= Bij(µ(si))

239



Cuenca Grau & Motik

For the HT-rule %, the datalog program contains the rule (31). Thus, the statements
from the following table then hold as well:

D(Rv,Av) |= tt(Ci(µ(s)))
D(Rv,Av) |= R′ij(µ(s), µ(si))

D(Rv,Av) |= S′ij(µ(si), µ(s))

D(Rv,Av) |= Dij(µ(si))
D(Rv,Av) |= µ(si) ≈ µ(sj)

Consequently, Properties 2 and 6 clearly hold; Property 1 also holds since for an
atomic concept atom α we have tt(α) = α. To show Property 5, assume that Ci(µ(s))
is of the form ≥nR.C(µ(s)), so

tt(Ci(µ(s))) = ar(R,µ(s), vC) ∧ tt(C(vC)) ∧ Succ(µ(s), vC).

Then, the following holds:

D(Rv,Av) |= ar(R,µ(s), vC)
D(Rv,Av) |= tt(C(vC))
D(Rv,Av) |= Succ(µ(s), vC)

Thus, Properties (5a), (5b), and (5c) hold. Finally, if R ∈ Γ, then Property (5d) holds
because the datalog program entails assertion Succ(µ(s), vC), and it contains formulae
(38) and (34) for all roles in Γ.

• ≈-cut rule: Assume that ρ(t′) = ρ(t) ∪ {α} with α an assertion of the form s1 ≈ s2

or s1 6≈ s2. Then, ρ(t) trivially satisfies Properties 1–5 and 7 for µ. Property 6 also
holds trivially if α is of the form s1 6≈ s2, so assume that α of the form s1 ≈ s2. By
the preconditions of the ≈-cut rule, an individual s in ρ(t) and atomic roles R,R′ ∈ Γ
exist such that

{ R(s, s1), R′(s, s2) } ⊆ ρ(t) or
{ R(s1, s), R

′(s2, s) } ⊆ ρ(t) or
{ R(s1, s), R

′(s, s2) } ⊆ ρ(t).

By the induction hypothesis (Property 2), then

D(Rv,Av) |= { R(µ(s), µ(s1)), R′(µ(s), µ(s2)) } or
D(Rv,Av) |= { R(µ(s1), µ(s)), R′(µ(s2), µ(s)) } or
D(Rv,Av) |= { R(µ(s1), µ(s)), R′(µ(s), µ(s2)) }.

But then, since the datalog program contains formulas (35)–(37) for all roles in Γ, we
have D(Rv,Av) |= µ(s1) ≈ µ(s2), as required.

• ≈-rule: Assume that ρ(t′) = mergeρ(t)(s→ s′). Then, by Conditions 1 and 2 of the
≈-rule, s ≈ s′ ∈ ρ(t) with s 6= s′. Furthermore, by the induction assumption, we have
D(Rv,Av) |= µ(s) ≈ µ(s′). Since merging merely replaces s with s′, by the semantics
of equality ρ(t′) satisfies all the required properties.

We next use Lemma 4 to prove that the length of chains of role assertions involving a
role in Γ is bounded.
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Lemma 5. Let Rv, Av, Γ, D(Rv,Av), and (T, ρ) be as in Lemma 4 with the additional
restriction that Rv ∪ Av is acyclic w.r.t. Γ. Let N be the number of individuals of the
form vC occurring in D(Rv,Av), let t ∈ T be an arbitrary derivation node of (T, ρ), and let
s1, . . . , s` be unnamed individuals occurring in ρ(t) such that si+1 is a Γ-successor of si for
each 1 ≤ i < `. Then, ` ≤ N .

Proof. Assume that, for some integer ` > N , unnamed individuals s1, . . . , s` satisfying the
conditions of this lemma exist, and let µ be a mapping satisfying Lemma 4. By Property 7 in
Lemma 4, for each 1 ≤ i ≤ ` we have µ(si) = vCi for some Ci (because each si is unnamed).
Furthermore, by Property 4 in Lemma 4, we also have D(Rv,Av) |= Γ-Desc(µ(si), µ(si+1))
for each 1 ≤ i < `. But then, since ` > N and predicate Γ-Desc(x, y) is axiomatized as
transitive by formula (39) in D(Rv,Av), we clearly obtain a harmful cycle, which is a
contradiction.

We are now ready to prove our main claim.

Lemma 6 (Termination). Let Rv, Av, Γ, D(Rv,Av), N , and (T, ρ) be as in Lemma 5.
Then, (T, ρ) is finite.

Proof. Let the depth of an individual s be the number of its ancestors, and let c and r be
the numbers of atomic concepts and roles, respectively, occurring in Rv and Av; finally, let
℘ = (22cr + 1)(N + 1) + 1. Consider now an arbitrary derivation node t ∈ T . Let s be an
individual in ρ(t) of depth i(N + 1) + 1. By a simple induction on i, one can show that s
has at least i ancestors that are blocking-relevant. The induction base is straightforward
for i = 0; furthermore, the induction step holds because, by Lemma 5 and the fact that
ρ(t) is an HT-ABox, the depth of the nearest blocking-relevant ancestor of s can be at most
N + 1 less than the depth of s. Thus, each individual s of depth ℘ has at least 22cr + 1
blocking-relevant ancestors; since there are at most 22cr possible concept and role labelings
for an individual and its predecessor, one of the blocking ancestors of s is blocked due to the
definition of blocking; hence, s is either directly or indirectly blocked in ρ(t). The rest of
the proof of our claim is then analogous to the proof of Lemma 7 by Motik et al. (2009).

A.2 Soundness

Lemma 7 (Soundness). Let Rv be a set of HT-rules, let Th be an ALCHIQ TBox, let A be
an ABox such that Rv ∪ Th ∪ A is satisfiable, and let A1, . . . ,An be the ABoxes obtained by
applying a derivation rule from Table 2 or 4 to Rv and A. Then, Rv ∪ Th ∪ Ai is satisfiable
for some 1 ≤ i ≤ n.

