
Query Answering for OWL-DL with Rules

Boris Motik1, Ulrike Sattler2, and Rudi Studer1

1 FZI Research Center for Information Technologies, Univ. of Karlsruhe, Germany
{motik,studer}@fzi.de

2 Department of Computer Science, Univ. of Manchester, UK
sattler@cs.man.ac.uk

Abstract. Both OWL-DL and function-free Horn rules3 are decidable
logics with interesting, yet orthogonal expressive power: from the rules
perspective, OWL-DL is restricted to tree-like rules, but provides both
existentially and universally quantified variables and full, monotonic
negation. From the description logic perspective, rules are restricted to
universal quantification, but allow for the interaction of variables in arbi-
trary ways. Clearly, a combination of OWL-DL and rules is desirable for
building Semantic Web ontologies, and several such combinations have
already been discussed. However, such a combination might easily lead to
the undecidability of interesting reasoning problems. Here, we present a
decidable such combination which is, to the best of our knowledge, more
general than similar decidable combinations proposed so far. Decidabil-
ity is obtained by restricting rules to so-called DL-safe ones, requiring
each variable in a rule to occur in a non-DL-atom in the rule body. We
show that query answering in such a combined logic is decidable, and we
discuss its expressive power by means of a non-trivial example. Finally,
we present an algorithm for query answering in SHIQ(D) extended with
DL-safe rules based on the reduction to disjunctive datalog.

1 Introduction

OWL-DL [20] is a W3C recommendation language for ontology representation in
the Semantic Web. It is a syntactic variant of the SHOIN (D) description logic
(DL), offering a high level of expressivity while still being decidable. For exam-
ple, SHOIN (D) provides full negation, disjunction, and (a restricted form of)
universal and existential quantification of variables. A related logic, SHIQ(D)
[13, 12], distinguished from SHOIN (D) mainly by not supporting nominals (or
named objects), has been successfully implemented in practical reasoning sys-
tems, such as Racer [9] and FaCT [10]. Description logics have been found useful
in numerous applications such as information integration [1, ch. 16], software
engineering [1, ch. 11], and conceptual modeling [1, ch. 10].

Although OWL-DL is very expressive, it is a decidable fragment of first-
order logic, and thus cannot express arbitrary axioms: the only axioms it can
express are of a certain tree-structure [8]. In contrast, decidable rule-based for-
malism such as function-free Horn rules do not share this restriction, but lack

3 Throughout this paper, we use “rules” and “clauses” synonymously, following [11].

2 Boris Motik, Ulrike Sattler, and Rudi Studer

some of the expressive power of OWL-DL: they are restricted to universal quan-
tification and lack negation in their basic form. To overcome the limitations
of both approaches, OWL-DL was extended with rules in [11], but this ex-
tension is undecidable [11]. Intuitively, the undecidability is due to the fact
that adding rules to OWL-DL causes the loss of any form of tree model prop-

erty. In a logic with such a property, every satisfiable knowledge base has a
model of a certain tree-shaped form. As a consequence, to decide satisfiabil-
ity (i.e. the existence of a model of a knowledge base), we can search only for
such tree-shaped models. For most DLs, it is possible to ensure termination
of such a search. To see how rules can destroy this property, consider e.g. the
rule hasAunt(x, y) ← hasParent(x, z), hasSibling(z, y), F emale(y), which ob-
viously has only non-tree models.

It is natural to ask what kind of (non-tree) rules can be added to OWL-DL
while preserving decidability. This follows a classic line of research in knowledge
representation, investigating the trade-off between expressivity and complexity,
and providing formalisms with varying expressive power and complexity. It not
only provides insight into the causes for the undecidability of the full combina-
tion, but also enables a more detailed complexity analysis and, ultimately, the
design of “specialized” decision procedures. Applications that do not require the
expressive power of the full combination can use such procedures, relying upon
known upper time and space bounds required to return a correct answer. Fi-
nally, in the last decade, it turned out that many specialized decision procedures
are amenable to optimizations, thus achieving surprisingly good performance in
practice even for logics with high worst-case complexity [1, ch. 9].

In this paper, we propose a decidable combination of OWL-DL with rules,
where decidability is obtained by restricting the rules to so-called DL-safe ones.
Importantly, we do not restrict the component languages, but only reduce the
interface between them. Generalizing the approaches of other decidable combi-
nations of rules and description logics [16, 5], in DL-safe rules, concepts and roles
are allowed to occur in both rule bodies and heads as unary, respectively binary
predicates in atoms, but each variable of a rule is required to occur in some body
literal whose predicate is neither a concept nor a role. We discuss the expressive
power and limitations of our approach by means of an example, and show that
query answering for it is decidable.

Moreover, we present an algorithm for query answering in the extension of
SHIQ(D) with DL-safe rules which is based on a novel technique for reducing
SHIQ(D) knowledge bases to disjunctive datalog programs [15, 14]. This yields
a query answering algorithm which follows the principle of “graceful degrada-
tion”: the user “pays” only for the features she actually uses. Although a full
evaluation is not yet finished, our partial evaluation from [18] is very promising,
and we believe that this algorithm can be efficiently realized in practice.

Please note that we are primarily concerned with the semantic and decid-
ability aspects of hybrid reasoning, and not with the infrastructure aspects, such
as the syntax or the exchange of rules on the Web. For these issues, we refer the
reader to [11] since our approach is fully compatible with the one proposed there.

