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Abstract
We propose an Haskell-like language with the goal of unifying
type classes andgeneralized algebraic datatypes(GADTs) into a
single class construct. We treat classes asfirst-class typesand we
useobjects(instead of type class instances and data constructors)
to define the values of those classes. We recover the ability to
define functions by pattern matching by usingsealed classes. The
resulting language is simple and intuitive and it can be usedto
define, with similar convenience, the same programs that we would
define in Haskell. Furthermore, unlike Haskell, dictionaries (or
objects) can be explicitly (as well as implicitly) passed tofunctions
and we can program in a simple object-oriented style directly.

1. Introduction
Datatypesand type classes(Hall et al. 1996) are two of the most
prominent features of Haskell. With datatypes we can define func-
tions bypattern matching. That is, we perform a case analysis over
the set (pattern) of datatype values. With type classes we can define
type-overloaded methods and then define instances that implement
the class interface. Datatypes and type classes are generally consid-
ered orthogonal concepts. The set of values belonging to a datatype
is fixed but we can define an arbitrary number of functions which
operate on a datatype. We say that datatypes are closed but the set
of functions that can operate on them is open. On the other hand,
type classes are open but the set of methods belonging to a class is
closed. Openness of a type classes means that we can define new
(type class) instances. In a sense, type classes provide us with an
object-oriented programming style. However, support for this style
is limited, since type classes were designed as anad-hoc polymor-
phism(Strachey 1967) mechanism and not as a mechanism to sup-
port object-oriented programming.

In this paper we propose a Haskell-like language with a gen-
eralizedclassconstruct that retains the ability to be used as an ad-
hoc polymorphism mechanism, but it can also be convenientlyused
to program in a simple object-oriented programming style. In our
proposal, classes are first-class types and we useobjects, instead
of type class instances and data constructors, to create thevalues
of classes. Objects come in two forms:implicit objectsplay a sim-
ilar role to type class instances in Haskell and can be implicitly
used and inferred in definitions; while (normal) objects areexplic-
itly constructed and passed to definitions. The implementation of
objects is basically just a slight generalization of the dictionary-
passing translation (Hall et al. 1996).

We also introduce the notion ofsealed classes, for which a
closed world perspective is assumed. That is, all objects that con-
struct values of a certain class are defined in the same moduleof
that class and we can define new functions using pattern matching
on the objects of that class. Sealed classes avoid the need for a sepa-
ratedatamechanism, while providing a unified and uniform syntax

that is shared with (open) classes. Furthermore, sealed classes are
more general than traditional datatypes and GADTs (Peyton Jones
et al. 2006) because they can have associated methods.

In essence, classes in our proposal provide a unifying modelfor
type classes and GADTs based on the familiar concept of classes
and objects from object-oriented languages. We can still write pro-
grams with classes and objects like we would, in Haskell, with type
classes and GADTs, but we can also write object-oriented style pro-
grams in an easy and convenient way. Moreover, unlike Haskell,
our objects (which play the role of dictionaries) can be explicitly
and implicitly passed to functions, while in Haskell dictionaries are
always implicit. To summarize, the main contributions of this paper
are:

• a class systemthat generalizes Haskell’s type class system, al-
lows the construction of implicit as well as explicit “dictio-
naries” using objects and can be used to program in a simple
object-oriented style;

• sealed classes, which allow us to introduce new functions de-
fined by pattern matching and preclude the need for a separate
dataconstruct;

• numerous examples supporting the usefulness of our system.

Overview In Section 2, we introduce the key ideas of our sys-
tem. Section 3 shows some example applications that demonstrate
how the extra generality of our class system allows us to easily
write solutions for problems that would have somehow roundabout
solutions in Haskell. In Section 4, we present a core calculus for
our system. In Section 5 we discuss the relationship betweenwhat
we propose and existing work and, in Section 6, we conclude and
present possible future work.

2. Key Ideas
We illustrate the key ideas of our work via a few simple examples.

2.1 Classes as Types

Suppose that we want to define an abstract interface for sets sup-
porting multiple implementations. A natural object-oriented style
solution for this problem is presented in Figure 1 using our general-
ized notion of classes. TheSet class is almost a valid Haskell class,
except that we useSet as a type in some of the method signatures,
which is forbidden in Haskell (causing a type-error). However in
our system, classes are just types and there is no problem of using
Set on type positions.

2.2 Objects as Values

In Figure 2 we show a simple (but not necessarily efficient) imple-
mentation of the set interface. We introduce value constructors to
define set values by usingobject declarations. Anobject decla-
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class Set a where

member :: a → Bool

merge :: Set a → Set a

extract :: Maybe (a,Set a)
insert :: a → Set a

Figure 1: An abstract interface for sets.

object ListSet :: Eq a ⇒ [a ]→ Set a

object ListSet l where

member x = elem x l

merge s = mergeList l s

extract = case l of

[ ] → Nothing

(x : xs)→ Just (x ,ListSet xs)
insert x = ListSet (union [x ] l)

mergeList :: [a ]→ Set a → Set a

mergeList [ ] s = s

mergeList (x : xs) s = mergeList xs (insert s x)

Figure 2: A simple set implementation.

ration likeListSet is divided in two parts: a signature; and a def-
inition. The signature (the firstobject line in the example) tells
us the type of the associated value constructor for the object. In the
definition we provide all the arguments required by the constructor
of the object (in this case just the argumentl ) and, after thewhere
clause, we give the definitions of the methods in the class (which
is determined by the return type of the constructor). We use the
value constructorListSet in the definitions ofextract andinsert
to create anew object instancefor theListSet implementation. If
we want to have different implementations of sets we can justadd
new object declarations.

We can define functions in the same way as in Haskell. For ex-
ample, we could define a function that concatenates sets as follows:

concatSet :: Eq a ⇒ Set (Set a)→ Set a
concatSet s = case extract s of

Nothing → ListSet [ ]
Just (x , xs)→ x .merge (concatSet xs)

In the definition ofconcatSet we use themerge method, which
(like with Haskell type classes) has typemerge :: Set a ⇒
Set a → Set a. However, unlike Haskell, we can explicitly pass a
value for the dictionary argument (that is, the argument on the left
of ⇒). In the above example, thedot notationx.mergesays that
we pass the dictionaryx to functionmerge. In OO terminology, we
would say that we access the methodmergein the objectx.

We illustrate how to createobjects and use them in the follow-
ing example:

ins :: Set a → a → Set a
ins s x = s.insert x

set :: Set Int

set = ins (ins (ins (ListSet [ ]) 3) 4) 3

test :: Bool
test = set .member 3 -- test = True

We useins to define a set of integers and we use the object
constructorListSet to create a new empty Set. The valuetest
shows how we can test if3 is a member of the set that we have
just defined.

