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Abstract same consequences®% and LP, respectively, if the other

component is empty. Unlike the existing approaches, our ap-
proach allows the user to freely switch between open- and
closed-world views on arbitrary predicates fr@t and LP.

By means of an example, we argue that our logic produces
intuitive and practically useful consequences.

We base our approach on the logic of Minimal Knowledge
and Negation as Failure (MKNF), developed fyfschitz,
1991 to unify several major approaches to nonmonotonic
reasoning. To obtain intuitive consequences for our hybrid
logic, we modify certain technical aspects of MKNF regard-
ing the universe of discourse and equality.

Function-free logic programs are usually decidable if the
) rules are safe, and many decidable DLs exist. However, we
1 Introduction show that these restrictions @, and LP are not sufficient

|ntegra‘[ing description |Ogics (DLs) and |Ogic programg‘]in to obtain a decidable hybrld formalism, due tO an |ntermt|0
(LP) in a common framework would produce a very powerfu|betweenD£ and negatlon-asffallure. To obtain qlemdablllty,
formalism; for example, LP rules could be used to model cone apply the well-known notion dDL-safety[Motik et al,
straints and exceptions over DL knowledge bases. Adding 8009, which makes the rules applicable only to individuals
rule layer on top of the DL-based Web Ontology Languageknown by name. We present several reasoning algorithms
(OWL) is currently the central task in the development offor the cases of general, positive (i.e., without negatien-
the Semantic Web language stack, and the Rule Interchandgilure), nondisjunctive and positive, nondisjunctivelatrat-
Format (RIF) working group of the World Wide Web Con- Ified, and nor_1d|SJunct|ve (but not necessarily stra’qﬂedi) D
sortium (W3C) is currently working on standardizing suchsafe rules. Finally, we present tight data complexity baund
a language. However, DLs and LP are based on fundamefior €ach case and show that combining DLs with LP often
tally different assumptions: DLs are fragments of firsteard does not increase the data complexity of LP. .
logic and employ open-world semantics, whereas LP pro- Our approach is related to several nonmonotonic exten-
vides negation-as-failure under closed-world semantics. ~ Sions of DLs. [Donini et al, 2003 propose an MKNF-
Several approaches to integrating DLs and LP were probased extension of the DILC, but without LP rules and
posed recently[Rosati, 2006 proposes an approach that in- With unique name assumption (UNABaader and Hollun-
terprets the predicates from the DL knowledge base undefer, 199% propose an extension of DLs with DL-safe default
open-world and the predicates occurring only in the LP rulegules, which are subsumed by our approach due to our treat-
under closed-world semantickEiter et al, 2004 propose a Ment of equality and the well-known embedding of default
loose coupling of DLs and LP by extending the LP rules with!0gic into MKNF [Lifschitz, 1991. Finally, [Bonattiet al,
special atoms interpreted as queries to a DL knowledge bas@008 present an extension of DLs with circumscription that
In this paper, we introdudeybrid MKNF knowledge bases  allows for nonmonotonic reasoning on unnamed individuals,
which integrate an arbitrary description logic? with dis-  but only for unary predicates if decidability is desired.
junctive logic programs and negation-as-failure. Thigint ~ We leave the detailed proofs {Motik and Rosati, 2006
gration isfaithful in the sense that it provides exactly the and present here only proof sketches.

*This work was partially funded by the EPSRC project REOL i i
(EP/C537211/1) and the EU project TONES (FET FP6.7603). 2 T reliminaries _ _

our approach is actually applicable to any first-order fragtn ~ Description Logics. Our approach is applicable to any
however, our work is motivated primarily by knowledge resmeta-  first-order fragmenD /L satisfying these conditionst) (each
tion, so we call this fragment a description logic. knowledge bas&® < DL can be translated into a formula

Integrating description logics (DL) and logic pro-
gramming (LP) would produce a very powerful and
useful formalism. However, DLs and LP are based
on quite different principles, so achieving a seam-
less integration is not trivial. In this paper, we intro-
ducehybrid MKNF knowledge baséisat faithfully
integrate DLs with LP using the logic of Minimal
Knowledge and Negation as Failure (MKNIE)f-
schitz, 199]. We also give reasoning algorithms
and tight data complexity bounds for several inter-
esting fragments of our logic.



