
Stratified Negation in Limit Datalog Programs

Mark Kaminski, Bernardo Cuenca Grau, Egor V. Kostylev, Boris Motik and Ian Horrocks
Department of Computer Science, University of Oxford, UK

{mark.kaminski, bernardo.cuenca.grau, egor.kostylev, boris.motik, ian.horrocks}@cs.ox.ac.uk

Abstract
There has recently been an increasing interest in
declarative data analysis, where analytic tasks are
specified using a logical language, and their im-
plementation and optimisation are delegated to a
general-purpose query engine. Existing declarative
languages for data analysis can be formalised as
variants of logic programming equipped with arith-
metic function symbols and/or aggregation, and are
typically undecidable. In prior work, the language
of limit programs was proposed, which is suffi-
ciently powerful to capture many analysis tasks
and has decidable entailment problem. Rules in
this language, however, do not allow for negation.
In this paper, we study an extension of limit pro-
grams with stratified negation-as-failure. We show
that the additional expressive power makes reason-
ing computationally more demanding, and provide
tight data complexity bounds. We also identify a
fragment with tractable data complexity and suffi-
cient expressivity to capture many relevant tasks.

1 Introduction
Data analysis tasks are becoming increasingly important in
information systems. Although these tasks are currently im-
plemented using code written in standard programming lan-
guages, in recent years there has been a significant shift to-
wards declarative solutions where the definition of the task
is clearly separated from its implementation [Alvaro et al.,
2010; Markl, 2014; Seo et al., 2015; Wang et al., 2015;
Shkapsky et al., 2016; Kaminski et al., 2017].

Languages for declarative data analysis are typically rule-
based, and they have already been implemented in reasoning
engines such as BOOM [Alvaro et al., 2010], DeALS [Shkap-
sky et al., 2016], Myria [Wang et al., 2015], SociaLite [Seo
et al., 2015], Overlog [Loo et al., 2009], Dyna [Eisner and
Filardo, 2011], and Yedalog [Chin et al., 2015].

Formally, such declarative languages can be seen as vari-
ants of logic programming equipped with means for capturing
quantitative aspects of the data, such as arithmetic function
symbols and aggregates. It is, however, well-known since the
’90s that the combination of recursion with numeric compu-
tations in rules easily leads to semantic difficulties [Mumick

et al., 1990; Kemp and Stuckey, 1991; Beeri et al., 1991;
Van Gelder, 1992; Consens and Mendelzon, 1993; Ganguly
et al., 1995; Ross and Sagiv, 1997; Mazuran et al., 2013],
and/or undecidability of reasoning [Dantsin et al., 2001;
Kaminski et al., 2017]. In particular, undecidability carries
over to the languages underpinning the aforementioned rea-
soning engines for data analysis.

Kaminski et al. [2017] have recently proposed the lan-
guage of limit Datalog programs—a decidable variant of
negation-free Datalog equipped with arithmetic functions
over the integers that is expressive enough to capture many
data analysis tasks. The key feature of limit programs is
that all intensional predicates with a numeric argument are
limit predicates, the extension of which represents minimal
(min) or maximal (max) bounds of numeric values. For in-
stance, if we encode a weighted directed graph as facts over a
ternary edge predicate and a unary node predicate in the obvi-
ous way, then the following rules encode the all-pairs shortest
path problem, where the ternary min limit predicate d is used
to encode the distance from any node to any other node in the
graph as the length of a shortest path between them.

node(x)→ d(x, x, 0) (1)
d(x, y,m) ∧ edge(y, z, n)→ d(x, z,m+ n) (2)

The semantics of min predicates is defined such that a fact
d(u, v, k) is entailed from these rules and a dataset if and
only if the distance from u to v is at most k; as a result, all
facts d(u, v, k′) with k′ ≥ k are also entailed. This is in
contrast to standard first order predicates, where there is no
semantic relationship between d(u, v, k) and d(u, v, k′). The
intended semantics of limit predicates can be axiomatised us-
ing rules over standard predicates; in particular, our example
limit program is equivalent to a standard logic program con-
sisting of rules (1), (2), and the following rule (3), where d is
now treated as a regular first-order predicate:

d(x, y, k) ∧ (k ≤ k′)→ d(x, y, k′). (3)

Kaminski et al. [2017] showed that, under certain restrictions
on the use of multiplication, reasoning (i.e., fact entailment)
over limit programs is decidable and CONP-complete in data
complexity; then, they proposed a practical fragment with
tractable data complexity.

Limit Datalog programs as defined in prior work are, how-
ever, positive and hence do not allow for negation-as-failure

in the body of rules. Non-monotonic negation applied to limit
atoms can be useful, not only to express a wider range of
data analysis tasks, but also to declaratively obtain solutions
to problems where the cost of such solutions is defined by a
positive limit program. For instance, our example limit pro-
gram consisting of rules (1) and (2) provides the length of a
shortest path between any two nodes, but does not provide
access to any of the paths themselves—an issue that we will
be able to solve using non-monotonic negation.

In this paper, we study the language of limit programs
with stratified negation-as-failure. Our language extends both
positive limit Datalog as defined in prior work and plain
(function-free) Datalog with stratified negation. We argue
that our language provides useful additional expressivity, but
at the expense of increased complexity of reasoning; for pro-
grams with restricted use of multiplication, complexity jumps
from CONP-completeness in the case of positive programs, to
∆P

2-completeness for programs with stratified negation. We
also show that the tractable fragment of positive limit pro-
grams defined in [Kaminski et al., 2017] can be seamlessly
extended with stratified negation while preserving tractabil-
ity of reasoning; furthermore, the extended fragment is suffi-
ciently expressive to capture the relevant data analysis tasks.

The proofs of all our results are given in the appendix.

2 Preliminaries
In this section we recapitulate the syntax and semantics of
Datalog programs with integer arithmetic and stratified nega-
tion (see e.g., [Dantsin et al., 2001] for an excellent survey).
Syntax We assume a fixed vocabulary of countably infi-
nite, mutually disjoint sets of predicates equipped with non-
negative arities, objects, object variables, and numeric vari-
ables. Each position 1 ≤ i ≤ n of an n-ary predicate is of
either object or numeric sort. An object term is an object or
an object variable. A numeric term is an integer, a numeric
variable, or of the form s1 + s2, s1 − s2, or s1 × s2 where s1
and s2 are numeric terms and +, −, and × are the standard
arithmetic functions. A constant is an object or an integer. A
standard atom is of the form B(t1, . . . , tn), with B an n-ary
predicate and each ti a term matching the sort of the i-th po-
sition of B. A (standard) positive literal is a standard atom,
and a (standard) negative literal is of the form notα, for α a
standard atom. A comparison atom is of the form (s1 < s2)
or (s1 ≤ s2), with < and ≤ the usual comparison predicates
over the integers, and s1 and s2 numeric terms. We write
(s1

.
= s2) as an abbreviation for (s1 ≤ s2) ∧ (s2 ≤ s1). A

term, atom or literal is ground if it has no variables.
A rule r has the form

∧
i µi ∧

∧
j βj → α, where the body∧

i µi ∧
∧
j βj is a possibly empty conjunction of standard

literals µi and comparison atoms βj , and the head α is a
standard atom. We assume without loss of generality that
standard body literals are function-free; indeed, a conjunc-
tion with a functional term s can be equivalently rewritten by
replacing s with a fresh variable x and adding (x

.
= s) to the

conjunction. A rule r is safe if each object variable in r occurs
in a positive literal in the body of r. A ground instance of r
is obtained from r by substituting each variable by a constant
of the right sort.

A fact is a rule with empty body and a function-free stan-
dard atom in the head that has no variables in object positions
and no repeated variables in numeric positions. Intuitively, a
variable in a fact says that the fact holds for every integer in
the position. As a convention, we will omit→ and use sym-
bol ∞ instead of variables when writing facts. A dataset D
is a finite set of facts. Dataset D is ordered if (i) it contains
facts first(a1), next(a1, a2), . . . , next(an−1, an), last(an)
for some repetition-free enumeration a1, . . . , an of all objects
in D; and (ii) it contains no other facts over predicates first ,
next , and last . A program is a finite set of safe rules; without
loss of generality we assume that distinct rules do not share
variables. A predicate B is intensional (IDB) in a program P
if B occurs in P in the head of a rule that is not a fact; oth-
erwise, B is extensional (EDB) in P . Program P is positive
if it has no negative literals, and it is semi-positive if negation
occurs only in front of EDB atoms. A stratification of P is a
function λ mapping each predicate to a positive integer such
that, for each rule with the head over a predicate A and each
standard body literal µ over B, we have λ(B) ≤ λ(A) if µ
is positive, and λ(B) < λ(A) if µ is negative. Program P is
stratified if it admits a stratification. Given a stratification λ,
we write P[i] for the i-th stratum of P over λ—that is, the set
of all rules in P whose head predicates A satisfy λ(A) = i.
Note that each stratum is a semi-positive program.
Semantics A (Herbrand) interpretation I is a possibly infi-
nite set of ground facts (i.e., facts without∞). Interpretation
I satisfies a ground atom α, written I |= α, if either (i) α is
a standard atom such that evaluation of the arithmetic func-
tions in α under the usual semantics over integers produces a
fact in I; or (ii) α is a comparison atom that evaluates to true
under the usual semantics. Interpretation I satisfies a ground
negative literal notα, written I |= notα, if I 6|= α. The
notion of satisfaction is extended to conjunctions of ground
literals, rules, and programs as in first-order logic, with all
variables in rules implicitly universally quantified. If I satis-
fies a program P , then I is a model of P . For I a Herbrand
interpretation and R a (possibly infinite) semi-positive set of
rules, let SR(I) be the set of facts α such that ϕ → α is a
ground instance of a rule in R and I |= ϕ. Given a program
P and a stratification λ of P , for each i, j ≥ 0 we define
interpretation Iji by induction on i and j:

Ij0 = I0i = ∅; Ij+1
i+1 = SP[i+1]∪I∞i (Iji+1); I∞i =

⋃
j≥0

Iji .

