
Incremental Update of Datalog Materialisation:
the Backward/Forward Algorithm

Boris Motik, Yavor Nenov, Robert Piro and Ian Horrocks
Department of Computer Science, Oxford University

Oxford, United Kingdom
firstname.lastname@cs.ox.ac.uk

Abstract

Datalog-based systems often materialise all consequences
of a datalog program and the data, allowing users’ queries
to be evaluated directly in the materialisation. This process,
however, can be computationally intensive, so most systems
update the materialisation incrementally when input data
changes. We argue that existing solutions, such as the well-
known Delete/Rederive (DRed) algorithm, can be inefficient
in cases when facts have many alternate derivations. As a pos-
sible remedy, we propose a novel Backward/Forward (B/F)
algorithm that tries to reduce the amount of work by a combi-
nation of backward and forward chaining. In our evaluation,
the B/F algorithm was several orders of magnitude more ef-
ficient than the DRed algorithm on some inputs, and it was
never significantly less efficient.

1 Introduction
Datalog (Abiteboul, Hull, and Vianu 1995) is a widely
used rule language capable of expressing recursive depen-
dencies. A prominent application of datalog is answering
queries over ontology-enriched data: datalog can capture
OWL 2 RL (Motik et al. 2012) ontologies extended with
SWRL (Horrocks et al. 2004) rules, so modern Semantic
Web systems often use datalog ‘behind the scenes’.

When the performance of query answering is critical, dat-
alog systems often materialise (i.e., compute and explicitly
store) all consequences of datalog rules and the data in a
preprocessing step so that users’ queries can then be evalu-
ated directly over the stored facts; systems such as Owlgres
(Stocker and Smith 2008), WebPIE (Urbani et al. 2012), Or-
acle’s RDF store (Wu et al. 2008), OWLIM SE (Bishop et al.
2011), and RDFox (Motik et al. 2014) all use this technique.
Materialisation is computationally intensive, so recomputing
all consequences whenever input data changes is usually un-
acceptable, and most systems employ an incremental main-
tenance algorithm: given a datalog program Π, a setE of ex-
plicitly given facts, materialisation I = Π∞(E) of E w.r.t.
Π, and sets of facts E− and E+ to be deleted and added, re-
spectively, such an algorithm uses the precomputed set I to
compute Π∞((E \ E−) ∪ E+) more efficiently. Note that
we consider only updates of explicitly given facts: changing
derived facts does not have a unique semantics and is usually

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

much harder. Fact insertion can be efficiently handled us-
ing the standard seminaı̈ve algorithm (Abiteboul, Hull, and
Vianu 1995): datalog (without negation-as-failure) is mono-
tonic, so one can just ‘continue’ materialisation from E+;
hence, in this paper we usually assume that E+ = ∅. In con-
trast, fact deletion is much more involved since one must
identify and retract all facts in I not derivable from E \ E−.
Gupta and Mumick (1995) presents an extensive overview
of the existing approaches to incremental update, which can
be classified into two groups.

The approaches in the first group keep track of auxil-
iary information during materialisation to efficiently delete
facts. In particular, truth maintenance systems (Doyle 1979;
de Kleer 1986) track dependencies between facts; many can
handle nonmonotonic datalog extensions, but their space and
time overheads are often prohibitive on large datasets. Al-
ternatively, one can count the derivations of facts during
materialisation, and then delete facts when their derivation
counter drops to zero (Gupta, Katiyar, and Mumick 1992);
however, Nicolas and Yazdanian (1983) show in Section 6.2
that this technique may not correctly handle recursive rules.
Urbani et al. (2013) applied this technique (with its inherent
limitation regarding recursion) to the Semantic Web.

The approaches in the second group do not gather any
additional information. The Delete/Rederive (DRed) algo-
rithm (Gupta, Mumick, and Subrahmanian 1993; Staudt and
Jarke 1996) generalises approaches by Harrison and Dietrich
(1992), Küchenhoff (1991), and Urpı́ and Olivé (1992) and
is the state of the art in this group. The DRed algorithm first
overestimates and deletes all facts in I that might need to be
deleted due to removing E−, and then it rederives the facts
still derivable from E \ E−. The DRed algorithm has been
adapted to RDF data (Barbieri et al. 2010; Urbani et al. 2013;
Ognyanov and Velkov 2014) and incremental ontology clas-
sification (Ren and Pan 2011; Kazakov and Klinov 2013).

The overdeletion phase of the DRed algorithm can be a
source of inefficiency. As a simple example, let Π contain
rules (1)–(3), and let E = {A(a), B(a)}.

C1(x)← A(x) (1)
C1(x)← B(x) (2)
Ci(x)← Ci−1(x) for i ∈ {2, . . . , n} (3)

Let I = Π∞(E) be the materialisation of E w.r.t. Π, and
let E− = {A(a)}. Each fact Ci(a) ∈ I is derived once

from A(a) and once from B(a); since the DRed algorithm
overdeletes all consequences of E−, it will delete all Ci(a)
only to later rederive them fromB(a). Overdeletion can thus
be very inefficient when facts are derived more than once,
and when facts contribute to many proofs of other facts.
Such examples abound in the Semantic Web since, as we
argue in more detail in Section 3, rules obtained from OWL
ontologies often interact significantly with each other.

Thus, in Section 4 we present a novel Backward/Forward
(B/F) algorithm. Our algorithm does not gather any infor-
mation during materialisation and, instead of a potentially
inefficient overdeletion phase, it determines whether deleted
facts have alternate proofs from E \ E− using a combina-
tion of backward and forward chaining. On the example
from the previous paragraph, B/F proves that C1(a) has
an alternative derivation from E \ E− = {B(a)}, and so
it does not consider any of Ci(a), i > 1. Thus, while the
DRed algorithm explores the consequences of the facts in
E−, our algorithm explores their support, which is more ef-
ficient when proof trees are ‘shallow’.

Our algorithm is applicable to general datalog programs.
However, query answering over ontologies is a prominent
application of datalog so, to evaluate our approach, we have
implemented the DRed and the B/F algorithm in the open-
source system RDFox (Motik et al. 2014), and have com-
pared them on well-known Semantic Web benchmarks; we
present our results in Section 5. In addition to the running
times, we have also determined the numbers of facts and rule
derivations of the two algorithms, which allowed us to com-
pare the ‘work’ in an implementation-independent way. Our
results show that the B/F algorithm typically outperforms the
DRed algorithm, and that this difference is larger on datasets
where a single fact has numerous derivations.

