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Abstract

The ITERATORpattern gives a clean interface for element-by-element access to a collection. Imper-
ative iterations using the pattern have two simultaneous aspects:mappingandaccumulating. Various
existing functional iterations model one or other of these,but not both simultaneously. We argue that
McBride and Paterson’sapplicative functors, and in particular the correspondingtraverseoperator,
do exactly this, and therefore capture the essence of the ITERATORpattern. We present some axioms
for traversal, and illustrate with a simple example, thewordcountproblem.

1 Introduction

Perhaps the most familiar of the so-called Gang of Four design patterns (Gammaet al.,
1995) is the ITERATOR pattern, which ‘provides a way to access the elements of an ag-
gregate object sequentially without exposing its underlying representation’. Traditionally,
this is achieved by identifying an ITERATOR interface that presents operations to initialize
an iteration, to access the current element, to advance to the next element, and to test for
completion; collection objects are expected to implement this interface, perhaps indirectly
via a subobject. This traditional approach is sometimes called an EXTERNAL ITERATOR,
to distinguish it from an alternative INTERNAL ITERATOR implementation that delegates
responsibility for managing the traversal to the collection instead of the client, thereby re-
quiring the client only to provide a single operation to apply to each element. This latter
style of iteration is our focus in this paper.

An external iterator interface has been included in the Javaand the C# libraries since
their inception. Syntactic sugar supporting use of the interface, in the form of theforeach
construct, has been present in C# since the first version and in Java since version 1.5. This
syntactic sugar effectively represents internal iterators in terms of external iterators; its use
makes code cleaner and simpler, although it gives privileged status to the specific iteration
interface chosen, entangling the language and its libraries.

In Figure 1 we show an application of theforeach construct: a C# methodloop that
iterates over a collection, counting the elements but simultaneously interacting with each of
them. The method is parametrized by the typeMyObjof collection elements; this parameter
is used twice, to constrain the collectioncoll passed as a parameter, and as a type for the
local variableobj. The collection itself is rather unconstrained; it only hasto implement
theIEnumerable〈MyObj〉 interface.
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public static int loop〈MyObj〉 (IEnumerable〈MyObj〉 coll){
int n = 0;
foreach (MyObj objin coll){

n = n+1;
obj.touch();
}
return n;
}

Fig. 1. Iterating over a collection in C#.

In this paper, we investigate the structure of such iterations over collection elements. We
emphasize that we want to capture both aspects of the methodloop and iterations like it:
mappingover the elements, and simultaneouslyaccumulatingsome measure of those ele-
ments. Moreover, we aim to do soholistically, treating the iteration as an abstraction in its
own right; this leads us naturally to a higher-order presentation. We also want to develop
analgebraof such iterations, with combinators for composing them andlaws for reasoning
about them; this leads us towards a functional approach. We argue that McBride and Pater-
son’sapplicative functors(McBride & Paterson, 2007), and in particular the corresponding
traverseoperator, have exactly the right properties. Finally, we will argue thattraverseand
its laws are ideally suited for the development of modular programs, where more complex
programs can be obtained by composing simpler ones togetherand efficient programs can
derived by mechanical application of these laws.

The rest of this paper is structured as follows. Section 2 reviews a variety of earlier
approaches to capturing the essence of such iterations functionally. Section 3 presents
McBride and Paterson’s notions of applicative functors andtraversals. Our present contri-
bution starts in Section 4, with a more detailed look at traversals. In Section 5 we propose a
collection of laws of traversal, and in Section 6 we illustrate the use of some of these laws
in the context of a simple example, thewordcountproblem. Section 7 concludes.

2 Functional iteration

In this section, we review a number of earlier approaches to capturing the essence of itera-
tion. In particular, we look at a variety of datatype-generic recursion operators: maps, folds,
unfolds, crushes, and monadic maps. The traversals we discuss in Section 4 generalize all
of these.

2.1 Origami

In theorigamistyle of programming (Meijeret al., 1991; Gibbons, 2002; Gibbons, 2003),
the structure of programs is captured by higher-order recursion operators such asmap,
fold andunfold. These can be madedatatype-generic(Jansson & Jeuring, 1997; Gibbons,
2006a), parametrized by the shape of the underlying datatype, as shown below.

class Bifunctor swhere
bimap:: (a→ b)→ (c→ d)→ s a c→ s b d

data Fix s a= In{out:: s a(Fix s a)}
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map :: Bifunctor s⇒ (a→ b)→ Fix s a→ Fix s b
map f = In ◦bimap f (map f) ◦out

fold :: Bifunctor s⇒ (s a b→ b)→ Fix s a→ b
fold f = f ◦bimap id(fold f) ◦out

unfold :: Bifunctor s⇒ (b→ s a b)→ b→ Fix s a
unfold f = In ◦bimap id(unfold f) ◦ f

For a suitable binary type constructors, the recursive datatypeFix s a is the fixpoint
(up to isomorphism) in the second argument ofs for a given typea in the first argument;
the constructorIn and destructorout witness the implied isomorphism. The type class
Bifunctor captures those binary type constructors appropriate for determining the shapes
of datatypes: the ones with abimapoperator that essentially locates elements of each of
the two type parameters. Technically,bimapshould also satisfy the laws

bimap id id = id -- identity
bimap(f ◦h) (g◦k) = bimap f g◦bimap h k -- composition

but this constraint is not captured in the type class declaration.

The recursion patternmapcaptures iterations that modify each element of a collection
independently; thus,map touchcaptures the mapping aspect of the C# loop above, but not
the accumulating aspect.

At first glance, it might seem that the datatype-genericfold captures the accumulat-
ing aspect; but the analogy is rather less clear for a non-linear collection. In contrast to
the C# program above, which is sufficiently generic to apply to non-linear collections, a
datatype-generic counting operation defined usingfold would need a datatype-generic nu-
meric algebra as the fold body. Such a thing could be defined polytypically (Jansson &
Jeuring, 1997; Hinze & Jeuring, 2003), but the fact remains that fold in isolation does not
encapsulate the datatype genericity.