7(0O) of function-free first-order logic with equalityji) it
supportsABoxes—assertions of the forn® (a4, ..., a,) for
P a predicate and; constants oL, and {ii) satisfiability
checking and instance checking (i.e., checking entailmeht
the formO = P(ay, ..
miliarity with the standard DL notatiofBaaderet al., 2009.

MKNF. The first-order version of MKNIHLifschitz, 1997

can be understood as a variant of the first-order modal logi

., ay,)) are decidable. We assume fa-

A rule r is nondisjunctivef n = 1; r is positiveif k = 0; »
is afactif m = k = 0; r is safeif all variables inr occur in
a positive body atom. ArogramP is a finite set of MKNF
rules. Ahybrid MKNF knowledge bask is a pair (O, P).

We define the semantics &f by translating it into a first-
order MKNF formula as follows:

Definition 3.2. Let K = (O, P) be a hybrid MKNF knowl-
dge base. We extendo r, P, andK as follows, where is
e vector of the free variables of

S5 with a preference relation on models that implements the

nonmonotonic semantics. The syntax of MKNF is obtained

by extending first-order logic with modal operatd&s and
not. A formulaP(t4,...,t,), wheret, are terms, is dirst-
order atom For ¢ an MKNF formula,K ¢ andnot ¢ are
modalK- andnot-atoms respectivelyi is groundif it does
not contain variablesp is positiveif it does not contaimot;
and p[t/z] is the formula obtained fronp by replacing all
free occurrences of the variabtewith the termt.

m(r)=Vx:(KH,V...VKH, C
KB A...AKB;, Anot By A...AnotBy)
m(P) = Nyep m(r) m(K) = K7 (0) Aw(P)

K is satisfiablef and only if an MKNF model of(K) ex-
ists, andk entailsa closed MKNF formula), written iC = 0,

if and onIy If7T(K:) ):MKNF ’L/J
MKNF as defined byLifschitz, 1991 considers arbitrary

We assume that, apart from the constants used in MKNModels, whereas we consider only Herbrand models (see Sec-
formulae, we have a countably infinite supply of constantdion 2). We introduce this restriction to obtain an intutiv
not used in the formulae; witd we denote the Herbrand logic that is compatible with both DLs and LP. Namely, un-
universe of such a signature. Also, we assume that the signger the semantics by LifschitK A(a) FEmxne 3z : K A(w),

ture contains a special equality predicat¢hat is interpreted
as a congruence relation dn An MKNF structureis a triple

(I,M,N), wherel is a Herbrand first-order interpretation
over A, andM and N are nonempty sets of Herbrand first-

order interpretations ovek. Satisfiability of closed MKNF
formulae in an MKNF structurél, M, N) is defined as fol-
lows, for A a first-order atom:

(I, M,N)E A iff AistrueinI

(I,M,N) |~ iff (1, M,N) }~ ¢

(I,M,N) = @1 A iff (I, M,N) |= @1 and(I, M, N) = ¢2
(I,M,N)E3z:p iff (I,M,N) E p[a/z] for somea € A
(I, M,N)EKgp iff (J,M,N) = pforalJeM

(I, M,N) Enoty iff (J,M,N) - pforsomeJ € N

The symbolsrue, false, Vv, V, andc (material implication)
are interpreted as usual. AMKNF interpretation}M is a
nonempty set of first-order interpretations oyerLet o and
1 be closed MKNF formulae. An MKNF interpretatial’
is anS5 modelof ¢, written M |= o, if (I, M, M) |= ¢ for
eachl € M; M is anMKNF modelof ¢ if (i) M is anS5-
model ofp and (i) (I, M’, M) [~ ¢ for eachM’ > M and
somel’ € M’ (so-calledpreference semantiax MKNF);
finally, ¢ entailsqy, written ¢ Emkne @, if (I, M, M) E ¢
for each MKNF modelM of ¢ andl € M.

