Unfolding-based Reachability Checking of Petri Nets

César Rodríguez

Dept. of Computer Science, University of Oxford, UK

Group Seminar, University of Oxford, February 20, 2014

- Compact, symbolic representation of concurrent state-space
- Originated from the partial-order semantics of Petri nets, 1970s-1980s
- Ken McMillan [CAV'92]: use them for practical verification
 - Finite, complete unfolding prefix for finite-state Petri nets
- Reachability, deadlock, LTL, ...

- Compact, symbolic representation of concurrent state-space
- Originated from the partial-order semantics of Petri nets, 1970s-1980s
- Ken McMillan [CAV'92]: use them for practical verification
 - Finite, complete unfolding prefix for finite-state Petri nets
- Reachability, deadlock, LTL, ...

Here we focus on

- Three semantics of Petri nets
- Unfolding structure and properties
- Unfolding construction and analysis (briefly)

Coping with State-space Explosion

Explosion due to

- Concurrency
- Non-determinism

- Data
- Unsafeness...

Coping with State-space Explosion

Explosion due to

- Concurrency
- Non-determinism

- Data
- Unsafeness...

Alleviating state-space explosion

- Abstraction: Aggregate similar states, by throwing away information and possibly repairing inaccuracies e.g., Abstract Interpretation, CEGAR
 - Reduction: Discard irrelevant states, by identifying *equivalent* computations and examining only one representative e.g., Partial-order reduction
- Compression: Use compact lossless representation, that handles many states at once without losing any of them e.g., BDDs, Unfoldings.

Coping with State-space Explosion

Explosion due to

- Concurrency
- Non-determinism

- Data
- Unsafeness...

Alleviating state-space explosion

- Abstraction: Aggregate similar states, by throwing away information and possibly repairing inaccuracies e.g., Abstract Interpretation, CEGAR
 - Reduction: Discard irrelevant states, by identifying *equivalent* computations and examining only one representative e.g., Partial-order reduction
- Compression: Use compact lossless representation, that handles many states at once without losing any of them e.g., BDDs, Unfoldings.
- BDDs: exploit regularity of homogeneous components
- Unfoldings: exploit concurrency of components

Model Checking with Net Unfoldings

Unfolding construction

- Initially proposed by Ken McMillan
- Size of the prefix reduced
- Canonical prefixes
- Comprehensive account

[McMillan 92]

[Esparza, Römer, Vogler 96]

[Khomenko, Koutny, Vogler 02]

[Esparza, Heljanko 08]

Unfolding analysisReachability and deadlock [McMillan 92].

ock [McMillan 92], [Melzer, Römer 97], [Heljanko 99], [Khomenko,Koutny 00]

LTL-X

[Esparza, Heljanko 01]

1 Petri Nets

- 2 Non-sequential Semantics
- **3** Unfolding Semantics
- 4 Finite, Complete Prefixes

5 Summary

Petri Nets

- Petri nets are fundamental model of concurrent and distributed systems
- Invented by Carl Adam Petri in the 1960s (at the age of 12)
- Petri nets contain places and transitions
- Places model states, conditions, or resources
- Transitions model actions carried out on places

A lot of literature available about Petri nets, for instance:

Wolfgang Reisig, *Elements of Distributed Algorithms: Modeling and Analysis with Petri Nets*, Springer, 1998

Allowed patterns:

Allowed patterns:

Allowed patterns:

Allowed patterns:

Allowed patterns:

Definition

A Petri net is a tuple $N := \langle P, T, F, m_0 \rangle$ such that

- P: finite set of places
- T: finite set of transitions
- $F \subseteq P \times T \cup T \times P$: flow relation
- $m_0: P \to \{0,1\}$: initial marking

Definition

The preset and postset of a transition or place x are:

Preset:
$$\bullet x := \{y \in P \cup T : (y, x) \in F\}$$

Postset: $x^{\bullet} := \{y \in P \cup T : (x, y) \in F\}$

Petri Nets — Markings

Definition

A marking of N is a function

$$n\colon P\to\mathbb{N}$$

that maps places to the number of tokens they contain.

Petri Nets — Markings

Definition

A marking of N is a function

$$n\colon P\to\mathbb{N}$$

that maps places to the number of tokens they contain.

