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Abstract

The ITERATORpattern gives a clean interface for element-by-elemergsacto a collection. Imper-
ative iterations using the pattern have two simultaneops@s:mappingandaccumulating Various
existing functional iterations model one or other of thdse not both simultaneously. We argue that
McBride and Patersonapplicative functorsand in particular the corresponditigwverseoperator,
do exactly this, and therefore capture the essence offiRATOR pattern. We present some axioms
for traversal, and illustrate with a simple example, w@dcountproblem.

1 Introduction

Perhaps the most familiar of the so-called Gang of Four degaterns (Gammat al.,,
1995) is the TERATOR pattern, which ‘provides a way to access the elements of an ag
gregate object sequentially without exposing its undegyiepresentation’. Traditionally,
this is achieved by identifying amrERATOR interface that presents operations to initialize
an iteration, to access the current element, to advancestoakt element, and to test for
completion; collection objects are expected to implemieistinterface, perhaps indirectly
via a subobject. This traditional approach is sometimdedan EXTERNAL ITERATOR,

to distinguish it from an alternativeNlTERNAL | TERATOR implementation that delegates
responsibility for managing the traversal to the colletiiostead of the client, thereby re-
quiring the client only to provide a single operation to gpjg each element. This latter
style of iteration is our focus in this paper.

An external iterator interface has been included in the Zendithe C# libraries since
their inception. Syntactic sugar supporting use of therfate, in the form of thdoreach
construct, has been present in C# since the first versiomabal/a since version 1.5. This
syntactic sugar effectively represents internal iteaboterms of external iterators; its use
makes code cleaner and simpler, although it gives privilegatus to the specific iteration
interface chosen, entangling the language and its litwarie

In Figure 1 we show an application of tliereach construct: a C# metholibop that
iterates over a collection, counting the elements but semebusly interacting with each of
them. The method is parametrized by the tipeObjof collection elements; this parameter
is used twice, to constrain the collectioall passed as a parameter, and as a type for the
local variableobj. The collection itself is rather unconstrained; it only hasmplement
the|lEnumerabléMyODbj) interface.
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public staticint loop(MyObj) (IEnumerabléMyObj) coll){
intn=0;
foreach (MyObj objin coll){
n=n+1,
obj.touch();
}

returnn;

}

Fig. 1. Iterating over a collection in C#.

In this paper, we investigate the structure of such itenatmver collection elements. We
emphasize that we want to capture both aspects of the médbpand iterations like it:
mappingover the elements, and simultaneowstgumulatingsome measure of those ele-
ments. Moreover, we aim to do swlistically, treating the iteration as an abstraction in its
own right; this leads us naturally to a higher-order preso. We also want to develop
analgebraof such iterations, with combinators for composing themlamg for reasoning
about them; this leads us towards a functional approach rgveeahat McBride and Pater-
son’sapplicative functorgMcBride & Paterson, 2007), and in particular the corresjog
traverseoperator, have exactly the right properties. Finally, wk avgue thatraverseand
its laws are ideally suited for the development of modulagpams, where more complex
programs can be obtained by composing simpler ones togatidezfficient programs can
derived by mechanical application of these laws.

The rest of this paper is structured as follows. Section Zevev a variety of earlier
approaches to capturing the essence of such iterationsidoalty. Section 3 presents
McBride and Paterson’s notions of applicative functors tiadersals. Our present contri-
bution starts in Section 4, with a more detailed look at treaks. In Section 5 we propose a
collection of laws of traversal, and in Section 6 we illugtrthe use of some of these laws
in the context of a simple example, th@rdcountproblem. Section 7 concludes.

2 Functional iteration

In this section, we review a number of earlier approacheapburing the essence of itera-
tion. In particular, we look at a variety of datatype-genegcursion operators: maps, folds,
unfolds, crushes, and monadic maps. The traversals wesdigtBection 4 generalize all

of these.

2.1 Origami

In the origami style of programming (Meijeet al., 1991; Gibbons, 2002; Gibbons, 2003),
the structure of programs is captured by higher-order sonroperators such amap
fold andunfold These can be madiatatype-generi¢Jansson & Jeuring, 1997; Gibbons,
2006a), parametrized by the shape of the underlying dagatigoshown below.
class Bifunctor swhere
bimap:: (a— b) — (c—d) —sac—shd
dataFixsa=In{out::sa(Fixsa)}
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map  ::Bifunctors= (a— b) — Fixsa— Fixsb
mapf = Inobimap f(map f)oout
fold ::Bifunctor s= (sab— b) — Fixsa—b

foldf =fcbimap id(fold f)o-out
unfold ::Bifunctors= (b—sab —b— Fixsa
unfold f = Inobimap id(unfold f) o f

For a suitable binary type constructgrthe recursive datatypix s ais the fixpoint
(up to isomorphism) in the second argumens®r a given typea in the first argument;
the constructotn and destructoout witness the implied isomorphism. The type class
Bifunctor captures those binary type constructors appropriate fiaraéning the shapes
of datatypes: the ones withkamapoperator that essentially locates elements of each of
the two type parameters. Technicaltygnapshould also satisfy the laws

bimap id id =id -- identity
bimap(f oh) (gok) = bimap f gobimap h k -- composition

but this constraint is not captured in the type class detitara

The recursion pattermapcaptures iterations that modify each element of a collactio
independently; thusnap touchcaptures the mapping aspect of the C# loop above, but not
the accumulating aspect.

At first glance, it might seem that the datatype-genésid captures the accumulat-
ing aspect; but the analogy is rather less clear for a nawaticollection. In contrast to
the C# program above, which is sufficiently generic to applydon-linear collections, a
datatype-generic counting operation defined u$ihdjwould need a datatype-generic nu-
meric algebra as the fold body. Such a thing could be defindégymically (Jansson &
Jeuring, 1997; Hinze & Jeuring, 2003), but the fact remaiasfbld in isolation does not
encapsulate the datatype genericity.