3 Hybrid MKNF Knowledge Bases

Definition 3.1. LetO be a DL knowledge base. A first-order

function-free aton®P (¢4, . . ., t,) such thatP is ~ or it occurs
in O is called aDL-atom; all other atoms are calletion-DL-
atoms An MKNF rule r has the following form, wherél;,
B;f, andB; are first-order function-free atoms:

1 KH,Vv...vVKH, «—

@ KBT,...,KB:,rL,noth,...,notB,;
Theset{K H;}, {K B;'}, and{not B; } are called theule
head the positive body and thenegative bodyrespectively.

sinceK A(a) does not fix the interpretation of in A. To
remedy that, we interpret all constants by themselves, lwhic
is standard in data management applicatitidsnini et al.,
2002; Reiter, 199R In order to ensure that our model is large
enough, we assume a countably infinite supply of constants.
Hence, we consider only infinite models @fin which dif-
ferent constants are interpreted as different objects.

An equality-free first-order formula is satisfiable in an ar-
bitrary model iff it is satisfiable in a Herbrand model with
an infinite supply of constants not occurring in the formula
[Fitting, 1996, Theorem 5.914 Hence, without equality we
cannot distinguish arbitrary from Herbrand models. For€om
patibility with DLs, we needk, which we clearly cannot in-
terpret as identity, so we interpret it as a congruence. Now
a first-order formula with equality is satisfiable in a model
with “true equality” iff it is satisfiable in a model where
is an ordinary predicate interpreted as a congru¢Riteng,
1996, Theorem 9.3]9Hence, our approach is fully compat-
ible with DLs: if P =0, thenK E ¢ iff O = ¢ for any
first-order formulap. Similarly, our logic is fully compatible
with LP: for a ground atora, if O = 0, thenk = K« iff P
entailsa under stable model semantidsfschitz, 1991.

We believe that our treatment of equality matches the com-
mon intuition behind negation-as-failure. In the versidn o
MKNF by [Lifschitz, 1991, ¢ = K A(a) A ~not A(b) has
a model with a singleton universe in whiehandb are the
same, s@ entailsa ~ b. We consider this quite unintuitive:
we did not say that andb are the same, so we expect them
to be different. Because of these problems, the semantics of
LP is commonly based on Herbrand models. We follow this
practice, so in our approachis MKNF unsatisfiable, and it
can be made satisfiable by explicitly stating b.

In [Motik and Rosati, 2006we allow the rules to con-
tain both modal and nonmodal atoms, in order to general-
ize known extensions of DLs with rules such as SWRL or
DL+log [Rosati, 2006 However, we also show that gen-
eral rules can be converted into rules with only modal atoms.



Furthermore, mixing modal and nonmodal atoms produces ah = Married(John) and I = NotMarried(John), respec-

unintuitive semantics, so it is good practice to use eithly f
nonmodal or fully modal rules.

tively, and letMs = M; U Ms. Clearly, we havel/; C Ms,
M; = K Married(John) andMs [~ K Married(John); in-
tuitively, M, contains “more knowledge” thai/;. The pref-

DL-Safety. Making the rules safe usually suffices to make €rence semantics of MKNF gives the following semantics
function-free LP decidable; however, we show next that thig0 not: an MKNF modelM of an MKNF formulay is
does not hold for MKNF rules. Note that MKNF rules contain the minimal knowledge justified by the valuesmgt-atoms.

modal atoms, so existing undecidability results for firsley
combinations of DLs with rules are not directly applicable.

Theorem 3.3. For K a safe hybrid MKNF knowledge base

and A a ground atom, checking whethkr = A is undecid-
able if DL allows us to express an axiomC C.

Namely, T C C makesC equivalent to the infinite seh,

so all elements from\ can be accessed in the rules even if the
rules are safe. In other words, safety is how not a sufficien
condition for domain independence. To ensure decidapility;n, 41l models. The precondition of (5) is thus

In our example, assuming thabt Married(John) is true
implies other consequences, suclk&a¥NotMarried(John);
now each such consequence is justified in the sense that it be-
longs to the minimal knowledge entailed by the knowledge
baselC in which eachmot-atom is replaced with its value.
To understand how open- and closed-world reasoning in-
teract in our formalism, let us assétfpouse. T (Bill) and
(Bill). Now Bill can be married to different people in dif-
ﬁerent models; however, (4) ensures thatrried ( Bill) holds
not satisfied, s

we apply the well-known DL-safety restriction, which makes e gerive neitheotMarried (Bill) nor HighRisk(Bill). In

the rules applicable only to individuals known by name in the

ABox; for an in-depth discussion, s@dotik et al, 2003.
Definition 3.4. An MKNF ruler is DL-safeif every variable
in r occurs in at least one non-DL-atoKl B in the body of-.
A hybrid MKNF knowledge bas€ is DL-safeif all its rules
are DL-safe.