The materialisation M(P) of P is the interpretation I∞k , for
k the greatest number such thatP[k] 6= ∅. The materialisation
of a program does not depend on the chosen stratification.
A stratified program P entails a fact α, written P |= α, if
α′ ∈ M(P) for every ground instance α′ of α. For positive
programs, this definition coincides with the usual first-order
notion of entailment: for P positive and α a fact, P |= α if
and only if I |= α holds for all I |= P .
Reasoning We study the computational properties of check-
ing whether P ∪ D |= α, for P a program,D a dataset, and α
a fact. We are interested in data complexity, which assumes
that only D and α form the input while P is fixed. Unless
otherwise stated, all numbers in the input are coded in bi-

nary, and the size ‖P‖ of P is the size of its representation.
Checking P ∪ D |= α is undecidable even if the only arith-
metic function in P is + [Dantsin et al., 2001] and predicates
have at most one numeric position [Kaminski et al., 2017].

We use standard definitions of the basic complexity classes
such as P, NP, CONP, and FP. Given a complexity class C,
PC is the class of decision problems solvable in polynomial
time by deterministic Turing machines with an oracle for a
problem in C; functional class FPC is defined similarly. Fi-
nally, ∆P

2 is a synonym for PNP.

3 Stratified Limit Programs
We introduce stratified limit programs as a language that can
be seen as either a semantic or a syntactic restriction of Dat-
alog with integer arithmetic and stratified negation. Our lan-
guage is also an extension of that in [Kaminski et al., 2017]
with stratified negation.
Definition 1. A stratified limit program is a pair (P, τ) where

– P is a stratified program where each predicate either
has no numeric position, in which case it is an object
predicate, or only its last position is numeric, in which
case it is a numeric predicate, and

– τ is a partial function from numeric predicates to
{min,max} that is total on the IDB predicates in P and
on predicates occurring in non-ground facts.

A numeric predicate A is a min (or max) limit predicate if
τ(A) = min (or τ(A) = max, respectively). Numeric predi-
cates that are not limit predicates are ordinary. An atom, fact
or literal is numeric, limit, etc. if so is the used predicate.

All notions defined on ordinary Datalog programs P (such
as EDB and IDB predicates, stratification, etc.) transfer to
limit programs (P, τ) by applying them to P . We often abuse
notation and write P instead of (P, τ) when τ is clear from
the context or immaterial. Whenever we consider a union
of two limit programs, we silently assume that they coincide
on τ . Finally, we denote ≤ (or ≥) by �A if A is a max (or,
respectively, min) limit predicate.

Intuitively, a limit fact B(~a, k) says that the value of B for
a tuple of objects ~a is k or more, if B is max, or k or less, if
B is min. For example, a min limit fact d(u, v, k) in our all-
pairs shortest path example says that node v is reachable from
node u via a path with cost k or less. The intended semantics
of limit predicates can be axiomatised using standard rules as
given next.
Definition 2. An interpretation I satisfies a limit program
(P, τ) if it satisfies the program P ∪ ax(P), where ax(P)
contains the following rule for each limit predicate A in P:

A(~x,m) ∧ (n �A m)→ A(~x, n).

The materialisation M(P, τ) of (P, τ) is M(P ∪ ax(P));
and (P, τ) entails α, written (P, τ) |= α, if α ∈M(P, τ).

We next demonstrate the use of stratified negation on ex-
amples. One of the main uses of negation of a limit atom is
to ‘access’ the limit value (e.g., the length of a shortest path)
attained by the atom in the materialisation of previous strata,
and then exploit such values in further computations. To fa-
cilitate such use of negation in examples, we introduce a new
operator as syntactic sugar in the language.

Definition 3. The least upper bound expression dA(~s, n)e
of a max (or min) limit atom A(~s, n) is the conjunction
A(~s, n)∧notA(~s,m)∧(m

.
= n+t) where t = 1 (or t = −1,

respectively) and m is a fresh variable.
Clearly, I |= dA(~a, k)e for I an interpretation and A(~a, k)

a ground atom if k is the limit integer such that I |= A(~a, k).
Example 4. An input of the single-pair shortest path prob-
lem can be encoded in the obvious way as a dataset Dsp us-
ing a ternary ordinary numeric predicate edge to represent
the graph’s weighted edges, and unary facts source(u) and
target(v) to identify the source and target nodes u and v, re-
spectively. The stratified limit program Psp given next com-
putes, together with Dsp (where all edge weights are posi-
tive), a DAG over a binary object predicate sp-edge such that
every maximal path in the DAG is a shortest path from u to v.

source(x)→ ds(x, 0) (4)
ds(x,m) ∧ edge(x, y, n)→ ds(y,m+ n) (5)

dds(x,m1)e ∧ dds(y,m2)e
edge(x, y, n) ∧ target(y)

(m1 + n
.
= m2)

∧
∧
→ sp-edge(x, y)

(6)

dds(x,m1)e ∧ dds(y,m2)e
edge(x, y, n) ∧ sp-edge(y, z)

(m1 + n
.
= m2)

∧
∧
→ sp-edge(x, y)

(7)

The first stratum consists of rules (4) and (5), and computes
the length of a shortest path from u to all other nodes using
the min predicate ds; in particular, Psp ∪ Dsp |= dds(v, k)e
if and only if k is the length of a shortest path from u to v.
Then, in a second stratum, the program computes the sp-edge
predicate such that Psp ∪ Dsp |= sp-edge(a, b) if and only if
the edge (a, b) is part of a shortest path from u to v. �

Example 5. The closeness centrality of a node in a strongly
connected weighted directed graph G is a measure of how
central the node is in the graph [Sabidussi, 1966]; variants
of this measure are useful, for instance, for the analysis of
market potential. Most commonly, closeness centrality of a
node u is defined as 1/

∑
v node inG d(u, v), where d(u, v) is

the length of a shortest path from u to v; the sum in the de-
nominator is often called the farness centrality of v. We next
give a limit program computing a node of maximal closeness
centrality in a given directed graph. We encode a graph as an
ordered dataset Dcc using, as before, a unary object predicate
node and a ternary ordinary numeric predicate edge. Program
Pcc consists of rules (8)–(16), where d , fness ′ and fness are
min predicates, and centre ′ and centre are object predicates.

node(x)→ d(x, x, 0) (8)
d(x, y,m) ∧ edge(y, z, n)→ d(x, z,m+ n) (9)

first(y) ∧ d(x, y, n)→ fness ′(x, y, n) (10)
next(y, z)

fness ′(x, y,m) ∧ d(x, z, n)
∧
→ fness ′(x, z,m+n)

(11)

fness ′(x, y, n) ∧ last(y)→ fness(x, n) (12)

first(x)→ centre ′(x, x) (13)
next(x, y) ∧ centre ′(x, z)

dfness(z, n)e ∧ dfness(y,m)e
(m < n)

∧
∧
→ centre ′(y, y)

(14)

next(x, y) ∧ centre ′(x, z)
dfness(z, n)e ∧ dfness(y,m)e

(n ≤ m)

∧
∧
→ centre ′(y, z)

(15)

centre ′(x, z) ∧ last(x)→ centre(z) (16)

The first stratum consists of rules (8)–(12). Rules (8) and (9)
compute the distance (length of a shortest path) between any
two nodes. Rules (10)–(12) then compute the farness central-
ity of each node based on the aforementioned distances; for
this, the program exploits the order predicates to iterate over
the nodes in the graph while recording the best value obtained
so far in the iteration using an auxiliary predicate fness ′. In
the second stratum (rules (13)–(16)), the program uses nega-
tion to compute the node of minimum farness centrality (and
hence of maximum closeness centrality), which is recorded
using the centre predicate; the order is again exploited to it-
erate over nodes, and an auxiliary predicate centre ′ is used to
record the current node of the iteration and the node with the
best centrality encountered so far. �

4 Stratified Limit-Linear Programs
By results in [Kaminski et al., 2017], checking fact entail-
ment is undecidable even for positive limit programs. Essen-
tially, this follows from the fact that checking rule applica-
bility over a set of facts requires solving arbitrary non-linear
inequalities over integers—that is, solving the 10th Hilbert
problem, which is undecidable. To regain decidability, they
proposed a restriction on positive limit programs, called limit-
linearity, which ensures that every program satisfying the re-
striction can be transformed using a grounding technique so
that all numeric terms in the resulting program are linear.
In particular, this implies that rule applicability can be de-
termined by solving a system of linear inequalities, which is
feasible in NP. As a result, fact entailment for positive limit-
linear programs is CONP-complete in data complexity.

We next extend the notion of limit-linearity to programs
with stratified negation, and define semi-grounding as a way
to simplify a limit-linear program by replacing certain types
of variables with constants. We then prove that fact entail-
ment is ∆P

2-complete in data complexity for such programs.
All programs in our previous examples are limit-linear as per
the definition given next.

Definition 6. A numeric variable n is guarded in a rule r of
a stratified limit program if

– either n occurs in a positive ordinary literal in r;
– or the body of r contains the literals

A(~s, n1), notA(~s, n2), (n2
.
= n1 + t),

where A is a max (or min) predicate, t = 1 (or t = −1,
respectively), and n ∈ {n1, n2}.

