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Abstract
Integrating description logics (DL) and logic pro-
gramming (LP) would produce a very powerful and
useful formalism. However, DLs and LP are based
on quite different principles, so achieving a seam-
less integration is not trivial. In this paper, we intro-
ducehybrid MKNF knowledge basesthat faithfully
integrate DLs with LP using the logic of Minimal
Knowledge and Negation as Failure (MKNF)[Lif-
schitz, 1991]. We also give reasoning algorithms
and tight data complexity bounds for several inter-
esting fragments of our logic.

1 Introduction
Integrating description logics (DLs) and logic programming
(LP) in a common framework would produce a very powerful
formalism; for example, LP rules could be used to model con-
straints and exceptions over DL knowledge bases. Adding a
rule layer on top of the DL-based Web Ontology Language
(OWL) is currently the central task in the development of
the Semantic Web language stack, and the Rule Interchange
Format (RIF) working group of the World Wide Web Con-
sortium (W3C) is currently working on standardizing such
a language. However, DLs and LP are based on fundamen-
tally different assumptions: DLs are fragments of first-order
logic and employ open-world semantics, whereas LP pro-
vides negation-as-failure under closed-world semantics.

Several approaches to integrating DLs and LP were pro-
posed recently.[Rosati, 2006] proposes an approach that in-
terprets the predicates from the DL knowledge base under
open-world and the predicates occurring only in the LP rules
under closed-world semantics.[Eiter et al., 2004] propose a
loose coupling of DLs and LP by extending the LP rules with
special atoms interpreted as queries to a DL knowledge base.

In this paper, we introducehybrid MKNF knowledge bases,
which integrate an arbitrary description logicDL1 with dis-
junctive logic programs and negation-as-failure. This inte-
gration is faithful in the sense that it provides exactly the
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1Our approach is actually applicable to any first-order fragment;
however, our work is motivated primarily by knowledge representa-
tion, so we call this fragment a description logic.

same consequences asDL and LP, respectively, if the other
component is empty. Unlike the existing approaches, our ap-
proach allows the user to freely switch between open- and
closed-world views on arbitrary predicates fromDL and LP.
By means of an example, we argue that our logic produces
intuitive and practically useful consequences.

We base our approach on the logic of Minimal Knowledge
and Negation as Failure (MKNF), developed by[Lifschitz,
1991] to unify several major approaches to nonmonotonic
reasoning. To obtain intuitive consequences for our hybrid
logic, we modify certain technical aspects of MKNF regard-
ing the universe of discourse and equality.

Function-free logic programs are usually decidable if the
rules are safe, and many decidable DLs exist. However, we
show that these restrictions onDL and LP are not sufficient
to obtain a decidable hybrid formalism, due to an interaction
betweenDL and negation-as-failure. To obtain decidability,
we apply the well-known notion ofDL-safety[Motik et al.,
2005], which makes the rules applicable only to individuals
known by name. We present several reasoning algorithms
for the cases of general, positive (i.e., without negation-as-
failure), nondisjunctive and positive, nondisjunctive and strat-
ified, and nondisjunctive (but not necessarily stratified) DL-
safe rules. Finally, we present tight data complexity bounds
for each case and show that combining DLs with LP often
does not increase the data complexity of LP.

Our approach is related to several nonmonotonic exten-
sions of DLs. [Donini et al., 2002] propose an MKNF-
based extension of the DLALC, but without LP rules and
with unique name assumption (UNA).[Baader and Hollun-
der, 1995] propose an extension of DLs with DL-safe default
rules, which are subsumed by our approach due to our treat-
ment of equality and the well-known embedding of default
logic into MKNF [Lifschitz, 1991]. Finally, [Bonatti et al.,
2006] present an extension of DLs with circumscription that
allows for nonmonotonic reasoning on unnamed individuals,
but only for unary predicates if decidability is desired.

We leave the detailed proofs to[Motik and Rosati, 2006]
and present here only proof sketches.

2 Preliminaries
Description Logics. Our approach is applicable to any
first-order fragmentDL satisfying these conditions: (i) each
knowledge baseO ∈ DL can be translated into a formula



π(O) of function-free first-order logic with equality, (ii ) it
supportsABoxes—assertions of the formP (a1, . . . , an) for
P a predicate andai constants ofDL, and (iii ) satisfiability
checking and instance checking (i.e., checking entailments of
the formO |= P (a1, . . . , an)) are decidable. We assume fa-
miliarity with the standard DL notation[Baaderet al., 2003].

