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Abstract

We propose an Haskell-like language with the goal of ungyin
type classes angeneralized algebraic datatyp€d6&ADTS) into a
single class construct. We treat classeéirat-class typeand we

useobjects(instead of type class instances and data constructors)

to define the values of those classes. We recover the ahility t
define functions by pattern matching by ussepled classeShe
resulting language is simple and intuitive and it can be used
define, with similar convenience, the same programs that egdv
define in Haskell. Furthermore, unlike Haskell, dictioeari(or
objects) can be explicitly (as well as implicitly) passedunctions
and we can program in a simple object-oriented style diyectl

1. Introduction

Datatypesandtype classegHall et al. 1996) are two of the most
prominent features of Haskell. With datatypes we can define-f
tions bypattern matchingThat is, we perform a case analysis over
the set (pattern) of datatype values. With type classes weefne
type-overloaded methods and then define instances tharinepit
the class interface. Datatypes and type classes are ggroenadid-
ered orthogonal concepts. The set of values belonging ttaiyie

is fixed but we can define an arbitrary number of functions Wwhic
operate on a datatype. We say that datatypes are closedebsgtth
of functions that can operate on them is open. On the othet,han
type classes are open but the set of methods belonging tesisla

(type class) instances. In a sense, type classes providéhusnw
object-oriented programming style. However, supportiés style
is limited, since type classes were designed aadzhoc polymor-

phism(Strachey 1967) mechanism and not as a mechanism to sup

port object-oriented programming.

In this paper we propose a Haskell-like language with a gen-
eralizedclassconstruct that retains the ability to be used as an ad-
hoc polymorphism mechanism, but it can also be convenieistyl
to program in a simple object-oriented programming styteour
proposal, classes are first-class types and weobgeets instead
of type class instances and data constructors, to createathes
of classes. Objects come in two fornistplicit objectsplay a sim-
ilar role to type class instances in Haskell and can be irtiglic
used and inferred in definitions; while (normal) objects explic-
itly constructed and passed to definitions. The implemamtaif
objects is basically just a slight generalization of thetidiary-
passing translation (Hall et al. 1996).

We also introduce the notion afealed classesor which a
closed world perspective is assumed. That is, all objeetsdbn-
struct values of a certain class are defined in the same moflule
that class and we can define new functions using pattern mgtch
on the objects of that class. Sealed classes avoid the needdpa-
ratedatamechanism, while providing a unified and uniform syntax
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that is shared with (open) classes. Furthermore, sealsdedare
more general than traditional datatypes and GADTs (Peyioas]
et al. 2006) because they can have associated methods.

In essence, classes in our proposal provide a unifying nfodel
type classes and GADTs based on the familiar concept ofadass
and objects from object-oriented languages. We can stitévpro-
grams with classes and objects like we would, in Haskelhwipe
classes and GADTSs, but we can also write object-orientdd ptg-
grams in an easy and convenient way. Moreover, unlike Haskel
our objects (which play the role of dictionaries) can be iextty
and implicitly passed to functions, while in Haskell dictaries are
always implicit. To summarize, the main contributions a$haper
are:

® a class systerthat generalizes Haskell's type class system, al-
lows the construction of implicit as well as explicit “dioti
naries” using objects and can be used to program in a simple
object-oriented style;

e sealed classesvhich allow us to introduce new functions de-
fined by pattern matching and preclude the need for a separate
dataconstruct;

e numerous examples supporting the usefulness of our system.
Overview In Section 2, we introduce the key ideas of our sys-

tem. Section 3 shows some example applications that deratest
how the extra generality of our class system allows us toyeasi

closed. Openness of a type classes means that we can define neW. rite solutions for problems that would have somehow roboda

solutions in Haskell. In Section 4, we present a core catctdu
our system. In Section 5 we discuss the relationship betwet
we propose and existing work and, in Section 6, we conclude an

_present possible future work.

2. Keyldeas

We illustrate the key ideas of our work via a few simple exaapl

2.1 Classesas Types

Suppose that we want to define an abstract interface for gpts s
porting multiple implementations. A natural object-ottiet style
solution for this problem is presented in Figure 1 using amegal-
ized notion of classes. Th#et class is almost a valid Haskell class,
except that we usfet as a type in some of the method signatures,
which is forbidden in Haskell (causing a type-error). Hoerein
our system, classes are just types and there is no problesiraf u
Set on type positions.

2.2 Objectsas Values

In Figure 2 we show a simple (but not necessarily efficienplen
mentation of the set interface. We introduce value congirado
define set values by usingh ject declarations. Arobject decla-
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class Set a where
member :: a — Bool

merge :: Set a — Set a
extract :: Maybe (a, Set a)
insert :a— Seta

Figure 1: An abstract interface for sets.

object ListSet :: Fq a = [a] — Set a
object ListSet | where
member x = elem x |

merge s = mergeList | s
extract = case [ of

(] — Nothing

(z:2zs) — Just (z, ListSet xs)
insert x = ListSet (union [z] 1)

mergeList :: [a] — Set a — Set a
mergeList [] s =5
mergeList (x : zs) s = mergeList zs (insert s z)

Figure 2: A simple set implementation.

ration like ListSet is divided in two parts: a signature; and a def-
inition. The signature (the firgibject line in the example) tells
us the type of the associated value constructor for the thjethe
definition we provide all the arguments required by the qoicsor
of the object (in this case just the arguméraind, after thevhere
clause, we give the definitions of the methods in the classcfwh
is determined by the return type of the constructor). We bse t
value constructof.istSet in the definitions ofeztract andinsert
to create anew object instancéor the ListSet implementation. If
we want to have different implementations of sets we cangdedt
new object declarations.

We can define functions in the same way as in Haskell. For ex-
ample, we could define a function that concatenates setd@asgo

concatSet :: Eq a = Set (Set a) — Set a

concatSet s = case extract s of

Nothing ~ — ListSet []
Just (z,zs) — xz.merge (concatSet xs)

In the definition of concatSet we use themerge method, which
(like with Haskell type classes) has typeerge :: Set a =
Set a — Set a. However, unlike Haskell, we can explicitly pass a
value for the dictionary argument (that is, the argumenthenléft
of =). In the above example, thdot notationx.mergesays that
we pass the dictionaryto functionmerge In OO terminology, we
would say that we access the methodrgein the objecix.

We illustrate how to createbjects and use them in the follow-
ing example:

ins:: Set a — a — Set a

ins s T = s.insert

set :: Set Int
set = ins (ins (ins (ListSet []) 3) 4) 3
test :: Bool

test = set.member 3 --test=True
We useins to define a set of integers and we use the object
constructor ListSet to create a new empty Set. The valust
shows how we can test i is a member of the set that we have
just defined.