Essential to iteration in the sense we are using the ternméstiaccess to collection
elements; this was the problem witild. One might consider a datatype-generic operation
to yield a linear sequence of collection elements from fbgsion-linear structures, for
example byunfoldng to a list. This could be done (though as with fioéd problem, it
requires additionally a datatype-generic sequence cbedges the unfold body); but even
then, this would address only the accumulating aspect ofCthéteration, and not the
mapping aspect — it loses the shape of the original strucMogeover, the sequence of
elements is not always definable as an unfold (Giblatrad, 2001).

We might also explore the possibility of combining some a&fsh approaches. For ex-
ample, it is clear from the definitions above tihadpis an instance ofold. Moreover, the
banana split theorenfFokkinga, 1990) states that two folds in parallel on the saiata
structure can be fused into one. Therefore, a map and a fgddnallel fuse to a single
fold, yielding both a new collection and an accumulated megsand might therefore be
considered to capture both aspects of the C# iteration. Menveve feel that this is an un-
satisfactory solution: it may indeed simulate or impleméetsame behaviour, but it is no
longer manifest that the shape of the resulting collectiaelated to that of the original.
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2.2 Crush

Meertens (Meertens, 1996) generalized APL's ‘reduce’¢ruahoperation{(®)) :ta— a
for binary operato(®) ::a— a— awith a unit, polytypically over the structure of a regular
functort. For example((+)) polytypically sums a collection of numbers. For projectipn
composition, sum and fixpoint, there is an obvious thing tp stothe only ingredients
that need to be provided are the binary operator (for praj@td a constant (for units).
Crush captures the accumulating aspect of the C# iterationea accumulating elements
independently of the shape of the data structure, but nahtqping aspect.

2.3 Monadic map

One aspect of iteration expressed by neither the origantatge nor crush is the possi-
bility of effects, such as stateful operations or excegi@eminal work by Moggi (1991)
popularized by Wadler (1992) showed how such computatieffiatts can be captured in
a purely functional context through the usenodnads
classFunctor fwhere
fmap ::(a—b)—-fa—fb
class Functor m= Monad mwhere
(3>=):ma— (a—mb —mb
return::a—ma
satisfying the following laws:

fmap id =id -- identity
fmap(f - g) =fmap fefmap g -- composition
returna>=f =fa -- left unit
mx>=return = mx -- right unit

(mx>=f) >=g=mx>=(Ax—f x>=g) --associativity
Roughly speaking, the typa afor a monadn denotes a computation returning a value of
typea, but in the process possibly having some computationated@responding ton;
thereturn operator lifts pure values into the monadic domain, andived’ operator==
denotes a kind of sequential composition.

Haskell's standard prelude definemanadic magor lists, which lifts an effectful com-

putation on elements to one on lists:

mapM:: Monad m=- (a— mb) — ([a] — m[b])
Fokkinga (Fokkinga, 1994) showed how to generalize thisiflists to an arbitrary regular
functor, polytypically. Several authors (Meijer & Jeurjri95; Moggiet al,, 1999; Jans-
son & Jeuring, 2002; Pardo, 2005; Kiselyov & Lammel, 2008)énobserved that monadic
map is a promising model of iteration. Monadic maps are virsecto thédiomatic traver-
salsthat we propose as the essence of imperative iterationsehdor monadic applicative
functors, traversal reduces exactly to monadic map. Howexeargue that monadic maps
do not capture accumulating iterations as nicely as theymidoreover, it is well-known
(Jones & Duponcheel, 1993; King & Wadler, 1993) that monazlsat compose in gen-
eral, whereas applicative functors do; this will give uscher algebra of traversals. Finally,
monadic maps stumble over products, for which there are éasanable but symmetric
definitions, coinciding when the monad is commutative. Bhisnbling block forces either
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a bias to left or right, or a restricted focus on commutativnads, or an additional com-
plicating parametrization; in contrast, applicative ftore generally have no such problem,
and in fact turn it into a virtue.
Closely related to monadic maps are operations like Haslsgljuencéunction
sequence Monad m=- [m a — m|a]
and its polytypic generalization to arbitrary datatypesided,sequenceand mapM are
interdefinable:
mapM f= sequencemap f
Most writers on monadic maps have investigated such an tiperdloggi et al. (1999)
call it passive traversalMeertens (1998) calls functor pulling and Pardo (2005) and
others have called it distributive law McBride and Paterson introduce the functuiat
playing the same role, but as we shall see, more generally.

3 Idioms

McBride and Paterson (2007) recently introduced the naifaan applicative functor(or
idiom) as a generalization of monads. (‘Idiom’ was the name MaBndginally chose,
but he and Paterson now favour the less evocative term tagiple functor’. We have a
slight preference for the former, not least because it Iésd¥ nicely to adjectival uses, as
in ‘idiomatic traversal’. For solidarity, we will mostly @sapplicative functor’ as the noun
in this paper, but ‘idiomatic’ as the adjective.) Monad®wallthe expression of effectful
computations within a purely functional language, but tdeyso by encouraging am-
perative(Peyton Jones & Wadler, 1993) programming style; in facgke's monadiao
notation is explicitly designed to give an imperative f&&hce applicative functors gener-
alize monads, they provide the same access to effectful atatipns; but they encourage
a moreapplicativeprogramming style, and so fit better within the functionalgnamming
milieu. Moreover, as we shall see, applicative functortiyrgeneralize monads; they
provide features beyond those of monads. This will be ingrtitio us in capturing a wider
variety of iterations, and in providing a richer algebraladge iterations.