Proof. Let I be a model of Rv ∪ Th ∪ A, and let us consider the possible derivation rules
that derive A1, . . . ,An. The cases for the Hyp-, ≥-, ≈-, and ⊥-rule are the same as in the
proof by Motik et al. (2009, Lemma 5). Furthermore, by the law of excluded middle of
first-order logic, the claim is true for A, R-cut, R−-cut and ≈-cut rules. Assume that the
Ωa-rule derives ⊥—that is, that Th ∪ A′ is unsatisfiable for some connected component A′
of A|Γ. But then, since A′ ⊆ A|Γ ⊆ A, by the monotonicity of first-order logic Rv ∪ Th ∪ A
is unsatisfiable as well, which is a contradiction.
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A.3 Completeness

Definition 14 and Proposition 5 show that the part of a model that is implied by Th can
always be extended to a model of Rv. We say that an assertion is atomic if it is of the form
A(a) with A an atomic concept, or R(a, b) with R an atomic role.

Definition 14. Let Γ be a signature, let Rv be a set of HT-rules, and let A be a nonempty
clash-free ABox containing exactly one individual such that sig(A) ⊆ Γ. An ABox A′ is an
Rv-extension of A w.r.t. Γ if the following conditions hold:

1. A′ contains exactly one individual, A′|Γ = A, and sig(A′) ⊆ sig(Rv);

2. no derivation rule from Table 2 is applicable to A′ and Rv; and

3. A′ does not contain an assertion of the form A(s) with A ∈ safe(Rv,Γ).

Proposition 5. For each Γ, Rv, and A as in Definition 14 where Rv is additionally HT-
safe, at least one Rv-extension A′ of A w.r.t. Γ exists.

Proof. Let s be the individual occurring in A, and let I = (4I , ·I) be the interpretation for
the symbols in Γ defined as follows:

4I = {s} AI =

{
{s} if A(s) ∈ A
∅ otherwise

RI =

{
{〈s, s〉} if R(s, s) ∈ A
∅ otherwise

Since Rv is HT-safe w.r.t. Γ and sig(A) ⊆ Γ, by Proposition 3 a model J of Rv exists such
that 4J = 4I , XJ = XI for each symbol X ∈ Γ, and XJ = ∅ for each X ∈ safe(Rv,Γ).
We define the ABox A′ as follows:

A′ = {s ≈ s} ∪
{A(s) | s ∈ AJ and A ∈ sig(Rv)} ∪
{¬A(s) | s 6∈ AJ and A ∈ sig(Rv)} ∪
{R(s, s) | 〈s, s〉 ∈ RJ and R ∈ sig(Rv)} ∪
{≥ 1R.A(s) | s ∈ (≥ 1R.A)J and {R,A} ⊆ sig(Rv)} ∪
{≥ 1R.¬A(s) | s ∈ (≥ 1R.¬A)J and {R,A} ⊆ sig(Rv)}

We now show that A′ is an Rv-extension of A w.r.t. Γ. Since J coincides with I on the
interpretation of all atomic concepts and roles in Γ, A′ satisfies Properties 1 and 3 of
Definition 14. We next show that no hypertableau derivation rule is applicable to A′ and
Rv. The ≈- and the ⊥-rule are clearly not applicable to A′. Furthermore, the construction
of A′ ensures that ≥ 1R.C(s) ∈ A′ if and only if {R(s, s), C(s)} ⊆ A′, so the ≥-rule is not
applicable to A′ either. Finally, assume that the Hyp-rule is applicable to an HT-rule
ρ ∈ Rv and A′ with a mapping σ. Since A′ contains only the individual s, the mapping
σ maps all variables in ρ to s. Since J |= Rv, rule % contains a head atom Vj such that
J |= σ(Vj). Note that if Vj is of the form ≥nR.C, then n = 1 since 4J contains just
one element. Thus, σ(Vj) can be of the form A(s), R(s, s), ≥ 1R.C(s), or s ≈ s, where
A ∈ sig(Rv), R ∈ sig(Rv), and sig(C) ⊆ sig(Rv). But then, by the construction of A′ we
have σ(Vj) ∈ A′, which contradicts the assumption that the Hyp-rule is applicable to Rv
and A′.
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We are now ready to prove the main claim of the section.

Lemma 8 (Completeness). Let 〈Γ,Rv ∪ Av, Th〉 be an input of the ALCHIQ Ωa-algorithm.
If a derivation for 〈Γ,Rv ∪ Av, Th〉 contains a leaf node labeled with a clash-free ABox, then
Rv ∪ Av ∪ Th is satisfiable.

Proof. Let A be an ABox obtained from a clash-free ABox labeling a leaf of a derivation for
〈Γ,Rv ∪ Av, Th〉 by removing all assertions involving an indirectly blocked individual. Since
Rv ∪ Av is acyclic w.r.t. Γ, ABox A is finite by Lemma 6. Furthermore, A is clearly an HT-
ABox and no derivation rule is applicable to Rv, A, and Ωa

Th,Γ. Finally, it is straightforward
to see that a mapping h from the individuals in Av to the individuals in A exists such
that h(a) = a for each individual a occurring in A, C(a) ∈ Av implies C(h(a)) ∈ A, and
R(a, b) ∈ Av implies R(h(a), h(b)) ∈ A. Hence, each model of Rv ∪ A ∪ Th can be extended
to a model of Rv ∪ Av ∪ Th by interpreting each individual a not occurring in Av in the
same way as h(a). Thus, we prove this lemma by showing that Rv ∪ A ∪ Th is satisfiable.