Rule r is limit-linear if each numeric term in r is of the
form s0 +

∑n
i=1 si ×mi, where each mi is a distinct nu-

meric variable not occurring in r in a (positive or negative)
ordinary numeric literal, term s0 uses only variables occur-
ring in a positive ordinary literal in r, and terms si with i ≥ 1
use only variables that are guarded in r and do not use +. A
limit-linear program contains only limit-linear rules.

A rule r is semi-ground if all variables in r are numeric
and occur only in limit and comparison atoms. The semi-
grounding of a program P is obtained by replacing, in every
rule r in P , each object variable and each numeric variable
occurring in an ordinary numeric atom in r with a constant
in P in all possible ways.

It is easily seen that the semi-grounding of a limit-linear
program P entails the same facts as P for every dataset.
Furthermore, as in prior work, Definition 6 ensures that the
semi-grounding of a positive limit-linear program contains
only linear numeric terms; finally, for programs with strati-
fied negation, it ensures that negation can be eliminated while
preserving limit-linearity when the program is materialised
stratum-by-stratum, as we will discuss in detail later on.

Decidability of fact entailment for positive limit-linear pro-
grams is established by first semi-grounding the program and
then reducing fact entailment over the resulting program to
the validity problem of Presburger formulas [Kaminski et al.,
2017]—that is, first-order formulas interpreted over the inte-
gers and composed using only variables, constants 0 and 1,
functions + and −, and the comparisons.

The extension of such a reduction to stratified limit pro-
grams, however, is complicated by the fact that in the pres-
ence of negation-as-failure, entailment no longer coincides
with classical first-order entailment. We thus adopt a differ-
ent approach, where we show decidability and establish data
complexity upper bounds according to the following steps.

Step 1. We extend the results in [Kaminski et al., 2017] for
positive programs by showing that, for every positive limit-
linear program P and dataset D, we can compute in FPNP a
finite representation of its (possibly infinite) materialisation
M(P ∪ D) (see Lemma 8 and Corollary 9). This representa-
tion is called the pseudo-materialisation of P ∪ D.

Step 2. We further extend the results in Step 1 to semi-
positive limit-linear programs, where negation occurs only in
front of EDB predicates. For this, we show that fact entail-
ment for such programs can be reduced in polynomial time in
the size of the data to fact entailment over semi-ground posi-
tive limit-linear programs by exploiting the notion of a reduct
(see Definition 10 and Lemma 11). Thus, we can assume
existence of an FPNP oracle O for computing the pseudo-
materialisation of a semi-positive limit-linear program.

Step 3. We provide an algorithm (see Algorithm 1) that
decides entailment of a fact α by a stratified limit-linear pro-
gram P using oracle O from Step 2. The algorithm maintains
a pseudo-materialisation J , which is initially empty and is
constructed bottom-up stratum by stratum. In each step i, the
algorithm updates the pseudo-materialisation by applying O
to the union of the pseudo-materialisation for stratum i−1 and
the rules in the i-th stratum. The final J , from which entail-
ment of α is obtained, is computed using a constant number
of oracle calls in the size of the data, which yields a ∆P

2 data
complexity upper bound (Proposition 13 and Theorem 15).

In what follows, we specify each of these steps. We start
by formally defining the notion of a pseudo-materialisation
P(P) of a stratified limit program P , which compactly rep-
resents the materialisation M(P). Intuitively, M(P) can be
infinite because it can contain, for any limit predicate B and
tuple of objects ~a of suitable arity, an infinite number of facts

of the form B(~a, k). However, if the materialisation has facts
of this form, then either there is a limit value ` such that
B(~a, k) ∈ M(P) for each k �B ` and B(~a, k′) /∈ M(P)
for each k′ �B `, or B(~a, k) ∈ M(P) for every integer
k. As argued in prior work, it then suffices for the pseudo-
materialisation to contain only a single fact B(~a, `) in the
former case, or B(~a,∞) in the latter case.
Definition 7. A pseudo-interpretation J is a set of facts such
that∞ occurs only in facts over limit predicates and k = k′

holds for all facts B(~a, k) and B(~a, k′) in J with limit B.
The pseudo-materialisation of a limit program P , written

P(P), is the (unique) pseudo-interpretation such that
1. an object or ordinary numeric fact is contained in P(P)

if and only if it is contained in M(P); and
2. for each limit predicate B, object tuple ~a, and integer `,

– B(~a, `) ∈ P(P) if and only ifB(~a, `) ∈M(P) and
B(~a, k) 6∈M(P) for all k �B `, and

– B(~a,∞) ∈ P(P) if and only if B(~a, k) ∈M(P)
for all integers k.

We now strengthen the results in [Kaminski et al., 2017] by
establishing a bound on the size of pseudo-materialisations of
positive, limit-linear programs.
Lemma 8. Let P be a semi-ground, positive, limit-linear pro-
gram, and let D be a limit dataset. Then |P(P ∪ D)| ≤
|P ∪ D| and the magnitude of each integer in P(P ∪ D) is
bounded polynomially in the largest magnitude of an integer
in P ∪ D, exponentially in |P|, and double-exponentially in
maxr∈P ‖r‖u, where ‖r‖u stands for the size of the represen-
tation of r assuming that all numbers take unit space.

By Lemma 8, the pseudo-materialisation of P ∪ D con-
tains at most linearly many facts; furthermore, the size of each
such fact is bounded polynomially onceP is considered fixed.
Hence, the pseudo-materialisation of P can be computed in
FPNP in data complexity, even if P is not semi-ground.
Corollary 9. Let P be a positive, limit-linear program. Then
the function mapping each limit dataset D to P(P ∪ D) is
computable in FPNP in ‖D‖.

In our second step, we extend this result to semi-positive
programs. For this, we start by defining the notion of a reduct
of a semi-positive limit-linear program P . The reduct is ob-
tained by first computing a semi-ground instance P ′ of P and
then eliminating all negative literals in P ′ while preserving
fact entailment. Intuitively, negative literals can be eliminated
because they involve only EDB predicates; as a result, their
extension can be computed in polynomial time from the facts
in P alone. To eliminate a ground negative literal µ, it suf-
fices to check whether µ is entailed by the facts in P and sim-
plify all rules containing µ accordingly; in turn, limit literals
involving a numeric variable m can be rewritten as compar-
isons of m with a constant computed from the facts in P .
Definition 10. Let P be a semi-positive, limit-linear program
and let D be the subset of all facts in P . The reduct of P
is obtained by first computing the semi-grounding P ′ of P
and then applying the following transformations to each rule
r ∈ P ′ and each negative body literal µ in r:

1. if µ = notα, for α a ground atom, delete r if D |= α,
and delete µ from r otherwise,

ALGORITHM 1:
Parameter: oracle O computing P(P ′) for P ′ a

semi-positive, limit-linear program
Input: stratified, limit-linear program P , fact α
Output: true if P |= α
1 compute a stratification λ of P
2 J ··= ∅
3 for i := 1 to max{k | P[k] 6= ∅} do
4 J ··= O(P[i] ∪ J)
5 end
6 return true if α is satisfied in J and false otherwise

2. if µ = notA(~a,m) is a non-ground limit literal, then
– delete r if D |= A(~a, k) for each integer k;
– delete µ from r if D 6|= A(~a, k) for each k; and
– replace µ in r with (k ≺A m) otherwise, where
D |= dA(~a, k)e.

Note that semi-ground programs disallow non-ground neg-
ative literals over ordinary numeric predicates, which is why
these are not considered in Definition 10. As shown by the
following lemma, reducts allow us to reduce fact entailment
for semi-positive, limit-linear programs to semi-ground, pos-
itive, limit-linear programs.
Lemma 11. For P a semi-positive, limit-linear program and
D a limit dataset, P ′ the reduct of P ∪ D, and α a fact, we
have P ∪ D |= α if and only if P ′ |= α. Moreover P ′ can be
computed in polynomial time in ‖D‖, ‖P ′‖ is polynomially
bounded in ‖D‖, and maxr∈P′ ‖r‖u ≤ maxr∈P∪D ‖r‖u.

The results in Lemma 8 and Lemma 11 imply that the
pseudo-materialisation of a semi-positive, limit-linear pro-
gram can be computed in FPNP in data complexity.
Lemma 12. Let P be a semi-positive, limit-linear program.
Then the function mapping each limit dataset D to P(P ∪D)
is computable in FPNP in ‖D‖.

We are now ready to present Algorithm 1, which de-
cides entailment of a fact α by a stratified limit-linear pro-
gram P . The algorithm uses an oracle O for computing the
pseudo-materialisation of a semi-positive program. The ex-
istence of such oracle and its computational bounds are en-
sured by Lemma 12. Algorithm 1 constructs the pseudo-
materialisation P(P) of P stratum by stratum in a bottom-
up fashion. For each stratum i, the algorithm uses oracle O
to compute the pseudo-materialisation of the program con-
sisting of the rules in the current stratum and the facts in
the pseudo-materialisation computed for the previous stra-
tum. Once P(P) has been constructed, entailment of α is
checked directly over P(P).

Correctness of the algorithm is immediate by the prop-
erties of O and the correspondence between pseudo-
materialisations and materialisations. Moreover, if oracle O
runs in FPC in data complexity, for some complexity classC,
then it can only return a pseudo-interpretation that is polyno-
mially bounded in data complexity; as a result, Algorithm 1
runs in PC since the number of strata of P does not depend
on the input dataset.
Proposition 13. If oracle O is computable in FPC in data
complexity, then Algorithm 1 runs in PC in data complexity.