Query Answering for OWL-DL with Rules 3

2 Preliminaries

OWL-DL is a syntactic variant of the SHOIN (D) description logic [11]. Hence,
although several XML and RDF syntaxes for OWL-DL exist, in this paper we
use the traditional description logic notation since it is more compact. For the
correspondence between this notation and various OWL-DL syntaxes, see [11].
SHOIN (D) supports reasoning with concrete datatypes, such as strings or

integers. For example, it is possible to define a minor as a person whose age is less
than or equal to 18 in the following way: Minor ≡ Person ⊓ ∃age. ≤18. Instead
of axiomatizing concrete datatypes in logic, SHOIN (D) employs an approach
similar to [2], where the properties of concrete datatypes are encapsulated in
so-called concrete domains. A concrete domain is a pair (△D, ΦD), where △D

is an interpretation domain and ΦD is a set of concrete domain predicates with
a predefined arity n and an interpretation dD ⊆ △n

D
. An admissible concrete

domain D is equipped with a decision procedure for checking satisfiability of
finite conjunctions over concrete predicates. Satisfiability checking of admissible
concrete domains can successfully be combined with logical reasoning for many
description logics [17].

We use a set of concept names NC , sets of abstract and concrete individuals
NIa

and NIc
, respectively, and sets of abstract and concrete role names NRa

and
NRc

, respectively. An abstract role is an abstract role name or the inverse S− of
an abstract role name S (concrete roles do not have inverses). In the following,
we assume that D is an admissible concrete domain.

An RBox R consists of a finite set of transitivity axioms Trans(R), and role
inclusion axioms of the form R ⊑ S and T ⊑ U , where R and S are abstract
roles, and T and U are concrete roles. The reflexive-transitive closure of the role
inclusion relationship is denoted with ⊑∗. A role not having transitive subroles
(w.r.t. ⊑∗, for a full definition see [13]) is called a simple role.

The set of SHOIN (D) concepts is defined by the following syntactic rules,
where A is an atomic concept, R is an abstract role, S is an abstract simple role,
T(i) are concrete roles, d is a concrete domain predicate, ai and ci are abstract
and concrete individuals, respectively, and n is a non-negative integer:

C → A | ¬C | C1 ⊓ C2 | C1 ⊔ C2 | ∃R.C | ∀R.C | ≥ nS | ≤ nS | {a1, . . . , an} |
| ≥ nT | ≤ nT | ∃T1, . . . , Tn.D | ∀T1, . . . , Tn.D

D → d | {c1, . . . , cn}

A TBox T consists of a finite set of concept inclusion axioms C ⊑ D, where
C and D are concepts; an ABox A consists of a finite set of concept and role
assertions and individual (in)equalities C(a), R(a, b), a ≈ b, and a 6≈ b, respec-
tively. A SHOIN (D) knowledge base (T ,R,A) consists of a TBox T , an RBox
R, and an ABox A.

The SHIQ(D) description logic is obtained from SHOIN (D) by disallowing
nominal concepts of the form {a1, . . . , an} and {c1, . . . , cn}, and by allowing qual-
ified number restrictions of the form ≥ nS.C and ≤ nS.C, for C a SHIQ(D)
concept and S a simple role.

4 Boris Motik, Ulrike Sattler, and Rudi Studer

Mapping Concepts to FOL

πy(⊤, X)=⊤ πy(⊥, X)=⊥
πy(A, X)=A(X) πy(¬C, X)=¬πy(C, X)

πy(C ⊓D, X)=πy(C, X) ∧ πy(D, X) πy(C ⊔D, X)=πy(C, X) ∨ πy(D, X)
πy(∀R.C, X)=∀y : R(X, y)→ πx(C, y) πy(∃R.C, X)=∃y : R(X, y) ∧ πx(C, y)

πy({a1 . . . , an}, X)=X ≈ a1 ∨ . . . ∨X ≈ an

πy(≤ n R.C, X)=∀y1, . . . , yn+1 :
V

R(X, yi) ∧
V

πx(C, yi)→
W

yi ≈ yj

πy(≥ n R.C, X)=∃y1, . . . , yn :
V

R(X, yi) ∧
V

πx(C, yi) ∧
V

yi 6≈ yj

πy(∀T1, . . . , Tm.d, X)=∀yc

1, . . . , y
c

m :
V

Ti(X, yc

i)→ d(yc

1, . . . , y
c

m)
πy(∃T1, . . . , Tm.d, X)=∃yc

1, . . . , y
c

m :
V

Ti(X, yc

i) ∧ d(yc

1, . . . , y
c

m)
πy(≤ n T , X)=∀yc

1, . . . , y
c

n+1 :
V

T (X, yc

i)→
W

yc

i ≈ yc

j

πy(≥ n T , X)=∃yc

1, . . . , y
c

n :
V

T (X, yc

i) ∧
V

yc

i 6≈ yc

j

Mapping Axioms to FOL

π(C(a))=πy(C, a) π(R(a, b))=R(a, b)
π(a ≈ b))=a ≈ b π(a 6≈ b))=a 6≈ b

π(C ⊑ D)=∀x : πy(C, x)→ πy(D, x)
π(R ⊑ S)=∀x, y : R(x, y)→ S(x, y)

π(Trans(R))=∀x, y, z : R(x, y) ∧R(y, z)→ R(x, z)

Mapping KB to FOL

π(KB)=
V

R∈NR
∀x, y : R(x, y)↔ R−(y, x) ∧

V
α∈KBR∪KBT ∪KBA

π(α)

where X is a meta variable and is substituted by the actual variable
and πx is defined as πy by substituting x and xi for all y and yi, respectively.