Let Rh be the result of transforming Th into a set of HT-rules as described by Motik
et al. (2009); then, Rv ∪ Av ∪ Th is equisatisfiable with Rv ∪ Av ∪Rh, and each model of
the latter is a model of the former as well. Therefore, in the rest of the proof we extend A to
a clash-free extended HT-ABox Afin such that no derivation rule from Table 2 is applicable
to Rv ∪Rh and Afin. By Lemma 3, Rv ∪ Afin ∪Rh is satisfiable, which, together with
A ⊆ Afin, implies the satisfiability of Rv ∪ A ∪Rh. Before proceeding with the construction
of Afin, we next introduce several useful definitions and notational conventions.

• Let Γv = sig(Rv) ∪ sig(Av) and let Γh = sig(Rh).

• In this proof, term “blocking” refers to the version of blocking given in Definition
8; term “w-blocking” refers to the version of blocking in Definition 13; and term “s-
blocking” refers to the standard blocking given in Definition 1 with the additional
requirement that individuals s, s′, t, and t′ are all unnamed.

• For each blocked individual s, we pick an arbitrary but fixed individual s′ that blocks
s, which we call the blocker of s.

• The modified hypertableau algorithm is the same as the standard hypertableau algo-
rithm from Definition 1 with the difference that it uses s-blocking and that it can
be applied to ABoxes that contain unnamed individuals; such individuals are then
treated by the algorithm as if they were named. The modified hypertableau algo-
rithm is clearly sound, complete, and terminating.

• The projection of an ABox A to a set of individuals S is the ABox consisting of exactly
those assertions from A that contain only individuals in S.

We now proceed with the construction of Afin. To this end, we split A|Γ into ABoxes
Anm and At as follows; we use these ABoxes later to construct Afin.

– The ABox Anm is the projection of A|Γ to the set containing all named individuals in
A and all unnamed individuals that are connected to a named individual in A|Γ.
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– For each nonblocked blocking-relevant individual t in A, the ABox At is the projection
of A|Γ to the set containing t and all (unnamed) individuals connected to t in A|Γ.

Let Anm
der be the result of taking any clash-free ABox labeling a leaf of a derivation

for Rh ∪ Anm by the modified hypertableau algorithm and then removing all assertions
containing an indirectly blocked individual; furthermore, for each nonblocked blocking-
relevant individual t in A, let Atder be obtained from At in an analogous way. ABoxes Anm

der

andAtder exist because Ωa
Th,Γ(A′) = t for each connected componentA′ ofAnm, Ωa

Th,Γ(At) = t
for each t, and the modified hypertableau algorithm is sound, complete, and terminating.
Since the supply of unnamed individuals is unlimited, we assume without loss of generality
that the ≥-rule always introduces individuals that are “globally fresh”—that is, that do not
occur in any other ABox.

We next extend Anm
der and each Atder with assertions necessary to satisfy Rv. Let A′

be Anm (resp. some At) and let A′der be Anm
der (resp. the corresponding Atder). We say

that an individual u is fresh in A′der if u occurs in A′der but not in A′. For each fresh
individual u in A′der, we define A′der[u] as an Rv-extension of the projection of A′der|Γ to {u};
without loss of generality, we assume that A′der[u1] = A′der[u2] for all u1 and u2 for which
the projections of A′der|Γ to {u1} and {u2} are isomorphic (i.e., identical up to the renaming
of individuals). Finally, let A′fin be the union of A′der and A′der[u] for each u that is fresh in
A′der; thus, we obtain ABoxes Anm

fin and Atfin. By Condition 1 of Definition 14, the atomic
assertions of A′der|sig(Rh) coincide with the atomic assertions of A′|sig(Rh). Furthermore,
since all individuals involved in s-blocking are required to be unnamed and all isomorphic
individuals are extended in the same way, this construction does not affect s-blocking—that
is, u is s-blocked in A′ if and only if u is s-blocked in A′der.

We now define Afin as the ABox obtained by

1. taking the union of A, Anm
fin , and Atfin for each nonblocked blocking-relevant individual

t in A, and

2. adding A(s) for each blocked individual s in A with blocker s′ such that A(s′) ∈ As′fin

and A ∈ Γh.3

By Lemma 1, Anm
fin and all Atfin are HT-ABoxes, and Afin is clearly an extended HT-ABox.

We next show that no hypertableau derivation rule is applicable to Rv ∪Rh and Afin.
To this end, we first show that Afin satisfies the following property (*): if α ∈ Afin is an

atomic assertion or an assertion of the form a ≈ b such that sig(α) ⊆ Γv and all individuals
mentioned in α occur in A, then α ∈ A. In particular, note that the extension of Anm

der and
Atder to Anm

fin and Atfin, respectively, does not introduce an atomic assertion α that involves
an individual from A and for which sig(α) ∩ (Γv \ Γ) 6= ∅; hence, the only possibility for
α ∈ Afin, α 6∈ A, and sig(α) ⊆ Γv is if α ∈ Anm

der or α ∈ Atder for some t. We consider next
the former case; the latter one is analogous. We prove (*) by induction on the application
of the derivation rules in the construction of Anm

der. To this end, we show that each ABox A′
in a derivation for Anm and Rh satisfies the following properties:

3. Note that, since s is blocked, it is blocking-relevant.
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1. If α ∈ A′ is an atomic assertion or an assertion of the form a ≈ b such that sig(α) ⊆ Γv
and all individuals mentioned in α occur in A, then α ∈ A or ¬α ∈ A.

2. If R(a, b) ∈ A′ such that a and b occur in A and R ∈ Γh \ Γ, then S ∈ Γ exists such
that S(a, b) ∈ A or S(b, a) ∈ A.

3. If a ≈ b ∈ A′ such that a occurs in A, then R ∈ Γ and an individual c occurring in A
exist such that R(a, c) ∈ A or R(c, a) ∈ A.