2 Preliminaries
A term is a constant or a variable. An atom has the form
R(t1, . . . , tn), where R is an n-ary relation and each ti is a
term, for 0 ≤ i ≤ n. A fact is an atom with no variables. A
(datalog) rule r is an implication of the form

H ← B1 ∧ · · · ∧Bn (4)

where H is the head atom, B1, . . . , Bn are body atoms, and
each variable inH also occurs in someBi. Let h(r) = H , let
bi(r) = Bi for 1 ≤ i ≤ n, and let len(r) = n. A (datalog)
program Π is a finite set of rules. A substitution σ is a partial
mapping of variables to constants; for α a term, an atom, or
a rule, ασ is the result of replacing each occurrence of x in α
with σ(x) when the latter is defined; if σ maps all variables
in α, then ασ is an instance of α. For E, E−, and E+ finite
sets of facts, the materialisation Π∞(E) of E w.r.t. Π is the
smallest superset ofE such thatHσ ∈ Π∞(E) for each rule
in Π of the form (4) and substitution σ with Biσ ∈ Π∞(E)
for 1 ≤ i ≤ n; moreover, Π∞((E \ E−) ∪ E+) is the incre-
mental update of Π∞(E) with E− and E+. A derivation is
the process of matching the body atoms of a rule in a set of
facts and extending it with the instantiated rule head.

In this paper, we do not distinguish intensional from ex-
tensional relations—that is, explicit facts can contain rela-
tions occurring in the rules’ heads. This is a trivial modifi-

cation of datalog: to assert a fact R(~a) where relation R oc-
curs in the head of a rule, one can introduce a fresh relation
Redb, assert Redb(~a), and add the rule R(~x)← Redb(~x). In
contrast, we distinguish explicit from implicit facts and al-
low only the former to be deleted. Deleting implicit facts
has been considered in the literature, but is much more com-
plex and in fact there are many possible semantics of such
updates. The DRed algorithm considers an identical setting.

3 Motivation
To motivate our work, we next recapitulate the DRed algo-
rithm by Gupta, Mumick, and Subrahmanian (1993), discuss
some of its drawbacks, and suggest possible improvements.

The Delete/Rederive Algorithm
We describe steps of the DRed algorithm using evaluation of
datalog rules whose atoms refer to several sets of facts. Thus,
for R(~x) an atom and X a set of facts, an extended atom has
the formR(~x)X . IfR(~x)X occurs in a rule body, the atom is
true under substitution σ ifR(~x)σ ∈ X; moreover, ifR(~x)X

occurs in a rule head and the body of the rule is true under
substitution σ, fact R(~x)σ derived by the rule is added to set
X . This notation does not substantially extend datalog: we
can simulate R(~x)X by introducing a fresh relation RX and
writing RX(~x) instead of R(~x)X ; however, extended atoms
offer a more convenient presentation style in Section 4.

Let Π be a program, let E, E−, and E+ be sets of facts,
and let I ··= Π∞(E). The DRed algorithm uses several aux-
iliary sets: set D accumulates facts that might need to be
removed from I due to the removal of E−, set A gathers
facts derived by a single round of rule application, and set
N contains facts derived in a previous round. The algorithm
updates I to contain Π∞((E \ E−) ∪ E+) as follows.
DR1 Set E ··= E \ E−, set A ··= E−, and set D ··= ∅.
DR2 Set N ··= A \D. If N = ∅, then go to step DR3; oth-

erwise, set D ··= D ∪N , set A ··= ∅, for each rule r in
Π of the form (4), evaluate rule (5) instantiated for each
1 ≤ i ≤ n, and repeat step DR2.

HA ← BI
1 ∧ . . . ∧BI

i−1 ∧BN
i ∧BI

i+1 ∧ . . . ∧BI
n (5)

After this step, D contains all facts that might need to be
deleted, so this step is called overdeletion.

DR3 Set I ··= I \D, and set A ··= (D ∩ E) ∪ E+.
DR4 For each rule in Π of the form (4), evaluate rule (6).

HA ← HD ∧BI
1 ∧ . . . ∧BI

n (6)
This rederivation step adds to A facts that have an alter-
nate derivation in the updated set I . Atom HD in rule (6)
restricts rederivation only to facts from step DR2.

DR5 Set N ··= A \ I . If N = ∅, then terminate; otherwise,
set I ··= I ∪N , set A ··= ∅, for each rule in Π of the form
(4), evaluate rule (5) instantiated for each 1 ≤ i ≤ n, and
repeat step DR5. This step is called (re)insertion.
Step DR2 was presented by Gupta, Mumick, and Sub-

rahmanian (1993) as materialisation of a program consisting
of rulesHD ← BI

1 ∧ . . . ∧BI
i−1 ∧BD

i ∧BI
i+1 ∧ . . . ∧BI

n,
and analogously for steps DR4 and DR5. Our more explicit
presentation style allows us to discuss certain issues.

Table 1: Running example
Program Πex

TA(x)← Person(x) ∧ Tutor(x, y) ∧ Course(y) (R1)
Person(x)← TA(x) (R2)
Person(x)← Tutor(x, y) (R3)
Course(y)← Tutor(x, y) (R4)

The set of explicitly given facts E
Tutor(john,math) (E1)
Tutor(peter ,math) (E2)

Tutor(john, phys) (E3)

The derived facts from I = Π∞ex(E)

Person(peter) (I1)
TA(peter) (I2)
Course(math) (I3)

Person(john) (I4)
TA(john) (I5)
Course(phys) (I6)

Problems with Overdeletion
As we have suggested in the introduction, the DRed algo-
rithm can be inefficient on datasets where facts have more
than one derivation and where they derive many other facts.
This is often the case in programs obtained from OWL on-
tologies. To demonstrate the relevant issues, in Table 1 we
present an example derived from the well-known University
Ontology Benchmark (UOBM) (Ma et al. 2006).

Ontologies often define classes using axioms of the form
(in description logic syntax) A ≡ B u ∃R.C. For example,
axiom TA ≡ Person u ∃Tutor .Course in UOBM says that
teaching assistant (TA) is a person that teaches a course.
OWL 2 RL systems translate such axioms into datalog by
dropping existentially quantified parts; for example, Grosof
et al. (2003) translate this axiom into rules (R1) and (R2).
Moreover, UOBM also says that Person and Course are
the domain and range, respectively, of Tutor , giving rise to
rules (R3) and (R4), respectively. Rule (R1) could clearly be
simplified to TA(x)← Tutor(x, y); however, doing this in
practice is nontrivial because of interactions between many
rules. One can readily check that materialising facts (E1)–
(E3) w.r.t. Πex produces facts (I1)–(I6).

When the DRed algorithm is used to delete (E1), from
(E1) step DR2 derives (I4) by (R3), (I3) by (R4), and (I5)
by (R1); then, from (I3) it derives (I2) by (R1); and from
(I2) it derives (I1) by (R2). Thus, all implicit facts apart
from (I6) get deleted in step DR3, only to be rederived
in steps DR4 and DR5. This problem is exacerbated by
the fact that Person occurs in many axioms of the form
Ai ≡ Person u ∃Ri.Ci; hence, the effects of deleting (a
fact that implies) a Person fact often propagate through I .

Improving Overdeletion via Backward Chaining
In our algorithm, we improve step DR2 by removing from
N all facts with a proof from E \ E−. In our example, fact
(E1) does not have such a proof, so we add (E1) to N and
D; then, step DR2 derives (I3)–(I5). If we can now show that
these facts have a proof from E \ E−, no further overdele-
tion is needed; in fact, steps DR3 and DR4 become redun-

dant since the deletion step is ‘exact’. Hence, we can remove
the unproved facts from I and process E+ using step DR5.