2.3 Haskell-Style Type Class Programming

Objects allow us to explicitly define values of classes, hith type
classes the objects (or dictionaries) would be implicidpstructed

class Fq a where
(=) ::a — a — Bool
implicit object EqInt :: Eq Int
implicit object FqInt where
(=) = primIntEQ
object EqInt2 :: Eq Int
object EqInt2 where
z =y = primIntEQ (z ‘mod* y) 0
implicit object EqPair :: (Eq a, Eq b) = Eq (a,b)
implicit object EqPair where
(a,0)=(c,d)=a=cAb=d

Figure 3: A simplifiedEq type class and some objects.

for us. Our class system supports a type class programmyiey st
via implicit object declarations. These declarations have simi-
lar restrictions to type class instances and, consequehéye are
less type signatures allowed for implicit objects than faor(nal)
objects. However, we can use the type system to implicitijdbu
values of implicit objects for us. For example, tliéstSet con-
structor has atf/q a constraint. In Figure 3 we show how to define
a simplified version of the clasgq a. Theclass definition is writ-
ten exactly in the same way as in Haskell. We use implicit abje
to define implementations of that class. We provide two sénept
amples for integers and pairs and we also provide a secoredtobj
that shows how we could write an alternatiife Int implementa-
tion. While there can be only onBq ¢ implicit object on scope for
some given type, there can be multiple objects with that type and
we can pass those explicitly (overriding the default impbbject)
by using the dot notation. For example we could define

eqPair :: Eq (Int, Int)

eqPair = (EqInt, EqInt2).EqPair

test2 :: Bool

test?2 = eqPair.(=) (3,8) (3,4) --test2=True
The idea here is that the explicitly built dictionapgPair uses
EqInt for comparing the first value of the pair arfghyint2 for
comparing the second value. Note that our system handldgpiaul
constraints by using a tuple-semantics.

2.4 Sealed Classes

We can also program in the same way we would program with
datatypes or GADTSs by using sealed classes. Here is an exampl
defining the standard lists:

sealed class List a where

object Nil :: List a

object Cons :: a — List a — List a
We use a little bit of syntactic sugar on the definition of it and
Cons objects because they do not define (or override) any methods.
This is just short for:

object Nil :: List a

object Nil where

object Cons :: a — List a — List a

object Cons x xs where
With sealed classes all the objects need to be defined in the sa
module of the corresponding class. This precludes the lpibgsof
extending the class modularly with extra objects, but ib aleans
that we know all the objects that belong to that class stiitiédle
use this knowledge to write definitions by pattern matchikg we
would do in Haskell:

length :: List a — Int

length Nil =0

length (Cons x xs) = 1+ length zs
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data Set a = Set{
member :: a — Bool,

merge :: Set a — Set a,
extract :: Maybe (a, Set a),
insert :a — Set a}

listSet :: Eq a — [a] — Set a
listSet d 1 = Set (Ax — elem d z 1)
(mergeList 1)
(case [ of
(] — Nothing
(z:2zs) — Just (z, listSet d zs))
(Az — listSet d (union [z] 1))
mergeList :: [a] — Set a — Set a
mergeList [] s=s
mergeList (x : zs) s = mergeList zs (insert s z)

Figure 4:Set translated via the dictionary translation.

2.5 Dictionary Trandation of Classes and Objects

class Format t where

sprintf’ :: String — t
object E :: Format String
object £ where

sprintf’ = id
object I :: Format t — Format (Int — t)
object I k where

sprintf’ s © = k.sprintf’ (s + show x)
object C :: Format t — Format (Char — t)
object C k where

sprintf’ s x = k.sprintf’ (s + [z])
object S :: String — Format t — Format t
object S = k where

sprintf’ s = k.sprintf’ (s + z)
sprintf :: Format t — t
sprintf f = f.sprintf’ ""

Figure 5: An open (or extensiblélormat datatype.

Our classes and objects can be translated in very much the sam it to solutions for thebulk types(Peyton Jones 1996) problem in

way that Haskell type classes can be translated vialitteonary
translationHall et al. (1996). The difference is that our dictionary
translation is slightly more general because of the needdouat
for the fact that classes are first-class types and objentska any
kind of arguments (and not just dictionaries). In Figure 4caa
see how the set example could be translated using the dicyion
translation. For convenience, we use Haskell’s labelladtgpes
in the translation.

Some readers may ask why not program directly in this “dictrg-
passing” style. There are three main reasons for justifttiegin-
troduction of a new class system instead of just using theodiary
translation encoding directly.

¢ With the class system and with the dot notation that we pro-
pose we can easily pass dictionary values implicitly or iexpl
itly. This adds important convenience and solves limitagiof
Haskell's class system pointed out in the past (Kahl and fSche
fczyk 2001; Dijkstra and Swierstra 2005). Moreover, beeaus

in our system datatypes are just defined using sealed classes

we can easily have implicitly constructed datatype valngbeé
style of Omega’s propositions (Sheard 2005).

¢ We allow a simple, intuitive and direct object-orientedgmam-
ming style that we can use to define, for example, ADTs like
Set. While we could just use Haskell records directly, the fact
is that the encoding does not make it clear the relationskip w
object-oriented programming. Something that may attest th
this encoding is not intuitive is the fact that, althoughréhare
several different proposals on how to implement ADTs in the
Haskell literature, we have not been able to find a single one
using the object-oriented style solution we proposed.

Finally, on the whole, we believe that the language we prepos
is conceptually simpler than Haskell: we do not need to have
separate ‘class’ and ‘data’ constructs; type class inswaad
data constructors are unified into a single concept; ane: tiser
basically no distinction on which values can be passed onpli
itly or explicitly.

3. Applications

In this section we show some interesting applications obgatem.
In Section 3.1 we show how to model open datatypes. In Segtibn
we provide a graph example of an abstract datatype and cempar

Haskell. Section 3.3 shows how dictionary overriding cangeful

to avoid pairs of similar definitions. In Section 3.4, we diss how

we can emulatémplicit parameters(Lewis et al. 2000). Finally,

in Sections 3.5 and 3.6, we show how to model (closed) GADTs
with sealed classes and demonstrate how associated methiods
be useful.

3.1 Open Datatypes

The C-stylesprintf function, which takes a variable number of
parameters, has always been a challenge for programmerg usi
strongly and statically typed languages. The problem withintf

is that, in its true essence, it requires dependent typés happens
because the value of the format string determines the typleof
function. However, it has been shown by Danvy (1998) that, by
changing the representation of the control string, it issfige to
encodesprintf in any language supporting a standard Hindley-
Milner type system. Still, this encoding uses explicit ¢onation
passing style. It has been suggested by Chakravarty et0al562
that type functions offer a more direct, inductive definitidhat
solution requires one type/datatype per each possibleafokind,
which can be freely combined.

One criticism that can be made to both Danvy’s and the asso-
ciated types solution is that they are less type-safe thanauld
like: with Danvy’s solution we are free to provide any fumcetiof
the right type as a continuation; while with the associaypes so-
lution we can mix a value of some type/datatype that is notniea
be any kind of format string with other format values, whicbuld
cause an unresolved overloading error. An alternativetisolus
to use GADTs to encode the format string (Oliveira and Gilsbon
2005), which provides a solution that does not have this sgbety
problem. However, unlike the other two solutions, we carault
new format specifiers.

