
On the Properties of Metamodeling in OWL

Boris Motik

University of Manchester

Manchester, UK

bmotik <at> cs.man.ac.uk

August 25, 2007

Abstract

A common practice in conceptual modeling is to separate the con-

ceptual from the data model. Although very intuitive, this approach is

inadequate for many complex domains, in which the borderline between

the two models is not clear-cut. Therefore, OWL Full, the most expres-

sive of the Semantic Web ontology languages, allows us to combine the

conceptual and the data model by a feature we refer to as metamodel-

ing. In this paper, we show that the semantics of metamodeling adopted

in OWL Full leads to the undecidability of basic inference problems due

to the free usage of the built-in vocabulary. Based on this result, we

propose two alternative semantics for metamodeling: the contextual and

the HiLog semantics. We present several examples showing how to use

the latter semantics to axiomatize the interaction between concepts and

metaconcepts. Finally, we show that SHOIQ(D)—the description logic

underlying OWL DL—is still decidable when extended with metamodel-

ing under either semantics.

Keywords: knowledge representation, description logics, metamodeling, decid-

abilty, OWL, Semantic Web

Note: This is an extended version of a paper with the same name that has

been presented at ISWC 2005 [15].

1

1 Introduction

The Web Ontology Language (OWL) [20] is a family of ontology languages

developed and standardized by the World Wide Web Consortium in order to

enable semantic annotation of Web resources. Three variants of OWL with

varying expressive power have been defined. OWL Lite and OWL DL are based

on description logics (DLs)—a family of knowledge representation languages—

SHIF(D) and SHOIN (D), respectively. These DLs are well-understood, both

semantically and computationally, and their basic inference problems are known

to be decidable in ExpTime and NExpTime, respectively. Furthermore, practi-

cal decision procedures for both languages have been developed and successfully

implemented in several reasoners, such as FaCT++ [24], Pellet [19], RACER [6],

or KAON2 [17]. OWL Full is the most expressive of the OWL family of lan-

guages. Its syntax is very similar to OWL DL and OWL Lite, but its semantics

is not based on DLs; rather, it has been designed to capture the style of con-

ceptual modeling we describe next.

OWL Lite and OWL DL, as well as all DLs known to us, follow a common

practice in conceptual modeling that strictly separates the conceptual from the

data model. The conceptual model is analogous to a database schema in that

it describes the general structure and the regularities of the world. The data

model is analogous to a database instance in that it describes a particular state

of the world. In OWL, the conceptual model consists of concepts and roles, and

the data model consists of individuals and relationships among them. To better

understand this duality, consider the following example, originally presented in

[25]; a similar example can be found in [23]. A natural way to represent kinship

between animal species is to organize them in a hierarchy of concepts. For

example, we can use the concept Bird to represent the set of all birds, and we

can make the concept Eagle a subconcept of Bird to state that all eagles are

birds. These statements are of a conceptual nature since they define the general

notions of birds and eagles. Knowledge about concrete animals, such as saying

2

that the individual Harry is an instance of the concept Eagle, is an example of

data knowledge. Combining conceptual and data knowledge together allows us

to derive new conclusions, such as the fact that Harry is a Bird .

In certain applications, one might want to make statements about species

themselves, such as “eagles are listed in the IUCN Red List1 of endangered

species.” Note an important distinction: we do not want to say that each indi-

vidual eagle is listed in the Red List, but that the eagle species as a whole is. To

represent this statement formally, we can introduce a concept RedListSpecies

containing all species listed in the Red List. Note, however, that Eagle is

also a concept, so the proper relationship between RedListSpecies and Eagle

is not clear. Making Eagle a subconcept of RedListSpecies is incorrect, as this

would imply that Harry is a RedListSpecies—clearly an undesirable conclusion.

Rather, Eagle is a type of (or, equivalently, an instance of) RedListSpecies ; in

other words, RedListSpecies is a metaconcept for Eagle . Modeling with meta-

concepts is called metamodeling,2 and it can be used to build concise models if

we precisely axiomatize the properties of metaconcepts. For example, by stating

that “one is not allowed to hunt the instances of the species listed in the Red

List,” we formalize the logical properties of the metaconcept RedListSpecies ,

which then allows us to deduce that “one is not allowed to hunt Harry .”

OWL Full provides a great degree of freedom regarding what can be said

and it supports metamodeling. OWL DL differs from OWL Full mainly in that

(i) it does not allow one to state axioms about the built-in vocabulary (i.e., the

symbols, such as owl:allValuesFrom, used in the definition of the semantics),

(ii) it strictly separates the sets of symbols used as concepts, roles, and individ-

uals, and (iii) it enforces the well-known restrictions required for decidability,

such as allowing only simple roles in number restrictions [12]. Because of the

condition (ii), OWL DL does not support metamodeling.

1http://www.redlist.org/
2Metamodeling is sometimes understood as studying an object language by means of an-

other metalanguage. In our work, however, metamodeling should be understood in the sense
of “higher-order”; for example, a concept is an instance of a higher-order metaconcept. Such
usage of the prefix “meta-” has become common in the discussion of Semantic Web ontology
languages.

3

Since it does not enforce (iii), OWL Full is trivially undecidable. To prac-

tically implement reasoners for expressive logics, advanced optimization tech-

niques are essential, and these are much easier to develop if the logic is decid-

able [1, Chapter 9]. To obtain a decidable logic that supports metamodeling,

it is natural to ask whether imposing the well-known restrictions on OWL Full

(or, equivalently, whether extending OWL DL with metamodeling in the style

of OWL Full) yields a decidable logic. In Section 2 we answer this question

negatively by showing that even fairly inexpressive DLs become undecidable if

restrictions (i) and (ii) are not enforced.

We analyze this undecidability result and show that it is actually due to (i)—

that is, the fact that we can state axioms about the built-in vocabulary. This

makes the semantics of OWL Full nonstandard and controversial [9]. Therefore,

in Section 3 we present two alternative semantics: a contextual or π-semantics,

which is essentially first-order, and a HiLog or ν-semantics, which is inspired

by HiLog [5]—a logic providing a second-order flavor to first-order logic.

Metamodeling is sometimes criticized on the grounds that it is not clear in

what way it affects the logical consequences of a theory. Therefore, in Section 4

we discuss the added expressivity of metamodeling using an example. We iden-

tify several cases in which both semantics coincide, and present cases where

metamodeling provides new consequences. Our results show that metamodel-

ing, when used with OWL DL alone, does not allow us to derive many new

consequences; however, it is very useful when combined with expressive exten-

sions of DLs. For example, using the Semantic Web Rule Language (SWRL)

[10], one can precisely define the semantics of metaconcepts, which allows for a

very powerful and concise modeling style.

Finally, in Section 5 we show that, under some technical assumptions, both

semantics can be combined with the DL SHOIQ(D) (a slightly more expressive

variant of OWL DL), yielding a decidable fragment of OWL Full with the same

worst case complexity as OWL DL.

4

2 Undecidability of Metamodeling in OWL Full

In this section, we show that OWL Full is undecidable even if we impose the

well-known restrictions required for the decidability of OWL DL. The definition

of OWL Full [20] is quite complex, so we introduce a simplified version of it.

Syntactically, OWL Full has been layered on top of the Resource Description

Framework (RDF) [14]—a semistructured data model that represents graphs as

triples, so our definition follows such an approach as well. We use the standard

values for the rdf:, rdfs:, and owl: namespace prefixes.

Definition 1. Let V be the vocabulary set containing exactly these symbols:

rdf:first, rdf:rest, rdf:nil, owl:Thing, owl:Nothing, rdf:type, rdfs:subClassOf,

owl:complementOf, owl:unionOf, owl:intersectionOf,

owl:someValuesFrom, owl:allValuesFrom, owl:hasValue, owl:onProperty

Let N be the set of names such that V ⊆ N . An ALCO-Full knowledge base

KB is a finite set of triples of the form 〈s, p, o〉, where s, p, o ∈ N . We use

〈s, p, L[a1, . . . , an]〉 as a shortcut for the following triples, where x1, . . . , xn are

fresh names not occurring anywhere else in KB:

〈s, p, x1〉, 〈x1, rdf:first, a1〉, 〈x1, rdf:rest, x2〉, . . .,

〈xn, rdf:first, an〉, 〈xn, rdf:rest, rdf:nil〉.