Essential to iteration in the sense we are using the term is linear access to collection
elements; this was the problem withfold. One might consider a datatype-generic operation
to yield a linear sequence of collection elements from possibly non-linear structures, for
example byunfolding to a list. This could be done (though as with thefold problem, it
requires additionally a datatype-generic sequence coalgebra as the unfold body); but even
then, this would address only the accumulating aspect of theC# iteration, and not the
mapping aspect — it loses the shape of the original structure. Moreover, the sequence of
elements is not always definable as an unfold (Gibbonset al., 2001).

We might also explore the possibility of combining some of these approaches. For ex-
ample, it is clear from the definitions above thatmapis an instance offold. Moreover, the
banana split theorem(Fokkinga, 1990) states that two folds in parallel on the same data
structure can be fused into one. Therefore, a map and a fold inparallel fuse to a single
fold, yielding both a new collection and an accumulated measure, and might therefore be
considered to capture both aspects of the C# iteration. However, we feel that this is an un-
satisfactory solution: it may indeed simulate or implementthe same behaviour, but it is no
longer manifest that the shape of the resulting collection is related to that of the original.
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2.2 Crush

Meertens (Meertens, 1996) generalized APL’s ‘reduce’ to acrushoperation,〈〈⊕〉〉 :: t a→ a
for binary operator(⊕) ::a→ a→ a with a unit, polytypically over the structure of a regular
functort. For example,〈〈+〉〉 polytypically sums a collection of numbers. For projections,
composition, sum and fixpoint, there is an obvious thing to do, so the only ingredients
that need to be provided are the binary operator (for products) and a constant (for units).
Crush captures the accumulating aspect of the C# iteration above, accumulating elements
independently of the shape of the data structure, but not themapping aspect.

2.3 Monadic map

One aspect of iteration expressed by neither the origami operators nor crush is the possi-
bility of effects, such as stateful operations or exceptions. Seminal work by Moggi (1991)
popularized by Wadler (1992) showed how such computationaleffects can be captured in
a purely functional context through the use ofmonads.

class Functor f where
fmap :: (a→ b)→ f a→ f b

class Functor m⇒Monad mwhere
(>>=) :: m a→ (a→m b)→m b
return:: a→m a

satisfying the following laws:
fmap id = id -- identity
fmap(f ◦g) = fmap f◦ fmap g -- composition

return a>>= f = f a -- left unit
mx>>= return = mx -- right unit
(mx>>= f )>>=g = mx>>=(λx→ f x>>=g) -- associativity

Roughly speaking, the typem afor a monadm denotes a computation returning a value of
typea, but in the process possibly having some computational effect corresponding tom;
thereturn operator lifts pure values into the monadic domain, and the ‘bind’ operator>>=
denotes a kind of sequential composition.

Haskell’s standard prelude defines amonadic mapfor lists, which lifts an effectful com-
putation on elements to one on lists:

mapM:: Monad m⇒ (a→m b)→ ([a]→m [b])

Fokkinga (Fokkinga, 1994) showed how to generalize this from lists to an arbitrary regular
functor, polytypically. Several authors (Meijer & Jeuring, 1995; Moggiet al., 1999; Jans-
son & Jeuring, 2002; Pardo, 2005; Kiselyov & Lämmel, 2005) have observed that monadic
map is a promising model of iteration. Monadic maps are very close to theidiomatic traver-
salsthat we propose as the essence of imperative iterations; indeed, for monadic applicative
functors, traversal reduces exactly to monadic map. However, we argue that monadic maps
do not capture accumulating iterations as nicely as they might. Moreover, it is well-known
(Jones & Duponcheel, 1993; King & Wadler, 1993) that monads do not compose in gen-
eral, whereas applicative functors do; this will give us a richer algebra of traversals. Finally,
monadic maps stumble over products, for which there are two reasonable but symmetric
definitions, coinciding when the monad is commutative. Thisstumbling block forces either
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a bias to left or right, or a restricted focus on commutative monads, or an additional com-
plicating parametrization; in contrast, applicative functors generally have no such problem,
and in fact turn it into a virtue.

Closely related to monadic maps are operations like Haskell’s sequencefunction
sequence:: Monad m⇒ [m a]→m [a]

and its polytypic generalization to arbitrary datatypes. Indeed,sequenceandmapM are
interdefinable:

mapM f= sequence◦map f
Most writers on monadic maps have investigated such an operation; Moggi et al. (1999)
call it passive traversal, Meertens (1998) calls itfunctor pulling, and Pardo (2005) and
others have called it adistributive law. McBride and Paterson introduce the functiondist
playing the same role, but as we shall see, more generally.

3 Idioms

McBride and Paterson (2007) recently introduced the notionof anapplicative functor(or
idiom) as a generalization of monads. (‘Idiom’ was the name McBride originally chose,
but he and Paterson now favour the less evocative term ‘applicative functor’. We have a
slight preference for the former, not least because it lendsitself nicely to adjectival uses, as
in ‘idiomatic traversal’. For solidarity, we will mostly use ‘applicative functor’ as the noun
in this paper, but ‘idiomatic’ as the adjective.) Monads allow the expression of effectful
computations within a purely functional language, but theydo so by encouraging anim-
perative(Peyton Jones & Wadler, 1993) programming style; in fact, Haskell’s monadicdo
notation is explicitly designed to give an imperative feel.Since applicative functors gener-
alize monads, they provide the same access to effectful computations; but they encourage
a moreapplicativeprogramming style, and so fit better within the functional programming
milieu. Moreover, as we shall see, applicative functors strictly generalize monads; they
provide features beyond those of monads. This will be important to us in capturing a wider
variety of iterations, and in providing a richer algebra of those iterations.

