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Abstract

In this paper, we compare description logics with relational data-
bases with respect to their treatment of schema constraints, the lan-
guages used to express these constraints, and the approaches to query
answering and constraint checking. Our analysis reveals a significant
overlap between the two formalisms. Inspired by the integrity con-
straints of relational databases, we define a notion of integrity con-
straints for description logics. We analyze different possibilities for
defining the semantics of the constraints. Finally, we present several
algorithms for checking constraint satisfaction for description logics
with varying degrees of expressivity.
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1 Introduction

Description Logics (DLs) [3] are a family of knowledge representation for-
malisms with a well-defined model-theoretic semantics and well-understood
computational properties. DLs were successfully applied to many prob-
lems in computer science; furthermore, they form the logical underpinning
of the Web Ontology Language (OWL)—a language for ontology modeling
standardized by the World Wide Web Consortium (W3C). DLs and OWL
provide numerous constructs for expressing very complex domain models,
so they were often used for modeling schemas in data management appli-
cations. Experience in building such applications has, however, revealed a
gap between DLs and typical use cases; this gap becomes more noticeable if
DLs are compared to standard relational databases.

To understand these problems, consider the following example. In an
application for managing tax returns, one might require each person to have
a social security number. In a relational database, this would be typically
captured by an inclusion dependency stating that, for each person, a social
security number must exist. To ensure data integrity, such a dependency
would be interpreted as an integrity constraint during database updates:
whenever a person is added to a database, the database system would check
whether that person’s social security number has been specified as well, and
if not, the update would be rejected. In a DL knowledge base, the same
requirement would typically be captured by an axiom asserting that every
person must have a social security number. Adding a person without a
social security number to the resulting knowledge base would not, however,
be flagged as an error; rather, that person would be inferred to have some
unknown social security number.

There is a long research tradition in extending logic-based knowledge
representation formalisms with database-like integrity constraints. In his
seminal paper, Reiter observed that integrity constraints are not objective
sentences about the world; rather, they describe the state of the database,
and are therefore of an epistemic nature [36]. Hence, most extensions of DLs
with integrity constraints are based on autoepistemic extensions of DLs, such
as the description logics of minimal knowledge and negation-as-failure [15]
or various nonmonotonic rule extensions of DLs [37, 31].

While these approaches do solve the problem to a certain extent, the
solution is not in the spirit of relational databases. As we discuss in more
detail in Section 7, the constraints in these approaches do not affect TBox
reasoning at all; they are only applied to ABox individuals. Such constraints
are thus very weak, as they do not say anything about the structure of the
world; they only constrain the structure of ABoxes. Furthermore, the same
statement can usually be expressed as either an ordinary axiom or as a
constraint. While these two forms are naturally related, there is almost no
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semantic relationship between them. Therefore, choosing an appropriate
way to model a statement requires significant cognitive effort.

In relational databases, however, integrity constraints have a dual role:
on the one hand, they describe all possible worlds, and, on the other hand,
they describe the allowed states of the database [1]. Integrity constraints are
used in data reasoning tasks, such as checking the integrity of a database,
as well as in schema reasoning tasks, such as computing query subsumption.
The semantic relationship between these two roles of constraints is much
clearer, which significantly simplifies modeling.

To clarify these issues, in Section 3, we analyze the relationship between
the schema constraints in DLs and relational databases. Then, in Section
4, we propose the notion of extended DL knowledge bases. Such knowledge
bases allow the modeler to designate a subset of TBox axioms as constraints
that have the usual semantics for TBox reasoning, but are interpreted as
checks during ABox reasoning. We also show that, if an ABox satisfies the
constraints, we can disregard the constraints while answering a broad class
of ABox queries. Our approach thus improves the performance of query
answering as it reduces the set of relevant TBox axioms.

In Section 5, we discuss the typical usage patterns for our approach. Fur-
thermore, in Section 6, we present several algorithms for checking constraint
satisfaction for different types of knowledge bases. Finally, in Section 7, we
discuss how our approach relates to the existing approaches based on au-
toepistemic extensions of DLs.

2 Preliminaries

2.1 Description Logics

The approach presented in this paper can be applied to many different de-
scription logics, so we present here only a high-level overview of the syntax
and the semantics of description logics without going into details. For a
formal definition, please refer to [3].

The building blocks of DL knowledge bases are concepts (or classes),
representing sets of objects, roles (or properties), representing relationships
between objects, and individuals, representing specific objects. Concepts
such as Person are called atomic. Using concept constructors, one can
construct complex concepts; for example, the concept ∃hasFather .Person
describes those objects that are related through the hasFather role with an
object from the concept Person. Expressive DLs provide a rich set of con-
cept constructors, such as the Boolean connectives, existential and universal
quantification, and number restrictions.

A DL knowledge base K typically consists of a TBox T and an ABox A.
A TBox contains axioms about the general structure of all allowed worlds,
and is therefore in its purpose akin to a database schema. For example,
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the TBox axiom (1) states that each instance of the concept Person must
be related by the role hasFather with an instance of the concept Person.
An ABox contains axioms describing the structure of particular worlds. For
example, the ABox axiom (2) states that Peter is a Person, and (3) states
that Paul is a brother of Peter .

Person v ∃hasFather .Person(1)
Person(Peter)(2)

hasBrother(Peter ,Paul)(3)

A DL knowledge base K can be given semantics either directly, or by
translating it into a formula π(K) of first-order logic with equality. Atomic
concepts are translated into unary predicates, complex concepts are trans-
lated into formulae with one free variable, and roles are translated into
binary predicates. For example, the axiom (1) can be represented as the
following first-order formula:

∀x : Person(x)→ ∃y : [hasFather(x, y) ∧ Person(y)](4)

Given a knowledge base K, two basic DL reasoning problems are checking
if an individual a is an instance of a concept C (written K |= C(a)) or if a
concept C is subsumed by another concept D (written K |= C v D).

2.2 Disjunctive Logic Programs

We now review the syntax and the semantics of disjunctive logic programs
[18, 19]. An atom is a formula of the form A(t1, . . . , tn) or t1 ≈ t2, where
ti are first-order terms (we allow the terms to contain function symbols).
A disjunctive logic program with equality P is a finite set of rules of the
following form, where Ai are head atoms, B+

i are positive body atoms, and
not B−

i are negative body atoms:

A1 ∨ . . . ∨An ← B+
1 ∧ . . . ∧B

+
m ∧ not B−

1 ∧ . . . ∧ not B−
k

A fact is a rule with m = k = 0. A rule is safe if each variable occurring
in the rule also occurs in some positive body atom B+

i . Typically, each
program P is allowed to contain only safe rules.

The Herbrand base of a program P is a set of all ground terms over
the signature of P (we assume that P contains at least one constant). The
grounding of P , written gr(P ), is the ground (possibly infinite) set of rules
obtained by replacing in each r ∈ P all variables with all terms from the
Herbrand base in all possible ways. An interpretation I of a program P is a
set of positive ground atoms formed over the Herbrand base of P in which
≈ is interpreted as a congruence relation [17]. An interpretation I satisfies
a positive atom A, written I |= A, if and only if A ∈ I, and I satisfies a
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negative atom not A, written I |= not A, if and only if A 6∈ I. Furthermore,
I satisfies a ground rule r, written I |= r, if either some head atom of r is
satisfied in r or some body atom is not satisfied in I; finally, I satisfies a
nonground program P if I |= r for each r ∈ gr(P ). In the latter case, I
is a model of P . If I is a model of P but each I ′ ⊂ I is not a model of
P , then I is a minimal model of P . For a model I, the Gelfond-Lifshitz
reduct P I is the set of rules obtained from gr(P ) by (i) removing all rules
containing a negative atom not B−

i such that I 6|= not B−
i , and (ii) removing

all negative body atoms from the remaining rules. An interpretation I is a
stable model of P if I is a minimal model of P I . A program P cautiously
entails a (positive or negative) ground atom α, written P |=c α, if I |= α
for each stable model I of P .

Conventional definitions of logic programs do not allow for explicit equal-
ity (at least not in the rule heads). In our approach, we treat ≈ as a special
predicate interpreted as a congruence. In fact, ≈ could be just an ordinary
predicate for which the standard properties of equality have been explicitly
axiomatized [17]. Note that the extension of ≈ is subjected to minimization
in the definition of the semantics, just like any other predicate.

3 A Comparison of DLs and Relational Databases

We now compare in detail various aspects of description logics and relational
databases.

3.1 Schema Language

The schema of a DL knowledge base is typically expressed as a TBox (ter-
minology box), which is just a set of axioms. For example, one might state
that each person must have a social security number (SSN); furthermore,
any person can have at most one SSN and, conversely, each SSN can be
assigned to at most one individual. These three statements are expressed
using the following TBox axioms:

Person v ∃hasSSN .SSN(5)
Person v ≤ 1 hasSSN(6)
SSN v ≤ 1 hasSSN−(7)

Most DLs are just decidable fragments of first-order logic, so their ax-
ioms have an equivalent representation as first-order formulae, cf. [9]. For
example, the axioms (5)–(7) are translated into first-order logic as follows:

∀x : [Person(x)→ ∃y : hasSSN (x, y) ∧ SSN (y)](8)
∀x, y1, y2 : [Person(x) ∧ hasSSN (x, y1) ∧ hasSSN (x, y2)→ y1 ≈ y2](9)
∀x, y1, y2 : [SSN (x) ∧ hasSSN (y1, x) ∧ hasSSN (y2, x)→ y1 ≈ y2](10)
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The schema of relational databases is defined in terms of relations and de-
pendencies among them. Different types of dependencies were considered in
literature, such as functional, inclusion, or join dependencies. As discussed
in [1], most types of dependencies can be represented as first-order formulae
of the following form, where ψ(x1, . . . , xn) and ξ(x1, . . . , xn, y1, . . . , ym) are
conjunctions of function-free atoms:

∀x1, . . . , xn : [ψ(x1, . . . , xn)→ ∃y1, . . . , ym : ξ(x1, . . . , xn, y1, . . . , ym)](11)

Although the expressivity of DLs and of relational dependencies is clearly
different, the underlying principles between DLs and relational databases
are quite closely related. In fact, the formula (8) corresponds to an in-
clusion dependency, whereas the formulae (9) and (10) correspond to key
dependencies.

3.2 Interpreting the Schema

DL TBoxes and relational schemas are interpreted according to standard
first-order semantics, in the sense that they describe the properties of the
allowed relational structures. In DLs, these structures are called models,
whereas in relational databases they are called database instances; the un-
derlying principle is, however, almost the same.