Applicative functors are captured in Haskell by the follagitype class, provided in
recent versions of the GHC hierarchical libraries (GHC Tg2006).

class Functor m=- Applicative mwhere
pure::a—ma
(®) :m(a—b)—ma—mb

Informally, purelifts ordinary values into the idiomatic world, amgprovides an idiomatic
flavour of function application. We make the convention tRadssociates to the left, just
like ordinary function application.

In addition to those of thEunctorclass, applicative functors are expected to satisfy the
following laws.

pureid®u =u -- identity

pure(c) ®UBVAW = U® (VB W) -- composition
pure f® pure x = pure(f x) -- homomorphism
u® pure X =pure(Af —fXx)®u --interchange

These two collections of laws are together sufficient tovalémy expression built from
the applicative functor operators to be rewritten into aoraeal form, consisting of a
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pure function applied to a series of idiomatic argumeptse f® u; ® --- ® uy. (In case
the reader feels the need for some intuition for these laws,efier them forwards to the
stream Naperian applicative functor discussed in Sectidié&low.)

3.1 Monadic applicative functors

Applicative functors generalize monads; every monad iedwan applicative functor, with
the following operations.
newtype WrappedMonad m a WrapMonad unwrapMonad: (m a) }

instance Monad m=- Applicative(WrappedMonad mwhere
pure = WrapMonad return
WrapMonad f® WrapMonad v= WrapMonad(f ‘ap v)
(The wrappeWrappedMonadifts a monad to an applicative functor, avoiding the need
for overlapping instances.) Thaure operator for a monadic applicative functor is just
the return of the monad; idiomatic applicatiom is monadic application, here with the
effects of the function preceding those of the argument {ghanf‘ap' mx= mf >=Af —
mx>= Ax — return (f x)). There is another, completely symmetric, definition, vilile
effects of the argument before those of the function (seti@®ed.3). We leave the reader
to verify that the monad laws entail the applicative fundaevs.
For example, one of McBride and Paterson’s motivating exaswf an applicative func-
tor arises from the ‘environment’ or ‘reader’ monad:
newtype Reader r a= Readef runReader:r — a}
With this definition,WrappedMonadReader j is a monadic applicative functor.

3.2 Naperian applicative functors

The ‘bind’ operation of a monad allows the result of one cotapan to affect the choice
and ordering of effects of subsequent operations. Appliedtinctors in general provide
no such possibility; indeed, as we have seen, every exprebasilt just from the idiomatic
combinatorsis equivalentto a pure function applied to esef idiomatic arguments, and
so the sequencing of any effects is fixed. This is reminisoéday’sshapely operations
(1995), which separate statically-analysable shape frpmamhically-determined contents.
Static shape suggests another class of applicative fumyeemplified by the stream func-
tor.
data Stream a= SCons g Stream a

instance Applicative Streanwhere
purea = srepeata
mf ® mx= szipWith($) mf mx
srepeat ::a— Stream a
srepeat x= xswherexs= SCons X xs
szipWith: (a— b — ¢) — Stream a— Stream b— Stream ¢
szipWith f(SCons x Xs(SCons y ys= SCongf x y) (szipWith f xs ys
The pure operator lifts a value to a stream, with infinitely many cepié that value; id-
iomatic application is a pointwise ‘zip with apply’, takirey stream of functions and a
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stream of arguments to a stream of results. We find this agiplecfunctor is the most
accessible one for providing some intuition for the appi@afunctor laws. Computations
within the stream applicative functor tend to perform a $@wsition of results; there ap-
pears to be some connection with what Kithne (1999) callgémsfoldoperator.

A similar construction works for any fixed-shape datatyp&rg vectors of lengtim,
matrices of fixed size, infinite binary trees, and so on. (Retacock calls such datatypes
Naperian because they support a notion of logarithm. That is, dptdtig Naperian it a~
aP ~ p — afor some typep of positions, called the logarithm lagof t. Thent 1~ 1P ~ 1,
so the shape is fixed, and familiar properties of logarithrisea— for example, logtou) ~
log t x log u. Naperian functors turn out to be equivalent to environmambads, with the
logarithm as environment.) We therefore expect some fudbienection with data-parallel
and numerically intensive computation, in the style of Sdghguage FISh (Jay & Steckler,
1998), but we leave the investigation of that connectioridture work.

3.3 Monoidal applicativefunctors

Applicative functors strictly generalize monads; there applicative functors that do not

arise from monads. A third family of applicative functorsisttime non-monadic, arises

from constant functors with monoidal targets. McBride ardePson call thesphantom

applicative functorsbecause the resulting type is a phantom type (as opposeddn-a

tainer type of some kind). Any monoi@®,$) induces an applicative functor, where the

pureoperator yields the unit of the monoid and application usesinary operator.
newtype Const b a= Consf getConst: b}

instance Monoid b=- Applicative(Const § where

pure_ = Const0

x®y = Const(getConst xb getConsty
Computations within this applicative functor accumuladense measure: for the monoid
of integers with addition, they count or sum; for the mondadidists with concatenation,
they collect some trace of values; for the monoid of booleaitis disjunction, they en-
capsulate linear searches; and so on. (Note that sequehoes &ind or another form
applicative functors in three different ways: monadic witlirtesian product, modelling
non-determinism; Naperian with zip, modelling data-plat&sim; and monoidal with con-
catenation, modelling tracing.)