MKNF. The first-order version of MKNF[Lifschitz, 1991]
can be understood as a variant of the first-order modal logic
S5 with a preference relation on models that implements the
nonmonotonic semantics. The syntax of MKNF is obtained
by extending first-order logic with modal operatorsK and
not. A formulaP (t1, . . . , tn), whereti are terms, is afirst-
order atom. For ϕ an MKNF formula,Kϕ andnotϕ are
modalK- andnot-atoms, respectively;ϕ is groundif it does
not contain variables;ϕ is positiveif it does not containnot;
andϕ[t/x] is the formula obtained fromϕ by replacing all
free occurrences of the variablex with the termt.

We assume that, apart from the constants used in MKNF
formulae, we have a countably infinite supply of constants
not used in the formulae; with△ we denote the Herbrand
universe of such a signature. Also, we assume that the signa-
ture contains a special equality predicate≈ that is interpreted
as a congruence relation on△. An MKNF structureis a triple
(I,M,N), whereI is a Herbrand first-order interpretation
over△, andM andN are nonempty sets of Herbrand first-
order interpretations over△. Satisfiability of closed MKNF
formulae in an MKNF structure(I,M,N) is defined as fol-
lows, forA a first-order atom:

(I,M,N) |= A iff A is true inI
(I,M,N) |= ¬ϕ iff (I,M,N) 6|= ϕ
(I,M,N) |= ϕ1 ∧ ϕ2 iff (I,M,N) |= ϕ1 and(I,M,N) |= ϕ2

(I,M,N) |= ∃x : ϕ iff (I,M,N) |= ϕ[α/x] for someα ∈ △
(I,M,N) |= Kϕ iff (J,M,N) |= ϕ for all J ∈M
(I,M,N) |= notϕ iff (J,M,N) 6|= ϕ for someJ ∈ N

The symbolstrue, false, ∨, ∀, and⊂ (material implication)
are interpreted as usual. AnMKNF interpretationM is a
nonempty set of first-order interpretations over△. Letϕ and
ψ be closed MKNF formulae. An MKNF interpretationM
is anS5 modelof ϕ, writtenM |= ϕ, if (I,M,M) |= ϕ for
eachI ∈M ; M is anMKNF modelof ϕ if ( i) M is anS5-
model ofϕ and (ii ) (I ′,M ′,M) 6|= ϕ for eachM ′ ⊃ M and
someI ′ ∈ M ′ (so-calledpreference semanticsof MKNF);
finally, ϕ entailsψ, writtenϕ |=MKNF ψ, if (I,M,M) |= ψ
for each MKNF modelM of ϕ andI ∈M .

3 Hybrid MKNF Knowledge Bases
Definition 3.1. LetO be a DL knowledge base. A first-order
function-free atomP (t1, . . . , tn) such thatP is≈ or it occurs
inO is called aDL-atom; all other atoms are callednon-DL-
atoms. An MKNF rule r has the following form, whereHi,
B+

i , andB−
i are first-order function-free atoms:

(1)
KH1 ∨ . . . ∨KHn ←

KB+

1 , . . . ,KB+
m,notB−

1 , . . . ,notB−

k

The sets{KHi}, {KB+
i }, and{notB−

i } are called therule
head, thepositive body, and thenegative body, respectively.

A rule r is nondisjunctiveif n = 1; r is positiveif k = 0; r
is a fact if m = k = 0; r is safeif all variables inr occur in
a positive body atom. AprogramP is a finite set of MKNF
rules. Ahybrid MKNF knowledge baseK is a pair (O,P).

We define the semantics ofK by translating it into a first-
order MKNF formula as follows:

Definition 3.2. LetK = (O,P) be a hybrid MKNF knowl-
edge base. We extendπ to r, P , andK as follows, wherex is
the vector of the free variables ofr:
π(r) = ∀x : (KH1 ∨ . . . ∨KHn ⊂

KB+

1 ∧ . . . ∧KB+
m ∧ notB−

1 ∧ . . . ∧ notB−

k )
π(P) =

∧
r∈P

π(r) π(K) = Kπ(O) ∧ π(P)

K is satisfiableif and only if an MKNF model ofπ(K) ex-
ists, andK entailsa closed MKNF formulaψ, writtenK |= ψ,
if and only ifπ(K) |=MKNF ψ.