There is a slight technical difference between models and database in-
stances: models are usually allowed to be infinite, whereas database in-
stances are typically required to be finite. The restriction to finite database
instances is due to the fact that only finite databases can be stored in prac-
tical systems. For certain classes of dependencies, the restriction to finite
structures is not really relevant: whenever an infinite relational structure
satisfying the schema exists, a finite structure exists as well (this is the so-
called finite model property). For expressive dependency or DLs languages,
this does not necessarily hold; for example, there are DL knowledge bases
that are satisfied only in infinite models [3]. Even though the complexity
of finite model reasoning is, for many DLs, the same as the complexity of
reasoning w.r.t. arbitrary models, the former is usually more involved [30].
Therefore, in the rest of this paper, we drop the restriction to finite database
instances and consider models and database instances to be synonyms.

3.3 Domains and Typing

Relational databases sometimes assign types to relation columns; for exam-
ple, one might say that the second position of hasSSN must be a string of a
certain form. This is quite important in practice since the physical layout of
a database is derived from the column types. In contrast, column types are
not considered in many theoretical works (e.g., in algorithms for checking
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containment of conjunctive queries); rather, it is assumed that each column
draws its values from a common countable domain set [1].

Most DLs do not type their predicates, but interpret them over an ar-
bitrary abstract domain set. Many practical applications, however, need
the capability to represent concrete data. These use-cases can often be ad-
dressed by extending the DLs with so-called concrete domains along the
principles first outlined in [4].

In this paper, we consider neither typed relational schemas nor DL
knowledge bases with concrete domains, and simply interpret both rela-
tional schemata and DL TBoxes in first-order logic. This simplifies both
formalisms significantly. For example, adding key constraints to untyped
DLs is not a problem [11], whereas adding them to DLs with typed predi-
cates is much more involved [29].

3.4 Schema Reasoning

Checking subsumption relationships between concepts has always been a
central problem in DL reasoning. A concept C is subsumed by a concept
D with respect to a DL TBox T if the extension of C is included in the
extension of D in each model I that satisfies T . This inference has many
uses; for example, in the development of a DL TBox, the entailed sub-
sumption relationships can be used to detect modeling errors. Furthermore,
concept subsumption has been used to optimize query answering [21], espe-
cially when generalized to subsumption of conjunctive queries [13, 23, 20].
Another important TBox inference is checking concept satisfiability—that
is, determining whether a model of T exists in which the concept has a
nonempty extension. If concepts are unsatisfiable, this is usually due to
modeling errors, so this inference is also quite useful in ontology modeling.

Reasoning about the schema is certainly not the most prominent feature
of relational database systems, so it may come as a surprise that a significant
amount of database research has been devoted to it. The most important
inference is checking containment of conjunctive queries [1]: a query Q1 is
contained in a query Q2 with respect to a schema T if the answer of Q1

is contained in the answer of Q2 for each database instance that satisfies
T . This inference is used by virtually all database systems in query opti-
mization, where complex queries are replaced with equivalent, but simpler
queries that can be answered more efficiently. Another inference often con-
sidered in the literature is dependency minimization—that is, computing an
equivalent schema that is minimal with respect to the given one.

In both DLs and relational databases, schema reasoning problems cor-
respond to checking whether some formula ϕ holds in each model (database
instance) that satisfies the schema T—that is, to checking whether T |= ϕ.
In other words, the terminological problems in both DLs and relational data-
bases involve checking first-order consequences of a first-order theory. Since
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the problems are the same, it should not come as a surprise that the meth-
ods used to solve them are closely related. Namely, reasoning in description
logics is typically performed by tableau algorithms [6], whereas the state-of-
the-art reasoning technique in relational database is chase [1]. Apart from
notational differences, the principles underlying these two techniques are the
same: they both use a set of rules to construct a model that satisfies the
schema T but not the formula ϕ.

To summarize, from a semantic point of view, both DLs and databases
treat schema reasoning problems in the same way. Therefore, DLs can be
understood as very expressive, but decidable, database schema languages.
As we discuss in the following sections, the differences between DLs and
databases arise when we consider database data.

3.5 Query Answering

The simplest form of query answering in description logics is instance check-
ing—that is, checking whether an individual a is contained in a concept
C in each model that satisfies the knowledge base K, commonly written
as K |= C(a). Instance checking can be generalized to answering conjunc-
tive queries over DL knowledge bases [23, 24]. A query in a DL system
can be viewed as a first-order formula ϕ with the free variables x1, . . . , xn.
Just like the schema reasoning problems, the query answering problems in
description logics are defined as first-order entailment (i.e., they consider
all possible models of K): a tuple a1, . . . , an is an answer to ϕ over the
knowledge base K if K |= ϕ[a1/x1, . . . , an/xn] (where the formula ϕ[a/x] is
obtained by replacing in ϕ all free occurrences of x with a).

Queries in relational databases are first-order formulae (restricted in a
way to make them domain independent) [1], so they are similar to queries
in description logics. A significant difference between DLs and relational
databases is the way in which the queries are evaluated. Let ϕ be a first-
order formula with the free variables x1, . . . , xn. A tuple a1, . . . , an is an
answer to ϕ over a database instance I if I |= ϕ[a1/x1, . . . , an/xn]. Hence,
unlike in description logics, query answering in relational databases does
not consider all databases instances that satisfy the schema K; instead, it
considers only the given instance I. In other words, query answering in
relational databases is not defined as entailment, but as model checking,
where the model is the given database instance.

Although the definition of query answering in relational databases from
the previous paragraph is the most widely used one, a significant amount of
research has also been devoted to answering queries over incomplete data-
bases [27]—a problem that is particularly interesting in information inte-
gration. An incomplete database K is described by a set A of incomplete
extensions of the schema relations and a set T of constraints specifying how
the incomplete extensions relate to the actual (unknown) database instance.
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Queries in incomplete databases are also (possibly syntactically restricted)
first-order formulae. In contrast to complete databases, a tuple a1, . . . , an is
an answer to ϕ over K if I |= ϕ[a1/x1, . . . , an/xn] for each database instance
I that satisfies A and T . In other words, query answering in incomplete
databases is defined as first-order entailment, exactly as in description log-
ics. Consequently, DL query answering can be understood as answering
queries in incomplete databases.

3.6 Constraint Checking

In description logics, one can check whether an ABox A is consistent with
a TBox T—that is, whether a model I satisfying both A and T exists—
and thus detect possible contradictions in A and T . This inference is not,
however, a suitable basis for constraint checking. For example, let T contain
the axioms (5)–(7), and let A contain only the following axiom:

Person(Peter)(12)

If (5) were interpreted as an integrity constraint, we would expect it to be
violated by A ∪ T : the ABox states that Peter is a person without spec-
ifying his social security number. The knowledge base A ∪ T is, however,
satisfiable: the axiom (5) is not interpreted as a check; rather, it implies the
existence of some (unknown) SSN. The axioms in T describe the allowed
models, but they do not restrict the allowed ABoxes. In fact, DLs do not
provide for database-like integrity constraints at all.

In contrast, constraints play a central role in relational databases, where
they are used to ensure they integrity of data. As in DLs, a relational schema
T is a set of formulae that must hold for any database instance. In contrast
to DLs, relational databases consider only one instance at a time; there-
fore, constraint checking is, just like query answering, interpreted as model
checking. Hence, given a database instance I, a relational database checks
the satisfaction of the schema constraints T by checking whether I |= T .
(In practice, constraints are incrementally checked after database updates;
these dynamic aspects are, however, not important for this discussion.) In
our example, if the ABox A is taken as the database instance I, then, clearly,
I 6|= T—as expected, the integrity constraints are not satisfied.

3.7 Discussion

Users of DL systems often complain about the “open-world semantics of
DLs” or “the unintuitive semantics of constraints.” If accepted at face value,
these complaints can be quite misleading because they actually describe the
symptoms, and not the causes of a serious misunderstanding.

From the standpoint of conceptual modeling, description logics provide
a very expressive, but still decidable language that has proven to be im-
plementable in practice. The open-world semantics is natural for a schema
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language, since a schema defines the structure of any acceptable database
instance. When computing the subsumption relationship between concepts
or queries, we do not have a fixed instance at all. Therefore, the closed-
world assumption in the traditional sense is meaningless: a TBox T (with
no assertions about individuals) does not imply any ground facts, so, un-
der the standard closed-world assumption, we have T |= ¬α for each ground
atom α. Hence, to draw useful consequences, we must interpret T under
open-world semantics.

It is possible to define a notion of query subsumption for nonmonotonic
formalisms that employ a variant of closed-world semantics. Such prob-
lems are, however, typically highly undecidable. Even for datalog without
negation—one of the simplest nonmonotonic formalisms—query equivalence
is undecidable [38]. Therefore, first-order semantics is a more appropriate
choice if decidability and practicability are desired.

The gap between DLs and users’ expectations is much larger regarding
the approach to data management. In practice, relational databases are
typically complete: any missing information is either encoded metalogically
(e.g., users often include fields such as hasSpecifiedSSN to signal that par-
ticular data has been supplied in the database), or it is represented by null-
values (which are also interpreted outside the first-order logic). In contrast,
DL ABoxes actually correspond to incomplete (relational) databases.

Our experience with building DL applications has shown that informa-
tion about individuals is often complete. This is particularly true in data
management applications, whose primary goal is to manage large amounts
of data structured according to relatively simple schemata. In such appli-
cations, the mismatch between the features of DLs and the actual use-cases
becomes quite apparent.

To understand the types of problem that occur in practice, consider the
following example. Biopax1 is an ontology developed by the bioinformatics
community with the goal of facilitating data integration and interchange
between biological databases. This ontology defines a role NAME and states
its domain to be the union of bioSource, entity , and dataSource:

∃NAME .> v bioSource t entity t dataSource(13)

The intention behind this axiom is to define which objects can be named—
that is, to ensure that a name is stated only for objects of the appropriate
type. In fact, the data in the Biopax ontology satisfies this constraint:
each object that is named is also typed (sometimes indirectly through the
class hierarchy) to at least one of the required classes. The axiom (13),
however, does not act as a constraint; instead, it says that, if some object
has a name, then it can be inferred to be either a bioSource, an entity ,
or a dataSource. Therefore, (13) cannot be used to check whether all data

1http://www.biopax.org/
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is correctly typed. Furthermore, since the concept in the consequent is a
disjunction, the axiom (13) requires reasoning by case, which are one of the
reasons for intractability of DL reasoning algorithms [3, Chapter 3 ]. Hence,
the axiom (13) causes two types of problems: on the one hand, it does not
have the desired semantics, so we cannot check whether the data has been
completely and correctly typed; on the other hand, it introduces a significant
performance penalty for reasoning.

Even though some applications deal mostly with complete data, many
applications require the representation of and reasoning about incomplete
information. For example, we might have a rule that married people are
eligible for a tax cut:

∃marriedTo.> v TaxCut(14)

To apply this axiom, we do not necessarily need to know the name of the
spouse; we only need to know that a spouse exists. Thus, we may state the
following fact:

∃marriedTo.Woman(Peter)(15)

We are now able to derive that Peter is eligible for a tax cut even without
knowing the name of his spouse. Providing complete information can be
understood as filling in a “Spouse name” box on a tax return, whereas pro-
viding incomplete information can be understood as just ticking the “Mar-
ried” box. The existential quantifier can be understood as a well-behaved
version of null-values that explicitly specifies the semantics of data incom-
pleteness. For use cases that require reasoning with incomplete information,
description logics provide a sound and a well-understood foundation.