3.4 Combining applicative functors

Like monads, applicative functors are closed under pradsottwo independent idiomatic
effects can generally be fused into one, their product.
data Prod m n a= Prod{ pfst:: m a psnd: n a}
(®):: (Functor mFunctorn = (a— mb) — (a—nb)—a—Prodmnb
(f®g)a=Prod(f a) (ga)
instance (Applicative mApplicative r) = Applicative(Prod m j where
pure x = Prod (pure X (pure X
mf ® mx= Prod (pfst mf® pfst my (psnd mf® psnd mx
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Unlike monads in general, applicative functors are alsgediounder composition; so
two sequentially-dependent idiomatic effects can gehebalfused into one, their compo-
sition.

dataComp m n a= CompunComp:m(n a) }
(®):: (Functor nFunctorm = (b—nc¢)— (a—mb —a— Compmnc
f ©g=Comp-fmapfog
instance (Applicative mApplicative r) = Applicative(Comp m nwhere
pure x = Comp(pure(pure X)
mf ® mx= Comp(pure (®) ® unComp mfs unComp mx

The two operators and® allow us to combine two different idiomatic computations
in two different ways; we call therparallel andsequential compositigmespectively. We
will see examples of both in Sections 4.1 and 6.

3.5 Idiomatic traversal

Two of the three motivating examples McBride and Patersawige for idiomatic com-
putations — sequencing a list of monadic effects and trasisg@ matrix — are instances
of a general scheme they ctthversal This involves iterating over the elements of a data
structure, in the style of a ‘map’, but interpreting certhinction applications idiomati-
cally.
traverselList: Applicative m= (a— mb) — [a] — m[b]
traverseList f[ ] = pure]]
traverselList f(x: xs) = pure(:) ® f x® traverseList f xs
A special case is for traversal with the identity functiomj@h distributes the data structure
over the idiomatic structure:
distList:: Applicative m= [m a] — m|a]
distList= traverseList id
The ‘map within the applicative functor’ pattern of travalrfor lists generalizes to any
(finite) functorial data structure, even non-regular origisd(& Meertens, 1998). We cap-
ture this via a type class dfaversablelata structures (a slightly more elaborate type class
Data Traversableappears in recent GHC hierarchical libraries (GHC Team6200
class Functor t=- Traversable wwhere
traverse: Applicative m= (a— mb) - ta— m(tb)
traverse f= distefmap f
dist:: Applicative m=t (ma) — m(ta)
dist= traverse id
For example, here is a datatype of binary trees:
data Tree a= Leaf a| Bin (Tree g (Tree g

instance Functor Treewhere
fmap f (Leaf @) = Leaf (f a)
fmap f(Bintu) = Bin (fmapf 9§ (fmap f U
The correspondingaverseclosely resembles the simplerap
instance Traversable Treavhere
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traverse f(Leaf 8 = pure Leaf®f a
traverse f(Bin t u) = pure Bin® traverse f  traverse f u
McBride and Paterson propose a special syntax involvinigrigtic brackets’, which
would have the effect of inserting the occurrencepuoife and® implicitly; apart from
these brackets, the definition then looks exactly like a dafmof fmap This definition
could be derived automatically (Hinze & Peyton Jones, 2080jiven polytypically once
and for all, assuming some universal representation ofyfsta such as sums and products
(Hinze & Jeuring, 2003) or regular functors (Gibbons, 2003)
class Bifunctor s= Bitraversable svhere
bidist:: Applicative m=-s(ma) (mb) —» m(sab)
instance Bitraversable s=- TraversablgFix s) where
traverse f= fold (fmap Ine bidisto bimap f id)
Whenm is specialized to the identity applicative functor, tressrreduces precisely
(modulo the wrapper) to the functorial map over lists.
newtype ldentity a= ldentity{ runldentity:: a}

instance Applicative Identityhere
pure a = ldentitya
mf ® mx= Identity ((runldentity mf (runldentity my)

In the case of a monadic applicative functor, traversaligfizes to monadic map, and
has the same uses. In fact, traversal is really just a slighéalization of monadic map:
generalizing in the sense that it applies also to non-maregujlicative functors. We con-
sider this an interesting insight, because it reveals tlatadic map does not require the
full power of a monad; in particular, it does not require tliedoor join operators, which
are unavailable in applicative functors in general.

For a Naperian applicative functor, traversal transposgslts. For example, interpreted
in the pair Naperian applicative functdraverseList idunzips a list of pairs into a pair of
lists.

For a monoidal applicative functor, traversal accumulatdses. For example, inter-
preted in the integer monoidal applicative functor, traaéaccumulates a sum of integer
measures of the elements.

tsum: (a— Int) — [a] — Int
tsum f= getConst traverseListConsbf)

4 Traversalsasiterators

In this section, we show some representative examples\drsals over data structures,
and capture them usirtcaverse

4.1 Shape and contents

As well as being parametrically polymorphicin the collectelements, the genetiaverse
operation is parametrized along two further dimensioresdéitatype being traversed, and
the applicative functor in which the traversal is interptketSpecializing the latter to lists
as a monoid yields a genegontentoperation:
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contentsBodya — Const[a] b
contentsBody- Aa — Const|[a]

contents:: Traversable =t a — Const[a] (t b)
contents= traverse contentsBody

run_contents: Traversable & ta — [a]

run_contents= get.contents contents

getcontents= getConst
This contentsoperation is in turn the basis for many other generic opamatiincluding
non-monoidal ones such as indexing; it yields one half osJdgcomposition of datatypes
into shape and contents (Jay, 1995). The other half is alagimply by a map, which is
to say, a traversal interpreted in the identity idiom:

shapeBody a — ldentity/()

shapeBody= Aa — Identity ()

shape: Traversable & t a — Identity(t ())
shape-= traverse shapeBody

run_shape: Traversable t=-ta—t ()
run_shape= get shape shape
getshape= runldentity