MKNF as defined by[Lifschitz, 1991] considers arbitrary
models, whereas we consider only Herbrand models (see Sec-
tion 2). We introduce this restriction to obtain an intuitive
logic that is compatible with both DLs and LP. Namely, un-
der the semantics by Lifschitz,KA(a) 6|=MKNF ∃x : KA(x),
sinceKA(a) does not fix the interpretation ofa in △. To
remedy that, we interpret all constants by themselves, which
is standard in data management applications[Donini et al.,
2002; Reiter, 1992]. In order to ensure that our model is large
enough, we assume a countably infinite supply of constants.
Hence, we consider only infinite models ofO in which dif-
ferent constants are interpreted as different objects.

An equality-free first-order formula is satisfiable in an ar-
bitrary model iff it is satisfiable in a Herbrand model with
an infinite supply of constants not occurring in the formula
[Fitting, 1996, Theorem 5.9.4]. Hence, without equality we
cannot distinguish arbitrary from Herbrand models. For com-
patibility with DLs, we need≈, which we clearly cannot in-
terpret as identity, so we interpret it as a congruence. Now
a first-order formula with equality is satisfiable in a model
with “true equality” iff it is satisfiable in a model where≈
is an ordinary predicate interpreted as a congruence[Fitting,
1996, Theorem 9.3.9]. Hence, our approach is fully compat-
ible with DLs: if P = ∅, thenK |= ϕ iff O |= ϕ for any
first-order formulaϕ. Similarly, our logic is fully compatible
with LP: for a ground atomα, if O = ∅, thenK |= Kα iff P
entailsα under stable model semantics[Lifschitz, 1991].

We believe that our treatment of equality matches the com-
mon intuition behind negation-as-failure. In the version of
MKNF by [Lifschitz, 1991], ϕ = KA(a) ∧ ¬notA(b) has
a model with a singleton universe in whicha andb are the
same, soϕ entailsa ≈ b. We consider this quite unintuitive:
we did not say thata andb are the same, so we expect them
to be different. Because of these problems, the semantics of
LP is commonly based on Herbrand models. We follow this
practice, so in our approachϕ is MKNF unsatisfiable, and it
can be made satisfiable by explicitly statinga ≈ b.

In [Motik and Rosati, 2006] we allow the rules to con-
tain both modal and nonmodal atoms, in order to general-
ize known extensions of DLs with rules such as SWRL or
DL+log [Rosati, 2006]. However, we also show that gen-
eral rules can be converted into rules with only modal atoms.



Furthermore, mixing modal and nonmodal atoms produces an
unintuitive semantics, so it is good practice to use either fully
nonmodal or fully modal rules.

DL-Safety. Making the rules safe usually suffices to make
function-free LP decidable; however, we show next that this
does not hold for MKNF rules. Note that MKNF rules contain
modal atoms, so existing undecidability results for first-order
combinations of DLs with rules are not directly applicable.
Theorem 3.3. For K a safe hybrid MKNF knowledge base
andA a ground atom, checking whetherK |= A is undecid-
able ifDL allows us to express an axiom⊤ ⊑ C.

Namely,⊤ ⊑ C makesC equivalent to the infinite set△,
so all elements from△ can be accessed in the rules even if the
rules are safe. In other words, safety is now not a sufficient
condition for domain independence. To ensure decidability,
we apply the well-known DL-safety restriction, which makes
the rules applicable only to individuals known by name in the
ABox; for an in-depth discussion, see[Motik et al., 2005].
Definition 3.4. An MKNF ruler is DL-safeif every variable
in r occurs in at least one non-DL-atomKB in the body ofr.
A hybrid MKNF knowledge baseK is DL-safeif all its rules
are DL-safe.

Note that DL-atoms are interpreted in the same way as non-
DL-atoms; DL-safety merely provides a syntactic restriction
ensuring decidability. For a hybrid MKNF knowledge base
K = (O,P), letPG be obtained fromP by replacing in each
rule all variables with all constants fromK in all possible
ways; the knowledge baseKG = (O,PG) is called aground
instantiationof K.
Lemma 3.5. ForK a DL-safe hybrid MKNF knowledge base,
KG the ground instantiation ofK, andψ a ground MKNF
formula. Then,K |= ψ iff KG |= ψ.