a way, reasoning i@ is performed under open-world seman-
tics, but the modal operators allow us to put on “closed-dorl
glasses” and consider the consequences in all models.
Finally, let us assertSpouse(Bob, Ann), p(Bob), and
p(Ann). By (6) we can now deriv®iscount(Bob); in con-
trast, we cannot derivBiscount(Bill). Namely, the rule (6)

Note that DL-atoms are interpreted in the same way as nordiffers from the first-order implication (4) in that it reqas

DL-atoms; DL-safety merely provides a syntactic restoiati

Spouse(z,y) to be known—that is, it must hold in all first-

ensuring decidability. For a hybrid MKNF knowledge baseorder models. The spouse &fill is different in different

K = (0,P), let P; be obtained fronP by replacing in each
rule all variables with all constants frod in all possible

ways; the knowledge bagé; = (O, P¢) is called aground

instantiationof KC.

Lemma 3.5. For K a DL-safe hybrid MKNF knowledge base,

K¢ the ground instantiation o, and« a ground MKNF
formula. ThenkK = ¢ iff Ko &= 4.

4 Example

models, saD (= Spouse(Bill, y) for any value ofy, and the
rule (6) would not “fire” even if it were not DL-safe.

This example cannot be expressed in existing combinations
of DLs and LP: the rules ofEiter et al, 2004 cannot de-
rive new DL facts, and, in the approach Hgosati, 200§
the DL predicates are interpreted under open-world seman-
tics and thus cannot occur undsst.

5 Reasoning Algorithms

Consider determining the car insurance premium based o@iven a nonground hybrid MKNF knowledge basgall our
various mformatlor_\ about the driver. By convention, DL- algorithms first compute the ground knowledge b&iseto
predicates start with an uppercase and non-DL-predicateshtain an MKNF theory without modal operators under quan-

with a lowercase letter. L& be the following hybrid MKNF
knowledge base (the predicateneans “person”):

(2 NotMarried = - Married
3) NotMarried C HighRisk
4) ISpouse. T T Married
(5) K NotMarried(xz) «— K p(z), not Married ()
(6) K Discount(x) — K Spouse(z,y), K p(z), K p(y)

Let us now asserp(John). Under first-order seman-
tics, some models contaitarried(John) and others con-
tain NotMarried(John). However, (5) applies the closed-
world assumption taMarried: by default, people are as-
sumed not to be married. Sinddarried(John) does not
hold in all models of®, the rule (5) “fires” and it derives
NotMarried(John); with (3), this impliesHighRisk (John).

tifiers. For a program with variables, this step is exponen-
tial. However, even for nondisjunctive datalog the comtine
complexity is higher than data complexity by an exponen-
tial factor [Dantsinet al., 2001, so this is to be expected of
our logic as well. Therefore, for an MKNF knowledge base
K = (O, P), we just consider thdata complexitywhich is
measured in the size of the factsrand the size of the ABox

of O. We denote the data complexity of reasonin@if with
C,and se€ = NP if £ C NP and€& = C otherwise.

For simplicity, we write/C, O, and P instead ofr(K),
7(0), andr(P). The MKNF models ofC are clearly infi-
nite, so we must devise a convenient finite representation fo
them. We adopt an approach already usefRnsati, 1999
we represent an MKNF modal using a first-order formula
psuchthatM = {I | I &= ¢}. We formalize this as follows:

The preference semantics of MKNF is strongly relatedDefinition 5.1. Let K = (O, P) be a hybrid MKNF knowl-
to the notion of the Gelfond-Lifschitz reduct used to de-edge base. The set Bf-atoms ofK, written KA(K), is the

fine stable models. Leds; and Ms be MKNF interpre-
tations consisting of first-order interpretatiofissuch that

smallest set that contain$) (@ll K-atoms ofP¢g, and (i) a
modal atonK ¢ for each modal atomot £ occurring inPg.



