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Summary. We overview the algorithms for reasoning with descriptiogit (DL) ontolo-
gies based on resolution. These algorithms often have sgass optimal complexity, and, by
relying on vast experience in building resolution theoremmvprs, they can be implemented
efficiently. Furthermore, we present a resolution-basgdrahm that reduces a DL knowl-
edge base into a disjunctive datalog program, while prasgihe set of entailed facts. This
reduction enables the application of optimization techagjfrom deductive databases, such
as magic sets, to reasoning in DLs. This approach has préselfin practice on ontologies
with relatively small and simple TBoxes, but large ABoxes.

1 Introduction

Tableau algorithms, introduced in Chapter 23, are nowattaystate-of-the-art for
reasoning with description logic (DL) ontologies. This isimly due to optimiza-
tions of the original algorithm that heuristically guidestbearch for a model. DLs
such as the ones underlying the Web Ontology Language (O848 Chapter 4)
are, however, complex logics, so no one reasoning methotheadentified as the
best. Rather, comparing different methods and identifyitaich ones are suitable
for which types of problems can give us crucial insights iotidlding practical rea-
soning systems. Therefore, alternatives to tableau ¢ddauk been explored in the
past.

Resolution and its refinements [4] are howadays the mostlwigged calculi
for general-purpose first-order theorem proving. They Hseen implemented in a
number of practical systems, of which Vampire [28] is onelaf most successful
one. The general applicability of resolution is partly dad¢hte powerfuredundancy
elimination rules which can drastically reduce the search space.

Since resolution has been quite successful as a generakthgwoving tech-
nique, it is natural to apply it to ontology reasoning. Damsprocedures for various
DLs have been developed in the past. It turns out that, everefatively complex
DLs, resolution-based algorithms can be derived easilyaaadjuite elegant. While
tableau algorithms need sophisticated blocking techsituensure termination [8],
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resolution-based algorithms terminate automatically a&le-effect of the resolu-
tion calculus. Furthermore, many resolution-based proeedare worst-case opti-
mal [25, 13].

In this chapter, we outline the principles underlying mastn resolution-based
procedures for DLs. After introducing the basic notions gct®n 2, we present
a decision procedure for the DULCHZ in Section 3. This DL provides many
features characteristic of the DL languages, such as fubllésm connectives, (re-
stricted) existential and universal quantification, irseeroles, and role hierarchies.
Furthermore, the resolution decision procedure for thisddhveys the basic prin-
ciples without overloading the presentation with techhitetail. We also overview
the problems involved in extending the algorithm to moreregpive DLs.

Deductive databases have been successfully applied toesngwjueries over
large data sets, so it is natural to apply them to DL reasowitiglarge ABoxes. To
enable this, in Section 4 we present a technique that reducd£CHZ knowledge
base to a disjunctive datalog program without affectinggeeof entailed ground
facts. Thus, one can answer DL queries using the resultsjgrditive program, and,
in doing so, one can apply known optimization technique$ agmagic sets [6].
This transformation can be derived easily from the basioluti®n-based decision
algorithm.

The techniques presented in this chapter have been imptethenthe DL rea-
soner KAON2! Practical experience has shown that the reduction-baskditpies
work quite well for ontologies with relatively small and gie TBoxes, but large
and complex ABoxes [23].

2 Preliminaries

2.1 The Description LogicALCHT

Description logics have been introduced in detail in Chafitebut, to make this
chapter self-contained, we present the definition of the DICH7Z . For a set of
role namesVg, aroleis either some&? € Ny or aninverse roleR~ for R € Ngr. An
RBoxR is a finite set of role inclusion axiomR C S. For a set otoncept names
N¢, the set otonceptss the smallest set containing, L, A, -C,C N D,CU D,
JR.C, VR.C, whereA is a concept namé, and D are concepts, anf is a role.
A TBox 7 is a finite set ofconcept inclusion axiom&' = D, whereC and D are
concepts. For a set afdividuals N;, an ABox. A is a finite set of assertions of the
form C(a), R(a,b), and—R(a,b), whereC is a conceptR is a role, andz andb
are individuals. AnALCHZ knowledge basé is a triple(R, 7, .A). With || we
denote the number of symbols needed to endédé/e say thafC is extensionally
reducedif, in all ABox assertionsC'(a), the conceptC is a concept hame or the
negation of a concept name. Afycan be made extensionally reduced by replacing
each assertio@'(a) whereC' is not of the appropriate form with an assertida (a)
and an axiomdo C C, for Ac a new concept name.

Yhttp://kaon2. semant i cweb. or g/



Resolution-Based Reasoning for Ontologies 3

Table 1. Semantics 0fALCHZ by Mapping to FOL

Mapping Roles to FOL

Tay(R) = R(z,y) Ty (R) = R(y, =)
Tay(R”) = Ry, ) mye(R7) = R(x,y)
Mapping Concepts to FOL
me(T)=T my(T)=T
me(L) =1 my(Ll) =1
7o(4) = A(x) 7y (4) = A(y)
2 (—C) = —m2(C) Wu(ﬁo) = -y (C)
7(C M D) =7 (C) A me(D) 7y (C T D) =7y (C) A my(D)
72(C'U D) =7(C)V ms(D) 7y (C'U D) =7y (C) V my(D)
7o (AR.C) = Jy : oy (R) Ay (C) 7y (AR.C) = Fz : mya(R) A 1 (C)
72 (VR.C) =Vy : mzy(R) — 7y (C) my(VR.C) =Vz : myz(R) — 72 (C)
Mapping Axioms to FOL
m(C C D) =Vz:7m,:(C) — 7z(D)
T(RE S) =Vz,y : Tay(R) — T2y (S)
7(Cla)) = 72 (C){z 1 a}
7(=) R(@,5)) = (<) Tay (R) & — a,y — B}
m(K) = Naerurua™(@)

In Chapter 1, DLs are given a direct model-theoretic sernanhn this chapter,
however, we use an equivalent semantics based on tramsiatiofirst-order logic.
In particular, we translate ad LCHZ knowledge basé into a first-order formula
7(K), wherer is the operator defined in Table 1. It is well-known that thege
semantics are equivalent [7].