4 Example
Consider determining the car insurance premium based on
various information about the driver. By convention, DL-
predicates start with an uppercase and non-DL-predicates
with a lowercase letter. LetK be the following hybrid MKNF
knowledge base (the predicatep means “person”):

NotMarried ≡ ¬Married(2)

NotMarried ⊑ HighRisk(3)

∃Spouse.⊤ ⊑ Married(4)

KNotMarried(x)← K p(x),notMarried (x)(5)

KDiscount(x)← K Spouse(x, y),K p(x),K p(y)(6)
Let us now assertp(John). Under first-order seman-

tics, some models containMarried(John) and others con-
tain NotMarried(John). However, (5) applies the closed-
world assumption toMarried : by default, people are as-
sumed not to be married. SinceMarried (John) does not
hold in all models ofO, the rule (5) “fires” and it derives
NotMarried(John); with (3), this impliesHighRisk (John).

The preference semantics of MKNF is strongly related
to the notion of the Gelfond-Lifschitz reduct used to de-
fine stable models. LetM1 andM2 be MKNF interpre-
tations consisting of first-order interpretationsI such that

I |= Married(John) and I |= NotMarried(John), respec-
tively, and letM3 = M1 ∪M2. Clearly, we haveM1 ⊂ M3,
M1 |= KMarried (John) andM3 6|= KMarried(John); in-
tuitively,M1 contains “more knowledge” thanM3. The pref-
erence semantics of MKNF gives the following semantics
to not: an MKNF modelM of an MKNF formulaϕ is
the minimal knowledge justified by the values ofnot-atoms.
In our example, assuming thatnotMarried (John) is true
implies other consequences, such asKNotMarried(John);
now each such consequence is justified in the sense that it be-
longs to the minimal knowledge entailed by the knowledge
baseK in which eachnot-atom is replaced with its value.

To understand how open- and closed-world reasoning in-
teract in our formalism, let us assert∃Spouse.⊤(Bill) and
p(Bill ). Now Bill can be married to different people in dif-
ferent models; however, (4) ensures thatMarried (Bill) holds
in all models. The precondition of (5) is thus not satisfied, so
we derive neitherNotMarried (Bill) norHighRisk (Bill). In
a way, reasoning inO is performed under open-world seman-
tics, but the modal operators allow us to put on “closed-world
glasses” and consider the consequences in all models.

Finally, let us assertSpouse(Bob,Ann), p(Bob), and
p(Ann). By (6) we can now deriveDiscount(Bob); in con-
trast, we cannot deriveDiscount(Bill ). Namely, the rule (6)
differs from the first-order implication (4) in that it requires
Spouse(x, y) to be known—that is, it must hold in all first-
order models. The spouse ofBill is different in different
models, soO 6|= Spouse(Bill , y) for any value ofy, and the
rule (6) would not “fire” even if it were not DL-safe.

This example cannot be expressed in existing combinations
of DLs and LP: the rules of[Eiter et al., 2004] cannot de-
rive new DL facts, and, in the approach by[Rosati, 2006],
the DL predicates are interpreted under open-world seman-
tics and thus cannot occur undernot.

5 Reasoning Algorithms
Given a nonground hybrid MKNF knowledge baseK, all our
algorithms first compute the ground knowledge baseKG to
obtain an MKNF theory without modal operators under quan-
tifiers. For a program with variables, this step is exponen-
tial. However, even for nondisjunctive datalog the combined
complexity is higher than data complexity by an exponen-
tial factor [Dantsinet al., 2001], so this is to be expected of
our logic as well. Therefore, for an MKNF knowledge base
K = (O,P), we just consider thedata complexity, which is
measured in the size of the facts inP and the size of the ABox
ofO. We denote the data complexity of reasoning inDLwith
C, and setE = NP if E ⊆ NP andE = C otherwise.

For simplicity, we writeK, O, andP instead ofπ(K),
π(O), andπ(P). The MKNF models ofKG are clearly infi-
nite, so we must devise a convenient finite representation for
them. We adopt an approach already used by[Rosati, 1999]:
we represent an MKNF modelM using a first-order formula
ϕ such thatM = {I | I |= ϕ}. We formalize this as follows:

Definition 5.1. LetK = (O,P) be a hybrid MKNF knowl-
edge base. The set ofK-atoms ofK, written KA(K), is the
smallest set that contains (i) all K-atoms ofPG, and (ii ) a
modal atomK ξ for each modal atomnot ξ occurring inPG.