Of course, it is trivial to compose these two traversals irajpa to obtain both halves
of the decomposition as a single function, but doing thisuplihg in the obvious way
decompose Traversable & t a — Prod Identity(Const[a]) (t ())
decompose- shaper contents
entails two traversals over the data structure. Is it péssiofuse the two traversals into
one? The product of applicative functors allows exactlg,thihd Section 5.4 shows how to
obtain the decomposition of a data structure into shape antots in a single pass:
decompose- traverse(shapeBodw contentsBody

run_decompose Traversable = ta— (t (),[a])
run_.decompose- getdecomposedecomposwhere
getdecompose x¥ (getshape(pfst xy),get contentgpsnd xy)
Moggi et al. (1999) give a similar decomposition, but using a customizadbination of
monads; we believe the above component-based approachgiesi
A similar benefit can be found in the reassembly of a full datacsure from separate
shape and contents. This is a stateful operation, wherddtensists of the contents to
be inserted; but it is also a partial operation, becauseuheer of elements provided may
not agree with the number of positions in the shape. We tbhexehake use of both the
Statemonad and thélaybemonad; but this time, we form their compaosition rather than
their product. (As it happens, the composition of 8tateandMaybemonads in this way
does in fact form another monad, but that is not the case foraa®in general (Jones &
Duponcheel, 1993; King & Wadler, 1993).)
The central operation in the solution is the partial stdtRfoction that strips the first
element off the list of contents, if this list is non-empty:
takeHead: State[a] (Maybe 3
takeHead= do { xs«< get case xsof
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[] — return Nothing
(y:ys) — do{putysreturn(Justy } }
This is a composite monadatic value, using the compositidheotwo monadsState[a]
andMaybe traversal using this operation (suitably wrapped) ret@stateful function for
the whole data structure.
reassemble Traversable & t () — Comp(WrappedMonadState[a]))
(WrappedMonad Mayhét a)
reassemble- traverse(A() — CompsWrapMonadsfmap WrapMonad takeHead
Now it is simply a matter of running this stateful functiomdachecking that the contents
are entirely consumed:
run_reassemble Traversable t= (t (),[a]) — Maybe(t a)
run_reassembléx,ys) = allGone$
runStateunwrapMonadsunCom$reassemble)xys

where
allGone:: (WrappedMonad Maybg a),[a]) — Maybe(t a)
allGone(mt,[]) = unwrapMonad mt

allGone(mt, (_: _)) = Nothing

4.2 Collection and dispersal

We have found it convenient to consider special cases oftéffdraversals in which the
mapping aspect is independent of the accumulation, andreisa.
collect ::(Traversable tApplicative m = (a— m()) — (a—b) —-ta—m(tbh)
collect f g=traverse(Aa— pure(A() —» ga) ®f a)

disperse: (Traversable tApplicatve m = mb— (a—b—c)—>ta—m(tc)

disperse mb g- traverse(Aa — pure(g a) ® mb)
The first of these traversals accumulates elements effigctiut modifies those elements
purely and independently of this accumulation. The C#ftendn Section 1 is an example,
using the applicative functor of tHgtatemonad to capture the counting:

loop:: Traversable & (a— b) — ta— State Int(t b)

loop touch= collect(Aa — do {n«— getput(n+1) }) touch
The second kind of traversal modifies elements purely bu¢déent on the state, evolv-
ing this state independently of the elements. An exampldisfis a kind of converse of
counting, labelling every element with its position in ardétraversal.

label:: Traversable t= t a — State Inf(t (a, Int))

label= disperse step,)

step: State Int Int
step=do {n < getput(n+1);return n}

4.3 Backwardstraversal

Unlike the case with pure maps, the order in which elemergsvimited in an effectful
traversal is significant; in particular, iterating throuthie elements backwards is observ-
ably different from iterating forwards. We can capture tt@gersal quite elegantly as an
applicative functor adapter
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newtype Backwards m & Backward$ runBackwards: m a}

instance Applicative m=- Applicative(Backwards mwhere
pure = Backwards pure
f ® x = Backwardgpure (flip ($)) ® runBackwards ¥ runBackwards j
Informally, Backwards nis an applicative functor ifnis, but any effects happen in reverse;
this provides the symmetric ‘backwards’ embedding of manatb applicative functors
referred to in Section 3.1.
Such an adapter can be parcelled up existentially:
data AppAdapter m= Vg. Applicative(g m) =
AppAdapte(Va.ma—gma (Vva gma— ma)
backwards: Applicative m= AppAdapter m
backwards= AppAdapter Backwards runBackwards
and used in a parametrized traversal, for example to laloévierds:
ptraverse: (Applicative mTraversable } =
AppAdapter m— (a— mb) —ta— m(tb)
ptraverse(AppAdapter wrap unwrag = unwrap- traverse(wrapef)
lebal = ptraverse backwardg\a — step
Of course, there is a trividbrwardsadapter too.
newtype Forwards m a= Forwards{ runForwards: m a}

instance Applicative m=- Applicative(Forwards n) where
pure = Forwardse pure
f ® x = Forwards(runForwards f® runForwards ¥
instance Functor m=- Functor (Forwards m) where
fmap f= Forwards- fmap fo runForwards

forwards:: Applicative m=- AppAdapter m
forwards= AppAdapter Forwards runForwards

5 Lawsof traverse

In line with other type classes suchRgnctorandMonad we should consider also what
properties the various datatype-specific definitionsaferseought to enjoy.