2.3 Haskell-Style Type Class Programming

Objects allow us to explicitly define values of classes, but with type
classes the objects (or dictionaries) would be implicitly constructed

class Eq a where

(≡) :: a → a → Bool

implicit object EqInt :: Eq Int

implicit object EqInt where

(≡) = primIntEQ

object EqInt2 :: Eq Int

object EqInt2 where

x ≡ y = primIntEQ (x ‘mod ‘ y) 0

implicit object EqPair :: (Eq a,Eq b)⇒ Eq (a, b)
implicit object EqPair where

(a, b) ≡ (c, d) = a ≡ c ∧ b ≡ d

Figure 3: A simplifiedEq type class and some objects.

for us. Our class system supports a type class programming style
via implicit object declarations. These declarations have simi-
lar restrictions to type class instances and, consequently, there are
less type signatures allowed for implicit objects than for (normal)
objects. However, we can use the type system to implicitly build
values of implicit objects for us. For example, theListSet con-
structor has anEq a constraint. In Figure 3 we show how to define
a simplified version of the classEq a. Theclass definition is writ-
ten exactly in the same way as in Haskell. We use implicit objects
to define implementations of that class. We provide two simple ex-
amples for integers and pairs and we also provide a second object
that shows how we could write an alternativeEq Int implementa-
tion. While there can be only oneEq t implicit object on scope for
some given typet , there can be multiple objects with that type and
we can pass those explicitly (overriding the default implicit object)
by using the dot notation. For example we could define

eqPair :: Eq (Int , Int)
eqPair = (EqInt ,EqInt2 ).EqPair

test2 :: Bool
test2 = eqPair .(≡) (3, 8) (3, 4) -- test2 = True

The idea here is that the explicitly built dictionaryeqPair uses
EqInt for comparing the first value of the pair andEqInt2 for
comparing the second value. Note that our system handles multiple
constraints by using a tuple-semantics.

2.4 Sealed Classes

We can also program in the same way we would program with
datatypes or GADTs by using sealed classes. Here is an example
defining the standard lists:

sealed class List a where

object Nil :: List a

object Cons :: a → List a → List a
We use a little bit of syntactic sugar on the definition of theNil and
Cons objects because they do not define (or override) any methods.
This is just short for:

object Nil :: List a

object Nil where

object Cons :: a → List a → List a
object Cons x xs where

With sealed classes all the objects need to be defined in the same
module of the corresponding class. This precludes the possibility of
extending the class modularly with extra objects, but it also means
that we know all the objects that belong to that class statically. We
use this knowledge to write definitions by pattern matching like we
would do in Haskell:

length :: List a → Int

length Nil = 0
length (Cons x xs) = 1 + length xs
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data Set a = Set{
member :: a → Bool ,
merge :: Set a → Set a,
extract :: Maybe (a,Set a),
insert :: a → Set a }

listSet :: Eq a → [a ]→ Set a

listSet d l = Set (λx → elem d x l)
(mergeList l)
(case l of

[ ] → Nothing

(x : xs)→ Just (x , listSet d xs))
(λx → listSet d (union [x ] l))

mergeList :: [a ]→ Set a → Set a

mergeList [ ] s = s

mergeList (x : xs) s = mergeList xs (insert s x)

Figure 4:Set translated via the dictionary translation.

2.5 Dictionary Translation of Classes and Objects

Our classes and objects can be translated in very much the same
way that Haskell type classes can be translated via thedictionary
translationHall et al. (1996). The difference is that our dictionary
translation is slightly more general because of the need to account
for the fact that classes are first-class types and objects can take any
kind of arguments (and not just dictionaries). In Figure 4 wecan
see how the set example could be translated using the dictionary
translation. For convenience, we use Haskell’s labelled datatypes
in the translation.

Some readers may ask why not program directly in this “dictionary-
passing” style. There are three main reasons for justifyingthe in-
troduction of a new class system instead of just using the dictionary
translation encoding directly.

• With the class system and with the dot notation that we pro-
pose we can easily pass dictionary values implicitly or explic-
itly. This adds important convenience and solves limitations of
Haskell’s class system pointed out in the past (Kahl and Schef-
fczyk 2001; Dijkstra and Swierstra 2005). Moreover, because
in our system datatypes are just defined using sealed classes,
we can easily have implicitly constructed datatype values in the
style of Omega’s propositions (Sheard 2005).

• We allow a simple, intuitive and direct object-oriented program-
ming style that we can use to define, for example, ADTs like
Set . While we could just use Haskell records directly, the fact
is that the encoding does not make it clear the relationship with
object-oriented programming. Something that may attest that
this encoding is not intuitive is the fact that, although there are
several different proposals on how to implement ADTs in the
Haskell literature, we have not been able to find a single one
using the object-oriented style solution we proposed.

• Finally, on the whole, we believe that the language we propose
is conceptually simpler than Haskell: we do not need to have
separate ‘class’ and ‘data’ constructs; type class instances and
data constructors are unified into a single concept; and there is
basically no distinction on which values can be passed implic-
itly or explicitly.

3. Applications
In this section we show some interesting applications of oursystem.
In Section 3.1 we show how to model open datatypes. In Section3.2
we provide a graph example of an abstract datatype and compare

class Format t where

sprintf ′ :: String → t

object E :: Format String

object E where

sprintf ′ = id

object I :: Format t → Format (Int → t)
object I k where

sprintf ′ s x = k .sprintf ′ (s ++ show x)

object C :: Format t → Format (Char → t)
object C k where

sprintf ′ s x = k .sprintf ′ (s ++ [x ])

object S :: String → Format t → Format t

object S x k where

sprintf ′ s = k .sprintf ′ (s ++ x)

sprintf :: Format t → t

sprintf f = f .sprintf ′ ""

Figure 5: An open (or extensible)Format datatype.

it to solutions for thebulk types(Peyton Jones 1996) problem in
Haskell. Section 3.3 shows how dictionary overriding can beuseful
to avoid pairs of similar definitions. In Section 3.4, we discuss how
we can emulateimplicit parameters(Lewis et al. 2000). Finally,
in Sections 3.5 and 3.6, we show how to model (closed) GADTs
with sealed classes and demonstrate how associated methodscan
be useful.

3.1 Open Datatypes

The C-stylesprintf function, which takes a variable number of
parameters, has always been a challenge for programmers using
strongly and statically typed languages. The problem withsprintf
is that, in its true essence, it requires dependent types. This happens
because the value of the format string determines the type ofthe
function. However, it has been shown by Danvy (1998) that, by
changing the representation of the control string, it is possible to
encodesprintf in any language supporting a standard Hindley-
Milner type system. Still, this encoding uses explicit continuation
passing style. It has been suggested by Chakravarty et al. (2005b)
that type functions offer a more direct, inductive definition. That
solution requires one type/datatype per each possible format kind,
which can be freely combined.

One criticism that can be made to both Danvy’s and the asso-
ciated types solution is that they are less type-safe than one would
like: with Danvy’s solution we are free to provide any function of
the right type as a continuation; while with the associated types so-
lution we can mix a value of some type/datatype that is not meant to
be any kind of format string with other format values, which would
cause an unresolved overloading error. An alternative solution is
to use GADTs to encode the format string (Oliveira and Gibbons
2005), which provides a solution that does not have this typesafety
problem. However, unlike the other two solutions, we cannotadd
new format specifiers.