The base case is trivial. We next consider ways in which an assertion in A′ can be derived.
An application of the ⊥-rule or the ≥-rule clearly preserves (1)–(3). In an application
of the ≈-rule, the modified hypertableau algorithm treats the individuals in A as named;
furthermore, if a ≈ b ∈ A′ and a and b occur in A, by (1) we have a ≈ b ∈ A, so a = b since
the ≈-rule is not applicable to A; but then, it is straightforward to see that (1)–(3) remain
preserved. Finally, the following types of assertions are relevant in an application of the
Hyp-rule to an HT-rule % ∈ Rh:

• A(a) with a in A and A ∈ Γ. Since the A-cut rule is not applicable to A, we have
A(a) ∈ A or ¬A(a) ∈ A, so (1) holds.

• R(a, b) with a and b in A. The body of % then contains an atom that is matched
to an assertion R′(a, b) ∈ A′ or R′(b, a) ∈ A′ with R′ ∈ Γv that satisfies the induction
assumption; thus, S ∈ Γ exists such that S(a, b) ∈ A or S(b, a) ∈ A, so (2) holds.
Furthermore, if R ∈ Γ, then this assertion satisfies the preconditions of the R-cut and
the R−-cut rule; since these rules are not applicable to A, we have R(a, b) ∈ A or
¬R(a, b) ∈ A, so (1) holds.

• a ≈ b with a inA. The body of % then contains an atom that is matched to an assertion
R′(a, c) ∈ A′ or R′(c, a) ∈ A′ with R′ ∈ Γv that satisfies the induction assumption;
thus, S ∈ Γ exists such that S(a, c) ∈ A or S(c, a) ∈ A, so (3) holds. Furthermore, if
b is in A, then the body of % also contains an atom that is matched to an assertion
R′′(a, c) ∈ A′ or R′′(c, a) ∈ A′ that satisfies the induction assumption; thus, S′ ∈ Γ
exists such that S′(a, c) ∈ A or S′(c, a) ∈ A. The precondition of the ≈-cut rule is then
satisfied and, since the rule is not applicable to A, we have a ≈ b ∈ A or a 6≈ b ∈ A,
so (1) holds.

This completes the proof of (1)–(3). Property (*) is a straightforward consequence of (1): a
derivation of an assertion α such that sig(α) ⊆ Γv and all individuals mentioned in α occur
in A either makes no difference or it leads to a contradiction. A straightforward consequence
of (*) is that (59) and (60) hold for all individuals u and v that occur in A:

LAfin
(u) ∩ Γv =LA(u) (59)

LAfin
(u, v) ∩ Γv =LA(u, v) (60)

We now show that no derivation rule of the hypertableau algorithm with w-blocking is
applicable to Rv ∪Rh and Afin. We do so by considering the possible derivation rules.

(≥-rule) Assume that the ≥-rule is applicable to an assertion ≥nR.C(s) ∈ Afin, so s is
not w-blocked in Afin. We show that then s is not blocked in A, or s is not s-blocked in
Anm

fin , or s is not s-blocked in some Atfin. We have the following cases.
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• ≥nR.C(s) ∈ A. Assume that s is blocked in A with blocker t, and let s′ and t′ be the
predecessors of s and t, respectively. By the definition of blocking, (61)–(65) hold:

LA(s) =LA(t) (61)

LA(s′) =LA(t′) (62)

LA(s, s′) =LA(t, t′) (63)

LA(s′, s) =LA(t′, t) (64)

LA(s, s′) ∪ LA(s′, s) ⊆Γv \ Γ (65)

By (59) and (60), the following properties hold as well:

LAfin
(s) ∩ Γv =LAfin

(t) ∩ Γv (66)

LAfin
(s′) ∩ Γv =LAfin

(t′) ∩ Γv (67)

Furthermore, the second item in the construction of Afin ensures that LAfin
(s) and

LAfin
(t) coincide on each concept C ∈ Γh, which ensures the following property:

LAfin
(s) = LAfin

(t) (68)

By (65), A|Γ does not contains an assertion involving individuals s and s′, or individ-
uals t and t′. By the construction of Afin, the following properties hold:

LAfin
(s, s′) =LAfin

(t, t′) (69)

LAfin
(s′, s) =LAfin

(t′, t) (70)

Consider now each rule % ∈ Rv ∪Rh. If % ∈ Rh, then no role in the body of % occurs
in LAfin

(s, s′) ∪ LAfin
(s′, s), so % satisfies the condition of weakened pairwise anywhere

blocking. If % ∈ Rv, then % satisfies the condition of weakened pairwise anywhere
blocking due to (67). Together with (68)–(70), this implies that s is w-blocked by t,
which is a contradiction. Consequently, s is not blocked in A.

• ≥nR.C(s) ∈ Anm
fin and ≥nR.C(s) 6∈ A. If s occurs in A or if s is a successor of an

individual that occurs in A, then s is not s-blocked in Anm
fin since the modified hyper-

tableau algorithm treats the individuals occurring in A as named and such individuals
cannot be s-blocked. Otherwise, by the construction of Afin, LAfin

(u) = LAnm
fin

(u) and
LAfin

(u, v) = LAnm
fin

(u, v) for all individuals u and v occurring in Anm
fin but not in A;

again, s is not s-blocked in Anm
fin .

• ≥nR.C(s) ∈ Atfin for some t and ≥nR.C(s) 6∈ A. This case is completely analogous
to the previous one.

Let A′ be the ABox for which the above property holds; note that ≥nR.C(s) ∈ A′. The
≥-rule is not applicable to s in A′, so A′ contains individuals u1, . . . , un such that

{ar(R, s, ui), C(ui) | 1 ≤ i ≤ n} ∪ {ui 6≈ uj | 1 ≤ i < j ≤ n} ⊆ A′.

By the construction of Afin we have A′ ⊆ Afin, which then contradicts the assumption that
the ≥-rule is applicable to s and Afin.
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(⊥-rule, first variant) Property (59) holds for each individual s occurring in A, and (71)
and (72) hold for each individual s occurring in Anm

fin and Atfin, respectively.