Our B/F algorithm uses backward chaining to find a proof
of, say, (I4) from E \ E−. To this end, we try to match
the heads of the rules in Π to (I4); for example, match-
ing the head of (R3) produces a partially instantiated rule
r1 = Person(john)← Tutor(john, y). We then evaluate
the body of r1 against I to obtain supporting facts for (I4);
fact (E3) is one such fact. We now recursively prove (E3),
which is trivial since E \ E− contains (E3); but then, by r1
we have a proof of (I4), as required. Note that the head of
rule (R2) also matches (I4); however, since we already have
a proof of (I4), we can stop the search.

This idea, however, may not terminate due to cyclic de-
pendencies between the rules. For example, if we first match
(I4) to the head of (R2), we will recursively try to prove
(I5); but then, (I5) matches with the head of (R1) so we will
recursively try to prove (I4), which creates a cycle. To ad-
dress this problem, we apply backward chaining to each fact
only once, collecting all such facts in a set C of checked
facts. Backward chaining thus does not directly prove facts,
but only determines the subset C ⊆ I of facts whose status
needs to be determined. We compute the set P of facts with
a proof from E \ E− by forward chaining: we use rules (7)
for each relation R in Π to obtain the directly proved facts
C ∩ (E \ E−), and we use rule (8) for each rule in Π of the
form (4) to obtain the indirectly proved facts.

R(~x)P ← R(~x)C ∧R(~x)E (7)

HP ← HC ∧BP
1 ∧ . . . ∧BP

n (8)

Such a combination of backward and forward chaining en-
sures termination, and we explore the candidate proofs for
each fact only once, rather than all proof permutations.

The B/F algorithm thus essentially exchanges forward
chaining over the consequences of E− in step DR2 for for-
ward chaining over the support of E− using rules (7)–(8).
Our experiments in Section 5 show that the latter set of facts
is often smaller than the former set; thus, since fewer facts
give rise to fewer derivations, the B/F algorithm often out-
performs the DRed algorithm in practice.

Repeating Derivations
Repeated derivations are a secondary source of inefficiency
in the DRed algorithm. In step DR5, consider a rule r ∈ Π
of the form (4) and a substitution τ that matches two (not
necessarily distinct) facts Fi, Fi′ ∈ N to body atoms Bi and
Bi′ , i < i′, of r—that is, Biτ = Fi and Bi′τ = Fi′ ; then,
applying (5) for i and i′ derives HAτ twice. We can avoid
this as in the seminaı̈ve algorithm (Abiteboul, Hull, and
Vianu 1995) by matching atomsB1, . . . , Bi−1 of rules (5) in
I \N , rather than in I; then, we derive HAτ when evaluat-
ing rule (5) for i, but not for i′ (sinceFi ∈ N soFi 6∈ I \N).

Step DR2 is even more inefficient. Consider two sets of
facts N1 and N2 where N1 is processed before N2, a rule
r ∈ Π, and a substitution τ that matches two facts Fi ∈ N1

and Fi′ ∈ N2 to body atoms Bi and Bi′ , i < i′, of r; since
N1 ⊆ I and N2 ⊆ I , fact HAτ is derived twice. Thus, each
time we process some set N , we can repeat derivations

not only with facts in N (as in step DR5), but also in D.
Note that this has no correspondence in the seminaı̈ve algo-
rithm, so we developed a novel ‘inverse seminaı̈ve’ solution.
In particular, we maintain a set of facts O that we extend
with N after each iteration in step DR2 (i.e., O = D \N);
moreover, we match atoms B1, . . . , Bi−1 of rules (5) in
I \ (O ∪N) and atoms Bi+1, . . . , Bn in I \O. Thus, once
we add a fact to O, we do not consider it again in (5).

4 The Backward/Forward Algorithm
We now formalise our ideas from Section 3. The Back-
ward/Forward (B/F) algorithm takes as input a program Π,
sets of facts E and E−, and the materialisation I = Π∞(E)
of E w.r.t. Π, and it updates I to Π∞(E \ E−). We do not
discuss fact addition since step DR5 can handle it efficiently.

We use several auxiliary sets of facts. For X a set and F
a fact, X.add(F) adds F to X , and X.delete(F) removes F
from X; both operations return true if X was changed. To
facilitate iteration over these sets, X.next returns a fresh fact
from X , or ε if all facts have been returned.

To evaluate rule bodies in a set of facts X , we use a
query answering mechanism that allows us to prevent re-
peated derivations. An annotated query is a conjunction
Q = B./1

1 ∧ . . . ∧B./k

k where eachBi is an atom and anno-
tation ./i is either empty or equal to 6=. For X and Y sets of
facts and σ a substitution, X.eval(Q,Y, σ) returns a set con-
taining each smallest substitution τ such that σ ⊆ τ and, for
1 ≤ i ≤ k, (i) Biτ ∈ X if ./i is empty or (ii) Biτ ∈ X \ Y
if ./i is 6=; intuitively, τ extends σ so that each B./i

i is
matched in X or X \ Y , depending on the annotation ./i.
Any join algorithm can implement this operation; for exam-
ple, Motik et al. (2014) describe how to use index nested
loop join. We often write [Z \ W] instead of X , meaning
that Q is evaluated in the difference of sets Z and W .

We must also be able to identify the rules in Π whose head
atom or some body atom matches a given fact F . For the for-
mer, Π.matchHead(F) returns a set containing each tuple
〈r,Q, σ〉 where r ∈ Π is a rule of the form (4), σ is a substi-
tution such that Hσ = F , and Q = B1 ∧ . . . ∧Bn. For the
latter, Π.matchBody(F) returns a set containing each tuple
〈r,Q, σ〉 where r ∈ Π is a rule of the form (4), σ is a substi-
tution such that Biσ = F for some 1 ≤ i ≤ n, and Q is

Q = B 6=1 ∧ . . . ∧B
6=
i−1 ∧Bi+1 ∧ . . . ∧Bn. (9)

For efficiency, the rules in Π should be indexed; for example,
one can use the indexing scheme by Motik et al. (2014).

Intuitively, each 〈r,Q, σ〉 ∈ Π.matchHead(F) identifies
a match of F to the head of r ∈ Π; and for each substi-
tution τ ∈ I.eval(Q, ∅, σ), atoms bi(r)τ are candidates for
deriving F from the updated set E via rule r. Analogously,
each 〈r,Q, σ〉 ∈ Π.matchBody(F) identifies a match of F
to some body atomBi in r, and each τ ∈ X.eval(Q, {F}, σ)
matches the body of r in X so that atoms B1, . . . , Bi−1 are
not matched to F . The latter prevents repeated derivations:
{F} corresponds to the set N in steps DR2 and DR5, so
the annotation on B 6=j for 1 ≤ j < i effectively prevents Bj

from being matched to N = {F}.
The B/F algorithm is given in Algorithm 1. We first update

E and initialise set D (line 2). To identify deleted facts, in

Algorithm 1 B/F−delete()
Global variables:
E: explicit facts E−: facts to delete from E
Π: a program I: Π∞(E)
C: checked facts D: examined consequences of E−
Y : delayed facts O: the processed subset of D
P : proved facts V : the processed subset of P
S: disproved facts