In order to satisfy both of the above requirements, one would ideally
like to be able to explicitly control “the amount of incompleteness” in an
ontology. Such a mechanism would allow the ontology modeler to explicitly
state which data must be fully specified and which can be left incomplete.
Furthermore, the modeler should be able to check whether all data has
been specified as required by the ontology. Finally, one should not pay an
unnecessary performance penalty for using an expressive schema language.
In the following section, we introduce a notion of extended DL knowledge
bases that addresses some of the issues raised in this section.

4 Constraints for Description Logics

In this section, we define a notion of constraints for DL knowledge bases that
attempts to mimic the integrity constraints of relational databases described
in Section 3.
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4.1 The Syntax and the Semantics

In this section, we extend DL knowledge bases with integrity constraints
in order to overcome the problems discussed in the previous section. Since
TBoxes are first-order formulae, it would be straightforward to apply the
model checking approach described in Section 3 to DLs. In such an approach,
an ABox would be interpreted as a single model and the TBox axioms as
formulae that must be satisfied in a model; the constraints would be satisfied
if A |= T . Such an approach is not satisfactory, however, as it would be an
“all-or-nothing” choice: it would assume that all information in the ABox is
complete; furthermore, TBox axioms would only be used to check whether
an ABox is of an appropriate form and could not imply new facts. To
obtain a more useful formalism, we propose a combination of inferencing
and constraint checking. For example, let A1 be the following ABox:

Student(Peter)(16)
hasSSN (Peter ,nr12345 )(17)

SSN (nr12345 )(18)
Student(Paul)(19)

Furthermore, let T1 be the following TBox:

Student v Person(20)
Person v ∃hasSSN .SSN(21)

Let us assume that we want to treat (21) as a constraint, but (20) as a
normal axiom. Then, we derive Person(Peter) and Person(Paul) by (20).
The axiom (21) is satisfied for Peter due to (16), (17), and (18); however, an
SSN has not been specified for Paul , so we would expect (21) to be violated.

Following this intuition, we define extended DL knowledge bases to dis-
tinguish the axioms that imply new facts from the axioms that check whether
the necessary information is present. The following definition is applicable
to any DL.

Definition 4.1. An extended DL knowledge base is a triple K = (S, C,A)
such that

• S is a finite set of standard TBox axioms,

• C is a finite set of constraint TBox axioms, and

• A is a finite set of ABox assertions (¬)A(a), R(a, b), a ≈ b, or a 6≈ b,
for A an atomic concept, R a role, and a and b individuals.

ABoxes in which only (possibly negated) atomic concepts are allowed are
said to be extensionally reduced. Assuming that the ABox is extensionally
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reduced does not result in any loss of generality because S can be used to
introduce names for arbitrary concept expressions.

Next, we consider how to define an appropriate semantics for extended
DL KBs. The simplest solution is to interpret A ∪ S in the standard first-
order way and require C to be satisfied in each model I such that I |= A ∪ S.
The following example, however, shows that this does not satisfy our intu-
ition. Let A2 contain only the fact (16), S2 = ∅, and let C2 contain only
the axiom (21). The interpretation I = {Student(Peter),Person(Peter)} is
a model of A2 ∪ S2 that does not satisfy C2, which would make C2 not satis-
fied for A2 ∪ S2. Intuitively, though, the fact Person(Peter) is not implied
by A2 ∪ S2, so we should not check whether Peter has an SSN at all; C2
should hold only for the facts that are implied by A2 ∪ S2.

These considerations might suggest that C should hold for all first-
order consequences of A ∪ S. In the example from the previous paragraph,
this produces the desired behavior: Person(Peter) is not a consequence of
A2 ∪ S2, so the axiom from C2 should not be checked for Peter . Consider,
however, the ABox A3 containing only the following axiom:

Cat(ShereKahn)(22)

Furthermore, let S3 be the standard TBox containing the following axiom:

Cat v Tiger t Leopard(23)

Finally, let C3 be the constraint TBox containing the following two axioms:

Tiger v Carnivore(24)
Leopard v Carnivore(25)

Now neither Tiger(ShereKahn) nor Leopard(ShereKahn) is a first-order con-
sequence of A3 ∪ S3, which means that the axioms from C3 are satisfied;
furthermore, we have

A3 ∪ S3 6|= Carnivore(ShereKahn).

This answer does not satisfy our intuition: in each model of A3 ∪ S3, ei-
ther Tiger(ShereKahn) or Leopard(ShereKahn) holds; however, the fact
Carnivore(ShereKahn) does not necessarily hold in either case; hence, by
treating (24)–(25) as constraints and not as standard axioms, we neither get
a constraint violation nor derive the consequence Carnivore(ShereKahn).

Intuitively, the constraints should check whether the facts derivable from
A ∪ S ∪ C are derivable from A ∪ S only. This notion seems to be nicely
captured by minimal models; that is, we check C only in the minimal models
of A ∪ S. Roughly speaking, a model I with an interpretation domain 4I

of a formula ϕ is minimal if each interpretation I ′ over 4I such that I ′ ⊂ I
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is not a model of ϕ, where we consider an interpretation to be represented
as the set of all positive ground facts that are true in it. Consider again
A2, S2, and C2. The fact Person(Peter) is not derivable from A2 ∪ S2 in
any minimal model (in fact, there is only a single minimal model), so the
constraint axiom (21) is not violated. In contrast, A3 ∪ S3 has exactly two
minimal models:

I1 = {Cat(ShereKahn),Tiger(ShereKahn)}
I2 = {Cat(ShereKahn),Leopard(ShereKahn)}

These two models can be interpreted as the minimal sets of derivable conse-
quences. The constraint TBox C3 is not satisfied in all minimal models (in
fact, it is violated in each of them). In contrast, let A4 = A3 and C4 = C3,
and let S4 contain the following axiom:

Cat v (Tiger u Carnivore) t (Leopard u Carnivore)(26)

Now the fact Carnivore(ShereKahn) is derivable whenever we can derive
either Tiger(ShereKahn) or Leopard(ShereKahn), so the constraints should
be satisfied. Indeed, A4 ∪ S4 has the following two minimal models:

I3 = I1 ∪ {Carnivore(ShereKahn)}
I4 = I2 ∪ {Carnivore(ShereKahn)}

Both I3 and I4 satisfy C4. Furthermore, we do not lose any consequences,
despite the fact that we treat (24)–(25) as constraints, since the following
holds:

A4 ∪ S4 |= Carnivore(ShereKahn)

The mentioned definition of minimal models has been used, with minor
differences, in an extension of DLs with circumscription [8] and in the se-
mantics of open answer set programs [22]. Consider, however, the following
ABox A5:

Woman(Alice)(27)
Man(Bob)(28)

Furthermore, let S = ∅ and C contain the following axiom:

Woman uMan v ⊥(29)

No axiom implies that Alice and Bob should be interpreted as the same
individual, so we expect them to be different “by default” and the constraint
to be satisfied. Now our problem is that we must consider all interpretation
domains, so let 4I = {α}. Because 4I contains only one object, we must
interpret both Alice and Bob as α. Clearly, I = {Woman(α),Man(α)} is a
minimal model of A5, and it does not satisfy C5.
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This problem might be remedied by making the unique name assumption
(UNA)—that is, by requiring each constant to be interpreted as a different
individual. This is, however, rather restrictive and not compatible with
OWL. Another solution is to interpret A ∪ S in a Herbrand model (that
is, a model in which each constant is interpreted by itself) where ≈ is a
congruence relation; then, we minimize the interpretation of ≈ together
with all the other predicates. In such a case, the only minimal model of A5

is I ′ = {Woman(Alice),Man(Bob)} (the extension of ≈ is minimized, and
it is empty), and C5 is satisfied in I ′.

Unfortunately, existential quantifiers pose a whole range of problems for
constraints. Let A6 contain these axioms:

HasChild(Peter)(30)
HasHappyChild(Peter)(31)

TwoChildren(Peter)(32)

Furthermore, let S6 contain these axioms:

HasChild v ∃hasChild .Child(33)
HasHappyChild v ∃hasChild .(Child uHappy)(34)

Finally, let C6 contain these constraint:

TwoChildren v ≥ 2 hasChild .Child(35)

It seems intuitive for C6 to be satisfied in A ∪ S6: no axiom in S6 forces
the son and the daughter of Peter—the two individuals whose existence is
implied by (33) and (34)—to be the same, so we might conclude that they
are different.

Now consider the following quite similar example. Let C7 = C6, and let
A7 contain the following axioms:

HasChild(Peter)(36)
TwoChildren(Peter)(37)

Furthermore, let S7 contain the following axiom:

HasChild v ∃hasChild .Child u ∃hasChild .Child(38)

As in the previous example, C7 is satisfied in A7 ∪ S7 since (38) introduces
two (possibly identical) individuals in the extension of Child . Let S ′7 be a
standard TBox containing only the axiom (39):

HasChild v ∃hasChild .Child(39)
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Now C7 is not satisfied in A ∪ S ′7 since (39) implies the existence of only
one child. Given that S ′7 is semantically equivalent to S7, this is rather
unsatisfactory; furthermore, it suggests that C7 should not be satisfied in
A7 ∪ S7, since (38) requires the existence of only one individual. Recall,
however, that S6 and S7 are quite closely related: the effect of (38) with
respect to Child is the same as that of (33) and (34). Hence, if (38) should
introduce only one individual, then (33) and (34) should do so as well, which
is in conflict with our intuition that C6 should be satisfied in A6 ∪ S6.

Thus, our intuition does not give us a clear answer as to the appropriate
treatment of existential quantifiers in the standard TBox: the names of
the concepts and the structure of the axioms suggest that the existential
quantifiers in (33) and (34) should introduce different individuals, whereas
the existential quantifiers in (38) should “reuse” the same individual. These
two readings pull in opposite directions, so a choice between the two should
be based on other criteria.

The previous example involving S7 and S ′7 reveals an important dis-
advantage of one choice for the treatment of existential quantifiers: if we
require each existential quantifier to introduce a distinct individual, then
it is possible for a constraint TBox C to be satisfied in A ∪ S, but not in
A ∪ S ′, even though S and S ′ are semantically equivalent. As we have seen,
C7 is satisfied in A7 ∪ S7, but not in A7 ∪ S ′7, even though S7 and S ′7 are
equivalent. It is clearly undesirable for the satisfaction of constraints to
depend on the syntactic structure of the standard TBox.