5.1 Freetheorems of traversal

The free theorem (Wadler, 1989) arising from the typédisfis
distofmap(fmap K = fmap(fmap K - dist
As corollaries, we get the following two free theoremsrafrerse
traverse(geoh) = traverse gfmap h
traverse(fmap ke f) = fmap(fmap K o traverse f
These laws are not constraints on the implementatiodisifand traverse they follow
automatically from their types.
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5.2 Seguential composition of traversals

We have seen that applicative functors compose: there idemtity applicative functor
Identity and, for any two applicative functora and n, a composite applicative functor
Comp m nWe impose on implementations dist the constraint of respecting this com-
positional structure. Specifically, the distributhist should respect the identity applicative
functor:

disto fmap Identity= Identity
and the composition of applicative functors:

distofmap Comp= Comp- fmap dist dist
As corollaries, we get analogous propertiesraferse

traverse(ldentity-f) = |dentityofmap f

traverse(Comp fmap fo g) = Comp- fmap(traverse f) o traverse g
Both of these consequences have interesting interpresatiche first says thdtaverse
interpreted in the identity applicative functor is essalhtijustfmap as mentioned in Sec-
tion 3.5. The second provides a fusion rule for the sequier@iaposition of two traversals;
it can be written equivalently as:

traverse(f © g) = traverse fo traverse g

5.3 Idiomatic naturality

We also impose the constraint that the distributist should benatural in the applicative
functor, as follows. Anapplicative functor transformatiop:: m a— n afrom applicative
functormto applicative functon is a polymorphic function (natural transformation) that
respects the applicative functor structure:

@ (purepa) = pure,a

@ (Mf&mmx) = emf&p@mx
(Here, the idiomatic operators are subscripted by the idamuolarity.)

Thendist should satisfy the following naturality property: for afgaitive functor trans-

formation,

disty o fmap@ = @-disty,

One consequence of this naturality property is a ‘purity law

traverse pure= pure
This follows, as the reader may easily verify, from the olsagon thatpure,, - runidentity
is an applicative functor transformation from applicatfuector Identity to applicative
functorm. This is an entirely reasonable property of traversal; oightrsay that it im-
poses a constraint of shape preservation. (But there is tndr¢han shape preservation:
a traversal of pairs that flips the two halves necessarilgserves shape’, but breaks this
law.) For example, consider the following definitiontadiverseon binary trees, in which
the two children are swapped on traversal:

instance Traversable Treavhere

traverse f(Leaf @ = pure Leaf®f a
traverse f(Bin t u) = pure Bin@ traverse f up traverse f t

With this definition traverse pure= pureo mirror, wheremirror reverses a tree, and so the
purity law does not hold; this is because the correspondifigition of distis not natural
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in the applicative functor. Similarly, a definition with twampies oftraverse f tand none

of traverse f umakedraverse purgurely return a tree in which every right child has been
overwritten with its left sibling. Both definitions are pedtly well-typed, but (according
to our constraints) invalid.

On the other hand, the following definition, in which the &esals of the two children
are swapped, but tH&n operator is flipped to compensate, is blameless. The paxitgtill
applies, and the corresponding distributor is natural énapplicative functor; the effect of
the reversal is that elements of the tree are traversed figimto left’.

instance Traversable Treavhere
traverse f(Leaf @ = pure Leaf®f a
traverse f(Bin t u) = pure(flip Bin) ® traverse f us traverse f t
We consider this to be a reasonable, if rather odd, defindfdraverse

5.4 Parallel composition of traversals

Another consequence of naturality is a fusion law for thep@lrcomposition of traversals,
as defined in Section 3.4:

traverse f@ traverse g= traverse(f @ g)
This follows from the fact thapfstis an applicative functor transformation frdnod m n
to m, and symmetrically fopsnd

5.5 Seguential composition of monadic traversals

A third consequence of naturality is a fusion law specific tiiadic traversals. The natural
form of composition for monadic computations is call€éisli composition
(e)::Monad m= (b—mc)— (a—mb) — (a—m¢)
(feg)x=do{y—gxz«fyreturnz}
The monadn is commutativef, for all mxandmy,
do {x+ mxy«— my;return(x,y) } = do {y — my,x — mxreturn(x,y) }
When interpreted in the applicative functor of a commutativonadm, traversals with
bodiesf ::b — m candg::a — m bfuse:
traverse fe traverse g= traverse(f «g)
This follows from the fact thafic unCompforms an applicative functor transformation
from Comp m mto m, for a commutative monaih with join operatoru.

This fusion law for the Kleisli composition of monadic tragsels shows the benefits
of the more general idiomatic traversals quite nicely. Nibizt the corresponding more
general fusion law for applicative functors in Section Sl8ves two different applicative
functors rather than just one; moreover, there are no siddittons concerning commu-
tativity. The only advantage of the monadic law is that thisrgust one level of monad
on both sides of the equation; in contrast, the idiomatic has two levels of applicative
functor, because there is no analogue ofitleperator of a monad for collapsing two levels
to one.

We conjecture that the monadic traversal fusion law alsdeVen ifmis not commu-
tative, provided that andg themselves commuté {g = g«f); but this no longer follows
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from naturality of the distributor in any simple way, andposes the alternative con-
straint that the three typesb, c are equal.

5.6 No duplication of elements

Another constraint we impose upon a definitiont@verseis that it should visit each
element precisely once. For example, we consider this diefindf traverseon lists to be
bogus, because it visits each element twice.
instance Traversablg ] where
traverse f[] = pure|]
traverse f(x:xs) = pure(const(:)) ®f x®f x@traverse f xs
Note that this definition satisfies the purity law above; batwould still like to rule it out.
This axiom is harder to formalize, and we do not yet have a thieeretical treatment
of it. One way of proceeding is in terms of indexing. We requhrat the functioriabels
returns an initial segment of the natural numbers, where
labels:: Traversable =t a — [Int]
labels t= getcontent$content$fmap sndbfst$runStatelabel t) O
andlabelis as defined in Section 4.2. The bogus definitiotraferseon lists given above
is betrayed by the fact that we get instéalels" abc" =[1,1,3,3,5,5].