In Figure 5 we show how we can have an implementation of
sprintf in our system that allows new format specifiers to be added,
is type-safe and it is written in direct-style. Therefore combining
the advantages of the solutions discussed above, while alsobeing
shorter and (in the authors opinion) clearer than the associated
types solution. The types of the format objects have the sametypes
of the value constructors of an equivalent (Haskell)Format GADT
solution, which allows us to build format specifiers like:

format :: Format (Int → Char → String)
format = S "Int: " $ I $ S ", Char: " $ C $ S "." E
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class Graph node where

outEdges :: node → [(node ,node)]

object AdjList :: Enum v ⇒ [[v ]]→ Graph v

object AdjList g where

outEdges v = [(v , w) | w ← g !! fromEnum v ]

type AdjMat = Array .Array (Int , Int) Bool

object AdjMatG :: AdjMat → Graph Int

object AdjMatG g where

outEdges v = let ((from, ), (to, )) = bounds g

in [(v , w) | w ← [from . . to ], g ! (w , v)]

Figure 6: An abstract type and two implementations for Graphs.

Note that, alternatively, we could have definedE , I andC as
implicit objects by giving them the following types:

implicit object E :: Format String
implicit object I :: Format t ⇒ Format (Int → t)
implicit object C :: Format t ⇒ Format (Char → t)
This would still allow us to construct format specifiers explicitly

(using the dot notation), but it could also be used to construct
these implicitly —see Oliveira and Gibbons (2005) for a simple
application of this.

3.2 Abstract Datatypes and Bulk Types

This paper does not present a solution for theexpression prob-
lem(Wadler 1998): we cannot use case analysis or pattern matching
to define new functions on open datatypes likeFormat in Figure 5.
While in some situations this can be a curse, the fact is that,in other
situations, this is a blessing:the lack of a mechanism that inspects
the structure of an object ensures encapsulation. This is essential
for ADTs.

In Section 2 we have already seen an example of aSet ADT.
In that example, we defined aSet interface using a class andSet
implementations using an object. In Figure 6 we can see another
example of a very simplifiedGraph ADT, inspired by one of
the examples in Chakravarty et al. (2005b). Again, the same idea
applies: we define an abstract interface with the possible operations
on graphs (in this case we just haveoutEdges ) as a class; and we
create different implementations of that interface using objects.

It is interesting to compare our approach to ADTs with the re-
lated problem ofbulk types(Peyton Jones 1996) in Haskell. Pey-
ton Jones proposed the use ofconstructor classes(Jones 1993) and
multiple parameter type classesto solve the problem of bulk types.
However, this approach is unecessarelly restrictive, as pointed out
in Jones (2000), because it requires constructors that can be written
in only a certain form. For example, the constructor class approach
would not work for our two implementations of graphs. Functional
dependencies and, more recently, associated types solve this prob-
lem and allow both implementations of graphs. We show the solu-
tion with associated types next.

class GraphOps g where

type Node g

outEdges :: g → Node g → [(Node g , Node g)]
While bothGraphOps andGraph can be seen as alternative so-
lutions to the bulk types problem, they are not equivalent and one
approach might be preferable to the other in different scenarios. A
solution likeGraphOps is useful because it provides overloaded
operations for multiple graph implementations and, since there is
not abstraction, it is possible to use those operations in combina-
tion with implementation specific operations (which may have, for
example, performance advantages). On the other hand, the ADT
solution is useful because it hides the concrete implementation and
allows an implementation to be replaced by another one transpar-

insert :: Ord a ⇒ a → [a ]→ [a ]
insert x [ ] = [x ]
insert x (y : ys) =

if x > y then y : insert x ys else x : y : ys

sort :: Ord a ⇒ [a ]→ [a ]
sort = foldr insert [ ]

sortImplicit :: [Int ]
sortImplicit = sort [2, 6, 5]

object OrdReverse :: Ord Int

object OrdReverse where

x > y = ¬ (primIntGT x y)

sortExplicit :: [Int ]
sortExplicit = OrdReverse .sort [2, 6, 5]

Figure 7: No need for ’By’ functions.

ently, which has significant advantages from a software engineer-
ing point of view. In summary, in the ADT solutionGraph a can
be viewed as an actual parametrized datatype/container, while the
GraphOps g solution provides (type) overloaded operations for
some graph implementationg .

3.3 Explicit Implicit Objects

In the Haskell libraries there is often the need to provide two simi-
lar definitions: one for convenience, since it takes a dictionary argu-
ment implicitly; and another for flexibility taking an explicit extra
argument for the user to provide. We show a (slightly simplified)
example taken from theData .List Haskell libraries next:

insert :: Ord a ⇒ a → [a ]→ [a ]
. . .

insertBy :: (a → a → Bool)→ a → [a ]→ [a ]
. . .

sortBy :: (a → a → Bool)→ [a ]→ [a ]
sortBy gt = foldr (insertBy gt) [ ]

sort :: Ord a ⇒ [a ]→ [a ]
sort = sortBy (>)
Here, the idea is that theinsert andsort functions can be used

by the programmer without any need to worry about which com-
parison function is going to be used. The comparison function is
defined in the instance ofOrd for the element types of the list and
it serves the purpose most of the times. There are, however, certain
situations where the programmer may be interested to use a dif-
ferent comparison function (for example, if he wants to sorta list
in descending order, rather than ascending order). In thosesitua-
tions it is not possible to useinsert andsort because, in Haskell,
we cannot explicitly pass a dictionary value. To alleviate that prob-
lem, the Haskell libraries often provide a second function taking an
extra argument that can be used by the programmer. For example,
insertBy andsortBy are the more flexible versions ofinsert and
sort . However this solution is not completely satisfactory due to
the required duplication.

We can provide a better solution in our system because we
can use the dot notation to override an implicit object and we
have no need to define the extra ‘By’ functions. In Figure 7 we
show how this can be done and give two examples where we
use thesort function with an implicit and an explict object. The
list sortImplicit uses theOrd Int object that is on scope at the
moment to sort the elements; while the listsortExplicit overrides
the object on scope and usesOrdReverse instead. In essence all
the code is essentially the same code that we would have written

4 2008/4/2



sealed class Exp a where

object Lit :: Int → Exp Int

object Plus :: Exp Int → Exp Int → Exp Int

object IsZ :: Exp Int → Exp Bool

object If :: Exp Bool → Exp a → Exp a → Exp a

eval :: Exp a → a

eval (Lit x) = x

eval (Plus e1 e2 ) = eval e1 + eval e2

eval (IsZ e) = eval e ≡ 0
eval (If p e1 e2 ) = if eval p then eval e1 else eval e2

Figure 8: A Sealed Class (or GADT) for Typed Expressions.

in Haskell. It is only when we want to explicitly provide anOrd
object, that we use the dot notation to pass the object.

3.4 A Poor Man’s Approach to Implicit Parameters

In Section 3.3 we have shown how to define functions that can
take objects either implicitly or explicitly. Our next example shows
how we can, more generally, view this as a poor man’s approachto
implicit parameters(or dynamic scoping) (Lewis et al. 2000). We
demonstrate this by using the main motivating example of Lewis
et. al. of a pretty printing function.

pretty :: Doc → String
In that example, buried somewhere inside the code, we could have:

. . . if i > 78 then . . .
This code could be defined 5 levels deep in the recursion so, if
we wanted to replace78 by something more general, we would
normally need to either define a global name or add an extra
parameter to nearly every function involved in the pretty printing
code. However, with our more general notion of classes, we have
an alternative option that we show next:

class PPArgs where

width :: Int

. . .