In Figure 5 we show how we can have an implementation of
sprintf in our system that allows new format specifiers to be added,
is type-safe and it is written in direct-style. Thereforentmning
the advantages of the solutions discussed above, whilebaisg
shorter and (in the authors opinion) clearer than the asteti
types solution. The types of the format objects have the sgpes
of the value constructors of an equivalent (HaskBlymat GADT
solution, which allows us to build format specifiers like:

format :: Format (Int — Char — String)

format =S "Int: "$1$S ", Char: "$C$S"."F
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class Graph node where

outEdges :: node — [(node, node)]
object AdjList :: Enum v = [[v]] — Graph v
object AdjList g where

outEdges v = [(v,w) | w < g!! fromEnum v
type AdjMat = Array.Array (Int, Int) Bool
object AdjMatG :: AdjMat — Graph Int
object AdjMatG g where

outEdges v = let ((from, _), (to, —)) = bounds g

in [(v,w) | w < [from..to],g! (w,v)]

Figure 6: An abstract type and two implementations for Gsaph

Note that, alternatively, we could have definBd I and C as
implicit objects by giving them the following types:

implicit object E :: Format String

implicit object I :: Format t = Format (Int — t)

implicit object C :: Format t = Format (Char — t)

This would still allow us to construct format specifiers axiply
(using the dot notation), but it could also be used to constru
these implicitly —see Oliveira and Gibbons (2005) for a dienp
application of this.

3.2 Abstract Datatypes and Bulk Types

This paper does not present a solution for expression prob-
lem(Wadler 1998): we cannot use case analysis or pattern matchi
to define new functions on open datatypes likemat in Figure 5.
While in some situations this can be a curse, the fact isithather
situations, this is a blessinthe lack of a mechanism that inspects
the structure of an object ensures encapsulatibhis is essential
for ADTs.

In Section 2 we have already seen an example §&aADT.

In that example, we defined get interface using a class arftkt
implementations using an object. In Figure 6 we can see anoth
example of a very simplifiedZraph ADT, inspired by one of
the examples in Chakravarty et al. (2005b). Again, the satea i
applies: we define an abstract interface with the possil#eations
on graphs (in this case we just hawvetEdges) as a class; and we
create different implementations of that interface usibgacts.

It is interesting to compare our approach to ADTs with the re-
lated problem obulk types(Peyton Jones 1996) in Haskell. Pey-
ton Jones proposed the usecohstructor classe§lones 1993) and
multiple parameter type classessolve the problem of bulk types.
However, this approach is unecessarelly restrictive, ast¢ub out
in Jones (2000), because it requires constructors thateamitien
in only a certain form. For example, the constructor clags@gch
would not work for our two implementations of graphs. Fuoictl
dependencies and, more recently, associated types sddverai-
lem and allow both implementations of graphs. We show the-sol
tion with associated types next.

class GraphOps g where

type Node g

outEdges :: ¢ — Node g — [(Node g, Node g)]
While both GraphOps and Graph can be seen as alternative so-
lutions to the bulk types problem, they are not equivalert ame
approach might be preferable to the other in different stes.aA
solution like GraphOps is useful because it provides overloaded
operations for multiple graph implementations and, simezé is
not abstraction, it is possible to use those operations iinbata-
tion with implementation specific operations (which mayéyeer
example, performance advantages). On the other hand, tie AD
solution is useful because it hides the concrete implertientand
allows an implementation to be replaced by another onepeans

insert :: Ord a = a — [a] — [a]
insert x [] = [z]
insert x (y:ys) =
if x > y then y: insert z ys else z: y: ys
sort:: Ord a = [a] — [a]
sort = foldr insert []
sortImplicit :: [Int]
sortImplicit = sort [2, 6, 5]
object OrdReverse :: Ord Int
object OrdReverse where
z >y = (primIntGT z y)
sortExplicit :: [ Int]
sortExplicit = OrdReverse.sort [2,6,5]

Figure 7: No need for 'By’ functions.

ently, which has significant advantages from a softwarereegi
ing point of view. In summary, in the ADT solutio@raph o can

be viewed as an actual parametrized datatype/containde thie
GraphOps g solution provides (type) overloaded operations for
some graph implementatign

3.3 Explicit Implicit Objects

In the Haskell libraries there is often the need to provide simi-
lar definitions: one for convenience, since it takes a digtiy argu-
ment implicitly; and another for flexibility taking an expit extra
argument for the user to provide. We show a (slightly sirmguyifi
example taken from th®ata. List Haskell libraries next:

insert :: Ord a = a — [a] — [a]

insertBy :: (a — a — Bool) — a — [a] — [a]

sortBy :: (a — a — Bool) — [a] — [a]

sortBy gt = foldr (insertBy gt) []

sort:: Ord a = [a] — [a]

sort = sortBy (>)

Here, the idea is that thizsert andsort functions can be used
by the programmer without any need to worry about which com-
parison function is going to be used. The comparison fundso
defined in the instance @brd for the element types of the list and
it serves the purpose most of the times. There are, howeaiic
situations where the programmer may be interested to usé a di
ferent comparison function (for example, if he wants to solitt
in descending order, rather than ascending order). In thibse-
tions it is not possible to usasert andsort because, in Haskell,
we cannot explicitly pass a dictionary value. To allevidizt tprob-
lem, the Haskell libraries often provide a second functakirtg an
extra argument that can be used by the programmer. For egampl
insertBy andsortBy are the more flexible versions afsert and
sort. However this solution is not completely satisfactory doe t
the required duplication.

We can provide a better solution in our system because we
can use the dot notation to override an implicit object and we
have no need to define the extra ‘By’ functions. In Figure 7 we
show how this can be done and give two examples where we
use thesort function with an implicit and an explict object. The
list sortImplicit uses theOrd Int object that is on scope at the
moment to sort the elements; while the listrtEzplicit overrides
the object on scope and usésdReverse instead. In essence all
the code is essentially the same code that we would haveewritt
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sealed class Frp a where

object Lit :: Int — Exp Int

object Plus :: Exp Int — Exp Int — FExp Int

object IsZ :: Exp Int — FExp Bool

object If :: Exp Bool — FExp a — Fxp a — Ezxp a
eval 2 FErpa—a

eval (Lit z) =z

eval (Plus el e2) = eval el + eval e2

eval (IsZ e) =eval e=0

eval (If p el e2) = if eval p then eval el else eval e2

Figure 8: A Sealed Class (or GADT) for Typed Expressions.

in Haskell. It is only when we want to explicitly provide abrd
object, that we use the dot notation to pass the object.