Table 1. Translation of SHOIN (D) into FOL

Since the algorithms we present in Section 5 are based on resolution, instead
of using a direct model-theoretic semantics to SHOIN (D) [13], we present an
equivalent semantics by translation into multi-sorted first-order logic. To sepa-
rate the interpretations of the abstract and the concrete domain, we introduce
the sorts a and c, and use the notation xc and f c to denote that x and f are of
sort c. We translate each atomic concept into a unary predicate of sort a, each
n-ary concrete domain predicate into a predicate with arguments of sort c, and
each abstract (concrete) role into a binary predicate of sort a × a (a × c). The
translation operator π is presented in Table 1.

For rules, we use the standard definitions. Let NP be a set of predicate
symbols such that NC ∪NRa

∪NRc
⊆ NP . A term is either a constant (denoted

by a, b, c) or a variable (denoted by x, y, z). An atom has the form P (s1, . . . , sn),
where P is a predicate symbol and si are terms. A rule has the form

H ← B1, . . . , Bn

where H and Bi are atoms; H is called the rule head, and the set of all Bi is
called the rule body. A program P is a finite set of rules. For the semantics, we
define a rule H ← B1, . . . , Bn to be equivalent to the clause H∨¬B1∨ . . .∨¬Bn.
This yields a monotonic formalism compatible with the one from [11].

Query Answering for OWL-DL with Rules 5

Person(Peter) Peter is a person.
Person ⊑ ∃father .Person Each person has a father who is a person.
∃father .(∃father .Person) ⊑ Grandchild Things having a father of a father who

is a person are grandchildren.

Table 2. Example Knowledge Base

3 Reasons for the Undecidability of OWL-DL with Rules

In [11], the following problem was shown to be undecidable: given an OWL-DL
knowledge base KB and a program P , is there a common model of π(KB)
and P , i.e. is KB consistent with P? As a consequence, subsumption and query
answering w.r.t. knowledge bases and programs is also undecidable. Investigating
this proof and the ones in [16] more closely, we note that the undecidability is
caused by the interaction between some very basic features of description logics
and rules. In this section, we try to give an intuitive explanation of this result
and its consequences.

Consider the simple knowledge base KB from Table 2. It is not too difficult to
see that this knowledge base implies the existence of an infinite chain of fathers:
since Peter must have a father, there is some x1 who is a Person. In turn, x1

must have some father x2 , which must be a Person, and so on. An infinite model
with such a chain is shown in Figure 1, upper part a). Observe that Peter is a
grandchild, since he has a father of a father.

Let us now check whether KB |= Grandchild(Jane); this is the case if and
only if KB∪{¬Grandchild(Jane)} is unsatisfiable, i.e. if it does not have a model.
We can check this by trying to build such a model; if we fail, then we conclude
that KB ∪ {¬Grandchild(Jane)} is unsatisfiable. However, we have a problem:
starting from Peter , a näıve approach to building a model will expand the chain
of Peter’s fathers indefinitely, and will therefore not terminate.

This very simple example intuitively shows that we have to be careful if we
want to ensure termination of a satisfiability checking algorithm. For many DLs,
termination can be ensured without losing correctness because we can restrict
our attention to certain “nice” models. For numerous DLs, we can restrict our
attention to tree models, i.e. to models where the underlying relational structure
forms a tree [22]. This is so because every satisfiable knowledge base has such
a tree model (to be precise, for some DLs we consider tree-like abstractions of

peter x1 x2

peter x’1

Person Ù Grandchild

Legend:

father

equivalent nodes

a)

b)

Fig. 1. Two Similar Models

6 Boris Motik, Ulrike Sattler, and Rudi Studer

non-tree-like models). Even if such a tree model is infinite, we can wind this
infinite tree model into a finite one. In our example, since KB does not require
each father in the chain to be distinct, the model in Figure 1, lower part b) is
the result of this “winding” of a tree into a “nice” model. Due to their regular
structure, these “windings” of tree models can be easily constructed in an auto-
mated way. To understand why every satisfiable SHIQ(D) knowledge base has
a tree model [13], consider the mapping π in Table 1 more closely (we abstract
some technicalities caused by the transitive roles): in all formulae obtained by
transforming the result of π into prenex normal form, variables are connected
by roles only in a tree-like manner, as shown in the following example:

∃S.(∃R.C ⊓ ∃R.D) ⊑ Q ⇒
∀x : {[∃y : S(x, y) ∧ (∃x : R(y, x) ∧ C(x)) ∧ (∃x : R(y, x) ∧D(x))]→ Q(x)} ⇒
∀x, x1, x2, x3 : {S(x, x1) ∧R(x1, x2) ∧ C(x2) ∧R(x1, x3) ∧D(x3)→ Q(x)}

Let us contrast these observations with the kind of reasoning required for
function-free Horn rules. In such rules, all variables are universally quantified,
i.e. there are no existentially quantified variables in rule consequents. Hence, we
never have to infer the existence of “new” objects. Thus, reasoning algorithms
must consider only individuals explicitly introduced in the knowledge base and
will never run into the termination problems outlined above. Hence, the rules,
such as the one defining hasAunt(x, y) from the introduction, are allowed to en-
force arbitrary but finite, non-tree relational models, and not only “nice” models.