For a subsetP of KA(K), theobjective knowledge ofP
is the formulaobK,P = O ∪

⋃
K ξ∈P ξ. A partition(P,N) of

KA(K) is consistentif obK,P 6|= ξ for eachK ξ ∈ N .
Let ϕ be an MKNF formula and(P,N) a partition of

KA(K). The formulaϕ[K, P,N ] is obtained fromϕ by re-
placing eachK ξ with true if K ξ ∈ P and with false oth-
erwise;ϕ[not, P,N ] is obtained fromϕ by replacing each
not ξ with true if K ξ ∈ N and withfalse otherwise; finally,
ϕ[P,N ] = ϕ[K, P,N ][not, P,N ].

For a set of modal atomsS, SDL is the subset of DL-atoms
of S, Ŝ = {ξ | K ξ ∈ S}, andŜDL = Ŝ′ for S′ = SDL.

An MKNF model is strongly related to a particular parti-
tion of KA(K):

Definition 5.2. An MKNF interpretationM inducesthe par-
tition (P,N) of KA(K) if K ξ ∈ P impliesM |= K ξ and
K ξ ∈ N impliesM 6|= K ξ.

The following key lemma shows that each MKNF model
M of KG can be represented as a partition ofKA(K):

Lemma 5.3. LetM be an MKNF model ofKG and (P,N)
a partition ofKA(K) induced byM . Then,M is equal to the
set of interpretationsM ′ = {I | I |= obK,P }.

Hence, to find an MKNF model ofKG, we need to find a
partition(P,N) of KA(K). We can do it in different ways for
different types of rules.

The General Case. As for disjunctive datalog, in the gen-
eral case we must guess a partition(P,N) of KA(K). This is
captured by Algorithm 1.

Theorem 5.4. Let K be a DL-safe hybrid MKNF knowl-
edge base andψ = (¬)KA for A a ground atom. Then,
not-entails-DL(K, ψ) returnstrue iff K 6|= ψ, and it runs with
data complexityEE .

Proof sketch.(⇒) If not-entails-DL(K, ψ) returns true, a
partition (P,N) of KA(K) satisfying all conditions of Al-
gorithm 1 exists. We show thatM = {I | I |= obK,P } is
an MKNF model ofKG. By Condition (3),(P,N) is con-
sistent on all DL-atoms and, by Condition (4), it is con-
sistent on all non-DL-atoms (for a non-DL-predicateQ,
obK,P |= Q(a1, . . . , an) can hold only ifQ(b1, . . . , bn) ∈ P̂
andobK,P |= ai ≈ bi for all i). By Condition (2),M 6= ∅.
By Condition (1),(I,M,M) |= PG[P,N ] for eachI ∈M ;
furthermore, the values of allK-atoms inM are determined
by (P,N), so (I,M,M) |= PG. Clearly, (I,M,M) |= O,
so (I,M,M) |= KG. Assume now thatM is not an MKNF
model—that is, an MKNF interpretationM ′ exists such that
M ′ ⊃M and (I ′,M ′,M) |= KG for eachI ′ ∈M ′. Then,
M ′ induces the partition(P ′′, N ′′) of KA(K). Because
M ′ |= K ξ impliesM |= K ξ, we haveP ′′ ⊂ P , so we can
represent(P ′′, N ′′) as(P ′, N ∪N ′) for (P ′, N ′) a partition
of P with N ′ 6= ∅. By Lemma 5.3,M ′ = {I | I |= obK,P ′}.
BecauseM ′ 6= ∅, obK,P ′ is satisfiable, so Condition (b) is in-
validated;(I ′,M ′,M) |= γ[P ′, N ∪N ′] for eachI ′ ∈M ′,
which invalidates Condition (a); finally,(P ′, N ∪N ′) is
clearly consistent, which invalidates Conditions (c) and (d).
Hence, Condition (5) could not hold for(P ′, N ∪N ′), which

Algorithm 1 Entailment in General hybrid MKNF KBs
Algorithm: not-entails-DL(K, ψ)
Input:
K = (O,P): a DL-safe hybrid MKNF knowledge base
ψ : a ground formula(¬)KA