3.4 A Poor Man's Approach to Implicit Parameters

In Section 3.3 we have shown how to define functions that can
take objects either implicitly or explicitly. Our next exate shows
how we can, more generally, view this as a poor man’s apprtmach
implicit parametergor dynamic scoping(Lewis et al. 2000). We
demonstrate this by using the main motivating example ofikew
et. al. of a pretty printing function.

pretty :: Doc — String
In that example, buried somewhere inside the code, we cave:h

.if 7 > 78 then ...

typed expressions in Figure 8 and define the correspondadgaev
tion function. In the first line we declare a sealed class fures-
sions with no methods. In the next four lines (ibleject declara-
tions) we use the syntatic sugar introduced in Section 2wirite
the types of the object constructors in much the same way wédwo
do with Haskell’s GADTSs.

The evaluation function is written exactly in the same waat th
we would write it in Haskell. We should emphasize thatFiép
would not be marked asealed and we would try to defineval
using pattern matching, then we would get a compile-timererr
saying that sincéZzp is not marked as sealed, we could not use
pattern matching.

3.6 Sealed Classeswith Methods

In Section 3.5 we have seen how sealed classes allow us ® writ
programs in much the same way as with Haskell's GADTs. Never-
theless, the fact is that sealed classes are more gener&b&aTs
because they can have methods, which seems to be reladtd to
tribute grammargKnuth 1968).

Suppose that we extend and develop the example in Figure 8
further to define a full-compiler with parsing, a run-timestgm,
several transformation steps, etc. In that system thetdwinany
functions defined by pattern matching and, for a more réalist
language, there may exist several dozens of objects. At stage,
we decide to report better messages to the user, so we trydto ad
extra information about the location of an expression insthierce
code. For simplicity, we represent that location by a paintégers

This code could be defined 5 levels deep in the recursion so, if representing the line and column:

we wanted to replac&8 by something more general, we would

normally need to either define a global name or add an extra

parameter to nearly every function involved in the prettintimg
code. However, with our more general notion of classes, we ha
an alternative option that we show next:
class PPArgs where
width :: Int

... if 7+ > width then ...
The idea is that we add a new clag®Args that defines the
optional parameters of the pretty printing function (irstbase we
only havewidth) and we use those in the definitions involved in the
pretty printer. Note that, unlike with Haskell type classes can
have classes with no type arguments. By usindth instead ofr8
our pretty printer would have the type:

pretty :: PPArgs = Doc — String

We can make the default wid#t8 by creating an implicit object
for PPArgs as follows:

implicit object DefPP where width = 78
Now, any calls to pretty without explicitly passing?aPArgs object
would use78 as thewidth. If we want to use avidth of 90, all we
need to do is to create a néMPArgs object:

object NightyPP where width = 90
and call NightyPP .pretty. Although this approach is, perhaps,
not as direct as using Lewis et al. (2000) proposal, it doésr of
a cheap alternative. Furthermore, unlike with implicitaraeters,
this approach does not have integration issues with claagesan
usePPArgs as any other class constraint.

3.5 GADTsas Sealed Classes

type Loc = Maybe (Int, Int)

Now we are faced with the task of adding the extra location
information to our program, but how can this be achieved? One
solution is to decorate all the recursive occurrences ofiEgpthe
extra location information:

type LEzp a = (Loc, Ezp a)

object Plus:: LExp a — LFExp a — Ezp a
object IsZ :: LExp Int — Exp Bool
object If :: LEzp Bool — LEzp a — LEzp a — Fxp a

(A similar approach is used, for example, in the code for th#CG
compiler.) However, this involves, basically, touchinggysingle
object. Much worse than that, it also involves changingesergle
definition that uses pattern matching over expressionsirfgrthe
programmer to practically touch all parts of the progranrtéiely
a tremendous implementation effort! The fact is that, inké#lsif
someone did not envision this scenario in the first place, d(vddv
be very likely have to go through it.

Although this scenario looks quite daunting in Haskell, lmet
ods come to rescue in our system. Instead of adding the docati
information to the objects, we add that information dirged the
class itself using a method. We show how this can be done in Fig
ure 9. The striking thing to note is that little has changetidiv
comparing this code with the one in Figure 8) except for thdi-ad
tion of the methodoc and corresponding definitions in the objects.
The functioneval, for example, remains untouched. In essence the
only code that would need some immediate adjustment would be
the code related to parsing, which should fill in the rightibans
in the expressions. With this solutioopde that does not need the

As we have seen in Section 2.4, we can use sealed classes to deextra location information does not need to be changgidl, if we

fine datatypes and functions by pattern matching in a simitar
as in Haskell. However, thebject syntax can be used to define
signatures for data constructors that are more generathieaones
found in Haskell 98, effectively allowing us to define GADP=fy/-

ton Jones et al. 2006). We show a standard GADT example for

add support for division in to our expressions
sealed class Frp a where

object Div :: Exp Int — Fxp Int — Exp Int
object Div el e2 where loc = el .loc
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sealed class Frp a where
loc :: Loc
object Lit :: Int — Exp Int
object Lit where loc = Nothing
object Plus :: Exp Int — FExp Int — FExp Int
object Plus el e2 where loc = el.loc
object IsZ :: Exp Int — Exp Bool
object IsZ e where loc = e.loc
object If :: Exp Bool — FExzp a — Fxp a — Ezxp a
object If el e2 e8 where loc = el .loc

eval 2 FErpa—a

eval (Lit z) =z

eval (Plus el e2) = eval el + eval e2

eval (IsZ e) =eval e=0

eval (If p el e2) = if eval p then eval el else eval e2

Figure 9: Typed Expressions with Extra Location Informatio

we can make use of the location information when reporting a
run-time ‘division by zero’ error by just looking up the ld@n
information for that expression. Here is how we could modify!
to do this:

eval :: Bxp a — a

eval dQ(Div el e2) =

if eval e2 # 0 then eval el ‘div‘ eval e2

else error (show d.loc 4 ": division by 0O")
As a final remark, note that the methad :: Ezp a = Loc would
be ambiguous in Haskell. Variabéedoes not appear in the type and
therefore there is an ambiguity if we pass dictionaries ioitpy.
However, because we can explicitly pass objects, ambiguibyr
system is not problematic.

4, CoreCalculus

We define an extension of Hindley/Milner with object-stylasses,
which additionally support the explicit manipulation ofigence
(dictionaries). Section 4.1 introduces the syntax of pmogg and
Section 4.2 explains the meaning of programs by applying the
classic dictionary translation (Hall et al. 1996). We witigtpone

the treatment of sealed classes until the later Section Th8.
issue of type inference and context reduction (automagolve
tion/construction of objects/dictionaries) is left fottdive work.

4.1 Syntax of Programs

First, we consider the syntax of programs, which is givenig: F
ure 10. The significant deviation from type classes is thaview
class symbolg”' as a form of type constructor. Thus, type terms
such asEq (Eq a) are well-formed in our system. In each con-
text, we attach variable names to typest; in a (type) context.
The idea is that; refers to the dictionary connected to the type
Consequently, we can explicitly refer to dictionaries ia fiogram
text.