Petri Nets — Enabling Rule

Definition

A transition t is enabled at a marking m iff

$$m(p) \ge 1$$
 for all $p \in {}^{\bullet}t$,

i.e., if the marking covers the preset of t.

 $exit_2$ is enabled, but $enter_2$ is not

Petri Nets — Enabling Rule

Definition

A transition t is enabled at a marking m iff

$$m(p) \ge 1$$
 for all $p \in {}^{\bullet}t$,

i.e., if the marking covers the preset of t.

Only $start_1$ and $start_2$ are enabled

Petri Nets — Firing a Transition

Definition

A transition *t* enabled at marking *m* can fire, producing a new marking *m'*, denoted as $m = \frac{t}{t} m'$

$$m \xrightarrow{t} m'$$

where m' is defined as

$$m'(p) = m(p) + \begin{cases} 1 & \text{if } p \in t^{\bullet} \setminus {}^{\bullet}t \\ -1 & \text{if } p \in {}^{\bullet}t \setminus t^{\bullet} \\ 0 & \text{otherwise} \end{cases}$$

for all $p \in P$.

Petri Nets — Firing a Transition

Definition

A transition t enabled at marking m can fire, producing a new marking m', denoted as

$$m \xrightarrow{t} m'$$

where m' is defined as

$$m'(p) = m(p) + \begin{cases} 1 & \text{if } p \in t^{\bullet} \setminus {}^{\bullet}t \\ -1 & \text{if } p \in {}^{\bullet}t \setminus t^{\bullet} \\ 0 & \text{otherwise} \end{cases}$$

for all $p \in P$.

Petri Nets — Operational Semantics

Let $N := \langle P, T, F, m_0 \rangle$ be a Petri net,

Definition: operational semantics

The operational semantics of N is the edge-labelled transition system

$$M_N := \langle S, \Delta, s_0 \rangle$$

defined as

- S := set of markings $m : P \to \mathbb{N}$ of N
- $\Delta := \{ \langle m, t, m' \rangle : \text{ there is } t \in T \text{ such that } m \xrightarrow{t} m' \}$
- $s_0 := m_0$, the initial marking of N

Petri Nets — Operational Semantics

Let $N := \langle P, T, F, m_0 \rangle$ be a Petri net,

Definition: operational semantics

The operational semantics of N is the edge-labelled transition system

$$M_N := \langle S, \Delta, s_0 \rangle$$

defined as

•
$$S :=$$
 set of markings $m : P \to \mathbb{N}$ of N

•
$$\Delta := \{ \langle m, t, m' \rangle : \text{ there is } t \in T \text{ such that } m \xrightarrow{t} m' \}$$

• $s_0 := m_0$, the initial marking of N

Definition

The reachability set of N is the smallest set reach(N) satisfying

$$m_0 \in reach(N)$$

(a) if $m \in reach(N)$ and $m \xrightarrow{t} m'$, for any $t \in T$, then $m' \in reach(N)$.

Petri Nets — Operational Semantics: Example

Petri Nets — Operational Semantics: Example

Definition

A run, or firing sequence of N is any sequence of transitions

 $t_1t_2t_3\ldots \in T^* \cup T^\omega$

which labels at least one path

$$m_0 \xrightarrow{t_1} m_1 \xrightarrow{t_2} m_2 \xrightarrow{t_3} \dots$$

in M_N starting from the initial marking m_0 . The set of runs of N is denoted by runs(N).

Petri Nets — Boundedness

Definition

A marking m of N is

- k-bounded if $m(p) \leq k$ for all $p \in P$;
- bounded if it is k-bounded for some $k \in \mathbb{N}$;
- safe if it is 1-bounded.

By extension N is safe or bounded if all markings in reach(N) so are.

Petri Nets — Boundedness

Definition

A marking m of N is

- k-bounded if $m(p) \leq k$ for all $p \in P$;
- bounded if it is k-bounded for some $k \in \mathbb{N}$;
- safe if it is 1-bounded.

By extension N is safe or bounded if all markings in reach(N) so are.