. . . if i > width then . . .
The idea is that we add a new classPPArgs that defines the
optional parameters of the pretty printing function (in this case we
only havewidth) and we use those in the definitions involved in the
pretty printer. Note that, unlike with Haskell type classes, we can
have classes with no type arguments. By usingwidth instead of78
our pretty printer would have the type:

pretty :: PPArgs ⇒ Doc → String
We can make the default width78 by creating an implicit object

for PPArgs as follows:
implicit object DefPP where width = 78

Now, any calls to pretty without explicitly passing aPPArgs object
would use78 as thewidth. If we want to use awidth of 90, all we
need to do is to create a newPPArgs object:

object NightyPP where width = 90
and callNightyPP .pretty . Although this approach is, perhaps,
not as direct as using Lewis et al. (2000) proposal, it does offer
a cheap alternative. Furthermore, unlike with implicit parameters,
this approach does not have integration issues with classes: we can
usePPArgs as any other class constraint.

3.5 GADTs as Sealed Classes

As we have seen in Section 2.4, we can use sealed classes to de-
fine datatypes and functions by pattern matching in a similarway
as in Haskell. However, theobject syntax can be used to define
signatures for data constructors that are more general thanthe ones
found in Haskell 98, effectively allowing us to define GADTs (Pey-
ton Jones et al. 2006). We show a standard GADT example for

typed expressions in Figure 8 and define the corresponding evalua-
tion function. In the first line we declare a sealed class for expres-
sions with no methods. In the next four lines (theobject declara-
tions) we use the syntatic sugar introduced in Section 2.4 towrite
the types of the object constructors in much the same way we would
do with Haskell’s GADTs.

The evaluation function is written exactly in the same way that
we would write it in Haskell. We should emphasize that, ifExp
would not be marked assealed and we would try to defineeval
using pattern matching, then we would get a compile-time error
saying that sinceExp is not marked as sealed, we could not use
pattern matching.

3.6 Sealed Classes with Methods

In Section 3.5 we have seen how sealed classes allow us to write
programs in much the same way as with Haskell’s GADTs. Never-
theless, the fact is that sealed classes are more general than GADTs
because they can have methods, which seems to be related toat-
tribute grammars(Knuth 1968).

Suppose that we extend and develop the example in Figure 8
further to define a full-compiler with parsing, a run-time system,
several transformation steps, etc. In that system there will be many
functions defined by pattern matching and, for a more realistic
language, there may exist several dozens of objects. At somestage,
we decide to report better messages to the user, so we try to add
extra information about the location of an expression in thesource
code. For simplicity, we represent that location by a pair ofintegers
representing the line and column:

type Loc = Maybe (Int , Int)
Now we are faced with the task of adding the extra location

information to our program, but how can this be achieved? One
solution is to decorate all the recursive occurrences of Expwith the
extra location information:

type LExp a = (Loc,Exp a)

. . .

object Plus :: LExp a → LExp a → Exp a
object IsZ :: LExp Int → Exp Bool
object If :: LExp Bool → LExp a → LExp a → Exp a

. . .
(A similar approach is used, for example, in the code for the GHC
compiler.) However, this involves, basically, touching every single
object. Much worse than that, it also involves changing every single
definition that uses pattern matching over expressions, forcing the
programmer to practically touch all parts of the program. Certainly
a tremendous implementation effort! The fact is that, in Haskell, if
someone did not envision this scenario in the first place, he would
be very likely have to go through it.

Although this scenario looks quite daunting in Haskell, meth-
ods come to rescue in our system. Instead of adding the location
information to the objects, we add that information directly to the
class itself using a method. We show how this can be done in Fig-
ure 9. The striking thing to note is that little has changed (when
comparing this code with the one in Figure 8) except for the addi-
tion of the methodloc and corresponding definitions in the objects.
The functioneval , for example, remains untouched. In essence the
only code that would need some immediate adjustment would be
the code related to parsing, which should fill in the right locations
in the expressions. With this solution,code that does not need the
extra location information does not need to be changed. Still, if we
add support for division in to our expressions

sealed class Exp a where

. . .
object Div :: Exp Int → Exp Int → Exp Int

object Div e1 e2 where loc = e1 .loc
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sealed class Exp a where

loc :: Loc

object Lit :: Int → Exp Int

object Lit where loc = Nothing

object Plus :: Exp Int → Exp Int → Exp Int

object Plus e1 e2 where loc = e1 .loc

object IsZ :: Exp Int → Exp Bool

object IsZ e where loc = e.loc

object If :: Exp Bool → Exp a → Exp a → Exp a

object If e1 e2 e3 where loc = e1 .loc

eval :: Exp a → a

eval (Lit x) = x

eval (Plus e1 e2 ) = eval e1 + eval e2

eval (IsZ e) = eval e ≡ 0
eval (If p e1 e2 ) = if eval p then eval e1 else eval e2

Figure 9: Typed Expressions with Extra Location Information.

we can make use of the location information when reporting a
run-time ‘division by zero’ error by just looking up the location
information for that expression. Here is how we could modifyeval
to do this:

eval :: Exp a → a
. . .
eval d@(Div e1 e2 ) =

if eval e2 6≡ 0 then eval e1 ‘div ‘ eval e2
else error (show d .loc ++ ": division by 0")

As a final remark, note that the methodloc :: Exp a ⇒ Loc would
be ambiguous in Haskell. Variablea does not appear in the type and
therefore there is an ambiguity if we pass dictionaries implicitly.
However, because we can explicitly pass objects, ambiguityin our
system is not problematic.

4. Core Calculus
We define an extension of Hindley/Milner with object-style classes,
which additionally support the explicit manipulation of evidence
(dictionaries). Section 4.1 introduces the syntax of programs and
Section 4.2 explains the meaning of programs by applying the
classic dictionary translation (Hall et al. 1996). We will postpone
the treatment of sealed classes until the later Section 4.3.The
issue of type inference and context reduction (automatic resolu-
tion/construction of objects/dictionaries) is left for future work.

4.1 Syntax of Programs

First, we consider the syntax of programs, which is given in Fig-
ure 10. The significant deviation from type classes is that weview
class symbolsC as a form of type constructor. Thus, type terms
such asEq (Eq a) are well-formed in our system. In each con-
text, we attach variable namesxi to typesti in a (type) context.
The idea is thatxi refers to the dictionary connected to the typeti.
Consequently, we can explicitly refer to dictionaries in the program
text.