The expression language is standard. The new constréet
allows the user to provide evidence in the form of a dictigriar a
context. Via# we can express the earlier "dot” notation in a more
primitive form. For examplez.m is a shorthand forn#zx. Class
declarations are exactly like in the type class case andalfoto
group together related methods (though we only considengiesi
method for simplicity). Instead of type class instance aextlons
we have now object declarations. An implicit object behases
actly like a type class instance declaration. We will geteeagproof

Type names s, t,u,v
Variable names z,y, z,a,b
Types
t = Variables
| t—t Functions
| (¢,...,t) Products
| Ct.t Classes
| ctz =1t Contexttypes
o == t]|Vat Typeschemes
Context
ctx = (x1:t1,..,Tn ty)
Expressions
e = z|K Variables and constructors
| Mzelee Abstraction and application
| letz=eine Letdefinition
| (e:o) Annotation
| (e1,...,en) Products
| e#e Explicit context
Declarations
decl ::= class C ai...anwhere m :: ctx =t
| implicit object K :: ctx = C't1...t, wherem = e
| object Kx1...xm ::
ctx =t — ... = t, — Cti.t, wherem = e
Environment
v = oz | K
I == {v:Vactz=t} Type assignment
| Tur
'r == {K:Va.ctz =t} Proofrule
| I'rUT'R
Substitutions
0 = [tl/al,...,tn/an]
Targ
T == z|T—T|(T,..T)|CT..T|vaT
E == z|k|X:T.E|EFE
| Aa.E|ET|letz=FEinE
Shorthands
O=>t=t
a=ai,..,an
t=ti..tn
Tit=x1:t1,..,2 0ty
[t/a] = [t1/a1, ..., tn/an]
V.cte = t = Viv(ctz, t).ctx = ¢
Aa. = Aaq...Aan,.
tv:: Term — FreeVariables

Figure 10: Syntax of Programs

rule from the declaration, which can be used to automayicktive
type classes. In addition, we attach a constructor nante each
declaration. The constructdt refers to the dictionary (function)
generated from the declaration (and thus the user can bpliti
dictionaries in source programs). For standard type clasise in-
stance context only holds type classes. But we considesadaass
types. Hence, we allow for a wider range of functions thalihdiic-
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decl ~ (Tg,T)

x fresh

decl; r '7Fi ':17.“7
(Decls) ecli ~ (I'p,, I) i n (Cls) class C a1...anwhere m :: (1 : t1, ..., Tk : t) =t~
decli, ...,declp, ~ (Cp, U...UTp,, 1 U...ULy,)
({}7 {m : V(IE :Car..Gn, 21 b1, oy T tk) = t})
implicit object K :: ctz = C't wherem = e~ (I', ) object KZ :: ctx = t wherem = e ~ ({},T)
decl ~ FTarget U DataDeclTaTgBt
(Obj) [implicit] object KT :: (y1 : t1,...,Yn i tn) = twherem =e~ k: Vi1 — ... > t, — t

b=1tv(t1, ..., tg) —t ey
(ClsToData) V(t1, s tr) — (a1, ..., an)

class C aq...anwhere m :: (21 : t1, ..., 2% : tx) = t ~ data C ay...an, = CC{m = Vbt1 — ...

—>tk—>t}

Figure 11: Source and target environment generation

tionaries. For example, the constructomay take additional argu-
mentsz;, besides the (dictionary) arguments in the context. This is
only possible for "non-implicit” object declarations. Feuch dec-
larations we will not generate a proof rule, effectivelyadiswing
automatic inference.

The environmenfl” contains the types of built-in functions,
lambda-/let-bound variables and dictionary functidtsin the tar-
get language we will use a lower-cdsevhich is the common nota-
tion for function names. For proof rules we have a secondenvi
mentI"r. We use type assignment notation for proof rules. For ex-
ample, consider the familiar case BfjList : Va.Eq a = Eq [a].
We can built a proof (dictionary) foq [a] provided we have
a proof for Eq a. We assume that the environmentsand I'r
are well-formed. That is, there are no two conflicting assignts
x : opandx : o2 in T (as well as inl"r) such thato; ando-
differ. Substitutions map variables to types and arise wheld-
ing instances of types. The target type and expression éy&yis
the familiar one from the type class case: System F extendtbd w
datatypes.

4.2 Type-directed Translation of Programs

We describe the meaning of programs by applying the classic
dictionary translation. Like for the standard type classeca&ach
class declaration

class C ay...anwhere m :: (z1 @ t1, ..., @i 1 t) = t
translates to a datatype declaration

data C aj...a, = CC {m :: Vb. t1 —...— tx — t}

whereb = tv(t1, ..., tx) — tv(as, ..., an). FOr convenience, we use
the labelled datatype notation, which will make the tratistaof
methods straightforward.

In the context of the method’s declaration, variables aexhed
to types to aid the dictionary-translation process. Vahaisnging
to the above datatype are referred to as dictionaries. Taeybe
viewed as a proof (evidence) that a method definition is défine
for an instance of the class. As we will see shortly, the {egitn
of object declarations to dictionary functions is almostritical
to the standard type class case. But we are more generaldgecau
we allow types in a context and the dictionary function cdteta
extra arguments. In contrast to Haskell type classes, waaio
impose the unambiguity condition that the variahlgs..., a,, and

the variables int1, ..., ¢, must appear in.. The reason is that
in our setting we can easily deal with (potentially) ambigsio
types by passing dictionaries explicitly. See the earbi@naple in
Section 3.6.

Figure 11 contains rules for generating the source and tar-
get type environments. For example, judgemefd ~ (I'r,T")
compute the types of methods and dictionary functions fraa-a
guence of class and object declarations recordédand the proof
rules recorded i z. The point to note is that implicit object dec-
larations yield a type assignment and a proof rule. We neéd bo
environments to translate source expressions to targe¢ssipns.
The translation of source declarations and expressionisés ¢n
Figure 12.

Proof rules describing the translation of expressions mesee
of judgementsI'g,I" + e : 0 ~ E wherel'y is the proof
rule environment and' is the type assignment environmeathe
source expressiomw; the source type ané the target expression.
All of the rules, with the exception of rule (CtxtExpl), arfeet fa-
miliar dictionary-translation rules also employed for thenslation
of standard type classes. Rule (Var) deals with lambdabfend
variables whereas rule (Var-K) deals with dictionary camsbrs.
The rules (Abs), (App), (Let), (Annot) and (Product) for @fiion
abstraction/application, let-definitions, type annatasi and prod-
ucts, as well as the rule¥Iftro) and §Elim) for quantifier intro-
duction and elimination, are straightforward. Rule (Qtitb) deals
with introduction of the type context, which is turned into ex-
plicit dictionary argument in the translation. We shouldenthat,
in our system, a context is nothing else than a (proof rule)-en
ronment. Recall that classes are types and are always edtach
a dictionary variable. The rule (Ctxtimpl) deals with thefilicit)
elimination of the context. We need to build dictionarigsfor the
typest; in the context. These dictionaries are implicit. That igyth
must be inferred, which is indicated by the fact that the se(dic-
tionary) expressions; are not part of the program texaind we can
only make use of the proof rule environmdnt to generate those
e;. In our system, we provide the user with the ability to exgiic
provide dictionaries. See rule (CtxtExplicit) where thguanente’
plays the role of the;’s.