Now let us see what happens if we extend, eg. SHIQ, with function-free Horn
rules. Then, we combine a logic whose decidability is due to the fact that we can
restrict our attention to “nice” models (but with individuals whose existence
may be implied by a knowledge base) with the one whose decidability is due
to the fact that we can restrict our attention to “known” individuals (but with
arbitrary relations between them). Unsurprisingly, this and similar combinations
are undecidable [16, 11].

4 DL-safe Rules

As a reaction to the observations in Section 3, in this section we define the
formalism of DL-safe rules, discuss its benefits and drawbacks, and prove that
query answering in SHOIN with DL-safe rules is decidable.

Definition 1 (DL-safe Rules). Let KB be a SHOIN (D) knowledge base,

and let NP be a set of predicate symbols such that NC ∪ NRa
∪ NRc

⊆ NP . A

DL-atom is an atom of the form A(s), where A ∈ NC , or of the form R(s, t),
where R ∈ NRa

∪ NRc
. A rule r is called DL-safe if each variable in r occurs

in a non-DL-atom in the rule body. A program P is DL-safe if all its rules are

DL-safe.

The semantics of the combined knowledge base (KB , P) is given by transla-

tion into first-order logic as π(KB)∪P . The main inference in (KB , P) is query
answering, i.e. deciding whether π(KB) ∪ P |= α for a ground atom α.

Query Answering for OWL-DL with Rules 7

Some remarks are in order. Firstly, DL-safety is similar to the safety in dat-
alog. In a safe rule, each variable occurs in a positive atom in the body, and
may therefore be bound only to constants explicitly present in the database.
Similarly, DL-safety makes sure that each variable is bound only to individuals
explicitly introduced in the ABox. For example, if Person, livesAt , and worksAt

are concepts and roles from KB , the following rule is not DL-safe:

Homeworker(x)← Person(x), livesAt(x, y),worksAt(x, y)

The reason for this is that both variables x and y occur in DL-atoms, but do not
occur in a body atom with a predicate outside of KB . This rule can be made
DL-safe by adding special non-DL-literals O(x) and O(y) to the rule body, and
by adding a fact O(a) for each individual a. In Subsection 4.1 we discuss the
consequences that this transformation has on the semantics.

Secondly, DL-safety only allows atomic concepts to occur in a rule. This is
not really a restriction: for a complex concept C, one may introduce an atomic
concept AC , add the axiom C ⊑ AC to the TBox, and use AC in the rule.

4.1 Expressivity of DL-safe Rules

In our approach, to achieve decidability, we do not restrict the component lan-
guages. Rather, we combine full SHOIN (D) with function-free Horn rules, and
thus extend both formalisms. DL-safety only restricts the interchange of con-
sequences between the component languages to those consequences involving
individuals explicitly introduced in the ABox.

To illustrate the expressive power of DL-safe rules, we extend the example
from Table 2 with the TBox axioms and rules from Table 3. We use a rule to
define the only non-DL-predicate BadChild as a grandchild which hates some of
its siblings (or itself). Notice that this rule involves relations forming a triangle
between two siblings and a parent and thus cannot be expressed in a description
logic such as SHOIN (D). Moreover, it is not DL-safe because each variable in
the rule does not occur in a non-DL-atom in the rule body.

Now consider the first group of ABox facts. Since Cain is a Person, as in
Section 3 one may infer that Cain is a Grandchild . Since Cain and Abel are
children of Adam, and Cain hates Abel , Cain is a BadChild .

Similarly, Romulus has a father who is a father of Remus, and Romulus hates

Remus, so Romulus is a BadChild as well. We are able to derive this without
knowing exactly who the father of Romulus is4.

Consider now the DL-safe rule defining BadChild ′ (assuming that the ABox
contains O(a) for each individual a): since the father of Cain and Abel is known
by name (i.e. Adam is in the ABox), the literal O(y) from the rule for BadChild ′

can be matched to O(Adam), and we may conclude that Cain is a BadChild ′. In
contrast, the father of Romulus and Remus is not known in the ABox. Hence,

4 Historically, the father of Romulus and Remus is Mars, but for illustration purposes
we assume that the modeler does not know that.

8 Boris Motik, Ulrike Sattler, and Rudi Studer

father ⊑ parent Fatherhood is a kind of parenthood.
BadChild(x)← Grandchild(x), A bad child is a grandchild who hates

parent(x, y), parent(z, y), hates(x, z) one of his siblings.
BadChild ′(x)← Grandchild(x), DL-safe version of a bad child.

parent(x, y), parent(z, y), hates(x, z),
O(x),O(y),O(z)

Person(Cain) Cain is a person.
father(Cain,Adam) Cain’s father is Adam.
father(Abel ,Adam) Abel’s father is Adam.
hates(Cain,Abel) Cain hates Abel.

Person(Romulus) Romulus is a person.
∃father .∃father−.{Remus}(Romulus) Romulus’ father is a father of Remus.
hates(Romulus,Remus) Romulus hates Remus.

Child(x)← GoodChild(x),O(x) Good children are children.
Child(x)← BadChild ′(x),O(x) Bad children are children.
(GoodChild ⊔ BadChild ′)(Oedipus) Oedipus is a good or a bad child.

O(α) for each explicitly named individual α Enumeration of all ABox individuals.