The basic inference problem fetLCHZ is checking satisfiabilitypf C—that is,
checking whether(K) is a satisfiable first-order formula. As discussed in Chapter
1, other inference problems can be reduced to knowledgedatiséability.

Thenegation-normal fornanf(C') of a concept is the concept equivalent t©
in which negation occurs only in front of concept names. Tdrecepthnf(C') can be
computed in time polynomial in the size 6fby well-known transformations [2].

2.2 The Ordered Resolution Calculus

We use the well-known definitions of constants, variablescfion symbols, terms,
predicates, and formulae of first-order logic [4]. Atom A is a formula of the form
P(t1,...,tn), whereP is a predicate and; are terms. Aliteral L is a positive
atom A or a negative atomrA. A clauseis a multiset of literals and is written as
L1V ...V L,. Theempty clausés written as]. Terms and formulae that do not
contain variables are callegound We say that formulag andy areequisatisfiable
if o is satisfiable if and only if} is satisfiable.

A substitutionis mapping of variables to terms that is not identity on a dinit
number of variables; we often write it 431 — ¢1,...,z, — t,}. An application
of a substitutions to a termt (formula ) is written to (po) and it is the term
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(formula) obtained by replacing each free occurrence ofraabke = with zo. A
substitutiory is aunifier of termss andt if so = to. A unifier o of s andt is called
amost general unifief, for each unifiem of s andt, a substitutiorg exists such that
an = (xo)¢ for every variabler. If a most general unifies of s and¢ exists, it is
unique up to variable renaming [3], so we write= MGU(s, t).

The skolemizatiorof a formulayp, writtensk(y), is obtained fromp by succes-
sively replacing each subformute: : «) occurring positively or a subormuta: :
occurring negatively ip with a formulay{z — f(z1,...,2,)}, wheref is a new
function symbol andry, ..., x, are the free variables af different fromz. It is
well-known thaty andsk(y) are equisatisfiable [26]. Finallgls(y) is the set of
clauses that is equisatisfiable withand is obtained by transformisg(y) into con-
junctive normal form using the well-known transformations

Ordered resolutiorj4] is a calculus that can be used to prove that a formula
is unsatisfiable. Ordered resolution is a clausal calcglug,cannot be applied tp
directly. First, one must compu€s(y). Next, one must fix the calculus’ parameters.
The first parameter is aadmissibleordering on literals-—that is, an ordering that is
(i) well-founded, stable under substitutions (i, Lo impliesLio > Loo for all
literals L; and L, and each substitutior), and total on ground literalsiiy -4 > A
for all ground atoms4; and i) B >~ A implies B >~ —A for all atomsA andB. A
literal L is maximal w.r.t. a claus€' if there is no literalL’ € C such thatl’ - L,
andL is strictly maximal w.r.tC if there is noL’ € C such that’ > L. The second
parameter is gelection functionwhich assigns to each clauéea possibly empty
subset of negative literals 6f.

An inference ruleis a template that specifies how a conclusion is derived given
a set of premises; aimferenceis an application of an inference rule to concrete
premises. WitHR we denote the ordered resolution calculus, consistingefdh
lowing inference rules, where the clausés/ Av B and D v —B are called the
main premisesC' Vv A is called theside premiseandCo v Ao andCo Vv Do are
calledconclusiongas usual in resolution theorem proving, we make a techagal
sumption that the premises do not have variables in common):

CVAVDB
CoV Ao

where () 0 = MGU(A, B), (ii) Ao is maximal with respect t@'c V Bo and no
literal is selected itC'o V Ao V Bo.

Positive factoring:

CVA DvV-B
Co V Do

Ordered resolution:

where () 0 = MGU(A, B), (ii) Ao is strictly maximal with respect t@'c and no
literal is selected inCo Vv Ao, (iii) —Bo is either selected iDo Vv —Bo, or it is
maximal with respect tdo¢ and no literal is selected iPo vV —Bo.

Ordered resolution is compatible with powerfeldundancy elimination tech-
niques which allow deleting certain clauses during the theorewving process
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without loss of completeness [4]. If a clauSeis redundant in some set of clauses
N, thenC can be safely removed from.

If a clauseC' is a tautology, then it is redundant in any set of clauSe# sound
and complete tautology check would itself require theoresripg, and would there-
fore be difficult to realize. Therefore, one usually only ckeforsyntactic tautolo-
gies—that s, clauses containing the literaland—A. A clauseC' subsumea clause
D if there is a substitution such thatCo C D and|C| < |D|. If a clauseC' is sub-
sumed by a clause from a set of claudéshenC' is redundantinV.

