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Abstract. As applications of description logics proliferate, efficient reasoning with
knowledge bases containing many assertions becomes ever more important. For such
cases, we developed a novel reasoning algorithm that reduces a SHIQ knowledge
base to a disjunctive datalog program while preserving the set of ground conse-
quences. Queries can then be answered in the resulting program while reusing
existing and practically proven optimization techniques of deductive databases, such
as join-order optimizations or magic sets. Moreover, we use our algorithm to derive
precise data complexity bounds: we show that SHIQ is data complete for NP, and
we identify an expressive fragment of SHIQ with polynomial data complexity.
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1. Introduction

In recent years, description logics (DLs) have found their application in
various fields of computer science, such as data integration, knowledge
representation, and ontology modeling for the Semantic Web [10][3,
Part III]. A DL knowledge base typically consists of two parts. The
terminological part of a knowledge base, called TBox, can be thought
of as the “schema” since it contains concept definitions and background
knowledge. A central reasoning task for TBoxes is the computation of
the subsumption hierarchy, which is based on deciding entailment of
implications between formulae w.r.t. a background theory. The asser-
tional part of a knowledge base, called ABox, can be thought of as
the “data” since it contains ground facts. The main reasoning task for
ABoxes is query answering, which, in its simplest form, amounts to
retrieving all instances of a certain concept.
SHIQ [21] is a very expressive DL that provides the logical under-

pinning for the OWL-Lite and OWL-DL variants of the Web Ontology
Language (OWL) [20]. Several practical reasoners for logics around
SHIQ have been built [34, 17, 39] and applied to practical problems.
Experience shows that these systems perform well when computing
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the subsumption hierarchy: they use practical, optimized tableau-based
algorithms [21], which perform much better on practical problems than
their worst-case computational complexity suggests. New applications,
such as metadata management in the Semantic Web, require also effi-
cient query answering over large ABoxes. So far, query answering was
implemented by reducing the problem to ABox consistency checking,
which can then be solved using tableau algorithms [18].

In this paper, we propose a completely different and novel approach
to this complex reasoning problem. It is based on reusing ideas from
deductive databases—an extension of the relational database model
with deductive features, usually in the form of (recursive) rules [1]. Rea-
soning algorithms and optimization techniques for deductive databases
were specifically designed to handle large data quantities. In order to
apply them to DL reasoning, we developed a novel algorithm that
reduces a SHIQ knowledge base to a disjunctive datalog program.
Since the reduction preserves the set of entailed ground facts, queries
can be answered in the resulting program while reusing all existing
optimization techniques.

Our reduction to datalog does not mean that we suggest employ-
ing nonmonotonic negation or minimal model reasoning. Rather, we
consider disjunctive datalog useful because it allows the application
of the join order optimization, which, based on the database statistics,
chooses the data access path promising the least cost [1]. Moreover, our
algorithm allows us to apply the magic sets transformation [7]. Roughly
speaking, this transformation modifies the datalog program such that
bottom-up evaluation of the transformed program simulates top-down
parameter passing in the original program. In this way, only the facts
directly relevant to the query answer are considered. This technique was
crucial in providing efficient reasoning in deductive databases contain-
ing large data quantities. The magic sets transformation for disjunctive
programs has been presented in [12], along with empirical evidence of
its usefulness. We are unaware of an approach that would allow us to
apply the magic sets transformation directly in the resolution setting,
without a prior transformation into disjunctive datalog.

As an added benefit, our algorithm separates TBox from ABox rea-
soning. Thus, the TBox inferences are not being repeated for different
individuals during query answering.

Our algorithm runs in worst-case exponential time. Furthermore,
query answering in the resulting program can be performed in time
exponential in the size of the input knowledge base, so reasoning in
SHIQ using our algorithms has optimal worst-case complexity, assum-
ing unary coding of numbers. The latter assumption is quite common
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in practical implementations of description logics, even though SHIQ
is ExpTime-complete regardless of the coding of numbers [38].

As a side-effect of our reduction, we obtain novel data complexity
results. Assuming that the ABox contains only possibly negated atomic
concepts, we show that checking KB satisfiability is NP-complete and
query answering is co-NP-complete in the size of the ABox. This is still
intractable, so we identify Horn-SHIQ, a fragment of SHIQ analogous
to the Horn fragment of first-order logic. Namely, Horn-SHIQ pro-
vides existential and universal quantifiers, but does not provide means
to express disjunctive information. We show that the basic reasoning
problems for Horn-SHIQ are P-complete in the size of the ABox.

The algorithms from this paper are implemented in KAON21—a
new DL reasoner. Our performance comparison of KAON2 with other
state-of-the-art reasoners shows that our algorithm indeed leads to
performance improvements in query answering of one or more orders
of magnitude on large knowledge bases [29].

This paper contains an extended version of the results that have
been published in [22, 23, 24, 28].

2. Preliminaries

2.1. Description Logic SHIQ

The syntax of SHIQ is given by the following definition [21].

DEFINITION 1. For a set of role names NR, the set of roles is the set
NR ∪{R

− | R ∈ NR}. For R ∈ NR, let Inv(R) = R− and Inv(R−) = R.
An RBox KBR is a finite set of transitivity axioms Trans(R) and role
inclusion axioms R ⊑ S for R and S roles. Let ⊑∗ be the reflexive-
transitive closure of {R ⊑ S, Inv(R) ⊑ Inv(S) | R ⊑ S ∈ KBR}. A role
R is transitive in KBR if a role S exists such that S ⊑∗ R, R ⊑∗ S, and
either Trans(S) ∈ R or Trans(Inv(S)) ∈ R; R is simple if no transitive
role S exists with S ⊑∗ R; and R is complex if it is not simple.

Let NC be a set of atomic concepts. The set of concepts over NC

and NR is the smallest set such that ⊤ ( top concept) and ⊥ (bottom
concept) are concepts, each atomic concept A ∈ NC is a concept, and,
if C and D are concepts, R is a role, S is a simple role, and n is a
nonnegative integer, then ¬C ( concept complement), C ⊓D ( concept
intersection), C ⊔ D ( concept union), ∃R.C ( existential restriction),
∀R.C (universal restriction), ≤ n S.C ( at-most qualified number re-
striction), and ≥ n S.C ( at-least qualified number restriction) are con-
cepts. Literal concepts are possibly negated atomic concepts.

1 http://kaon2.semanticweb.org/
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A TBox KBT over NC and KBR is a finite set of concept inclusion
axioms C ⊑ D, for concepts C and D.

Let NI be a set of individuals. An ABox KBA is a set of concept
and role assertions C(a), R(a, b), ¬S(a, b), and (in)equality axioms
a ≈ b and a 6≈ b, for C a concept, R a role, S a simple role, and a

and b individuals. An ABox is extensionally reduced if its assertions
contain only literal concepts.

A SHIQ knowledge base KB is a triple (KBR,KBT ,KBA). With
|KB | we denote the size of KB with numbers coded in unary—that is,
|≤ n R.C| = |≥ n R.C| = |C|+ n + 1.

Each KB can be made extensionally reduced as follows: for each
axiom C(a) where C is not a literal concept, introduce a new atomic
concept AC , add the axiom AC ⊑ C to the TBox, and replace C(a)
with AC(a). This transformation is obviously polynomial in |KB |.

For the semantics, we translate DL knowledge bases into a first-
order formula. Such a semantics is known to be equivalent to the more
commonly used direct model-theoretic semantics [8]. The translation
of number restrictions uses counting quantifiers ∃≥n and ∃≤n. It is well
known that these can be represented in first-order logic by means of
standard quantifiers and equality as follows, for y a vector of variables:

∃≥nx : ϕ(x,y)= ∃x1, . . . , xn :

[

∧

1≤i≤n

ϕ(xi,y) ∧
∧

1≤i<j≤n

xi 6≈ xj

]

∃≤nx : ϕ(x,y)= ∀x1, . . . , xn+1 :

[

∧

1≤i≤n+1
ϕ(xi,y)→

∨

1≤i<j≤n+1
xi ≈ xj

]

DEFINITION 2. The semantics of a SHIQ knowledge base KB is
defined by transforming KB into the formula π(KB) of first-order logic
with counting quantifiers and equality, where π is the mapping operator
shown in Table I. KB is satisfiable if and only if π(KB) is satisfiable.

Other interesting inference problems can be reduced to satisfiability
using well-known transformations [3, Chapter 2]. The DL ALCHIQ is
obtained from SHIQ by prohibiting transitivity axioms, and the DL
ALC is obtained from ALCHIQ by prohibiting inverse roles, qualified
number restrictions, and role inclusion axioms. A logic L is a fragment
of a logic L′ if each axiom of L is also an axiom of L′ and it is interpreted
in both logics in the same way. A logic L is between logics L1 and L2

if L1 is a fragment of L, and L is a fragment of L2.
A position p is a finite sequence of integers; the empty position is

denoted with ǫ. A position p is below a position q if q is a proper
prefix of p. For a concept α, the subterm at position p, written α|p, is
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Table I. Translation of SHIQ into FOL

Translating Concepts to FOL

πx(⊤) =⊤ πy(⊤)=⊤

πx(⊥) =⊥ πy(⊥)=⊥

πx(A)= A(x) πy(A)= A(y)

πx(¬C) =¬πx(C) πy(¬C)=¬πy(C)

πx(C ⊓ D)= πx(C) ∧ πx(D) πy(C ⊓ D)= πy(C) ∧ πy(D)

πx(C ⊔ D)= πx(C) ∨ πx(D) πy(C ⊔ D)= πy(C) ∨ πy(D)

πx(∃R.C) = ∃y : [R(x, y) ∧ πy(C)] πy(∃R.C) = ∃x : [R(y, x) ∧ πx(C)]

πx(∀R.C) = ∀y : [R(x, y) → πy(C)] πy(∀R.C) = ∀x : [R(y, x) → πx(C)]

πx(≥ n S.C)= ∃≥ny : [S(x, y) ∧ πy(C)] πy(≥ n S.C)= ∃≥nx : [S(y, x) ∧ πx(C)]

πx(≤ n S.C)= ∃≤ny : [S(x, y) ∧ πy(C)] πy(≤ n S.C)= ∃≤nx : [S(y, x) ∧ πx(C)]

Translating Axioms to FOL

π(Trans(R)) = ∀x, y, z : [R(x, y) ∧ R(y, z) → R(x, z)]

π(R ⊑ S)= ∀x, y : [R(x, y) → S(x, y)] π(C ⊑ D)= ∀x : [πx(C) → πx(D)]

π(C(a)) = πx(C){x 7→ a}

π(R(a, b)) = R(a, b) π(¬S(a, b))=¬S(a, b)

π(a ≈ b)= a ≈ b π(a 6≈ b)= a 6≈ b

Mapping KB to FOL

π(R) = ∀x, y : R(x, y) ↔ R−(y, x)

π(KBR)=
∧

α∈KBR
π(α) ∧

∧

R∈NR

π(R) π(KBT )=
∧

α∈KBT
π(α)

π(KB)= π(KBR) ∧ π(KBT ) ∧ π(KBA) π(KBA)=
∧

α∈KBA
π(α)

defined as follows: α|ǫ = α; (¬D)|1.p = D|p; (D1 ◦ D2)|i.p = Di|p for
◦ ∈ {⊓,⊔} and i ∈ {1, 2}; α|1 = R and α|2.p = D|p for α = 3R.D and
3 ∈ {∃,∀}; and α|1 = n, α|2 = R, and α|3.p = D|p for α = ⊲⊳ n R.D

and ⊲⊳ ∈ {≤,≥}. A replacement of a subterm of α at position p with a
term β is denoted as α[β]p and is defined as usual. For a concept α and
a position p such that α|p is a concept, the polarity of α|p in α, written
pol(α, p), is defined as follows:

pol(C, ǫ) = 1 pol(≥ n R.C, 3.p) = pol(C, p)
pol(¬C, 1.p) = −pol(C, p) pol(≤ n R.C, 3.p) = −pol(C, p)

pol(C1 ◦ C2, i.p) = pol(Ci, p) for ◦ ∈ {⊓,⊔} and i ∈ {1, 2}
pol(3R.C, 2.p) = pol(C, p) for 3 ∈ {∃,∀}
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2.2. Basic Superposition Calculus

Basic superposition [6, 31] is a clausal calculus optimized for theorem
proving with equality. We use standard definitions of terms, atoms,
and literals. For convenience, we distinguish constants from function
symbols by requiring function symbols to have nonzero arity. We write
positive equality literals as s ≈ t, and negative equality literals as s 6≈ t.
A clause is a finite multiset of literals; a clause with one literal is called
a unit clause. As we do for concepts in Section 2.1, we also use positions
to describe an “address” of a subterm in a term; t|p is a subterm of t

at position p; and t[s]p is a replacement of a subterm of t at position p

with the term s. We extend these notions to literals and clauses in the
obvious way.