We yet need to process object declarations to give meaning
to the dictionary functiong(. This step is performed via rules
(Decls) and (O). Rule (O) deals with implicit as well as non-
implicit declarations indicated by the optional keywdneplicit].
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|FR,FF620«»E|

(x:0)eTUTR

(Var)
' T, Tk erits =t~ E
Tr,’Fz:0~zx PR TU{z:t} Feitss E R, e1:ta — t1 ~ B
(Abs) I'r,I' = A t t \z:t1.E (App) I'r,I' F ez :ta~ FEo
€ — ~ : .
(Var-K) (K:0)el'UTg R, zT.e:ty 2 Tty P SRR ——
I'r,'F K:0~k
I'r,I' F : E1 Tg,T : (o it~ F I'r,I' Fe: E
(Let) R, e1:0~ Fp L, U{z: o} 32. ~s Fo (Annot) £, e oo
Pr,I'Fletz =eiinex it~ letz = Eiin E> g, '+ (e0):0~FE
T'r,'Fe:t~FE a=tv(t)—tv(TUT . Tl k- e:Vat ~ E
(VIntro) —%2 eit~E a=1w(t)—tv( R) (vElim) R e:Va.t ~

I'r,I'  e:Va.t~ Aa.E

TrU{z1 :t1, 0,z i tn, T F et/ ~ E

Tr,T Fe:[t/a)t’ ~ Et

I'r,T'Fe:(z1:t1,.,zp:tp) =t~ FE

(Ctxtintro) Tr, T F (z1:t1, .y Tn i tn) = & ~ (Ctxtimpl)  Tg,{} & (e1,...,ex) : (t1, ..., tk) ~ (F1, ..., Fk)
ATt 1. AT e B I'p, ' et~ FE Ey...Ey
Feitt i Ti i=1,...,
[z, T eiiti~ B .£C fl’E.,‘StthI'Z '1t n I'r,I' - 6:(1’1:t1,...,xk:tk):>t«»E
(Product) oD - (€1, s en) 2 (@1 2 8,y T 2 ) (CtxtExpl) Tr, T F e :(tr, . ty) ~ (B, ..., Ex)
R, ~> 7
(o :
(Br, .o ) I'r,I' - e#e :t~ E Eq...Ey,
I'r,I' + odecls ~ k=F
T'r,T' + odecli ~ k; =FE; fori=1,..,n
Decls - S
( ) I'r,I' F odecls,...,odecly, ~ k1 = F1,....kn = Ey,
(m:Va,e(z:Cai...an,z1 : th,.,zp 1 t) = t) €T
B 0= [t1/a1,...,tn/an]
b =1tV(s1, ..., 8m,t) —tW(T) &=1tv(ty,....t},) — tV(ai, ..., an)
(0) Tr,T'F e:Vh,C.(y1: 81,0 Ym : Sm, @1 : O(L), o, p 2 O(t))) = 0(t) ~ E

[implicit] object K z1...2; ::
I'r,T' F

E=AbAy1 : 1. 0Ym @ Sm.Az1 2 Ut Az u.CC ty.ty (AE AT : O(F)).. Az 2 O(t),).E)

(yl P81y Ym d S’HL) = U1 — ...

— u; — Ct1...t, wherem = e

la%ed

Figure 12: Type-directed translation rules

In casel = 0, rule (O) is effectively equivalent to the standard
type class instance translation step. Our task is to buildteodary
function that, given some dictionaries for the object ceiteuilds

a dictionary forC t;...t,. We first translate the method body
under the instantiated type by replacings by ¢;'s. Variablesc
refer to all the remaining (free) variables in the declangaetof
the method and variabldsare all those variables not bound by
the environment. Hence, we can universally quantify dvand

c¢. In the type context, we fing: : si1,...,ym : sm from the
object declaration context andh : 6(t}),...,zx : 6(t;) from
the class declaration context. We can refer to dictionariabées
yi's and ;s in the program text ok. The dictionary function
K is built by abstracting over the set of free type variabbes
and abstracting over the dictionary variablkgsfrom the object
context. The dictionary fo€' ¢, ...t,, is built by applying the class
constructorCC' to the typest; followed by the application to
(Ae Az : O(t))...\zy, = 0(t;,).E), which effectively represents the
actual dictionary definition. The type abstraction ogeraptures

the "locally” quantified variables and the function abstiat over
z; the "locally” provided dictionaries.

It is straightforward to verify that the translation ruleiid
well-typed target expressions. Thus, we achieve soundrfessr
system.

4.3 Sealed Classes Extension

We consider the extension to sealed classes. The syntaxeaarsd t
lation rules of the sealed classes extensions are givergiurd-iL3.
The main difference is that each object declaration yieldera
structor of the sealed class data type. See rule (SCIsTpdhte,
for simplicity, we only consider the case of a single objeetld-
ration. In the target language, the construdidtakes the method
definition, the context and the parameteras arguments. The out-
put typeC v1...v, may be of a more specialized type than the
(data) declaration. Hence, we actually need GADTSs in thgetar
language. We omit the details how to translate GADTSs into eemo
foundational calculus such as for example System(Sulzmann
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Expressions

e u= ..|caseeof [p;i — e];er Case

p = Kuzxi.xzn Pattern
Declarations

decl = ... |sealed class C ai...anwhere m :: ctx =t
Targ

... | K | case E of [P; — Eilier

E |
P Kt:c1...xn

decl ~ (Tg,T)

x fresh
(SCIs)  sealed class C ai...anwhere m :: (x1 : t1, ..., @ tg) =t~
{3, {m V(z:Car...an,z1 : b1, ..., Tkt ti) = t})

decl ~ T'rarget U DataDeclrarget

1_7 = tV(t17 ceny tk) — tV(al7 ceey an)
[implicit] object K z1...z1 it (Y1t 81,y Tt Sm) = U1 — ... = ug — C 01...0,
sealed class C' a1...apwhere m :: (z1 1 t1, ..., Tk 1 tp) =t

~>

(SClsToData) data C aq...a, where
K :: (VE.tl — o=t —t) = (81,0, 8m) DUl — ... > up — C o0,

m ::Va.C ar...an — YtV(t1, ..., t6) — (a1, ...,an).t1 — ... =t — ¢
m (K mm sIn z;...z1) = mm

hmFFKaMEl

I'r,'Fe:t~F
(Case) FR,FI—pi—>ei:t—>t'vPi—>Ei fOI’iZl,...,n
Tr,T F caseeof [pi — e;icr : t' ~ case E of [P, — Ejicr

K V&.(VE.M — .oty = t) = (81,00 8m) D UL — ... U — C 1.0,
8O Do ) = () E= 8O W(01, ) 6= [F]d) Gor) = v 0(0n) = vl