A derivationby R from a set of clausesV is a sequence of sets of clauses
Ny, Ni,...such thatVy = N and, fori > 0, either {) N;;1 = N; U {C} whereC
is the conclusion of an inference B/from premises inv;, or (i) N;11 = N; \ {C}
whereC is redundant inV;. Each derivation must biair [4]; intuitively, this means
that each applicable inference is performed after a finitalmer of steps. Ordered
resolution is sound and complete [4]Cif € N; whereN; is derived byR from a set
of clausesVy, then Ny is unsatisfiable; conversely, ¥ is unsatisfiable, then, for
each fair derivation byR from Ny, an integet exists such thdfl € N,. The process
of computing a derivation bR from NV is called asaturationof Ny by R.

2.3 Disjunctive Datalog

We recapitulate the basic notions of disjunctive datald.[A datalog termis a
constant or a variable, anddatalog atomhas the formA(ty, ..., t,) or t; ~ to,
wheret; are datalog terms. Aisjunctive datalog program with equalify is a finite
set of rules of the formd, v ... vV A,, — By, ..., B,, whereA, and B; are datalog
atoms. The literalgl; are callechead literals whereas the literalB; are callecdbody
literals. Each rule is required to tmafe—that is, each variable occurring in the rule
must occur in at least one body atomfaktis a rule withm = 0. For the semantics,
we take a rule to be equivalent to a clauseV ...V A, V =By V ...V = B,,. We
consider only Herbrand models, and say that a madedf P is minimalif there is
no modelM’ of P such thatV’ C M. A ground literal A is acautious answeof
P (written P |=. A) if A is true in all minimal models oP. First-order entailment
coincides with cautious entailment for positive grounchago

3 Deciding Satisfiability of ALCHZ by Resolution

The fundamental principles for deciding a first-order fragC by resolution have
been established by Joyner [17]. First, one selects a sondd@mplete clausal
calculusC. Second, one identifies the set of clausgssuch thati) N is finite for

a finite signature andij the translation of each formulae £ into clauses produces
only clauses from\V;. Third, one demonstrates thaf; is closedunderC; that is,
one shows that applying an inference(to clauses fromV, produces a clause
in ;. This is sufficient to obtain a refutation decision procedfar £: given any
formulay € L, a saturation by of the clauses correspondinggowill, in the worst
case, derive all clauses 4f;. In this section, we apply these principles to obtain a
procedure for checking satisfiability of abh.CHZ knowledge bask.
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Table 2. Structural Transformation df

OK) = Unerua @@ UUeg, ce,er ©(T Ennf(=C1 U C2))
O(AC B) = {AC B}
O(AC -B) = {AC -B)
@(A CCin CQ) = @(A C Cl) U @(A C 02)
OACC1UC2) = {AC Qc, UQe,} UB(Qe, T C1)UB(Qc, E Ca)
O(AC3IRC) = {ACIRQcIUO(QeCO)
O(ACVR.C) = {ACYR.QcYUO(Qe C O)
O(RC S) = {RC S}
O(C(a)) = {Qc(a)}UO(Qc EC)

O(()R(a,b)) = {(=)R(a,b)}
Note: A and B are concept names ar; C, C1, andC> are arbitrary conceptd} and
S are roles; and) x is a new concept name not occurringkirthat is unique forX.

3.1 Translating the Knowledge Base into Clauses

The first step in deciding satisfiability éf is to transform/C into an equisatisfiable
set of clause€ (K). A straightforward way of doing so is to compufés(7(K)).
Such an approach, however, has two important drawbacls, fie size of the re-
sulting clause set could be exponential in the size (@), due to nesting ofl and
LI. Second, we should exploit the structure of the form(l&) in our algorithm, but
Cls(7(K)) does not reflect this structure. To avoid these problems,regrpcesk
using thestructural transformatiorj26, 27].

Definition 1. For an ALCHZ knowledge bask, the knowledge base(K) is com-
puted as shown in Table 2.

Intuitively, this transformation replaces complex cortsegith simpler ones. The
knowledge bas@(K) does not contaif, so it can be translated into clauses without
an exponential blowup.

Lemma 1. An ALCHZ knowledge bas& and©(K) are equisatisfiable.

Proof. Consider a single application 6f. It is obvious that the axioms obtained after
the transformation imply the axiom before the transfororgtivhich proves the«)
direction. For the &) direction, simply observe that each interpretatioof IC can
be extended to an interpretatidhof ©(K) by interpreting each newly introduced
concepi)x asX. O

To obtain a set of clauses correspondingCtove translated () into first-order
logic using the operatar from Table 1, skolemize it, and transform the result into
conjunctive normal form. This is captured by the followingfidition:

Definition 2. For an ALCHZ knowledge bask, let =(K) = Cls(7(O(K))).

We now show that clausification does not affect the satiditialoif a knowledge
base, and that it produces clauses of a certain syntaciittste:
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Table 3.Clause Types after Clausification

Axiom Clause

RLCS -R(z,y)V S(z,y)
g Ry N Sy
B s Y SO
g Ry N Sy
ACEUG)B: ~A@) VV()Biz)
ALC3R.B —A(z) V R(z, f(z))
____________________________________ ~A@) VB(f(x)
AC 3R .B —A(z) V R(f(z), )
____________________________________ CA@) VB(f(x)
ACVR.B —A(z) V =R(z,y) V B(y)
BRI AN SR N Bl
A©) AC) )
(R(ed) (R(ed)
(_‘)R (Cv d) (_‘)R(d7 C)

Note: The function symboff is different for each axiom.

Lemma 2. The following claims hold for eacd LCHZ knowledge bask:

1. K is satisfiable if and only iE(K) is satisfiable.
2. Z(K) can be computed in time polynomiallid]|.
3. Each clause ir£ (K) is of the form as shown in Table 3.