Applicative functors are captured in Haskell by the following type class, provided in
recent versions of the GHC hierarchical libraries (GHC Team, 2006).

class Functor m⇒ Applicative mwhere
pure:: a→m a
(⊛) :: m(a→ b)→m a→m b

Informally,purelifts ordinary values into the idiomatic world, and⊛ provides an idiomatic
flavour of function application. We make the convention that⊛ associates to the left, just
like ordinary function application.

In addition to those of theFunctorclass, applicative functors are expected to satisfy the
following laws.

pure id⊛u = u -- identity
pure(◦)⊛u⊛v⊛w = u⊛ (v⊛w) -- composition
pure f⊛pure x = pure(f x) -- homomorphism
u⊛pure x = pure(λf → f x)⊛u -- interchange

These two collections of laws are together sufficient to allow any expression built from
the applicative functor operators to be rewritten into a canonical form, consisting of a
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pure function applied to a series of idiomatic arguments:pure f⊛ u1 ⊛ · · ·⊛ un. (In case
the reader feels the need for some intuition for these laws, we refer them forwards to the
stream Naperian applicative functor discussed in Section 3.2 below.)

3.1 Monadic applicative functors

Applicative functors generalize monads; every monad induces an applicative functor, with
the following operations.

newtype WrappedMonad m a= WrapMonad{unwrapMonad:: (m a)}

instance Monad m⇒ Applicative(WrappedMonad m) where
pure = WrapMonad◦ return
WrapMonad f⊛WrapMonad v= WrapMonad(f ‘ap‘ v)

(The wrapperWrappedMonadlifts a monad to an applicative functor, avoiding the need
for overlapping instances.) Thepure operator for a monadic applicative functor is just
the return of the monad; idiomatic application⊛ is monadic application, here with the
effects of the function preceding those of the argument (that is, mf ‘ap‘ mx= mf >>=λf →
mx>>= λx→ return (f x)). There is another, completely symmetric, definition, withthe
effects of the argument before those of the function (see Section 4.3). We leave the reader
to verify that the monad laws entail the applicative functorlaws.

For example, one of McBride and Paterson’s motivating examples of an applicative func-
tor arises from the ‘environment’ or ‘reader’ monad:

newtype Reader r a= Reader{runReader:: r→ a}
With this definition,WrappedMonad(Reader r) is a monadic applicative functor.

3.2 Naperian applicative functors

The ‘bind’ operation of a monad allows the result of one computation to affect the choice
and ordering of effects of subsequent operations. Applicative functors in general provide
no such possibility; indeed, as we have seen, every expression built just from the idiomatic
combinators is equivalent to a pure function applied to a series of idiomatic arguments, and
so the sequencing of any effects is fixed. This is reminiscentof Jay’sshapely operations
(1995), which separate statically-analysable shape from dynamically-determined contents.
Static shape suggests another class of applicative functors, exemplified by the stream func-
tor.

data Stream a= SCons a(Stream a)

instance Applicative Streamwhere
pure a = srepeat a
mf ⊛mx= szipWith($) mf mx

srepeat :: a→ Stream a
srepeat x= xswhere xs= SCons x xs

szipWith:: (a→ b→ c)→ Stream a→ Stream b→ Stream c
szipWith f(SCons x xs) (SCons y ys) = SCons(f x y) (szipWith f xs ys)

Thepureoperator lifts a value to a stream, with infinitely many copies of that value; id-
iomatic application is a pointwise ‘zip with apply’, takinga stream of functions and a
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stream of arguments to a stream of results. We find this applicative functor is the most
accessible one for providing some intuition for the applicative functor laws. Computations
within the stream applicative functor tend to perform a transposition of results; there ap-
pears to be some connection with what Kühne (1999) calls thetransfoldoperator.

A similar construction works for any fixed-shape datatype: pairs, vectors of lengthn,
matrices of fixed size, infinite binary trees, and so on. (Peter Hancock calls such datatypes
Naperian, because they support a notion of logarithm. That is, datatypet is Naperian ift a≃
ap≃ p→ a for some typep of positions, called the logarithm logt of t. Thent 1≃ 1p≃ 1,
so the shape is fixed, and familiar properties of logarithms arise — for example, log(t◦u)≃

log t× log u. Naperian functors turn out to be equivalent to environmentmonads, with the
logarithm as environment.) We therefore expect some further connection with data-parallel
and numerically intensive computation, in the style of Jay’s language FISh (Jay & Steckler,
1998), but we leave the investigation of that connection forfuture work.

3.3 Monoidal applicative functors

Applicative functors strictly generalize monads; there are applicative functors that do not
arise from monads. A third family of applicative functors, this time non-monadic, arises
from constant functors with monoidal targets. McBride and Paterson call thesephantom
applicative functors, because the resulting type is a phantom type (as opposed to acon-
tainer type of some kind). Any monoid( /0,⊕) induces an applicative functor, where the
pureoperator yields the unit of the monoid and application uses the binary operator.

newtype Const b a= Const{getConst:: b}

instance Monoid b⇒ Applicative(Const b) where
pure = Const/0
x⊛y = Const(getConst x⊕getConst y)

Computations within this applicative functor accumulate some measure: for the monoid
of integers with addition, they count or sum; for the monoid of lists with concatenation,
they collect some trace of values; for the monoid of booleanswith disjunction, they en-
capsulate linear searches; and so on. (Note that sequences of one kind or another form
applicative functors in three different ways: monadic withcartesian product, modelling
non-determinism; Naperian with zip, modelling data-parallelism; and monoidal with con-
catenation, modelling tracing.)