It is common practice in equational theorem proving to consider
logical theories containing only the equality predicate, as this sim-
plifies the theoretical treatment without loss of generality. A literal
P (t1, . . . , tn), where P is not the equality predicate, is encoded as
P (t1, . . . , tn) ≈ tt, where tt is a new constant. Assuming that P and tt

are of sort different from the sort of terms ti, this encoding preserves
satisfiability. Technically speaking, P thus becomes a function symbol;
however, when ambiguity does not arise, we call it a predicate symbol.
We take P (t1, . . . , tn) to be a syntactic shortcut for P (t1, . . . , tn) ≈ tt.
Furthermore, we assume the predicate ≈ to have built-in symmetry:
a literal s ≈ t also denotes the literal t ≈ s, and a literal s 6≈ t also
denotes the literal t 6≈ s.

The inference rules of basic superposition are formalized by distin-
guishing two parts of a clause: (i) the skeleton clause C and (ii) the
substitution σ representing the cumulative effects of previous unifica-
tions. Such a representation of Cσ is called a closure, and is written
as C · σ. A closure can conveniently be represented by marking the
terms in Cσ occurring at variable positions of C with [·]. A position
at or beneath a marked position is called a substitution position. For
example, the clause P (f(y)) ∨ g(b) ≈ b is logically equivalent to the
closure (P (x) ∨ z ≈ b) · {x 7→ f(y), z 7→ g(b)}, which can conveniently
be represented as P ([f(y)]) ∨ [g(b)] ≈ b.

The basic superposition calculus requires two parameters. The first
is an admissible ordering≻ on terms—that is, a reduction ordering total
on ground terms. The second parameter of the calculus is a selection
function, which selects an arbitrary set of negative literals in a closure.

A term ordering ≻ can be extended to an ordering on literals, which
we also denote with ≻. If ≻ is total on nonground terms (as it is
the case in this paper), it can be extended to literals by assigning
to each literal L = s ⊲⊳ t with ⊲⊳ ∈ {≈, 6≈} a complexity measure
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cL = (max(s, t), pL,min(s, t)), where pL is 1 if ⊲⊳ is ≈, and 0 otherwise.
Then, L1 ≻ L2 iff cL1 ≻ cL2 , where cLi

are compared lexicographically,
with 1 ≻ 0. A literal L · θ is maximal w.r.t. a closure C · θ if there is no
literal L′ ∈ C such that L′θ ≻ Lθ; furthermore, L ·θ is strictly maximal
w.r.t. C · θ if there is no literal L′ ∈ C such that L′θ � Lθ.

A literal L · θ is (strictly) eligible for superposition in a closure
(C ∨ L) · θ if there are no selected literals in (C ∨ L) · θ and L · θ
is (strictly) maximal w.r.t. C · θ. A literal L · θ is eligible for resolution
in a closure (C ∨ L) · θ if it is selected in (C ∨ L) · θ, or if there are
no selected literals in (C ∨ L) · θ and L · θ is maximal w.r.t. C · θ. The
basic superposition calculus, BS for short, consists of the inference rules
from Table II. Semantically, all closures are universally quantified, so
we can assume each closure to contain a distinct set of variables and
all premises to contain the same substitution ρ. Additionally, basic
superposition comes with redundancy elimination rules, which allow the
removal of certain redundant closures in a saturation without affecting
completeness [6, 31]. For example, a closure C1 = A(x) subsumes a clo-
sure C2 = A([f(x)])∨B(x) because, roughly speaking, by instantiating
the variable x in C1 to f(x) we obtain a subset of C2. Hence, C1 makes
C2 redundant—that is, after deriving C1, we may safely delete C2.

A derivation from a closure set N0 is a sequence of closure sets
N0, N1, . . . , Ni, where Ni = Ni−1 ∪{C} and C is derived by applying a
BS inference rule to premises from Ni−1, or Ni = Ni−1 \ {C} and C is
redundant in Ni−1. BS is a sound and complete refutation procedure:
if no nonredundant inference is applicable to a closure set Ni (that is,
if Ni is saturated), then N0 is unsatisfiable if and only if Ni contains
the empty closure.

In our proofs, we use an additional splitting inference rule: if a
closure C · σ consists of n parts Ci · σ, 2 ≤ i ≤ n, such that Ciσ and
Cjσ do not share a common variable for i 6= j, then one can separately
assume that some Ci ·σ is true. A derivation with splitting from a set of
closures N0 is a finitely branching tree whose nodes are closure sets and
whose root is N0. The children of a node Ni are closure sets obtained
by applying an inference rule or a redundancy elimination rule to Ni.
A set of closures N0 is satisfiable if and only if each derivation from N0

contains a saturated node Ni not containing the empty closure.

2.3. Disjunctive Datalog

A disjunctive datalog program with equality P is a finite set of rules of
the form A1∨ ...∨An ← B1, ..., Bm, where Ai and Bj are datalog atoms
A(t1, . . . , tn) or t1 ≈ t2, and ti are variables or constants. In a rule,
Ai are the head and Bi are the body atoms. Each rule must be safe;

paper.tex; 2/07/2007; 21:08; p.7



8

Table II. Inference Rules of Basic Superposition

Positive superposition:
(C ∨ s ≈ t) · ρ (D ∨ w ≈ v) · ρ

(C ∨ D ∨ w[t]p ≈ v) · θ

where (i) σ = MGU(sρ,wρ|p) and θ = ρσ, (ii) tθ � sθ and vθ � wθ, (iii) (s ≈ t) ·θ
is strictly eligible for superposition in (C ∨ s ≈ t) · θ, (iv) (w ≈ v) · θ is strictly
eligible for superposition in (D ∨ w ≈ v) · θ, (v) sθ ≈ tθ � wθ ≈ vθ, (vi) w|p is
not a variable.

Negative superposition:
(C ∨ s ≈ t) · ρ (D ∨ w 6≈ v) · ρ

(C ∨ D ∨ w[t]p 6≈ v) · θ

where (i) σ = MGU(sρ,wρ|p) and θ = ρσ, (ii) tθ � sθ and vθ � wθ, (iii) (s ≈ t) ·θ
is strictly eligible for superposition in (C ∨ s ≈ t) · θ, (iv) (w 6≈ v) · θ is eligible for
resolution in (D ∨ w 6≈ v) · θ, (v) w|p is not a variable.

Reflexivity resolution:
(C ∨ s 6≈ t) · ρ

C · θ

where (i) σ = MGU(sρ, tρ) and θ = ρσ, (ii) (s 6≈ t) · θ is eligible for resolution in
(C ∨ s 6≈ t) · θ.

Equality factoring:
(C ∨ s ≈ t ∨ s′ ≈ t′) · ρ

(C ∨ t 6≈ t′ ∨ s′ ≈ t′) · θ

where (i) σ = MGU(sρ, s′ρ) and θ = ρσ, (ii) tθ � sθ and t′θ � s′θ, (iii) (s ≈ t) · θ
is eligible for superposition in (C ∨ s ≈ t ∨ s′ ≈ t′) · θ.

Ordered Hyperresolution:
E1 . . . En N

(C1 ∨ . . . ∨ Cn ∨ D) · θ

where (i) Ei are closures of the form (Ci ∨Ai) ·ρ, for 1 ≤ i ≤ n, (ii) N is a closure
of the form (D ∨ ¬B1 ∨ . . . ∨ ¬Bn) · ρ, (iii) σ is the most general substitution
such that Aiθ = Biθ for 1 ≤ i ≤ n and θ = ρσ, (iv) each Ai · θ is strictly eligible
for superposition in Ei, (v) either all ¬Bi · θ are selected, or nothing is selected,
n = 1, and ¬B1 · θ is maximal w.r.t. D · θ.

that is, each variable occurring in the rule must occur in at least one
body atom. A fact is a rule with m = 0. For the semantics, we take a
rule to be equivalent to the clause A1 ∨ ... ∨An ∨ ¬B1 ∨ ... ∨ ¬Bm. We
consider only Herbrand models over all constants from P in which ≈ is
interpreted as a congruence relation [15]. We say that a model M of P

is minimal if there is no model M ′ of P such that M ′ ( M . A ground
literal A is a cautious answer of P (written P |=c A) if A is true in all
minimal models of P . For positive ground atoms, first-order entailment
coincides with cautious entailment.
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3. Reducing SHIQ to Disjunctive Datalog

For a SHIQ knowledge base KB , our goal is to compute a disjunctive
datalog program DD(KB) such that, for α of the form A(a) or R(a, b),
KB |= α if and only if DD(KB) |= α. In other words, KB and DD(KB)
should entail the same set of positive atomic ground facts. We can thus
use DD(KB) instead of KB for query answering, and in doing so we
can apply all optimization techniques known in deductive databases.

As pointed out by Borgida, many description logics are fragments
of first-order logic [8] (see Definition 2), so the translation may seem
to be trivial. Consider, however, the following knowledge base:

KB = {A ⊑ ∃R.A,∃R.∃R.A ⊑ B,A(a)}(1)

A näıve solution to our problem is to translate KB into first-order
logic as π(KB), skolemize it, translate it into conjunctive normal form,
and rewrite the resulting set of clauses into rules. This produces the
following logic program LP(KB):

R(x, f(x))← A(x)(2)

A(f(x))← A(x)(3)

B(x)← R(x, y), R(y, z), A(z)(4)

A(a)(5)

Clearly, KB and LP(KB) entail the same set of ground facts; however,
LP(KB) contains a recursive rule (3) with a function symbol in its
head atom. This causes problems when LP(KB) is used to answer
queries. Namely, well-known query evaluation techniques do not nec-
essarily terminate on LP(KB); for example, the bottom-up saturation
derives A(f(a)), R(a, f(a)), A(f(f(a))), R(f(a), f(f(a))), B(a), and
so on. Since we keep deriving ever deeper facts, the algorithm never
terminates. Note that we need all previously derived facts to derive the
ground fact B(a), and that we do not know a priori when all relevant
ground facts have been derived.

This problem could be solved by employing an appropriate cycle
detection mechanism. For example, Hustadt and Schmidt use such an
approach to derive a hyperresolution decision procedure for the basic
description logic ALC [25]. Such an algorithm for evaluating queries in
LP(KB) would take us away from our original goal of applying deduc-
tive database optimization techniques to description logics. The entire
procedure could be understood as an alternative syntactic notation for
the tableau calculus, so it is still unclear how to combine it with the
optimization techniques of deductive databases.
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To avoid potential problems with termination, our goal is to derive a
true disjunctive datalog program DD(KB)—that is, a program without
function symbols. For such a program, queries can be evaluated using
any standard technique; furthermore, all existing optimization tech-
niques known in deductive databases can be applied directly. Hence, the
main problem that we deal with is the elimination of function symbols
from LP(KB).

3.1. The General Idea

In order to obtain the desired reduction, we start with a slightly simpler
task of deriving a program DD(KB) that is satisfiable if and only if KB
is satisfiable. The principle for proving the equisatisfiability of KB and
DD(KB) is relatively straightforward. Let us assume that unsatisfiabil-
ity of KB can be demonstrated by a refutation in a sound and complete
calculus C. We show that DD(KB) can simulate each inference of C on
KB and, conversely, that a refutation in DD(KB) can be reduced to a
refutation by C in KB .