Table 3. Example with DL-safe Rules

the literal O(y) from the DL-safe rule cannot be matched to the father’s name,
so the rule does not derive that Romulus is a BadChild ′.

This may seem confusing. However, DL-safe rules do have a “natural” read-
ing: just append the phrase “where the identity of all objects is known” to the
meaning of the rule. For example, the rule defining BadChild ′ can be read as “A
BadChild ′ is a known grandchild for which we know a parent, and who hates
one of his known siblings”.

Combining description logics with DL-safe rules increases the expressivity
of both languages. Namely, a SHOIN (D) knowledge base cannot imply that
Cain is a BadChild ′ because the “triangle” rule cannot be expressed using
SHOIN (D) constructs. Similarly, a set of function-free Horn rules cannot imply
this either: we know that Cain has a grandfather because Cain is a person, but
we do not know who he is. Hence, we need the existential quantifier to infer the
existence of ancestors, and then to infer that Cain is a Grandchild .

Finally, we would like to point out that it is incorrect to compute all con-
sequences of the description logic component first, and then to apply the rules
to the consequences. Consider the KB part about Oedipus: he is a GoodChild

or a BadChild ′, but we do not know exactly which. Either way, one of the
rules derives that Oedipus is a Child , so (KB , P) |= Child(Oedipus). This
would not be derived by applying the rules to the consequences of KB , since
KB 6|= GoodChild(Oedipus) and KB 6|= BadChild ′(Oedipus).

4.2 Decidability of Query Answering

We now sketch a proof for the decidability of query answering for SHOIN
extended with DL-safe rules, which is by a non-deterministic reduction of the
query answering problem to the satisfiability problem for SHOIN without rules.

Query Answering for OWL-DL with Rules 9

Theorem 1. For a SHOIN knowledge base KB and a DL-safe program P ,

query answering in (KB , P) is decidable.

Proof. Clearly (KB , P) |= α iff π(KB)∪P ′ is unsatisfiable, where P ′ = P∪{¬α}.
Let P g be the set of ground instances of P ′, i.e. P g contains all possible ground
instantiations of rules in P ′ with individuals from KB and P .

We now show that π(KB)∪P ′ is satisfiable iff π(KB)∪P g is satisfiable. The
(⇒) direction is trivial. For the (⇐) direction, let I be a model of π(KB) ∪ P g.
Since π(KB)∪P g does not contain non-DL-atoms with variables, we may safely
assume that the interpretation of each non-DL-predicate contains only tuples
of the form (α1, . . . , αn), such that, for each αi, there is a constant ai with
aI

i = αi. Let r be a rule from P . Since r is DL-safe, each variable in r occurs in
a body non-DL-atom. Hence, for each valuation replacing a variable in r with
an individual α, for which there is no such constant a with aI = α, there will be
a body atom of r which is false in I, making r true in I. Thus, I is a model of
π(KB) ∪ P ′.

Satisfiability of π(KB) ∪ P g can be decided by case analysis as follows: each
model of P g satisfies at least one literal per rule. Hence, we don’t-know non-
deterministically choose one literal per clause in P g and, for Lc the resulting
set of literals, we test the satisfiability of π(KB) ∪ Lc. Clearly, π(KB) ∪ P g is
satisfiable iff there exists a “choice” of Lc such that π(KB) ∪ Lc is satisfiable.

Next, let Lc
DL ⊆ Lc be the set of (ground) literals in Lc involving DL pred-

icates. Clearly, π(KB) ∪ Lc is unsatisfiable iff either Lc contains a complemen-
tary pair of ground literals or π(KB) ∪ Lc

DL is unsatisfiable. The first case can
be checked easily, and the second case can be reduced to standard SHOIN
reasoning as follows: Lc

DL can be viewed as an ABox, apart from literals of the
form ¬R(a, b). However, each such literal can be transformed into an equivalent
SHOIN ABox assertion (∀R.¬{b})(a). Thus we have reduced query answering
to deciding satisfiability of a SHOIN knowledge base. This problem is decid-
able because (i) transitivity axioms can be eliminated from SHOIN knowledge
bases in the same way as this is done for SHIQ in [14] and (ii) the resulting
logic is a syntactic variant of the two variable fragment of first-order logic with
counting quantifiers, which is known to be decidable [7]. ⊓⊔

We strongly believe that Theorem 1 also holds for SHOIN (D): (i) the
decidability proof of SHOIN should be easily adaptable to SHOIN (D), and
(ii) the same non-deterministic reduction of ground DL-safe rules to sets of
ground literals as for SHOIN is applicable to SHOIN (D). To work out the
details of this proof is part of our future work.

5 Query Answering with DL-safe Rules

In the proof of the Theorem 1, we have presented a decision procedure for query
answering in the full combination from Section 4. However, this procedure is
likely to be hopelessly inefficient in practice, mainly due to the huge amount

10 Boris Motik, Ulrike Sattler, and Rudi Studer

of don’t-known non-determinism. Hence, in this section, we describe a practi-
cal reasoning algorithm for the following fragment: (i) the description logic is
SHIQ(D), and (ii) in rules, DL-atoms are restricted to concepts and simple
roles. Our algorithm is based on reducing the description logic knowledge base
to a positive disjunctive datalog program which entails the same set of ground
facts as the original knowledge base. DL-safe rules (with the above restriction to
concepts and simple roles) can simply be appended to such a program. For unary
coding of numbers and assuming a bound on the arity of predicates in rules, our
algorithm runs in deterministic exponential time, which makes it optimal since
SHIQ is ExpTime-complete [21].