Concerning the alternative choice for the treatment of existential quan-
tifiers, introducing distinct individuals for each existential quantifier seems
to make checking satisfaction of constraints easier: this choice is closely
related to skolemization [33], the well-known process of representing exis-
tential quantifiers with new function symbols. Skolemization ensures that
every minimal model is forest-like (i.e., it consists of trees possibly inter-
connected at roots), which we use in our procedure for checking constraint
satisfaction in Section 6.3. The next definition uses outer skolemization, in
which the existential quantifiers are replaced with functional symbols from
outermost to the innermost one.

Definition 4.2. Let ϕ be a first-order formula and sk(ϕ) the formula ob-
tained by outer skolemization of ϕ [33]. A Herbrand interpretation w.r.t.
ϕ is a Herbrand interpretation defined over the signature of sk(ϕ). A Her-
brand interpretation I w.r.t. ϕ is a model of ϕ, written I |= ϕ, if it satisfies
ϕ in the usual sense. A Herbrand model I of ϕ is minimal if I ′ 6|= ϕ for
each Herbrand interpretation I ′ such that I ′ ⊂ I. We write sk(ϕ) |=MM ψ if
I |= ψ for each minimal Herbrand model I of ϕ.

We now define the notion of satisfaction of a constraint TBox for ex-
tended DL knowledge bases. Our definition relies upon an operator π that
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translates a set of DL axioms S into an equivalent formula π(S) of first-order
logic (possibly with equality and counting quantifiers) [3, 9].

Definition 4.3. Let K = (S, C,A) be an extended DL knowledge base. The
constraint TBox C is satisfied in K if sk(π(A ∪ S)) |=MM π(C). By an abuse
of notation, we often omit π and simply write sk(A ∪ S) |=MM C.

Note that the addition of constraints does not change the semantics of
DLs: Definition 4.3 is only concerned with the semantics of constraints, and
a traditional knowledge base (A, T ) can be seen as an extended knowledge
base (A, ∅, T ). For subsumption and concept satisfiability tests, we would
use S ∪ C together as the schema, as usual. As discussed above, skolemiza-
tion introduces a new function symbol for each existential quantifier, which
effectively introduces a new individual for each quantifier. We invite the
reader to convince himself that Definition 4.3 closely follows our intuition
on the examples presented thus far. Furthermore, in Section 4.3 we show
that, if the constraints are satisfied, we can throw them away without losing
any positive consequences; that is, we can answer positive queries taking
into account only A and S. We take this as confirmation that our semantics
of constraints is intuitive.

We now consider a nonobvious consequence of our semantics. Let A8 be
an ABox with only the following axioms:

Vegetarian(Ian)(40)
eats(Ian, soup)(41)

Furthermore, let S8 = ∅, and let C8 contain only the following constraint:

Vegetarian v ∀eats.¬Meat(42)

One might intuitively expect C8 not to be satisfied for A8, since the ABox
does not state ¬Meat(soup). Contrary to our intuition, C8 is satisfied in
A8: the interpretation I containing only the facts (40) and (41) is the only
minimal Herbrand model of A8 and I |= C8. In fact, the axiom (42) is
equivalent to the following axiom:

Vegetarian u ∃eats.Meat v ⊥(43)

When written in the latter form, the axiom should be intuitively satisfied,
since Meat(soup) is not derivable.

As this example illustrates, the intuitive meaning of constraints is easier
to grasp if we transform them into the form C v D, where both C and D are
negation-free concepts. Such constraints allow the checking of positive facts.
To check negative facts, we must give them atomic names. Let A9 = A8;
furthermore, let S9 contain the following axiom:

NotMeat ≡ ¬Meat(44)
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Finally, let C9 contain the following axiom:

Vegetarian v ∀eats.NotMeat(45)

The constraint (44) is now of the form C v D, so it is easier to understand
the intuition behind it: everything that is eaten by an instance of Vegetarian
should provably be NotMeat . Now, A9 ∪ S9 has the following two minimal
models, and I1 6|= C9, so C9 is not satisfied for A9:

I1 = {Vegetarian(Ian), eats(Ian, soup),Meat(soup)}
I2 = {Vegetarian(Ian), eats(Ian, soup),NotMeat(soup)}

If we add to A9 the fact NotMeat(soup), then only I2 is a minimal model,
and C9 becomes satisfied as expected.

4.2 Alternative Characterization via Logic Programming

In this section we develop an alternative characterization of the semantics
of extended knowledge bases that is based on logic programming. This is
interesting because it gives a slightly more procedural flavor to the notion of
derivability, which is useful for clarifying the intuition behind our approach.

To obtain our characterization, we first show how to evaluate the axioms
from C using a stratified datalog program. This is somewhat reminiscent of
the approach from [10].

Definition 4.4. For a first-order formula χ, let Eχ be an n-ary predicate
symbol uniquely associated with χ, where n is the number of the free variables
of χ. For a first-order formula ϕ, the constraint program CN(ϕ) is defined
recursively as follows, for µ and sub as defined in Table 1:

CN(ϕ) = µ(ϕ) ∪
⋃

ψ∈sub(ϕ)

CN(ψ)

The following claim trivially follows from Definition 4.4:

Proposition 4.5. The program CN(ϕ) is stratified and nonrecursive.

We now show how we can use CN(ϕ) to evaluate a formula ϕ in a Her-
brand model.

Lemma 4.6. For a Herbrand model I, let A(I) be exactly the set of facts
containing I and a fact HU (t) for each ground term t from the universe of
I. For a first-order formula ϕ with free variables x and a tuple of ground
terms t, we have I |= ϕ[t/x] if and only if A(I) ∪ CN(ϕ) |=c Eϕ(t).

Proof. The proof is by an easy induction on the structure of ϕ. For the
induction base, if ϕ is an atomic formula, then CN(ϕ) contains a rule of the
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form (1) from Table 1, and the claim is obvious. Let us now consider the
possible forms of a complex formula ϕ.

For ϕ = ¬ψ, the program CN(ϕ) contains a rule of the form (2) from
Table 1. This rule ensures that Eϕ(t1, . . . , tn) holds exactly if Eψ(t1, . . . , tn)
does not hold, which implies the claim. The cases for ϕ = ψ1 ∧ ψ2 and
ϕ = ψ1 ∨ ψ2 can be proved straightforwardly in similar way.

For ϕ = ∃y : ψ, the program CN(ϕ) contains a rule of the form (5) from
Table 1. This rule ensures that Eϕ(t1, . . . , tn) holds whenever there is some
ground term s such that Eψ(t1, . . . , s, . . . , tn) holds, which implies the claim.

For ϕ = ∀y : ψ, the program CN(ϕ) contains a rule of the form (6)
which is based on the fact that ϕ is equivalent to ϕ = ¬∃y : ¬ψ. Finally,
for ∃≥ky : ψ and ∃≤ky : ψ, the claim follows from the standard translation
of counting quantifiers into first-order logic.

We next define how to convert a first-order formula ϕ into an equivalent
logic program LP(ϕ). By the following definition, LP(ϕ) can be exponentially
large in the size of ϕ. At this point, we are interested only in the semantic
properties of LP(ϕ) and address the exponential blowup in Section 6.1.

Definition 4.7. For a first-order formula ϕ, let ϕ′ be the translation of sk(ϕ)
into conjunctive normal form, and let LP(ϕ) be the logic program obtained
from ϕ′ by

• converting each clause ¬A1 ∨ . . . ∨ ¬An ∨B1 ∨ . . . ∨Bm into a rule
A1 ∧ . . . ∧An → B1 ∨ . . . ∨Bm;

• adding an atom HU (x) to the body of each rule in which the variable
x occurs in the head but not in the body;

• adding a fact HU (c) for each constant c; and

• adding the following rule for each n-ary function symbol f :

HU (x1) ∧ . . . ∧HU (xn)→ HU (f(x1, . . . , xn))

We are now ready to embed constraint checking into logic programming.
In the following discussion, we consider negative ABox axioms ¬A(a) and
a 6≈ b as the rules ← A(a) and ← a ≈ b.

Theorem 4.8. An extended DL knowledge base K = (S, C,A) satisfies the
constraints in C if and only if A ∪ LP(ϕ) ∪ CN(ψ) |=c Eψ, where ϕ = π(S)
and ψ = π(C).

Proof. The formula ϕ′ in Definition 4.7 is obtained from sk(ϕ) using stan-
dard equivalences of first-order logic, which preserve satisfiability of formulae
in any model, so the minimal Herbrand models of sk(S ∪ A) and {ϕ′} ∪ A
coincide. Furthermore, the facts and the rules introduced in the third and
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the fourth item of Definition 4.7 just enumerate the entire Herbrand uni-
verse, so each minimal Herbrand model of {ϕ′} ∪ A corresponds exactly to
one minimal Herbrand model of LP(S) ∪ A augmented with HU (t) for each
ground term t. The program CN(C) is stratified and its rules contain only
the predicates Eχ in their heads, so CN(C) just extends each minimal model
I of LP(S) ∪ A to a minimal model I ′ of LP(S) ∪ A ∪ CN(ψ) by facts of the
form Eχ(t), for χ a subformula of C. By Lemma 4.6, I ′ |= EC if and only if
I ′ |= C, which implies our claim.

Theorem 4.8 is significant for two reasons: On the one hand, it provides
the foundation for constraint checking the case when S is existential-free
(see Section 6.2). On the other hand, it provides us with a slightly more
procedural intuition about the nature of constraints. Rules of the form
A→ B from LP(S) do not contain negated atoms, so they can be seen as
procedural rules of the form “from A conclude B.” For each minimal set of
facts derived from A ∪ S, CN(ψ) simply checks whether C holds in it.

In subsequent sections, we shall occasionally abuse our notation and
write LP(S) and CN(C) instead of LP(π(S)) and CN(π(C)).

4.3 Query Answering Under Constraints

We now present an important result about answering unions of positive
conjunctive queries in extended DL knowledge bases. Namely, if the con-
straints are satisfied, then we need not consider them in query answering.
This shows that our semantics for constraints is sensible: constraints act as
checks, and, if they are satisfied, we can throw them away without losing
relevant consequences. Moreover, this result is practically very important,
because it makes query answering simpler. In Section 6, we show that, for
certain extended DL knowledge bases, both checking constraints and query
answering can be easier than standard DL reasoning. Before proceeding, we
first remind the reader of the definition of unions of conjunctive queries.

Definition 4.9. Let x be a set of distinguished and y a set of nondistin-
guished variables. A conjunctive query Q(x,y) is a finite conjunction of
positive atoms of the form A(t1, . . . , tm), where ti are either constants, dis-
tinguished, or nondistinguished variables.2 A union of finitely many conjunc-
tive queries Qi(x,yi), 1 ≤ i ≤ n, is the formula γ(x) =

∨n
i=1 ∃yi : Qi(x,yi).

A tuple of constants c is answer to γ(x) over a DL knowledge base K, written
K |= γ(c), if π(K) |= γ(x)[c/x].