In order to derive a sound, complete, and terminating algorithm
from the high-level idea outlined in the previous paragraph, we must
select an appropriate calculus C, capable of deciding satisfiability of
KB . Positive disjunctive datalog is strongly related to clausal first-
order logic, so the simulation of the inferences of C in disjunctive datalog
should be easier if C is a clausal refutation calculus. Therefore, we have
chosen C to be basic superposition and, in Section 3.2, we sketch our
decision procedure for SHIQ by BS from [22, 23].

Based on this decision procedure, our algorithm computes DD(KB)
by the following steps:

− Due to technical reasons, transitivity axioms are first eliminated
using a polynomial transformation. In the remaining sections, we
thus consider only ALCHIQ knowledge bases.

− The knowledge base is translated into an equisatisfiable set of
closures Ξ(KB), as defined in Section 3.2. The closures in Ξ(KB)
obtained by transforming the TBox and RBox axioms of KB are
then saturated using BS; let Sat(ΓT Rg) denote the saturated set
of closures.

− As described in Section 3.3, function symbols are eliminated from
Sat(ΓT Rg), producing a function-free set of closures FF(KB). As
shown in Lemma 14, this transformation does not affect satisfia-
bility.
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− In order to reduce the size of the datalog program, some irrelevant
closures are removed from FF(KB), as explained in Section 3.4,
producing a set of closures FFR(KB). As shown in Lemma 16, this
transformation also does not affect satisfiability.

− Finally, FFR(KB) is transformed into a disjunctive datalog pro-
gram DD(KB), as described in Section 3.5. This transformation
is straightforward: it suffices to transform each closure into the
equivalent sequent form. Theorem 18 summarizes the properties
of the resulting datalog program.

We apply this algorithm to several examples in Section 3.6, and we
discuss certain properties of our approach in Section 3.7.

3.2. Deciding Satisfiability of KB by BS

We now sketch our procedure for deciding satisfiability of a SHIQ
knowledge base KB by basic superposition. We present here just the
main results and proof sketches; the full proofs are given in [22, 23, 28].

Eliminating Transitivity Axioms. Transitivity axioms are translated
into closures of the form ¬R(x, y) ∨ ¬R(y, z) ∨R(x, z). Such closures
do not contain so-called covering literals (i.e., literals containing all
variables of a closure), and are therefore difficult to handle by resolution
[26]. Hence, we preprocess KB into an equisatisfiable ALCHIQ knowl-
edge base Ω(KB). In short, this transformation replaces each tran-
sitivity axiom Trans(S) with axioms of the form ∀R.C ⊑ ∀S.(∀S.C),
for each R with S ⊑∗ R and each concept C occurring in KB . This
transformation is polynomial. KB and Ω(KB) entail the same ground
facts concerning simple roles; however, this is not true for complex
roles. This is why we allow only simple roles in ABox assertions ¬S(a, b)
in Definition 1. In the rest of this paper, we consider only ALCHIQ
knowledge bases; our results apply to SHIQ knowledge bases as well,
provided that only simple roles are allowed in queries. For a precise
definition of this transformation and for proof of its correctness, please
refer to [28, Section 5.2].

Translation into Closures. To decide satisfiability of π(KB), we trans-
form it into a clausal form. A straightforward transformation of π(KB)
into conjunctive normal form might exponentially increase the formula
size and could destroy the structure of the formula. Therefore, before
clausification, we apply the structural transformation [35, 32, 5] (also
known as renaming) to KB , which is well-known to be polynomial,
and the result of which can be translated polynomially into closures.
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We use Cls to denote the standard operator for translating a first-
order formula into clausal form by skolemization and rewriting into
conjunctive normal form [32].

DEFINITION 3. Let C be a concept and Λ a function assigning to C

the set of positions p 6= ǫ such that C|p is not a literal concept and, for
all positions q below p, C|q is a literal concept. The operator Def(C)
is recursively defined as follows. If Λ(C) = ∅, then Def(C) = {C};
otherwise, choose p ∈ Λ(C) and let Def(C) be as follows, for Q a new,
globally unique atomic concept:

Def(C) =

{

{¬Q ⊔ C|p} ∪ Def(C[Q]p) if pol(C, p) = 1
{Q ⊔ ¬C|p} ∪ Def(C[Q]p) if pol(C, p) = −1

The clausification operator Cls is extended to concepts as follows:

Cls(C) =
⋃

D∈Def(C)

Cls(∀x : πx(D))

For KB an extensionally reduced ALCHIQ knowledge base, Ξ(KB)
is the smallest set such that

− if a role name R occurs in KB, then Cls(π(R)) ⊆ Ξ(KB);

− Cls(π(α)) ⊆ Ξ(KB) for each RBox or ABox axiom α of KB; and

− if C ⊑ D ∈ KBT , then Cls(¬C ⊔D) ⊆ Ξ(KB).

If KB is not extensionally reduced, then Ξ(KB) = Ξ(KB ′), where
KB ′ is the extensionally reduced knowledge base obtained from KB as
described in Section 2.1.

We call the closures of types from Table III ALCHIQ-closures. The
following lemma summarizes the properties of Ξ(KB):

LEMMA 4 ([28, Lemma 5.3.2]). An ALCHIQ knowledge base KB is
satisfiable if and only if Ξ(KB) is satisfiable. Furthermore, each closure
from Ξ(KB) is of one of the types given in Table III.

Decomposition. As we have shown in [23], if KB contains number re-
strictions on roles that have subroles, saturating Ξ(KB) by BS need not
terminate. To remedy that, we introduce decomposition—an additional
inference rule that replaces each conclusion of the form below left with
the two closures to the right, where t is an arbitrary term, and QS,f is a
predicate that does not occur in Ξ(KB) and is unique for a pair of role
and function symbols S and f ; we use BS+ to denote the superposition
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Table III. Types of ALCHIQ-Closures

1 ¬R(x, y) ∨ Inv(R)(y, x)

2 ¬R(x, y) ∨ S(x, y)

3 P(x) ∨ R(x, 〈f(x)〉)

4 P(x) ∨ R([f(x)] , x)

5 P1(x) ∨ P2(〈f(x)〉) ∨
∨

〈fi(x)〉 ⊲⊳ 〈fj(x)〉

6 P1(x) ∨ P2([g(x)]) ∨ P3(〈f([g(x)])〉) ∨
∨

〈ti〉 ⊲⊳ 〈tj〉

where ti and tj are either of the form f([g(x)]) or of the form x

7 P1(x) ∨
∨n

i=1
¬R(x, yi) ∨

∨n

i=1
P2(yi) ∨

∨n

i=1
n
j=i+1yi ≈ yj

8 R(〈a〉 , 〈b〉) ∨ P(〈t〉) ∨
∨

〈ti〉 ⊲⊳ 〈tj〉

where t, ti, and tj are either a constant b or a term fi([a])

Note: The symbol ⊲⊳ stands for either ≈ or 6≈, 〈t〉 means that the
term t may, but need not be marked, P(t) is a shortcut for a (possibly
empty) disjunction of the form (¬)P1(t) ∨ . . . ∨ (¬)Pn(t), and P(f(x)) is
a shortcut for a disjunction for the form P1(f1(x)) ∨ . . . ∨ Pm(fm(x)).

calculus extended with the decomposition rule. The completeness proof
of BS+ and examples of its usage can be found in [23].

D · ρ ∨R([t] , [f(t)])  D · ρ ∨ QR,f ([t])
¬QR,f (x) ∨ R(x, [f(x)])

D · ρ ∨R([f(t)] , [t])  D · ρ ∨ QInv(R),f ([t])
¬QInv(R),f (x) ∨ R([f(x)] , x)

Parameters for BS+. The following definition specifies the parameters
for BS+ required in order to obtain a decision procedure for ALCHIQ:

DEFINITION 5. BS+
DL is the BS+ calculus where ( i) the term order-

ing ≻ is a lexicographic path ordering [4] induced by a total precedence
> such that f > c > P > QR,f > tt, for each function symbol f ,
constant symbol c, predicate symbol P , and predicate QR,f ; and ( ii) the
selection function selects every negative binary literal.

The parameters used in Definition 5 are compatible with basic su-
perposition and decomposition, so, by [6, 31] and [23], BS+

DL is a sound
and complete calculus. Also, for a finite signature, it is clear that BS+

DL

can introduce at most a quadratic number of predicates QR,f .
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Saturating Ξ(KB) by BS+
DL. Since BS+

DL is sound and complete, we
can use it to check satisfiability of Ξ(KB). In order to obtain a de-
cision procedure, we must only show that each saturation of Ξ(KB)
terminates. We do this in a proof-theoretic way. We start by show-
ing that any nonredundant conclusion of each inference by BS+

DL on
ALCHIQ-closures is an ALCHIQ-closure.

LEMMA 6 ([28, Lemma 5.3.6]). Let N be a set of ALCHIQ-closures
and C · ρ a closure obtained by applying a BS+

DL inference to premises
from N . Then, either C · ρ is redundant in N , or it is an ALCHIQ-
closure.

Proof. [Sketch.] Table IV shows the types of BS+
DL inferences that

can be applied to ALCHIQ-closures. The inferences are shown using
the following notation:

(first premise type) first premise

(other premise type) other premise(s) inf. rule (result type)

. . .

Some inferences take several premises: 3+ denotes one or more premises
of type 3; 4+3∗ denotes a premise of type 4 and zero or more premises
of type 3; and 3∗+8+ denotes zero or more premises of type 3 and one or
more premises of type 8. Furthermore, HR denotes the hyperresolution
inference rule, S the (positive or negative) superposition inference rule,
and S+D denotes superposition followed by decomposition. The terms
and literals participating in the inference are underlined. Inferences for
most closure types are symmetric (for example, superposition from a
closure of type 5 can be performed into a closure of type 6 and vice
versa); for the sake of brevity, we present in the table only one direction.
By analyzing the application of all possible inferences by BS+

DL to all
types of ALCHIQ-closures, we can see that all inferences derive an
ALCHIQ-closure. 2

Next, we show that the number of ALCHIQ-closures is finite for a
finite signature of Ξ(KB).

LEMMA 7 ([28, Lemma 5.3.10]). Let N0, N1, . . . , Ni be a derivation by
BS+

DL from Ξ(KB) and C a closure from some Ni. Then, |C| is at most
polynomial in |KB |, and |Ni| is at most exponential in |KB |, for unary
coding of numbers in the input.