LAfin
(s) ∩ Γh =LAnm

fin
(s) ∩ Γh (71)

LAfin
(s) ∩ Γh =LAt

fin
(s) ∩ Γh (72)

Thus, {A(s),¬A(s)} ⊆ Afin implies {A(s),¬A(s)} ⊆ A′, where A′ can be A, or Anm
fin , or

some Atfin. Since the first variant of the ⊥-rule is not applicable to A′, it is not applicable
to Afin either.

(⊥-rule, second variant) Property (60) holds for each pair of individuals s and t occurring
inA. Furthermore, Anm

fin andAtfin do not contain negative assertions other than those already
present in A. Since the second variant of the ⊥-rule is not applicable to A, Anm

fin , and all
Atfin, it is not applicable to Afin either.

(⊥-rule, third variant) Suppose that the ⊥-rule is applicable to an assertion of the form
s 6≈ s ∈ Afin. By the construction of Afin, then s 6≈ s ∈ A′ for A′ being A, Anm

fin , or Atfin for
some t. But then, since the ⊥-rule is not applicable to A′, it is not applicable to Afin either.

(≈-rule) Assume now that the ≈-rule is applicable to Afin. Then, an assertion s ≈ s′ in
Afin exists with s 6= s′. By the construction of Afin, we have that s ≈ s′ ∈ A′, with A′ = A,
or A′ = Anm

fin , or A′ = Atfin for some t. But then, since the ≈-rule is not applicable to A′, it
is not applicable to Afin either.

(Hyp-rule) Assume that the Hyp-rule is applicable to Afin and an HT-rule % ∈ Rv ∪Rh
of the form (2). Thus, a mapping σ from the variables in % to the individuals Afin exists such
that σ(Ui) ∈ Afin for each 1 ≤ i ≤ m, but σ(Vj) 6∈ Afin for each 1 ≤ j ≤ n. Let s = σ(x) and
ui = σ(yi). We have the following possibilities:

• % ∈ Rh. Let A′ be the ABox chosen among Anm
fin and Atfin containing the individual s.

Consider now each ui. Then % contains an atom of the form Rij(x, yi) or Rij(yi, x)
with Rij ∈ Γh, so Afin contains an assertion of the form Rij(s, ui) or Rij(ui, s). By the
definition of blocking, for each pair of individuals u and v that belong to different Anm

and At, the ABox A does not contain an assertion of the form T (u, v) with T ∈ Γh;
but then, by the construction of Afin, if u and v belong to different Anm

fin and Atfin, the
ABox Afin does not contain such an assertion either. Thus, all ui occur in A′, so the
Hyp-rule is applicable to % and A′, which is a contradiction.

• % ∈ Rv. We first show the following property (**): if s or some ui does not occur in
A, then s = uj for each uj . We consider first the case when s does not occur in A.
Consider an arbitrary uj . Since % is an HT-rule, the body of % contains an atom of
the form Rjk(x, yj) or Rjk(yj , x), so Afin contains an assertion of the form Rjk(s, uj)
or Rjk(uj , s). We have the following two possibilities for Rjk.

– Rjk ∈ Γv\Γ. By the construction of Afin, assertion Rjk(s, uj) or Rjk(uj , s) with s
not occurring in A must have been introduced via some Rv-extension, so uj = s.

– Rjk ∈ Γ. Since % is HT-safe w.r.t. Γ, % contains an atom of the form A(x) such
that A ∈ safe(Rv,Γ) in the body. By Condition 3 of Definition 14, A(s) 6∈ Afin,
which is a contradiction.
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The case when some ui does not occur in A is symmetric; the only difference is that
in case Rjk ∈ Γ we consider a body atom B(yj) of % such that B ∈ safe(Rv,Γ).

Let A′ = A if s occurs in A, and let A′ be the ABox that contains s otherwise. A
straightforward consequence of (**) is that σ(Ui) ∈ A′ for each 1 ≤ i ≤ m; further-
more, A′ ⊆ Afin and σ(Vj) 6∈ Afin imply σ(Vj) 6∈ A′ for each 1 ≤ j ≤ n. But then, the
Hyp-rule is applicable to A′ for % and σ, which is a contradiction.

Thus, no derivation rule of the hypertableau algorithm with w-blocking is applicable to
Rv ∪Rh and Afin, so Rv ∪Rh ∪ Afin is satisfiable by Lemma 3. As explained earlier, this
then proves the claim of this lemma.

Lemmas 6, 7, and 8 immediately imply Theorem 11.

Appendix B. Proof of Theorem 12

The termination argument for the Horn-ALCHIQ Ωe-algorithm is analogous to the non-
Horn case: for each derivation for 〈Γ,Rv ∪ Av, Th〉, and each node t in the derivation, we
can find an embedding µ as in Lemma 4; the proof is a straightforward variant of the
proof given for the non-Horn case. Termination then follows exactly as in the non-Horn
case. Soundness is a consequence of the soundness of the standard hypertableau algorithm
together with the following lemma.

Lemma 9. Let Rv be a set of HT-rules, let Th be a Horn-ALCHIQ TBox, and let A an
ABox such that Rv ∪ Th ∪ A is satisfiable. Furthermore, let A1 be the ABox obtained by
applying a derivation rule from Table 5 to Rv and A. Then, Rv ∪ Th ∪ A1 is satisfiable.

Proof. Let I be a model of Rv ∪ Th ∪ A, and let us assume that a derivation rule from
Table 5 derives A1 = A ∪ {α}. By the preconditions of the Ωe-concept, Ωe-role, and Ωe-≈
rules, then Ωe

Th,Γ(A′, α) = t for some connected component A′ of A|Γ, so Th ∪ A′ |= α. Since
A′ ⊆ A|Γ ⊆ A, we have that I |= Th ∪ A′, so I |= α, which implies our claim.

We now show completeness of the algorithm. If a set of HT-rules R is Horn, then
each derivation of the hypertableau algorithm contains exactly one leaf node, so we can
identify a derivation with a sequence of ABoxes A0, . . . ,An. The following proposition is a
straightforward consequence of the fact that R is a Horn set of HT-rules.