1: C ··= D ··= P ··= Y ··= O ··= S ··= V ··= ∅
2: for each fact F ∈ E− do E.delete(F) and D.add(F)

3: while (F ··= D.next) 6= ε do
4: checkProvability(F)
5: for each G ∈ C \ P do S.add(G)

6: if F 6∈ P then
7: for each 〈r,Q, σ〉 ∈ Π.matchBody(F) do
8: for each τ ∈ [I \O].eval(Q, {F}, σ) do
9: D.add(h(r)τ)

10: O.add(F)

11: for each F ∈ D \ P do I.delete(F)

Algorithm 2 checkProvability(F)

12: if C.add(F) = false then return
13: saturate()
14: if F ∈ P then return
15: for each 〈r,Q, σ〉 ∈ Π.matchHead(F) do
16: for each τ ∈ [I \ S].eval(Q, ∅, σ) do
17: for each i with 1 ≤ i ≤ len(r) do
18: checkProvability(bi(r)τ)

19: if F ∈ P then return
Algorithm 3 saturate()

20: while (F ··= C.next) 6= ε do
21: if F ∈ E or F ∈ Y then
22: P.add(F)

23: while (F ··= P.next) 6= ε do
24: if V.add(F) then
25: for each 〈r,Q, σ〉 ∈ Π.matchBody(F) do
26: for each τ ∈ V.eval(Q, {F}, σ) do
27: H ··= h(r)τ
28: if H ∈ C then P.add(H)
29: else Y.add(H)

lines 3–10 we repeatedly extract a fact F fromD (line 3) and
apply rules (5) (lines 7–9); this is similar to step DR2 of the
DRed algorithm, but with three important differences. First,
we use Algorithm 2 to determine whetherF has a proof from
the updated set E; if so, we do not apply the rules (line 6).
Second, our ‘inverse seminaı̈ve’ strategy from Section 3 pre-
vents repeated derivations: we exclude the set of processed
factsO from the matches in line 8, and we add F toO in line
10. Third, we identify the set S of disproved facts (line 5) to
optimise backward chaining. After we process all facts in
D, all facts that need to be deleted are contained in D, and
all facts of D that have a proof from E′ are contained in P ;
hence, in line 11 we simply remove D \ P from I .

Algorithm 2 implements backward chaining as we out-
lined in Section 3. In line 12 we ensure that each fact F is

checked only once, and in line 13 we update P to contain
all facts in C that are provable from E using rules (7)–(8).
Then, we identify each rule r ∈ Π whose head atom matches
F (line 15), we instantiate the body atoms of r (line 16),
and we recursively examine each instantiated body atom of
r (line 18). As soon as F becomes proved (which can hap-
pen after a recursive call in line 18), we can stop enumerat-
ing supporting facts (lines 14 and 19). Furthermore, a match
τ of the body atoms of r where some bi(r)τ has been dis-
proved (i.e., bi(r)τ ∈ S) cannot contribute to a proof of F
from the updated set E; therefore, in line 16 we match the
body of r in [I \ S], rather than in I .

Algorithm 3 implements forward chaining using rules (7)
and (8). Lines 20–22 capture rules (7): we extract a fact F
from C and add it to P if F ∈ E holds. Lines 23–29 capture
rules (8): we extract a fact fromP , identify each relevant rule
r ∈ Π (line 25), match its body atoms (line 26), instantiate
H as h(r)τ (line 27), and add H to P (line 28); to prevent
repeated derivations, we accumulate all extracted facts in set
V (line 24) and use V to match the body atoms of rules
(line 26). Moreover, the body of rule (8) is ‘guarded’ (i.e.,
H should be added to P only if H ∈ C holds) to prevent
proving facts not in C. Thus, if H 6∈ C holds in line 27, we
add H to a set Y of delayed facts (line 29); then, if H later
gets added to C, we add H to P in line 22.

Theorem 1, whose proof is given in the appendix, shows
that the B/F algorithm correctly incrementally updates I ,
and that Algorithms 1 and 3 do not repeat derivations.

Theorem 1. When applied to a program Π, sets of facts E
and E−, and set I ··= Π∞(E), Algorithm 1 terminates and
updates I to Π∞(E \ E−). Each combination of r and τ is
considered at most once, in line 9 or 27, but not both.

Various sets used in the B/F algorithm can be efficiently
implemented by associating with each fact F ∈ I a bit-mask
that determines whether F is contained in a particular set.
Then, an annotated query Q can be evaluated in these sets
by evaluating Q in I and skipping over facts as appropriate.

To compare B/F with DRed, let Md be the number of
derivations from initial materialisation. By the last point
of Theorem 1, during deletion propagation and forward
chaining combined the B/F algorithm performs at most Md

derivations, and it can also explore Md rule instances dur-
ing backward chaining. In contrast, the DRed algorithm per-
forms at most Md derivations in step DR2, and also at most
Md derivations during steps DR4 and DR5 combined. Both
algorithms can thus perform at most 2Md derivations, but
what constitutes a worst case is quite different: we expect
B/F to efficiently delete facts with shallow and/or multiple
proofs, whereas we expect DRed to efficiently delete facts
not participating in many derivations. Finally, consider the
limit when all explicit facts are deleted. Then, DRed per-
forms Md derivations in step DR2, and then it tries to re-
prove (unsuccessfully) all facts in step DR4. In contrast, B/F
performs Md derivations during deletion propagation (just
like DRed), but it also explores at most Md rule instances
during backward chaining (it need not explore all of them
because disproved facts are excluded in line 16); the latter is
likely to be less efficient than step DR4 of DRed.

5 Evaluation
Goals We evaluated our approach against three goals. Our
first goal was to compare the performance of the B/F and
the DRed algorithms. To focus on ‘core differences’, we
optimised DRed to eliminate redundant derivations as we
discussed in Section 3. In addition to comparing the run-
ning times, we also compared the ‘overall work’ in an
implementation-independent way by counting the facts that
each algorithm examines (i.e., the checked facts in B/F and
the overdeleted facts in DRed) and counting the derivations
(i.e., rule applications) that the algorithms perform at vari-
ous stages. Fact derivation is not cheap due to index lookup
and it constitutes the bulk of the ‘work’ in both cases.

Our second goal was motivated by an observation that, as
|E−| increases, computing Π∞(E \ E−) from scratch be-
comes easier, whereas incremental update becomes harder;
hence, there is always point where the former becomes more
efficient than the latter. Thus, to estimate practicality of our
approach, we identified an ‘equilibrium’ point E−eq at which
materialisation from scratch takes roughly the same time as
the B/F algorithm; we hoped to show that our algorithm can
handle E− of nontrivial size (compared to E).

Given such an ‘equilibrium’ point E−eq , our third goal was
to investigate how the two algorithms perform on subsets of
E−eq of various size. This is interesting because incremental
update algorithms are often used for small sets E−.