The expression language is standard. The new constructe#e
allows the user to provide evidence in the form of a dictionary for a
context. Via# we can express the earlier ”dot” notation in a more
primitive form. For example,x.m is a shorthand form#x. Class
declarations are exactly like in the type class case and allow us to
group together related methods (though we only consider a single
method for simplicity). Instead of type class instance declarations
we have now object declarations. An implicit object behavesex-
actly like a type class instance declaration. We will generate a proof

Type names s, t, u, v
Variable names x, y, z, a, b

Types
t ::= x Variables

| t→ t Functions
| (t, ..., t) Products
| C t...t Classes
| ctx⇒ t Context types

σ ::= t | ∀ā.t Type schemes

Context
ctx ::= (x1 : t1, ..., xn : tn)

Expressions
e ::= x | K Variables and constructors

| λx.e | e e Abstraction and application
| let x = e in e Let definition
| (e :: σ) Annotation
| (e1, ..., en) Products
| e#e Explicit context

Declarations
decl ::= class C a1...anwhere m :: ctx⇒ t

| implicit object K :: ctx⇒ C t1...tn where m = e
| object Kx1...xm ::

ctx⇒ t′1 → ...→ t′m → C t1...tn where m = e

Environment
v ::= x | K
Γ ::= {v : ∀ā.ctx⇒ t} Type assignment

| Γ ∪ Γ
ΓR ::= {K : ∀ā.ctx⇒ t} Proof rule

| ΓR ∪ ΓR

Substitutions
θ ::= [t1/a1, ..., tn/an]

Target
T ::= x | T → T | (T, ..., T ) | C T...T | ∀ā.T
E ::= x | k | λx : T.E | E E

| Λa.E | E T | let x = E in E

Shorthands
()⇒ t ≡ t
a ≡ a1, ..., an

t ≡ t1...tn

x : t ≡ x1 : t1, ..., x : n : tn

[t/a] ≡ [t1/a1, ..., tn/an]
∀.ctx⇒ t ≡ ∀tv(ctx, t).ctx⇒ t
Λā. ≡ Λa1...Λan.

tv :: Term → FreeVariables

Figure 10: Syntax of Programs

rule from the declaration, which can be used to automatically derive
type classes. In addition, we attach a constructor nameK to each
declaration. The constructorK refers to the dictionary (function)
generated from the declaration (and thus the user can build explicit
dictionaries in source programs). For standard type classes, the in-
stance context only holds type classes. But we consider classes as
types. Hence, we allow for a wider range of functions that build dic-
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decl ; (ΓR, Γ)

(Decls)
decli ; (ΓPi

, Γi) i = 1, ..., n

decl1, ..., decln ; (ΓP1
∪ ... ∪ ΓPn

, Γ1 ∪ ... ∪ Γn)
(Cls)

x fresh
class C a1...anwhere m :: (x1 : t1, ..., xk : tk)⇒ t ;

({}, {m : ∀.(x : C a1...an, x1 : t1, ..., xk : tk)⇒ t})

(OImpl)
Γ = {K : ∀.ctx⇒ C t̄ }

implicit object K :: ctx⇒ C t̄ where m = e ; (Γ, Γ)
(OExpl)

Γ = {K : ∀.ctx⇒ t}

object Kx̄ :: ctx⇒ t where m = e ; ({}, Γ)

decl ; ΓTarget ∪DataDeclTarget

(Obj) [implicit] object Kx̄ :: (y1 : t1, ..., yn : tn)⇒ t where m = e ; k : ∀.t1 → ...→ tn → t

(ClsToData)
b̄ = tv(t1, ..., tk)− tv(a1, ..., an)

class C a1...anwhere m :: (x1 : t1, ..., xk : tk)⇒ t ; data C a1...an = CC{m :: ∀b̄.t1 → ...→ tk → t}

Figure 11: Source and target environment generation

tionaries. For example, the constructorK may take additional argu-
mentsxi, besides the (dictionary) arguments in the context. This is
only possible for ”non-implicit” object declarations. Forsuch dec-
larations we will not generate a proof rule, effectively disallowing
automatic inference.

The environmentΓ contains the types of built-in functions,
lambda-/let-bound variables and dictionary functionsK. In the tar-
get language we will use a lower-casek, which is the common nota-
tion for function names. For proof rules we have a second environ-
mentΓR. We use type assignment notation for proof rules. For ex-
ample, consider the familiar case ofEqList : ∀a.Eq a ⇒ Eq [a].
We can built a proof (dictionary) forEq [a] provided we have
a proof for Eq a. We assume that the environmentsΓ and ΓR

are well-formed. That is, there are no two conflicting assignments
x : σ1 andx : σ2 in Γ (as well as inΓR) such thatσ1 andσ2

differ. Substitutions map variables to types and arise whenbuild-
ing instances of types. The target type and expression language is
the familiar one from the type class case: System F extended with
datatypes.

4.2 Type-directed Translation of Programs

We describe the meaning of programs by applying the classic
dictionary translation. Like for the standard type class case, each
class declaration

class C a1...anwhere m :: (x1 : t1, ..., xk : tk)⇒ t

translates to a datatype declaration

data C a1...an = CC {m :: ∀b̄. t1 →...→ tk → t}

whereb̄ = tv(t1, ..., tk) − tv(a1, ..., an). For convenience, we use
the labelled datatype notation, which will make the translation of
methods straightforward.

In the context of the method’s declaration, variables are attached
to types to aid the dictionary-translation process. Valuesbelonging
to the above datatype are referred to as dictionaries. They can be
viewed as a proof (evidence) that a method definition is defined
for an instance of the class. As we will see shortly, the translation
of object declarations to dictionary functions is almost identical
to the standard type class case. But we are more general because
we allow types in a context and the dictionary function can take
extra arguments. In contrast to Haskell type classes, we donot
impose the unambiguity condition that the variablesa1, ..., an and

the variables int1, ..., tk must appear int. The reason is that
in our setting we can easily deal with (potentially) ambiguous
types by passing dictionaries explicitly. See the earlier example in
Section 3.6.

Figure 11 contains rules for generating the source and tar-
get type environments. For example, judgementsdecl ; (ΓR, Γ)
compute the types of methods and dictionary functions from ase-
quence of class and object declarations recorded inΓ and the proof
rules recorded inΓR. The point to note is that implicit object dec-
larations yield a type assignment and a proof rule. We need both
environments to translate source expressions to target expressions.
The translation of source declarations and expressions is given in
Figure 12.

Proof rules describing the translation of expressions makeuse
of judgementsΓR, Γ ⊢ e : σ ; E whereΓR is the proof
rule environment andΓ is the type assignment environment,e the
source expression,σ the source type andE the target expression.
All of the rules, with the exception of rule (CtxtExpl), are the fa-
miliar dictionary-translation rules also employed for thetranslation
of standard type classes. Rule (Var) deals with lambda-/let-bound
variables whereas rule (Var-K) deals with dictionary constructors.
The rules (Abs), (App), (Let), (Annot) and (Product) for function
abstraction/application, let-definitions, type annotations and prod-
ucts, as well as the rules (∀Intro) and (∀Elim) for quantifier intro-
duction and elimination, are straightforward. Rule (CtxtIntro) deals
with introduction of the type context, which is turned into an ex-
plicit dictionary argument in the translation. We should note that,
in our system, a context is nothing else than a (proof rule) envi-
ronment. Recall that classes are types and are always attached to
a dictionary variable. The rule (CtxtImpl) deals with the (implicit)
elimination of the context. We need to build dictionariesEi for the
typesti in the context. These dictionaries are implicit. That is, they
must be inferred, which is indicated by the fact that the source (dic-
tionary) expressionsei are not part of the program texte and we can
only make use of the proof rule environmentΓR to generate those
ei. In our system, we provide the user with the ability to explicitly
provide dictionaries. See rule (CtxtExplicit) where the argumente′

plays the role of theei’s.
We yet need to process object declarations to give meaning

to the dictionary functionsK. This step is performed via rules
(Decls) and (O). Rule (O) deals with implicit as well as non-
implicit declarations indicated by the optional keyword[implicit].
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ΓR, Γ ⊢ e : σ ; E