3.4 Combining applicative functors

Like monads, applicative functors are closed under products; so two independent idiomatic
effects can generally be fused into one, their product.

data Prod m n a= Prod{pfst::m a,psnd:: n a}

(⊗) :: (Functor m,Functor n)⇒ (a→m b)→ (a→ n b)→ a→ Prod m n b
(f ⊗g) a = Prod (f a) (g a)

instance (Applicative m,Applicative n)⇒ Applicative(Prod m n) where
pure x = Prod (pure x) (pure x)
mf ⊛mx= Prod (pfst mf⊛pfst mx) (psnd mf⊛psnd mx)
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Unlike monads in general, applicative functors are also closed under composition; so
two sequentially-dependent idiomatic effects can generally be fused into one, their compo-
sition.

data Comp m n a= Comp{unComp:: m(n a)}

(⊙) :: (Functor n,Functor m)⇒ (b→ n c)→ (a→m b)→ a→ Comp m n c
f ⊙g = Comp◦ fmap f◦g

instance (Applicative m,Applicative n)⇒ Applicative(Comp m n) where
pure x = Comp(pure(pure x))
mf ⊛mx= Comp(pure(⊛)⊛unComp mf⊛unComp mx)

The two operators⊗ and⊙ allow us to combine two different idiomatic computations
in two different ways; we call themparallel andsequential composition, respectively. We
will see examples of both in Sections 4.1 and 6.

3.5 Idiomatic traversal

Two of the three motivating examples McBride and Paterson provide for idiomatic com-
putations — sequencing a list of monadic effects and transposing a matrix — are instances
of a general scheme they calltraversal. This involves iterating over the elements of a data
structure, in the style of a ‘map’, but interpreting certainfunction applications idiomati-
cally.

traverseList::Applicative m⇒ (a→m b)→ [a]→m [b]

traverseList f[ ] = pure[ ]

traverseList f(x : xs) = pure(:)⊛ f x⊛ traverseList f xs
A special case is for traversal with the identity function, which distributes the data structure
over the idiomatic structure:

distList::Applicative m⇒ [m a]→m [a]

distList= traverseList id

The ‘map within the applicative functor’ pattern of traversal for lists generalizes to any
(finite) functorial data structure, even non-regular ones (Bird & Meertens, 1998). We cap-
ture this via a type class ofTraversabledata structures (a slightly more elaborate type class
Data.Traversableappears in recent GHC hierarchical libraries (GHC Team, 2006)):

class Functor t⇒ Traversable twhere
traverse::Applicative m⇒ (a→m b)→ t a→m(t b)

traverse f= dist◦ fmap f

dist:: Applicative m⇒ t (m a)→m(t a)

dist= traverse id
For example, here is a datatype of binary trees:

data Tree a= Leaf a| Bin (Tree a) (Tree a)

instance Functor Treewhere
fmap f (Leaf a) = Leaf (f a)

fmap f (Bin t u) = Bin (fmap f t) (fmap f u)
The correspondingtraverseclosely resembles the simplermap:

instance Traversable Treewhere
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traverse f(Leaf a) = pure Leaf⊛ f a
traverse f(Bin t u) = pure Bin⊛ traverse f t⊛ traverse f u

McBride and Paterson propose a special syntax involving ‘idiomatic brackets’, which
would have the effect of inserting the occurrences ofpure and⊛ implicitly; apart from
these brackets, the definition then looks exactly like a definition of fmap. This definition
could be derived automatically (Hinze & Peyton Jones, 2000), or given polytypically once
and for all, assuming some universal representation of datatypes such as sums and products
(Hinze & Jeuring, 2003) or regular functors (Gibbons, 2003):

class Bifunctor s⇒ Bitraversable swhere
bidist::Applicative m⇒ s(m a) (m b)→m(s a b)

instance Bitraversable s⇒ Traversable(Fix s) where
traverse f= fold (fmap In◦bidist◦bimap f id)

When m is specialized to the identity applicative functor, traversal reduces precisely
(modulo the wrapper) to the functorial map over lists.

newtype Identity a= Identity{runIdentity:: a}

instance Applicative Identitywhere
pure a = Identity a
mf ⊛mx= Identity((runIdentity mf) (runIdentity mx))

In the case of a monadic applicative functor, traversal specializes to monadic map, and
has the same uses. In fact, traversal is really just a slight generalization of monadic map:
generalizing in the sense that it applies also to non-monadic applicative functors. We con-
sider this an interesting insight, because it reveals that monadic map does not require the
full power of a monad; in particular, it does not require the bind or join operators, which
are unavailable in applicative functors in general.

For a Naperian applicative functor, traversal transposes results. For example, interpreted
in the pair Naperian applicative functor,traverseList idunzips a list of pairs into a pair of
lists.

For a monoidal applicative functor, traversal accumulatesvalues. For example, inter-
preted in the integer monoidal applicative functor, traversal accumulates a sum of integer
measures of the elements.

tsum:: (a→ Int)→ [a]→ Int
tsum f= getConst◦ traverseList(Const◦ f )

4 Traversals as iterators

In this section, we show some representative examples of traversals over data structures,
and capture them usingtraverse.

4.1 Shape and contents

As well as being parametrically polymorphic in the collection elements, the generictraverse
operation is parametrized along two further dimensions: the datatype being traversed, and
the applicative functor in which the traversal is interpreted. Specializing the latter to lists
as a monoid yields a genericcontentsoperation:
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contentsBody:: a→Const[a] b
contentsBody= λa→ Const[a]

contents:: Traversable t⇒ t a→Const[a] (t b)

contents= traverse contentsBody

run contents::Traversable t⇒ t a→ [a]

run contents= get contents◦contents
get contents= getConst

This contentsoperation is in turn the basis for many other generic operations, including
non-monoidal ones such as indexing; it yields one half of Jay’s decomposition of datatypes
into shape and contents (Jay, 1995). The other half is obtained simply by a map, which is
to say, a traversal interpreted in the identity idiom:

shapeBody:: a→ Identity()

shapeBody= λa→ Identity()

shape:: Traversable t⇒ t a→ Identity(t ())

shape= traverse shapeBody

run shape::Traversable t⇒ t a→ t ()

run shape= get shape◦shape
get shape= runIdentity

Of course, it is trivial to compose these two traversals in parallel to obtain both halves
of the decomposition as a single function, but doing this by tupling in the obvious way

decompose::Traversable t⇒ t a→ Prod Identity(Const[a]) (t ())

decompose= shape⊗contents

entails two traversals over the data structure. Is it possible to fuse the two traversals into
one? The product of applicative functors allows exactly this, and Section 5.4 shows how to
obtain the decomposition of a data structure into shape and contents in a single pass:

decompose= traverse(shapeBody⊗contentsBody)

run decompose::Traversable t⇒ t a→ (t (), [a])

run decompose= get decompose◦decomposewhere
get decompose xy= (get shape(pfst xy),get contents(psnd xy))

Moggi et al. (1999) give a similar decomposition, but using a customizedcombination of
monads; we believe the above component-based approach is simpler.