Selecting Facts to Delete As we have already suggested,
the choice of the facts in E− can significantly affect the per-
formance of the two algorithms. Thus, to estimate typical
performance, we would have to run the algorithms on many
random subsets of E, which is infeasible since each run can
take a long time. However, we expect the ‘equilibrium’ point
E−eq to be sufficiently large to contain a mixture of ‘easy’
and ‘hard’ facts, so the performance of the two algorithms
should not be greatly influenced by the actual choices. Con-
sequently, we randomly selected just one ‘equilibrium’ point
E−eq . Furthermore, for practical reasons, we randomly se-
lected subsets of E−eq containing 100 facts, 5000 facts, and
25%, 50%, and 75% of E−eq . Each of these sets contains the
previous one, so our test results for larger inputs are more
likely to be indicative of ‘average’ behaviour.

Test Setting Both algorithms can be used with general dat-
alog, but we do not know of any general datalog datasets.
In contrast, the Semantic Web community has produced
numerous large, publicly available datasets, and ontology
query answering is a prominent datalog application. Hence,
we used several real-world and synthetic Semantic Web
datasets, and we implemented the two algorithms in RDFox
(Motik et al. 2014)—a state-of-the-art, RAM-based system
for the management of RDF data. Parallelising our algorithm
is out of scope of this paper, so we used the single-threaded
mode of RDFox. We used a server with 256 GB of RAM
and two Intel Xeon E5-2670 CPUs at 2.60GHz running
Fedora release 20, kernel version 3.15.10-200.fc20.x86 64.
Our system and datasets are available online.1

1https://krr-nas.cs.ox.ac.uk/2015/AAAI/RDFox/Incremental

Table 2: Experimental results

Dataset |E−| |I \ I′|
Rematerialise DRed B/F

Time Derivations Time Derivations Time Derivations
(s) Fwd (s) |D| DR2 DR4 DR5 (s) |C| Bwd Sat Del Prop

L
U

B
M

-1
k-

L
100 113 139.4 212.5M 0.0 1.0k 1.1k 0.8k 1.0k 0.0 0.5k 0.2k 0.3k 0.2k

|E| = 133.6M 5.0k 5.5k 101.8 212.5M 0.2 55.5k 67.2k 46.9k 59.8k 0.2 23.0k 9.3k 13.7k 7.4k
|I| = 182.4M 2.5M 2.7M 138.5 208.8M 39.4 10.3M 15.2M 6.6M 11.5M 32.8 10.0M 4.1M 5.6M 3.7M
Mt = 121.5s 5.0M 5.5M 91.8 205.0M 54.8 17.8M 26.3M 10.5M 18.9M 62.3 18.8M 7.8M 10.1M 7.5M
Md = 212.5M 7.5M 8.3M 89.2 201.3M 71.5 24.3M 35.5M 13.6M 24.3M 85.4 26.7M 11.0M 14.0M 11.2M

10.0M 11.0M 99.5 197.5M 127.9 30.0M 43.1M 15.9M 28.1M 102.2 34.1M 14.0M 17.4M 15.0M

U
O

B
M

-1
k-

U
o 100 160 3482.0 3.6G 8797.6 1.8G 2.6G 53.2M 2.6G 5.4 0.8k 0.5k 1.3k 0.5k

|E| = 254.8M 5.0k 85.2k 3417.8 3.6G 9539.3 1.8G 2.6G 53.2M 2.6G 28.2 105.9k 17.9k 42.1k 104.1k
|I| = 2.2G 17.0M 130.9M 3903.1 3.4G 8934.3 1.8G 2.7G 63.7M 2.5G 988.8 175.8M 47.6M 104.0M 196.7M
Mt = 5034.0s 34.0M 269.0M 4084.1 3.2G 9492.5 1.9G 2.8G 68.4M 2.4G 1877.2 340.7M 87.5M 182.3M 401.1M
Md = 3.6G 51.0M 422.8M 4010.0 3.0G 10659.3 1.9G 2.9G 71.5M 2.2G 2772.7 513.7M 125.2M 246.8M 622.0M

68.0M 581.4M 3981.9 2.8G 11351.6 1.9G 2.9G 73.3M 2.1G 3737.3 687.0M 162.5M 289.5M 848.6M

C
la

ro
s-

L

100 212 62.9 128.6M 0.0 0.8k 1.0k 0.2k 0.5k 0.0 0.6k 0.3k 0.7k 0.5k
|E| = 18.8M 5.0k 11.3k 62.8 128.6M 0.4 37.8k 50.7k 10.9k 23.9k 0.4 29.1k 18.8k 35.3k 26.8k
|I| = 74.2M 0.6M 1.3M 62.3 125.6M 32.3 4.1M 5.5M 1.1M 2.5M 14.9 3.1M 2.0M 3.6M 3.0M
Mt = 78.9s 1.2M 2.6M 61.2 122.6M 53.2 7.8M 10.8M 2.0M 4.8M 33.6 6.1M 3.8M 6.7M 6.0M
Md = 128.6M 1.7M 4.0M 60.5 119.5M 73.6 11.4M 15.9M 2.8M 6.8M 47.8 8.9M 5.6M 9.5M 9.1M

2.3M 5.5M 60.0 116.3M 91.0 14.8M 20.9M 3.6M 8.6M 60.6 11.7M 7.3M 12.0M 12.3M

C
la

ro
s-

L
E

100 0.5k 3992.8 12.6G 0.0 1.3k 2.0k 0.3k 0.9k 0.0 1.0k 0.7k 1.0k 1.1k
|E| = 18.8M 2.5k 178.9k 5235.1 12.6G 8077.4 5.5M 11.7G 176.6k 11.7G 10.3 216.4k 161.2k 8.8M 320.0k
|I| = 533.7M 5.0k 427.5k 4985.1 12.6G 7628.2 6.0M 11.7G 186.0k 11.7G 16.5 485.6k 369.0k 8.9M 769.3k
Mt = 4024.5s 7.5k 609.6k 4855.0 12.6G 7419.1 6.5M 11.7G 193.9k 11.7G 19.5 683.4k 516.8k 9.0M 1.1M
Md = 12.9G 10.0k 780.8k 5621.3 12.6G 7557.9 6.8M 11.7G 207.6k 11.7G 3907.2 6.0M 723.0M 11.7G 16.9M

Test Datasets Table 2 summarises the properties of the
four datasets we used in our tests.

LUBM (Guo, Pan, and Heflin 2005) is a well-known RDF
benchmark. We extracted the datalog fragment of the LUBM
ontology as described by Grosof et al. (2003), providing us
with the ‘lower bound’ on the ontology’s consequences. We
generated the data for 1000 universities, and we designate
the resulting dataset as LUBM-1k-L.

UOBM (Ma et al. 2006) extends LUBM. Instead of the
datalog fragment of the UOBM ontology, we used the ‘up-
per bound’ datalog program by Zhou et al. (2013) that en-
tails the UOBM ontology. This program is interesting be-
cause facts in the materialisation often have many deriva-
tions, and it was already used by Motik et al. (2014) to
test RDFox. The bodies of several rules in the program by
Motik et al. (2014) contain redundant atoms; for example,
R(x, y) ∧R(x, y′)→ A(x). This introduces a source of in-
efficiency that would not allow us to effectively compare the
two algorithms, so we removed all such atoms manually ob-
taining the ‘upper bound optimised’ program. We generated
data for 1000 universities, and we designate the resulting
dataset as UOBM-1k-Uo.