(Var)
(x : σ) ∈ Γ ∪ ΓR

ΓR, Γ ⊢ x : σ ; x

(Var-K)
(K : σ) ∈ Γ ∪ ΓR

ΓR, Γ ⊢ K : σ ; k

(Abs)
ΓR, Γ ∪ {x : t1} ⊢ e : t2 ; E

ΓR, Γ ⊢ λx.e : t1 → t2 ; λx : t1.E
(App)

ΓR, Γ ⊢ e1 : t2 → t1 ; E1

ΓR, Γ ⊢ e2 : t2 ; E2

ΓR, Γ ⊢ e1 e2 : t1 ; E1 E2

(Let)
ΓR, Γ ⊢ e1 : σ ; E1 ΓR, Γ ∪ {x : σ} ⊢ e2 : t ; E2

ΓR, Γ ⊢ let x = e1 in e2 : t ; let x = E1 in E2

(Annot)
ΓR, Γ ⊢ e : σ ; E

ΓR, Γ ⊢ (e :: σ) : σ ; E

(∀Intro)
ΓR, Γ ⊢ e : t ; E ā = tv(t)− tv(Γ ∪ ΓR)

ΓR, Γ ⊢ e : ∀ā.t ; Λā.E
(∀Elim)

ΓR, Γ ⊢ e : ∀ā.t′ ; E

ΓR, Γ ⊢ e : [t/a]t′ ; E t̄

(CtxtIntro)
ΓR ∪ {x1 : t1, ..., xn : tn}, Γ ⊢ e : t′ ; E

ΓR, Γ ⊢ (x1 : t1, ..., xn : tn)⇒ t′ ;

λx1 : t1...λxn : tn.E

(CtxtImpl)
ΓR, Γ ⊢ e : (x1 : t1, ..., xk : tk)⇒ t ; E

ΓR, {} ⊢ (e1, ..., ek) : (t1, ..., tk) ; (E1, ..., Ek)

ΓR, Γ ⊢ e : t ; E E1...Ek

(Product)

ΓR, Γ ⊢ ei : ti ; Ei xi fresh fori = 1, ..., n

ΓR, Γ ⊢

(e1, ..., en) : (x1 : t1, ..., xn : tn)

;

(E1, ..., En)

(CtxtExpl)
ΓR, Γ ⊢ e : (x1 : t1, ..., xk : tk)⇒ t ; E

ΓR, Γ ⊢ e′ : (t1, ..., tk) ; (E1, ..., Ek)

ΓR, Γ ⊢ e#e′ : t ; E E1...Ek

ΓR, Γ ⊢ odecls ; k = E

(Decls)
ΓR, Γ ⊢ odecli ; ki = Ei for i = 1, .., n

ΓR, Γ ⊢ odecl1, ..., odecln ; k1 = E1, ..., kn = En

(O)

(m : ∀ā, c̄.(x : C a1...an, x1 : t′1, ..., xk : t′k)⇒ t) ∈ Γ

θ = [t1/a1, ..., tn/an]

b̄ = tv(s1, ..., sm, t)− tv(Γ) c̄ = tv(t′1, ..., t
′

k)− tv(a1, ..., an)

ΓR, Γ ⊢ e : ∀b̄, c̄.(y1 : s1, ..., ym : sm, x1 : θ(t′1), ..., xk : θ(t′k))⇒ θ(t) ; E

ΓR, Γ ⊢

[implicit] object Kz1...zl :: (y1 : s1, ..., ym : sm)⇒ u1 → ...→ ul → C t1...tn where m = e

;

k = Λb̄.λy1 : s1...λym : sm.λz1 : u1...λzl : ul.CC t1...tn (Λc̄.λx1 : θ(t′1)...λxk : θ(t′k).E)

Figure 12: Type-directed translation rules

In casel = 0, rule (O) is effectively equivalent to the standard
type class instance translation step. Our task is to build a dictionary
function that, given some dictionaries for the object context, builds
a dictionary forC t1...tn. We first translate the method body
under the instantiated type by replacingai’s by ti’s. Variablesc̄
refer to all the remaining (free) variables in the declared type of
the method and variables̄b are all those variables not bound by
the environment. Hence, we can universally quantify overb̄ and
c̄. In the type context, we findy1 : s1, ..., ym : sm from the
object declaration context andx1 : θ(t′1), ..., xk : θ(t′k) from
the class declaration context. We can refer to dictionary variables
yi’s and xj ’s in the program text ofe. The dictionary function
K is built by abstracting over the set of free type variablesb̄
and abstracting over the dictionary variablesyi from the object
context. The dictionary forC t1...tn is built by applying the class
constructorCC to the typesti followed by the application to
(Λc̄.λx1 : θ(t′1)...λxk : θ(t′k).E), which effectively represents the
actual dictionary definition. The type abstraction overc̄ captures

the ”locally” quantified variables and the function abstraction over
xj the ”locally” provided dictionaries.

It is straightforward to verify that the translation rules yield
well-typed target expressions. Thus, we achieve soundnessof our
system.

4.3 Sealed Classes Extension

We consider the extension to sealed classes. The syntax and trans-
lation rules of the sealed classes extensions are given in Figure 13.
The main difference is that each object declaration yields acon-
structor of the sealed class data type. See rule (SClsToData) where,
for simplicity, we only consider the case of a single object decla-
ration. In the target language, the constructorK takes the method
definition, the context and the parameterszi as arguments. The out-
put typeC v1...vn may be of a more specialized type than the
(data) declaration. Hence, we actually need GADTs in the target
language. We omit the details how to translate GADTs into a more
foundational calculus such as for example System FC (Sulzmann
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Expressions
e ::= ... | case e of [pi → ei]i∈I Case
p ::= K x1...xn Pattern

Declarations
decl ::= ... | sealed class C a1...anwhere m :: ctx⇒ t

Target
E ::= ... | K | case E of [Pi → Ei]i∈I

P ::= K t̄ x1...xn

decl ; (ΓR, Γ)

(SCls)
x fresh

sealed class C a1...anwhere m :: (x1 : t1, ..., xk : tk)⇒ t ;

({}, {m : ∀.(x : C a1...an, x1 : t1, ..., xk : tk)⇒ t})

decl ; ΓTarget ∪DataDeclTarget

(SClsToData)

b̄ = tv(t1, ..., tk)− tv(a1, ..., an)

[implicit] object K z1...zl :: (y1 : s1, ..., xm : sm)⇒ u1 → ...→ ul → C v1...vn

sealed class C a1...anwhere m :: (x1 : t1, ..., xk : tk)⇒ t

;

data C a1...an where

K :: (∀b̄.t1 → ...→ tk → t)→ (s1, ..., sm)→ u1 → ...→ ul → C v1...vn

m :: ∀ā.C a1...an → ∀tv(t1, ..., tk)− tv(a1, ..., an).t1 → ...→ tk → t

m (K mm s1n z1 ...zl ) = mm

ΓR, Γ ⊢ e : σ ; E

(Case)
ΓR, Γ ⊢ e : t ; E

ΓR, Γ ⊢ pi → ei : t→ t′ ; Pi → Ei for i = 1, ..., n

ΓR, Γ ⊢ case e of [pi → ei]i∈I : t′ ; case E of [Pi → Ei]i∈I

(Pat)