6 Modular programming with applicative functors

In Section 4, we showed how to model various kinds of iteratie both mapping and
accumulating, and both pure and impure — as instances oftherigtraverseoperation.
The extra generality of applicative functors over monadgtaring monoidal as well as
monadic behaviour, is crucial; that justifies our claim fdaimatic traversal is the essence
of the ITERATOR pattern.

However, there is an additional benefit of applicative fanebver monads, which con-
cerns the modular development of complex iterations franpgr aspects. Hughes (1989)
argues that one of the major contributions of functionafpaoming is in providing better
glue for plugging components together. In this section, wi@ that the fact that ap-
plicative functors compose more readily than monads pesviaetter glue for fusion of
traversals, and hence better support for modular progragofiiterations.

6.1 An example: wordcount

As an illustration, we consider the Unix word-counting itiilwe, which computes the
numbers of characters, words and lines in a text file. Therpragn Figure 2, based on
Kernighan and Ritchie’s version (Kernighan & Ritchie, 1988 a translation of the origi-
nal C program into C#. This program has become a paradigmeegitiple in the program
comprehension community (Gallagher & Lyle, 1991, Villaaticio & Oliveira, 2001; Gib-
bons, 2006b), since it offers a nice exercise in re-engingéne three separate slices from
the one monolithic iteration. We are going to use it in theeottirection: fusing separate
simple slices into one complex iteration.



16 Jeremy Gibbons and Bruno Oliveira

publicstaticint [] we({char) (IEnumerabléchar) coll){
intnl=0,nw=0,nc=0;
bool state= false

foreach (char cin coll){

++nc
if c="\n") +nl;
ifc=" " ve="\n ve="\t"){
state= false
} elseif (state= false){
state= true;
+nw,
}
}
int [] res= {nc,nw,nl};
returnres

}
Fig. 2. Kernighan and Ritchielsc program in C#

6.2 Modular iterations, idiomatically

The character-counting slice of tln& program accumulates a result in the integers-as-
monoid applicative functor. The body of the iteration siynpilelds 1 for every element:

cciBody:: Char— Const Inta

cciBody c= Constl
Traversing with this body accumulates the character count:

cci:: String— Const Int[a]

cci = traverse cciBody
The count itself — which is just the length of the list — is dasixtracted:

run_cci:: String— Int

run_cci = getConst cci

Counting the lines (in fact, the newline characters, thgighoring a final ‘line’ that is

not terminated with a newline character) is similar: théedénce is simply what number
to use for each element, namely 1 for a newline and 0 for angtbise.

IciBody:: Char — Const Inta

IciBody c= Const(fromEnum(c="\n"))

Ici :: String— Const Int[a]

Ici = traverse IciBody
The actual line count can be extracted in the same way asdatihracter count:

run_lci :: String— Int

run_lci = getConstlci

Counting the words is trickier, because it involves state. Mérefore use th8tate

monad, maintaining both amt (for the count) and @ool (indicating whether we are
currently within a word).

wciBody:: Char — WrappedMonadState(Int, Bool)) Char

wciBody= Ac — let s= not (isSpace ¢in WrapMonadbdo

(n,w) < get
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put (n+ fromEnum(not wA s),s)
return c
wci:: String— WrappedMonadState(Int, Bool)) String
wci = traverse wciBody
As before, here is a simple wrapper to extract the count:
run_wci:: String— Int
run_wci s= fst$ (execStat® unwrapMonadwci s) (0, False)

These components may be combined in various ways. For egani@racter- and line-
counting may be combined to compute a pair of results:

clci:: String— Prod (Const In} (Const Iny String
clci = cci®lci

where® denotes the product of applicative functors, defined ini8e&.4. This composi-
tion is inefficient, though, since it performs two travessaver the input. Happily, the two
traversals may be fused into one, as we saw in Section 5ihggiv

clci = traverse(cciBody IciBody)
in a single pass rather than two.

It so happens that both character- and line-counting useah® applicative functor,
but that's not important here. Exactly the same techniqueksvto combine these two
components with the third:

clwci = traverse((cciBodyw IciBody) ® wciBody)

Character- and line-counting traversals use a monoiddicapipe functor, and word-
counting a monadic applicative functor. For a related eXamging a Naperian applicative
functor, consider conducting an experiment to determinethdr the distributions of the
letters ‘q’ and ‘u’ in a text are correlated. This might be reted as follows:

quiBody:.: Char — Pair Bool
quiBodyc=P(c="q ,c="u")
qui:: String— Pair [Bool|
qui = traverse quiBody
wherePair is a datatype of pairs,
newtypePaira= P (a,a)
made into an applicative functor in the obvious way. Appdydiuto a string yields a pair of

boolean sequences, modelling graphs of the distributibtiseese two letters in the string.
Moreover,gui combines with character-counting nicely:

ccqui= cci® qui = traverse(cciBodyx quiBody)
Unfortunatelyqui does not combine with the word-counting traversal: the elstype
returned iBoolrather tharChar, whereas the product of two applicative functors requires
the element types to agree. (This wasn’t a problem with tleendwnoidal applicative func-

tors, which are agnostic about the element return typed Situation calls for sequential
composition® rather than parallel composition of applicative functors, giving

wcqui= wci ® qui = traverse(wciBody® quiBody)
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6.3 Modular iterations, monadically

Itis actually possible to compose the three slicesmfising monads alone. Let us explore
how that works out, for comparison with the approach usirgliegtive functors.
The first snag is that two of the three slices are not monadit; #ve have to cast them

in the monadic mold first.

ccmBody: Char — State Int Char

ccmBody= Ac — do {n < get put(n+ 1);return c}

ccm:: String— State Int String

ccm= mapM ccmBody

IcmBody:: Char — State Int Char
IcmBody= Ac — do {n < getput(n+fromEnum(c="\n"));return c}