We next prove the following useful lemma:

Lemma 4.10. Let ϕ be a first-order formula. If sk(ϕ) has a Herbrand model
I ′, then sk(ϕ) has a minimal Herbrand model I such that I ⊆ I ′.

2The predicate A can be the equality predicate ≈.
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Proof. The following property (*) is well-known: if a set of formulae has
a Herbrand model, then it has a minimal Herbrand model as well. Such
a model can be constructed, for example, using the model-construction
method used to show the completeness of resolution [7]. Let I ′ be a Herbrand
model of sk(ϕ), and let S = {sk(ϕ)} ∪ {¬A | A 6∈ I ′}. Clearly, S is satisfied
in I ′; furthermore, for each Herbrand model I ′′ of S, we have I ′′ ⊆ I ′. Now
by (*), a minimal Herbrand model I of S exists. Clearly, I ⊆ I ′, and it is a
minimal Herbrand model of sk(ϕ).

We now prove the main result of this section:

Theorem 4.11. Let K = (S, C,A) be an extended DL knowledge base that
satisfies C. Then, for any union of conjunctive queries γ(x) over K and any
tuple of constants c, we have A ∪ S ∪ C |= γ(c) if and only if A ∪ S |= γ(c).

Proof. We show the contrapositive: if K satisfies C, then S ∪ A ∪ C 6|= γ(c) if
and only if S ∪ A 6|= γ(c). The (⇒) direction holds trivially by monotonicity,
so we consider the (⇐) direction.

If S ∪ A 6|= γ(c), then sk(S ∪ A ∪ {¬γ(c)}) is satisfiable in a Herbrand
model I ′. The formula ¬γ(c) is equivalent to

∧n
i=1 ∀yi : ¬Qi(c,yi). It

does not contain existential quantifiers, so it is not skolemized. Thus, we
have sk(S ∪ A ∪ {¬γ(c)}) = sk(S ∪ A) ∪ {¬γ(c)}. By Lemma 4.10, a min-
imal Herbrand interpretation I ⊆ I ′ exists such that I |= sk(S ∪ A). Now
I ′ 6|= γ(c), so I ′ 6|= ∃yi : Qi(c,yi) for each 1 ≤ i ≤ n. Hence, for each tu-
ple t of the elements of the Herbrand universe, I ′ 6|= Qi(c,yi)[t/yi]. But
then, since I ⊆ I ′ and all the atoms from Qi(c,yi) are positive, we have
I 6|= Qi(c,yi)[t/yi] for each t as well, so I 6|= ∃yi : Qi(c,yi). Thus, we con-
clude I 6|= γ(c). Since K satisfies C, the latter is satisfied in each minimal
Herbrand model of ϕ, so I |= C. Hence, we conclude that I |= S ∪ A ∪ C and
I 6|= γ(c), which implies our claim.

The proof of Theorem 4.11 shows why the conjunctive queries in γ(x)
must contain only positive atoms. Let γ = ¬A(a) and consider a model I ′

such that I ′ |= sk(A ∪ S) and I ′ 6|= γ. For a minimal model I of sk(A ∪ S),
it is not necessarily true that I 6|= γ: if A(a) ∈ I ′ \ I, then I |= ¬A(a). In-
tuitively, constraint checking ensures that all facts derivable in a minimal
model through constraints are derivable without constraints as well; how-
ever, this does not necessarily hold for negative formulae.

The proof of Theorem 4.11 also reveals why entailment of universally
quantified formulae is not preserved. Intuitively, we cannot examine only
the Herbrand models of sk(A ∪ S) for such formulae because they can be
“too small.” For example, let A = {A(a)} and ϕ = ∀x : A(x). Clearly,
A 6|= ϕ, but the only Herbrand model of A is I = {A(a)} and I |= ϕ. To
use Herbrand models, we must reduce entailment to satisfiability. In doing
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so, the universal quantifier in ϕ would become an existential quantifier, so
skolemizing it would extend the Herbrand universe.

Theorem 4.11 has an important implication with respect to TBox rea-
soning. Let γ1(x) and γ2(x) be unions of conjunctive queries such that
π(K) |= ∀x : [γ1(x)→ γ2(x)]. Provided that C is satisfied for K, each answer
to γ1(x) w.r.t. A ∪ S is also an answer to γ2(x) w.r.t. A ∪ S. To summarize,
we can check subsumption of unions of conjunctive as usual, without treat-
ing C and S differently. Subsequently, for knowledge bases that satisfy C,
we can ignore C when answering queries, but query answers will still satisfy
the established subsumption relationships between queries.

5 Typical Usage Patterns

The notion of constraints from Section 4 is very general. To provide practical
guidance for modelers, we now discuss some typical usage patterns.

5.1 Participation Constraints

Participation constraints constraints specify how objects participate in re-
lationships. These constraints involve two concepts C and D, and a relation
R between them, and they state that each instance of C must participate in
one or more R-relationships with instances of D. Participation constraints
typically also define the cardinality of the relationship. The general form of
participation constraints is as follows, where ./∈ {≤,≥,=}:

C v ./ nR.D(46)

Participation constraints are similar to inclusion dependencies in relational
databases, since they state that, for each object in one predicate, certain
other objects must be present in other predicates as well.

A typical example of a participation constraint is (5), which states that
each person must have an explicitly specified social security number. An-
other example is the following statement restricting each person to have at
most one spouse:

Person v ≤ 1marriedTo.Person(47)

To understand the difference in treating (47) a standard axiom or a con-
straint, consider an ABox A containing the following facts:

Person(Peter)(48)
marriedTo(Peter ,Ann)(49)

marriedTo(Peter ,Mary)(50)

If (47) were a part of the standard TBox S, then A ∪ S would be satisfiable;
furthermore, due to (47), we would derive Ann ≈ Mary . If we put (47) into
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the constraint TBox C, then the only minimal model of A contains exactly
the facts (48)–(50). Namely, the equality predicate ≈ is minimized along
with all the other predicates, so Ann is different from Mary . This matches
our intuition because there is no other knowledge that would require Ann
and Mary to be the same. Thus, Peter is married to two different people,
so the constraint (47) is not satisfied in A.

5.2 Typing Constraints

Constraints can be used to check whether objects are correctly typed. Do-
main and range restrictions are a typical form of such constraints: for a
role R and a concept C, they state that R-links can only point from or to
objects that are explicitly typed as C. In this way, these constraints act as
checks, saying that R-relationships can be asserted only for objects in C.
The general form of domain constraints is

∃R.> v C(51)

whereas for range constraints it is

> v ∀R.C.(52)

A typical example of a domain constraint is (13), which ensures that
a name can be given only to objects that are either bioSource, entity , or
dataSource. Another example is the following axiom, which states that it is
only possible to be married to a Person:

> v ∀marriedTo.Person(53)

To understand the difference in treating (53) a standard axiom or a con-
straint, consider an ABox A containing only the fact (49). If (53) were a
part of the standard TBox S, then A ∪ S would be satisfiable; furthermore,
due to (53), we would derive Person(Ann). If we put (53) into the con-
straint TBox C, then the only minimal model of A contains only the fact
(49). Thus, Ann is not explicitly typed to be a Person, so the constraint
(53) is not satisfied in A.

5.3 Restrictions to Known Individuals

Sometimes, we might want to check whether certain objects are known by
name. For example, an application for the management of tax returns might
deal with two types of people: those who have submitted a tax return for
processing, and those who are somehow related to the people from the first
group (e.g., their spouses or children). For the application to function prop-
erly, it might not be necessary to explicitly specify the SSN for all people;
only the SSNs for the people from the first group are of importance. Hence,
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in such an application we might use axioms (5)–(7) not as constraints, but
as part of the standard TBox S. Furthermore, to distinguish people who
have submitted the tax return, we would introduce a concept PersonTR for
persons with a tax return, and would make it a subset of Person in S:

PersonTR v Person(54)

We require two things to hold for each instance of PersonTR: first, we
might require each such person to be explicitly known by name, and second,
we might require the SSN of each such person to be known by name as well.
Although constraints can be used to check whether an individual is present
in an interpretation, they cannot distinguish named (known) from unnamed
(unknown) individuals. We can, however, solve this problem using the fol-
lowing “trick”. We can use a special concept O to denote all individuals
known by name and state the following two constraints:

PersonTR v O(55)
PersonTR v ∃hasSSN .(O u SSN )(56)

Furthermore, we add the following ABox assertion for each individual a
occurring in an ABox:

O(a)(57)

Now in any minimal model of S ∪ A, the assertions of the form (57) ensure
that O is interpreted exactly as the set of all known objects. Hence, (55)
ensures that each PersonTR is known, and (56) ensures that the social
security number for each person is known as well.

One might criticize this solution on the grounds that it is not completely
model-theoretic: it requires asserting (57) for each known individual, which
is a form of “procedural preprocessing.” We agree that the presented solution
is not completely clean in that sense; however, we believe that it is simple
to understand and implement, which outweighs its drawbacks.

For TBox reasoning, we do not assert any statement of the form (57).
Namely, during TBox reasoning, we are considering all possible ABoxes, so
O can be interpreted as an arbitrary subset of the interpretation domain.

Finally, instead of the axioms (57), one might intuitively expect O to be
defined as a nominal containing all the individuals from the ABox:

O ≡ {a1, . . . , an}(58)

This, however, requires nominals to be available in the DL language, which is
known to make reasoning more difficult. Furthermore, if O does not occur in
the standard TBox axioms, but only in the constraint axioms, then axioms
of the form (57) are sufficient: the minimal model semantics of constraints
ensures that O contains exactly the specified individuals.
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6 Checking Constraints

We now turn our attention to the problem of checking whether an extended
DL knowledge base K = (S, C,A) satisfies the constraint TBox C. The diffi-
culty in checking satisfiability of constraints is determined by the structure
of S. Namely, evaluating a formula in a Herbrand model is easy regardless
of the formula structure; the difficult task is computing the minimal models
of sk(A ∪ S). In the rest of this section, we consider different possibilities
for doing so depending on the form of S.

If S contains neither existential quantifiers under positive nor universal
quantifiers under negative polarity, we can use Theorem 4.8: the program
A ∪ LP(S) ∪ CN(C) does not contain function symbols, so we can use any
(disjunctive) datalog engine. A minor difficulty is caused by the fact that
LP(S) can be exponential in size. Therefore, in Section 6.1, we show how
to perform the translation without a blowup, and, in Section 6.2, we apply
this result to existential-free knowledge bases. We consider the more general
case in Section 6.3, where we present a procedure for the case where S is an
ALCHI knowledge base.

6.1 The Structural Transformation

According to Definition 4.7, the logic program LP(S) is computed by skolem-
izing π(S) and translating it into conjunctive normal form. It is well known
that applying the distributivity laws for conjunction and disjunction can in-
cur an exponential blowup, so Definition 4.7 yields an inefficient algorithm.
This problem can be remedied by applying the structural transformation
[34, 33]. We next present the definition of the structural transformation
here for the sake of completeness. In the definition, we use the well-known
notions of positions and polarity. With ϕ|p we denote the subformula of a
formula ϕ at position p, and with ϕ[ψ]p the formula obtained by replacing
the subformula of ϕ at position p with a formula ψ.