The full presentation of the algorithm and a proof of its correctness are tech-
nically involved and lengthy. Here, we just provide an overview of the procedure,
without going into details. For a complete presentation of the procedure and for
the proofs of its correctness, we direct the interested reader to [14, 15].

Our algorithm does not support all of SHOIN (D) since it does not support
nominals: to the best of our knowledge, no decision procedure has yet been
implemented for SHOIN (D). The development of such a decision procedure is
part of our ongoing work. Namely, the combination of nominals, inverse roles,
and number restriction is known to be difficult to handle, which is confirmed by
the increase in complexity from ExpTime to NExpTime [21].

5.1 Reducing SHIQ(D) to Disjunctive Datalog

Let KB be a SHIQ(D) knowledge base. The reduction of KB to a disjunc-
tive datalog program DD(KB) can be computed by an algorithm schematically
presented in Figure 2. We next explain each step of the algorithm.

Elimination of Transitivity Axioms. Our core algorithms cannot handle transi-
tivity axioms, basically because in their first-order logic formulation they involve
three variables. However, we can eliminate transitivity axioms by encoding KB

into an equisatisfiable knowledge base Ω(KB). Roughly speaking, for each tran-
sitive role S, each role S ⊑∗ R, and each concept ∀R.C occurring in KB , it
is sufficient to add an axiom ∀R.C ⊑ ∀S.(∀S.C). Intuitively, this axiom propa-
gates all relevant concept constraints through transitive roles. Whereas KB and
Ω(KB) entail the same set of ground facts concerning simple roles, they do not
entail the same set of ground facts concerning complex roles. This is the reason
for the restriction (ii) which allows only simple roles to occur in DL-safe rules.

Translation into Clauses. The next step is to translate Ω(KB) into clausal first-
order logic. We first use π as defined in Table 1 and then transform the result

SHIQ(D)

KB

Elimination of

Transitivity

Axioms

Translation

into Clauses

Saturation

by Basic

Superposition

Elimination of

Function

Symbols

Conversion to

Disjunctive

Datalog

Disjunctive

Program

DD(KB)

Fig. 2. Algorithm for Reducing SHIQ(D) to Datalog Programs

Query Answering for OWL-DL with Rules 11

π(Ω(KB)) into clausal form using structural transformation to avoid exponential
blow-up [19]. We call the result Ξ(KB).

Saturation by Basic Superposition. We next saturate the RBox and TBox clauses
of Ξ(KB) by basic superposition [4] — a clausal calculus optimized for theorem
proving with equality. In this key step of the reduction, we compute all non-
ground consequences of KB . We can prove that saturation terminates because
application of each rule of basic superposition produces a clause with at most one
variable and with functional terms of depth at most two. This yields an exponen-
tial bound on the number of clauses we can compute, and thus an exponential
time complexity bound for our algorithm so far.

Elimination of Function Symbols. Saturation of RBox and TBox of Ξ(KB) com-
putes all non-ground consequences of KB . If we add ABox assertions to this
saturated clause set, all “further” inferences by basic superposition will produce
only ground clauses. Moreover, the resulting ground clauses contain only ground
functional terms of depth one. Hence, it is possible to simulate each functional
term f(a) with a new constant af . For each function symbol f , we introduce a
binary predicate Sf , and for each individual a, we add an assertion Sf (a, af).
Finally, if a clause contains the term f(x), we replace it with a new variable xf

and add the literal ¬Sf (x, xf), as in the following example:

¬C(x) ∨D(f(x))⇒ ¬Sf (x, xf) ∨ ¬C(x) ∨D(xf)

We denote the resulting function-free set of clauses with FF(KB). In [14], we
show that each inference step of basic superposition in Ξ(KB) can be simulated
by an inference step in FF(KB), and vice versa. Hence, KB and FF(KB) are
equisatisfiable.

Conversion to Disjunctive Datalog. Since FF(KB) does not contain functional
terms and all its clauses are safe, we can rewrite each clause into a positive
disjunctive rule. We use DD(KB) for the result of this rewriting.

The following theorem summarizes the properties of our algorithm (we use
|=c for cautions entailment in disjunctive datalog, which coincides on ground
facts with first-order entailment for positive datalog programs [6]):

Theorem 2 ([14]). Let KB be an SHIQ(D) knowledge base, defined over an

admissible concrete domain D, such that satisfiability of finite conjunctions over

ΦD can be decided in deterministic exponential time. Then the following claims

hold:

1. KB is unsatisfiable if and only if DD(KB) is unsatisfiable.
2. KB |= α if and only if DD(KB) |=c α, for α of the form A(a) or S(a, b), A

an atomic concept, and S a simple role.
3. KB |= C(a) if and only if DD(KB ∪{C ⊑ Q}) |=c Q(a), for C a non-atomic

concept, and Q a new atomic concept.
4. Let |KB | be the length of KB with numbers in number restrictions coded in

unary. The number of rules in DD(KB) is at most exponential in |KB |, the

number of literals in each rule is at most polynomial in |KB |, and DD(KB)
can be computed in time exponential in |KB |.