A similar benefit can be found in the reassembly of a full data structure from separate
shape and contents. This is a stateful operation, where the state consists of the contents to
be inserted; but it is also a partial operation, because the number of elements provided may
not agree with the number of positions in the shape. We therefore make use of both the
Statemonad and theMaybemonad; but this time, we form their composition rather than
their product. (As it happens, the composition of theStateandMaybemonads in this way
does in fact form another monad, but that is not the case for monads in general (Jones &
Duponcheel, 1993; King & Wadler, 1993).)

The central operation in the solution is the partial stateful function that strips the first
element off the list of contents, if this list is non-empty:

takeHead:: State[a] (Maybe a)
takeHead= do {xs← get;case xsof
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[ ] → return Nothing
(y :ys)→ do {put ys; return(Just y)}}

This is a composite monadatic value, using the composition of the two monadsState[a]

andMaybe; traversal using this operation (suitably wrapped) returns a stateful function for
the whole data structure.

reassemble:: Traversable t⇒ t ()→ Comp(WrappedMonad(State[a]))

(WrappedMonad Maybe) (t a)

reassemble= traverse(λ()→ Comp$WrapMonad$ fmap WrapMonad takeHead)

Now it is simply a matter of running this stateful function, and checking that the contents
are entirely consumed:

run reassemble:: Traversable t⇒ (t (), [a])→Maybe(t a)

run reassemble(x,ys) = allGone$
runState(unwrapMonad$unComp$reassemble x) ys

where
allGone:: (WrappedMonad Maybe(t a), [a])→Maybe(t a)

allGone(mt, [ ]) = unwrapMonad mt
allGone(mt,( : )) = Nothing

4.2 Collection and dispersal

We have found it convenient to consider special cases of effectful traversals in which the
mapping aspect is independent of the accumulation, and viceversa.

collect :: (Traversable t,Applicative m)⇒ (a→m())→ (a→ b)→ t a→m (t b)

collect f g= traverse(λa→ pure(λ()→ g a)⊛ f a)

disperse:: (Traversable t,Applicative m)⇒m b→ (a→ b→ c)→ t a→m (t c)
disperse mb g= traverse(λa→ pure(g a)⊛mb)

The first of these traversals accumulates elements effectfully, but modifies those elements
purely and independently of this accumulation. The C# iteration in Section 1 is an example,
using the applicative functor of theStatemonad to capture the counting:

loop:: Traversable t⇒ (a→ b)→ t a→ State Int(t b)

loop touch= collect(λa→ do {n← get;put (n+1)}) touch
The second kind of traversal modifies elements purely but dependent on the state, evolv-
ing this state independently of the elements. An example of this is a kind of converse of
counting, labelling every element with its position in order of traversal.

label::Traversable t⇒ t a→ State Int(t (a, Int))
label= disperse step(,)

step:: State Int Int
step= do {n← get;put (n+1); return n}

4.3 Backwards traversal

Unlike the case with pure maps, the order in which elements are visited in an effectful
traversal is significant; in particular, iterating throughthe elements backwards is observ-
ably different from iterating forwards. We can capture thisreversal quite elegantly as an
applicative functor adapter:
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newtype Backwards m a= Backwards{runBackwards:: m a}

instance Applicative m⇒ Applicative(Backwards m) where
pure = Backwards◦pure
f ⊛x = Backwards(pure(flip ($))⊛ runBackwards x⊛ runBackwards f)

Informally,Backwards mis an applicative functor ifm is, but any effects happen in reverse;
this provides the symmetric ‘backwards’ embedding of monads into applicative functors
referred to in Section 3.1.

Such an adapter can be parcelled up existentially:
data AppAdapter m= ∀g. Applicative(g m)⇒

AppAdapter(∀a. m a→ g m a) (∀a. g m a→m a)

backwards::Applicative m⇒ AppAdapter m
backwards= AppAdapter Backwards runBackwards

and used in a parametrized traversal, for example to label backwards:
ptraverse:: (Applicative m,Traversable t)⇒

AppAdapter m→ (a→m b)→ t a→m(t b)

ptraverse(AppAdapter wrap unwrap) f = unwrap◦ traverse(wrap◦ f )

lebal= ptraverse backwards(λa→ step)
Of course, there is a trivialforwardsadapter too.

newtype Forwards m a= Forwards{runForwards:: m a}

instance Applicative m⇒ Applicative(Forwards m) where
pure = Forwards◦pure
f ⊛x = Forwards(runForwards f⊛ runForwards x)

instance Functor m⇒ Functor(Forwards m) where
fmap f= Forwards◦ fmap f◦ runForwards

forwards:: Applicative m⇒ AppAdapter m
forwards= AppAdapter Forwards runForwards

5 Laws of traverse

In line with other type classes such asFunctorandMonad, we should consider also what
properties the various datatype-specific definitions oftraverseought to enjoy.