Output:
true if K 6|= ψ; false otherwise

let KG be the ground instantiation ofK
if a partition(P,N ) of KA(KG) ∪ {KA} exists such that

1. PG[P,N ] evaluates totrue, and

2. O ∪ P̂DL is satisfiable, and

3. O ∪ P̂DL 6|= ξ for eachK ξ ∈ NDL, and

4. for each Q(a1, . . . , an) ∈ N̂ andQ(b1, . . . , bn) ∈ P̂ , we
haveO ∪ P̂DL 6|= ai ≈ bi for some1 ≤ i ≤ n

5. for γ = PG[not, P,N ] and each partition(P ′, N ′) of P
such thatN ′ 6= ∅

(a) γ[P ′, N ∪N ′] evaluates tofalse, or

(b) O ∪ P̂ ′
DL is unsatisfiable, or

(c) O ∪ P̂ ′
DL |= ξ for someK ξ ∈ N ′

DL, or

(d) for someQ(a1, . . . , an) ∈ N̂ ′ andQ(b1, . . . , bn) ∈ P̂ ′,
we haveO ∪ P̂ ′

DL |= ai ≈ bi for all 1 ≤ i ≤ n
6. one of the following conditions holds:

(i) ψ = KA andKA 6∈ P , or
(ii) ψ = ¬KA andKA ∈ P

then return true; otherwise return false

is a contradiction; hence,M is an MKNF model ofKG. Fi-
nally, Condition (6) ensuresM 6|= ψ, soKG 6|= ψ. The (⇐)
direction is analogous.
KG can be computed in polynomial time if the size of the

nonground rules inP is bounded. A partition(P,N) can be
guessed and Condition (1) can be checked in time polyno-
mial in the size ofKG. Checking Conditions (2)–(4) and (6)
requires a polynomial number of calls to an oracle running in
C, so all these steps can be performed inE . Disproving Con-
dition (5) requires guessing a partition(P ′, N ′) and a poly-
nomial number of calls to an oracle running inC, so it can
be performed inE . Hence, validating Condition (5) can be
performed in coE , and the algorithm runs inEE .

Positive Programs. ForK a positive hybrid MKNF knowl-
edge base,K |= KA iff M |= KA for eachS5-modelM of
K: for each suchM , sinceK is positive, an MKNF modelM ′

ofK exists such thatM ′ ⊆M . (This is analogous to the case
of positive disjunctive datalog.) In other words, for positive
queries, we do not need to ensure the preference semantics of
MKNF. Let not-entails-DL+(K,KA) be an algorithm that
is the same as Algorithm 1, only without Condition (5). By
adapting the proof of Theorem 5.4, we get the following:

Theorem 5.5. Let K = (O,P) be a positive DL-safe hy-
brid MKNF knowledge base andA a ground atom. Then,
not-entails-DL+(K,KA) returns true iff K 6|= KA, and it
runs with data complexityE .



Positive Nondisjunctive Programs. If K is nondisjunctive
and positive, we can construct(P,N) deterministically in a
bottom-up fashion. We can easily show thatM1 |= K and
M2 |= K impliesM1 ∪M2 |= K for all MKNF interpreta-
tionsM1 andM2, which immediately implies the following:

Theorem 5.6. Each positive DL-safe nondisjunctive hybrid
MKNF knowledge baseK has at most one MKNF model.

Definition 5.7. For K a positive nondisjunctive DL-safe hy-
brid MKNF knowledge base,RK, DK, andTK are the oper-
ators defined on the subsets ofKA(K) as follows:

RK(S) = S ∪ {KH | KG contains a rule of the form(1)
such thatKBi ∈ S for each1 ≤ i ≤ n}

DK(S) = {K ξ | K ξ ∈ KA(K) andO ∪ ŜDL |= ξ}∪
{KQ(b1, . . . , bn) | KQ(a1, . . . , an) ∈ S \ SDL

andO ∪ ŜDL |= si ≈ bi for 1 ≤ i ≤ n}

TK(S) = RK(S) ∪DK(S)

The operatorTK is monotonic on the lattice of subsets of
KA(K) (i.e.,S ⊆ S′ impliesTK(S) ⊆ TK(S′)). Namely,RK

is monotonic similarly as this is the case for datalog, andDK

is monotonic because first-order logic is monotonic. Hence,
by Knaster-Tarski’s theorem,TK has the least fixpoint, which
we denote withTω

K . It is now easy to show the following:

Theorem 5.8. Let K be a positive nondisjunctive DL-safe
hybrid MKNF knowledge base andM = {I | I |= obK,T ω

K
}.