Claros integrates information about major art collections
in museums and research institutes. We used two Claros
variants: Claros-L uses the datalog subset of the Claros on-
tology, and Claros-LE extends Claros-L with several ‘hard’
rules that lead to multiple derivations of facts.

Motik et al. (2014) describe all of these datasets in more
detail. In addition to the above mentioned optimisation of
UOBM, in this paper we do not axiomatise owl:sameAs as

a congruence relation: derivations with owl:sameAs tend to
proliferate so an efficient incremental algorithm would have
to treat this property directly; we leave developing such an
extension to our future work. Please note that omitting the
axiomatisation of owl:sameAs has a significant impact on
materialisation times, so the times presented in this paper
are not comparable to the ones given by Motik et al. (2014).

Results Table 2 summarises our results. For each dataset,
column ‘Dataset’ shows the numbers of explicit (|E|) and
implicit (|I|) facts, and the time (Mt) and the number of
derivations (Md) for materialisation. Columns |E−| and
|I \ I ′| show the numbers of removed explicit and implicit
facts, respectively. For rematerialisation, we show the time
and the number of derivations. For DRed, we show the time,
the size of set D after step DR2, and the numbers of deriva-
tions in steps DR2, DR4, and DR5. Finally, for B/F, we
show the time, the size of set C upon algorithm’s termina-
tion, the number of rule instances considered in backward
chaining in line 16, the number of forward derivations in
line 27, and the number of forward derivations in line 8.

Discussion As one can see from the table, the B/F algo-
rithm consistently outperformed the DRed algorithm, with
minor improvements for LUBM-1k-L and Claros-L, to up
to orders of magnitude for UOBM-1k-Uo and Claros-LE. In
all cases, B/F considered fewer facts for possible deletion
than DRed, with the difference reaching an order of magni-
tude in the case of Claros-LE. The reduction in the number
of considered facts had a direct impact on the number of
forward derivations, which can be seen as ‘core operations’

for both algorithms. The correspondence between consid-
ered facts and derivations can, however, be far from linear
and it heavily depends on the program and the facts deleted.

On LUBM-1k-L and Claros-L, facts are easy to delete and
both algorithms scale well. In contrast, on UOBM-1k-Uo
and Claros-LE scalability deteriorates more abruptly. The
problems in these two cases are caused by large cliques of
interconnected constants. For example, the UOBM ontology
contains a symmetric and transitive relation :hasSameHome-
TownWith, and Claros-LE contains a similar relation :relat-
edPlaces. Let T be such a relation; then, for all constants a
and b connected in E via zero or more T -steps, materialisa-
tion I contains the direct T -edges between a and b; given n
such constants, I contains n2 edges derived via n3 deriva-
tions, and the latter largely determines the materialisation
time. Now consider deleting an explicit fact T (a, b).

Regardless of whether T (a, b) still holds after deletion,
the DRed algorithm computes in step DR2 all consequences
of T (a, b), which involve all facts T (c, d) where c and d be-
long to the clique of a and b; doing so requires a cubic num-
ber of derivations. Next, in steps DR4 and DR5 the algo-
rithm rederives the parts of the original clique that ‘survive’
the deletion, and this also requires a number of derivations
that is cubic in the ‘surviving’ clique size(s). Hence, regard-
less of whether and by how much the clique changes, the
DRed algorithm performs as many derivations as during ini-
tial materialisation and rematerialisation combined, which
explains why the performance of DRed on UOBM-1k-Uo
and Claros-LE is independent of |E−|.

The performance of the B/F algorithm greatly depends on
whether T (a, b) holds after deletion. If that is the case, the
algorithm can sometimes find an alternative proof quickly;
for example, if E also contains T (b, a) and if we explore
rule instance T (a, b)← T (b, a) first, we can prove T (a, b)
in just one step. The effectiveness of this depends on the
order in which instantiated rule bodies are considered in
line 16, so a good heuristic can considerably improve the
performance. Now assume that T (a, b) does not hold after
deletion. Then for every two elements c and d that remain in
the clique of b after deletion (the case when they remain in
the clique of a is symmetric), B/F adds T (c, d) to C. Indeed,
to disprove T (a, b), we must examine all rule instances that
derive T (a, b); but then, T (a, b)← T (a, c) ∧ T (c, b) is one
such rule instance, so we add T (a, c) to C; then, to disprove
T (a, c), we add T (c, a) to C; and, to disprove T (c, a), we
consider T (c, a)← T (c, d) ∧ T (d, a) and add T (c, d) to C.
Furthermore, T (d, a) and T (a, c) do not hold after deletion,
so T (c, d) is added to D during deletion propagation. But
then, the algorithm repeats all derivations from initial ma-
terialisation during deletion propagation and forward chain-
ing combined, and it repeats some derivations from initial
materialisation during backward chaining (due to pruning in
line 19, not all derivations are explored necessarily). That
is why B/F performs well on Claros-LE with 7.5k deleted
facts, but not with 10.0k facts: the :relatedPlaces-cliques
‘survive’ in the former case, but in the latter case one clique
shrinks by one vertex. Moreover, the deleted facts touch sev-
eral cliques, some of which ‘survive’ even in the 10.0k case,
so B/F outperforms DRed on this input.

Although the DRed algorithm can outperform the B/F al-
gorithm, the latter will be more efficient when it can eas-
ily produce proofs for facts. Our experimental results con-
firm this conjecture; in fact, the B/F algorithm outperforms
the DRed algorithm up to the ‘equilibrium’ point E−eq on all
datasets; on Claros-L, this involves deleting 12% of the ex-
plicit facts, which is considerably more than what is usually
found in practical incremental update scenarios. Thus, our
results suggest that the B/F algorithm can be an appropriate
choice in many practical scenarios.

6 Conclusion
We have presented a novel B/F algorithm for incremen-
tally updating datalog materialisations. In our evaluation,
B/F consistently outperformed the state of the art DRed
algorithm—by several orders of magnitude in some cases.
Our algorithm can thus significantly extend the applicability
of materialisation techniques, particularly in settings where
data is subject to large and/or frequent changes. We see
two main challenges for our future work. First, we will de-
velop a parallel version of our algorithm to exploit many
cores/CPUs available in modern systems. Second, we will
extend the algorithm to handle the owl:sameAs property.