The following upper bound immediately follows from the
correctness of Algorithm 1 and Proposition 13.
Lemma 14. For P a stratified, limit-linear program and α a
fact, deciding P |= α is in ∆P

2 in data complexity.
The matching lower bound is obtained by reduction from

the ODDMINSAT problem [Krentel, 1988]. An instanceM
of ODDMINSAT consists of a repetition-free tuple of vari-
ables 〈xN , . . . , x0〉 and a satisfiable propositional formula ϕ
over these variables. The question is whether the truth assign-
ment σ satisfying ϕ for which the tuple 〈σ(xN), . . . , σ(x0)〉
is lexicographically minimal, assuming false < true , among
all satisfying truth assignments of ϕ has σ(x0) = true . In our
reduction,M is encoded as a dataset DM using object pred-
icates or and not to encode the structure of ϕ and numeric
predicates to encode the order of variables in 〈xN , . . . , x0〉; a
fixed, two-strata programPmodd then goes through all assign-
ments σ in the ascending lexicographic order and evaluates
the encoding of ϕ on σ until it finds some σ that makes ϕ true;
Pmodd then derives fact minOdd if and only if σ(x0) = true .
Thus, Pmodd ∪ DM |= minOdd if and only ifM belongs to
the language of ODDMINSAT.
Theorem 15. For P a stratified, limit-linear program and α
a fact, deciding P |= α is ∆P

2-complete in data complexity.
The lower bound holds already for programs with two strata.

5 A Tractable Fragment
Tractability in data complexity is an important requirement
in data-intensive applications. In this section, we propose a
syntactic restriction on stratified, limit-linear programs that
is sufficient to ensure tractability of fact entailment in data
complexity. Our restriction extends that of type consistency
in prior work to account for negation. The programs in Ex-
amples 4 and 5 are type-consistent.
Definition 16. A semi-ground, limit-linear rule r is type-
consistent if
– each numeric term t in r is of the form k0 +

∑n
i=1 ki ×mi

where k0 is an integer and each ki, 1 ≤ i ≤ n, is a nonzero
integer, called the coefficient of variable mi in t;

– each numeric variable occurs in exactly one standard body
literal;

– each numeric variable in a negative literal is guarded;
– if the headA(~a, s) of r is a limit atom, then each unguarded

variable occurring in s with a positive (or negative) coef-
ficient also occurs in the body in a (unique) positive limit
literal that is of the same (or different, respectively) type
(i.e., min vs. max) as A;

– for each comparison (s1 < s2) or (s1 ≤ s2) in r, each un-
guarded variable occurring in s1 with a positive (or nega-
tive) coefficient also occurs in a (unique) positive min (or
max, respectively) body literal, and each unguarded vari-
able occurring in s2 with a positive (or negative) coeffi-
cient occurs in a (unique) positive max (or min, respec-
tively) body literal.

A semi-ground, stratified, limit-linear program is type-
consistent if all of its rules are type-consistent. A stratified
limit-linear program P is type-consistent if the program ob-
tained by first semi-grounding P and then simplifying all nu-
meric terms as much as possible is type-consistent.

Similarly to type-consistency for positive programs, Def-
inition 16 ensures that divergence of limit facts to ∞ can
be detected in polynomial time when constructing a pseudo-
materialisation (see [Kaminski et al., 2017] for details). Fur-
thermore, the conditions in Definition 16 have been crafted
such that the reduct of a semi-positive type-consistent pro-
gram (and hence of any intermediate program considered
while materialising a stratified program) can be trivially
rewritten into a positive type-consistent program. For this,
it is essential to require a guarded use of negation (see third
condition in Definition 16).
Lemma 17. For P a semi-positive, type-consistent program
and D a limit dataset, the reduct of P ∪ D is polynomially
rewritable to a positive, semi-ground, type-consistent pro-
gram P ′ such that, for each fact α, P ∪ D |= α if and only if
P ′ |= α.

Lemma 17 allows us to extend the polytime algorithm
in [Kaminski et al., 2017] for computing the pseudo-material-
isation of a positive type-consistent program to semi-positive
programs, thus obtaining a tractable implementation of ora-
cle O restricted to type-consistent programs. This suffices
since Algorithm 1, when given a type-consistent program as
input, only applies O to type-consistent programs. Thus, by
Proposition 13, we obtain a polynomial time upper bound on
the data complexity of fact entailment for type-consistent pro-
grams with stratified negation. Since plain Datalog is already
P-hard in data complexity, this upper bound is tight.
Theorem 18. For P a stratified, type-consistent program and
α a fact, deciding P |= α is P-complete in data complexity.

Finally, as we show next, our extended notion of type con-
sistency can be efficiently recognised.
Proposition 19. Checking whether a stratified, limit-linear
program is type-consistent is in LOGSPACE.

6 Conclusion and Future Work
Motivated by declarative data analysis applications, we have
extended the language of limit programs with stratified
negation-as-failure. We have shown that the additional ex-
pressive power provided by our extended language comes at a
computational cost, but we have also identified sufficient syn-
tactic conditions that ensure tractability of reasoning in data
complexity. There are many avenues for future work. First, it
would be interesting to formally study the expressive power
of our language. Since type-consistent programs extend plain
(function-free) Datalog with stratified negation, it is clear that
they capture P on ordered datasets [Dantsin et al., 2001], and
we conjecture that the full language of stratified limit-linear
programs captures ∆P

2. From a more practical perspective,
we believe that limit programs can naturally express many
tasks that admit a dynamic programming solution (e.g., vari-
ants of the knapsack problem, and many others). Concep-
tually, a dynamic programming approach can be seen as a
three-stage process: first, one constructs an acyclic ‘graph of
subproblems’ that orders the subproblems from smallest to
largest; then, one computes a shortest/longest path over this
graph to obtain the value of optimal solutions; finally, one
backwards-computes the actual solution by tracing back in

the graph. Capturing the third stage seems to always require
non-monotonic negation (as illustrated in our path computa-
tion example), whereas the first stage may or may not require
it depending on the problem. Finally, the second stage can
be realised with a (recursive) positive program. Second, our
formalism should be extended with aggregate functions. Al-
though certain forms of aggregation can be simulated using
arithmetic functions and iterating over the object domain by
exploiting the ordering, having aggregation explicitly would
allow us to express certain tasks in a more natural way. Third,
we would like to go beyond stratified negation and investi-
gate the theoretical properties of limit Datalog under well-
founded [Van Gelder et al., 1991] or the stable model seman-
tics [Gelfond and Lifschitz, 1988]. Finally, we plan to imple-
ment our reasoning algorithms and test them in practice.

Acknowledgments
This research was supported by the EPSRC projects DBOnto,
MaSI3, and ED3.

References
[Alvaro et al., 2010] Peter Alvaro, Tyson Condie, Neil Con-

way, Khaled Elmeleegy, Joseph M. Hellerstein, and Rus-
sell Sears. BOOM analytics: exploring data-centric,
declarative programming for the cloud. In EuroSys 2010,
pages 223–236. ACM, 2010.

[Beeri et al., 1991] Catriel Beeri, Shamim A. Naqvi, Oded
Shmueli, and Shalom Tsur. Set constructors in a logic
database language. J. Log. Program., 10(3&4):181–232,
1991.

[Chin et al., 2015] Brian Chin, Daniel von Dincklage, Vuk
Ercegovac, Peter Hawkins, Mark S. Miller, Franz Josef
Och, Christopher Olston, and Fernando Pereira. Yeda-
log: Exploring knowledge at scale. In SNAPL 2015,
volume 32 of LIPIcs, pages 63–78. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2015.

[Chistikov and Haase, 2016] Dmitry Chistikov and
Christoph Haase. The taming of the semi-linear set.
In ICALP, volume 55 of LIPIcs, pages 128:1–128:13.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

[Consens and Mendelzon, 1993] Mariano P. Consens and
Alberto O. Mendelzon. Low complexity aggregation in
GraphLog and Datalog. Theor. Comput. Sci., 116(1):95–
116, 1993.

[Dantsin et al., 2001] Evgeny Dantsin, Thomas Eiter, Georg
Gottlob, and Andrei Voronkov. Complexity and expres-
sive power of logic programming. ACM Comput. Surv.,
33(3):374–425, 2001.

[Eisner and Filardo, 2011] Jason Eisner and Nathaniel Wes-
ley Filardo. Dyna: Extending datalog for modern AI.
In Datalog 2010, volume 6702 of LNCS, pages 181–220.
Springer, 2011.

[Ganguly et al., 1995] Sumit Ganguly, Sergio Greco, and
Carlo Zaniolo. Extrema predicates in deductive databases.
J. Comput. Syst. Sci., 51(2):244–259, 1995.

[Gelfond and Lifschitz, 1988] Michael Gelfond and
Vladimir Lifschitz. The stable model semantics for
logic programming. In ICLP/SLP 1988, pages 1070–
1080. MIT Press, 1988.

[Kaminski et al., 2017] Mark Kaminski, Bernardo Cuenca
Grau, Egor V. Kostylev, Boris Motik, and Ian Horrocks.
Foundations of declarative data analysis using limit data-
log programs. In IJCAI 2017, pages 1123–1130. ijcai.org,
2017.

[Kemp and Stuckey, 1991] David B. Kemp and Peter J.
Stuckey. Semantics of logic programs with aggregates. In
ISLP 1991, pages 387–401. MIT Press, 1991.

[Krentel, 1988] Mark W. Krentel. The complexity of opti-
mization problems. J. Comput. System Sci., 36(3):490–
509, 1988.