K :: ∀ā.(∀b̄.t1 → ...→ tk → t)→ (s1, ..., sm)→ u1 → ...→ ul → C v1...vn

ā ∩ tv(ΓR, Γ, v′

1, ..., v
′

n, t′) = {} c̄ = ā ∩ tv(v1, ..., vn) φ = [t′/c] φ(v1) = v′

1...φ(vn) = v′

n

ΓR ∪ {y1 : φ(s1), ..., ym : φ(sm)}, Γ ∪ {z1 : φ(u1), ..., zl : φ(ul)} ⊢ e : t′ ; E

ΓR, Γ ⊢ K z ...zl → e : C v′

1...v
′

n → t′ ; K (y1, ..., ym) z1...zl → E

ΓR, Γ ⊢ odecls ; k = E

(SO)

(m : ∀.ā, c̄.(x : C a1...an, x1 : t′1, ..., xk : t′k)⇒ t) ∈ Γ C a1...an is sealed
θ = [t1/a1, ..., tn/an]

b̄ = tv(s1, ..., sm, t)− tv(Γ) c̄ = tv(t′1, ..., t
′

k)− tv(a1, ..., an)

ΓR, Γ ⊢ e : ∀b̄, c̄.(y1 : s1, ..., ym : sm, x1 : θ(t′1), ..., xk : θ(t′k))⇒ θ(t) ; E

ΓR, Γ ⊢

[implicit] object Kz1...zl :: (y1 : s1, ..., ym : sm)⇒ u1 → ...→ ul → C t1...tn where m = e

;

k = Λb̄.λy1 : s1...λym : sm.λz1 : u1...λzl : ul.K t1...tn (Λc̄.λx1 : θ(t′1)...λxk : θ(t′k).E) (y1, ..., ym) z1...zl

Figure 13: Sealed classes extension
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Example:
sealed class Eq a where

(≡) :: a → a → Bool

implicit object EqList :: Eq a ⇒ Eq [a ] where

(≡) [ ] [ ] = True

(≡) (x : xs) (y : ys) = (x ≡ y) ∧ (xs ≡ ys)
(≡) = False

f :: Eq a → a → a → Bool

f EqList xs ys = (≡) xs ys

Translation:
data Eq a where

EqList :: ([a ]→ [a ]→ Bool)→ Eq a → Eq [a ]

eqMethod :: Eq a → (a → a → Bool)
eqMethod (EqList eq ) = eq

eqList :: Eq a → Eq [a ]
eqList d = EqList (λxs → λys →

case (xs , ys) of

([ ], [ ]) → True

(x : xs , y : ys)→ eqMethod d x y ∧
eqMethod (eqList d) xs ys

) d

f :: Eq a → a → a → Bool

f (EqList d) xs ys = eqMethod (eqList d) xs ys

Figure 14: Translation example

et al. 2007). Method application is now also slightly different. We
need to pattern match over the possible shapes of dictionaries to
access the actual method definition.

The translation of case expressions is performed by rules (Case)
and (Pat). For convenience, we assume that arguments of construc-
tors are variables and treatp → e as an ”intermediate” pattern
clause expression. Rule (Pat) is the GADT pattern match typing
rule (Peyton Jones et al. 2006). To translate the pattern clause in
rule (Pat), we translate the pattern body under the extendedenvi-
ronment. We must be careful that none of the universally quantified
variablesā (sometimes referred to as existential or abstract vari-
ables) escapes. See the side conditionā∩tv(ΓR, Γ, v′

1, ..., v
′

n, t′) =
{}. We build the extended environment by computing the type re-
finementφ by matching the provided pattern type against the (out-
put) type of the constructor. Variableszi appear explicitly in the
pattern. They are recorded in the type assignment environment. The
type context is implicit and therefore we record the associated dic-
tionary variablesyj in the proof rule environment. The constructor
K carries the method definition which does not matter here. Hence,
we introduce a do not care pattern variable in the translation.

Object declarations belonging to a sealed class are translated by
(SO). The difference to the earlier rule (O) is that we use thedec-
laration specific constructorK instead of the common class con-
structorCC. The constructorK also takes additional arguments.
The type context and the object declaration argumentszi.

In Figure 14 we consider an example to illustrate the translation
process for sealed classes. For brevity, we only consider one object
declaration whose behaviour and translation is exactly like in the
standard Haskell type class case. Functionf pattern matches over
Eq ’s objects. The program text off demands an implicitEq [a ]
dictionary which we can implicitly build from the providedEq a.
See the translation on the right-hand side.

5. Discussion and Related Work
Haskell Type Classes and GADTs The main goal of this paper is
to show how, with a single construct, we can generalize and unify
both type classes (Hall et al. 1996) and GADTs (Peyton Jones et al.
2006). There are three main ways in which our classes generalize
Haskell’s (multiple-parameter) type classes. Firstly, objects replace
type class instances and allow dictionaries to be built explicitly
as well as implicitly (with implicit objects). Type class instances
can be view asanonymous implicit objects. Secondly, classes are
just types and can occur in any type position, while Haskell’s
type classes can only occur on constraints. Thirdly classesdo not
need to be parametrized, which is not the case for Haskell’s type
classes. When compared to Haskell’s GADTs, classes can be used

to define both open and closed GADTs and they can be passed to a
function implicitly or explicitly; in Haskell we can only have closed
definitions and values of datatypes are always passed explicitly.
Furthermore, in Haskell there is no such concept as GADTs with
methods, while our classes can have methods associated witha
class.

In essence, the combination of the advantages of GADTs and
type classes in a single construct, together with the dot nota-
tion (which elegantly allows switching from implicit to explicit
parametrization) adds a flexibility and convenience to our system
that Haskell does not have.

Omega Propositions Omega (Sheard 2005) has the concept
of propositions, which stand between Haskell type classes and
GADTs: they can be implicitly constructed and passed, but they
are closed and have no methods. Propositions can be easily en-
coded in our system by using a sealed class with no methods where
all the objects are implicit objects.

Associated Types and Datatypes Associated types (Chakravarty
et al. 2005b) and associated datatypes (Chakravarty et al. 2005a)
provide, respectively, a mechanism to declare type synonyms and
datatypes that are local to a type class; for different instances we
will have different instantiations of the type synonyms or datatypes.
While many of the examples using associated types and datatypes
have closely related solutions in our system, this is mostlycoinci-
dental and we consider the work in this paper to be quite orthog-
onal that work. In fact, associated types and datatypes can be seen
as complementary features that add extra power to our class sys-
tem. As a short example showing how we could use both features
together, consider the problem of defining a (closed) type-indexed
function that adds two type-level naturals. Assuming an hypotheti-
cal associated types extension we could do so by:

sealed class Add m n where

type Plus m n

implicit object Base :: Add Z n

implicit object Base where

type Plus Z n = n

implicit object Step :: Add m n ⇒ Add (S m) n
implicit object Step where

type Plus (S m) n = S (Add m n)
We could use this type-level addition to define, for example,an
append function on vectors —that is, lists (type) indexed by their
length.

append :: Add m n ⇒ Vector a m → Vector a n →
Vector a (Plus m n)
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Note that thisappend function can take values ofAdd m n both
implicitly or explicitly, which can be useful in different situations:
we may be interested in letting the compiler implicitly infer values
of Add m n for us whenm andn are known statically; but we
can also explicitly build one such value at run-time when we do not
have all the information statically.