For a subsetP of KA(K), the objective knowledge of
is the formuleobe, p = O U U ¢ p §- A partition (P, N) of
KA(K) is consistentf obx p b~ £ foreachK ¢ € N.

Let ¢ be an MKNF formula and P, N) a partition of
KA(K). The formulap[K, P, N] is obtained fromyp by re-
placing eachK ¢ with true if K¢ € P and withfalse oth-
erwise; p[not, P, N] is obtained fromy by replacing each
not & with true if K¢ € N and withfalse otherwise; finally,
[P, N] = ¢[K, P, N][not, P, N].

For a set of modal atomS, Spy, is the subset of DL-atoms
of S, S={¢| K¢ € S},andSp, = 5" for ' = Spy.

An MKNF model is strongly related to a particular parti-
tion of KA(K):

Definition 5.2. An MKNF interpretationM/ induceghe par-
tition (P, N) of KA(K) if K¢ € P impliesM | K¢ and
K¢ € NimpliesM (= K¢.

The following key lemma shows that each MKNF model
M of K¢ can be represented as a partitiorka¥(KC):

Lemma 5.3. Let M be an MKNF model oK and (P, N)
a partition of KA(K) induced byM . Then,M is equal to the
set of interpretationd/’ = {I | I |= obk,p}.

Hence, to find an MKNF model o€, we need to find a
partition(P, N) of KA(K). We can do it in different ways for
different types of rules.

The General Case. As for disjunctive datalog, in the gen-
eral case we must guess a partit{dh V) of KA(K). Thisis
captured by Algorithm 1.

Theorem 5.4. Let K be a DL-safe hybrid MKNF knowl-
edge base and = (—) K A for A a ground atom. Then,
not-entails-DL(K, ¢) returnstrue iff K [~ ¢, and it runs with
data complexity®.

Proof sketch.(=) If not-entails-DL(K, ) returnstrue, a
partition (P, N) of KA(K) satisfying all conditions of Al-
gorithm 1 exists. We show that/ = {I | I |= obk p} is
an MKNF model of/C. By Condition (3),(P, N) is con-
sistent on all DL-atoms and, by Condition (4), it is con-
sistent on all non-DL-atoms (for a non-DL-predicatg
obi.p = Q(as,. .., ay) can hold only ifQ(by, . .., b,) € P
andoby p | a; ~ b; for all i). By Condition (2),M # (.
By Condition (1),(I, M, M) = P[P, N] for eachl € M;
furthermore, the values of aK-atoms inM are determined
by (P,N), so(I,M,M) = "Pg. Clearly, (I, M,M) = O,
so(I,M,M) = Kg. Assume now thad/ is not an MKNF
model—that is, an MKNF interpretatiok/’ exists such that
M’ > M and(I',M’', M) = K¢ for eachl’ € M’. Then,
M’ induces the partition P, N") of KA(K). Because
M’ E K¢ implies M = K¢, we haveP” C P, so we can
representP”’, N") as(P’, N U N') for (P’, N') a partition
of P with N’ # (. By Lemma5.3M’ = {I | I = obk p}.
Becausell’ # (), obi p is satisfiable, so Condition (b) is in-
validated; (I', M', M) = ~[P’, N U N'] for eachl’ € M’,
which invalidates Condition (a); finally(P’, N UN’) is
clearly consistent, which invalidates Conditions (c) ady (
Hence, Condition (5) could not hold féP’, N U N’), which

Algorithm 1 Entailment in General hybrid MKNF KBs

Algorithm: not-entails-DL(/C, ¢)

Input:
K = (O, P): a DL-safe hybrid MKNF knowledge base
¢ : aground formulgd—) K A

Output:
true if K F£ 4; false otherwise

let K be the ground instantiation &¢
if a partition(P, N) of KA(K¢) U {K A} exists such that
1. Pg[P, N] evaluates tarue, and
O U Ppy, is satisfiable, and
OUPpr £ ¢ foreachK ¢ € Npyr, and
for each Q(a1,...,axs) € N andQ(b1,...,bs) € P, we
haveO U Pp, - a; = b; forsomel <i<n
for v+ = Pg[not, P, N| and each partitiofP’, N') of P
such that\’ # (§
(a) v[P’, N U N'] evaluates tdalse, or
(b) © U P}, is unsatisfiable, or
(c) Ou P}, E ¢ for someK € € Npp, or
(d) forsomeQ(as, . ..,an) € N andQ(by,...,bn) € P,
wehave(’)uﬁl’)L Ea;=bforalll <i<n
6. one of the following conditions holds:
(i) v =KAandK A ¢ P, or
(i) y=-KAandK A e P
then return true; otherwise return false

2.
3.
4.