Proposition

The Petri net N is bounded iff reach(N) is finite

- All nets we have seen so far were safe
- For the rest of the talk, we focus on bounded Petri nets

Reachability Problem

- Given: a net N and a marking m
- Decide: if $m \in reach(N)$

Coverability Problem

- Given: a net N and a partial function $M: P \to \mathbb{N}$
- Decide: if there is $m \in reach(N)$ such that $m(p) \ge M(p)$ for all places $p \in P$

Boundedness Problem

- Given: a net N
- Decide: whether *reach*(*N*) is finite, i.e., whether *N* is bounded

	Bounded net	Unbounded net
Reachability	PSPACE-complete	EXPSPACE-hard
Coverability	PSPACE-complete	EXSPACE-complete
LTL model checking	PSPACE-complete	Undecidable
Boundedness	N/A	EXPSPACE-complete

Communicating Automata

Concurrent Boolean Programs

```
L0: a := 1;
while (a) b := 0;
goto L0;
```

```
L1: b := 1;
while (b) a := 0;
goto L1;
```


Counter Abstractions

Counter Abstractions

Counter Abstractions

Petri Nets

2 Non-sequential Semantics

3 Unfolding Semantics

4 Finite, Complete Prefixes

5 Summary

State-Explosion: Concurrency

• 2³ reachable markings

State-Explosion: Concurrency

- 2³ reachable markings
- And 2ⁿ if *n* processes instead of 3

start1, start2, enter1
start2, start1, enter1

start1, start2, enter1
start2, start1, enter1

Structure of Processes

- Processes are acyclic, i.e., partial orders
- Associated to a (set of) run
- Every two events e, e' are either
 - **Occurrent**, denoted $e \parallel e'$, as copies of start₁ and start₂
 - 2 Causally related, denoted e < e', as start₁ and enter₁

César Rodríguez (Oxford)

Petri nets — Non-sequential Semantics

Petri nets — Non-sequential Semantics

Non-sequential Semantics

The non-sequential semantics of N is the set conf(N) of all processes associated to the runs of N, i.e.,

 $conf(N) := \{ \mathcal{C}_{\sigma} : \mathcal{C}_{\sigma} \text{ is the process of some } \sigma \in runs(N) \}$

• Each process is a Mazurkiewicz trace or a labelled partial order or ...

Petri Nets

2 Non-sequential Semantics

On Unfolding Semantics

4 Finite, Complete Prefixes

5 Summary

What if we fuse common parts of multiple processes?

What if we fuse common parts of multiple processes?

- We get a branching process or unfolding prefix
- Events may now be in conflict, denoted by e # e', as enter₁ and enter₂

César Rodríguez (Oxford)

What if we fuse common parts of multiple processes?

- We get a branching process or unfolding prefix
- Events may now be in conflict, denoted by e # e', as enter₁ and enter₂

César Rodríguez (Oxford)

Petri Nets — Unfolding Semantics

Unfolding Semantics

The unfolding U_N is the net that results from fusing together the common parts of all configurations in *conf*(N).

Remarks

- \mathcal{U}_N is acyclic, 1-safe
- Labelling is a homomorphism

- Infinite in general
- Finite, complete unfolding prefix

César Rodríguez (Oxford)

Remarks

- \mathcal{U}_N is acyclic, 1-safe
- Labelling is a homomorphism

- Infinite in general
- Finite, complete unfolding prefix

Remarks

- \mathcal{U}_N is acyclic, 1-safe
- Labelling is a homomorphism

- Infinite in general
- Finite, complete unfolding prefix

Remarks

- \mathcal{U}_N is acyclic, 1-safe
- Labelling is a homomorphism

- Infinite in general
- Finite, complete unfolding prefix

César Rodríguez (Oxford)

Unfolding-based Reachability of Petri Nets

Remarks

- \mathcal{U}_N is acyclic, 1-safe
- Labelling is a homomorphism

- Infinite in general
- Finite, complete unfolding prefix

César Rodríguez (Oxford)

Unfolding-based Reachability of Petri Nets

Remarks

- \mathcal{U}_N is acyclic, 1-safe
- Labelling is a homomorphism

- Infinite in general
- Finite, complete unfolding prefix

Remarks

- \mathcal{U}_N is acyclic, 1-safe
- Labelling is a homomorphism

- Infinite in general
- Finite, complete unfolding prefix

Remarks

- \mathcal{U}_N is acyclic, 1-safe
- Labelling is a homomorphism

- Infinite in general
- Finite, complete unfolding prefix

César Rodríguez (Oxford)