Proof. [Sketch.] Since no inference produces a closure of type 7, the
result of any inference is a closure containing at most one variable. Let
f be the number of function symbols, i the number of individuals, and
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Table IV. Inferences with ALCHIQ-Closures

(1 or 2) ¬R(x, y) ∨ Inv(R)(y, x) or ¬R(x, y) ∨ S(x, y)

(3) P(x) ∨ R(x, 〈f(x)〉) HR (3 or 4)

(4) P(x) ∨ R([f(x)] , x) HR (4 or 3)

(8) C · ρ ∨ R(a, b) HR (8)

(5) P1(x) ∨ ¬A(x)

(5) C · ρ ∨ A(x) or C · ρ ∨ A(〈f(x)〉) HR (5)

(6) C · ρ ∨ A(〈f([g(x)])〉) HR (6)

(8) C · ρ ∨ A(〈d〉) or C · ρ ∨ A(〈f([d])〉) HR (8)

(5) P1(x) ∨ P2(f(x)) ∨
∨

〈fi(x)〉 ⊲⊳ 〈fj(x)〉 ∨ ¬A(f(x))

(6) C · ρ ∨ A(〈f([g(x)])〉) HR (6)

(8) C · ρ ∨ A(〈f([a])〉) HR (8)

(5) P1(x) ∨ P2(f(x)) ∨
∨

〈fi(x)〉 ⊲⊳ 〈fj(x)〉 ∨ [f(x)] ≈ [h(x)]

(3) P(x) ∨ R(x, f(x)) S+D (3+5)

(5) C · ρ ∨ A(f(x)) or C · ρ ∨ f(x) ⊲⊳ 〈h′(x)〉 S (5)

(6) C · ρ ∨ f([g(x)]) ⊲⊳ 〈t′〉 S (6)

(8) C · ρ ∨ A(f([a])) or C · ρ ∨ f([a]) ⊲⊳ 〈t′〉 S (8)

(6) P1(x) ∨ P2([g(x)]) ∨ P3(〈f([g(x)])〉) ∨
∨

〈ti〉 ⊲⊳ 〈tj〉 ∨ ¬A(〈f([g(x)])〉)

(6) C · ρ ∨ A(〈f([g(x)])〉) HR (6)

(6) P1(x) ∨ P2([g(x)]) ∨ P3(〈f([g(x)])〉) ∨
∨

〈ti〉 ⊲⊳ 〈tj〉 ∨ [f(g(x))] ≈ t

(3) P(x) ∨ R(x, f(x)) S+D (3+6 or 4+6)

(5) C · ρ ∨ A(f(x)) or C · ρ ∨ f(x) ⊲⊳ 〈h′(x)〉 S (6)

(6) C · ρ ∨ A(f([g(x)])) or C · ρ ∨ f([g(x)]) ⊲⊳ 〈t′〉 S (6)

(7) P1(x) ∨
∨n

i=1
¬R(x, yi) ∨

∨n

i=1
P2(yi) ∨

∨n

i=1
n
j=i+1yi ≈ yj

(3+) Pfi(x) ∨ R(x, 〈fi(x)〉) HR (5)

(4 + 3∗) Pg(x) ∨ R([g(x)] , x) and Pfi(x) ∨ R(x, 〈fi(x)〉) HR (6)

(3∗ + 8+) Pfi(x) ∨ R(x, 〈fi(x)〉) and C · ρ ∨ R(a, b) HR (8)

(8) R(〈a〉 , 〈b〉) ∨ P(〈t〉) ∨
∨

〈ti〉 ⊲⊳ 〈tj〉 ∨ [f(a)] ≈ t

(3) P(x) ∨ R(x, f(x)) S+D (3+8)

(5) C · ρ ∨ A(f(x)) or C · ρ ∨ f(x) ⊲⊳ 〈h′(x)〉 S (8)

(8) C · ρ ∨ A(f([a])) or C · ρ ∨ f([a]) ⊲⊳ 〈t′〉 S (8)

Remaining inferences involve closures of type 8 and produce a closure of type 8.
Equality factoring is applicable only to literals of the form f(t) ≈ g(t) and produces
a closure of the same type. Reflexivity resolution can only eliminate literals of the
form f(t) 6≈ f(t) and also produces a closure of the same type.
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p the number of (unary and binary) predicates. Since the numbers are
coded in unary, f , i, and p are polynomial in |KB | (remember that
the number of predicates QR,f is at most quadratic in |KB |). Each
literal contains at most four function symbols, either one variable or
at most two individuals, at most two marked positions, and is either
positive or negative. Hence, the number of different literals is at most
2 · 4p(i + 1)2(f + 1)4, which is polynomial in |KB |. Each nonredundant
closure contains a subset of these literals, so there are exponentially
many different closures. 2

One can show that each saturation derives at most exponentially
many redundant closures. Together with lemmas 6 and 7, we have that,
in the worst case, we can derive all possible ALCHIQ-closures in a
saturation, after which the saturation terminates:

THEOREM 8 ([28, Theorems 5.3.11 and 5.4.8]). For an ALCHIQ
knowledge base KB, saturation of Ξ(KB) by BS+

DL with eager elim-
ination of redundancy decides satisfiability of KB, and runs in time
exponential in |KB |, for unary coding of numbers in input.

The following corollary follows from the proof of Lemma 6. Namely,
only maximal literals from a closure can participate in an inference, so
a term of the form f(g(x)) from a closure of type 6 does not unify with
a term from a closure of type 8 (which always has the form a or f(a));
a similar argument holds for closures of type 4.

COROLLARY 9 ([28, Corollary 5.3.8]). If a closure of type 8 partici-
pates in a BS+

DL inference with other ALCHIQ-closures, then the uni-
fier σ contains only ground mappings of the form x 7→ a and x 7→ f(b),
and the conclusion is a closure of type 8. Furthermore, a closure of type
8 cannot participate in an inference with a closure of type 4 or 6.

3.3. Eliminating Function Symbols

We now show how to eliminate function symbols from Ξ(KB).

DEFINITION 10. For KB an extensionally reduced ALCHIQ knowl-
edge base, let gen(KB) contain a closure ¬QR,f (x) ∨R(x, [f(x)]) for
each role R and function symbol f occurring in Ξ(KB).2 Furthermore,
let ΓT Rg = Ξ(KBT ∪KBR) ∪ gen(KB). With SatR(ΓT Rg) we denote

2 As discussed in Section 3.2, QR,f is a predicate introduced by decomposition
and is unique for all pairs of R and f .
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the relevant set of saturated closures—that is, closures of types 1, 2, 3,
5, and 7 obtained by saturating ΓT Rg by BS+

DL with eager application of
redundancy elimination rules. Finally, let Γ = SatR(ΓT Rg) ∪ Ξ(KBA).

We now show that eliminating closures of types 4 and 6 does not
affect satisfiability.

LEMMA 11. KB is unsatisfiable if and only if Γ(KB) is unsatisfiable,
for KB an extensionally reduced ALCHIQ knowledge base.

Proof. Let Γ′ = Ξ(KB) ∪ gen(KB). Each closure C ∈ gen(KB)
contains a new predicate QR,f unique for C, so any interpretation
of Ξ(KB) can be extended to an interpretation of Γ′. Hence, KB is
equisatisfiable with Γ′ by Lemma 4. Since BS+

DL is sound and complete,
Γ′ is unsatisfiable if and only if there is a derivation by BS+

DL of the
empty closure from Γ′. The order in which inferences are performed
in a derivation N0, N1, . . . from Γ′ can be chosen don’t-care nondeter-
ministically, so we perform all nonredundant inferences among closures
from ΓT Rg first. Let Nm = Sat(ΓT Rg) ∪ Ξ(KBA) be the intermediate
set of closures obtained in such a derivation, where Sat(ΓT Rg) is the
saturated set of closures.

Each closure set Ni with i > m is obtained from Ni−1 by an inference
involving at least one closure not in Nm. All nonredundant inferences
between closures of type other than 8 have been performed in Nm, and,
by Corollary 9, each inference involving a closure of type 8 produces
a closure of type 8. Furthermore, if a conclusion of an inference is
decomposed into closures of types 3 and 8, the closure of type 3 is
contained in gen(KB), so only the closure of type 8 is added to Ni.
Hence, Ni \Nm contains only closures of type 8.

Furthermore, by Corollary 9, a closure of type 4 and 6 can never
participate in an inference with a closure of type 8, and it cannot be
used to derive a closure in Ni \Nm for i > m. Hence, Nm can safely be
replaced with Γ in the derivation: all inferences by BS+

DL using closures
from Nm can be performed using closures from Γ as well. 2

If KB does not use number restrictions, further optimizations are
possible. Then, closures of types 3 or 5 containing a function symbol
cannot participate in an inference with a closure of type 8. Hence,
closures of types 3 and 5 can also be eliminated from the saturated set;
that is, they need not be included in SatR(ΓT Rg).

We now show how to eliminate function symbols from closures in Γ:
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DEFINITION 12. The operator λ maps terms to terms as follows:
( i) λ(a) = a; ( ii) λ(f(a)) = af , for af a new unique constant;3

( iii) λ(x) = x; ( iv) λ(f(x)) = xf , for xf a new unique variable.
We extend λ to ALCHIQ-closures such that, for a closure C, λ(C)

is the function-free closure computed as follows:

1. Each term t in the closure is replaced with λ(t).

2. For each variable xf introduced in step 1, the literal ¬Sf(x, xf ) is
added to the closure, where Sf is a new predicate unique for f .

3. If, after steps 1 and 2, a variable x occurs in a positive, but not in
a negative literal, the literal ¬HU (x) is added to the closure.

For a substitution σ, let λ(σ) denote the substitution obtained from
σ by replacing each assignment x 7→ t with x 7→ λ(t). With λ− we
denote the inverse of λ (that is, λ−(λ(α)) = α for any term, closure,
or any substitution α).4

For an extensionally reduced ALCHIQ knowledge base KB, the
function-free version of Ξ(KB), written FF(KB), is defined as follows:

FFλ(KB) = {λ(C) | C ∈ SatR(ΓT Rg)}
FFSucc(KB) = {Sf (a, af ) | for each a and f from Ξ(KB)}
FFHU (KB) = {HU (a),HU (af ) | for each a and f from Ξ(KB)}

FF(KB) = FFλ(KB) ∪ FFSucc(KB) ∪ FFHU (KB) ∪ Ξ(KBA)

LEMMA 13. Nonground negative equality literals occur in FF(KB)
only in disjunctions of the form xf 6≈ xg ∨ ¬Sf (x, xf ) ∨ ¬Sg(x, xg).

Proof. The closure λ(C) can contain nonground equalities only for
C of type 5. Negative equality literals occur in such closures only as
f(x) 6≈ g(x), so λ(C) contains xf 6≈ xg ∨ ¬Sf (x, xf ) ∨ ¬Sg(x, xg). 2

We now show that FF(KB) can simulate all inferences by BS+
DL on Γ

(c.f. Table IV) and vice versa, which gives us the following key lemma:

LEMMA 14. KB is unsatisfiable if and only if FF(KB) is unsatisfiable.
Proof. Due to Lemma 11, we just need to show that the closure sets

Γ = SatR(ΓT Rg) ∪ Ξ(KBA) and FF(KB) are equisatisfiable.
(⇐) Let C be the calculus of hyperresolution with superposition

and eager splitting, where all negative nonequality literals are selected.
Assume that FF(KB) is unsatisfiable. Then, a derivation B by C exists,
such that the root node is FF(KB) and the empty closure is derived on

3 Unique means that, for each f and a, the constant af is uniquely defined.
4 Note that λ is injective, but not surjective, so to make the definition of λ−

correct, we assume that λ− is applicable only to the range of λ.
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all branches. By induction on the depth of B, we construct a derivation
B′ from Γ by sound inference steps and splitting such that each node
Nn in B corresponds one-to-one to a node N ′

n in B′ satisfying the
following property (*): if C is a closure in Nn not of the form Sf (u, v)
or HU (u), then N ′

n contains the counterpart closure λ−(C). To simplify
the presentation, we allow the children of a node in B′ to be obtained
by applying zero or more sound inferences to the parent node. The
induction base n = 0 is obvious. Now assume that, for some node Nn

in B, we have a node N ′
n in B′ satisfying (*), and consider all possible

inferences applicable to closures in Nn.
Superposition can be performed only from a ground closure. Namely,

a nonground closure is safe, so it contains negative literals, which are se-
lected and do not contain constants. Furthermore, because of splitting,
all ground closures are unit closures, so superposition can be performed
only from a closure of the form s ≈ t. Consider now superposition into
a ground unit closure L. If L = HU (s), superposition is redundant:
HU is instantiated for each constant occurring in FF(KB), so the
conclusion is already contained in Nn. If L = Sf (s, u) or L = Sf (u, s),
the proposition trivially holds. Otherwise, by the induction hypothe-
sis, counterpart closures λ−(s ≈ t) and λ−(L) are contained in N ′

n,
so superposition can be performed on them to derive the required
counterpart closure.

Reflexivity resolution can be applied to a ground closure u 6≈ u. By
the induction hypothesis, the set N ′

n contains λ−(u 6≈ u), so reflexiv-
ity resolution can be applied to it to derive the required counterpart
closure. Reflexivity resolution is not applicable to nonground closures:
by Lemma 13, negative literals xf 6≈ xg always occur in disjunctions
xf 6≈ xg ∨¬Sf (x, xf )∨¬Sg(x, xg), in which ¬Sf (x, xf ) and ¬Sg(x, xg)
are selected.