12 Boris Motik, Ulrike Sattler, and Rudi Studer

Adding DL-safe Rules. The disjunctive program DD(KB) can be combined with
DL-safe rules by simply appending the rules to the program. The following the-
orem shows that (KB , P) and DD(KB)∪P entail the same sets of ground facts:

Theorem 3 ([14]). Let KB be a SHIQ(D) knowledge base and P a DL-safe

disjunctive datalog program. Then (KB , P) |= α if and only if DD(KB)∪P |=c α,

where α is a DL-atom A(a) or S(a, b) for S a simple role, or α is a ground non-

DL-atom.

5.2 Evaluating Queries in Datalog Program

Answering queries in disjunctive datalog programs is computationally more ex-
pensive than in non-disjunctive programs [6]. Furthermore, if disjunction is not
used in a knowledge base, our algorithm should not introduce a performance
penalty. To address that, we have devised an algorithm for evaluating queries in
disjunctive programs, which we outline next. For details, please see [14].

Let P be a positive datalog program and let Q be a query predicate not
occurring in the body of a rule of P . This is not a limitation since one can always
introduce a new predicate AQ and add the rule AQ(x)← Q(x). To compute all
answers of a to Q w.r.t. P , i.e. all a such that P |=c Q(a), we saturate P by
hyperresolution and perform paramodulation inferences between ground clauses
to deal with equality. It is well-known that this calculus remains complete if
ground literals are totally ordered under an arbitrary ordering ≻, and inferences
are performed on maximal literals only [3]. This ordering has the useful property
that, in each ground disjunction, exactly one literal is maximal. Hence, instead
of performing an inference on each literal of a ground fact, it is sufficient to do
so on the maximal literal only, which dramatically improves performance.

In [14] we have shown that, if all literals involving the predicate Q are minimal
w.r.t. ≻, then all ground consequences of P will be derived as unit ground clauses
in the saturation. To compute all answers to a query, it is sufficient to saturate
P only once using an appropriate ordering ≻. Thus, our algorithm computes all
consequences by a single saturation.

An example of a hyperresolution inference is presented in Figure 3. The maxi-
mal literals in the premises are underlined, and only these literals can participate
in an inference. When performing hyperresolution, premises are matched to a
disjunctive rule exactly as in the non-disjunctive case, the variables in the rule

R(X) Ú S(Y) :- T(X,Y), U(Y)Rule:

T(a,b) Ú V(c) U(b) Ú W(d)Facts:

R(a) Ú S(b) Ú V(c) Ú W(d)Resolvent:

Fig. 3. Hyperresolution Example

Query Answering for OWL-DL with Rules 13

head are instantiated, and the remaining literals from the rule body are trans-
ferred to the rule head. Observe that, if premises and the rule are not disjunctive,
then hyperresolution becomes exactly the least fixpoint operator used to eval-
uate non-disjunctive datalog programs. The consequences of the least fixpoint
operator can be computed in polynomial time, so we get tractable behavior. In
this way our algorithm supports the principle of “graceful degradation”: the user
pays a performance penalty only for features actually used.

6 Related Work

AL-log [5] is a logic which combines a TBox and ABox expressed in the ba-
sic description logic ALC with datalog rules, which may be constrained with
unary atoms having ALC concepts as predicates in the body. Query answering
in AL-log is decided by a variant of constrained resolution, combined with a
tableaux algorithm for ALC. The combined algorithm is shown to run in single
non-deterministic exponential time. The fact that atoms with concept predi-
cates can occur only as constraints in the body makes rules applicable only to
explicitly named objects. Our restriction to DL-safe rules has the same effect.
However, our approach is more general in the following ways: (i) it supports a
more expressive description logic, (ii) it allows using both concepts and roles
in DL-atoms and (iii) DL-atoms can be used in rule heads as well. Further-
more, (iv) we present a query answering algorithm as an extension of deductive
database techniques which runs in deterministic exponential time.

A comprehensive study of the effects of combining datalog rules with de-
scription logics is presented in [16]. The logic considered is ALCNR, which,
although less expressive than SHOIN (D) or SHIQ(D), contains constructors
that are characteristic of most DL languages. The results of the study can be
summarized as follows: (i) answering conjunctive queries over ALCNR TBoxes
is decidable, (ii) query answering in a logic obtained by extending ALCNR with
non-recursive datalog rules, where both concepts and roles can occur in rule bod-
ies, is also decidable, as it can be reduced to computing a union of conjunctive
query answers, (iii) if rules are recursive, query answering becomes undecidable,
(iv) decidability can be regained by disallowing certain combinations of con-
structors in the logic, and (v) decidability can be regained by requiring rules
to be role-safe, where at least one variable from each role literal must occur in
some non-DL-atom. As in AL-log, query answering is decided using constrained
resolution and a modified version of the tableaux calculus. Besides the fact that
we treat a more expressive logic, in our approach all variables in a rule must
occur in at least one non-DL-atom, but concepts and roles are allowed to occur
in rule heads. Hence, when compared to the variant (v), our approach is slightly
less general in some, and slightly more general in other aspects.

The OWL Rule Language (ORL) [11] combines OWL-DL with rules in which
concept and role predicates are allowed to occur in the head and in the body,
without any restrictions. As mentioned before, this combination is undecidable
but, as pointed out by the authors, (incomplete) reasoning in such a logic can

14 Boris Motik, Ulrike Sattler, and Rudi Studer

be performed using general first-order theorem provers. Our approach trades
some expressivity for decidability. Furthermore, we provide an optimal query
answering algorithm covering a significant portion of OWL-DL.