An interpretation I is a triple (△I , ·I ,EXTI), where △I is a nonempty do-

main set, ·I : N → △I is an interpretation function, and EXTI : △I → 2△
I×△I

is an extension function. Let CEXTI : △I → 2△
I

be the concept extension func-

tion defined as CEXTI(x) = {y | (y, x) ∈ EXTI(rdf:typeI)}. If y ∈ CEXTI(x),

we say that y is an instance of x. An interpretation I is a model of KB if it

satisfies all conditions from Table 1 on page 7. KB is satisfiable if and only if

a model of KB exists.

In contrast to OWL Full, ALCO-Full does not provide for concrete predi-

cates, inverse and transitive roles, role hierarchies, and number restrictions, and

it does not include the axiomatic triples [7]. These differences do not affect our

undecidability proof in any way.

5

Figure 1: Grid Structure in a Model of KBD

We prove that checking satisfiability of ALCO-Full knowledge bases is unde-

cidable by a reduction from the Domino Tiling problem [4]. A domino system

is a triple D = (D, H, V), where D = {D1, . . . , Dn} is a finite set of domino

types, H : D → 2D is the horizontal compatibility condition, and V : D → 2D is

the vertical compatibility condition. A D-tiling of an infinite grid is a function

t : N×N → D such that t(i, j + 1) ∈ H(t(i, j)) and t(i + 1, j) ∈ V (t(i, j)) for

all i, j ∈ N. Checking whether a D-tiling exists is undecidable in general [4].

For a domino system with n tiles, let KBD be the ALCO-Full knowledge

base containing triples (1)–(9) shown on the left-hand side of Table 2 on page 7.

As an aid to the reader, we paraphrase the meaning of these triples using the

standard DL notation on the right-hand side of the table. We now show that

KBD exactly encodes Domino Tiling for D.

Lemma 1. A D-tiling exists if and only if KBD is satisfiable.

Proof. (⇐) Let I be a model of KBD. We show that each I contains a two-

dimensional grid, as shown in Figure 1. In the figure, a triple 〈s, p, o〉 is repre-

6

Table 1: Semantics of ALCO-Full

1. 〈s, p, o〉 ∈ KB implies (sI , oI) ∈ EXTI (pI)
2. CEXTI(owl:ThingI) = △I

3. CEXTI(owl:NothingI) = ∅
4. (x, y) ∈ EXTI (rdfs:subClassOf I) iff CEXTI (x) ⊆ CEXTI(y)
5. (x, y) ∈ EXTI (owl:complementOf I) iff CEXTI(x) = △I \ CEXTI(y)

6. (x, y) ∈ EXTI (owl:unionOf I) iff y is a sequence of y1, . . . , yn in I and
CEXTI(x) = CEXTI (y1) ∪ . . . ∪ CEXTI(yn)

7. (x, y) ∈ EXTI (owl:intersectionOf I) iff y is a sequence of y1, . . . , yn in I and
CEXTI(x) = CEXTI (y1) ∩ . . . ∩ CEXTI(yn)

8. (x, y) ∈ EXTI (owl:someValuesFromI) and (x, p) ∈ EXTI(owl:onProperty I) imply
CEXTI(x) = {w | ∃z ∈ △I : (w, z) ∈ EXTI(p) ∧ z ∈ CEXTI (y)}

9. (x, y) ∈ EXTI (owl:allValuesFromI) and (x, p) ∈ EXTI(owl:onProperty I) imply
CEXTI(x) = {w | ∀z ∈ △I : (w, z) ∈ EXTI(p) → z ∈ CEXTI(y)}

10. (x, y) ∈ EXTI (owl:hasValueI) and (x, p) ∈ EXTI(owl:onProperty I) imply
CEXTI(x) = {w | (w, y) ∈ EXTI (p)}

11. x1 is a sequence of y1, . . . , yn in I iff x2, . . . , xn+1 ∈ △I exist such that, for 1 ≤ i ≤ n,
(xi, yi) ∈ EXTI(rdf:firstI) and (xi, xi+1) ∈ EXTI(rdf:restI), and xn+1 = rdf:nilI .

Table 2: The Knowledge Base KBD

(1) 〈owl:Nothing, owl:intersectionOf, L[Di, Dj]〉 Di ⊓ Dj ⊑ ⊥

(2)
〈GRID , rdfs:subClassOf, α〉

〈α, owl:unionOf, L[D1, . . . , Dn]〉 GRID ⊑ D1 ⊔ . . . ⊔ Dn

(3) 〈NotGRID , owl:complementOf, GRID〉 NotGRID ≡ ¬GRID

(4)

〈Di, rdfs:subClassOf, βi〉
〈βi, owl:onProperty, owl:allValuesFrom〉

〈βi, owl:allValuesFrom, β′
i〉

〈β′
i, owl:unionOf, L[H(Di)]〉

Di ⊑ ∀owl:allValuesFrom.
⊔

d∈H(Di)

d

(5)

〈Di, rdfs:subClassOf, γi〉
〈γi, owl:onProperty, rdf:type〉

〈γi, owl:allValuesFrom, γ′
i〉

〈γ′
i, owl:unionOf, L[NotGRID , V (Di)]〉

Di ⊑ ∀rdf:type.NotGRID ⊔
⊔

d∈V (Di)

d

(6)

〈GRID , rdfs:subClassOf, δ1〉
〈δ1, owl:onProperty, owl:allValuesFrom〉

〈δ1, owl:someValuesFrom, GRID〉
GRID ⊑ ∃owl:allValuesFrom.GRID

(7)

〈GRID , rdfs:subClassOf, δ2〉
〈δ2, owl:onProperty, rdf:type〉

〈δ2, owl:someValuesFrom, GRID〉
GRID ⊑ ∃owl:type.GRID

(8)

〈GRID , rdfs:subClassOf, δ3〉
〈δ3, owl:onProperty, owl:onProperty〉
〈δ3, owl:hasValue, owl:allValuesFrom〉

GRID ⊑ ∃owl:onProperty.

{owl:allValuesFrom}

(9) 〈a0,0, rdf:type, GRID〉 GRID(a0,0)

Note: Axioms containing indices i and j should be instantiated for each 1 ≤ i < j ≤ n.

7

sented as an arc pointing from the node s to the node o with p encoded using

the line type according to the legend. For easier reference, we assign labels to

arcs. For example, the horizontal grid arcs are labeled with hi, and the vertical

grid arcs are labeled with vi. These labels do not correspond to p in the triple;

for example, the arc h1 represents the triple 〈a0,0, owl:allValuesFrom, a0,1〉. By

an abuse of notation, we do not distinguish symbols from their interpretation.

The grid is constructed using triples (6)–(9). Triple (9) implies the existence

of node a0,0 and arc t1. Triples (7) imply the existence of arcs sc2, op2, and f2,

which, by Item 8 of Table 1, imply that each instance of δ2 has an rdf:type arc to

another instance of GRID . By sc2 and Item 4 of Table 1, this also holds for each

instance of GRID , so I contains node a1,0, and arcs v1 and t3. Similarly, triples

(6) imply the existence of arcs sc1, op1, and f1, which, by Item 8 of Table 1,

imply that each instance of δ1 has an owl:allValuesFrom arc to another instance

of GRID . By sc1 and Item 4 of Table 1, this also holds for each instance of

GRID , so I contains nodes a0,1 and a1,1, and arcs h1, t2, h2, and t4.

The crux of the construction is to close the grid—that is, to ensure that

I contains arc v2. This is done by applying Item 9 of Table 1 for x = a1,0,

y = a1,1, p = owl:allValuesFrom, w = a0,0, and z = a0,1. Arc h2 ensures that

condition (x, y) ∈ EXTI(owl:allValuesFromI) of Item 9 holds, arc v1 ensures

w ∈ CEXTI(x), and arc h1 ensures (w, z) ∈ EXTI(p). If we satisfy condi-

tion (x, p) ∈ EXTI(owl:onProperty I), then, by Item 9, we have z ∈ CEXTI(y),

which produces the required arc v2. We obtain the missing owl:onProperty arc

from x to owl:allValuesFrom as follows. Triples (8) imply the existence of arcs

sc3, op3, and hv, which, by Item 10 of Table 1, imply that each instance of

δ3 has an owl:onProperty arc to node owl:allValuesFrom. By sc3 and Item 4

of Table 1, this holds for each instance of GRID as well, so I contains arc p3.