Proof. (1) Equisatisfiability oflC and =(K) is a direct consequence of Lemma 1.
(2) The number of recursive invocations@fand the number of new concepifse

are linear inC|. Hence|O(K)| is linear in| K|, so| = (K)| is polynomial in|C|. (3) It

is easy to see tha?(K) contains only axioms from the left-hand side of Table 3,
which are translated into clauses as shown on the right-sialecbf the table. O

3.2 Saturation by Ordered Resolution

Since ordered resolutiorR() is a sound and complete calculus, we can use it to
check satisfiability of='(K). To obtain a decision procedure, we just need to ensure
that each saturation &' (K) by R terminates; that is, we must ensure that we can
derive only finitely many clauses frofa(K) by applying the rules oR. There are
two main reasons why we might derive an infinite number of sxeu

First, we might derive clauses with ever deeper terms. Béhown by the fol-
lowing example, in which the selected literals are undedin

Cla) ~C(x)VC(f(x))
C(f(a)) ~C(z) vV C(f(x))
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Second, we might derive clauses with an unbounded numbearatbles. For
example, the following inference increases the number oalkes by one, and re-
peating it for the conclusion produces clauses with anratyinumber of variables:

~C(z)VR(z,y) VCly) Oy V-R(y,2) vV C(2)
-C(x) V-R(z,y) V- R(y,z) VC(z)

The inferences that ordered resolution performs on a gieefspremises are
determined by the parameters of the calculus—the litedgrimg and the selection
function. By choosing these parameters appropriately,amerestrict the resolution
inferences in a way that allows us to establish a bound onethe tepth and on
the number of variables. In the first example, if we ensure hg (z)) > -C(z),
then the second premise can participate in an inference amlteral C'(f(z));
sinceC(f(x)) andC(a) do not unify, no inference dR is applicable taC(a) and
-C(x) vV C(f(x)). In the second example, the undesirable inference can be pre
vented if we select R(z, y).

The following definition fixes the parameters f8rthat, as we shall see shortly,
restrict the inferences aB(KC) in a way which ensures termination.

Definition 3. Let R p;, denote the calculuR parameterized as follows:

e The literal ordering is any admissible ordering such that, for all function
symbolsf and predicatesR, C, and D, we haveR(z, f(x)) > -C(x) and
D(f(x)) = ~C(x).

e The selection function selects every negative binaryditereach clause.

An ordering compatible with Definition 3 can be obtained bstémtiating dex-
icographic path orderindg10]; see [22, Section 4.4] for detalils.

It is easy to see that an application Bfp, to clauses from Table 3 can pro-
duce clauses of the form not shown in the table. Thereforegevesralize Table 3
to ALCHZ-clauses shown in Table 4. It is easy to see tH&a{X) contains only
ALCHI-clauses. As we show next, when applied4ddCHZ-clauses, eaciR py,
inference produces adLCHZ-clause.

Lemma 3.Each Rpy inference, when applied talLCHZ-clauses, produces an
ALCHZI-clause.

Proof. We summarize all possiblR ., inferences on all types ol LCHZ-clauses

in Table 5. For the sake of brevity, we omit inferences in wtparticipating literals
are complemented. The notatiar4- m = k above each inference means that the
inference premises are of typesndm, and the conclusion is of type Due to the
requirement on the literal ordering, a literal of the form(—)A(z) occurring in a
clauseC' can participate in an inference onlydf does not contain a literal of the
form (=)B(f(x)) or R(x, f(x)). Furthermore, a ground literal(a) does not unify
with a literal A(f(z)), and R(a, b) does not unify withR(x, f(x)). Hence, ground
clauses can participate only in inferences with clausesaotaining terms of the
form f(z). One can easily see that the conclusion is alwayd 86 HZ clause. O
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Table 4. Types of ACCHZ-Clauses

O~NOO U DA WN
e,
s
8
N

Note: P(t) is a possibly empty disjunction of the forfr) Py (¢) V... V (=) Pa(t)
for ¢ a term of the forme, f(x), or a; P(a) is a possibly empty disjunction of the
form Pi(a1) V ...V Pn(am); and the empty claud@ is of type 5.

The following lemma shows that the numberA£CHZ-clauses is finite for a
finite knowledge bas£. In fact, the bound on the number of derivable clauses can
be used to estimate the complexity of the algorithm.

Lemma 4. For an ALC'HZ knowledge bask, the longestdLCHZ-clause over the
signature of=(K) is polynomial in|XC|, and the number of such clauses different up
to variable renaming is exponential |iC|.

Proof. The number of unary predicates in the signatures{KC) is linear in|K|,
since each concept introduced Bycorresponds to one nonliteral subconceptof
Similarly, the numbey of unary function symbols in the signature®fK) is linear

in |K|, since each function symbol is introduced by skolemizing concept of the
form 3R.C. Consider now the longestLCHZ-clauseClg of type 6. Such a clause
contains a possibly negated litet&(x) for each unary predicaté, and a possibly
negated literal (f(x)) for each pair of unary predicate and function symboals, yield
ing at most = 2¢ + 2c¢f literals, which is polynomial ink|. EachALCHZ-clause

of type 2 is a subset @i, so there ar@’ such clauses; that is, the number of clauses
is exponential in|. For otherALCHZ-clause types, the bounds on the length and
on the number of clauses can be derived in an analogous viiy.

We now state the main result of this section:

Theorem 1.For an ALCHZ knowledge bask, saturating=(K) by R, decides
satisfiability ofIC and runs in time that is at most exponential A¢y.