Acknowledgements
This work was supported by the EPSRC projects MaSI3,
Score! and DBOnto, and by the EU FP7 project Optique.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison Wesley.
Barbieri, D. F.; Braga, D.; Ceri, S.; Valle, E. D.; and Gross-
niklaus, M. 2010. Incremental Reasoning on Streams and
Rich Background Knowledge. In Proc. ESWC, 1–15.
Bishop, B.; Kiryakov, A.; Ognyanoff, D.; Peikov, I.; Tashev,
Z.; and Velkov, R. 2011. OWLIM: A family of scalable
semantic repositories. Semantic Web 2(1):33–42.
de Kleer, J. 1986. An Assumption-Based TMS. Artificial
Intelligence 28(2):127–162.
Doyle, J. 1979. A Truth Maintenance System. Artificial
Intelligence 12(3):231–272.
Grosof, B. N.; Horrocks, I.; Volz, R.; and Decker, S. 2003.
Description Logic Programs: Combining Logic Programs
with Description Logic. In Proc. WWW, 48–57.
Guo, Y.; Pan, Z.; and Heflin, J. 2005. LUBM: A benchmark
for OWL knowledge base systems. Journal of Web Seman-
tics 3(2–3):158–182.
Gupta, A., and Mumick, I. S. 1995. Maintenance of Ma-
terialized Views: Problems, Techniques, and Applications.
IEEE Data Engineering Bulletin 18(2):3–18.
Gupta, A.; Katiyar, D.; and Mumick, I. S. 1992. Counting
solutions to the View Maintenance Problem. In Proc. of the
Workshop on Deductive Databases, 185–194.
Gupta, A.; Mumick, I. S.; and Subrahmanian, V. S. 1993.
Maintaining Views Incrementally. In Proc. SIGMOD, 157–
166.

Harrison, J. V., and Dietrich, S. W. 1992. Maintenance of
materialized views in a deductive database: An update prop-
agation approach. In Proc. of the Workshop on Deductive
Databases, 56–65.

Horrocks, I.; Patel-Schneider, P. F.; Boley, H.; Tabet, S.;
Grosof, B.; and Dean, M. 2004. SWRL: A Semantic Web
Rule Language Combining OWL and RuleML. W3C Mem-
ber Submission.

Kazakov, Y., and Klinov, P. 2013. Incremental Reasoning in
OWL EL without Bookkeeping. In Proc. ISWC, 232–247.

Küchenhoff, V. 1991. On the Efficient Computation of the
Difference Between Consecutive Database States. In Proc.
DOOD, 478–502.

Ma, L.; Yang, Y.; Qiu, Z.; Xie, G. T.; Pan, Y.; and Liu, S.
2006. Towards a Complete OWL Ontology Benchmark. In
Proc. ESWC, 125–139.

Motik, B.; Cuenca Grau, B.; Horrocks, I.; Wu, Z.; Fokoue,
A.; and Lutz, C. 2012. OWL 2: Web Ontology Language
Profiles (Second Edition). W3C Recommendation.

Motik, B.; Nenov, Y.; Piro, R.; Horrocks, I.; and Olteanu,
D. 2014. Parallel Materialisation of Datalog Programs in
Centralised, Main-Memory RDF Systems. In Proc. AAAI,
129–137.

Nicolas, J.-M., and Yazdanian, K. 1983. An outline of bd-
gen: A deductive dbms. In Proc. IFIP Congress, 711–717.

Ognyanov, D., and Velkov, R. 2014. Correcting inferred
knowledge for expired explicit knowledge. US Patent App.
13/924,209.

Ren, Y., and Pan, J. Z. 2011. Optimising ontology stream
reasoning with truth maintenance system. In Proc. CIKM,
831–836.

Staudt, M., and Jarke, M. 1996. Incremental Maintenance
of Externally Materialized Views. In Proc. VLDB, 75–86.

Stocker, M., and Smith, M. 2008. Owlgres: A Scalable OWL
Reasoner. In Proc. OWLED, 26–27.

Urbani, J.; Kotoulas, S.; Maassen, J.; van Harmelen, F.; and
Bal, H. E. 2012. WebPIE: A Web-scale Parallel Inference
Engine using MapReduce. Journal of Web Semantics 10:59–
75.

Urbani, J.; Margara, A.; Jacobs, C. J. H.; van Harmelen, F.;
and Bal, H. E. 2013. Dynamite: Parallel materialization of
dynamic RDF data. In Proc. ISWC, 657–672.

Urpı́, T., and Olivé, A. 1992. A method for change compu-
tation in deductive databases. In Proc. VLDB, 225–237.

Wu, Z.; Eadon, G.; Das, S.; Chong, E. I.; Kolovski, V.;
Annamalai, M.; and Srinivasan, J. 2008. Implementing
an Inference Engine for RDFS/OWL Constructs and User-
Defined Rules in Oracle. In Proc. ICDE, 1239–1248.

Zhou, Y.; Cuenca Grau, B.; Horrocks, I.; Wu, Z.; and Baner-
jee, J. 2013. Making the most of your triple store: query
answering in OWL 2 using an RL reasoner. In Proc. WWW,
1569–1580.

A Proof of Theorem 1
Let Π be a program, and let U be a set of facts. A derivation
tree for a fact F from U is a finite tree T such that

• the root of T is labelled with F ,

• each leaf of T is labelled with a fact from E, and

• for each nonleaf node of T labelled with fact H ′ whose
n children are labelled with facts B′1, . . . , B

′
n, a rule

r ∈ Π of the form (4) and a substitution τ exist such that
H ′ = Hτ , and B′i = Biτ for each 1 ≤ i ≤ n.

The height of T is the length of its longest branch, and
T is smallest if no derivation tree T ′ for F from U exists
of height smaller than the height of T . The materialisation
Π∞(U) of U w.r.t. Π is the smallest set containing each fact
F for which there exists a derivation tree from U . This defi-
nition of Π∞(U) is equivalent to the one in Section 2.

In the rest of this section, we fix a datalog program Π and
sets of facts E and E−. Moreover, we set I ··= Π∞(E), we
set E′ ··= E \ E−, and we set I ′ ··= Π∞(E \ E−). Finally,
we let Π′ be the datalog program containing rule (7) for each
relation R in Π, as well as rule (8) for each rule in Π of the
form (4). We next recapitulate Theorem 1 and present its
proof which, for convenience, we split into several claims.
The theorem follows from Claims 1, 5, 6, and 7.

Theorem 1. When applied to a program Π, sets of facts E
and E−, and set I ··= Π∞(E), Algorithm 1 terminates and
updates I to Π∞(E \ E−). Each combination of r and τ is
considered at most once, in line 9 or 27, but not both.

Claim 1. Algorithm 3 ensures that set P contains all conse-
quences of Π′ w.r.t. sets E and C. Furthermore, each com-
bination of r and τ is considered in line 27 at most once.

Proof (Sketch). Algorithm 3 is a straightforward modifica-
tion of the materialisation algorithm by Motik et al. (2014)
applied to program Π′, so this claim can be proved by a
straightforward modification of the proof of Theorem 1 by
Motik et al. (2014); a minor difference is that Algorithm 3
accumulates the facts extracted from P in a set V in line 24
and then evaluates rule bodies in V in line 26 to not repeat
derivations. We omit the details for the sake of brevity.

We next introduce an important invariant on C and P .

Claim 2. Assume that Algorithm 2 is applied to some fact
F , set of facts S such that S ∩ I ′ = ∅, and sets of facts C
and P that initially satisfy the following invariant (♦):

for each fact G ∈ C, either G ∈ P or, for each deriva-
tion tree T for G from E′, set C contains the facts la-
belling all children (if any exist) of the root of T .

Invariant (♦) is preserved by the algorithm’s execution.