Thus, a0,0, a0,1, a1,0, and a1,1 form a grid, which, by an inductive application

of the same argument, extends indefinitely in horizontal and vertical directions.

Note that a node ai,j in I is allowed to have multiple owl:allValuesFrom

and rdf:type successors, so I need not be a two-dimensional grid. A two-

8

dimensional grid, however, can easily be extracted from I: one can choose any

owl:allValuesFrom successor ai,j+1 and any rdf:type successor ai+1,j of ai,j , as

well as any owl:allValuesFrom successor ai+1,j+1 of ai+1,j . Regardless of the

choices, ai,j+1 is always connected to ai+1,j+1 by rdf:type, so ai,j , ai,j+1, ai+1,j ,

and ai+1,j+1 are connected in a grid-like manner.

Triples (2) ensure that each instance of GRID is assigned at least one tile

type. Triples (1) axiomatize the extensions of tile types Di and Dj to be disjoint

whenever i 6= j, so each instance of GRID is assigned exactly one tile type.

Finally, (4) axiomatizes the horizontal compatibility condition. By (3) and

Item 5 of Table 1, no instance of GRID can be an instance of NotGRID ; hence,

(5) axiomatizes the vertical compatibility condition. Thus, I contains an infinite

two-dimensional grid in which nodes satisfy the compatibility conditions, so a

D-tiling can be extracted easily from I.

(⇒) For a D-tiling t, we construct an interpretation I as follows. Let △I

contain V , all names occurring in KBD, and ai,j for each i, j ∈ N. We interpret

each name n by itself—that is, nI = n. We shall define EXTI in stages. Initially,

we make EXTI contain the arcs shown in Figure 1. To satisfy triples (6)–(9)

and Items 1–4, 8, and 10 of Table 1, extend I with appropriate rdf:type arcs to

owl:Thing, δ1, δ2, and δ3.

By Item 9 of Table 1, the concept extension of each ai,j should contain

those objects w for which each owl:allValuesFrom arc points to an instance

of ai,j+1. For i > 0 and w = ai−1,j , the interpretation I already contains an

rdf:type arc from w to ai,j (see Figure 1). Furthermore, for each w = ak,l such

that w 6= ai−1,j , node w has an owl:allValuesFrom arc to ak,l+1 that is not an

instance of ai,j+1, so we do not add an arc from w to ai,j . Finally, for w such that

w 6∈ CEXTI(GRID), there is no owl:allValuesFrom arc from w, so we extend

I by adding an rdf:type arc from w to ai,j . Note that, after these extensions,

CEXTI(GRID) still contains exactly the objects ai,j , and that no additional

rdf:type arcs between the elements of GRID have been introduced.

We now extend I such that CEXTI(NotGRID) = △I \ CEXTI(GRID) and

9

CEXTI(Dk) = {ai,j | t(i, j) = Dk}, and we add to I the appropriate arcs that

satisfy Items 4–7 of Table 1. Clearly, this neither adds new instances to GRID

nor affects the grid structure. Since t is a tiling, it is clear that (2)–(5) are satis-

fied. Note that the NotGRID disjunct in (5) ensures that vertical compatibility

is ensured only along the rdf:type arcs that connect instances of GRID . Thus,

we conclude that I is a model of KBD.

Undecidability of ALCO-Full is an immediate consequence of Lemma 1 and

the known undecidability result for the domino tiling problem [4]:

Theorem 1. Checking satisfiability of an ALCO-Full knowledge base KB is

undecidable.

Our reduction relies on nominals (the owl:hasValue construct) to ensure that

each grid element has an owl:onProperty arc to the node owl:allValuesFrom (the

pi arcs). Furthermore, this reduction holds even if we make the unique name

assumption (UNA)—that is, if we require different names to be interpreted as

different objects from △I . In [15], we presented an undecidability proof for a

simpler logic ALC-Full, which does not provide for nominals, but that allows us

to state equivalence between names.

Definition 2. The logic ALC-Full is defined as in Definition 1, with the dif-

ference that the vocabulary V does not contain owl:hasValue, but it contains

owl:sameAs, which is interpreted as follows:

(x, y) ∈ EXTI(owl:sameAsI) iff x = y.

Instead of (8), in ALC-Full we can use the following assertions to obtain the

necessary arcs opi from each instance of GRID to owl:allValuesFrom:

〈GRID , rdfs:subClassOf, owl:allValuesFrom〉(10)

〈rdf:type, owl:sameAs, owl:onProperty〉(11)

For a domino system D, let KB ′
D be an ALC-Full knowledge base containing

triples (1)–(7), (9), (10), and (11). We now prove the following result:

10

Theorem 2. Checking satisfiability of an ALC-Full knowledge base KB is un-

decidable.

Proof. We show that Lemma 1 holds for KB ′
D as well.

(⇐) Let I be a model of KB ′
D. By (11), all rdf:type arcs in I can be read

as owl:onProperty arcs as well. Furthermore, by (10), each instance of GRID is

also an instance x of owl:allValuesFrom, so there is an rdf:type arcs from each

x to owl:allValuesFrom. The latter arc can also be read as rdf:onProperty, so I

contains the arcs pi shown in Figure 1. The rest of the grid construction is the

same as in Lemma 1.

(⇒) For a D-tiling t, we construct an interpretation I as follows. Let △I

contain V \ {owl:onProperty}, all names from KB ′
D apart from owl:onProperty,

and ai,j for each i, j ∈ N. Furthermore, for n 6= owl:onProperty, we set nI = n,

and for n = owl:onProperty, we set nI = rdf:type. We construct EXTI similarly

as in Lemma 1. We start with arcs shown in Figure 1 (without node δ3 and arcs

sc3, op3, and hv). The main difference to the proof of Lemma 1 is that rdf:type

arcs can be read as owl:onProperty arcs, so we might need to add additional

rdf:type arcs to satisfy Items 8–10 of Table 1. Clearly, this can be the case only

for nodes with either an outgoing owl:allValuesFrom arc (i.e., nodes ai,j) or an

outgoing owl:someValuesFrom arc (i.e., nodes δ1 and δ2).

By v1, h1, and Item 9 of Table 1, CEXTI(a0,0) must contain all objects that

have no a1,0 arc to a0,1. To satisfy Item 9 without adding rdf:type arcs between

the grid elements, we extend I by adding an a1,0 arc from each instance of GRID

to, say, owl:Thing. More generally, if some ai,j has an rdf:type arc to some node

λ, then we extend I by adding to all instances of GRID a λ arc to owl:Thing.

To satisfy Item 9 for nodes that are not instances of GRID , we simply add an

rdf:type arc from the relevant nodes to ai,j .

Consider now δ1. Together with f1, each rdf:type arc from δ1 to some node λ

means that each instance of GRID must have a λ arc to an instance of GRID .

For λ = rdf:type and λ = owl:allValuesFrom, this condition is already satisfied

in I. For the other values of λ, we simply extend I by adding to each instance

11

of GRID a λ arc to, say, a0,0. For δ2, we can satisfy Item 8 in the same way. As

in Lemma 1, we can now extend this interpretation to respect the compatibility

conditions and thus produce a model of KB ′
D.

Unlike Theorem 1, Theorem 2 does not hold if we assume UNA, since there

is no way to construct a model in which triple (11) is true.

3 Two Alternatives for Metamodeling

The proof of Lemma 1 suggests the causes for undecidability. Namely, OWL Full

not only allows us to treat concepts as individuals, but it allows the built-in

vocabulary (the resources such as owl:allValuesFrom) to be used as individu-

als in axioms. We exploited this in assertions (6)–(8) of KBD, in which we

stated existential and universal restrictions on owl:allValuesFrom, rdf:type, and

owl:onProperty. We do not expect this feature of OWL Full to be particularly

useful in practice, so in this section we explore two decidable alternatives.

We proceed as follows. First, in Section 3.1, we devise a DL syntax that

provides for metamodeling. We show that metamodeling imposes several rather

unexpected requirements on the syntax that should be addressed in the OWL

standard. Next, in Section 3.2, we present two different semantics for meta-

modeling: the contextual semantics is a slightly adapted first-order semantics,

whereas the HiLog semantics is more in the spirit of OWL Full and has been

inspired by HiLog [5]. Finally, in Section 3.3, we show how to encode the HiLog

semantics into a first-order formula.