[Loo et al., 2009] Boon Thau Loo, Tyson Condie, Minos N.
Garofalakis, David E. Gay, Joseph M. Hellerstein, Pet-
ros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and
Ion Stoica. Declarative networking. Commun. ACM,
52(11):87–95, 2009.

[Markl, 2014] Volker Markl. Breaking the chains: On
declarative data analysis and data independence in the big
data era. PVLDB, 7(13):1730–1733, 2014.

[Mazuran et al., 2013] Mirjana Mazuran, Edoardo Serra,
and Carlo Zaniolo. Extending the power of datalog re-
cursion. VLDB J., 22(4):471–493, 2013.

[Mumick et al., 1990] Inderpal Singh Mumick, Hamid Pira-
hesh, and Raghu Ramakrishnan. The magic of duplicates
and aggregates. In VLDB 1990, pages 264–277. Morgan
Kaufmann, 1990.

[Ross and Sagiv, 1997] Kenneth A. Ross and Yehoshua Sa-
giv. Monotonic aggregation in deductive databases. J.
Comput. System Sci., 54(1):79–97, 1997.

[Sabidussi, 1966] Gert Sabidussi. The centrality index of a
graph. Psychometrika, 31(4):581–603, 1966.

[Seo et al., 2015] Jiwon Seo, Stephen Guo, and Monica S.
Lam. SociaLite: An efficient graph query language based
on datalog. IEEE Trans. Knowl. Data Eng., 27(7):1824–
1837, 2015.

[Shkapsky et al., 2016] Alexander Shkapsky, Mohan Yang,
Matteo Interlandi, Hsuan Chiu, Tyson Condie, and Carlo
Zaniolo. Big data analytics with datalog queries on Spark.
In SIGMOD 2016, pages 1135–1149. ACM, 2016.

[Van Gelder et al., 1991] Allen Van Gelder, Kenneth A.
Ross, and John S. Schlipf. The well-founded semantics
for general logic programs. J. ACM, 38(3):620–650, 1991.

[Van Gelder, 1992] Allen Van Gelder. The well-founded se-
mantics of aggregation. In PODS 1992, pages 127–138.
ACM Press, 1992.

[Wang et al., 2015] Jingjing Wang, Magdalena Balazinska,
and Daniel Halperin. Asynchronous and fault-tolerant
recursive datalog evaluation in shared-nothing engines.
PVLDB, 8(12):1542–1553, 2015.

A Proofs for Section 4
Before proceeding to the proofs of our theorems in the main body of the paper, we restate some notions from [Kaminski et al.,
2017]. All models of a limit program are easily seen to satisfy the following closure property.
Definition A.1. An interpretation I is limit-closed (for a limit program P) if, for each fact B(a, k) ∈ I where B is a limit
predicate, B(a, k′) ∈ I holds for each integer k′ with k′ �B k.

There is a one-to-one correspondence between pseudo-interpretations and limit-closed interpretations, and thus each model
of a program can be equivalently represented by a pseudo-interpretation.
Definition A.2. A limit-closed interpretation I corresponds to a pseudo-interpretation J if the following conditions hold:
• an object or ordinary numeric fact is contained in J if and only if it is contained in I; and

• for each limit predicate B, each tuple of objects~b, and each integer `, (i) B(~b, k) ∈ I for all k if and only if B(~b,∞) ∈ J ,
and (ii) B(~b, `) ∈ I and B(~b, k) 6∈ I for all k �B ` and B is a limit predicate if and only if B(~b, `) ∈ J .

Let J and J ′ be pseudo-interpretations corresponding to interpretations I and I ′. Then, J satisfies a ground atom α, written
J |= α, if I |= α; J is a pseudo-model of a program P , written J |= P , if I |= P; finally, J v J ′ holds if I ⊆ I ′.

Kaminski et al. [2017] then define an immediate consequence operator TP for positive limit programs that works on pseudo-
interpretations and show that the pseudo-materialisation P(P) of a positive limit program P can be computed as the pseudo-
interpretation J∞ inductively defined as follows, where supS, for a set S of pseudo-interpretations, is the supremum of S
w.r.t. v:

J0 = ∅ Jj+1 = TP(Jj) J∞ = sup
j∈N

Jj

We call pseudo-interpretations J i partial pseudo-materialisations of P .
The CONP upper bound for fact entailment in [Kaminski et al., 2017] is shown by a reduction to validity of Presburger

formulas of a certain shape. We next extend this reduction Pres(P) as given in [Kaminski et al., 2017] for a (semi-ground and
positive) limit-linear program P to account for datasets involving∞.
Definition A.3. For each n-ary object predicate A, each (n + 1)-ary ordinary numeric predicate B, each (n + 1)-ary limit
predicate C, each n-tuple of objects ~a, and each integer k, let defA~a, defB~ak, defC~a and finC~a be distinct propositional
variables, and let valC~a a distinct integer variable.

For P a semi-ground, positive, limit-linear program, Pres(P) =
∧
r∈P Pres(r) is the Presburger formula where Pres(r) is

the formula (with the same quantifier block as r) that is obtained by replacing each atom α in r with its encoding Pres(α)
defined as follows:
• Pres(α) = α if α is a comparison atom;

• Pres(α) = defA~a if α is an object atom of the form A(~a);

• Pres(α) = defB~ak if α is an ordinary numeric atom of the form B(~a, s) where s is a ground numeric term evaluating to
k;1

• Pres(α) = defC~a ∧ (¬finC~a ∨ s �C valC~a) if α is a limit atom of the form C(~a, s) where s 6=∞; and

• Pres(α) = defC~a ∧ ¬finC~a if α is a limit atom of the form C(~a,∞).
Let J be a pseudo-interpretation, and let µ be an assignment of Boolean and integer variables. Then, J corresponds to µ if

all of the following conditions hold for all A, B, C, and ~a as specified above, for each integer k ∈ Z:
• µ(defA~a) = true if and only if A(~a) ∈ J;

• µ(defB~ak) = true if and only if B(~a, k) ∈ J;

• µ(defC~a) = true if and only if C(~a,∞) ∈ J or there exists ` ∈ Z such that C(~a, `) ∈ J;

• µ(finC~a) = true and µ(valC~a) = k if and only if C(~a, k) ∈ J .
Note that k in Definition A.3 ranges over all integers (which excludes∞), µ(valC~a) is equal to some integer k, and J is a

pseudo-interpretation and thus cannot contain both C(~a,∞) and C(~a, k); thus, C(~a,∞) ∈ J implies µ(finC~a) = false .
The key property of the Presburger encoding in [Kaminski et al., 2017] is established by the following lemma, which we

easily re-prove for our variant of the encoding.
Lemma A.4. Let J be a pseudo-interpretation and let µ be a variable assignment such that J corresponds to µ. Then,

1. J |= α if and only if µ |= Pres(α) for each ground atom α, and

2. J |= r if and only if µ |= Pres(r) for each semi-ground, positive rule r.
1Note that all ordinary numeric atoms in P have this form since P is semi-ground.

Proof. Claim 1 follows analogously to the respective argument in [Kaminski et al., 2017] except for having an extra case,
namely α = C(~a,∞), for C a limit predicate. The proof of this case is analogous but simpler to the case for α = C(~a, k)
where k ∈ Z. Claim 2 then follows from Claim 1 same as before.

Using Lemma A.4, Kaminski et al. [2017] establish the following correspondence between entailment for positive limit-
linear programs and validity of Presburger sentences.

Lemma A.5. For P a semi-ground, positive, limit-linear program and α a fact, there exists a Presburger sentence
ϕ = ∀~x∃~y.

∨n
i=1 ψi that is valid if and only if P |= α. Each ψi is a conjunction of possibly negated atoms. Moreover, |~x|+ |~y|

and each ‖ψi‖ are bounded polynomially by ‖P‖+ ‖α‖. Number n is bounded polynomially by |P| and exponentially by
maxr∈P ‖r‖. Finally, the magnitude of each integer in ϕ is bounded by the maximal magnitude of an integer in P and α.

By a more precise analysis of the Presburger formulas in the proof of Lemma A.5, we can sharpen the bounds provided by the
lemma as follows, where ‖r‖u (resp. ‖P‖, ‖ϕ‖, etc.) stands for the size of the representation of r (resp. P , ϕ, etc.) assuming
that all numbers take unit space.

Lemma A.6. For P a semi-ground, positive, limit-linear program and α a fact, there exists a Presburger sentence
ϕ = ∀~x∃~y.

∨n
i=1 ψi that is valid if and only if P |= α. Each ψi is a conjunction of possibly negated atoms. Moreover, |~x|+ |~y|

is bounded polynomially in ‖P‖u and each ‖ψi‖u is bounded polynomially in maxr∈P ‖r‖u. Number n is bounded poly-
nomially in |P| and exponentially in maxr∈P ‖r‖u. Finally, the magnitude of each integer in ϕ is bounded by the maximal
magnitude of an integer in P and α.

Analogously to the notion of a model for an interpretation, we call With Lemma A.5 at hand, Kaminski et al. [2017] then
show the following theorem, which bounds the magnitude of integers in counter-pseudo-models for entailment (the proof of the
theorem adapts to our setting as is).

Theorem A.7. For P a semi-ground, positive, limit-linear program,D a limit dataset, and α a fact, P ∪ D 6|= α if and only if a
pseudo-model J of P ∪ D exists where J 6|= α, |J | ≤ |P ∪ D|, and the magnitude of each integer in J is bounded polynomially
in the largest magnitude of an integer in P ∪ D, exponentially in |P|, and double-exponentially in maxr∈P ‖r‖.