Pat :
(Pay TrU{y1 : d(51), s Ym : 0(sm) }, DU {21 : d(ur)y ooy zi i p(w)} H et ~ B
MR, Kz..zit me:Covi.vy, =t ~ K_(y1,..0,Ym) 21...20 > E
|FR,F = odeclsvk::E|
(m:V.a,e(z:Cai...an,x1: th,...,xp: t,) =>t) €L Cay...a, is sealed
B 0= [t1/a1,...7tn/an]
b=tV(s1, ..., Sm,t) —tv(T) &=tv(ty,....t},) — tv(ai,...,an)
(SO) Tr,T'F e:V0,E(Y1: 8150y Ym & Smy @1 2 O(L), ey g O(8))) = 0(t) ~ E
[implicit] object Kz1...z1 :: (Y1 : $1, sy Ym : Sm) = U1 — ... » u; — C t1...t, wherem = ¢
I'r,I' + ~s

E=AbAy1 i 51..0Ym : Sm.A21 2wt Az u K trtn (A€ Az 2 0(t)). A xk 2 0(t).E) (Y1, .., Ym) 21...21

Figure 13: Sealed classes extension
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Trandlation:
data Fq a where
EqList :: ([a] — [a] — Bool) — Eq a — Eq |a]
eqgMethod :: Eq a — (a — a — Bool)
eqgMethod (EqList eq _) = eq
eqList :: Eq a — Eq [a]
eqList d = EqList (Azs — A\ys —
case (zs,ys) of

([, (D

(z:xs,y:ys) — eqgMethod d z y A

Example:

sealed class Fq a where
(=) :a — a — Bool

implicit object EqList :: Eq a = Eq [a] where
=00 = True
(=) (z:29) (y: 99) = (3= 9) A (@9
(=) - = False

f:Eqa— a— a— Bool

f EqList zs ys = (=) zs ys

ys)

) d
fiEqa— a— a— Bool
f (EqList _ d) xs ys = eqMethod (eqList d) xs ys

— True

eqMethod (eqList d) zs ys

Figure 14: Translation example

et al. 2007). Method application is now also slightly diéiet. We
need to pattern match over the possible shapes of dictem&wi
access the actual method definition.

The translation of case expressions is performed by rulas€)C
and (Pat). For convenience, we assume that arguments dfuwons
tors are variables and treat — e as an "intermediate” pattern
clause expression. Rule (Pat) is the GADT pattern matchgypi
rule (Peyton Jones et al. 2006). To translate the patteusela
rule (Pat), we translate the pattern body under the exteadeid
ronment. We must be careful that none of the universally tifieah
variablesa (sometimes referred to as existential or abstract vari-
ables) escapes. See the side condigiotv(T' g, T, v1, ..., v, t')
{}. We build the extended environment by computing the type re-
finement¢ by matching the provided pattern type against the (out-
put) type of the constructor. Variables appear explicitly in the
pattern. They are recorded in the type assignment environifke
type context is implicit and therefore we record the asdedidic-
tionary variablegy; in the proof rule environment. The constructor
K carries the method definition which does not matter herecklen
we introduce a do not care pattern variable in the translatio

Object declarations belonging to a sealed class are ttaddbg
(SO). The difference to the earlier rule (O) is that we usedibe
laration specific constructak™ instead of the common class con-
structorC'C. The constructors also takes additional arguments.
The type context and the object declaration arguments

In Figure 14 we consider an example to illustrate the traiogia
process for sealed classes. For brevity, we only considepbject
declaration whose behaviour and translation is exactly iiikthe
standard Haskell type class case. Funcfiquattern matches over
Eq’s objects. The program text gf demands an implicifq [a]
dictionary which we can implicitly build from the provideflg a.
See the translation on the right-hand side.

5. Discussion and Related Work

Haskell Type Classesand GADTs The main goal of this paper is
to show how, with a single construct, we can generalize aiifg un
both type classes (Hall et al. 1996) and GADTSs (Peyton Jareds e
2006). There are three main ways in which our classes géreeral
Haskell's (multiple-parameter) type classes. Firstlyeots replace
type class instances and allow dictionaries to be builtieitiyl
as well as implicitly (with implicit objects). Type classstances
can be view asnonymous implicit objectsSecondly, classes are
just types and can occur in any type position, while Haskell’
type classes can only occur on constraints. Thirdly cladeasot
need to be parametrized, which is not the case for Haskgfis t
classes. When compared to Haskell's GADTSs, classes canede us

10

to define both open and closed GADTSs and they can be passed to a
function implicitly or explicitly; in Haskell we can only & closed
definitions and values of datatypes are always passed glplic
Furthermore, in Haskell there is no such concept as GADTIS wit
methods, while our classes can have methods associatedawith
class.

In essence, the combination of the advantages of GADTs and
type classes in a single construct, together with the doa-not
tion (which elegantly allows switching from implicit to ekt
parametrization) adds a flexibility and convenience to gstesn
that Haskell does not have.

Omega Propositions Omega (Sheard 2005) has the concept
of propositions which stand between Haskell type classes and
GADTs: they can be implicitly constructed and passed, bey th
are closed and have no methods. Propositions can be easily en
coded in our system by using a sealed class with no methodewhe
all the objects are implicit objects.

Associated Types and Datatypes Associated types (Chakravarty
et al. 2005b) and associated datatypes (Chakravarty e0@ha2
provide, respectively, a mechanism to declare type synsramal
datatypes that are local to a type class; for different imsta we
will have different instantiations of the type synonyms atatypes.
While many of the examples using associated types and gataty
have closely related solutions in our system, this is masiinci-
dental and we consider the work in this paper to be quite grtho
onal that work. In fact, associated types and datatypes eaeén
as complementary features that add extra power to our ¢j&ss s
tem. As a short example showing how we could use both features
together, consider the problem of defining a (closed) tyjpiexed
function that adds two type-level naturals. Assuming aroliygti-
cal associated types extension we could do so by:
sealed class Add m n where
type Plus m n
implicit object Base :: Add Z n
implicit object Base where
type Plus Z n=n
implicit object Step :: Add m n = Add (S m) n
implicit object Step where
type Plus (S m) n =S5 (Add m n)
We could use this type-level addition to define, for example,
append function on vectors —that is, lists (type) indexed by their
length.
append :: Add m n = Vector a m — Vector a n —
Vector a (Plus m n)
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Note that thisappend function can take values ofdd m n both
implicitly or explicitly, which can be useful in differenitsiations:
we may be interested in letting the compiler implicitly infalues
of Add m n for us whenm andn are known statically; but we
can also explicitly build one such value at run-time when wadt
have all the information statically.

Named Instances and Explicit Implicit Parameters Kahl and
Scheffczyk (2001) propose a language extension to enhhadate
binding capabilities of Haskell type classes. The basia ideo al-
low named type class instances and use those names to @bnstru
and override dictionaries. In their proposal, named irctarand
Haskell modules share the same name space and are separate fr
normal values. In order to handle the issues with contextaed
tion, they make the distinction between ordered and unedief
constraints. With ordered constraints no context redndsoper-
formed, so it is possible to get the most of late binding; with
ordered constraints dictionaries cannot be overriddencantkext
reduction is performed as in Haskell.