3.1 The Syntax of SHOIQ(D) with Metamodeling

SHOIQ(D) supports reasoning with concrete datatypes, such as strings or

integers. Instead of axiomatizing datatypes in logic, SHOIQ(D) employs a

restricted version of the approach from [2], where the properties of concrete

datatypes are encapsulated in concrete domains. OWL DL allows only for unary

12

concrete predicates, so we restrict ourselves to such predicates for simplicity;

however, extending our results to n-ary predicates is straightforward.

Definition 3. A concrete domain D is a pair (△D, ΦD), where △D is the

domain set of D, and ΦD is a set of concrete predicates. Each d ∈ ΦD is

associated with an extension dD ⊆ △D. A concrete domain D is admissible if

(i) ΦD is closed under negation (i.e., for each d ∈ ΦD, a predicate d ∈ ΦD exists

such that dD = △D \ dD), (ii) ΦD contains a unary predicate ⊤D interpreted

as △D, and (iii) D-satisfiability of finite conjunctions of the form
∧n

i=1
di(xi)

is decidable in exponential time. (A conjunction of concrete predicates is D-

satisfiable if and only if an assignment δ of variables xi to elements of △D

exists such that δ(xi) ∈ dD

i for each 1 ≤ i ≤ n.)

We now define the variant of the DL syntax that provides for metamodeling.

Definition 4 (Syntax). Let D be an admissible concrete domain, N a set of

names, and NIc
a set of concrete individuals, such that ΦD, N , and NIc

are all

pairwise disjoint. The set of roles is defined as N ∪ {n− | n ∈ N}, and the roles

n− are called inverse roles. For each n ∈ N , let Inv(n) = n− and Inv(n−) = n.

A SHOIQ(D) RBox KBR is a finite set of transitivity axioms Trans(S),

abstract role inclusions S ⊑a T , and concrete role inclusions U ⊑c V , where S

and T are roles, and U and V are names. Let ⊑∗
a be the reflexive-transitive

closure of {S ⊑a T, Inv(S) ⊑a Inv(T) | S ⊑a T ∈ KBR}. A role S is transitive

in KBR if a role T exists such that T ⊑∗
a S, S ⊑∗

a T , and either Trans(T) ∈ KBR

or Trans(Inv(T)) ∈ KBR; furthermore, S is simple in KBR if no transitive role

T exists such that T ⊑∗
a S.

The set of SHOIQ(D) concepts over KBR is defined by the following gram-

mar, where A, U and a are names, S is a role, T is a simple role, d is a concrete

predicate, and m is a nonnegative integer:

D → ⊤ | ⊥ | A | {a} | ¬D | D1 ⊓ D2 | D1 ⊔ D2 | ∃S.D | ∀S.D |

≥ m T.D | ≤ m T.D | ∃U.d | ∀U.d | ≥ m U.d | ≤ m U.d

13

A SHOIQ(D) TBox KBT is a finite set of concept inclusions D1 ⊑t D2, where

D1 and D2 are SHOIQ(D) concepts. A SHOIQ(D) ABox KBA is a finite set

of assertions D(a), S(a, b), U(a, bc), or (in)equalities a ≈ b, a 6≈ b, ac ≈ bc, and

ac 6≈ bc, where D is a SHOIQ(D) concept, S is a role, U , a, and b are names,

and ac and bc are concrete individuals. A SHOIQ(D) knowledge base KB is a

triple (KBR,KBT ,KBA). With NKB we denote the subset of those names that

occur in KB.

The logic ALCHOIQ(D) is obtained from SHOIQ(D) by disallowing tran-

sitivity axioms.

Definition 4 differs from the usual definitions of SHOIQ(D) (such as [1, 11])

in that it merges the sets of atomic concepts, atomic roles, and individuals into

one set of names. This has important consequences, as we discuss next.

Metamodeling and Concrete Predicates. Unlike OWL Full, Definition 4

does not provide for metamodeling on concrete predicates—that is, the set of

names is assumed to be disjoint from the set of concrete predicates or concrete

individuals. This is mainly a technical assumption that makes defining the

semantics easier. We do not believe that this is an important limitation.

Syntactic Ambiguities due to Metamodeling. In the usual definitions

of the syntax of SHOIQ(D), the sets of concept, role, and individual names

are mutually disjoint. Thus, axioms of the syntactic form X ⊑ Y can denote

both concept and role inclusions, and the intended meaning is disambiguated

by looking at the types of X and Y . With metamodeling this is not possible:

X and Y can be names that are used as both concepts and roles, so, from its

syntactic form, we cannot determine if the axiom represents a concept or a role

inclusion. To remedy this, we introduce three different inclusion symbols: ⊑a

represents inclusion for abstract roles (i.e., roles that connect two nonconcrete

individuals), ⊑c represents inclusion for concrete roles (i.e., roles that connect

a nonconcrete with a concrete individual), and ⊑t represents inclusion between

14

concepts. Note that syntactic ambiguities do not arise for concepts of the form

∃S.D and ∃U.d because the sets of names and concrete predicates are disjoint.

(Similar comments apply to concept constructors ∀, ≥, and ≤.) Finally, as-

sertions of the form S(a, b) can be distinguished from assertions of the form

U(a, bc) because the set of concrete individuals is assumed to be disjoint with

the set of names.

Practical Problems with OWL Syntax. Three syntaxes for OWL have

been defined so far: OWL RDF [3] encodes an OWL ontology using a set of

RDF triples, OWL XML [8] encodes an OWL ontology as an XML document,

and OWL Abstract Syntax [20] is a human-readable textual syntax. Without

metamodeling, neither of these syntaxes suffers from the syntactic ambiguities,

because the names used as concepts, individuals, abstract roles, and concrete

roles are required to be disjoint. In contrast, only the OWL XML variant

is compatible with metamodeling: for example, in OWL RDF, an inclusion

between roles S and T is represented as the triple 〈S, owl:subPropertyOf, T 〉

regardless of whether the inclusion is on abstract or on concrete roles. We hope

that these details will be resolved in OWL 1.13—a revision of OWL that is

currently in the standardization process.

3.2 Two Semantics for SHOIQ(D) with Metamodeling

We now define two semantics for SHOIQ(D) that take metamodeling into

account. We first present the contextual semantics.

Definition 5 (Contextual Semantics). For a SHOIQ(D) knowledge base KB,

a π-interpretation I is a 5-tuple (△I , ·I , CI
t , RI

a, RI
c) where

• △I is a nonempty domain set disjoint with △D,

• ·I is a name interpretation function that maps each element of N into an

element of △I and each element of NIc
into an element of △D,

3http://www.webont.org/owl/1.1/

15

• CI
t : N → 2△

I

is an atomic concept extension function,

• RI
a : N → 2△

I×△I

is an abstract role extension function, and

• RI
c : N → 2△

I×△D is a concrete role extension function.

The functions RI
a, RI

c , and CI
t are extended to roles and concepts as specified

in Table 3, upper left section, by interpreting names contextually—that is, de-

pending on their syntactic position. A π-interpretation I is a π-model of KB

if it satisfies all conditions from Table 3, lower left section. The notions of

π-satisfiability, π-unsatisfiability, and π-entailment (written |=π) are defined as

usual.

It is widely accepted that the separation of the concrete from the abstract

domain (i.e., the requirement that △D ∩△I = ∅) is semantically and practically

justified. Therefore, we separate the abstract and the concrete role interpreta-

tion of a name—that is, for each name, there are two distinct role interpre-

tations, which are referred to depending on the syntactic context in which the

name is used. The set △I is often called the abstract domain. Since the abstract

and the concrete domains are disjoint, our logic is actually two-sorted. In the

rest of this paper, with a we denote the abstract and with c the concrete sort.

The two-sorted nature of our semantics has certain consequences that might

seem surprising. For example, the axioms S(a, b) and S ⊑c T do not imply

T (a, b): the name S in S(a, b) is interpreted as an abstract role, whereas the ax-

iom S ⊑c T states that the interpretation of S as a concrete role is included into

the interpretation of T as a concrete role. Also, note that Trans(S) makes only

the abstract role interpretation of S transitive. This is because the separation

of abstract and concrete role interpretations makes the definition of transitive

concrete roles quite difficult.