5.

is a contradiction; hencéy/ is an MKNF model ofCs. Fi-
nally, Condition (6) ensured/ (= ¢, soKqg = 1. The &)
direction is analogous.

K¢ can be computed in polynomial time if the size of the
nonground rules ifP is bounded. A partitiof P, N) can be
guessed and Condition (1) can be checked in time polyno-
mial in the size ofCs. Checking Conditions (2)—(4) and (6)
requires a polynomial number of calls to an oracle running in
C, so all these steps can be performed irDisproving Con-
dition (5) requires guessing a partitig®’, N') and a poly-
nomial number of calls to an oracle runningdn so it can
be performed ir€. Hence, validating Condition (5) can be
performed in ¢&, and the algorithm runs ifi€. O

Positive Programs. For K a positive hybrid MKNF knowl-
edge basel = K A iff M = K A for eachS5-model M of

KC: for each suchi/, sincek is positive, an MKNF modeM’

of K exists such that/’ C M. (This is analogous to the case

of positive disjunctive datalog.) In other words, for post
queries, we do not need to ensure the preference semantics of
MKNF. Let not-entails-DL™ (X, K A) be an algorithm that

is the same as Algorithm 1, only without Condition (5). By
adapting the proof of Theorem 5.4, we get the following:

Theorem 5.5. Let K = (O, P) be a positive DL-safe hy-
brid MKNF knowledge base and a ground atom. Then,
not-entails-DL™ (K, K A) returnstrue iff £ [~ K A, and it
runs with data complexit.



Positive Nondisjunctive Programs. If K is nondisjunctive e For each body atomot ¢ of r, eachP C head (k) <*(")
and positive, we can constru@®, N) deterministically in a such thabby p = ¢, and eachP’ C head(lC)ZA(’”), ei-
bott('):m-up falshion. We ca): ea]:sily s”how thdt = K and theroby pup: £ € Or obk, pups is unsatisfiable.
M = K implies M1 U M, |= K for all MKNF interpreta- . e I . -
tions M; andM>, which immediately implies the following: K IS stratn_‘|_ed|f a _strat|f|cat|on)\ of K exists. A stratifi-
" o i . cation A partitionsP into stratas; = {r | A(r) = i},; the se-
Theorem 5.6. Each positive DL-safe nondisjunctive hybrid quence of stratar , . . ., o, is often identified with\ and is
MKNF knowledge bask has at most one MKNF model. also called a stratification.

Definition 5.7. For K a positive nondisjunctive DL-safe hy-  gtratification ensures that deriving an at®at in a stra-

brid MKNF knowledge basé?ic, D, andTi are the oper-  tym o; does not change the values of th& and not-

ators defined on the subsetstok(K) as follows: atoms from strata< i and < i, respectively. For exam-
Re(S) = S U {K H | K contains a rule of the forrtd) ple, consider a knowledge bakewhereDL is propositional

such thatK B; € S for eachl <i < n} logic, O = (r =pV q) A (s = —¢), andP contains the rules
- Kr < notpandK s < K. In ordinary datalogP would

Di(S) ={K¢| K¢ € KA(K)andO U Spyr = £} U be stratified: by evaluating the first rule we derier, af-
{KQ(b1,...,bn) | KQ(a1,...,an) € S\ Spr ter which we evaluate the second rule and dekve. But
andO U Spr | si = bifor1 <i<n} now the objective knowledge isA s A © and it implies—g,

T (S) = Re(S) U Dk(S) which invalidates the atorK p in the body of the first rule.