Equality factoring is not applicable to a closure from Nn since all
positive closures from Nn are ground unit closures.

Consider a hyperresolution with a main premise C, side premises
E1, . . . , Ek, and a unifier σ, resulting in a hyperresolvent H. The side
premises Ei are not allowed to contain selected literals, so they are
ground unit closures. Furthermore, the closure C is safe, and, by Lemma
13, for each literal of the form xf 6≈ xg, C contains literals ¬Sf (x, xf )
and ¬Sg(x, xg), respectively, which are selected. Hence, all variables in
C are bound, so H is a ground closure. Let σ′ be the substitution such
that xσ′ = λ−(xσ) for each variable x not of the form xf (since the
closures from Γ do not contain variables of form xf , the definition of
σ′ on them is not relevant). We then perform an instantiation step
C ′ = λ−(C)σ′ on closures from N ′

n. The closures λ−(Cσ) and C ′

can differ only at a position p of a variable xf in C: the closure Cσ
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can contain at position p a term v obtained by resolving C with a
side premise of the form Sf (u, v), while C ′ contains at the position
p′ corresponding to p the term f(u) such that λ−(v) 6= f(u). Let
p′u denote the position of the inner u in f(u). We show that all such
discrepancies can be eliminated with sound inferences in N ′

n. The literal
Sf (u, v) in Nn is obtained from some Sf (a, af ) by several superposition
inference steps. Let us denote with ∆1 (∆2) the sequence of ground unit
equalities applied to the first (second) argument of Sf (a, af ). By the
induction hypothesis, for each equality si ≈ ti from ∆1 and ∆2, the
set N ′

n contains the corresponding equality λ−(si ≈ ti); we denote the
sequences of corresponding equalities with ∆′

1 and ∆′
2. We now perform

superposition with equalities from ∆′
1 into C ′ at p′u in the reverse order.

After this, p′u contains the constant a, and p′ contains the term f(a).
Hence, we can apply superposition with equalities from ∆′

2 at p′ in
the original order. After this is done, each position p′ contains the
term λ−(v). Let C ′′ denote the result of removing discrepancies at all
positions; then, C ′′ = λ−(Cσ). For each side premise Ei not of the
form Sf (u, v) or HU (u), the set N ′

n contains λ−(Ei) by the induction
hypothesis, so we can hyperresolve λ−(Ei) premises with C ′′ to obtain
H ′ = λ−(H). Hence, the counterpart closure is derivable from N ′

n.
All ground closures from Nn are unit closures, and no nonground

closure in FF(KB) contains a positive literal with Sf or HU predicates,
so a ground nonunit closure C from Nn cannot contain literals of the
form Sf (u, v) and HU (a). Hence, if C is of length k and it causes Nn

to be split into k child nodes, then λ−(C) is of length k and it causes
N ′

n to be split into k child nodes, each of them satisfying (*).
Because the nodes of B and B′ correspond one-to-one, if B derives

the empty closure on all paths from FF(KB), then B′ derives the empty
closure on all paths from Γ as well.

(⇒) Assume that Γ is unsatisfiable. Then, a derivation B′ by BS+
DL

exists, such that Γ is the root closure set and the empty closure is
derived. By induction on the length of B′, we construct a derivation
B from FF(KB) by sound inference steps such that each closure set
Nn in B corresponds one-to-one to a closure set N ′

n in B′ satisfying
the following property (**): if C ′ is a closure in N ′

n, then Nn contains
the counterpart closure C = λ(C ′). To simplify the presentation, we
allow each Nn, n > 0, to be obtained from Nn−1 by zero or more sound
inference steps. The induction base n = 0 is trivial. Now assume that,
for some closure set N ′

n in B′, there is a closure set Nn in B satisfying
(**), and consider all possible inferences deriving a closure C ′ from
premises P ′

i ∈ N ′
n, 1 ≤ i ≤ k.

By the induction hypothesis, Nn contains the counterpart closure
Pi of each P ′

i . Let σ′ be the unifier of the inference deriving C ′. Since
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all nonredundant inferences among nonground closures were performed
while computing SatR(ΓT Rg), the inference deriving C ′ must involve at
least one ground closure. By Corollary 9, σ′ is ground and it contains
only assignments of the form xi 7→ a or xi 7→ f(a). For σ = λ(σ′),
we instantiate each Pi into Piσ. Consider now possible differences be-
tween Piσ and λ(P ′

iσ
′), apart from the literals involving Sf and HU . A

difference can occur if P ′
i contains at position p′ a term f(x), which is

instantiated by σ′ to a; then, Pi contains at the position p corresponding
to p′ the variable xf which is not instantiated by σ. Hence, at p, the
closure Piσ contains xf and the closure λ(P ′

iσ
′) contains af . By defi-

nition of λ, however, the closure Pi then contains a literal ¬Sf(x, xf ),
so Piσ contains ¬Sf (a, xf ). This literal can be resolved with Sf (a, af )
to produce af at p. All such differences can be removed iteratively,
and, since FF(KB) contains HU (a) for each constant a, the remaining
ground literals involving HU can be resolved away. Hence, λ(P ′

iσ
′) is

derivable from premises in Nn.
In all terms of the form f(a) occurring on B′, the inner term a

is marked. Hence, superposition inferences are possible only on the
outer position of such terms, which correspond via λ to af . Therefore,
regardless of the inference type, C = λ(C ′) can be derived from λ(P ′

iσ
′)

by the same inference on the corresponding literals.
The result of a superposition inference in B′ may be a closure C ′

containing a literal R([a] , [f(a)]), which is decomposed into a closure
C ′

1 of type 8 and a closure C ′
2 of type 3. Since gen(KB) ⊆ Γ, we

have C ′
2 ∈ Γ, so the conclusion C ′ should only be replaced with the

conclusion C ′
1. The decomposition inference rule can be applied to B

as well to produce the counterpart closure C1 = λ(C ′
1).

As a consequence, if the empty closure is derivable on B′, then it is
derivable on B as well. 2

To illustrate Lemma 14, consider the following example. Let Γ be
the following set of closures:

D(x) ∨R(x, f(x))(6)

D(x) ∨C(f(x))(7)

¬R(x, y1) ∨ ¬R(x, y2) ∨ y1 ≈ y2(8)

R(a, b)(9)

Saturation of Γ by BS+
DL produces the following closures (R(xx; yy)

denotes a resolution of xx and yy, S(xx; yy) denotes a superposition of
xx into yy, and we omit markers for the sake of readability):

D(a) ∨ f(a) ≈ b R(6;8;9)(10)

D(a) ∨C(b) S(10;7)(11)
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By Definition 12, FF(KB) contains the following closures:

¬Sf (x, xf ) ∨D(x) ∨R(x, xf )(12)

¬Sf (x, xf ) ∨D(x) ∨ C(xf )(13)

¬R(x, y1) ∨ ¬R(x, y2) ∨ y1 ≈ y2(14)

R(a, b)(15)

Sf (a, af )(16)

Sf (b, bf )(17)

Since all inferences among nonground closures in Γ have been per-
formed during saturation, each nonredundant inference by BS+

DL on Γ
must involve at least one ground closure. Our reduction is based on the
observation that, for each ground closure C derivable by BS+

DL on Γ,
we can derive a counterpart ground closure λ(C) in FF(KB) as follows:

D(a) ∨R(a, af ) R(12;16)(18)

D(a) ∨ C(af ) R(13;16)(19)

D(a) ∨ af ≈ b R(14;15;18) → counterpart of (10)(20)

D(a) ∨ C(b) S(20;19) → counterpart of (11)(21)

Thus, if we can derive the empty closure by saturating Γ by BS+
DL,

then we can derive it by saturating FF(KB) as well. This example also
demonstrates that the role of the constants af introduced by Defini-
tion 12 is merely to simulate in a derivation from FF(KB) the ground
functional terms from a derivation from Γ; there is no deeper semantic
relationship between them and the unnamed individuals in a model.

FF(KB) can be computed once and then used to answer any number
of atomic queries. Let α be of form (¬)R(a, b) or (¬)A(a) with A an
atomic concept, R a role, and a and b occuring in KB . It is then easy to
see that FF(KB ∪ {¬α}) = FF(KB) ∪ {¬α}. (Note that the constants
a and b occurring in the query are assumed to be contained in KB ;
therefore, FF(KB) contains the necessary facts about af and bf for
each function symbol f .) Hence, Lemma 14 also implies that KB |= α

if and only if FF(KB) |= α.

3.4. Removing Irrelevant Closures

The saturation of ΓT Rg introduces many closures that are entailed
by other closures. For example, for KB = {A ⊑ C,C ⊑ B}, if lit-
eral ordering is such that C(x) ≻ B(x) ≻ A(x), the saturation derives
¬A(x) ∨B(x); however, this closure is entailed by the premises and is
thus not needed for query answering. Hence, we present an optimization
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by which we eliminate all such closures and thus reduce the number of
rules in the disjunctive datalog program. Intuitively, eliminating such
rules is beneficial since it prevents the disjunctive datalog reasoner from
drawing the same consequence along different inference paths. Also,
this optimization has proven itself to be very important for reducing
the size of the translated programs. Our practical experiments have
shown that, although the number of closures in FF(KB) can be quite
large, the number of closures left after this optimization is typically
just twice the number of TBox axioms [29].

DEFINITION 15. For N ⊆ FF(KB), let C ∈ N be a closure such
that λ−(C) is derived in the saturation of ΓT Rg by an inference with
a unifier σ from premises Pi, 1 ≤ i ≤ k. Then, C is irrelevant w.r.t.
N if the following conditions hold: ( i) λ−(C) is not derived by the
decomposition rule; ( ii) for each premise Pi, λ(Pi) ∈ N ; and ( iii) each
variable occurring in any of the λ(Piσ) also occurs in C.

Relevant is the opposite of irrelevant. Let C1, C2, . . . , Cn be a se-
quence of closures from FF(KB) such that λ−(Cn), . . . , λ−(C2), λ

−(C1)
corresponds to the order in which the closures are derived in satura-
tion of ΓT Rg. Let N0, N1, . . . , Nn be a sequence of closure sets such
that N0 = FF(KB), Ni = Ni−1 if Ci is relevant w.r.t. Ni−1, and
Ni = Ni−1 \ {Ci} if Ci is irrelevant w.r.t. Ni−1, for 1 ≤ i ≤ n. Then,
FFR(KB) = Nn is called the relevant subset of FF(KB).

LEMMA 16. FFR(KB) is unsatisfiable if and only if FF(KB) is unsat-
isfiable.

Proof. Let N be a subset of FF(KB), C ∈ N a closure that is irrel-
evant w.r.t. N , and ξ an inference in the saturation of ΓT Rg deriving
λ−(C) from premises Pi with a unifier σ. Finally, assume λ(Pi) ∈ N ,
1 ≤ i ≤ k. We now show the following property (*): N is satisfiable
if and only if N \ {C} is satisfiable. The (⇒) direction is trivial, since
N \ {C} ⊂ N . For the (⇐) direction, let C ′ be the closure obtained by
an inference from λ(Pi) corresponding to ξ. Obviously, each literal not
of the form ¬Sf (x, xf ) from C is contained in C ′ as well. Consider now
each literal ¬Sf (x, xf ) in C ′, stemming from a premise λ(Piσ) contain-
ing xf . Since C is irrelevant, it contains xf , so, by definition of λ, C

contains ¬Sf(x, xf ) as well. Thus, C = C ′, so λ(P1σ), . . . , λ(Pkσ) |= C,
and (*) holds.