Finally, [8] describes a natural, decidable intersection of description logic and
logic programming. This provides a useful insight into the relationship between
these two formalisms, but yields a combination which is less expressive than our
approach, since it does not support existential quantifiers, negation, or disjunc-
tion in the axiom consequent.

7 Summary and Outlook

We have presented an approach for extending OWL-DL with DL-safe rules.
Instead of reducing the component formalisms, we reduce the interface between
them. As a consequence, rules apply only to individuals explicitly introduced
in the ABox. We have discussed the effects of such a definition on a non-trivial
example, which also shows that our approach increases the expressivity of its
two components.

Besides a decidability result for SHOIN with DL-safe rules, we have pre-
sented an algorithm for answering queries over SHIQ(D) extended with DL-
safe rules which we believe to be useful in practice. This algorithm transforms a
SHIQ(D) knowledge base into a disjunctive datalog program. To attenuate the
increased computational complexity introduced by using disjunctive datalog, we
developed a query answering algorithm which supports the principle of “graceful
degradation”: the user only pays a performance penalty for the features actually
used in a knowledge base.

In our future work, we shall try to extend the reduction algorithm to support
all of OWL-DL. Furthermore, we are currently implementing the algorithms
presented here in KAON2, a new hybrid reasoner, for which we shall conduct a
thorough performance evaluation.

Acknowledgements

We thank Stefan Decker for his very valuable comments. This work was partially
funded by the EU IST project DIP 507483.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.
The Description Logic Handbook. Cambridge University Press, January 2003.

2. F. Baader and P. Hanschke. A Scheme for Integrating Concrete Domains into
Concept Languages. In Proc. of the 12th Int’l Joint Conf. on Artificial Intelligence
(IJCAI-91), pages 452–457, Sydney, Australia, 1991.

3. L. Bachmair and H. Ganzinger. Resolution Theorem Proving. In A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 2,
pages 19–99. Elsevier Science, 2001.

Query Answering for OWL-DL with Rules 15

4. L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic Paramodulation.
Information and Computation, 121(2):172–192, 1995.

5. F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating Datalog
and Description Logics. J. of Intelligent Information Systems, 10(3):227–252, 1998.

6. T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM Transactions on
Database Systems, 22(3):364–418, 1997.

7. E. Grädel, M. Otto, and E. Rosen. Two-Variable Logic with Counting is Decid-
able. In Proc. of 12th IEEE Symposium on Logic in Computer Science LICS ‘97,
Warsaw, Poland, 1997.

8. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs:
Combining Logic Programs with Description Logic. In Proc. of the Twelfth Int’l
World Wide Web Conf. (WWW 2003), pages 48–57. ACM, 2003.

9. V. Haarslev and R. Möller. RACER System Description. In 1st Int’l Joint Conf.
on Automated Reasoning (IJCAR-01), pages 701–706. Springer-Verlag, 2001.

10. I. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? In Proc. 6th
Int’l. Conf. on Principles of Knowledge Representation and Reasoning (KR’98),
pages 636–647. Morgan Kaufmann Publishers, 1998.

11. I. Horrocks and P. F. Patel-Schneider. A Proposal for an OWL Rules Language.
In Proc. of the Thirteenth Int’l World Wide Web Conf.(WWW 2004). ACM, 2004.

12. I. Horrocks and U. Sattler. Ontology Reasoning in the SHOQ(D) Description
Logic. In B. Nebel, editor, Proc. of the 17th Int’l Joint Conf. on Artificial Intelli-
gence (IJCAI 2001), pages 199–204. Morgan Kaufmann, 2001.

13. I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Very Expressive
Description Logics. Logic Journal of the IGPL, 8(3):239–263, 2000.

14. U. Hustadt, B. Motik, and U. Sattler. Reasoning for Description Logics around
SHIQ in a Resolution Framework. Technical Report 3-8-04/04, FZI, Karlsruhe,
Germany, April 2004. http://www.fzi.de/wim/publikationen.php?id=1172.

15. U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ− Description Logic to
Disjunctive Datalog Programs. In Proc. of the 9th Conference on Knowledge Rep-
resentation and Reasoning (KR2004). AAAI Press, June 2004.

16. A. Y. Levy and M.-C. Rousset. Combining Horn rules and description logics in
CARIN. Artificial Intelligence, 104(1-2):165–209, 1998.

17. C. Lutz. Description Logics with Concrete Domains—A Survey. In Advances in
Modal Logics, volume 4. King’s College Publications, 2003.

18. B. Motik, A. Maedche, and R. Volz. Optimizing Query Answering in Descrip-
tion Logics using Disjunctive Deductive Databases. In 10th Int’l Workshop on
Knowledge Representation meets Databases (KRDB-2003), Hamburg, Germany,
September 15-16 2003.

19. A. Nonnengart and C. Weidenbach. Computing Small Clause Normal Forms. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, vol-
ume I, chapter 6, pages 335–367. Elsevier Science, 2001.

20. P. F. Patel-Schneider, P. Hayes, I. Horrocks, and F. van Harmelen. OWL Web
Ontology Language; Semantics and Abstract Syntax, W3C Candidate Recommen-
dation. http://www.w3.org/TR/owl-semantics/, November 2002.

21. S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, RWTH Aachen, Germany, 2001.

22. M. Vardi. Why is modal logic so robustly decidable? In N. Immerman and P. Ko-
laitis, editors, Descriptive Complexity and Finite Models, volume 31 of DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, pages 149–184.
AMS, 1997.