Proposition 6. Let R be a set of Horn HT-rules, let A an ABox, and let A0, . . . ,An be
a derivation for R and A. Then, for each assertion α that mentions only the individuals
from A such that α ∈ Ai for some 1 ≤ i ≤ n, we have R∪A |= α.

Lemma 10 (Completeness). Let 〈Γ,Rv ∪ Av, Th〉 be an input of the Horn-ALCHIQ Ωe-
algorithm. If a derivation for 〈Γ,Rv ∪ Av, Th〉 contains a leaf node labeled with a clash-free
ABox, then Rv ∪ Av ∪ Th is satisfiable.

Proof. The proof is analogous to the proof of Lemma 8: given an ABox A labeling a
derivation leaf, we construct an ABox Afin such that no derivation rule of the hypertableau
algorithm with w-blocking is applicable to Rv ∪Rh and Afin. The construction and the
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bulk of the proof are exactly the same as in Lemma 8, and we next prove only properties
that are affected by the difference in the derivation rules.

The preconditions of the derivation rules in Table 5 clearly ensure that, whenever a
derivation rule is applied to an HT-ABox, the result is also an HT-ABox; consequently, Afin

is an extended HT-ABox.
We next show that property (*) holds despite the change in the derivation rules: if

α ∈ Afin is an atomic assertion or an assertion of the form a ≈ b such that sig(α) ⊆ Γv
and all individuals mentioned in α occur in A, then α ∈ A. In particular, note that the
construction of Afin does not introduce an atomic assertion α that involves an individual
from A and for which sig(α) ∩ (Γv \ Γ) 6= ∅. Assume now that sig(α) ⊆ Γ and all individuals
in α occur in A. By Proposition 6 we have Rh ∪ A |= α. Furthermore, in the same say as in
Lemma 8 one can show that the preconditions of the Ωe-concept, Ωe-role, or Ωe-≈ rule are
satisfied in A; since the relevant rule in not applicable to A, we have α ∈ A, which proves
our claim.

The rest of the proof is exactly the same as in Lemma 8.

Theorem 12 follows immediately from Lemmas 9 and 10.

Appendix C. Proof of Theorem 13

For each set of EL-rules R and each ABox A, each derivation of the EL hypertableau algo-
rithm contains exactly one leaf node, so we identify a derivation with a sequence of ABoxes
A0,A1, . . . ,An. Since Aj−1 ⊆ Aj for each 1 ≤ i ≤ n, the ABox labeling the derivation leaf
is uniquely defined by R and A. The following lemma captures the relevant properties of
the standard EL hypertableau algorithm, and it can be proved by a slight variation of the
proofs by Motik and Horrocks (2008) and Baader et al. (2005).

Lemma 11. Let R be a set of EL-rules, let A be an ABox containing only named individu-
als, and let Af be the ABox labeling a leaf of a derivation for R and A. Then the following
properties hold for each pair of atomic concepts A,B ∈ sig(R) and each individual s in A:

1. A(s) ∈ Af if and only if R∪A |= A(s).

2. B(aA) ∈ Af if and only if R |= A v B.

3. For each A′ ⊆ A and each R′ ⊆ R, we have A′f ⊆ Af , where A′f is the ABox labeling
a leaf of a derivation for R′ and A′.

Just like in the EL hypertableau algorithm, each derivation of the EL Ωe-algorithm
contains exactly one leaf node, and the ABox labeling the derivation leaf is uniquely defined
by 〈Γ,Rv ∪ Av, Th〉. We next show several useful properties of this algorithm.

Lemma 12. Let 〈Γ,Rv ∪ Av, Th〉 be an input of the EL Ωe-algorithm and let Ae be the
ABox labeling a leaf of a derivation for 〈Γ,Rv ∪ Av, Th〉. Then the following holds.

1. Let Rh be the set of EL-rules corresponding to Th as described by Motik et al. (2009),
and let AEL be the ABox labeling a leaf of a derivation of the standard EL hypertableau
algorithm for Rv ∪Rh and Av; then, Ae ⊆ AEL.
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2. If ⊥ 6∈ Ae and B(aA) ∈ Ae with A ∈ Γ, then B 6∈ safe(Rv,Γ).

Proof. (Claim 1) Let A0, . . . ,An be a derivation of the EL Ωe-algorithm for Rv, Av, and
Ωe
Th,Γ such that A0 = Av and An = Ae. We prove the claim inductively by showing that

Aj ⊆ AEL for each 0 ≤ j ≤ n. For the induction base, we clearly have A0 ∈ AEL. Assume
now that Aj−1 ⊆ AEL and let Aj be obtained from Aj−1 by applying a derivation rule of the
EL Ωe-algorithm. If the Hyp-rule is applied to Aj−1 and some % ∈ Rv, then % ∈ Rv ∪Rh,
Aj−1 ⊆ AEL, and the fact that Hyp-rule is not applicable to AEL and % imply Aj ⊆ AEL.
The argument is analogous for the ∃-rule. Finally, assume that the Ωe-concept rule derives
A(s) with A ∈ Γ ∪ {⊥} from Aj−1. By the preconditions of the Ωe-concept rule, then
Ωe
Th,Γ(A′, A(s)) = t for some connected component A′ of Aj−1|Γ. By Property 1 of Lemma

11 then A(s) ∈ A′′, where A′′ is the ABox labeling a leaf of a derivation of the standard EL
hypertableau algorithm for A′ and Rh. Now A′ ⊆ AEL, Rh ⊆ Rh ∪Rv, and Property 3 of
Lemma 11 imply A′′ ⊆ AEL; consequently, A(s) ∈ AEL and Aj ∈ AEL.