Named Instances and Explicit Implicit Parameters Kahl and
Scheffczyk (2001) propose a language extension to enhance the late
binding capabilities of Haskell type classes. The basic idea is to al-
low named type class instances and use those names to construct
and override dictionaries. In their proposal, named instances and
Haskell modules share the same name space and are separate from
normal values. In order to handle the issues with context reduc-
tion, they make the distinction between ordered and unordered of
constraints. With ordered constraints no context reduction is per-
formed, so it is possible to get the most of late binding; withun-
ordered constraints dictionaries cannot be overridden andcontext
reduction is performed as in Haskell.

Dijkstra and Swierstra (2005) propose a similar idea but dictio-
naries are manipulated as a special form of records and they share
a namespace with normal values. Furthermore, instead of making
a distinction between ordered and unordered constraints, in their
approach the programmer explicitly states which instancesthat
should participate in the proof process. This is similar to our ap-
proach, which uses implicit objects for that purpose. They also pro-
pose that quantifiers and predicates (type class constraints) should
be placed in a signature as much to the right as possible in order
to retain polymorphism in the type inferencer for as long as pos-
sible; and they use partial type signatures to alleviate theburden
of explicitly specifying the (full) signatures. Finally, their system
handles higher-order predicates, which we decided not to support
to keep our system simple. However, we are interested in exploring
the addition of higher-order predicates in the future.

There are number of differences between Kahl and Scheffczyk
(2001); Dijkstra and Swierstra (2005) and the work proposedin
this paper. Firstly, in both approaches, type classes are still sec-
ond class types (that is, they cannot appear in type positions).
With our approach this is not the case and we can use classes at
any type position. Secondly, objects can take any kind of argu-
ments as parameters, while instances can only take class dictionar-
ies as arguments. As a consequence, we cannot, in general, define
datatypes/container types such as ourGraph , Set , Format and
Exp examples in those approaches—the exception is for datatypes
like Omega propositions, where all the parameters on the construc-
tors can be modelled as dictionaries. Thirdly, sealed classes are not
considered by them. Finally, because we use standard value con-
structor syntax and a familiar dot notation, we argue that our source
syntax for dictionary construction and application is muchmore
simple and intuitive than theirs.

Haskell object-oriented programming Hughes and Sparud (1995)
point out that, although Haskell provides excellent support for
writing reusable code, object-oriented style inheritanceis not sup-
ported. They propose the addition of object classes and object in-
stances (which bear some syntactic similarity to our objects) to
solve this problem and allow inheritance in subclasses. In this pa-
per we have not explored subclassing, but we intent to do so inthe
future and we hope to get the benefits that Hughes and Sparud pro-
mote. Nordlander (1999) proposes an object-oriented Haskell-like
language for reactive programming. In that system type classes are
subsumed bystructsand there is a separate construct for algebraic
datatypes. The language supports subtyping and both structs and
datatypes can have subtypes. This makes Nordlander system con-
siderably more complex than what we propose here. Kiselyov and
Lämmel (2005) propose an entirely different approach to object-
oriented programming in Haskell, by having a library-basedap-

proach (instead of a new language or extension) using advanced
(and experimental) type class features. While their library shows
that a lot of advanced object-oriented programming can be encoded
in plain (GHC) Haskell, their approach suffers from not having any
compiler support — types are can be very complex and there is no
proper syntatical support.

Meijer and Claessen (1997) observe that some of Haskell’s
constructs are too complex and they propose a similar idea toours:
unifying type classes and datatypes in a single construct. However,
their approach is quite different and has typing issues thatwe do
not have. Firstly, they do not have a separate concept of object
(that is, all objects are anonymous). This design decision means
that hierarchies are modelled solely using classes (in a similar style
to conventional OO languages like Java or C#), but in a system
without “real” subtyping this can be problematic. For example,
even though they can have ahead function with typeCons a →
List a, because all type-checking remains covariant, they can still
applyhead to an empty list, resulting on the same pattern matching
error that we would have on Haskell. We avoid this issue in our
system by having a separate notion of objects, which does not
introduce a new typeCons a. While we would still get the pattern
matching error if we allowed partial functions, with sealedclasses
we could also take a different design decision and forbid partial
functions in the first place, which would rule out these pattern
matching errors. Secondly, they can apply pattern matchingto any
kind of classes, which results in extra “message not understood”
errors and breaks encapsulation, meaning that they cannot easily
model true ADTs like ourSet or Graph examples. We only allow
pattern matching on sealed classes and retain encapsulation on
(open) classes. Thirdly, if they want to model trully sealedalgebraic
datatypes they still need to resort to a separatedata declaration.
Furthermore, they do not allow GADTs (only Haskell 98 style
datatypes). Finally, they do not have a formalization of their system.

Object-oriented programming and Scala The system that we
propose can be considered as a simple purely functional object-
oriented programming language (without subtyping). Although
mainstream object-oriented languages are imperative, there is a
rich theoretical literature on functional variants. Our encoding of
objects is essentially a simplification of the well-known encoding
based on recursive records such as the one used by Bruce (1993).
Despite the simplicity of our encoding, the system we propose is
practical: we can basically define, with the same convenience, the
programs that we would define in Haskell and we can more conve-
niently define other (more object-oriented style) programs.

Much of the inspiration for the syntax of our class/object sys-
tem comes from Scala (Odersky 2006), which is an impure func-
tional object-oriented language. Our classes are akin Scala’s notion
of trait (Schärli et al. 2003); our objects stand in between Scala’s
notion ofobject andclass; implicit objects are inspired by im-
plicit objects/values; and, finally, we also borrow the concept of a
sealed class. While on the surface Scala and our approach have
some resemblances, the fact is that the core calculus (see Cremet
et al. (2006) for the Featherweight Scala calculus) and the way
many of the language mechanisms work are very different.

Modules In their work on named instances Kahl and Scheffczyk
(2001) note that type classes in their system can be seen as a form
of lightweight modules. Shields and Peyton Jones (2002) propose
first-class modules after observing that there is a big overlap be-
tween Haskell’s module language and its (very expressive) core
language and show how many of the features of ML-style mod-
ules can be encoded in their system. Wehr (2005) introduces type-
preserving translations from modules into type-classes and vice-
versa and discusses the differences between the two mechanisms.
Dreyer et al. (2007) propose an explicitly-typed module language
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where a type class programming style is supported as a particular
usage mode of modules.

Similarly to named instances, our work can also be considered
as a form of lightweight modules without supporting for nested
modules and opaque types. It is not a surprise that our systemhas
limitations when perceived as a module mechanism, but it wasnot
the goal of this paper to unify type classes and modules. Nonethe-
less, unlike named instances and many of the module proposals,
our “lightweight modules” are first class. Moreover, modulesys-
tems like the one presented by Dreyer et al. (2007) tend to require
sophisticated machinery that we do not need for our purposes. It
would be interesting to investigate a single mechanism thatunifies
modules, GADTs and type classes in the future.

6. Conclusion and Future Work
We presented a design which unifies type classes and datatypes
where the main constructs areclass andobject. Classes allow
the definition of new (record) types and we can also define (closed)
GADTs by usingsealed classes. Objects generalize type class in-
stances and value constructors. In future work, we intend toimple-
ment the system and to extend our system to support subclasses.
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