Then, (i) if M 6= ∅, thenM is the single MKNF model ofK;
(ii ) if K has an MKNF model, this model is equal toM ; and
(iii ) the data complexity of computingTω

K is in PC.

Proof sketch.(i) Clearly,M |= KO and, sinceTω
K is a fix-

point ofTK, M |= PG. If M were not an MKNF model, an
MKNF interpretationM ′ ⊃M such that(I ′,M ′,M) |= KG

for eachI ′ ∈M ′ would exist and it would induce a partition
(P ′, N ′) of KA(K) such thatP ′ ⊂ P . Clearly,TK(P ′) = P ′

(otherwise, eitherM ′ 6|= r for somer ∈ PG, or (P ′, N ′) is
not consistent), but thenTω

K is not the minimal fixpoint ofTK.
The proof for (ii ) is analogous. (iii ) As for ordinary datalog,
RK(S) can be computed in polynomial time. The number
of atoms inKA(K) is linear in the size ofPG, so computing
DK(S) requires a polynomial number of calls to an oracle
running inC. Finally, the number of iterations is bounded by
the size ofKA(K), which implies the claim.

For entailment checking,K |= KA iff obK,T ω

K
|= A, and

K |= ¬KA iff obK,T ω

K
6|= A.

Stratified Programs. We first define a notion of stratifica-
tion appropriate to MKNF programs.

Definition 5.9. LetK = (O,P) be a nondisjunctive hybrid
MKNF knowledge base andλ : PG → N

+ a function assign-
ing to eachr ∈ PG a positive integerλ(r). For an integer
k and⊲⊳ ∈ {<,≤, >,≥}, let head(K)⊲⊳k be the set of head
atoms of those rulesr ∈ PG for whichλ(r) ⊲⊳ k. Then,λ is
a stratificationofK if these conditions hold for eachr ∈ PG:

• For each body atomK ξ of r, eachP ⊆ head(K)≤λ(r)

such thatobK,P 6|= ξ, and eachP ′ ⊆ head(K)>λ(r), ei-
therobK,P∪P ′ 6|= ξ or obK,P∪P ′ is unsatisfiable;

• For each body atomnot ξ of r, eachP ⊆ head(K)<λ(r)

such thatobK,P 6|= ξ, and eachP ′ ⊆ head(K)≥λ(r), ei-
therobK,P∪P ′ 6|= ξ or obK,P∪P ′ is unsatisfiable.

K is stratified if a stratificationλ of K exists. A stratifi-
cationλ partitionsP into strataσi = {r | λ(r) = i}; the se-
quence of strataσ1, . . . , σn is often identified withλ and is
also called a stratification.

Stratification ensures that deriving an atomK ξ in a stra-
tum σi does not change the values of theK- and not-
atoms from strata< i and≤ i, respectively. For exam-
ple, consider a knowledge baseK whereDL is propositional
logic,O = (r ≡ p ∨ q) ∧ (s ≡ ¬q), andP contains the rules
K r← not p andK s← K r. In ordinary datalog,P would
be stratified: by evaluating the first rule we deriveK r, af-
ter which we evaluate the second rule and deriveK s. But
now the objective knowledge isr ∧ s ∧O and it implies¬q,
which invalidates the atomK p in the body of the first rule.
Intuitively, Definition 5.9 ensures that such an interaction be-
tweenO and the derived facts does not happen. Clearly,
checking stratification is difficult in general. However, ifO
employs UNA and no rule inP contains a DL-atom in the
head, then stratification ofP can be checked as usual. This
case is interesting because it allows to define complex con-
straints over DL knowledge bases. We now show how to
compute models of a stratified program:

Definition 5.10. Let σ1, . . . , σk be a stratification of a DL-
safe MKNF knowledge baseK. The sequence of subsets
U0, . . . , Uk of KA(σ) is inductively defined asU0 = ∅ and,
for 0 < i ≤ k, Ui = Tω

χi
whereχi = Ui−1 ∪ σ′

i andσ′
i is ob-

tained fromσi by replacing eachnot ξ with true if Ui−1 6|= ξ
and withfalse otherwise. Finally, letUω

K = Uk.