The main difference between the π-semantics and the contextual semantics

from [5] is that we consider only unary and binary predicates and that we use

a multisorted logic to separate the abstract from the concrete roles. Despite

16

these minor technical differences, we call our semantics contextual because it

was inspired by the contextual semantics from [5].

The contextual semantics can be understood as “punning” with names: we

can eliminate metamodeling by replacing each name n with a distinct name

nconcept , nind , na-role , or nc-role , depending on the syntactic occurrence of n. In

fact, n used as a concept and as an individuals are two different things that have

nothing to do with each other semantically, even though they share the same

name. Thus, the π-semantics is actually a variant of the first-order semantics,

and we use it mainly as a baseline for a comparison with the HiLog semantics,

which is more in the spirit of OWL Full.

Definition 6 (HiLog Semantics). For a SHOIQ(D) knowledge base KB, a

ν-interpretation I is a 5-tuple (△I , ·I , CI
t , RI

a, RI
c) where

• △I is a nonempty domain set disjoint with △D,

• ·I is a name interpretation function that maps each element of N into an

element of △I and each element of NIc
into an element of △D,

• CI
t : △I → 2△

I

is an atomic concept extension function,

• RI
a : △I → 2△

I×△I

is an abstract role extension function, and

• RI
c : △I → 2△

I×△D is a concrete role extension function.

Table 3, right section, shows how to interpret roles, concepts, and axioms. The

notions of ν-satisfiability, ν-unsatisfiability, and ν-entailment (written |=ν) are

defined as usual.

Again, the ν-semantics differs from the HiLog semantics from [5] in that

we consider only unary and binary predicates in a multisorted setting. Despite

these technical differences, we call our semantics the HiLog semantics because

it, just like HiLog, associates extensions with the elements of △I rather than

with the elements of N .

17

Table 3: Two Semantics for SHOIQ(D) with Metamodeling

π-Semantics ν-Semantics

Interpretation of Abstract Roles RI
a

A RI
a(A) ⊆ △I ×△I

A− RI
a(A)−

Interpretation of Concepts CI
t

⊤ △I

⊥ ∅
A CI

t (A) ⊆ △I

{a} {aI}
¬D △I \ CI

t (D)

D1 ⊓ D2 CI
t (D1) ∩ CI

t (D2)
D1 ⊔ D2 CI

t (D1) ∪ CI
t (D2)

∃S.D {x | ∃y : (x, y) ∈ RI
a(S) ∧ y ∈ CI

t (D)}
∀S.D {x | ∀y : (x, y) ∈ RI

a(S) → y ∈ CI
t (D)}

≤ mS.D {x | ♯{y | (x, y) ∈ RI
a(S) ∧ y ∈ CI

t (D)} ≤ m}
≥ mS.D {x | ♯{y | (x, y) ∈ RI

a(S) ∧ y ∈ CI
t (D)} ≥ m}

∃U.d {x | ∃y : (x, y) ∈ RI
c(U) ∧ y ∈ dD}

∀U.d {x | ∀y : (x, y) ∈ RI
c(U) → y ∈ dD}

≤ m U.d {x | ♯{y | (x, y) ∈ RI
c(U) ∧ y ∈ dD} ≤ m}

≥ m U.d {x | ♯{y | (x, y) ∈ RI
c(U) ∧ y ∈ dD} ≥ m}

Interpretation of Axioms

S ⊑a T RI
a(S) ⊆ RI

a(T)
U ⊑c V RI

c(U) ⊆ RI
c(V)

D1 ⊑t D2 CI
t (D1) ⊆ CI

t (D2)
Trans(S) RI

a(S)+ ⊆ RI
a(S)

D(a) aI ∈ CI
t (D)

S(a, b) (aI , bI) ∈ RI
a(S)

U(a, bc) (aI , (bc)I) ∈ RI
c(U)

a(c) ≈ b(c) (a(c))I = (b(c))I

a(c) 6≈ b(c) (a(c))I 6= (b(c))I

Interpretations of roles, con-
cepts, and axioms are ob-
tained from the ones for the
π-semantics by performing
the following changes:

C
I
t (A) C

I
t (AI)

R
I
a(A) R

I
a(AI)

R
I
c(U) R

I
c(U

I)

R
I
c(V) R

I
c(V

I)

Note: ♯N is the number of elements in N ; R+ is the transitive closure of R;
R− is the inverse relation of R; A, U , and V are names; and S and T are roles.

18

Figure 2: π- and ν-Models of the Axiom a(a)

To understand the essential difference between the π- and the ν-semantics,

consider the knowledge base KB containing only the axiom a(a), where the

name a is used both as an individual and as a concept. A π-model of KB is

depicted on the left-hand side of Figure 2: both the individual interpretation

·I and the concept interpretation CI are assigned directly to the name a. A

ν-model of KB is depicted on the right-hand side of Figure 2: the individual

interpretation ·I assigns the domain individual x to the name a; however, the

concept interpretation is not assigned to a, but to x. We discuss in Section 4

the consequences that such a definition has on entailment.

Neither the π- nor the ν-semantics requires different names to be interpreted

as different domain objects. If this is required, the unique name assumption

(UNA) should be axiomatized explicitly, by introducing an axiom ni 6≈ nj for

each ni, nj ∈ N such that ni 6= nj .

3.3 Relationship with First-Order Logic

In this section, we show how to encode a SHOIQ(D) knowledge base KB into a

first-order formula ν(KB) that is equivalent to KB under the ν-semantics. This

not only provides additional insight into the nature of the ν-semantics, but it

also allows one to apply well-known methods for first-order reasoning, such as

the resolution calculus.

The idea behind our translation can be traced back to [22], and it is similar

to the encoding of HiLog formulae into first-order logic. We translate names

into constants of sort a, and we represent the functions CI
t , RI

a, and RI
c using

19

predicates isa, arole, and crole, respectively. The predicate isa is of sort a, the

predicate arole is of sort a × a, and the predicate crole is of sort a × c. To

stipulate that the logic is two-sorted, we use an equality predicate ≈ for the

abstract domain and a distinct equality predicate ≈D for the concrete domain.

To denote that a variable is of concrete sort, we write it as yc. Our translation

uses counting quantifiers ∃≤n and ∃≥n, which can be encoded in first-order logic

as follows, for y a vector of variables:

∃≥nx : ϕ(x,y) = ∃x1, . . . , xn :





n
∧

i=1

ϕ(xi,y) ∧
∧

1≤i<j≤n

xi 6≈ xj



(12)

∃≤nx : ϕ(x,y) = ∀x1, . . . , xn+1 :





n+1
∧

i=1

ϕ(xi,y) →
∨

1≤i<j≤n+1

xi ≈ xj



(13)

The encoding is analogous if x is a concrete variable, with the difference that

one should use the concrete equality ≈D instead of the abstract equality ≈.

Definition 7. For a SHOIQ(D) knowledge base KB, let ν(KB) be the trans-

lation of KB into first-order formulae as specified in Table 4.

Theorem 3. A SHOIQ(D) knowledge base KB is ν-satisfiable if and only if

a first-order model of ν(KB) exists.

Proof. For the (⇒) direction, let Iν be a ν-model of KB . We construct a first-

order interpretation I for ν(KB) by setting △I = △Iν , aI = aIν , (x, y) ∈ isa
I

iff y ∈ CIν

t (x), (x, y, z) ∈ arole
I iff (y, z) ∈ RIν

a (x), and (x, y, z) ∈ crole
I iff

(y, z) ∈ RIν

c (x). By induction on the structure of formulae in ν(KB), one can

easily show that I is a model of ν(KB). The (⇐) direction is similar.

4 Expressivity of Metamodeling

We now discuss the benefits of metamodeling in terms of additional consequences

that can be drawn. These results are similar to the ones for HiLog from [5].