Intuitively, Definition 5.9 ensures that such an interactie-
tween O and the derived facts does not happen. Clearly,
checking stratification is difficult in general. However,(f
employs UNA and no rule irP contains a DL-atom in the
head, then stratification d? can be checked as usual. This

The operatoflic is monotonic on the lattice of subsets of
KA(K) (i.e.,S C 5" impliesTx(S) C Tk (S’)). Namely,Rx
is monotonic similarly as this is the case for datalog, &nd
is monotonic because first-order logic is monotonic. Hence,

by Knaster-Tarski's theorerfiy: has the least fixpoint, which o ; . :
case is interesting because it allows to define complex con-

we denote withl. It is now easy to show the following: ;

~ - ) straints over DL knowledge bases. We now show how to
Theorem 5.8. Let K be a positive nondisjunctive DL-safe compute models of a stratified program:
hybrid MKNF knowledge base and = {I | I |= obx 7« }.
Then, {) if M # 0, thenM is the single MKNF model df;
(i) if £ has an MKNF model, this model is equalié; and
(iii) the data complexity of computing is in PC.

Definition 5.10. Let o, ..., 0. be a stratification of a DL-
safe MKNF knowledge bas€. The sequence of subsets
Uy, ..., U of KA(o) is inductively defined a&, = () and,
for0 <i <k, U; =Ty wherey; = U;_1 Uoj andoj is ob-
Proof sketch.(i) Clearly, M = K O and, sincel¢ is a fix-  tained fromo; by replacing eachot & with true if U [~ ¢
point of Tic, M |= Pg. If M were not an MKNF model, an and withfalse otherwise. Finally, leUy = Uy.

MKNF interpretation)” > M such tha(l’, M', M) = K¢ The following theorem is analogous to the case of ordinary
for each!” € M’ would exist and it would induce a partition  stratified datalog:

/ A / 1\ /
(P, N') of KA(K) such thatP” C P. Clearly,Tic(P') = P Theorem 5.11. Let £ be a stratified DL-safe MKNF knowl-

(otherwise, eithed’ |~ r for somer € Pg, or (P',N') is v
not consistent)_, but thefie is no_t_the minimal fixpoint off . gﬂgﬁﬁt{): 3?%{1 322%&3&; |plIJ go?ﬁé% I}I(.)vljiﬁ%aélcg?nswz ﬁ‘;}g?
The proof for {i) is analogous.iif) As for ordinary datalog, (i) if M % 0, then)M is an MKNE model ofC; (ii) if K has

R (S) can be computed in polynomial time. The number . . i "
: Y : - . an MKNF model, then this model is equalé; and (i) the
of atoms inKA(K) is linear in the size of, so computing data complexity of computirigs is in P°.

D (S) requires a polynomial number of calls to an oracle
running inC. Finally, the number of iterations is bounded by
the size ofKA(K), which implies the claim. n Nondisjunctive Nonstratified Programs. We now takelC
) . . to be a nondisjunctive and nonstratified knowledge base.
For entailment checkingC = K A iff obc 1w = A, and  Then, the knowledge base= P¢[not, P, N] from Algo-
K E -KAiff obk 1o j# A. rithm 1 is nondisjunctive and positive, so we can use The-
orem 5.8 to ensure the preference semantics of MKNF. We

Stratified Programs. We first define a notion of stratifica- definenondisjunctive-not-entails-DL(o, ¢) to be the same as
tion appropriate to MKNF programs. Algorlthm 1, but replace Condition (5) Wlm,;‘) = P.

Definition 5.9. Let K = (O, P) be a nondisjunctive hybrid Theorem 5.12. For a nondisjunctive nonstratified hybrid
MKNF knowledge base and: P — IN* a function assign- MKNF knowledge bask andy = (—) K A with A a ground
ing to eachr € P a positive integef\(r). For an integer ~ atom, the algorithmmondisjunctive-not-entails-DL(K, ) re-
kandi € {<,<,>,>}, lethead(K)™* be the set of head turnstrue iff K j 1, and it runs with data complexig?* .
atoms of those rules € P for which A(r) > k. Then,\ is

a stratificationof K if these conditions hold for eaghe Pg: 6 Data Complexity

e For each body atonK ¢ of 7, eachP C head(K)<*(™  We now determine the data complexity—the complexity
such thabbx p #~ &, and eachP’ C head(K)>*("), ei-  measured in the sizes of the ABox@fand the facts oP—
therobx pup & £ or obic, pup IS unsatisfiable; of checking entailment for a hybrid MKNF knowledge base
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