Proof. The proof is by induction on recursion depth of Al-
gorithm 2. Assume that the algorithm is applied to some F ,
C, P , and S as in the claim. For the induction base, (♦)
clearly remains preserved if the algorithm returns in line 12.

For the induction step, the induction hypothesis ensures
that invariant (♦) holds after each recursive call in line 18
for each fact different from F . Furthermore, if the algorithm

returns in line 14 or 19, invariant (♦) clearly also holds for
F . Otherwise, consider an arbitrary derivation tree T for F
from E′, and let B1, . . . , Bn be the children (if any exist)
of the root of T . Since S does not contain any fact prov-
able from E′, we have Bi 6∈ S for each 1 ≤ i ≤ n. Further-
more, by the definition of the derivation trees, there exists
a rule r ∈ Π and a substitution τ such that h(r)τ = F and
bi(r)τ = Bi for each 1 ≤ i ≤ n = len(r). These r and τ are
considered at some point in lines 23 and 25, and so due
to the recursive calls in line 18 we have that Bi ∈ C for
each 1 ≤ i ≤ n. Thus, invariant (♦) is preserved by the al-
gorithm’s execution, as required.

Calls in line 4 ensure another invariant on C, P , and S.
Claim 3. At any point during execution of Algorithm 1, in-
variant (♦) holds, as well as S ∩ I ′ = ∅ and P = C ∩ I ′.

Proof. The proof is by induction on the number of iterations
of the loop of Algorithm 1. For the induction base, we have
S = C = P = ∅ in line 1, so the claim holds initially.

For the induction step, assume that the claim holds be-
fore the call in line 4. Invariant (♦) remains preserved by
Claim 2. Moreover, Algorithm 3 is called in line 13 after set
C is modified in line 12, so by Claim 1 sets P and C con-
tain the materialisation of Π′. But then, due to the structure
of rules (7) and (8), it should be obvious that P ⊆ C ∩ I ′
holds. We prove P ⊇ C ∩ I ′ by induction on the height h of
a shortest derivation tree of a fact F ∈ (C ∩ I ′) from E′.

• If h = 0, then F ∈ E′; but then, since F ∈ C, we have
F ∈ P due to rules (7), as required.

• Assume that the claim holds for all facts in C ∩ I ′ with
a shortest derivation tree from E′ of height at most h,
and assume that F has a shortest derivation tree from
E′ of height h + 1. By the definition of a derivation
tree, rule r ∈ Π, substitution τ , and facts B1, . . . , Bn ex-
ist such that h(r)τ = F and bi(r)τ = Bi ∈ I ′ for each
1 ≤ i ≤ n = len(r). By invariant (♦), for each 1 ≤ i ≤ n
we have Bi ∈ P ∪ C. Now the height of the smallest
derivation tree for Bi is at most h, so by induction as-
sumption we have Bi ∈ P . But then, due to F ∈ C, rule
(8) in Π′ obtained from r ensures that F ∈ P , as required.

Thus, P = C ∩ I ′ holds after line 4. But then, S ∩ I ′ = ∅
clearly holds after line 5, as required.

We next show that Algorithm 1 correctly identifies all
facts that must be deleted and adds them to set D.
Claim 4. I \ I ′ ⊆ D holds in line 11 of Algorithm 1.

Proof. Consider any fact F ∈ I \ I ′. We prove the claim by
induction on the height h of a smallest derivation tree for F
from E; at least one exists due to F ∈ I . Clearly, F 6∈ E′.
• If h = 0, then F ∈ E holds; but then, with F 6∈ E′, we

have F ∈ E−. Thus, we have F ∈ D due to line 2.
• Assume that the claim holds for all facts in I \ I ′ with

a shortest derivation tree from E of height at most h,
and assume that F has a shortest derivation tree T from
E of height h + 1. Let B1, . . . , Bn be the facts la-
belling the children of the root of T , and let r ∈ Π be

the rule and let τ be the substitution such that h(r)τ = F
and bi(r)τ = Bi for 1 ≤ i ≤ n = len(r). Moreover, let
N = {B1, . . . , Bn} \ I ′; clearly, N 6= ∅ because other-
wise we would have F ∈ I ′. Each element of N has
a smallest derivation tree from E of height at most h,
so by induction assumption we have N ⊆ D. Now let
B ∈ N be the fact that is extracted in line 3 before
any other fact in N \ {B}; at the point when B is ex-
tracted, we have B 6∈ O (since B is added to O only
in line 10). Furthermore, we have B 6∈ P since B does
not have a proof from E′, so the check in line 6 passes.
Now let i ∈ {1, . . . , n} be the smallest integer such that
bi(r)τ = B; then, 〈r,Q, σ〉 ∈ Π.matchBody(B) is con-
sidered in line 7 where Q is the annotated query (9) for
the mentioned i. Moreover, the annotations on Q ensure
that τ ∈ [I \O].eval(Q, {B}, σ) is considered in line 8,
and so F = h(r)τ is added toD in line 9, as required.

Finally, we show that Algorithm 1 computes the incre-
mental update of I with E− without repeating derivations,
and that derivations are not repeated between lines 9 and 27.
Claim 5. Algorithm 1 updates set I to I ′.

Proof. Each fact F extracted from D in line 3 is passed
in line 4 to Algorithm 2, which in line 12 ensures F ∈ C;
consequently, we have D ⊆ C in line 11. Now consider the
execution of Algorithm 1 just before line 11. For an arbi-
trary fact F ∈ I \ I ′, by Claim 4, we have F ∈ D ⊆ C; by
Claim 3 we have F 6∈ P ; and so we have F ∈ D \ P . Con-
versely, for an arbitrary fact F ∈ D \ P , since F ∈ D ⊆ C,
by Claim 3 we have F 6∈ I ′; moreover, since we clearly have
D ⊆ I , we have F ∈ I \ I ′. We thus have I \ I ′ = D \ P ,
so line 11 updates I to I ′, as required.

Claim 6. Each combination of r and τ is considered in
line 9 at most once.

Proof. Assume that a rule r ∈ Π and substitution τ exist that
are considered in line 9 twice, when (not necessarily dis-
tinct) facts F and F ′ are extracted from D. Moreover, let
Bi and Bi′ be the body atoms of r that τ matches to F and
F ′—that is, F = Biτ and F ′ = Bi′τ . Finally, let Q′ be the
annotated query considered in line 7 when atom Bi′ of r is
matched to F ′. We have the following possibilities.

• Assume that F = F ′. Then, Bi and Bi′ must be distinct,
so w.l.o.g. assume that i ≤ i′. But then, queryQ′ contains
atom B 6=i , so τ cannot be returned in line 8 when evaluat-
ing Q′.

• Assume that F 6= F ′ and that, w.l.o.g. F is extracted from
D before F ′. Then, we have F ∈ O due to line 10, and
therefore we have F 6∈ I \O; consequently, τ cannot be
returned in line 8 when evaluating Q′.

Claim 7. Pairs of r and τ that are considered in line 9 are
not considered in line 27, and vice versa.

Proof. For r and τ in line 9, at least some body atom of rτ
does not hold after the update; in contrast, for r and τ in
line 27, all body atoms of rτ hold after the update.