Proof. By Lemma 4, the number of clauses derivable®y from = (K) is ex-
ponential in|X|. Each inference can be performed in time polynomial in tize si
of clauses. Hence, the saturation terminates after peifigrat most an exponential
number of steps. Sind@ p, is sound and complete, it decides satisfiability=gfC),
and by Lemma 2 ok as well, in time that is exponential |)C|. O
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Table 5. Possible Inferences ¥ p 1, on ALCHZ-Clauses

1+3=3: 2+3=4:
~R(z,y) vV S(z,y) Px)V R f(z))  —R(xyVS(yz) Pl)V R f(z))
P(z) Vv S(z, f(z)) P(z) v S(f(z),z)
1+4=4: 2+4=3;
~R(z,y) vV S(z,y) P(z)VR(f(x),z) R,y VSyx) Plx)VR(f(z) )
P(z) v 5(f(z),z) P(z) Vv S(z, f(z))
6+3=5:

Pi(z)V -R(z,y) VPa(y) P(x)V R(z, f(z))

P(z) v Pi(x) vV P2(f(2))

6+4=5:
Pi(z) vV oR(z,y) V P2(y) P(z)V R(f(x), z)
P(z) V P1(f(2)) V Pa(z)
5+5=5:
P1(z) vV P2(f(z)) vV 2A(f(z)) Az)V Ps(z)

5+5=5:
P (2) V Pa(f(2)) VA () Af(2)) V Ps(f(x)) V Pa(c)
P1(2) V Pa(f(x)) V Pa(f(x)) V Paa)

7+5=T7: T+7=7:
Pi(a) VoA(b) A(z)V P2(x) Pi(a) vV-A(b) A(b)VP2(c)

Pi(a) vV P2(b) Pi(a) vV Pz(c)

8+1=8: 8+2=8:
R(a,b) —R(z,y) vV S(z,y) R(a,b) —R(z,y)V 5y, )

S(a,b) S(b,a)
8+6=7: 8+8=5:

R(a,b) Pi(z)V-R(z,y)VP2(y) R(a,b) —R(a,b)

Pi(a) vV P2(b) O
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3.3 An Example

We now present a simple example. Ik&ébe the following knowledge base:

(1) 3S.AC3R.B
@) BCC
©) JRCCD
(4) S(a,b)
(5) A(b)

Let us assume that we want to check whe#ier D(a); as shown in Chapter 1, this
so if and only ifC U {—D(a)} is unsatisfiable. Hence, I&t’ be the knowledge base
K extended with the assertionD(a).

To check satisfiability ofC’ using resolution, we first apply structural transfor-
mation. For (1), we obtain the following:

O(TCEVS—~AUIR.B)={TC Q1UQ}UO(Q: CVS~A)UO(Q2 C IR.B)

By Definition (1), we should introduce a new name for the cptse A and B;
however, botl); C VS.—A and@> C 3R.B can be translated intd LCHZ-clauses
in a straightforward way. Hence, we do not further applyand neither we do so for
(2) and (3). We obtain the s&i(K’) as follows (the meaning of underlining will be
explained shortly):

(6) TCQUQ: ~  Qi(2)V Q)

) Qi CVS—A ~ =Qq(x)V-S(z,y)V-Aly)
(8) Q2C3R.B  ~ —Q2z)V R(z, f(x))

9) Q:C3RB  ~ —Quz)V B(f(x))

(10) BCC ~ -=B(z)VvC(z)

(11) JRCCD ~ D(z)V-R(z,y)V-Cy)
(12) S(a,b) ~  S(a,b)

(13) Ab)  ~  A(b)

(14) -D(a) ~ -—D(a)

To saturate= (K') by R pr., we use a literal ordering compatible with Defini-
tion 3, where we break ties by comparing predicates alpieigt The literals that
are either selected or maximal are underlined. We now dat@éC’); R(xx+yy)
means that a clause was obtained by resolving (xx) and (yy).

(15) D(a) v ~Qa() V ~C(f(x)) R(8+11)
(16) D(x) v ~Qa() V =B(f(z)) R(15+10)
17) D(z) vV -Q2(z) R(16+9)
(18) D(x >vQ1<x> R(17+6)
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(19) ~Q1(a) V ~A(b) R(7+12)
(20) (a)\/ A(b) R(18+19)
(21) b) R(14+20)
(22) 0 R(13+21)

We derived the empty clause, so the set of cladsgs’) is unsatisfiable, and so
is £, which impliesk = D(a).

3.4 Extending the Algorithm to the More Expressive DLs

We now overview the problems encountered in extending thicbalgorithm to
more expressive DLs and point to the relevant literaturegHersolutions.

Boolean Role Expressions

The DL ALB [25] is obtained fromALCHZ by allowing for concept¥E.C' and
JE.C and axiomsE; C FE», where E(;) are Boolean role expressionk, —F,
Ey U Es, andE; M E,. As shown in [25],ALB can easily be decided by extend-
ing the algorithm from this section. The main differencehiatttranslating avd£5
knowledge base to clauses can produce clauses of the fofjdaim:

(23) —Ry(x,y)V...V-R,(z,y) V Si(z,y) V...V Sp(x,y)

If n = 0, such clauses can cause termination problems. For exaraptdying the
clauses (24) and (25) produces the clause (26):

(24) R(z,y)
(25) A(z) V -R(z,y) vV B(y)
(26) A(z) vV B(y)

The clause (26) contains two clauses of type 6 that do noeshaariable. Resolv-
ing such clauses with other clauses of that form can easiglyme clauses with an
arbitrary number of variables. For example, resolving (&&h (27) produces (28),
which contains more variables than either of the premises:

(27) —B(y) v C(y) v D(z)
(28) A(xz) v C(y) VvV D(2)

This problem, however, can be solved in a simple way: siiee andB(y) are
variable-disjoint, similarly as in the DPLL procedure [@f cansplit the clause (26)
into A(z) or B(y)—that is, we can guess which subclause is true. This red@égs (
to a clause of type 6, which does not cause termination prohl8plitting makes the
procedure nondeterministic: deriving the empty clausesunde of the guesses does
not mean that the original clause set is unsatisfiable; ratteemust derive the empty
clause under all possible guesses. Hence, such an algetttsin NEXPTIME. This
is worst-case optimal, sincéLB is an NEXPTIME-complete logic [21].
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Transitivity Axioms

Many DLs allow roles to be declared as transitive [12]. Ttatisn of transitivity
axioms produces clauses of the following form:

(29) —R(x,y) V- R(y,z) V R(z, 2)

Such clauses are difficult for resolution. For example, ifalg® have the clause (30),
then it can be resolved with (29) to produce (31):

(30) Az") Vv R(@', f(2"))
(31) —R(z,x")V A(z") V R(z, f(x))

Clause (31) is similar to (30), but it contains two variablesnce, further resolution
inferences with (31) might produce clauses with even moriabkes.

To prevent the increase in the number of variables, one rsiglett the negative
literal in (31). While this prevents the introduction of dararily many variables, it
allows the derivation of arbitrarily deep terms; for exampa resolution of (30) and
(31) produces the following clause:

(32) A(z) V R(z, f(f(x)))

There are several ways to address this problem. In [18]Jutso has been ex-
tended with simplification rules that transform clausesefform (31) and (32) into
simpler clauses without affecting satisfiability.

Another solution is to replace transitivity axioms with n@ancept inclusion
axioms that capture the effects of the transitivity axioRsughly speaking, a transi-
tivity axiom Trans(.S) is replaced with axiomgR.C' C VS.(VS.C), for eachR with
S C* RandC a “relevant” concept fronkC; for more details, please see [22, Section
5.2]. Similar encodings have been considered in modal [@&$itand in DLs with
role conjunctions [30].

Number Restrictions

As explained in Chapter 1, many DLs provide for number restms>n R.C and
<n R.C. The algorithm from this section can be extended to suchequsdy using
the well-known translation of number restrictions intotfiesder logic:

ETLRC ~ Hyl,...,yni /\ [R(x,yz)/\C(yz)]/\ /\ yiaéyj

1<i<n+1 1<i<j<n

SnRC ~ Vyi,..ynpr: - N [Rey) ACw)l— V. wimy;
1<i<n+1 1<i<j<n+1

These translations employs the equality predieat®rdered resolution alone is
not an efficient calculus for theorem proving with equalitiierefore, deciding DLs
with number restrictions typically requires the applioatiof a calculus optimized
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for theorem proving with equalityBasic superpositiofb, 24] is one such calculus,
which introduces new rules that take into account the saosaot equality.

In [13], a decision procedure for the D¥HZ Q™ (a DL obtained frorSHZ Q
by imposing certain restrictions on the usage of numbericéisins) based on basic
superposition. In [14], this algorithm has been generdlibaSHZ Q by extending
basic superposition with decompositiorinference rule, which simplifies certain
clauses. All these procedures are worst-case optimaltfiey run in EXPTIME) for
unary coding of numbers. It is known th&HZ Q is EXPTIME-complete even for
binary coding of numbers [30]; however, the assumption @frymumber coding is
standard in practical DL reasoning systems.

Nominals

Another common construct considered in DLs are nominalhodgh such a result
has not been published, it would be straightforward to ektée algorithms from
[13, 14] to handle the DLSHOQ . The combination of inverse roles and nomi-
nals, however, is rather difficult to handle. Intuitivelych a logic does not have the
tree-model property. Still, in [19], basic superpositicastbeen extended with de-
composition and novetominal generationule to obtain a decision procedure for
SHOZQ . The resulting decision procedure is, however, not optifhains in triple
exponential time, whereasHOZQ is NEXPTIME-complete [30].

4 Reasoning by Reduction to Logic Programming

We now present an algorithm for reducing.4adCHZ knowledge base to a disjunc-
tive datalog program that entails the same set of groundsatAmdiscussed in [23],
such a reasoning technique is particularly suitable fomkadge bases that have a
rather small and simple TBox but a large ABox.

4.1 The Main Difficulty

For anALCHZ knowledge baséC, our goal is to derive a disjunctive datalog pro-
gramDD(K) such that’C |= « if and only if DD(K) = « for a of the form A(a)
or R(a,b). Thus, we can usBD(K) instead ofiC for query answering, and in doing
so, we can apply all optimization techniques known from a#igla databases, such
as magic sets [6] or join-order optimizations [1].

As shown in Table 1 and in [7], there is a close correspondeetweeen descrip-
tion logics and first-order logic. Consider the followingdwiedge base:

(33) K ={AC3RA3IRIRAC B, A(a)}

A naive attempt to redud€ into disjunctive datalog is to translatéinto a first-order
formular(K), skolemize it, translate it into conjunctive normal formdaewrite the
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obtained set of clauses into rules. FOr such an approach produces the following
logic programLP(K):

(34) R(z, f(z)) « A(z)
(35) A(f(2)) « A()
(36) B(z) « R(z,y), R(y, 2), A(z)
(37) Aa)

Clearly, K andLP(K) entail the same set of ground facts. The progtahi),
however, contains a function symbol in a recursive rule (38)s raises the issue of
how to answer queries ibP(XC). Namely, well-known query evaluation techniques
will not terminate onLP(KC); for example, using bottom-up saturation, we shall de-
rive A(f(a)), R(a, f(a)), A(f(f(a))), R(f(a), f(f(a))), B(a), and so on. Obvi-
ously, such an algorithm will continue deriving ever deefpets, and will therefore
never terminate. Note that we need all previously derivetsfeo deriveB(a) from
LP(K), and that we do not know a priori when all relevant groundsdzve been
derived, so that we might stop the saturation.