Furthermore, the double-exponential bound in maxr∈P ‖r‖ can be trivially sharpened to maxr∈P ‖r‖u by employing
Lemma A.6 in place of Lemma A.5. Building on the proof of Theorem A.7, we next prove the following stronger version,
which bounds the size of pseudo-materialisations of semi-ground, positive, limit-linear programs.

Lemma 8. Let P be a semi-ground, positive, limit-linear program, and let D be a limit dataset. Then |P(P ∪ D)| ≤ |P ∪ D|
and the magnitude of each integer in P(P ∪ D) is bounded polynomially in the largest magnitude of an integer in P ∪ D,
exponentially in |P|, and double-exponentially in maxr∈P ‖r‖u, where ‖r‖u stands for the size of the representation of r
assuming that all numbers take unit space.

Proof. Let a be the maximal magnitude of an integer in P ∪ D, m = |P|, and n = maxr∈P ‖r‖u. Let D′ be obtained from D
by removing each fact that does not unify with an atom in P and let E be a fresh nullary predicate.

Clearly, we have P(P ∪ D) = P(P ∪ D′) ∪ J0 where J0 is the least pseudo-interpretation w.r.t. v such that {α} v J0 for
each α ∈ D \ D′. Let ϕ be obtained from P ∪ D′ and fact E analogously to the construction in the proof of Lemma A.6, but
where each disjunct (¬finC~a ∨ s �C valC~a) in Pres(P) is replaced by ¬finC~a if C(~a,∞) ∈ P(P ∪D′) and by s �C valC~a if
C(~a, k) ∈ P(P ∪D′) for some k ∈ Z. It is easy to see that every assignment corresponding to P(P ∪D′) is a countermodel of
ϕ. Therefore, since ϕ satisfies the same structural constraints as the formula in Lemma A.6, by an argument analogous to the
one in the proof of Theorem A.7 we obtain that P ∪ D has a pseudo-model J such that |J | ≤ |P ∪ D|, the magnitude of each
integer in J is bounded by some number ` that is polynomial in a, exponential in m, and double-exponential in n, and where, it
holds that C(~a,∞) ∈ J if and only if C(~a,∞) ∈ P(P ∪ D) for each limit predicate C and objects ~a. Consequently, we have
established that P(P ∪ D) has a pseudo-model J that satisfies the required bounds in the lemma. In what follows we use the
fact that P(P ∪ D) v J to show that P(P ∪ D) also satisfies the bounds in the lemma.

Let us denote with Jj the partial pseudo-materialisation of P ∪ D for any j ≥ 0 and hence, P(P ∪ D) = J∞. We start
with the observation that (?) the value of a number k in a limit fact A(~a, k) can only increase with respect to �A during the
construction of P(P ∪ D). For instance, if A(~a, k) ∈ Jj , with A a max predicate, and A(~a, k′) ∈ Jj+1, then k′ ≥ k. Let,
`0 = ` and, for j > 0, `j be the maximum between
• `j−1,
• the maximal magnitude of a negative integer occurring in a max fact in Jj , and
• the maximal magnitude of a positive integer occurring in a min fact in Jj .

Numbers `j allow us to bound the integers produced by the immediate consequence operator TP applied to pseudo-
interpretation Jj . Specifically, we argue that (♠) for each j and rule r with head A(a, s) for some s, we have
• |opt(r, Jj)| ≤ n2O(n logn)`n+1`j if A(~a,∞) /∈ P(P ∪ D),
• opt(r, Jj) ≥ −n2O(n logn)`n+1`j if A is a max predicate, and
• opt(r, Jj) ≤ n2O(n logn)`n+1`j if A is a min predicate.

To see why this holds, consider a pseudo-interpretation J ′ obtained from Jj by replacing each max IDB fact B(~b, k) with
B(~b,−`j), and each min IDB fact C(~c, k′) with C(~c, `j). By construction, we have {opt(r, J ′)} v {opt(r, Jj)} v J and
hence opt(r, J ′) �A opt(r, Jj) �A opt(r, J) whenever opt(r, J ′) is defined. But since the magnitude of all numbers in J ′
is bounded by `j , by Proposition 3 in [Chistikov and Haase, 2016], C(r, J ′) has a solution where the maximal magnitude
of all numbers is bounded by 2O(n logn)`n`j , and hence the magnitude of the value k of s for this solution is bounded by
n2O(n logn)`n+1`j (unless the value of s is unbounded in C(r, J ′), in which case opt(r, J ′) = opt(r, J) and we are done). The
last two subclaims are immediate since k �A opt(r, J ′) �A opt(r, Jj), and and the first claim follows since, additionally,
opt(r, Jj) �A opt(r, J), and A(~a,∞) /∈ P(P ∪ D) implies |opt(r, J)| ≤ ` = `0 by our assumptions about J .

From (?) we can conclude that, for each j and k such that j ≤ k and |Jj | = |Jk|, we have `j = `k. Thus, whenever
`j increases during the construction of P(P ∪ D), this must be because a rule has generated a fact B(~b, i) where there was
previously no fact over B and ~b in the partial pseudo-materialisation. The number of times this can happen is obviously
bounded by m (i.e., the number of rules in P). Furthermore, by (♠), whenever `j < `j+1, we have `j+1 ≤ n2O(n logn)`n+1`j .
Consequently, for every j, we have that `j ≤ nm2O(mn logn)`m(n+1)+1

By (♠), we conclude that the maximal magnitude L of every integer in P(P ∪ D) = J∞ is bounded by
nm+12O((m+1)n logn)`(m+1)(n+1)+1. Clearly, L is polynomially bounded in a, exponentially in m, and double-exponentially
in n since so is `.

Lemma 11. For P a semi-positive, limit-linear program and D a limit dataset, P ′ the reduct of P ∪ D, and α a fact, we have
P ∪D |= α if and only if P ′ |= α. Moreover P ′ can be computed in polynomial time in ‖D‖, ‖P ′‖ is polynomially bounded in
‖D‖, and maxr∈P′ ‖r‖u ≤ maxr∈P∪D ‖r‖u.

Proof. To show P ∪ D |= α iff P ′ |= α, it suffices to argue that P ′ |= α holds iff P ′′ |= α, for P ′′ the semi-grounding of
P ∪ D.

Since P ′′ is semi-positive and P ′ positive, w.l.o.g., we have M(P ′) = I∞1 , M(P ′′) = H∞2 . We show that, for each i ∈ N,
(i) Ii1 ⊆M(P ′′), and (ii)Hi

2 ⊆M(P ′), by simultaneous induction on i, which implies the claim by the definition of entailment.
Note that, for r a rule, we will denote the body of r as b(r).

For i = 0, the claim is trivial since I01 = H0
2 = ∅.

For i > 0, suppose first β ∈ Ii1 for some β. We show β ∈ M(P ′′). Since β ∈ SP′(Ii−11), there is a rule r′ ∈ P ′ such
that, for some grounding σ, Ii−11 |= b(r′σ). Moreover, by the inductive hypothesis, Ii−11 ⊆ M(P ′′). Let r′′ be the rule in
P ′′ such that r′ is obtained from r′′. It suffices to show M(P ′′) |= b(r′′σ). By construction, all literals in b(r′) are positive
and the only literals in b(r′′) \ b(r′) are negative literals of the form notα, so, since Ii−11 ⊆ M(P ′′), it suffices to show that
M(P ′′) |= notασ for each notα ∈ b(r′′). We distinguish two cases.

If α is ground, we have ασ = α and, by construction of r′, we have D′ 6|= α, where D′ is the set of facts in P ∪ D.
Consequently, P ′′ 6|= α since P ′′ and D′ coincide on facts and α must be EDB in P ′′ (which is the case since P is semi-
positive), and so M(P ′′) 6|= α, and so M(P ′′) |= notα = notασ, as required.

If α is non-ground, it must be a limit atom of the form A(~a,m) (since P ′′ is semi-ground and thus negative ordinary numeric
literals contain no numeric variables). By construction of r′, one of the following two cases must hold.
• D′ 6|= A(~a, k) for each k ∈ Z, and hence D′ 6|= A(~a,mσ).
• D′ |= dA(~a, k)e for some k ∈ Z and (k ≺A m) ∈ b(r′). Since Ii−11 |= b(r′σ), we then have k ≺A mσ, and hence
D′ 6|= A(~a,mσ).

Since A must be EDB in P ′′, we then conclude M(P ′′) |= notασ analogously to before.
Next, suppose β ∈ Hi

2 for some β. We show β ∈M(P ′). Since β ∈ SP′′[2]∪H∞
1

(Hi−1
2), there is a rule r′′ ∈ P ′′[2] ∪H∞1

such that, for some grounding σ, Hi−1
2 |= b(r′′σ). Moreover, by the inductive hypothesis, Hi−1

2 ⊆M(P ′).
We distinguish two cases. If r′′ = β ∈ H∞1 , it is easily seen that β ∈M(P ′) since, by construction, we have P ′′[1] ⊆ P ′,

and hence H∞1 = M(P ′′[1]) ⊆M(P ′) since P ′ is positive. Thus, w.l.o.g., suppose r′′ ∈ P ′′[2]. It then suffices to show that
there is a rule r′ ∈ P ′ obtained from r′′ such that M(P ′) |= b(r′σ). Since Hi−1

2 |= b(r′′σ), we have H∞1 6|= ασ for each
negative literal notα ∈ b(r′′), and hence also D′ 6|= ασ. Consequently, rule r′′ is not deleted by the transformation rules in
Definition 10 but rather transformed to a positive rule r′ such that the only literals in b(r′) \ b(r′′) have the form k ≺A m such
that notA(~a,m) is a non-ground limit literal in b(r′′) and D′ |= dA(~a, k)e. Thus, since r′ is positive and Hi−1

2 ⊆M(P ′), it
suffices to show M(P ′) |= k ≺A mσ for each such literal (k ≺A m) ∈ b(r′). This follows since, by construction and since P ′′
is semi-positive, A is EDB in P ′, and hence M(P) |= A(~a, s) holds for a term s if and only if D′ |= A(~a, s); for each literal
(k ≺A m) ∈ b(r′), we then have M(P) 6|= A(~a,mσ) and M(P) |= A(~a, k), which implies M(P) |= k ≺A mσ, as required.