Icm:: String— State Int String

Icm= mapM IcmBody
Word-counting is almost in monadic form already; all than&eded is to strip off the
wrapper.

wcmBody: Char — State(Int, Bool) Char

wcmBody= Ac — unwrapMonadwciBody ¢

wem:: String— State(Int, Bool) String

wcm= mapM wcmBody
This rewriting is a bit unfortunate, as it blurs the distinatbetween the different varieties
of iteration that we could previously express. However,imgwewritten in this way, we
can compose the three traversals into one, and even fuderéeeliodies:

clwem= (ccm® lem) ® wem= mapM((ccmBody IcmBody ® wemBody

Now let us turn to the Naperian traversal. That too can beesgad monadically: a
Naperian functor is equivalent to a reader monad with thetipasbeing the ‘environ-
ment’. In particular, the Naperian applicative functor foe functorPair is equivalent to
the monadReader Boal

qumBody: Char — Reader Bool Bool

qumBody &= do b « ask

return$if bthen (c='q' )dse(c="u")

qum:: String— Reader Boo|Bool]

qum= mapM qumBody
We can’t form the parallel composition of this with word-eting, for the same reason as
with the idiomatic approach: the element return types difdait with monads, we can’t
even form the sequential composition of the two traverstiee the two monads differ,
but Kleisli composition requires two computations in thensamonad.

It is sometimes possible to work around the problem of setiglexomposition of com-
putations in different monads, usimgonad transformergJones, 1995). A monad trans-
formert turns a monadn into another monatim, typically adding some functionality in
the process; the operatitifi embeds a monadic value from the simpler space into the more
complex one.

classMonadTrans wvhere
lift :Monad m=-ma—tma



The Essence of the lterator Pattern 19

With this facility, there may be many monads providing a@@rkind of functionality, so
that functionality too ought to be expressed in a class. kample, the functionality of
the Statemonad can be added to an arbitrary monad using the monadiinaues StateT,
yielding a more complex monad with this added functionality

newtype StateT s m & State{ runStateT:s— m(a,s) }
instance MonadTrangStateT $where...

classMonad m=- MonadState s hm— swhere
get:ms
put::s— m()

instance MonadState §State $where...

instance Monad m=- MonadState §StateT s mwhere...

Now in the special case of the composition of two differentnaxs in which one is a
monad transformer applied to the other, progress is passibl

("e):: (Monad mMonadTrans tMonad(t m)) =
(b—-tmcg—(a—mb —a—tmc
plTep2 = ple (lift o p2)
(¢7) :: (Monad mMonadTrans tMonad(t m)) =
(b—mc¢—(a—tmby—a—tmc
ple'p2 = (lift o pl) e p2
We can use these constructions to compose sequentially'tHia’‘experiment and word-
counting. We need to generalize the typevocinBodyfrom theStatemonad specifically to
any monad with the appropriate functionality (and in paitc, one withStatefunctional-
ity added to theReademonad).

wcmBody:: MonadStatéInt, Bool) m=- Char — m Char
wcmBody= Ac — let s= not(isSpace tin do

(n,w) < get

put(n+fromEnumnot wA s),s)

return c

(Notice that the definition is essentially identical; ortgttype has changed.)

qguwcnt: String— StateT(Int, Bool) (Reader Bogl[Bool]
guwcm= mapM qumBody' mapM wcmBody= mapM(qumBody™wcmBod$)

This particular pair of monads composes just as well theratlag around, because the
typesState YReader r @ andReader r(State s aare isomorphic. So we could instead use
theReaderTmonad transformer to ad@eadermehaviour to th&tatemonad, and use the
symmetric composition operation.

However, both cases are rather awkward, because they katiilg to generalize (per-
haps previously-written) components from types invohdépecific monads (such &at¢
to general monad interfaces (suchStateT). Writing the components that way in the first
place might be good practice, but that rule is little comfanen faced with a body of code
that breaks it.

The upshot is that the composition of applicative functensiore flexible than compo-
sition of monads.
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7 Conclusions

Monads have long been acknowledged as a good abstractiomofiularizing certain as-
pects of programs. However, composing monads is known taizk imiting their useful-
ness. One solution is to use monad transformers, but thisresgprograms to be designed
initially with monad transformers in mind. Applicative fators have a richer algebra of
composition operators, which can often replace the use obahtransformers; there is the
added advantage of being able to compose applicative butmmradic computations. We
thus believe that applicative functors provide an everebetbstraction than monads for
modularization.

We have argued that idiomatic traversals capture the esseniecnperative loops —
both mapping and accumulating aspects. We have stated somerfies of traversals and
shown a few examples, but we are conscious that more worksriedze done in both of
these areas.

This work grew out of an earlier discussion of the relatiopdietween design patterns
and higher-order datatype-generic programs (Gibbon§&0reliminary versions of that
paper argued that pure datatype-generic maps are thedoattinalogue of theTERA-
TOR design pattern. It was partly while reflecting on that argnime- and its omission
of imperative aspects — that we came to the (more refined}ipogiresented here. Note
that idiomatic traversals, and even pure maps, are moragethean object-orientedrt
ERATORS in at least one sense: it is trivial with our approach to geathe type of the
collection elements with a traversal, whereas with a ledisttmapproach one is left wor-
rying about the state of a partially-complete type-chaggiaversal.

As future work, we are exploring properties and generabtinatof the specialized traver-
salscollectanddisperseWe hope that such specialized operators might enjoy ricter
position properties than do traversals in general, andd@mgle will provide more insight
into the repmin example discussed in the conference version of this papbb(B@s &
Oliveira, 2006). We also hope to investigate the categbsitacture ofdist further: nat-
urality in the applicative functor appears to be related éziBs distributive laws (Beck,
1969), and ‘no duplication’ to linear type theories.
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