5.1 Free theorems of traversal

The free theorem (Wadler, 1989) arising from the type ofdist is
dist◦ fmap(fmap k) = fmap(fmap k) ◦dist

As corollaries, we get the following two free theorems oftraverse:
traverse(g◦h) = traverse g◦ fmap h
traverse(fmap k◦ f ) = fmap(fmap k) ◦ traverse f

These laws are not constraints on the implementation ofdist and traverse; they follow
automatically from their types.
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5.2 Sequential composition of traversals

We have seen that applicative functors compose: there is an identity applicative functor
Identity and, for any two applicative functorsm and n, a composite applicative functor
Comp m n. We impose on implementations ofdist the constraint of respecting this com-
positional structure. Specifically, the distributordist should respect the identity applicative
functor:

dist◦ fmap Identity= Identity
and the composition of applicative functors:

dist◦ fmap Comp= Comp◦ fmap dist◦dist
As corollaries, we get analogous properties oftraverse.

traverse(Identity◦ f ) = Identity◦ fmap f
traverse(Comp◦ fmap f◦g) = Comp◦ fmap(traverse f) ◦ traverse g

Both of these consequences have interesting interpretations. The first says thattraverse
interpreted in the identity applicative functor is essentially just fmap, as mentioned in Sec-
tion 3.5. The second provides a fusion rule for the sequential composition of two traversals;
it can be written equivalently as:

traverse(f ⊙g) = traverse f⊙ traverse g

5.3 Idiomatic naturality

We also impose the constraint that the distributordist should benatural in the applicative
functor, as follows. Anapplicative functor transformationφ :: m a→ n a from applicative
functorm to applicative functorn is a polymorphic function (natural transformation) that
respects the applicative functor structure:

φ (purem a) = puren a
φ (mf ⊛mmx) = φ mf ⊛n φ mx

(Here, the idiomatic operators are subscripted by the idiomfor clarity.)
Thendist should satisfy the following naturality property: for applicative functor trans-

formationφ,
distn ◦ fmapφ = φ ◦distm

One consequence of this naturality property is a ‘purity law’:
traverse pure= pure

This follows, as the reader may easily verify, from the observation thatpurem◦ runIdentity
is an applicative functor transformation from applicativefunctor Identity to applicative
functorm. This is an entirely reasonable property of traversal; one might say that it im-
poses a constraint of shape preservation. (But there is moreto it than shape preservation:
a traversal of pairs that flips the two halves necessarily ‘preserves shape’, but breaks this
law.) For example, consider the following definition oftraverseon binary trees, in which
the two children are swapped on traversal:

instance Traversable Treewhere
traverse f(Leaf a) = pure Leaf⊛ f a
traverse f(Bin t u) = pure Bin⊛ traverse f u⊛ traverse f t

With this definition,traverse pure= pure◦mirror, wheremirror reverses a tree, and so the
purity law does not hold; this is because the corresponding definition of dist is not natural
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in the applicative functor. Similarly, a definition with twocopies oftraverse f tand none
of traverse f umakestraverse purepurely return a tree in which every right child has been
overwritten with its left sibling. Both definitions are perfectly well-typed, but (according
to our constraints) invalid.

On the other hand, the following definition, in which the traversals of the two children
are swapped, but theBinoperator is flipped to compensate, is blameless. The purity law still
applies, and the corresponding distributor is natural in the applicative functor; the effect of
the reversal is that elements of the tree are traversed ‘fromright to left’.

instance Traversable Treewhere
traverse f(Leaf a) = pure Leaf⊛ f a
traverse f(Bin t u) = pure(flip Bin)⊛ traverse f u⊛ traverse f t

We consider this to be a reasonable, if rather odd, definitionof traverse.

5.4 Parallel composition of traversals

Another consequence of naturality is a fusion law for the parallel composition of traversals,
as defined in Section 3.4:

traverse f⊗ traverse g= traverse(f ⊗g)

This follows from the fact thatpfst is an applicative functor transformation fromProd m n
to m, and symmetrically forpsnd.

5.5 Sequential composition of monadic traversals

A third consequence of naturality is a fusion law specific to monadic traversals. The natural
form of composition for monadic computations is calledKleisli composition:

(•) :: Monad m⇒ (b→m c)→ (a→m b)→ (a→m c)
(f •g) x = do {y← g x;z← f y; return z}

The monadm is commutativeif, for all mxandmy,
do {x←mx;y←my; return(x,y)}= do {y←my;x←mx; return(x,y)}

When interpreted in the applicative functor of a commutative monadm, traversals with
bodiesf :: b→m candg ::a→m bfuse:

traverse f• traverse g= traverse(f •g)

This follows from the fact thatµ◦ unCompforms an applicative functor transformation
from Comp m mto m, for a commutative monadm with join operatorµ.

This fusion law for the Kleisli composition of monadic traversals shows the benefits
of the more general idiomatic traversals quite nicely. Notethat the corresponding more
general fusion law for applicative functors in Section 5.2 allows two different applicative
functors rather than just one; moreover, there are no side conditions concerning commu-
tativity. The only advantage of the monadic law is that thereis just one level of monad
on both sides of the equation; in contrast, the idiomatic lawhas two levels of applicative
functor, because there is no analogue of theµ operator of a monad for collapsing two levels
to one.

We conjecture that the monadic traversal fusion law also holds even ifm is not commu-
tative, provided thatf andg themselves commute (f •g = g• f ); but this no longer follows
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from naturality of the distributor in any simple way, and it imposes the alternative con-
straint that the three typesa,b,c are equal.

5.6 No duplication of elements

Another constraint we impose upon a definition oftraverseis that it should visit each
element precisely once. For example, we consider this definition of traverseon lists to be
bogus, because it visits each element twice.

instance Traversable[ ] where
traverse f[ ] = pure[ ]

traverse f(x : xs) = pure(const(:))⊛ f x⊛ f x⊛ traverse f xs
Note that this definition satisfies the purity law above; but we would still like to rule it out.

This axiom is harder to formalize, and we do not yet have a nicetheoretical treatment
of it. One way of proceeding is in terms of indexing. We require that the functionlabels
returns an initial segment of the natural numbers, where

labels:: Traversable t⇒ t a→ [Int]
labels t= get contents$contents$ fmap snd$ fst$runState(label t) 0

andlabel is as defined in Section 4.2. The bogus definition oftraverseon lists given above
is betrayed by the fact that we get insteadlabels"abc"= [1,1,3,3,5,5].