(Claim 2) Consider an arbitrary individual of the form aA with A ∈ Γ and an arbitrary
assertion B(aA) ∈ Ae. By Claim 1, B(aA) ∈ AEL, so by Property 2 of Lemma 11 we have
Av ∪Rv ∪Rh |= A v B. Since Rv ∪Rh are EL-rules, Av does not affect subsumption
inferences, so Rv ∪Rh |= A v B. Since ⊥ 6∈ Ae, an interpretation I exists such that AI 6= ∅
and I |= Rh. Assume now that B ∈ safe(Rv,Γ). By Proposition 3 and the fact that Rv is
EL-safe, a model J of Rv exists such that XJ = XI for each X ∈ sig(Rh), and BJ = ∅.
Thus, J |= Rv ∪Rh, which contradicts the fact that Rv ∪Rh |= A v B.

Soundness of the EL Ωe-algorithm follows immediately from Property 1 of Lemma 12
and the fact that the standard EL hypertableau algorithm is sound. We next prove that
the algorithm is complete.

Lemma 13 (Completeness). Let 〈Γ,Rv ∪ Av, Th〉 be an input of the EL Ωe-algorithm and let
Th be an EL TBox, and let Ae be the ABox labeling a leaf of a derivation for 〈Γ,Rv ∪ Av, Th〉.
If ⊥ 6∈ Ae, then Rv ∪ Av ∪ Th is satisfiable.

Proof. Let Rh be the result of transforming Th into a set of EL-rules as described by Motik
et al. (2009); then, Rv ∪ Av ∪ Th is equisatisfiable with Rv ∪ Av ∪Rh, and each model of
the latter is a model of the former as well. Therefore, in the rest of the proof we extend A
to a clash-free ABox Afin such that no derivation rule from Table 2 is applicable to Rv ∪Rh
and Afin. By Lemma 3, then Rv ∪ Afin ∪Rh is satisfiable, which, together with A ⊆ Afin,
implies the satisfiability of Rv ∪ A ∪Rh. Let Γv = sig(Rv) ∪ sig(Av) and Γh = sig(Rh).

We next present the construction of Afin. The first step is to extend Ae such that it
satisfies Rh, which we achieve by applying the EL hypertableau algorithm to Rh and Ae.
We assume that the individuals in Ae of the form aA are reused whenever A ∈ Γv. We
call the individuals from Ae old and the freshly introduced individuals new, and we call an
individual Γ-relevant if it is of the form aA with A ∈ Γ.

We next show that each ABox Aj in a derivation for Rh and Ae satisfies the following
properties (*):

1. α ∈ Aj implies α ∈ Ae whenever α is of the form

(a) C(s) with sig(C) ⊆ Γv and s an old individual, or
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(b) R(s, t) with R ∈ Γv and s and t old individuals.

2. For each C(s) ∈ Aj , the following properties hold:

(a) sig(C) ⊆ Γv or sig(C) ⊆ Γh, and

(b) if s is a new individual, then sig(C) ⊆ Γh.

3. For each R(s, t) ∈ Aj , the following properties hold:

(a) if t is a new individual, then R ∈ Γh, and

(b) if s is new and t is old, then t is Γ-relevant and R ∈ Γh.

The proof of (*) is by induction on the application of the derivation rules. For the
induction base, we have A0 = Ae. Statements (1) and (2a) hold trivially, and (2b) and (3)
are vacuously true since Ae contains only old individuals. Assume now that (1)–(3) hold
for Aj−1 and consider an application of a derivation rule that derives Aj .

Assume that the ∃-rule is applied to ∃R.A(s) ∈ Aj−1, deriving R(s, aA) and A(aA). If
{R,A} ⊆ Γv and s is old, then ∃R.A(s) ∈ Ae by the induction assumption; since the ∃-
rule is not applicable to Ae, then {R(s, aA), A(aA)} ⊆ Ae, so (1) holds. Furthermore, if
A ∈ Γv \ Γ, then s is old by (2b), and R ∈ Γv by (2a); but then ∃R.A(s) ∈ Ae, so the ∃-rule
cannot be applicable to ∃R.A(s) in Aj−1. Consequently, we have {R,A} ⊆ Γh, so A(aA)
clearly satisfies (2), and R(s, aA) clearly satisfies (3a). Finally, aA can be old only if A ∈ Γ,
so R(s, aA) clearly satisfies (3b).

Assume that the Hyp-rule is applied to an EL-rule ρ ∈ Rh of the form (8), deriving
C(s). Then, individuals t1, . . . , tm in Aj−1 exist such that Ai(s) ∈ Aj−1 for each 1 ≤ i ≤ k
and {Ri(s, ti), Bi,1(ti), . . . , Bi,mi(ti)} ⊆ Aj−1 for each 1 ≤ i ≤ m. ABox Aj trivially satisfies
(1b) and (3), and it satisfies (2) because ρ ∈ Rh, so sig(C) ⊆ Γh. To show (1a), assume that
s is an old individual and sig(C) ⊆ Γv; since ρ ∈ Rh, then sig(C) ⊆ Γ. By Property 1 of
Lemma 11, then Rh ∪ Ae |= C(s). Since sig(C) ⊆ Γ, we have Rh ∪ Ae|Γ |= C(s). Since the
Ωe-concept rule is not applicable to Ae, we have C(s) ∈ Ae, so Aj satisfies (1a).

This completes the proof of (*). Let Ader be the ABox labeling a leaf of a derivation
of the EL hypertableau algorithm for Rh and Ae. Such Ader is clash-free since ⊥ /∈ Ae and
the Ωe-rule is not applicable to Ae; furthermore, Ader satisfies (*).