Dijkstra and Swierstra (2005) propose a similar idea buiaic
naries are manipulated as a special form of records and tizeg s
a namespace with normal values. Furthermore, instead oingnak
a distinction between ordered and unordered constraimtieir
approach the programmer explicitly states which instartbes
should participate in the proof process. This is similar o ap-
proach, which uses implicit objects for that purpose. THey pro-
pose that quantifiers and predicates (type class consyainould
be placed in a signature as much to the right as possible &r ord
to retain polymorphism in the type inferencer for as long as-p
sible; and they use partial type signatures to alleviatebtirelen
of explicitly specifying the (full) signatures. Finallyheir system
handles higher-order predicates, which we decided notppati
to keep our system simple. However, we are interested iroerpg|
the addition of higher-order predicates in the future.

There are number of differences between Kahl and Scheffczyk
(2001); Dijkstra and Swierstra (2005) and the work proposed
this paper. Firstly, in both approaches, type classes dresest-
ond class types (that is, they cannot appear in type posjtion

With our approach this is not the case and we can use classes aﬂ"

any type position. Secondly, objects can take any kind ofi-arg
ments as parameters, while instances can only take clagmdic
ies as arguments. As a consequence, we cannot, in gendiag de
datatypes/container types such as 6ttaph, Set, Format and
Exp examples in those approaches—the exception is for dattype
like Omega propositions, where all the parameters on thetna:
tors can be modelled as dictionaries. Thirdly, sealed ekaase not
considered by them. Finally, because we use standard vahie ¢
structor syntax and a familiar dot notation, we argue thasource
syntax for dictionary construction and application is muuhre
simple and intuitive than theirs.

Haskell object-oriented programming Hughes and Sparud (1995)
point out that, although Haskell provides excellent supgor
writing reusable code, object-oriented style inheritaisaeot sup-
ported. They propose the addition of object classes andbisje
stances (which bear some syntactic similarity to our objetd
solve this problem and allow inheritance in subclasseshifga-
per we have not explored subclassing, but we intent to do geein
future and we hope to get the benefits that Hughes and Spawud pr
mote. Nordlander (1999) proposes an object-oriented Hlagte
language for reactive programming. In that system typesekaare
subsumed bgtructsand there is a separate construct for algebraic
datatypes. The language supports subtyping and both stanck
datatypes can have subtypes. This makes Nordlander system ¢
siderably more complex than what we propose here. Kiselyav a
Lammel (2005) propose an entirely different approach teactb
oriented programming in Haskell, by having a library-basegd
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proach (instead of a new language or extension) using addanc
(and experimental) type class features. While their lipitrows
that a lot of advanced object-oriented programming can bedsd

in plain (GHC) Haskell, their approach suffers from not imavany
compiler support — types are can be very complex and there is n
proper syntatical support.

Meijer and Claessen (1997) observe that some of Haskell's
constructs are too complex and they propose a similar ideart
unifying type classes and datatypes in a single construmteder,
their approach is quite different and has typing issuesw®eatio
not have. Firstly, they do not have a separate concept otbbje
(that is, all objects are anonymous). This design decisieams
that hierarchies are modelled solely using classes (in desistyle
to conventional OO languages like Java or C#), but in a system
without “real” subtyping this can be problematic. For exdenp
even though they can havehaad function with typeCons a —

List a, because all type-checking remains covariant, they cln sti
apply head to an empty list, resulting on the same pattern matching
error that we would have on Haskell. We avoid this issue in our
system by having a separate notion of objects, which does not
introduce a new typ&€ons a. While we would still get the pattern
matching error if we allowed partial functions, with seatddsses
we could also take a different design decision and forbidigdar
functions in the first place, which would rule out these patte
matching errors. Secondly, they can apply pattern matdirzgny
kind of classes, which results in extra “message not unoigadst
errors and breaks encapsulation, meaning that they caasdy e
model true ADTS like ouSet or Graph examples. We only allow
pattern matching on sealed classes and retain encapsulatio
(open) classes. Thirdly, if they want to model trully seaégkbraic
datatypes they still need to resort to a sepadaiea declaration.
Furthermore, they do not allow GADTs (only Haskell 98 style
datatypes). Finally, they do not have a formalization ofrtegstem.

Object-oriented programming and Scala The system that we
propose can be considered as a simple purely functionatwbje
oriented programming language (without subtyping). Alitio
ainstream object-oriented languages are imperativeg tisea
ch theoretical literature on functional variants. Ouceding of
objects is essentially a simplification of the well-knowrceding
based on recursive records such as the one used by Bruce.(1993
Despite the simplicity of our encoding, the system we prepiss
practical: we can basically define, with the same convegietie
programs that we would define in Haskell and we can more conve-
niently define other (more object-oriented style) programs

Much of the inspiration for the syntax of our class/object-sy
tem comes from Scala (Odersky 2006), which is an impure func-
tional object-oriented language. Our classes are akimSaabtion
of trait (Scharli et al. 2003); our objects stand in between Scala’s
notion of object and class; implicit objects are inspired by im-
plicit objects/values; and, finally, we also borrow the cepicof a
sealed class. While on the surface Scala and our approach have
some resemblances, the fact is that the core calculus (szeeCr
et al. (2006) for the Featherweight Scala calculus) and thg w
many of the language mechanisms work are very different.

Modules In their work on named instances Kahl and Scheffczyk
(2001) note that type classes in their system can be seerasa f
of lightweight modules. Shields and Peyton Jones (2002)qze
first-class modules after observing that there is a big apebe-
tween Haskell's module language and its (very expressioey c
language and show how many of the features of ML-style mod-
ules can be encoded in their system. Wehr (2005) introdypes t
preserving translations from modules into type-classab\ace-
versa and discusses the differences between the two meotsni
Dreyer et al. (2007) propose an explicitly-typed moduleglzage
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where a type class programming style is supported as a partic
usage mode of modules.

Similarly to named instances, our work can also be considere
as a form of lightweight modules without supporting for mest
modules and opaque types. It is not a surprise that our sysésm
limitations when perceived as a module mechanism, but itneas
the goal of this paper to unify type classes and modules. thene
less, unlike named instances and many of the module praposal
our “lightweight modules” are first class. Moreover, modsjes-
tems like the one presented by Dreyer et al. (2007) tend taineq
sophisticated machinery that we do not need for our purpdses
would be interesting to investigate a single mechanismuhdies
modules, GADTSs and type classes in the future.

6. Conclusion and Future Work

We presented a design which unifies type classes and dagatype

where the main constructs acass andobject. Classes allow
the definition of new (record) types and we can also definesédp
GADTs by usingsealed classebjects generalize type class in-
stances and value constructors. In future work, we interchde-
ment the system and to extend our system to support subglasse
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