6 Modular programming with applicative functors

In Section 4, we showed how to model various kinds of iteration — both mapping and
accumulating, and both pure and impure — as instances of the generictraverseoperation.
The extra generality of applicative functors over monads, capturing monoidal as well as
monadic behaviour, is crucial; that justifies our claim thatidiomatic traversal is the essence
of the ITERATOR pattern.

However, there is an additional benefit of applicative functors over monads, which con-
cerns the modular development of complex iterations from simpler aspects. Hughes (1989)
argues that one of the major contributions of functional programming is in providing better
glue for plugging components together. In this section, we argue that the fact that ap-
plicative functors compose more readily than monads provides better glue for fusion of
traversals, and hence better support for modular programming of iterations.

6.1 An example: wordcount

As an illustration, we consider the Unix word-counting utility wc, which computes the
numbers of characters, words and lines in a text file. The program in Figure 2, based on
Kernighan and Ritchie’s version (Kernighan & Ritchie, 1988), is a translation of the origi-
nal C program into C#. This program has become a paradigmaticexample in the program
comprehension community (Gallagher & Lyle, 1991; Villavicencio & Oliveira, 2001; Gib-
bons, 2006b), since it offers a nice exercise in re-engineering the three separate slices from
the one monolithic iteration. We are going to use it in the other direction: fusing separate
simple slices into one complex iteration.
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public static int [ ] wc〈char〉 (IEnumerable〈char〉 coll){
int nl = 0,nw= 0,nc= 0;
bool state= false;

foreach (char c in coll){
++nc;
if (c≡ ’\n’) ++nl;
if (c≡ ’ ’ ∨ c≡ ’\n’ ∨ c≡ ’\t’){

state= false;
} else if (state≡ false){

state= true;
++nw;

}
}

int [ ] res= {nc,nw,nl};

return res;
}

Fig. 2. Kernighan and Ritchie’swc program in C#

6.2 Modular iterations, idiomatically

The character-counting slice of thewc program accumulates a result in the integers-as-
monoid applicative functor. The body of the iteration simply yields 1 for every element:

cciBody:: Char→Const Int a
cciBody c= Const1

Traversing with this body accumulates the character count:
cci:: String→Const Int[a]

cci = traverse cciBody
The count itself — which is just the length of the list — is easily extracted:

run cci ::String→ Int
run cci = getConst◦cci

Counting the lines (in fact, the newline characters, thereby ignoring a final ‘line’ that is
not terminated with a newline character) is similar: the difference is simply what number
to use for each element, namely 1 for a newline and 0 for anything else.

lciBody:: Char→ Const Int a
lciBody c= Const(fromEnum(c≡ ’\n’))

lci ::String→Const Int[a]

lci = traverse lciBody
The actual line count can be extracted in the same way as for the character count:

run lci :: String→ Int
run lci = getConst◦ lci

Counting the words is trickier, because it involves state. We therefore use theState
monad, maintaining both anInt (for the count) and aBool (indicating whether we are
currently within a word).

wciBody::Char→WrappedMonad(State(Int,Bool)) Char
wciBody= λc→ let s= not(isSpace c) in WrapMonad$do

(n,w)← get
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put(n+ fromEnum(not w∧ s),s)
return c

wci :: String→WrappedMonad(State(Int,Bool)) String
wci = traverse wciBody

As before, here is a simple wrapper to extract the count:

run wci :: String→ Int
run wci s= fst$(execState$unwrapMonad$wci s) (0,False)

These components may be combined in various ways. For example, character- and line-
counting may be combined to compute a pair of results:

clci ::String→ Prod (Const Int) (Const Int) String
clci = cci⊗ lci

where⊗ denotes the product of applicative functors, defined in Section 3.4. This composi-
tion is inefficient, though, since it performs two traversals over the input. Happily, the two
traversals may be fused into one, as we saw in Section 5.4, giving

clci = traverse(cciBody⊗ lciBody)

in a single pass rather than two.

It so happens that both character- and line-counting use thesame applicative functor,
but that’s not important here. Exactly the same technique works to combine these two
components with the third:

clwci = traverse((cciBody⊗ lciBody)⊗wciBody)

Character- and line-counting traversals use a monoidal applicative functor, and word-
counting a monadic applicative functor. For a related example using a Naperian applicative
functor, consider conducting an experiment to determine whether the distributions of the
letters ‘q’ and ‘u’ in a text are correlated. This might be modelled as follows:

quiBody:: Char→ Pair Bool
quiBody c= P (c≡ ’q’,c≡ ’u’)

qui::String→ Pair [Bool]
qui = traverse quiBody

wherePair is a datatype of pairs,

newtype Pair a = P (a,a)

made into an applicative functor in the obvious way. Applyingqu to a string yields a pair of
boolean sequences, modelling graphs of the distributions of these two letters in the string.
Moreover,qui combines with character-counting nicely:

ccqui= cci⊗qui= traverse(cciBody⊗quiBody)

Unfortunately,qui does not combine with the word-counting traversal: the element type
returned isBool rather thanChar, whereas the product of two applicative functors requires
the element types to agree. (This wasn’t a problem with the two monoidal applicative func-
tors, which are agnostic about the element return type.) This situation calls for sequential
composition⊙ rather than parallel composition⊗ of applicative functors, giving

wcqui= wci⊙qui= traverse(wciBody⊙quiBody)
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6.3 Modular iterations, monadically

It is actually possible to compose the three slices ofwc using monads alone. Let us explore
how that works out, for comparison with the approach using applicative functors.