In the sequence of sets N0, N1, . . . , Nn with N0 = FF(KB) and
FFR(KB) = Nn from Definition 15, the preconditions of property (*)
are satisfied for each Ni = Ni−1 \{Ci}, i ≥ 1 so, by (*), Ni is satisfiable
if and only if Ni−1 is satisfiable. The claim of the lemma now follows
by a straightforward induction on i. 2
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3.5. Reduction to Disjunctive Datalog

Reduction of KB to a disjunctive datalog program is now easy:

DEFINITION 17. For an extensionally reduced ALCHIQ knowledge
base KB, DD(KB) is the disjunctive datalog program that contains
the rule A1ρ ∨ . . . ∨Anρ← B1ρ, . . . , Bmρ for each closure of the form
(A1 ∨ . . . ∨An ∨ ¬B1 ∨ . . . ∨ ¬Bm) · ρ from FFR(KB). If KB is not ex-
tensionally reduced, then DD(KB) = DD(KB ′), where KB ′ is the ex-
tensionally reduced knowledge base obtained from KB as described in
Section 2.1.

THEOREM 18. For each ALCHIQ knowledge base KB, the following
claims hold:

1. KB is unsatisfiable if and only if DD(KB) is unsatisfiable;

2. KB |= α if and only if DD(KB) |=c α, where α is of the form A(a)
or R(a, b), A is an atomic concept, R a role, and a and b from KB;

3. KB |= C(a) for a nonatomic concept C and an individual a occur-
ring in KB if and only if DD(KB ∪ {C ⊑ Q}) |=c Q(a) for Q a
new atomic concept;

4. The number of literals in each rule in DD(KB) is at most polyno-
mial, the number of rules in DD(KB) is at most exponential, and
DD(KB) can be computed in time exponential in |KB | for unary
coding of numbers in the input.

Proof. The first claim follows directly from Lemma 16. The second
claim follows from the first one: DD(KB ∪ {¬α}) = DD(KB) ∪ {¬α}
(since a and b occur in KB , all facts about constants af and bf for each
function symbol f are contained in DD(KB)), and DD(KB) ∪ {¬α} is
unsatisfiable if and only if DD(KB) |=c α. Furthermore, KB |= C(a)
if and only if KB ∪ {¬C(a)} is unsatisfiable, which is the case if and
only if KB ∪ {¬Q(a), C ⊑ Q} is unsatisfiable. Since Q is atomic and a

occurs in KB , the third claim follows from the second one.
By Lemma 7, for each closure C ∈ Sat(ΓT Rg), the number of lit-

erals in C is at most polynomial in |KB |, and |Sat(ΓT Rg)| is at most
exponential in |KB |. An application of λ to C can be performed in
polynomial time. The number of constants af added to DD(KB) is
c · f , where c is the number of constants, and f the number of function
symbols in the signature of Ξ(KB). If numbers are coded in unary,
both c and f are polynomial in |KB |, so the number of constants af is
also polynomial in |KB |. By Theorem 8, Sat(ΓT Rg) can be computed
in time exponential in |KB |. 2
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3.6. Examples

We now present several examples that point out important properties of
the reduction algorithm. The first three examples do not use number
restrictions so, according to the discussion after Lemma 11, we can
delete all closures containing function symbols after the saturation of
Ξ(KB) by BS+

DL.
Readers familiar with more common approaches to DL reasoning

might ask themselves how are the role successors represented in a
datalog program. As we show next, datalog programs do not represent
them at all. Let KB1 = {C ⊑ ∃R.D}; through clausification, we obtain
Ξ(KB1) = {¬C(x) ∨ R(x, f(x)), ¬C(x) ∨ D(f(x))}. The set Ξ(KB1)
is already saturated by BS+

DL. After removing closures with function
symbols, we obtain DD(KB1) = ∅, which may be quite confusing: KB1

implies the existence of at least one R-successor for each member of C,
whereas DD(KB1) does not reflect that. Theorem 18 is, however, not
invalidated. Namely, the individuals introduced by the existential quan-
tifier in KB1 are unnamed, so they cannot be referred to in the atomic
queries or their answers. For an arbitrary extensionally reduced ABox
KBA, the knowledge base KB1 ∪ KBA does not imply any new facts
of the form A(a) or R(a, b). Also, note that the models of DD(KB1)
appear to be unrelated to the models of KB1 in general; they only
coincide on ground facts. This is so because the reduction algorithm
is based on a proof-theoretic correspondence between refutations in
Ξ(KB) and DD(KB). The models of KB and DD(KB) coincide only
on positive ground facts, whereas, for unnamed individuals, they do
not seem to be related.

In order to draw ground consequences from KB1, we need more ax-
ioms. Let KB2 = KB1 ∪ {D ⊑ ⊥}, so Ξ(KB2) = Ξ(KB1) ∪ {¬D(x)}.
The saturation of Ξ(KB2) produces a closure ¬C(x), so, eventually,
we obtain DD(KB2) = {← C(x),← D(x)}. This example shows that
the reduction is not modular—that is, DD(KBa) ∪ DD(KB b) is not
necessarily equal to DD(KBa ∪ KBb) for arbitrary knowledge bases
KBa and KB b.

The key step in our algorithm is the saturation of Ξ(KBT ) by BS+
DL.

It computes nonground consequences of Ξ(KBT ), which ensure that
subsequent removal of closures with function symbols does not change
the set of ground consequences. These closures are like “macros,” be-
cause they derive ground facts about objects without expanding their
successors. For example, for KB3 = {A ⊑ ∃R.B, B ⊑ C, ∃R.C ⊑ D},
the set Ξ(KB3) consists of the following closures:

¬A(x) ∨R(x, f(x))(22)
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¬A(x) ∨B(f(x))(23)

¬B(x) ∨ C(x)(24)

D(x) ∨ ¬R(x, y) ∨ ¬C(y)(25)

If literals are ordered as D(x) ≻ C(x) ≻ B(x) ≻ A(x), the saturation
of Ξ(KB3) produces the following additional closures (R(xx; yy) means
that a closure is derived by resolving closures xx and yy):

¬A(x) ∨D(x) ∨ ¬C(f(x)) R(22;25)(26)

¬A(x) ∨D(x) ∨ ¬B(f(x)) R(26;24)(27)

¬A(x) ∨D(x) R(27;23)(28)

By eliminating the closures with function symbols from (22)–(28),
we obtain the following program DD(KB3):

C(x)← B(x)(29)

D(x)← R(x, y), C(y)(30)

D(x)← A(x)(31)

Let us examine the role of each rule in DD(KB3). The axiom B ⊑ C

corresponds to (29), and the axiom ∃R.C ⊑ D corresponds to (30).
The program DD(KB3), however, does not contain an equivalent of the
axiom A ⊑ ∃R.B; hence, all rules in DD(KB3) consider only the explic-
itly named individuals. To compensate for that, DD(KB3) contains the
rule (31), introduced in the saturation of Ξ(KBT ) by BS+

DL. Instead
of introducing, for each x in A, an R-successor y in B, propagating y

to C, and then concluding that x is in D, the rule (31) derives in one
step that all members of A are members of D, ensuring that DD(KB3)
and KB3 entail the same ground facts.

Finally, let KB4 = {⊤ ⊑ ∃R.C, ⊤ ⊑ ≤ 1R, ∃R.∃R.⊤ ⊑ D}. The
translation into closures produces the following set Ξ(KB4):

R(x, f(x))(32)

C(f(x))(33)

¬R(x, y1) ∨ ¬R(x, y2) ∨ y1 ≈ y2(34)

¬R(x, y) ∨Q(x)(35)

D(x) ∨ ¬R(x, y) ∨ ¬Q(y)(36)

By saturating Ξ(KB4) we obtain the following closures:

Q(x) R(32;35)(37)

D(x) ∨ ¬Q(f(x)) R(32;36)(38)

D(x) R(37;38)(39)
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Because both binary literals in (34) are selected and there is only one
closure with a positive binary R-literal, (32) and (34) do not participate
in resolution; furthermore, hyperresolution inferences with a closure of
type 7 and several copies of a side premise always produce a tautology.
Consider now our translation into disjunctive datalog. Since Ξ(KB)
contains equality, we cannot simply eliminate all closures containing
function symbols; rather, we must apply Definition 12. We obtain the
following datalog program DD(KB4):

R(x, xf )← Sf (x, xf )(40)

C(xf )← Sf (x, xf )(41)

y1 ≈ y2 ← R(x, y1), R(x, y2)(42)

Q(x)← R(x, y)(43)

D(x)← R(x, y), Q(y)(44)

Q(x)← HU (x)(45)

D(x)← HU (x)(46)

Translating the closure (38) produces the following rule:

D(x)← Q(xf ), Sf (x, xf )(47)

This rule, however, can be obtained by resolving (40) and (44), so, by
Definition 15, we need not include (47) into DD(KB4). In contrast, the
rules (45) and (46) cannot be obtained from other rules from DD(KB4);
for example, resolving (40) and (43) produces Q(x)← Sf (x, xf ) and
not (45).

Let us now add the ABox containing only one assertion R(a, b)
to KB4. To satisfy Definition 12, we additionally append the facts
Sf (a, af ), Sf (b, bf ), HU (a), HU (b), HU (af ), HU (bf ) to DD(KB4). We
can then derive C(b) in DD(KB4) using the following inferences:

R(a, af )(48)

C(af )(49)

af ≈ b(50)

C(b)(51)

The knowledge base from our example also implies D(a); to derive
this, we must consider the R-successors of a two steps away from a.
The disjunctive datalog program derives D(a) directly using the rule
(46). Intuitively, this example shows that, in the presence of equality,
we must take the immediate R-successors of a into account in order to
derive all implied ground facts; however, the consequences of all longer
paths are handled by the saturation step of the reduction.
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3.7. Discussion

Independence of the Reduction from the Query. Theorem 18 shows
that DD(KB) is independent from the query if the query is a positive
atomic concept or a role. Hence, DD(KB) can be computed once and
used to answer any number of atomic queries.

For a nonatomic query concept C (even if C is a negated atomic
concept), query answering can be reduced to entailment of positive
ground facts by introducing a new name Q and adding the axiom C ⊑ Q

to the TBox. Unfortunately, DD(KB ∪{C ⊑ Q}) depends on the query
concept C. Intuitively, a complex concept C, even if used only in the
query, introduces terminological knowledge which must be taken into
account in the reduction.

DD(KB) cannot be used to answer conjunctive queries with nondis-
tinguished variables—that is, existentially quantified variables that can
be bound to any individual in the model; however, it can be used for an-
swering conjunctive queries with only distinguished variables—that is,
the existentially quantified variables that can be bound only to named
individuals. Namely, DD(KB) implies a conjunction of ground atoms
if and only if it implies each atom separately, and, by Theorem 18, the
latter property can be checked using DD(KB). Similarly, DD(KB) can
be used to check entailment of disjunctions of ground atoms.

Minimal vs. Arbitrary Models. Disjunctive datalog programs are usu-
ally interpreted under minimal model semantics: P |=c α means that
α is true in all minimal models of a program P , where minimality is
defined w.r.t. set inclusion. Thus, disjunctive datalog implements a kind
of closed-world semantics. In contrast, description logics assume the
standard first-order, or open-world semantics: KB |= α means that α

is true in all models of KB . It may come as a surprise that a logic based
on arbitrary models can be embedded into a logic that considers only
minimal models. This is possible because (i) the reduction algorithm
produces only positive datalog programs (that is, programs without
negation-as-failure), and (ii) first-order and minimal-model semantics
coincide for certain types of questions.

For a positive datalog program P and a positive ground atom α,
P |= α if and only if P |=c α. Namely, if α is true in each model of P ,
it is true in each minimal model of P as well and vice versa. Hence, for
positive consequences, it is not important whether the semantics of P

is defined w.r.t. minimal or w.r.t. general first-order models.
If α is a negative ground atom, the type of semantics matters, as we

show in the following example. For α = ¬A(b) and P = {A(a)}, it is
clear that P 6|= α. Namely, ¬A(b) is not explicitly derivable from the
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facts in P : M1 = {A(a), A(b)} is a first-order model of P , and α is false
in M1. In contrast, P has exactly one minimal model M2 = {A(a)}, and
¬A(b) is obviously true in M2, so P |=c α (recall that the semantics of
disjunctive datalog is defined only w.r.t. Herbrand models). In a similar
vein, the choice of semantics affects concept subsumption.