The following theorem is analogous to the case of ordinary
stratified datalog:

Theorem 5.11. LetK be a stratified DL-safe MKNF knowl-
edge baseK, andM = {I | I |= obK,Uω

K
}. Regardless of the

stratification used to computeUω
K, the following claims hold:

(i) if M 6= ∅, thenM is an MKNF model ofK; (ii ) if K has
an MKNF model, then this model is equal toM ; and (iii ) the
data complexity of computingUω

K is in PC.

Nondisjunctive Nonstratified Programs. We now takeK
to be a nondisjunctive and nonstratified knowledge base.
Then, the knowledge baseγ = PG[not, P,N ] from Algo-
rithm 1 is nondisjunctive and positive, so we can use The-
orem 5.8 to ensure the preference semantics of MKNF. We
definenondisjunctive-not-entails-DL(σ, ψ) to be the same as
Algorithm 1, but replace Condition (5) withTω

γ = P .

Theorem 5.12. For a nondisjunctive nonstratified hybrid
MKNF knowledge baseK andψ = (¬)KA withA a ground
atom, the algorithmnondisjunctive-not-entails-DL(K, ψ) re-
turnstrue iff K 6|= ψ, and it runs with data complexityEPC

.

6 Data Complexity
We now determine the data complexity—the complexity
measured in the sizes of the ABox ofO and the facts ofP—
of checking entailment for a hybrid MKNF knowledge base



Table 1: Data Complexity of Entailment Checking

∨ not DL = ∅ DL ∈ P DL ∈ coNP
1 no no P P coNP
2 no strat. P P ∆p

2

3 no yes coNP coNP Πp
2

4 yes no coNP/Πp
2 coNP/Πp

2 coNP/Πp
2

5 yes yes Πp
2 Πp

2 Πp
2

K. To obtain a precise characterization, we must make as-
sumptions about the data complexity of checking entailment
of ground literals inDL. In [Hustadtet al., 2005], it was
shown that checking entailment of ground atoms in many
very expressive DLs, such asSHIQ, is data complete for
coNP. Furthermore, there are expressive fragments, such as
Horn-SHIQ [Hustadtet al., 2005] or DL-lite [Calvaneseet
al., 2006], for which data complexity of entailment is inP.
Therefore, we analyze the complexity of MKNF knowledge
bases for these two cases, and contrast them with the well-
known results for logic programs without a DL knowledge
base. Table 1 summarizes the results for complexity of check-
ing K |= ψ, for ψ = (¬)KA with A a ground atom. All
results are completeness results.

Existing results for the corresponding variants of datalog
[Dantsinet al., 2001] provide hardness results for all cases but
for rows 2 and 3 withDL ∈ coNP. For these cases, we give
hardness proofs in[Motik and Rosati, 2006]. In the first case,
we present a reduction from DAGS(SAT)[Gottlob, 1995],
and in the second one from 2-QBF.

The membership results are given by the algorithms from
Section 5. Note that, for rows 1 and 2 andψ = ¬KA, since
K has at most one model,K |= ¬KA iff either K is unsat-
isfiable ofK 6|= KA, so answering negative queries can be
reduced to answering positive ones. Furthermore, in row 4
the complexity differs depending on whether we ask a posi-
tive or a negative query: in the first case, we can use Theorem
5.5, whereas in the second case we must use Theorem 5.4.

7 Conclusion

Based on the logic MKNF by[Lifschitz, 1991], we have de-
veloped the formalism of hybrid MKNF knowledge bases that
provides for a faithful integration of an arbitrary description
logic with logic programming. Our approach seamlessly in-
tegrates open- and closed-world reasoning, without requiring
an a priori commitment to either paradigm. It is fully com-
patible with the first-order semantics of DLs and logic pro-
gramming under stable model semantics. We have developed
reasoning algorithms and identified tight complexity bounds
for interesting fragments of our formalism. In future, we shall
try to extend our approach to well-founded semantics, as this
might provide better complexity in some practical cases. Fur-
thermore, we shall implement our approach in the ontology
management system KAON2.2

2http://kaon2.semanticweb.org/
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