For the second claim, note that, by construction, ‖P ′‖ is bounded from above by ‖P ′′‖, for P ′′ the semi-grounding of P ∪D,
while ‖P ′′‖ is easily seen to be polynomial in ‖D‖ for P fixed. Moreover, P ′′ can be computed in polynomial time, w.r.t.
‖D‖, and each rule in P ′ can be computed from a rule in P ′′ in polynomial time, provided that we can polynomially check
D′ |= α, for D′ as above. This clearly holds since D′ |= α can be checked by simply matching α against facts in D′. Finally
maxr∈P′ ‖r‖u ≤ maxr∈P′′ ‖r‖u ≤ maxr∈P∪D ‖r‖u.

We next use Lemmas 8 and 11 to show Lemma 12. To this end, we first establish the following auxiliary result.

Lemma A.8. Let P be a semi-positive, limit-linear program and let f be the function mapping each triple (D, A,~a), for D
a limit dataset, A a max (resp. min) predicate and ~a a tuple of objects, to the greatest (resp. least) k ∈ Z ∪ {∞} such that
P ∪ D |= A(~a, k) if such k exists, and otherwise to a special symbol none. Then function f is computable in FPNP.

Proof. Without loss of generality, suppose A is a max predicate. Let P ′ be the reduct of P ∪ D, and let ` be the bound on the
magnitude of integers in P(P ′) from Lemma 8. Then, since, by Lemma 11, P ∪ D |= A(~a, k) implies A(~a, k′) ∈ P(P ′) for
some k′ ≥ k, Lemma 8 implies that P ∪D |= A(~a, `+1) if and only if P ∪D |= A(~a,∞). Similarly P ∪D 6|= A(~a,−`) if and
only ifP∪D does not satisfyA(~a, k) for any k ∈ Z. Since |P ′| is polynomial in ‖D‖ but maxr∈P′\D ‖r‖u ≤ maxr∈P ‖r‖u, by
Lemma 8, ` is exponentially bounded in ‖D‖, and hence every number in the range of f can be represented using polynomially
many bits.

Given a triple (D, A,~a), we can thus compute f(D, A,~a) by a deterministic oracle TM whose oracle set consists of all pairs
(D′, α) such that P ∪ D′ |= α as follows:

1. Compute the reduct P ′ of P ∪ D.

2. Compute a bound ` on the magnitude of integers in P(P ′) satisfying the restrictions in Lemma 8.

3. Perform a binary search for the greatest number k ∈ [−`, `+ 1] such that (D, A(~a, k)) is in the oracle set.

4. If no such k exists, return none, if k = `+ 1, return∞, and otherwise return k.

Correctness of the algorithm is immediate by the above observations.
The reduct can be computed in step (1) in polynomial time and is of polynomial size in ‖D‖, whereas maxr∈P′ ‖r‖u

is bounded by a constant for a fixed P by Lemma 11. The computation in step (2) takes polynomial time as the binary
representation of ` is polynomial in ‖D‖. The search in step (3) takes polynomial time and makes polynomially many oracle
calls since the interval [−`, `+ 1] is exponential in ‖D‖ and does not depend on A or ~a, as observed above. Finally, step (4) is
clearly polynomial in the size of the input.

The claim follows since, by the results in [Kaminski et al., 2017], fact entailment for positive, limit-linear programs is
CONP-complete, hence the membership problem for the oracle set is in CONP, and FPNP = FPCONP.

We then generalise Lemma A.8 to Lemma 12.

Lemma 12. Let P be a semi-positive, limit-linear program. Then the function mapping each limit dataset D to P(P ∪ D) is
computable in FPNP in ‖D‖.

Proof. The set P(P ∪ D) can be computed by the following algorithm:

1. Compute the reduct P ′ of P ∪ D.

2. Compute the least (w.r.t. v) pseudo-model J of all facts in P ′.
3. For each IDB predicate A and objects ~a occurring in the head of a rule in P ′:

(a) if A is an object predicate and P ∪ D |= A(~a), add A(~a) to J ;
(b) if A is a max (resp. min) predicate, compute the greatest (resp. least) k ∈ Z ∪ {∞} such that P ∪D |= A(~a, k), and,

if it exists, add A(~a, k) to J .

Correctness of the algorithm follows since P ′ entails the same facts as P ∪D by Lemma 11 and steps (2) and (3) construct the
least pseudo-model of P ′. Thus, for the claim, it suffices to show that steps (1), (2), (3.a) and (3.b) are all feasible in FPNP,
while step (3) is repeated at most polynomially often in ‖D‖.

Step (1) can be performed in polynomial time in ‖D‖ by Lemma 11, while the construction of a pseudo-model of a dataset
in step (2) is polynomial in ‖P ′‖, and hence in ‖D‖, since it involves only trivial reasoning. Moreover, step (3) is repeated at
most |P ′| times, where |P ′| is bounded polynomially in ‖D‖ for fixed P . Finally, step (3.a) can be performed in CONP since
fact entailment is CONP-complete in data complexity by the results in [Kaminski et al., 2017], while step (3.b) is feasible in
FPNP by Lemma A.8.

Note that Lemma 12 immediately implies Corollary 9, so we dispense with a separate proof for the corollary.

Proposition 13. If oracle O is computable in FPC in data complexity, then Algorithm 1 runs in PC in data complexity.

Proof. Let P = P0 ∪ D. Without loss of generality, the number of non-empty strata in P is bounded by a constant s for P0

fixed, and hence loop 3–5 is executed at most s times. Let Ji be the pseudo-interpretation computed by O in iteration i of the
loop. By assumption, O in iteration i of the loop runs in time bounded by q(‖D ∪ Ji−1‖), for some polynomial q, and hence
‖D ∪ Ji‖ ≤ p(‖D ∪ Ji−1‖) for some polynomial p. Consequently, we have ‖P(P)‖ = ‖Js‖ ≤ p(‖D‖)s, which is in turn
polynomial in ‖D‖, and loop 3–5 terminates in time bounded by s · q(p(‖D‖)s). Finally, step 6 can clearly be performed in
time polynomial in ‖P(P)‖.

Lemma 14. For P a stratified, limit-linear program and α a fact, deciding P |= α is in ∆P
2 in data complexity.

Proof. The claim is immediate by Lemma 12 and Proposition 13.

Theorem 15. For P a stratified, limit-linear program and α a fact, deciding P |= α is ∆P
2-complete in data complexity. The

lower bound holds already for programs with two strata.

Proof. The upper bound follows by Lemma 14 while hardness is established by reduction from the minimal satisfying assign-
ment odd problem. An instanceM of the minimal satisfying assignment odd problem is given by a (repetition-free) tuple of
variables 〈xN , . . . , x0〉 and a satisfiable Boolean formula ϕ over x0, . . . , xN (using operators ∨ and ¬). The problem is to deter-
mine whether the assignment σ for which the tuple 〈σ(xN), . . . , σ(x0)〉 is lexicographically minimal (assuming false < true)
among all satisfying truth assignments of ϕ satisfies σ(x0) = true . The closely related problem where 〈σ(xN), . . . , σ(x0)〉 is
lexicographically maximal andϕ is not restricted to be satisfiable has been shown ∆P

2-complete in [Krentel, 1988, Theorem 3.4],
and the two versions are easily seen to be LOGSPACE many-one inter-reducible. We reduce the problem by presenting a fixed
program Pmodd , admitting two strata, and a dataset DM, which depends on M, and showing that M is true if and only if
Pmodd ∪ DM entails a nullary fact minOdd .

Our encoding uses object EDB predicates root , or , and not ; ordinary numeric EDB predicate shift ; and max IDB predicates
ass , T , and F . Program Pmodd consists of the following rules, where we write (s1 ≤ s2 < s3) as an abbreviation for the
conjunction (s1 ≤ s2) ∧ (s2 < s3).

→ ass(0) (17)
root(x) ∧ F (x, n)→ ass(n+ 1) (18)

or(x, y, z) ∧ F (y, n) ∧ F (z, n)→ F (x, n) (19)
or(x, y, z) ∧ T (y, n)→ T (x, n) (20)
or(x, y, z) ∧ T (z, n)→ T (x, n) (21)
not(x, y) ∧ T (y, n)→ F (x, n) (22)
not(x, y) ∧ F (y, n)→ T (x, n) (23)

ass(n) ∧ shift(x, s) ∧ (0 ≤ m1) ∧ (0 ≤ m2 < s) ∧ (n
.
= 2×m1 × s+ s+m2)→ T (x, n) (24)

ass(n) ∧ shift(x, s) ∧ (0 ≤ m1) ∧ (0 ≤ m2 < s) ∧ (n
.
= 2×m1 × s+m2)→ F (x, n) (25)

dass(n)e ∧ (0 ≤ m) ∧ (n
.
= 2×m+ 1)→ minOdd (26)

Dataset D(~x,ϕ) contains facts (27)–(30), where, for each distinct subformula ψ of ϕ (including ϕ itself), aψ is a fresh object.
Note that numbers 2i for 0 ≤ i ≤ N are exponential in N , and thus can be computed in polynomial time and represented using
polynomially many bits in the size of the input.