20

Table 4: Mapping ν-Semantics into First-order Logic

Mapping Roles to FOL
νa

xy(A) = arole(A, x, y) νa
yx(A) = arole(A, y, x)

νa
xy(A−) = arole(A, y, x) νa

yx(A−) = arole(A, x, y)
νc

xy(U) = crole(U, x, yc) νc
yx(U) = crole(U, y, xc)

Mapping Concepts to FOL
νx(⊤) = true νy(⊤) = true

νx(⊥) = false νy(⊥) = false

νx(A) = isa(A, x) νy(A) = isa(A, y)
νx({a}) = x ≈ a νy({a}) = y ≈ a

νx(¬D) = ¬νx(D) νy(¬D) = ¬νy(D)
νx(D1 ⊓ D2) = νx(D1) ∧ νx(D2) νy(D1 ⊓ D2) = νy(D1) ∧ νy(D2)
νx(D1 ⊔ D2) = νx(D1) ∨ νx(D2) νy(D1 ⊔ D2) = νy(D1) ∨ νy(D2)

νx(∀S.D) = ∀y : νa
xy(S) → νy(D) νy(∀S.D) = ∀x : νa

yx(S) → νx(D)
νx(∃S.D) = ∃y : νa

xy(S) ∧ νy(D) νy(∃S.D) = ∃x : νa
yx(S) ∧ νx(D)

νx(≤ m S.D) = ∃≤my : [νa
xy(S) ∧ νy(D)] νy(≤ m S.D) = ∃≤mx : [νa

yx(S) ∧ νx(D)]

νx(≥ m S.D) = ∃≥my : [νa
xy(S) ∧ νy(D)] νy(≥ m S.D) = ∃≥mx : [νa

yx(S) ∧ νx(D)]
νx(∀S.d) = ∀yc : νc

xy(S) → d(yc) νy(∀S.d) = ∀xc : νc
yx(S) → d(xc)

νx(∃S.d) = ∃yc : νc
xy(S) ∧ d(yc) νy(∃S.d) = ∃xc : νc

yx(S) ∧ d(xc)

νx(≤ m S.d) = ∃≤myc : [νc
xy(S) ∧ d(yc)] νy(≤ m S.d) = ∃≤mxc : [νc

yx(S) ∧ d(xc)]

νx(≥ m S.d) = ∃≥myc : [νc
xy(S) ∧ d(yc)] νy(≥ m S.d) = ∃≥mxc : [νc

yx(S) ∧ d(xc)]

Mapping Axioms to FOL
ν(Trans(A)) = ∀x, y, z : arole(A, x, y) ∧ arole(A, y, z) → arole(A, x, z)

ν(Trans(A−)) = ∀x, y, z : arole(A, y, x) ∧ arole(A, z, y) → arole(A, z, x)
ν(S ⊑a T) = ∀x, y : νa

xy(S) → νa
xy(T) ν(U ⊑c V) = ∀x, yc : νc

xy(U) → νc
xy(V)

ν(D1 ⊑t D2) = ∀x : νx(D1) → νx(D2) ν(D(a)) = νx(D){x 7→ a}
ν(S(a, b)) = νa

xy(S){x 7→ a, y 7→ b} ν(U(a, bc)) = νc
xy(U){x 7→ a, yc 7→ bc}

ν(a ≈ b) = a ≈ b ν(a 6≈ b) = a 6≈ b

ν(ac ≈ bc) = ac ≈D bc ν(ac 6≈ bc) = ac 6≈D bc

Mapping KB to FOL
ν(KBR) =

∧

α∈KBR
ν(α)

ν(KBT) =
∧

α∈KBT
ν(α)

ν(KBA) =
∧

α∈KBA
ν(α)

ν(KB) = ν(KBR) ∧ ν(KBT) ∧ ν(KBA)
Note: A, U , V , a, and b are names, D(i) are concepts, S and T are roles,

m is a nonnegative integer, bc is a concrete individual, and {x 7→ a, y(c) 7→ b(c)}

is a mapping of the variables x and y(c) to a and b(c), respectively.

21

It is easy to see that ν-satisfiability is a strictly stronger notion than π-

satisfiability. Consider the following knowledge base KB :4

Eagle(Harry)(14)

¬Aquila(Harry)(15)

Eagle ≈ Aquila(16)

Under the contextual semantics, the interpretations of the names Eagle and

Aquila as concepts and as individuals are independent, so KB is π-satisfiable.

KB , however, is ν-unsatisfiable: in each ν-interpretation EagleI = AquilaI = α,

so it cannot be that HarryI ∈ CI(EagleI) and HarryI /∈ CI(AquilaI). For the

other direction, we have the following theorem:

Theorem 4. Each ν-satisfiable SHOIQ(D) knowledge base KB is also π-

satisfiable.

Proof. Let Iν be a ν-model of KB . We construct from Iν a π-interpretation

Iπ as follows: △Iπ = △Iν , nIπ = nIν , CIπ

t (n) = CIν

t (nIν), RIπ

a (n) = RIν

a (nIν),

and RIπ

c (n) = RIν

c (nIν) for each n ∈ N . By a simple induction on the concept

structure, it can be shown that CIπ

t (X) = CIν

t (X) for each concept X , so Iπ is

a π-model of KB .

Furthermore, for a knowledge base with unique name assumption or without

equality (either explicit or implicit—for example, introduced through number

restrictions or nominals), π- and ν-satisfiability coincide:

Theorem 5. Let KB be an SHOIQ(D) knowledge base that either employs

the unique name assumption or contains no explicit equality statements, num-

ber restrictions, or nominals. Then, KB is π-satisfiable if and only if it is

ν-satisfiable.

Proof. The (⇐) direction follows from Theorem 4. For the (⇒) direction, let

KB be π-satisfiable in some model Iπ . Due to the theorem’s assumptions, we

4Aquila is the Latin name for eagle.

22

can assume without loss of generality that ni 6= nj implies ni
Iπ 6= nj

Iπ for all for

ni, nj ∈ N . (This holds trivially if KB employs the unique name assumption. If

KB does not employ equality, then we can interpret KB in a Herbrand model,

for which the required property clearly holds as well.)

For such a π-model Iπ , we build a ν-interpretation Iν as follows: △Iν = △Iπ ,

nIν = nIπ , CIν

t (nIν) = CIπ

t (n), RIν

a (nIν) = RIπ

a (n), and RIν

c (nIν) = RIπ

c (n) for

n ∈ N . Furthermore, for all x ∈ △Iν such that there is no n ∈ N with x = aIν ,

let CIν

t (x) = RIν

a (x) = RIν

c (x) = ∅. Since we can assume that different names

from N are interpreted as different elements from △Iν , such a construction

defines exactly one value for CIν

t (x), RIν

a (x), and RIν

c (x) for each x ∈ △Iν , so Iν

is correctly defined. By a simple induction on the concept structure, it can be

shown that CIν

t (X) = CIπ

t (X) for each concept X , so Iν is a ν-model of KB .

Note that, for Theorem 5 to hold, KB must employ the unique name as-

sumption on all names, even if they are used only as concepts or roles. For

example, the axioms ⊤ ⊑ {a} and C(a) entail a(a) under the ν-semantics, but

not under the π-semantics. Since a is the only individual, the choice of UNA

seems immaterial, so this example seems to invalidate Theorem 5. To satisfy

the conditions of Theorem 5, however, we must additionally assert C 6≈ a, which

makes the knowledge base unsatisfiable under both semantics.

To summarize, for a knowledge base KB , all consequences of the π-semantics

are derivable by the ν-semantics as well; furthermore, the latter derives addi-

tional consequences only if two names can be derived to be equal. For example,

from (14) and (16) we can derive Aquila(Harry). Furthermore, if the unique

name assumption is employed, the ν-semantics does not yield any additional

consequences over the π-semantics. This seems to suggest that the benefits of

the ν-semantics do not outweigh the fact that this semantics is nonstandard,

and that the π-semantics might be sufficient for many practical applications.

The ν-semantics, however, becomes useful if combined with expressive ex-

tensions of OWL. For example, by combining the ν-semantics with SWRL, one

can explicitly axiomatize the semantics of metaconcepts. Consider the example

23

from Section 1. By (17) we state that Eagle is a RedListSpecies , and by the

SWRL rule (18) we state that instances of species listed in the Red List are not

allowed to be hunted. Notice that, in the atom S(I), we use the variable S in

the position of a predicate. Under the ν-semantics, such an atom is equivalent

to isa(S, I); however, to give meaning to such an atom under π-semantics, we

would need to use a higher-order logic. From (14), (17), and (18), we can now

infer CannotHunt(Harry), so RedListSpecies truly acts as a metaconcept for the

concept Eagle .