We now extend Ader such that the EL-rules in Rv are satisfied when they are matched
to new individuals. To this end, for each new individual u in Ader, let Ader[u] be an Rv-
extension w.r.t. Γ of the projection of Ader on {u}; such Ader[u] exists by Proposition 5
and the fact that Rv is EL-safe. Let Afin be the union of Ader and all such Ader[u]. Since
Av ⊆ Ae and Ae ⊆ Afin, we have Av ⊆ Afin. Furthermore, since ⊥ 6∈ Ader and ⊥ 6∈ Ader[u]
for each u that is new in Ader, we have ⊥ 6∈ Afin. Finally, by (*), Property 2 of Lemma
12, and the fact that each Ader[u] contains only one individual and no safe concepts, Afin

satisfies the following properties (**):

1. For each B(s) ∈ Afin such that s is Γ-relevant or new, we have B 6∈ safe(Rv,Γ).

2. For each R(s, t) ∈ Afin, the following properties hold:

(a) if t is a new individual and s 6= t, then R ∈ Γh, and

251



Cuenca Grau & Motik

(b) if s is new and t is old, then t is Γ-relevant and R ∈ Γh.

To complete the proof of this lemma, we show that no derivation rule of the hypertableau
algorithm is applicable to Afin and Rv ∪Rh.

(∃-rule) Consider an arbitrary ∃R.C(s) ∈ Afin. If ∃R.C(s) ∈ Ader, since the ∃-rule is
not applicable to Ader, we have {R(s, t), C(t)} ⊆ Ader ⊆ Afin. If ∃R.C(s) ∈ Ader[u] for some
individual u that is new in Ader, by Definition 14 the ∃-rule is not applicable to Ader[u], so
{R(s, t), C(t)} ⊆ Ader[u] ⊆ Afin. Either way, the ∃-rule is not applicable to ∃R.C(s) in Afin.

(Hyp-rule) Assume that the Hyp-rule is applicable to an EL-rule ρ ∈ Rv ∪Rh of the
form (8), deriving C(s). Then, individuals t1, . . . , tm in Afin exist such that Ai(s) ∈ Afin

for each 1 ≤ i ≤ k and {Ri(s, ti), Bi,1(ti), . . . , Bi,mi(ti)} ⊆ Afin for each 1 ≤ i ≤ m. Then we
have the following possibilities:

• % ∈ Rh. For each new individual u and each assertion α ∈ Ader[u] \ Ader, by Def-
inition 14 either sig(α) ∈ Γv \ Γ or α is of the form ∃R.C. Thus, Ai(s) ∈ Ader for
each 1 ≤ i ≤ k and {Ri(s, ti), Bi,1(ti), . . . , Bi,mi(ti)} ⊆ Ader for each 1 ≤ i ≤ m, so the
Hyp-rule is applicable to % and Ader, which is a contradiction.

• % ∈ Rv. We first show the following property (***): if s or some ti is new, then s = tj
for each tj . We have the following cases.

– Assume that s is new and consider an arbitrary 1 ≤ i ≤ m. Clearly, Ri ∈ Γv;
furthermore, if Ri ∈ Γ, since % is EL-safe, the body of % contains an atom that
is matched to some Bij(ti) ∈ Afin such that Bij ∈ safe(Rv,Γ). Assume now that
ti 6= s. If ti is new, then Ri ∈ Γ by Statement (2a) of (**); furthermore, if ti is
old, then Ri ∈ Γ and ti is Γ-relevant by Statement (2b) of (**); consequently,
Ri ∈ Γ and ti is either new or Γ-relevant. But then, by Statement (1) of (**) and
Property 3 of Definition 14, then Bij(ti) 6∈ Afin, which is a contradiction. Hence,
we conclude that s = ti.

– Assume that ti is new for some 1 ≤ i ≤ m. If ti 6= s, by Statement (2a) of (**)
then Ri ∈ Γ. Since % is EL-safe, the body of % then contains an atom that is
matched to some Bij(ti) ∈ Afin such that Bij ∈ safe(Rv,Γ). Statement (1) of
(**) then implies Bij(ti) 6∈ Afin, which is a contradiction. Hence, we conclude
that s = ti; by the previous case then s = tj for each 1 ≤ j ≤ m.

Let A′ = Ae if s is old, and A′ = Ader[s] otherwise. A straightforward consequence of
(***) is that Ai(s) ∈ A′ for each 1 ≤ i ≤ k and {Ri(s, ti), Bi,1(ti), . . . , Bi,mi(ti)} ⊆ A′
for each 1 ≤ i ≤ m. The Hyp-rule is not applicable to % and A′, so C(s) ∈ A′. Since
A′ ⊆ Afin, we have C(s) ∈ Afin, which contradicts the assumption that the Hyp-rule
is applicable to % and Afin.

This completes the proof of this lemma.

Finally, we prove that the EL Ωe-algorithm is an optimal import-by-query algorithm.
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Theorem 13. The EL Ωe-algorithm is an import-by-query algorithm based on ABox entail-
ment oracles for the class of inputs C[ΓC ,RCv ∪ ACv , T Ch ] from Definition 11. The algorithm
can be implemented such that it runs in PTime in N with a polynomial number (in N) of
calls to Ωe

Th,Γ, where N = |Rv ∪ Av|+ |Γ| for the input Rv, Av, and Γ.

Proof. That the EL Ωe-algorithm is an import-by-query algorithm is a straightforward
consequence of Lemmas 12 and 13. To estimate the algorithm’s running time, note that
each application of a derivation rule adds an assertion of the form C(a) or R(a, b) for
C ∈ Γv ∪ {⊥}, where a and b are individuals occurring either in Av or are of the form aA
with A ∈ sig(Rv). Clearly, the maximal number of individuals occurring in an ABox in
a derivation is polynomial in the size of Av, Rv, and Γ, and so is the maximal number
of assertions. Furthermore, no derivation rule removes assertions from an ABox, so the
number of assertions in an ABox monotonically increases in the course of a derivation.
Consequently, the number of rule applications is polynomial in the size of Av, Rv, and Γ.
In the same way as in the standard EL hypertableau algorithm (Motik & Horrocks, 2008),
one can show that each derivation rule can be applied in polynomial time, which implies
the claim of this theorem.
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