→ shift(axi , 2
i) for each 0 ≤ i ≤ N (27)

→ root(aϕ) (28)
→ or(aψ, aψ1

, aψ2
) for each subformula ψ = ψ1 ∨ ψ2 of ϕ (29)

→ not(aψ, aψ1) for each subformula ψ = ¬ψ1 of ϕ (30)

In our reduction, each truth assignment σ for x0, . . . , xN is associated with a number
∑

0≤i≤N σ(xi) × 2i. Thus, given a
number n that encodes a truth assignment, variable xi (0 ≤ i ≤ N) is assigned true if n = 2 × m1 × 2i + 2i + m2, and
false if n = 2 ×m1 × 2i + m2, for some nonnegative integers m1 and m2 where m2 < 2i. Thus, if numeric variable n is
assigned such an encoding of a truth assignment and numeric variable s is assigned the factor 2i corresponding to variable xi,
then conjunction

(0 ≤ m1) ∧ (0 ≤ m2 < s) ∧ (n
.
= 2×m1 × s+ s+m2)

is true if and only if xi is true in the assignment (encoded by) n; analogously, conjunction

(0 ≤ m1) ∧ (0 ≤ m2 < s) ∧ (n
.
= 2×m1 × s+m2)

is true if and only if xi is false in assignment n. Facts (27) associate with every variable xi the corresponding factor 2i, and
hence rules (24) and (25) derive T (axi , n) if xi is true and F (axi , n) if xi is false in assignment n. Facts (28)–(30) encode the
structure of ϕ. Using these facts, rules (19)–(23) recursively evaluate ϕ, deriving, for each subformula ψ of ϕ, T (aψ, n) if ψ
evaluates to true and F (aψ, n) if ψ evaluates to false in assignment n. Rules (17) and (18) then search for the lexicographically
minimal assignment that satisfies ϕ (recall that ϕ is satisfiable by assumption)—rule (17) ensures than assignment 0 is checked,
and rule (18) ensures that assignment n + 1 is checked whenever ϕ evaluates to false in n. Finally, rule (26) derives minOdd
if and only if x0 is true in the minimal assignment satisfying ϕ, as required.

B Proofs for Section 5
Lemma 17. For P a semi-positive, type-consistent program and D a limit dataset, the reduct of P ∪ D is polynomially
rewritable to a positive, semi-ground, type-consistent program P ′ such that, for each fact α, P ∪D |= α if and only if P ′ |= α.

Proof. By definition, the program P ′ obtained by first semi-grounding P∪D and then simplifying all numeric terms as much as
possible is type-consistent. Thus, it suffices to show that the possible violations of type consistency introduced by the additional
transformation rules in Definition 10 can be repaired in polynomial time. Since the transformation rules apply to negative body
literals of an individual rule, suppose r is a semi-ground, semi-positive, type-consistent rule and µ = notα is a negative body
literal of r. We have two cases.

If α is ground, then either r is deleted or µ is deleted from r. Clearly, neither of these transformations can violate type
consistency since µ does not mention a numeric variable.

If α = A(~a,m) is a non-ground limit literal, then one of the following is true, for D′ the set of facts in P ∪ D:
(i) D′ |= A(~a, k) for each k ∈ Z and r is removed,

(ii) D′ 6|= A(~a, k) for each k ∈ Z and µ is removed from r, or
(iii) D′ |= dA(~a, k)e for some k ∈ Z and µ is replaced in r with (k ≺A m).
Case (i) does not violate type consistency.

In case (ii), since r is type-consistent, variable m needs to be guarded, i.e., there needs to be a conjunction A(~a, n) ∧ (m
.
=

n + t) for t ∈ {1,−1} in b(r). Moreover, since A is EDB in P ∪ D, and hence in P ′, D′ 6|= A(~a, k) implies P ′ 6|= A(~a, k)
for each k ∈ Z, and thus the literal A(~a, n) ∈ b(r) will never be satisfied when computing the materialisation of P ′, i.e., r is
semantically redundant and hence can be removed from P ′, maintaining type-consistency.

Finally, in case (iii), type consistency is violated because in the transformed rule, variable m no longer occurs in a standard
body atom. Let r′ be the rule obtained from r by a one-step application of the transformation rules in case (iii). To restore type
consistency, we will equivalently re-state rule r′ eliminating all occurrences ofm. To this end, note that, as in the previous case,
since r is type-consistent, variable m needs to be guarded, i.e., there needs to be a conjunction A(~A, n) ∧ notA(~a,m) ∧ (m

.
=

n+ t) for t ∈ {1,−1} in b(r). Thus, let rule r′′ be obtained from r by removing the conjunctionA(~a, n)∧notA(~a,m)∧ (m
.
=

n+ t) and substituting each occurrence of m in r with k+ t and each occurrence of n with k. Clearly, rule r′′ is type-consistent
since so is r. Moreover, sinceA is EDB in P ′, we have P ′ |= dA(~a, k)e, and hence r can be replaced with r′′ while maintaining
the set of entailed facts.

Clearly, the transformation rules in Definition 10 restricted to type-consistent programs can be modified to preserve type
consistency as described above while remaining polynomially computable.

Theorem 18. For P a stratified, type-consistent program and α a fact, deciding P |= α is P-complete in data complexity.

Proof. The P lower bound in data complexity is inherited from plain Datalog [Dantsin et al., 2001]. For the upper bound, note
that, for P a stratified, type-consistent program, the program P[i] ∪ D is type-consistent for each i ∈ N and each finite dataset
D. Thus, by Proposition 13, it suffices to show that the pseudo-materialisation of a semi-positive, type-consistent program
P ′ can be computed in polynomial time in data complexity. By Lemmas 11 and 17, this reduces to showing the existence
of a polynomial algorithm for computing the pseudo-materialisation of a semi-ground, positive, type-consistent program P ′′.
Kaminski et al. [2017] provide such an algorithm that terminates in time polynomial in ‖P ′′‖, provided maxr∈P′′ ‖r‖u is
bounded by a constant. This assumption can be made since, w.l.o.g., maxr∈P′ ‖r‖u is constant w.r.t. data complexity and,
for P ′′ the semi-ground, positive, type-consistent program obtained from P ′ by the results in Lemmas 11 and 17, we have
maxr∈P′′ ‖r‖u ≤ maxr∈P′ ‖r‖u.

Proposition 19. Checking whether a stratified, limit-linear program is type-consistent is in LOGSPACE.

Proof. Let P be a stratified, limit-linear program. We can check whether P is type-consistent by considering each rule r ∈ P
independently. For the first type consistency condition, note that each maximally simplified numeric term in a semi-ground
limit-linear rule has the form k0 +

∑n
i=1 ki ×

∏`i
j=1m

j
i for all `i ≥ 1. Such a term satisfies the first condition iff, for each

i, either `i = 1 or ki = 0. Thus, to check the first condition, it suffices, for each numeric term s0 +
∑n
i=1 si in r and each i

such that si contains at least two variables not occurring in a positive ordinary numeric literal, to check that either one of the
constants in si is 0 or si contains some variable m occurring in a positive ordinary numeric literal and 0 is the only constant
mentioned in P (and hence m must be semi-grounded to 0); clearly, this is doable in logarithmic space.

The second and third conditions are clearly checkable in logarithmic space.
Thus, it suffices to check whether a semi-grounding of r (with constants from P) can violate the fourth or the fifth condition.

In both cases, it suffices to consider at most one atom α at a time (a limit head atom A(a, s) for the fourth condition or
a comparison atom s1 < s2 or s1 ≤ s2 for the fifth condition). In α, we consider at most one numeric term s at a time
(s ∈ {s1, s2} for the fifth condition), where, by our considerations for the first condition, we can assume w.l.o.g. that s has
the form t0 +

∑n
i=1 ti ×mi where ti, for i ≥ 1, are terms constructed from integers, variables occurring in positive ordinary

numeric literals, and multiplication. Moreover, for each such s, we consider each unguarded variable m occurring in s. By
assumption, m occurs in s, so we have mi = m for some i. For the fourth condition of Definition 16, we need to check that,

if the positive limit body literal B(s,mi) introducing mi (note that mi cannot be introduced by a negative literal by the third
condition and since it is unguarded by assumption) has the same (different) type as the head atom, then term ti can only be
grounded to positive (negative) integers or zero. For the fifth condition, we need to check that, if s = s1 and the positive
limit body literal B(s,mi) introducing mi is min (max), then term ti can only be grounded to positive (negative) integers or
0, and dually for the case s = s2. Hence, in either case, it suffices to check whether term ti can be semi-grounded so that it
evaluates to a positive integer, a negative integer, or zero. We next discuss how this can be checked in logarithmic space. Let
ti = t1i × · · · × tki , where each tji is an integer or a variable not occurring in a limit atom, and assume without loss of generality
that we want to check whether ti can be grounded to a positive integer; this is the case if and only if one of the following holds:

• all tji are integers whose product is positive;
• the product of all integers in ti is positive and P contains a positive integer;
• the product of all integers in ti is positive, P contains a negative integer, and the total number of variable occurrences in ti

is even;
• the product of all integers in ti is negative, P contains a negative integer, and the total number of variable occurrences in
ti is odd; or
• the product of all integers in ti is negative, P contains both positive and negative integers, and some variable tji has an odd

number of occurrences in ti.
Each of these conditions can be verified using a constant number of pointers into P and binary variables. This clearly requires
logarithmic space, and it implies our claim.