This problem could be solved by employing an appropriatéeayetection mech-
anism. In [16], such an approach has been used to derive siateprocedure for
the DL ALC based on hyperresolution. Using specialized algorithmse¥aluat-
ing queries inLP(K) takes us, however, away from our original goal of applying
deductive database optimization techniques to descnifigics. In a way, such an
algorithm could be viewed as an alternative notation fortdt#eau calculus, for
which it is unclear how to apply optimization techniqueshsas magic sets.

To avoid potential problems with termination, our goal islewive a true disjunc-
tive datalog prograr®D (KC) without function symbols. For such a program, queries
can be evaluated using any standard technique; furtheredbesisting optimization
techniques known from deductive databases can be appiitlgi Hence, the main
problem that we deal with is the elimination of function systgfromLP ().

4.2 The Translation Algorithm

From Table 5, we see tha) @ ground clause cannot participate in an inference with
a nonground clause containing a function symbol, andf(one premise in an in-
ference byR 1, is ground, the conclusion is ground as well. Hence, we caioper
all inferences among nonground clauses first, after whicltavesimply delete all
nonground clauses containing function symbols. The reimgiclause set consists
of clauses without function symbols, which can easily bedlated into a disjunctive
datalog program, by moving positive literals into rule headd negative literals into
rule bodies. A minor problem arises if the resulting ruleatain unsafe variables.
We deal with such clauses using a simple trick: we introdunea predicated U
and add an assertiaHU (a) for each individuak; next, we appendiU (z) to the
body of each rule in which is an unsafe variable.

Definition 4. Let K = (R, T,.A) be an extensionally reducedLCHZ knowledge
base. Then"(7 U R) is the set of clauses obtained by
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e saturating=(7 UR) byRpy, and then
e deleting all clauses containing function symbols.

The disjunctive datalog prografdD(K) is obtained froml"(7 UR) U Z(A)
using the following transformations:

e each clause of the ford; Vv...V A,V -B; V...V =B, is rewritten into a
rueA,v...VA, «— B1,...,Bp;

e f a variable z occurs in some rule only in the head, then the litef&l (x) is
added to the rule body; and

e the factHU (a) is added to the program for each constantccurring in .

If K is not extensionally reduced, th&D(K) = DD(K'), whereK' is an exten-
sionally reduced knowledge base obtained fiiéras explained in Section 2.1.

We now state the properties DD (K):
Theorem 2. The following claims hold for eacd LCHZ knowledge bask:

1. K is satisfiable if and only ibD(K) is satisfiable.

2. K = aifand only ifDD(K) }=. «, where« is of the formA(a) or R(a,b) for
A aconcept name ang a role.

3. K | C(a) for a complex concept if and only ifDD(K U {C C Q}) . Q(a)
for @ a new concept name.

4. The number of literals in each rule DD (K) is at most polynomial, the number
of rules inDD(K) is at most exponential, andD(X) can be computed in time
exponential inK|.

Proof. (1) Table 5 shows that each inference with at least one grprerdise (these
are the inferences below the dashed line) always producesumd) conclusion.
Hence, in saturating' (K) by R p,, we can perform all inferences among nonground
clauses first. Furthermore, Table 5 also shows that grownses can participate in
inferences only with clauses not containing function sylsbidence, after perform-
ing all inferences among nonground clause&¢K), we can delete all clauses with
terms of the formf(z).

By Definition 2,=(7 U R) is exactly the set of nonground clausesx{(f), so
I'(T UR) is exactly the set of clauses obtained by saturating the nooimgl part
of Z(K) and deleting the clauses containing function symbols.Heuntore, it is
easy to see thdf(7 UR) U =(A) is satisfiable if and only iDD(K) is satisfiable.
Namely, both clause sets are function-free and they diffdy o that the unsafe
variables in the latter set are bound using the prediédtewhich enumerates the
entire Herbrand universe.

(2) Simply observe thal = « if and only if £ U {—«a} is unsatisfiable. The
latter is the case if and only BD (L U {< «}) = DD(K) U {< a} is unsatisfiable,
which is the case if and only DD(K) . o.

(3) Follows in the same manner as (2).

(4) Follows immediately from Lemma 4.0
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4.3 An Example

We now continue the example from Section 3.3 and computejandisve datalog
programDD(K). The first step in the algorithm is to compuEé7 U R); clearly, it
consists of the clauses (6)—(11).

The next step is to compute(7 U R) by saturating=(7 UR) by Rpy. This
was already done in Section 3.3: the saturated set contardduses (6)-(11) and,
additionally, (15)—(18).

The next step is to remove all clauses containing functiontsys. Therefore,
we remove the clauses (8), (9), (15), (16). The final step otaputeDD(K) by
moving all negative literals into the body and the posititerls into the head. The
clauses (6) and (18) are unsafe, so we additionally addtéralé H U (x) to the body
of the rules.