Definition 6.1. An application of structural transformation to a position
p in a formula ϕ is the formula st(ϕ, p) defined as follows, where x is the
set of free variables of ϕ|p and Q is a predicate not occurring in ϕ:

st(ϕ, p) =


ϕ[Q(x)]p ∧ (Q(x)→ ϕ|p) if the polarity of ϕ|p in ϕ is positive

ϕ[Q(x)]p ∧ (Q(x)← ϕ|p) if the polarity of ϕ|p in ϕ is negative

ϕ[Q(x)]p ∧ (Q(x)↔ ϕ|p) otherwise

Structural transformation is typically applied to a formula recursively
until it can be transformed into conjunctive normal form without an expo-
nential blowup. For example, in order to avoid distributing the conjunction
over the disjunction, the formula

∀x : [A(x)→ ∃y : R(x, y) ∧ (B(y) ∨ C(y))]
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is transformed into a formula

∀x : [A(x)→ ∃y : R(x, y) ∧Q(y)] ∧ ∀y : [Q(y)→ B(y) ∨ C(y)]

that can be converted into conjunctive normal form in a straightforward
way. It is well-known that structural transformation preserves satisfiability
and that it can be applied to a formula in polynomial time.

Since it extends the signature of the formula, structural transformation
clearly does not preserve the models of a formula. For an interpretation I
and a set of predicates Υ, let I/Υ be the restriction of I to the predicates
in S, defined as follows:

I/Υ = {A(t1, . . . , tn) ∈ I | A ∈ Υ}

For a formula ϕ, with I/ϕ we denote I/Υ where Υ is the set of all predicates
occurring in ϕ. Let ϕ be a formula and ψ a formula obtained from ϕ through
structural transformation. Ideally, we would like each minimal model I of ϕ
to have a counterpart minimal model I ′ of ψ such that I = I ′/ϕ; conversely,
for each minimal model I ′ of ψ, we would like I ′/ϕ to be a minimal model
of ϕ. Unfortunately, this does not hold. Let ϕ1 be the following formula:

ϕ1 = A ∧ C ∧ [A→ B ∨ (C ∧ ¬D)]

The only minimal model of ϕ1 is I = {A,C}. Furthermore, applying struc-
tural transformation to ϕ1 produces the following formula:

ψ1 = A ∧ C ∧ (A→ B ∨Q) ∧ (Q→ C ∧ ¬D)

The minimal models of ψ1 are I ′1 = {A,Q,C} and I ′2 = {A,B,C}. Now
I ′1/ϕ1 = I, which is as expected; however, I ′2 does not correspond to a mini-
mal model of ϕ.

To describe the correspondence between the models of formulae before
and after the structural transformation, we use the following definition. For
a set of predicates Υ, a Herbrand interpretation I is an Υ-minimal model
of a formula ψ if I |= ψ and I ′ 6|= ψ for each interpretation I ′ such that
I ′/Υ ⊂ I/Υ. A ϕ-minimal model of ψ is the Υ-minimal model of ψ where
Υ is the set of all predicates of ϕ.

Theorem 6.2. For any first-order formula ϕ and ψ = st(ϕ, p) for some
position p, the following two claims hold:

• For each minimal Herbrand model I of ϕ, a minimal model I ′ of ψ
exists such that I = I ′/ϕ.

• Conversely, I ′/ϕ is a minimal Herbrand model of ϕ for each ϕ-minimal
Herbrand model I ′ of ψ.
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Proof. Let ϕ, ψ, and χ be as stated in the theorem. The following properties
are well-known [33]: (*) for each model I ′ of ψ, we have I ′/ϕ |= ϕ; and (**)
for each model I of ϕ, a model I ′′ of ψ exists such that I ′′/ϕ = I.

(Claim 1.) Let I be a minimal Herbrand model of ϕ, and let I ′′ be a
Herbrand model whose existence is implied by (**). Clearly, ψ must have a
minimal Herbrand model I ′ such that I ⊆ I ′ ⊆ I ′′ and I ′/ϕ = I.

(Claim 2.) Let I ′ be a ϕ-minimal Herbrand model of ψ. By (*), I ′/ϕ |= ϕ.
Let us assume that I ′/ϕ is not a minimal model of ϕ—that is, that an
interpretation I exists such that I ( I ′/ϕ and I |= ϕ. But then, by the first
claim, a minimal model I ′′ of ψ exists such that I ′′/ϕ = I and I ′′/ϕ ( I ′/ϕ.
Hence, I ′ is not a ϕ-minimal model of ψ.

Note that I ′′ from the proof of Claim 1 does not need to be a minimal
model of ψ. For example, let ϕ2 be the following formula:

ϕ2 = A ∧B ∧ C ∧ [A→ B ∨ (C ∧ ¬D)]

By applying the structural transformation to C ∧ ¬D, we get the following
formula ψ2:

ψ2 = A ∧B ∧ C ∧ (A→ B ∨Q) ∧ (Q→ C ∧ ¬D)

The only minimal model of ϕ2 is I = {A,B,C}. Furthermore, I ′′ = I ∪ {Q}
is a model of ψ2, but it is not a minimal one: it is not necessary to make
Q true since A, B, and C are already true. Theorem 6.2 is based on the
observation that I ′′ is a model, so ψ2 must have a minimal model that is
somewhere between I and I ′′.

Certain description logics (e.g., Horn-SHIQ [25], DL-lite [12], or EL++
[2]) can be translated into a first-order logic formula ϕ that can be translated
into a conjunction of disjunctions with at most one positive literal. In such
cases, the structural transformation does not affect the minimality of models:

Proposition 6.3. Let ϕ be a first-order formula that can be converted using
structural transformation into a formula ψ =

∧
Ci where Ci =

∨
Lij and

each Ci contains at most one positive literal. If I is a minimal model of ψ,
then I/ϕ is a minimal model of ϕ.

Proof. This claim follows immediately from Theorem 6.2 and the fact that ψ
is a conjunction of Horn clauses which is known to have at most one minimal
model.

6.2 Checking Constraints for Existential-Free KBs

We now consider checking satisfaction of constraints for so-called existential-
free knowledge bases:
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Definition 6.4. A knowledge base K = (S, C,A) is existential-free if π(S)
contains neither existential quantifiers under positive nor universal quanti-
fiers under negative polarity.

For example, S is allowed to contain an axiom of the form ∃R.C v D
(the existential quantifier occurs on the left-hand side of the inclusion and
is effectively equivalent to a universal quantifier), but not an axiom of the
form C v ∃R.D (the existential quantifier now indeed implies existence of
individuals in a model).

Function symbols in LP(S) are introduced only by skolemizing existential
quantifiers under positive or universal quantifiers under negative polarity.
Therefore, existential-free knowledge bases exhibit the following property:

Proposition 6.5. For a knowledge base K = (S, C,A), the program LP(S)
does not contain function symbols.

Thus, for existential-free KBs, we can check constraint satisfaction using
any reasoning engine for function-free disjunctive logic programs, such as
DLV [16] or Smodels [39]. To check constraint satisfaction, we just compute
A ∪ LP(S) ∪ CN(C) and apply Theorem 4.8. Computing LP(S) can, in gen-
eral, increase the size of the formula exponentially. To avoid this, we can
apply the structural transformation to π(S) before computing LP(S). If S
can be translated into Horn logic, then the structural transformation does
not change the minimal models of LP(S) by Proposition 6.3, so Theorem
4.8 holds without any change. The data complexity of query answering in
a stratified datalog program is polynomial [14], which immediately implies
that the satisfaction of constraints can be checked for Horn existential-free
knowledge bases with polynomial data complexity.

In the general case when S cannot be translated into Horn logic, struc-
tural transformation can introduce new minimal models. Then, we can
apply Theorem 6.2: we can use DLV or Smodels to compute all minimal
models of A ∪ LP(S) ∪ CN(C), filter out all π(S)-minimal models, and then
evaluate CN(C) in them.

Filtering out the π(S)-minimal models can also be built directly into the
reasoning algorithm of the logic programming engines. Let ϕ be a proposi-
tional formula (all disjunctive datalog engines known to us ground the pro-
gram, and thus reduce the problem to a propositional one) and I a propo-
sitional interpretation such that I |= ϕ. It is well-known [32] that I is a
minimal model of ϕ if and only if χ(ϕ, I), defined as follows, is unsatisfiable:

χ(ϕ, I) = ϕ ∧ neg(I) ∧ pos(I)

neg(I) =
∧
A6∈I
¬A

pos(I) =
∨
A∈I
¬A
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Namely, neg(I) requires all negative atoms from I to be also negative in a
model of χ(ϕ, I), and pos(I) requires at least one of the positive atoms from
I to be negative in a model of χ(ϕ, I). We modify this check as follows:

Theorem 6.6. Let Υ be a set of propositions, ϕ a propositional formula,
and I an interpretation such that I |= ϕ. Then, I is an Υ-minimal model
of ϕ if and only if χ(ϕ, I,Υ), defined as follows, is unsatisfiable:

χ(ϕ, I,Υ) = ϕ ∧ neg(I,Υ) ∧ pos(I,Υ)

neg(I,Υ) =
∧

A∈Υ\I
¬A

pos(I,Υ) =
∨

A∈Υ∩I
¬A

Proof. (⇒) Assume that χ(ϕ, I,Υ) is satisfiable in a model I ′. Due to
neg(I,Υ), if I 6|= A, then I ′ 6|= A as well; furthermore, due to pos(I,Υ),
there is at least one atom I |= B such that I ′ 6|= B. Hence, I ′ is a model of
ϕ and I ′/Υ ⊂ I/Υ, so I is not an Υ-minimal model.

(⇐) Assume that I is not a Υ-minimal model of ϕ. Then, a model I ′

of ϕ exists such that I ′/Υ ⊂ I/Υ. Clearly, I ′ satisfies both neg(I,Υ) and
pos(I,Υ), so χ(ϕ, I,Υ) is satisfiable.

Theorem 6.6 immediately implies Πp
2 as the upper bound on the data

complexity of checking constraint satisfaction. Namely, the constraints are
not satisfied if a minimal model I of A ∪ S exists that does not satisfy
C. Now I can be guessed in polynomial time and, due to Theorem 6.6,
minimality can be checked with an oracle in NP.

We finish this section with a note about equality. Namely, most existing
implementations of disjunctive logic programs support equality as a built-in
predicate that is interpreted as identity and is allowed only to occur in the
rule bodies. The program LP(S), however, can contain equality in the rule
heads as well. This type of equality is traditionally not supported in logic
programming; however, it can be simulated by introducing a new predicate
and explicitly axiomatizing the equality properties for it [17]. Note that
the logic program CN(C) can also contain equality, but only in the rule
bodies. Hence, CN(C) cannot constrain two constants to be equal; it can
only check whether the two constraints have been derived to be equal. If
CN(C) contains equality but LP(S) does not, then we can simply interpret
equality in CN(C) as identity and use the built-in implementation of logic
programming engines.