RedListSpecies(Eagle)(17)

RedListSpecies(S) ∧ S(I) → CannotHunt(I)(18)

To summarize, we believe that the ν-semantics provides a sound basis for

metamodeling, which, when combined with expressive logical formalisms such

as SWRL, allows us to precisely axiomatize the semantic interaction between

concepts and metaconcepts. Therefore, we consider this semantics very relevant

for future extensions of OWL.

5 Reasoning with the ν-Semantics

Since the contextual semantics is essentially first-order, it can be decided using

known algorithms, such as [11, 13]. In this section we present an algorithm for

deciding ν-satisfiability. We first consider ALCHOIQ(D) knowledge bases in

Section 5.1, and then discuss the problems introduced by transitivity axioms

in Section 5.2. Finally, in Section 5.3 we discuss how the embedding of the ν-

semantics into first-order logic from Section 3.3 can be used to extend existing

resolution decision procedures to obtain practical reasoning algorithms.

24

5.1 Deciding ν-Satisfiability of ALCHOIQ(D)

Before presenting a decision procedure, we introduce some notation. Let E be

an equivalence relation over a set of names NKB . For each equivalence class of

E , we arbitrarily select one representative name. For a name n, let n/E denote

the representative name chosen for the equivalence class of n; similarly, for an

ALCHOIQ(D) concept (axiom) α, let α/E denote the concept (axiom) obtained

from α by replacing each name n with n/E . Finally, for an ALCHOIQ(D)

knowledge base KB , with KB/E we denote the knowledge base obtained from

KB by (i) replacing each axiom α with α/E , and by (ii) appending an axiom

ni/E 6≈ nj/E for each pair of names ni, nj ∈ NKB such that ni/E 6= nj/E .

An algorithm for checking ν-satisfiability of KB is relatively simple: it non-

deterministically guesses an equivalence relation E over NKB and then checks

π-satisfiability of KB/E (under UNA). Soundness and completeness of the algo-

rithm follow immediately from the following lemma:

Lemma 2. An ALCHOIQ(D) knowledge base KB is ν-satisfiable if and only

if an equivalence relation E over NKB exists such that KB/E is π-satisfiable.

Proof. (⇐) Since the knowledge base KB/E employs the unique name assump-

tion, it is π-satisfiable if and only if it is ν-satisfiable by Theorem 5. Let I ′ν

be a ν-model of KB/E , and let Iν be a model obtained from I ′ν by setting

nIν = (n/E)I′

ν for each n ∈ NKB . Clearly, Iν is a ν-model of KB .

(⇒) For a ν-model Iν of KB , let E be the equivalence relation on names de-

fined as E = {(ni, nj) | ni
Iν = nj

Iν for ni, nj ∈ NKB}. Clearly, Iν is a ν-model

of KB/E . Furthermore, KB/E employs the unique name assumption, so it is

π-satisfiable by Theorem 5.

Please note that Lemma 2 holds even if KB is a SHOIQ(D) knowledge

base. As we discuss in Section 5.2, however, the following result holds only for

ALCHOIQ(D):

Theorem 6. Checking ν-satisfiability of an ALCHOIQ(D) knowledge base KB

can be performed in nondeterministic exponential time.

25

Proof. Observe that the number of elements in NKB is linear in the size of

KB , and that each equivalence relation E is a subset of NKB × NKB . Hence,

the number of possible equivalence relations is exponential in the size of KB . A

decision procedure for ν-satisfiability can systematically examine all equivalence

relations E and, for each one, perform a π-satisfiability check of KB/E . The last

step can be performed in NExpTime: the logic ALCHOIQ, obtained from

ALCHOIQ(D) by disallowing concrete domains, is a fragment of C2 (the two-

variable first-order logic with counting), which is decidable in NExpTime [21]

even for binary coding of numbers; furthermore, extending ExpTime-hard logics

with a restricted form of a concrete domain (i.e., a concrete domain without

feature chains) does not increase the complexity of reasoning (please refer to

Appendix A for more information). Thus, our algorithm makes an exponential

number of calls to an algorithm in NExpTime, which gives a total complexity

of NExpTime as well.

We briefly compare the results of Theorem 6 with that of Theorems 1

and 2. The main feature of the ν-semantics is the reification of concept and

role names. The ν-semantics, however, is more like the π-semantics and less

like the OWL Full semantics in the way it handles the modeling primitives. In

the ν- and the π-semantics, the modeling primitives are expressed as formulae,

and are not accessible as individuals in the knowledge base. In contrast, the

modeling primitives in OWL Full are reified, so they can be used in axioms.

5.2 HiLog Semantics and Transitivity

The algorithm for deciding ν-satisfiability is essentially based on an algorithm

for deciding π-satisfiability, and the latter one can easily be extended to support

transitive roles. Therefore, one might intuitively expect that the algorithm from

Section 5.1 can easily be extended to handle transitive roles as well. Consider,

however, the following knowledge base KB :

⊤ ⊑ ≥ 3 S(19)

26

S ≈ T(20)

Trans(T)(21)

Note that the role S is simple (it is neither transitive nor does it have tran-

sitive subroles, so it passes the syntactic criterion from Definition 4); hence, KB

is a well-formed SHOIQ(D) knowledge base. In any ν-interpretation I, how-

ever, the axiom (20) ensures that SI = T I = α; furthermore, RI
a(α) is transitive

because of (21). Effectively, a transitive role is used in a number restriction in

the axiom (19), even though S is syntactically a simple role.

Equality of role names might be nontrivially entailed by KB , so identifying

simple roles would itself require theorem proving. Thus, defining simple roles

is difficult, if not impossible under the ν-semantics. Allowing transitive roles

in number restrictions is known to lead to undecidability [12], so we get the

following result:

Proposition 1. Checking ν-satisfiability of a SHOIQ(D) knowledge base KB

is undecidable.

Intuitively, Theorem 6 does not apply to SHOIQ(D) because, even if KB

contain only simple roles in number restrictions, the equivalence relation E can

be such that KB/E contains nonsimple roles in number restrictions. Hence, we

cannot decide satisfiability of KB/E for every choice of E .

Decidability can be regained if we ensure that the names used as roles are

interpreted as distinct domain individuals.

Definition 8 (Unique Role Assumption). A SHOIQ(D) knowledge base KB

employs the unique role assumption (URA) if it contains an axiom S 6≈ T for

each two distinct names S and T used as roles in KB.

If KB does not contain explicit equality statements, number restrictions, or

nominals, then we can always assume URA without affecting satisfiability of

KB . Furthermore, if KB employs URA, then the interpretations of different

role names are independent, so we can check for simple roles as usual. Thus,

27

we can check the satisfiability of KB using the algorithm from Section 5.1, with

a minor modification that we do not need to consider the equivalences E that

are not compatible with URA (for such E , the knowledge base KB/E is trivially

unsatisfiable). Due to URA, if KB does not contain nonsimple roles in number

restrictions, then KB/E does not contain them either. Therefore, Theorem 6

carries over to SHOIQ(D) with URA without problems.

5.3 Practical Reasoning with the ν-Semantics

The reasoning procedure from Section 5.1 is worst-case optimal, but it is unlikely

to be effective in practice, since it systematically examines exponentially many

equivalence relations. Goal-oriented decision procedures for the ν-semantics can

be obtained by slightly modifying several existing procedures for the π-semantics

based on the embedding of the ν-semantics into first-order logic from Section 3.3.

For example, a resolution-based decision procedure for the DL SHIQ(D) under

the π-semantics was developed in [16], and an extension to the logic SHOIQ

was presented in [13]. These procedures translate a DL knowledge base KB into

a first-order formula π(KB), transform it into a set of clauses, and then apply

resolution to the clauses to determine satisfiability.

These procedures can easily be adapted to the ν-semantics by transforming

KB into ν(KB) instead of π(KB). In [16] we have shown that, with a cou-

ple of technical assumptions, this does not change the nature of the original

decision procedure for the π-semantics. Since the resolution procedure for the

π-semantics is relatively complex, we do not include further details into this

paper; for further information, please refer to [16]. We believe that the same

approach is applicable to the procedure from [13] as well.

6 Related Work

The definition of ν-satisfiability given in Section 3 is inspired by HiLog [5], a logic

in which general terms are allowed to occur in place of function and predicate

28

symbols in formulae. The authors show that HiLog can be considered “syntactic

sugar,” since each HiLog formula can be encoded into an equisatisfiable first-

order formula. The definition of the ν operator from Table 3 closely resembles

this encoding. Finally, the authors show that a satisfiable first-order formula

without equality is also satisfiable under the HiLog semantics.