It is therefore incorrect to check whether KB |= ¬A(a) by checking
whether DD(KB) |=c ¬A(a). Instead, we must reduce the problem
to entailment of positive ground facts: KB |= ¬A(a) if and only if
DD(KB ∪ {¬A ⊑ NotA}) |=c NotA(a), where NotA is a new concept.

Similarly, it is incorrect to check whether KB |= C ⊑ D by checking
whether DD(KB) |=c ∀x : [C(x) → D(x)]. Again, we must reduce the
problem to entailment of positive ground facts. If C and D are atomic
concepts, KB |= C ⊑ D if and only if DD(KB ∪ {C(a)}) |=c D(a),
where a is a new individual not occurring in KB .

Complexity. Cautious query answering in a nonground positive dis-
junctive datalog program P can be performed in co-NExpTime [14].
Intuitively, the number of variables in a rule of P is linear in |P |, so
the size of the ground program PG, obtained by instantiating each rule
from P with individuals in all possible ways, is exponential in |P |. Now
satisfiability of PG can be tested by guessing an interpretation (which
is a nondeterministic exponential step), and by checking whether it is
a model of PG (which is an exponential step). Finally, query answering
can be reduced to the complementary problem as usual. Actually, Eiter,
Gottlob and Mannila give the complexity as co-NExpTimeNP[14] be-
cause they consider a more general case of disjunctive datalog programs
with negation-as-failure under stable model semantics. In such a case, it
does not suffice to find an arbitrary model; one must additionally check
if the model is minimal, which can be performed by an NP oracle.

Since |DD(KB)| is exponential in |KB |, one might get the impression
that our algorithm increases complexity to (co-)2NExpTime. This is
not the case because DD(KB) is of a restricted form. Namely, the num-
ber of variables in a rule is linear in |KB |, so a grounding of DD(KB)
is exponential in |KB |. Furthermore, the predicates in DD(KB) are of
limited arity, so an interpretation can be guessed in nondeterministic
polynomial time, and checking whether it is a model can be done in
exponential time. Finally, all interpretations can be examined in expo-
nential time. To summarize, even though |DD(KB)| is exponential in
|KB |, query answering can be performed in ExpTime because (i) the
length of the rules in DD(KB) is polynomial in |KB |, and (ii) the arity
of the literals is bounded.

Descriptive vs. Minimal Fixpoint Semantics. Our reduction preserves
the so-called descriptive semantics. Namely, Nebel has observed that
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knowledge bases containing terminological cycles are not definitorial
[30]: for a fixed partial interpretation of primitive concepts, several
interpretations of defined concepts may exist. In such a case, it might be
reasonable to designate a particular interpretation as the intended one,
with least and greatest fixpoint models being the obvious candidates.
Nebel, however, argues that it is not clear which interpretation best
matches the intuition, as choosing either of the fixpoint models has
its drawbacks. Consequently, most description logic systems, as well
as our approach, implement the descriptive semantics, which coincides
with that of Definition 2.

Unique Name Assumption. The semantics of disjunctive datalog re-
quires different symbols to be interpreted as different objects; however,
this does not hold in SHIQ. It may seem surprising that a logic without
unique name assumption (UNA) can be embedded into a logic that
strictly requires it.

To understand why our algorithms are correct, note that the UNA
can be used to derive new consequences from a theory only if the theory
employs equality. If a knowledge base uses neither number restrictions
nor explicit individual equality statements, Ξ(KB) does not contain
the equality predicate, so equality reasoning is not needed. We might
enforce UNA by appending a 6≈ b for each a 6= b; however, these axioms
would not participate in any inference, and are thus not needed in
the first place. A model-theoretic explanation is given by the following
claim, which holds for theories without any form of equality [15]: for
each model I in which certain distinct constants are interpreted by the
same objects, there is a model I ′ in which all constants are interpreted
by distinct objects. To summarize, if KB does not employ explicit or
implicit equality, we simply do not care whether either KB or DD(KB)
employs UNA, as this does not change the entailed set of facts.

The situation changes for knowledge bases which require equality
reasoning. Consider KB = {⊤ ⊑ ≤ 1R, R(a, b), R(a, c)}. Without
UNA, KB is satisfiable and KB |= b ≈ c. Namely, the first axiom
requires R to be functional, so b and c must be interpreted as the
same object. In contrast, with UNA, KB is unsatisfiable. Note that the
program DD(KB) contains y1 ≈ y2 ← R(x, y1), R(x, y2). The equality
occurring in the rule is quite different from the equality usually con-
sidered in disjunctive datalog. For example, in [14], equality atoms can
only occur in rule bodies under negation-as-failure; such programs are
interpreted under UNA, so an atom ¬(x ≈ y) actually checks whether
x and y are bound to syntactically different individuals.

In contrast, we use equality not only in rule bodies, but also in rule
heads. Hence, we can actually derive that two individuals are equal.
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This is not directly supported in the implemented disjunctive datalog
systems known to us; however, it can be simulated using the well-known
encoding from [15] that treats ≈ as an ordinary predicate, explicitly
states that it is reflexive, symmetric, transitive, and that it satisfies
the usual equality replacement axioms. We thus obtain a program in
which ≈ is just another predicate, which we can freely interpret with
or without UNA, as discussed previously.

4. Data Complexity of Reasoning

Based on the reduction algorithm from Section 3, we now derive new
data complexity results—that is, complexity under the assumption that
the size of the ABox dominates the sizes of the TBox and RBox. In
Section 4.1, we consider the case of full SHIQ. In Section 4.2, we
identify a fragment of SHIQ exhibiting polynomial data complexity.

4.1. Data Complexity for Full SHIQ

The upper data complexity bound for SHIQ follows almost immedi-
ately from the reduction algorithm:

LEMMA 19 (Membership). For KB an extensionally reduced SHIQ
knowledge base, satisfiability of KB can be decided in nondeterministic
polynomial time in |KBA|.

Proof. Let c be the number of constants, f the number of function
symbols, and s the number of facts in Ξ(KB). By Definition 12, the
number of constants in DD(KB) is bounded by ℓ1 = c+cf (cf accounts
for constants of the form af ), and the number of facts in DD(KB) is
bounded by ℓ2 = s+c+2cf (c accounts for facts HU (a), one cf accounts
for facts Sf (a, af ), and the other cf accounts for facts HU (af )). All
function symbols are introduced by skolemizing TBox concepts ∃R.C

and ≥ n R.C. Since |KBT | and |KBR| are constant, f is also a constant,
so ℓ1 and ℓ2 are linear in |KBA|.

Hence, |DD(KB)| can be exponential in |KB | only because the non-
ground rules in DD(KB) are obtained from exponentially many closures
of types 1–7. Since this does not include the ABox closures, the number
of closures after saturation is exponential only in |KBT |+ |KBR|. Since
we assume that the latter is constant, both the number of rules in
DD(KB) and their length are bounded by constants, so |DD(KB)| is
polynomial in |KBA|, and can be computed from KB in time polyno-
mial in |KBA|. Since KB and DD(KB) are equisatisfiable, the data com-
plexity of checking satisfiability of KB follows from the data complexity
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of checking satisfiability of DD(KB), which is in NP for disjunctive
datalog programs without negation-as-failure [13]. 2

Intuitively, TBox and RBox reasoning in SHIQ does not “interfere”
with ABox reasoning; that is, all nonground consequences of KB can
be computed without taking the ABox into account. Notice also that
Lemma 19 holds even for binary coding of numbers.

The hardness of the satisfiability checking problem follows from [36,
Lemma 4.2.7]. Actually, the lemma shows co-NP-hardness of instance
checking by a reduction of satisfiability of 2-2-CNF propositional for-
mulae. The reduction produces an extensionally reduced ABox and a
single TBox axiom, so it is applicable to our case as well. Hence, we
immediately obtain the following result:

THEOREM 20. Let KB be an extensionally reduced knowledge base in
any logic between ALC and SHIQ. Then, ( i) deciding KB satisfiability
is data complete for NP and ( ii) deciding whether KB |= (¬)C(a) with
|C| bounded is data complete for co-NP.

4.2. A Horn Fragment of SHIQ

Horn logic is a well-known fragment of first-order logic in which for-
mulae are restricted to clauses containing at most one positive literal.
The main limitation of Horn logic is its inability to represent disjunctive
information; however, its main benefit is the existence of practical refu-
tation procedures. Data complexity of query answering in Horn logic
without function symbols is P-complete [13], which makes it particu-
larly appealing for practical usage. Following this idea, we now identify
the Horn fragment of SHIQ that exhibits similar properties: in Horn-
SHIQ, the capability of representing disjunctive information is traded
for polynomial data complexity of reasoning.

Horn-SHIQ allows only for axioms that do not require reasoning
by case. Roughly speaking, only TBox axioms of the form

d
Ci ⊑ D

are allowed, where Ci is of the form A, ∃R.A, or ≥ 1R.A, and D is of
the form A, ⊥, ∃R.A, ∀R.A, ≥ n R.A, or ≤ 1R; additionally, we allow
for role inclusion axioms and, in certain situations, transitivity axioms,
as discussed after Definition 21. We call such axioms simple Horn.

Such a fragment of description logics is interesting because it can
express many features of conceptual data models, such as the Entity-
Relationship Model [11] or the Unified Modeling Language (UML); see
[10] for more details. Horn-SHIQ is expressive enough to represent the
following properties:
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− inclusion of simple concepts (e.g., Woman ⊑ Person)

− concept disjointness (e.g., Man ⊓Woman ⊑ ⊥)

− domain restrictions (e.g., ∃husbandOf .⊤ ⊑ Man)

− range restrictions (e.g., ⊤ ⊑ ∀husbandOf .Woman)

− functionality restriction (e.g., ⊤ ⊑ ≤ 1 husbandOf )

− participation constraints (e.g., Husband ⊑ ∃husbandOf .Woman)

− role inclusions (e.g., husbandOf ⊑ spouseOf )

Horn-SHIQ does not provide for the definition of covering constraints,
such as Man ⊔Woman ≡ Person.

Horn-SHIQ is a proper extension of DL-lite [9]—a description logic
with LogSpace data complexity. Unlike DL-lite, Horn-SHIQ can ex-
press recursive axioms of the form ∃R.C ⊑ C, which causes an increase
in data complexity to polynomial time.

The definition of simple Horn axioms succinctly demonstrates the
expressivity of the fragment, but it is too restricting in general. For
example, the axiom A1 ⊔A2 ⊑ ¬B is not simple Horn, but it is equiva-
lent to simple Horn axioms A1 ⊓B ⊑ ⊥ and A2 ⊓B ⊑ ⊥. Similarly, an
axiom A ⊑ ∃R.(∃R.B) is not simple Horn, but it can be transformed
into simple Horn axioms A ⊑ ∃R.Q and Q ⊑ ∃R.B by replacing ∃R.B

with a new name Q. To avoid dependency on such obvious syntactic
transformations, we use the following, rather technical definition:

DEFINITION 21. In Table V, we define two mutually recursive func-
tions pl+ and pl−, where sgn(0) = 0 and sgn(n) = 1 for n > 0. For a
concept C and a position p of a subconcept in C, let pl(C, p) = pl+(C|p)
if pol(C, p) = 1, and let pl(C, p) = pl−(C|p) if pol(C, p) = −1.

A concept C is Horn if pl(C, p) ≤ 1 for each position p such that C|p
is a concept (including the empty position ǫ). An extensionally reduced
ALCHIQ knowledge base KB is Horn if, for each axiom C ⊑ D ∈ KB,
the concept ¬C⊔D is Horn. An extensionally reduced SHIQ knowledge
base KB is Horn if Ω(KB) is Horn.