6.3 Checking Constraints in the Presence of Existentials

We now turn our attention to the problem of checking constraints in the
case when the standard TBox S contains existential quantifiers under posi-
tive or universal quantifiers under negative polarity. The Herbrand models
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of sk(A ∪ S) are then infinite, so we cannot represent them directly. The
standard tableau reasoning algorithms deal with this problem by generat-
ing a finite abstraction of a model, so one might attempt to extend these
algorithms to support minimal model reasoning. Unfortunately, this proves
to be quite a difficult task: since the models are not fully represented, it is
difficult to compare them for minimality.

Constraint checking is, however, easier for logics having the tree-model
property. In this section, we present a decision procedure for the case when
the standard TBox S is expressed in the DL ALCHI. This logic contains
many characteristic DL constructs: the Boolean connectives ¬C, C t D,
and C uD, existential quantification ∃R.C, universal quantification ∀R.C,
inverse roles R−, and role hierarchies R v S. The semantics of an ALCHI
knowledge base K is given by translating it into a first-order formula π(K)
as specified in Table 2. We conjecture that the procedure presented here
can be extended to handle qualified number restrictions as well; however,
the presence of qualified number restrictions introduces technical problems
which obscure the nature of our result. Furthermore, the presented algo-
rithm is not intended to be used in practice; rather, it should be understood
as evidence that checking constraints is, in principle, possible in the pres-
ence of existentials for nontrivial description logics. We also conjecture that
constraint checking in the case where S contains constructors such as nom-
inals, transitive roles, or generalized role inclusion axioms [26] is decidable;
proving this is, however, nontrivial, and we leave it for future work. We do
not restrict the structure of the constraint TBox C in any way. Thus, the
combined TBox S ∪ C can be more expressive than ALCHI.

We embed the constraint satisfaction checking problem into the second-
order monadic logic on infinite k-ary trees SkS [35, 40]. This logic provides
for second-order quantification over unary predicates, which allows us to
easily express the minimality criterion. Furthermore, we should be able to
build an automata-based decision procedure and then, along the lines of [5],
derive a practical tableau procedure. We briefly overview this logic next.
In general, we follow the presentation from [40]; however, instead of binary
predicates, we represent the successor relationship by function symbols.

Let k be a positive integer. SkS terms are built from first-order variables
(written as x, y, z, etc.), a constant symbol ε, and k unary function symbols
fi(t), as usual. For SkS terms t and s, an SkS atom is of the form t = s
or X(t), where X is a second-order variable (we write all such variables in
capital letters). SkS formulae are obtained from atoms in the usual way
using propositional connectives ∧, ∨, and ¬, first-order quantification ∃x
and ∀x, and second-order quantification ∃X and ∀X. For the semantics of
SkS , please refer to [40]. Intuitively, first-order quantification ranges over
domain elements, whereas second-order quantification ranges over domain
subsets. The symbol = denotes true equality in SkS ; it is different from
the symbol ≈, which denotes a congruence relation on Herbrand models.
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Table 2: Semantics of ALCHI by Mapping to FOL

Mapping Roles to FOL
πxy(R) = R(x, y) πyx(R) = R(y, x)
πxy(R−) = R(y, x) πyx(R−) = R(x, y)

Mapping Concepts to FOL
πx(A) = A(x) πy(A) = A(y)

πx(¬C) = ¬πx(C) πy(¬C) = ¬πy(C)
πx(C uD) = πx(C) ∧ πx(D) πy(C uD) = πy(C) ∧ πy(D)
πx(C tD) = πx(C) ∨ πx(D) πy(C tD) = πy(C) ∨ πy(D)
πx(∃R.C) = ∃y : πxy(R) ∧ πy(C) πy(∃R.C) = ∃x : πyx(R) ∧ πx(C)
πx(∀R.C) = ∀y : πxy(R)→ πy(C) πy(∀R.C) = ∀x : πyx(R)→ πx(C)

Mapping Axioms to FOL
π(C v D) = ∀x : πx(C)→ πx(D)
π(R v S) = ∀x, y : πxy(R)→ πxy(S)
π(A(a)) = A(a)

π(R(a, b)) = R(a, b)

Checking satisfiability of a closed SkS formula ϕ can be performed in time

2

O(n)...
2

)
q+1

where n is the length of ϕ and q is the number of quantifier changes in the
prenex normal form of ϕ [40, page 217]. We use ϕ1 → ϕ2 as a syntactic
shortcut for ¬ϕ1 ∨ϕ2; P ⊆ R as a syntactic shortcut for ∀x : P (x)→ R(x);
and P ⊂ R for P ⊆ R ∧ ¬(R ⊆ P ).

Let K = (S, C,A) be an extended DL knowledge base. Next, we compute
an SkS formula that is satisfiable if and only if sk(π(A ∪ S)) |=MM π(C). To
compute ψ = sk(π(A ∪ S)), we first bring π(A ∪ S) into negation-normal
form. Without loss of generality, we assume that the roles of the form
(R−)− are replaced with R. By definition, ψ then has the following form,
where λ is as defined in Table 3:

ψ = A ∧ ψ1 ∧ ψ2

ψ1 =
∧

RvS∈S
∀x, y : [πxy(R)→ πxy(S)]

ψ2 =
∧

CvD∈S
∀x : λ(NNF(¬C tD), x)
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Table 3: Skolemization of Concepts in Negation-Normal Form

C λ(C, ·)
A A(·)
¬A ¬λ(A, ·)

C1 u C2 λ(C1, ·) ∧ λ(C2, ·)
C1 t C2 λ(C1, ·) ∨ λ(C2, ·)
∃R.C R(·, f(·)) ∧ λ(C, f(·))
∃R−.C R(f(·), ·) ∧ λ(C, f(·))
∀R.C ∀y : [R(·, y)→ λ(C, y)]
∀R−.C ∀y : [R(y, ·)→ λ(C, y)]

Note: The symbol · is a placeholder for actual terms supplied as the
second argument to λ. The function symbol f and the variable y are
new in each invocation of λ.

The formula ψ is not an SkS formula because it contains binary atoms.
Next, we show that we can encode those atoms using unary atoms. For this,
we show that all minimal models of ψ are forest-like, as defined next:

Definition 6.7. A Herbrand interpretation I is forest-like if it contains
only unary and binary atoms, all function symbols are at most unary, and
all binary atoms are of the form R(a, t), R(t, f(t)), or R(f(t), t), where a is
a constant and t is a term.

One might expect forest-like models to contain the facts of the form
R(a, b) instead of the facts of the form R(a, t); we discuss the reason for this
after Definition 6.10.

Lemma 6.8. Each minimal model of sk(π(A ∪ S)) is forest-like.

Proof. If I is a model of ψ = sk(π(A ∪ S)) that is not forest-like, it contains a
binary atom of the form R(s, t) that is not of the form specified in Definition
6.7. Let I ′ be an interpretation obtained from I by removing all atoms of the
form S(s, t) such that S v∗ R, where v∗ is the reflexive-transitive closure
of the role inclusion relation v. For the subformula ψ1 of ψ, it is clear that
I |= ψ1 if and only if I ′ |= ψ1 because, whenever we remove some R(s, t) from
I, we remove also all S(s, t) such that S v∗ R. For the subformula ψ2 of ψ,
we show that I |= ψ2 if and only if I ′ |= ψ2 by a straightforward induction
on the formula structure. Namely, only positive binary atoms could have a
different truth value in I and I ′; however, all such atoms in ψ2 are of the
form R(t, f(t)) or R(f(t), t), and they are included in I ′ whenever they are
included in I.

Our goal is to represent each forest-like model using a model of the
following form:
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Table 4: Transforming Interpretations

Forest-like Tree-like
R(t, f(t)) ↔ Rf (t)
R(f(t), t) ↔ R−f (t)
R(a, t) ↔ Ra(t) for t not of the form f(a)

Definition 6.9. A Herbrand interpretation I is monadic if it contains only
unary predicates and all function symbols are at most unary.

To encode the forest-like models using the monadic models, we introduce
the unary predicates Rf , R−f , and Ra for each binary predicate R, each
function symbol f , and each constant a. We use these predicates to encode
binary atoms in a forest-like model, as shown in the following definition:

Definition 6.10. For I a forest-like Herbrand interpretation, the monadic
encoding Ĩ is obtained by replacing each atom from the left-hand side of
Table 4 with the corresponding atom on the right-hand side. For I a monadic
Herbrand interpretation, the forest-like encoding I is obtained by replacing
each atom from the right-hand side of Table 4 with the corresponding atom
on the left-hand side.

We clarify an important point about the previous definition. For consis-
tency, we might be tempted to use the predicates Rf and R−f to always en-
code the starting points of binary relations; then, we would encode R(f(t), t)
asR−f (f(t)). But then, we would lose the one-to-one correspondence between
forest-like and monadic interpretations; for example, a monadic interpreta-
tion containing an atom R−f (a) does not correspond to any forest-like inter-
pretation because there is no predecessor for a. Definition 6.10 places the
predicates Rf or R−f on the node closer to the tree root, so, when “decoding”
a monadic interpretation, we can always find the appropriate successor.

Similarly, we might restrict the forest-like interpretations only to atoms
of the form R(a, b) instead of R(a, t). But then, since “decoding” an atom
Ra(f(a)) from a monadic interpretation produces an atom R(a, f(a)), we
would lose the one-to-one correspondence between forest-like and monadic
interpretations. Therefore, Definition 6.10 places the predicate Ra on the
varying endpoints of binary atoms of the form R(a, t).

We now show how to encode binary literals using unary literals in an
arbitrary formula. We remind the reader that = is true equality, different
from the congruence relation on Herbrand models ≈.
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Definition 6.11. For a binary predicate R and a set of symbols Σ, the
formula ν[R,Σ](x, y) is defined as follows:

ν[R,Σ](x, y) = ν1[R,Σ](x, y) ∨ ν2[R,Σ](x, y) ∨ ν3[R,Σ](x, y)

ν1[R,Σ](x, y) =
∨

R,a∈Σ

[x = a ∧Ra(y)]

ν2[R,Σ](x, y) =
∨

R,f∈Σ

[y = f(x) ∧Rf (x)]

ν3[R,Σ](x, y) =
∨

R,f∈Σ

[x = f(y) ∧R−f (y)]

For a formula ϕ, the formula ν[ϕ,Σ] is obtained from ϕ by replacing each
atom R(s, t) with ν[R,Σ](s, t).3

We next show that the encoding from Definition 6.11 preserves validity
of a formula in a forest-like model:

Lemma 6.12. Let Ĩ and J be defined as in Definition 6.10. Furthermore,
let ϕ be a formula containing only unary and binary predicates, Σ a set
of containing all constants and binary predicates from ϕ, and ξ = ν[ϕ,Σ].
Then, the following two claims hold:

• For I a forest-like Herbrand interpretation, I |= ϕ implies Ĩ |= ξ.