(38) Q1(z) V Q2(x) «— HU(x)
(39) — Qi(x), S(z,y), Ay)
(40) C(z) — B(x)
(41) D(z) < R(z, y) C(y)
(42) D(z) < Q2(z)
(43) D(z) VvV Q1(x )HHU(Z)
Finally, we add tdD(K) the ABox and the facts involving/ U
(44) S(a,b)

(45) A(b)

(46) HU(a)

(47) HU(b)

Itis straightforward to verify thabD(K) = D(a), in accordance with Theorem (2).

It is instructive to compare the algorithm from this sectigith tableaux algo-
rithms from Chapter 23. Tableau algorithms introduce nedwiduals in order to
satisfy the existential quantifiers. In contrast, the paogs obtained by the reduction
do not represent such individuals at all. In our example(K) is function-free, so
the universe of the program is restricted to the constargBaitky mentioned in it.
Thus, the models o andDD(K) coincide only on positive ground facts, and are
unrelated for the facts involving unnamed objects.

To understand why the saturation of the TBox and RBoXgy;, is necessary,
consider the role of each rule DD(K). While the axiom (2) ink is applicable
to all individuals in a model, the rule (40) is applicableytd named individuals.
The relationship between (3) and (41) is analogous. To cosgte for the fact that
(40) and (41) derive consequences only about named inailsdDD(K) contains
the rule (42), which is produced by the saturatior=¢fZ U R) by R py.. This rule
acts as a shortcut: instead of introducing for eadh Q2 an R-successoy in B by
(8), propagating to C by (10), and then concluding thatis in D by (11), the rule
(42) derives that all instances @k are instances ab in one step. This ensures that
DD(K) andK entail the same set of ground facts.
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4.4 Discussion

By Theorem 2, the prograB®D(X) is independent of the query, as long as the query
is a concept name or a role. Hen&d)(K) can be computed once, and can be used
to answer any query involving only concept names. If the guevolves a com-
plex concepiC' (even if C' is a negated concept name), then query answering can
be reduced to entailment of positive ground facts, by intoitlg a new name)

and by adding the axio@' C @ to the TBox. ObviouslyDD(K U {C C Q}) may
depend orC. Namely, by saturating’(7 U R), the reduction algorithm derives all
nonground consequencestofand a complex query concept can introduce new non-
ground consequences, which should be taken into accoums iretiuction.

Theorem 2 allow$DD(K)| to be exponential in/C|, which may seem discour-
aging. Note, however, that the number of rules dependganR| and not on A|.
This is important fordata complexityf31]—the complexity under the assumption
that the TBox and RBox are fixed. Under such an assumpfiol(K)| becomes
polynomial in|.A|, which has been used in [15] to show that checking satisitiabil
of SHZ Q knowledge bases iSP-complete for data complexity. Also,Horn frag-
mentof SHZQ has been identified that does not provide for disjunctiveseang
but exhibits polynomial data complexity. To deal with thgperential blowup in the
number of rules, an optimization has been presented in [2Bthat allows many
rules to be removed fro@D(K) without invalidating Theorem 2. Practical experi-
ence has shown that the number of remaining rules is tygitalte the number of
axioms ink [23].

4.5 Adding Number Restrictions

The reduction algorithm presented in [13, 22] differs frdmstone mainly in that
it can handle knowledge bases with number restrictions. e autline the differ-
ences between this algorithm and the one presented in dtisseNamely, ifiC is an
ALCHT knowledge base, all functional terms encountered in a atdur of = (k)
by R pr, are nonground (see Table 5). This is no longer the casesfan ALCHZ QO
knowledge base. Namely, the translation of number refristcan produce clauses
such as (48). To see why such clauses case problems, letwse#sat some other
axioms produce the clauses (49)—(50).

(48) _'R(xv yl) N ﬁR(l‘, y2) VY1 = Y2
(49) —C(z) v R(z, f(z))
(50) R(a,b)

By resolving (48) with (49) and (50), we obtain the followiolgquse:
(51) =C(a)V f(a) = b

This clause differs from clauses of type 7 from Table 4 in thabntains a ground
functional term. The functional terms from clauses such543 ¢an participate in
further inferences, so we cannot just remove all clausdsfwitction terms.
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The solution is to represent ground functional terms in $#guwf the form (51)
using new constants. Thus, the clause (51) is encoded aslitwwihg clause, where
ay is a new constant unique for a pairofnd f:

(52) _‘C(a) Vay= b

After saturation of TBox and RBox, the nonground clausemfthe saturated set
are transformed in a certain way that reflects such an engodiithe ground clauses.
It is important to understand that the constants sudh,dsave no deeper semantic
meaning; they are just a proof-theoretic aid that allowssiheulation of inferences

of basic superposition in disjunctive datalog.

5 Conclusion

This chapter overviews the algorithms for reasoning in dpgon logics by resolu-
tion. These algorithms are interesting because they aretwease optimal, but are
also suitable for practical implementation [23]. Furtheres such algorithms can be
used to reduce a DL knowledge base to a disjunctive datalogr@m. This allows
the application of known reasoning algorithms from dedwectiatabases to reason-
ing with large ABoxes. Practical experience has shown et algorithms are quite
suitable for ontologies with relatively small and simpled®&s but large ABoxes.

A challenge for future research is to obtain a more elegashparhaps worst-case
optimal algorithm for reasoning with nominals. Namely,s@aing with nominals
requires reasoning about the cardinality of sets, whictisaln to be difficult for
resolution. Another challenge is to provide methods follidgawith transitivity and
general role inclusion axioms, such as the ones availatiteiDL SROZQ [20].
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