It is easy to see that, for a concept C without complex subconcepts,
pl+(C) gives the maximal number of positive literals in closures ob-
tained by clausifying ∀x : πx(C). To clausify a concept C containing a
complex subconcept at a position p, we should consider if C|p occurs in
C under positive or negative polarity. For example, in ¬(¬A⊓¬B), the
concepts A and B occur effectively positively, and ⊓ is effectively ⊔.
Hence, pl+(C|p) (pl−(C|p)) counts the number of positive literals used
to clausify C|p, provided that C|p occurs in C under positive (negative)
polarity. The function sgn(·) takes into account that C|p will be replaced
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Table V. Definitions of pl+ and pl−

D pl+(D) pl−(D)

⊤ 0 0

⊥ 0 0

A 1 0

¬C pl−(C) pl+(C)
d

Ci maxi sgn(pl+(Ci))
∑

i
sgn(pl−(Ci))

⊔

Ci

∑

i
sgn(pl+(Ci)) maxi sgn(pl−(Ci))

∃R.C 1 sgn(pl−(C))

∀R.C sgn(pl+(C)) 1

≥ n R.C 1 (n−1)n
2

+ n sgn(pl+(C))

≤ n R.C
n(n+1)

2
+ (n + 1)sgn(pl−(C)) 1

in C by structural transformation with only one concept name, even
if clausification of C|p produces more than one positive literal. For
example, to clausify C = ∀R.(D1 ⊔D2), the structural transformation
replaces D1⊔D2 with a new concept name Q, yielding C ′ = ∀R.Q; then
clausifying C ′ produces a closure with only one positive literal. Now a
concept C is Horn if the maximal number of positive literals obtained
by clausifying subconcepts of C is at most one.

If a concept C has a complex subconcept at position p, care has
to be taken in introducing a new name for C|p. Consider the Horn
concept C = ∀R.D1 ⊔ ∀R.¬D2. In applying structural transformation,
one might replace ∀R.D1 and ∀R.¬D2 with new concept names Q1 and
Q2, respectively, yielding concepts ¬Q1 ⊔ ∀R.D1, ¬Q2 ⊔ ∀R.¬D2, and
Q1 ⊔ Q2. The problem with this approach is that a Horn concept C

was reduced to a non-Horn concept Q1⊔Q2, so the structural transfor-
mation destroyed Horn-ness. To remedy this, we modify the structural
transformation to replace each C|p with a literal concept α such that
clausifying α and C|p requires the same number of positive literals. In
the above example, this would mean that ∀R.D1 should be replaced
with Q1, but ∀R.¬D2 should be replaced with ¬Q2, yielding concepts
¬Q1 ⊔ ∀R.D1, Q2 ⊔ ∀R.¬D2, and Q1 ⊔ ¬Q2, all of which are Horn.

Although transitivity axioms are translated by π into Horn closures,
the algorithm from Section 3.2 replaces them with axioms of the form
∀R.C ⊑ ∀S.(∀S.C). Now pl+(∃R.¬C ⊔ ∀S.(∀S.C)) = 1 + pl+(C), so if
pl+(C) > 0, Ω(KB) is not a Horn knowledge base. Hence, the presence
of transitivity axioms can make a knowledge base non-Horn.
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DEFINITION 22. The Horn-compatible structural transformation is
as in Definition 3, with the following difference to Def(C), where α = Q

if pl(C, p) > 0, and α = ¬Q if pl(C, p) = 0, for Q a new atomic concept
and ¬(¬Q) = Q:

Def(C) =

{

{¬α ⊔ C|p} ∪ Def(C[α]p) if pol(C, p) = 1
{¬α ⊔ ¬C|p} ∪ Def(C[¬α]p) if pol(C, p) = −1

By [32], ∀x : πx(C) and
∧

D∈Def(C) ∀x : πx(D) are equisatisfiable, so
Ξ(KB) and π(KB) are equisatisfiable as well.

LEMMA 23. For a Horn-SHIQ knowledge base KB, each closure from
Ξ(KB) contains at most one positive literal.

Proof. We first show the following property (*): for a Horn concept
C, all concepts in Def(C) are Horn concepts. The proof is by induction
on the recursion depth. The induction base for Λ(C) = ∅ is obvious.
Consider an application of Def(C), where C is a Horn concept and p

a position of a subconcept of C, such that C|p is not a literal concept
and, for each position q below p, C|q is a literal concept. In all cases,
we have pl+(α) = pl(C, p) and pl+(¬α) = 1− pl(C, p). If pol(C, p) = 1,
then pl+(¬α ⊔ C|p) = pl+(¬α) + pl+(C|p) = pl+(¬α) + pl(C, p) = 1;
furthermore, pl(C, p) = pl(C[α]p, p), so C[α]p is Horn. Similar consider-
ations hold for pol(C, p) = −1. Hence, Def decomposes a Horn concept
C into two simpler Horn concepts, so (*) holds.

For D ∈ Def(C), one can see that pl+(D) gives the maximal number
of positive literals occurring in Cls(∀x : πx(D)). Thus, if C is a Horn
concept, all closures from Cls(C) contain at most one positive literal.
Finally, the closures of Ω(KB) obtained by translating the RBox and
the ABox also contain at most one positive literal. 2

LEMMA 24. If all premises of an inference by BS+
DL contain at most

one positive literal, then inference conclusions also contain at most one
positive literal.

Proof. In ordered hyperresolution and positive or negative superpo-
sition, each side premise participates in an inference on the positive
literal, which does not occur in the conclusion. Hence, the number of
positive literals in the conclusion is equal to the number of positive
literals in the main premise. Furthermore, reflexivity resolution only
reduces the number of negative literals in a closure, and equality fac-
toring is never applicable to a closure with only one positive literal.
Finally, a closure participating in a decomposition inference contains
the single positive literal R(t, f(t)), so both resulting closures have
exactly one positive literal. 2
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LEMMA 25 (Hardness). For a Horn ALC knowledge base KB, in-
stance checking w.r.t. KB is P-hard in |KBA|.

Proof. The proof is by a reduction from the well-known Boolean
circuit value problem [33]. A Boolean circuit C is a graph (G, δ,E)
defined as follows: (i) G = {γ1, ..., γn} is the set of nodes, also called
gates; (ii) δ : G → {T, F,∧,∨,¬} is a function assigning a label to
each gate; and (iii) E ⊆ G×G is the acyclic set of edges such that the
in-degree of gates labeled with T or F is zero, of gates labeled with ¬ is
one, and of gates labeled with ∧ or ∨ is two. A valuation µ : G→ {T, F}
over gates of C is defined according to standard truth tables for Boolean
connectives, and the value of C is defined as µ(C) = µ(γn). For an
arbitrary circuit C, checking whether µ(C) = T is P-complete [33].

For a Boolean circuit C, we construct the knowledge base KBC in
which each gate γi corresponds to an individual γi. Let T and F be
concept names, and let not , and1, and2, or 1, and or 2 be role names.
We convert C into ABox assertions as follows: (i) add not(γ, γ1) for
all nodes γ, γ1 such that δ(γ) = ¬ and (γ1, γ) ∈ E; (ii) add and1(γ, γ1)
and and2(γ, γ2) for all nodes γ, γ1, γ2 such that δ(γ) = ∧, (γ1, γ) ∈ E,
and (γ2, γ) ∈ E; (iii) add or 1(γ, γ1) and or2(γ, γ2) for all nodes γ, γ1, γ2

such that δ(γ) = ∨, (γ1, γ) ∈ E, and (γ2, γ) ∈ E; (iv) add T (γ) for each
node γ such that δ(γ) = T ; and (v) add F (γ) for each node γ such that
δ(γ) = F . The TBox of KBC contains the following axioms:

∃not .T ⊑ F T ⊓ F ⊑ ⊥
∃not .F ⊑ T

∃and1.T ⊓ ∃and2.T ⊑ T ∃or 1.T ⊓ ∃or2.T ⊑ T
∃and1.T ⊓ ∃and2.F ⊑ F ∃or 1.T ⊓ ∃or2.F ⊑ T
∃and1.F ⊓ ∃and2.T ⊑ F ∃or 1.F ⊓ ∃or2.T ⊑ T
∃and1.F ⊓ ∃and2.F ⊑ F ∃or1.F ⊓ ∃or2.F ⊑ F

The TBox axioms of KBC obviously implement the standard se-
mantics of propositional connectives, so, for each gate γ, µ(γ) = T

(µ(γ) = F ) if and only if KBC |= T (γ) (KBC |= F (γ)). The size of the
TBox of KBC is constant, the size of the ABox of KBC is linear in the
size of C, and KBC is a Horn knowledge base, so the claim follows. 2

By Lemma 23 and 24, if KB is a Horn-SHIQ knowledge base, then
DD(KB) is a Horn program. This implies the following result:

THEOREM 26. For KB an extensionally reduced Horn knowledge base
in any logic between ALC and SHIQ, deciding KB (un)satisfiability,
and deciding whether KB |= (¬)C(a) with |C| bounded, is P-complete
in |KBA|.
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Proof. Membership in P is a consequence of the fact that DD(KB)
is a Horn program, whose satisfiability can be checked in polynomial
time [13]. Hence, the claim of this theorem follows from Lemma 25. 2

5. Related Work

We now discuss related approaches to reasoning in description logics
via rule-based formalisms. Our work was largely motivated by Grosof,
Horrocks, Decker, and Volz, who have investigated a decidable intersec-
tion of description logic and logic programming [16]. In particular, the
authors identify the description logic constructs that can be straight-
forwardly encoded and executed using existing logic programming sys-
tems. Thus, the DL component allows only existential quantifiers to
occur under negative, and universal quantifiers to occur under positive
polarity. The authors present an operator for translating a description
logic knowledge base into a logic program. Our approach is a signifi-
cant extension since we handle the DL SHIQ, which requires a more
complex reduction.

Heymans and Vermeir showed how to convert SHIQ∗ knowledge
bases into conceptual logic programs (CLP) [19]. CLPs generalize the
good properties of description logic to the framework of answer set
programming. Apart from the usual constructs, SHIQ∗ supports the
transitive closure of roles. Although the presented transformation pre-
serves the semantics of the knowledge base, the resulting answer set
program is not safe. Hence, its grounding is infinite, so the program
cannot be evaluated using existing answer set solvers. The problem of
decidable reasoning for CLPs is addressed by an automata-based tech-
nique. In contrast, our transformation produces a safe program with a
finite grounding, so decidability of reasoning is guaranteed already by
the transformation.

An approach for deciding satisfiability of DL concepts using answer
set programming was presented in [37]. This work, however, does not
consider general concept inclusion axioms. Another approach for reduc-
ing description logic knowledge bases to answer set programming was
developed by Alsaç and Baral [2]. To deal with existential quantifica-
tion, this approach uses function symbols. Thus, the Herbrand universe
of the programs obtained by the reduction is infinite, so existing answer
set solvers cannot be used for reasoning. In fact, decidability is not
considered at all.
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6. Conclusion

We have presented an algorithm for reducing a SHIQ knowledge base
to a disjunctive datalog program which entails the same set of ground
facts as the original knowledge base. Thus, DL query answering can
be implemented using various optimizations that were developed for
disjunctive datalog, such as join order optimizations or the magic sets
transformation. The latter has been shown to dramatically improve the
evaluation of disjunctive datalog programs. Our experiments, reported
in [29], indeed show significant performance improvements over exist-
ing DL systems in answering queries over knowledge bases with large
ABoxes but modest TBoxes.

Furthermore, our approach allows us to derive tight data complexity
bounds—that is, the complexity under the assumption that the TBox is
stable, whereas the ABox is varying and is possibly very large. We show
that checking satisfiability of a SHIQ knowledge base is NP-complete,
and that unsatisfiability and instance checking are co-NP-complete in
the size of the ABox. Additionally, we identify Horn-SHIQ, a frag-
ment of SHIQ which, analogously to Horn logic, does not allow for
disjunctive knowledge, and for which the basic reasoning problems are
P-complete in the size of the ABox.

For our future work, the main challenge lies in extending the al-
gorithm to SHOIQ. In [27] we presented a resolution-based decision
procedure for this logic; however, it is currently not clear whether this
result can be used to extend the reduction algorithm presented here.
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