• For J a monadic Herbrand interpretation, J |= ξ implies J |= ϕ.

Proof. (Claim 1.) We prove a slightly more general claim. Let ϕ be a formula
containing only unary and binary predicates with free variables x1, . . . , xn,
and let ξ = ν[ϕ,Σ]. Then, for any assignment σ of the variables xi to ground
terms ti, we have I |= ϕσ if and only if Ĩ |= ξσ. The proof is by induction
on the structure of ϕ. The base case for unary atoms is trivial, since I and
Ĩ coincide on unary atoms.

Let ϕ = R(u, v); the formula ξ is of the form as in Definition 6.11. Since
I is forest-like, I |= R(uσ, vσ) if and only if R(uσ, vσ) is of the form R(a, t),
R(t, f(t)), or R(f(t), t). In the first case, Ĩ |= ν1[R](uσ, vσ); in the second
case, Ĩ |= ν2[R](uσ, vσ); and in the third case, Ĩ |= ν3[R](uσ, vσ).

The induction step for Boolean connectives and quantifies is trivial and
is omitted for the sake of brevity.

(Claim 2.) The proof of this claim is completely analogous to the proof
of the first claim.

Our final obstacle is caused by the fact that SkS provides for only one
constant ε, whereas ψ can contain n different constants a1, . . . , an. There-
fore, we must encode these constants using function symbols, as shown next.

3Note that ϕ does not contain inverse role atoms R−(s, t); such atoms are replaced
with R(t, s) as shown in Table 2.
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Definition 6.13. Let ψ be a skolemized first-order formula containing unary
function symbols f1, . . . , fm and constants a1, . . . , an, and not containing the
constant ε. Let fm+1, . . . , fk be new unary function symbols not occurring
in ψ, for k = n+m. Furthermore, let ϕ be a first-order formula containing
only constants from ψ. Then, csϕ(ψ) is the formula obtained from ϕ by
replacing each constant ai with fm+i(ε).

In the rest of this section, we use ai as a syntactic shortcut for fm+i(ε).
The following proposition follows trivially from the fact that ε and Let
fm+1, . . . , fk do not occur in ψ:

Proposition 6.14. Let ψ and ϕ be formulae as in Definition 6.13. Each
minimal Herbrand model I of ψ corresponds to exactly one minimal Her-
brand model I ′ of csψ(ψ) and vice versa. Furthermore, for such I and I ′,
we have I |= ϕ if and only if I ′ |= csψ(ϕ).

We are now ready to define an algorithm for checking satisfaction of con-
straints in an extended DL knowledge base K. We construct a formula SkSK
that is satisfiable if and only if the constraints are satisfied. Intuitively, the
outer quantifiers ∀P1, . . . , Pn in SkSK define a valuation I of propositional
symbols; then, the formula SkSα evaluates A ∪ S in I; next, the formula
SkSMM ensures that I is a minimal model for A ∪ S; and, finally, the for-
mula SkSβ evaluates C in I.

Theorem 6.15. Let K = (S, C,A) be an extended DL knowledge base such
that S is expressed in the DL ALCHI. Furthermore, let ψ = sk(π(A ∪ S)),
α = csψ(ψ), ϕ = π(C), and β = csψ(ϕ). Finally, let Σ be the set of all binary
predicates and constants from ψ. With α′ we denote the formula obtained
from α by replacing each predicate P with a new predicate P ′. Finally, let
SkSK be the following SkS formula, where Pi are all predicates of SkSψ, and
P ′i are all predicates of SkSα′:

SkSK = ∀P1, . . . , Pn : [(SkSα ∧ SkSMM )→ SkSβ ]
SkSα = ν[α,Σ]
SkSβ = ν[β,Σ]
SkS⊂ = (P ′1 ⊆ P1 ∧ . . . ∧ P ′n ⊆ Pn) ∧ (P ′1 ⊂ P1 ∨ . . . ∨ P ′n ⊂ Pn)

SkSMM = ∀P ′1, . . . , P ′n : SkS⊂ → ¬SkSα′

SkSα′ = ν[α′,Σ]

Then, ψ |=MM ϕ if and only SkSK is valid.

Proof. (⇒) If SkSK is not valid, a monadic interpretation I of the predicates
Pi exists such that I |= SkSα and I |= SkSMM , but I 6|= SkSβ. By Lemma
6.12, I |= α and I 6|= β. We next show that I is a minimal model of α, which
implies that α 6|=MM β; by Proposition 6.14, we then have that ψ 6|=MM ϕ.
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Assume that I is not a minimal model of α—that is, that an interpre-
tation J ⊂ I exists such that J |= α. By Lemma 6.8, J is forest-like. But
then, J̃ ⊂ I, which implies that J̃ |= SkS⊂; furthermore, by Lemma 6.12,
J̃ |= SkSα′ . These two claims now imply that I 6|= SkSMM , which is a con-
tradiction.

(⇐) If ψ 6|=MM ϕ, by Proposition 6.14, we have that α 6|=MM β. But
then, by Lemma 6.8, a forest-like model I of α exists such that I 6|= β. By
Lemma 6.12, Ĩ |= SkSα and Ĩ 6|= SkSβ . To complete the proof that SkSK is
not valid, we just need to show that Ĩ |= SkSMM . Assume that the latter is
not the case; then, a monadic interpretation J exists such that J ⊂ Ĩ and
J |= SkSα′ . But then, by Lemma 6.12, J |= α′ and J ⊂ I, which implies
that I is not a minimal model of α.

Theorem 6.15 shows that checking constraint satisfaction is decidable for
nontrivial description logics. Unfortunately, it gives us only a nonelemen-
tary upper complexity bound: the complexity is determined by the num-
ber of quantifier alternations, which is unlimited because SkSβ can be any
first-order formula. We conjecture, however, that the complexity actually
depends on the number of alterations of second-order quantifiers, and not of
first-order quantifiers. In our future work, we shall try to see whether this
holds, and derive tight complexity bounds.

7 Relationship to Autoepistemic DLs

The usefulness of constraint languages has been recognized early on in the
knowledge representation community. In [36], Reiter noticed that con-
straints are epistemic in nature; furthermore, he presented an extension
of first-order logics with an autoepistemic knowledge operator K that pro-
vides for introspection. Furthermore, in [28], Lifschitz presented the logic of
Minimal Knowledge and Negation-as-Failure (MKNF) which, additionally,
provides for a negation-as-failure operator not.

MKNF was used in [15] to obtain an expressive, but yet decidable non-
monotonic DL. One of the motivations for this work was to provide a lan-
guage capable of expressing integrity constraints. For example, the con-
straint (5) can be expressed using the following axiom (the modal operator
A corresponds to ¬not in MKNF):

KPerson v ∃A hasSSN .APerson(59)

MKNF was also used in [31] to integrate DLs with logic programming.
Again, one of the motivations for this work was to allow for constraint
modeling. For example, the constraint (5) can expressed using the following
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logic programming rules:

KOK (x)← K hasSSN (x, y),KSSN (y)(60)
← KPerson(x),notOK (x)(61)

Although the motivation is the same, these approaches differ from the
one presented in this paper in several important aspects. First, the rules
(60)–(61) do not have any meaning during TBox reasoning; they can only
be used to check whether an ABox is of a required shape. Furthermore,
the axiom (59) might be applied during TBox reasoning, but it has a sig-
nificantly different semantics: it can be applied only to the consequences of
other modal axioms, and not to consequences of other first-order axioms.
In contrast, the constraint TBox C has the standard semantics for TBox
reasoning and is applicable as usual; it is only for ABox reasoning that C is
applied in a nonstandard way as a check. Thus, the semantics of C is much
closer to the standard semantics of description logics.

Second, the semantics of MKNF makes it difficult to express constraints
on unnamed individuals. Namely, for a first-order concept C, the concept
KC contains the individuals that are in C in all models of C. In most
cases, KC contains only the explicitly named individuals, and not the un-
named individuals implied by existential quantifiers; namely, in different
models one can choose different individuals to satisfy an existential quanti-
fier. Therefore, the MKNF-based approaches cannot express the constraints
from Section 5.3—that is, they cannot check whether all existentially implied
objects are explicitly named.

Third, MKNF-based constraints work at the level of consequences and
therefore cannot express constraints on disjunctive facts. Consider again
the ABox A3 containing the axiom (22) and the standard TBox S3 contain-
ing the axiom (23). We might express the constraints (24)–(25) using the
following MKNF rules:

← KTiger(x),notCarnivore(x)(62)
← KLeopard(x),notCarnivore(x)(63)

Unfortunately, (62) and (63) are satisfied for A3 ∪ S3. Namely, KTiger(x)
can, roughly speaking, be understood as “Tiger(x) is a consequence.” Due to
the disjunction in (23), neither Tiger(ShereKahn) nor Leopard(ShereKahn)
is a consequence of A3 ∪ S3; hence, the premise of neither rule is satisfied
and the constraints are not violated.

Because of these differences, we believe that the semantics of the ex-
tended DL knowledge bases captures the intuition behind constraints in a
much more intuitive way; furthermore, it seems to fit better with the usual
semantics of description logics.
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8 Conclusion

In this paper we analyzed the similarities and differences between relational
databases and description logics, in particular with respect to the role of
schema constraints. Our analysis reveals more similarities than differences
since, in both cases, constraints are just (restricted) first-order theories. Fur-
thermore, reasoning about the schema is in both systems performed under
standard first-order semantics, and it even employs closely related reason-
ing algorithms. The differences between relational databases and description
logics become apparent only if one considers the problems related to reason-
ing about data. In relational databases, answering queries and constraint
satisfaction checking correspond to model checking, whereas, in description
logics they correspond to entailment problems.

Based on our analysis, we defined the notion of extended DL knowledge
bases, in which a certain subset of TBox axioms can be designated as con-
straints. For TBox reasoning, constraints behave like normal TBox axioms;
however, for ABox reasoning, they are interpreted in the spirit of relational
databases. Hence, our constraints can be used to check whether all necessary
assertions have been explicitly specified in an ABox.

We also showed that, if the constraints are satisfied, we can disregard
them while answering positive queries. Thus, answering queries under con-
straints can be computationally easier in these cases.

We presented several procedures for checking constraint satisfaction. For
existential-free knowledge bases, constraint checking can be realized using
available logic programming engines. If the TBox axioms that are not con-
straints can be expressed in the DL ALCHI, constraints can be checked by
embedding the problem into monadic second-order logic SkS .

For our future work, we shall primarily try to obtain tight complexity
bounds for constraint checking in the second case. Furthermore, we shall
implement our approach in the DL reasoner KAON24 and test its usefulness
on practical problems.
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