In [18], the RDFS Model Theory was criticized for allowing an unlimited

number of meta-layers in a model. The authors argue that such a semantics is

inappropriate for the Semantic Web because (i) it does not provide adequate

support for inferencing, (ii) it allows the definition of classes that contain them-

selves, and (iii) by adding classes, one necessarily introduces objects in the

interpretation universe. The authors propose RDFS-FA, a stratified four-level

approach, consisting of the meta-language layer, the language layer, the ontol-

ogy layer, and the instance layer. In [9] similar arguments were used to criticize

the semantics of OWL Full. Our approach follows the principles of RDFS-FA by

strictly separating the modeling primitives from the ontology and the instance

layers. To allow for metamodeling, however, our definition of the ν-semantics

merges the ontology and the instance layers into one layer. Furthermore, we

believe that features (ii) and (iii) are to be expected of a logic that provides

for metamodeling.

In [25], the authors argue that metamodeling is useful in many applications.

There, the modeling layers are connected using spanning instances ; however, no

logical framework capturing their semantics was presented.

7 Conclusion

In this paper we have analyzed the metamodeling features of OWL Full, the

most expressive of the OWL family of Semantic Web ontology languages. We

have shown that the style of metamodeling adopted in OWL Full leads to the

undecidability of basic reasoning problems, because it allows us to state axioms

about the built-in vocabulary. To obtain a decidable and expressive language

29

that supports metamodeling, we have proposed two alternative semantics: the

contextual one, which is essentially first-order, and the HiLog one, which is

more in the spirit of OWL Full. We have shown that, under certain technical

assumptions, both semantics are decidable when combined with the description

logic SHOIQ(D) that underpins OWL DL.

We have analyzed the added expressivity of metamodeling and have shown

that the HiLog semantics allows one to derive new conclusions only via equality

reasoning. This approach, however, becomes useful if it is combined with ex-

pressive extensions, such as SWRL, since it allows us to axiomatize the logical

interaction between concepts and their metaconcepts.

Acknowledgment

We thank Evgeny Zolin for numerous invaluable comments about this paper.

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-

Schneider, editors. The Description Logic Handbook: Theory, Implementa-

tion and Applications. Cambridge University Press, January 2003.

[2] F. Baader and P. Hanschke. A Scheme for Integrating Concrete Domains

into Concept Languages. In Proc. IJCAI ’91, pages 452–457, Sydney, Aus-

tralia, 1991.

[3] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness,

P. F. Patel-Schneider, and L. A. Stein. OWL Web Ontology Language

Reference, W3C Recommendation, February 10 2004.

http://www.w3.org/TR/owl-ref/.

[4] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem.

Springer, 1996.

30

[5] W. Chen, M. Kifer, and D. S. Warren. A Foundation for Higher-Order

Logic Programming. Journal of Logic Programming, 15(3):187–230, 1993.

[6] V. Haarslev and R. Möller. RACER System Description. In Proc. IJCAR

2001, pages 701–706, Siena, Italy, 2001.

[7] P. Hayes. RDF Semantics, February 10 2004.

http://www.w3.org/TR/rdf-mt/.

[8] M. Hori, J. Euzenat, and P. F. Patel-Schneider. OWL Web Ontol-

ogy Language: XML Presentation Syntax, W3C Note, June 11 2003.

http://www.w3.org/TR/owl-xmlsyntax/.

[9] I. Horrocks and P. F. Patel-Schneider. Three Theses of Representation in

the Semantic Web. In Proc. WWW 2003, pages 39–47, Budapest, Hungary,

May 20–24 2003.

[10] I. Horrocks and P. F. Patel-Schneider. A Proposal for an OWL Rules

Language. In Proc. WWW 2004, pages 723–731, New York, NY, USA,

May 17–22 2004.

[11] I. Horrocks and U. Sattler. A Tableaux Decision Procedure for SHOIQ.

In Proc. IJCAI 2005, pages 448–453, Edinburgh, UK, 2005.

[12] I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Very Expres-

sive Description Logics. Logic Journal of the IGPL, 8(3):239–263, 2000.

[13] Y. Kazakov and B. Motik. A Resolution-Based Decision Procedure for

SHOIQ. In Proc. IJCAR 2006, Seattle, WA, USA, 2006. To appear.

[14] G. Klyne and J. J. Carroll. Resource Description Framework (RDF): Con-

cepts and Abstract Syntax, February 10 2004.

http://www.w3.org/TR/rdf-concepts/.

[15] B. Motik. On the Properties of Metamodeling in OWL. In Proc. ISWC

2005, pages 548–562, Galway, Ireland, 2005.

31

[16] B. Motik. Reasoning in Description Logics using Resolution and Deductive

Databases. PhD thesis, University of Karlsruhe, Germany, 2006.

[17] B. Motik and U. Sattler. A Comparison of Techniques for Querying Large

Description Logic ABoxes. In Proc. LPAR 2006, Phnom Penh, Cambodia,

2006. To appear.

[18] J. Z. Pan and I. Horrocks. RDFS(FA) and RDF MT: Two Semantics for

RDFS. In Proc. ISWC 2003, pages 30–46, Sanibel Island, FL, USA, 2003.

[19] B. Parsia and E. Sirin. Pellet: An OWL-DL Reasoner. Poster, In Proc.

ISWC 2004, Hiroshima, Japan, 2004.

[20] P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Lan-

guage: Semantics and Abstract Syntax, W3C Recommendation, February

10 2004. http://www.w3.org/TR/owl-semantics/.

[21] I. Pratt-Hartmann. Complexity of the Two-Variable Fragment with Count-

ing Quantifiers. Journal of Logic, Language and Information, 14(3):369–

395, 2005.

[22] W. V. O. Quine. Elementary Logic: Revised Edition. Harvard University

Press, 2005.

[23] G. Schreiber. The Web is not well-formed. IEEE Intelligent Systems,

17(2):79–80, 2002. Contribution to the section “Trends & Controversies:

Ontologies KISSES in Standardization”, edited by S. Staab.

[24] D. Tsarkov and I. Horrocks. FaCT++ Description Logic Reasoner: System

Description. In Proc. IJCAR 2006, Seattle, WA, USA, 2006. To appear.

[25] C. Welty and D. Ferrucci. What’s in an instance? Technical Report 94–18,

RPI Computer Science, 1994.

32

A The Complexity of ALCHIQ(D)

The description logic ALCHIQ is decidable in NExpTime because it can be

viewed as a fragment of C2 (first-order logic with counting quantifiers), and this

logic is decidable in NExpTime even for binary coding of numbers [21]. It is

widely believed that ALCHIQ(D) is also decidable in NExpTime; unfortu-

nately, no result proving this has been published. Therefore, in this appendix

we outline how to adapt the decision procedure from [21] to handle the restricted

form of a concrete domain available in ALCHIQ(D).

Given a C2 formula ϕ obtained by translating an ALCHIQ knowledge base

into first-order logic, the procedure from [21] represents (possibly infinite) first-

order models using 1-types and 2-types—maximally consistent sets of unary

and binary predicates, respectively (often called Hintikka sets). The concrete

predicates in our case are all unary, so we can extend the notion of 1-types to

include maximally consistent sets of positive concrete domain predicates. (We

can consider only positive predicates because the set of the concrete predicates is

closed under complement.) In fact, since ALCHIQ(D) is a two-sorted logic, we

shall have two kinds of 1-types: one containing only ordinary unary predicates

and one containing only unary concrete predicates. Since the number of concrete

predicates occurring in ϕ is linear in the size of ϕ, we can clearly have at

most exponentially many concrete 1-types. We eliminate all inconsistent sets

by checking the consistency of the conjunction of all the member predicates.

Since each such conjunction is linear in the size of ϕ, by the assumption (iii)

of Definition 3, each check can be performed in exponential time. Hence, we

can generate all 1-types of the concrete sort using an exponential preprocessing

step, after which we can apply the algorithm from [21] as usual. Since the latter

algorithm runs in NExpTime, our entire algorithm runs in NExpTime as well.

In some versions of ALCHIQ(D), the concrete domain can contain concrete

predicates of arbitrary arity. It is currently unclear whether such a logic is

decidable in NExpTime.

33