The first snag is that two of the three slices are not monadic itall; we have to cast them
in the monadic mold first.

ccmBody:: Char→ State Int Char
ccmBody= λc→ do {n← get;put (n+1); return c}

ccm:: String→ State Int String
ccm= mapM ccmBody

lcmBody:: Char→ State Int Char
lcmBody= λc→ do {n← get;put(n+ fromEnum(c≡ ’\n’)); return c}

lcm::String→ State Int String
lcm= mapM lcmBody

Word-counting is almost in monadic form already; all that isneeded is to strip off the
wrapper.

wcmBody:: Char→ State(Int,Bool) Char
wcmBody= λc→ unwrapMonad$wciBody c

wcm:: String→ State(Int,Bool) String
wcm= mapM wcmBody

This rewriting is a bit unfortunate, as it blurs the distinction between the different varieties
of iteration that we could previously express. However, having rewritten in this way, we
can compose the three traversals into one, and even fuse the three bodies:

clwcm= (ccm⊗ lcm)⊗wcm= mapM((ccmBody⊗ lcmBody)⊗wcmBody)

Now let us turn to the Naperian traversal. That too can be expressed monadically: a
Naperian functor is equivalent to a reader monad with the position being the ‘environ-
ment’. In particular, the Naperian applicative functor forthe functorPair is equivalent to
the monadReader Bool.

qumBody:: Char→Reader Bool Bool
qumBody c= do b← ask

return$ if b then (c≡ ’q’) else (c≡ ’u’)

qum::String→Reader Bool[Bool]
qum= mapM qumBody

We can’t form the parallel composition of this with word-counting, for the same reason as
with the idiomatic approach: the element return types differ. But with monads, we can’t
even form the sequential composition of the two traversals either: the two monads differ,
but Kleisli composition requires two computations in the same monad.

It is sometimes possible to work around the problem of sequential composition of com-
putations in different monads, usingmonad transformers(Jones, 1995). A monad trans-
former t turns a monadm into another monadt m, typically adding some functionality in
the process; the operationlift embeds a monadic value from the simpler space into the more
complex one.

class MonadTrans twhere
lift ::Monad m⇒m a→ t m a
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With this facility, there may be many monads providing a certain kind of functionality, so
that functionality too ought to be expressed in a class. For example, the functionality of
theStatemonad can be added to an arbitrary monad using the monad transformerStateT,
yielding a more complex monad with this added functionality:

newtype StateT s m a= StateT{runStateT:: s→m (a,s)}
instance MonadTrans(StateT s) where ...

class Monad m⇒MonadState s m|m→ swhere
get:: m s
put:: s→m ()

instance MonadState s(State s) where ...

instance Monad m⇒MonadState s(StateT s m) where ...

Now in the special case of the composition of two different monads in which one is a
monad transformer applied to the other, progress is possible.

(p•) :: (Monad m,MonadTrans t,Monad(t m))⇒

(b→ t m c)→ (a→m b)→ a→ t m c
p1p•p2 = p1• (lift ◦p2)

(•q) :: (Monad m,MonadTrans t,Monad(t m))⇒

(b→m c)→ (a→ t m b)→ a→ t m c
p1•qp2 = (lift ◦p1) •p2

We can use these constructions to compose sequentially the ‘q’–‘u’ experiment and word-
counting. We need to generalize the type ofwcmBodyfrom theStatemonad specifically to
any monad with the appropriate functionality (and in particular, one withStatefunctional-
ity added to theReadermonad).

wcmBody′ ::MonadState(Int,Bool) m⇒Char→m Char
wcmBody′ = λc→ let s= not (isSpace c) in do

(n,w)← get
put(n+ fromEnum(not w∧ s),s)
return c

(Notice that the definition is essentially identical; only the type has changed.)

quwcm:: String→ StateT(Int,Bool) (Reader Bool) [Bool]
quwcm= mapM qumBody•qmapM wcmBody′ = mapM(qumBody•qwcmBody′)

This particular pair of monads composes just as well the other way around, because the
typesState s(Reader r a) andReader r(State s a) are isomorphic. So we could instead use
theReaderTmonad transformer to addReaderbehaviour to theStatemonad, and use the
symmetric composition operationp•.

However, both cases are rather awkward, because they entailhaving to generalize (per-
haps previously-written) components from types involvingspecific monads (such asState)
to general monad interfaces (such asStateT). Writing the components that way in the first
place might be good practice, but that rule is little comfortwhen faced with a body of code
that breaks it.

The upshot is that the composition of applicative functors is more flexible than compo-
sition of monads.
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7 Conclusions

Monads have long been acknowledged as a good abstraction formodularizing certain as-
pects of programs. However, composing monads is known to be hard, limiting their useful-
ness. One solution is to use monad transformers, but this requires programs to be designed
initially with monad transformers in mind. Applicative functors have a richer algebra of
composition operators, which can often replace the use of monad transformers; there is the
added advantage of being able to compose applicative but non-monadic computations. We
thus believe that applicative functors provide an even better abstraction than monads for
modularization.

We have argued that idiomatic traversals capture the essence of imperative loops —
both mapping and accumulating aspects. We have stated some properties of traversals and
shown a few examples, but we are conscious that more work needs to be done in both of
these areas.

This work grew out of an earlier discussion of the relationship between design patterns
and higher-order datatype-generic programs (Gibbons, 2006a). Preliminary versions of that
paper argued that pure datatype-generic maps are the functional analogue of the ITERA-
TOR design pattern. It was partly while reflecting on that argument — and its omission
of imperative aspects — that we came to the (more refined) position presented here. Note
that idiomatic traversals, and even pure maps, are more general than object-oriented IT-
ERATORs in at least one sense: it is trivial with our approach to change the type of the
collection elements with a traversal, whereas with a less holistic approach one is left wor-
rying about the state of a partially-complete type-changing traversal.

As future work, we are exploring properties and generalizations of the specialized traver-
salscollectanddisperse. We hope that such specialized operators might enjoy richercom-
position properties than do traversals in general, and for example will provide more insight
into the repmin example discussed in the conference version of this paper (Gibbons &
Oliveira, 2006). We also hope to investigate the categorical structure ofdist further: nat-
urality in the applicative functor appears to be related to Beck’s distributive laws (Beck,
1969), and ‘no duplication’ to linear type theories.
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