Remarks

- \mathcal{U}_N is acyclic, 1-safe
- Labelling is a homomorphism

- Infinite in general
- Finite, complete unfolding prefix

César Rodríguez (Oxford)

Petri Nets — Unfolding Semantics (Inductive Definition)

Let $N := \langle P, T, F, m_0 \rangle$ be a safe Petri net. The unfolding $\mathcal{U}_N := \langle B, E, G, D, \tilde{m}_0 \rangle$

is the safe, acyclic net defined by:

$$\frac{p \in m_0}{c = \langle \bot, p \rangle \in B} \quad h(c) = p \quad c \in \tilde{m}_0$$

$$\frac{t \in T \quad X \subseteq B \quad h(X) = \bullet t \quad X \text{ is coverable}}{e = \langle X, t \rangle \in E} \quad \bullet e = X \quad h(e) = t$$

$$\frac{e \in E \quad h(e) = t \quad t^{\bullet} = \{p_1, \dots, p_n\}}{c_i = \langle e, p_i \rangle \in B} \quad e^{\bullet} = \{c_1, \dots, c_n\} \quad h(c_i) = p_i$$

• *h* is a Petri net homomorphism.

Structural Relations

Definition

Causality:	e < e'	iff	e' occurs $\Rightarrow e$ occurs before
Conflict:	e # e'	iff	e and e' never occur in the same run
Concurrency:	e e'	iff	not $e < e'$ and not $e' < e$ and not $e \ \# e'$

Configurations

(Re)definition

A set of events C is a configuration iff:

- ② ¬e # e' for all e, e' ∈ C

(causally closed) (conflict free)

Intuition: C configuration iff all its events can be sorted to form a run.

Petri Nets

- 2 Non-sequential Semantics
- 3 Unfolding Semantics
- 4 Finite, Complete Prefixes

5 Summary

Verification with Unfoldings: Finite, Complete Prefixes

- \mathcal{U}_N is the result of unfolding 'as much as possible'
- Finite unfolding prefix \mathcal{P}_N results if you stop construction
Verification with Unfoldings: Finite, Complete Prefixes

- \mathcal{U}_N is the result of unfolding 'as much as possible'
- Finite unfolding prefix \mathcal{P}_N results if you stop construction

If N has finitely many reachable markings...

Verification with Unfoldings: Finite, Complete Prefixes

- \mathcal{U}_N is the result of unfolding 'as much as possible'
- Finite unfolding prefix \mathcal{P}_N results if you stop construction

Definition

Prefix \mathcal{P}_N is marking-complete if:

for all marking m reachable in N, there is marking \tilde{m} reachable in \mathcal{P}_N such that

 $h(\tilde{m}) = m.$

If N has finitely many reachable markings...

Verification with Unfoldings: Finite, Complete Prefixes

- \mathcal{U}_N is the result of unfolding 'as much as possible'
- Finite unfolding prefix \mathcal{P}_N results if you stop construction

Definition

Prefix \mathcal{P}_N is marking-complete if:

for all marking m reachable in N, there is marking \tilde{m} reachable in \mathcal{P}_N such that

 $h(\tilde{m}) = m.$

If N has finitely many reachable markings...

- Some finite and marking-complete \mathcal{P}_N exists
- \mathcal{P}_N : symbolic representation of reachability graph
- Reachability of N is:
 - PSPACE-complete in N
 - NP-complete in \mathcal{P}_N
 - Linear in reachability graph

Unfoldings Cope with Concurrency

• And 2ⁿ if *n* processes

Unfoldings Cope with Concurrency

- 2³ reachable markings
- And 2ⁿ if *n* processes
- Unfolding is of linear size

Pruning the unfolding

An event e is a cutoff if either there is an event e' such that

- |[e']| < |[e]| and
- mark([e]) = mark([e']).

Remarks

- Requires building prefixes breadth-first
- Cutoff criteria relates to completeness
- Proposed by McMillan; improved by Esparza et al., among others

Let \mathcal{P}_N be a complete unfolding prefix of N:

- The reachability problem in \mathcal{P}_N can be solved in polynomial time
- Every reachable marking of \mathcal{P}_N is labelled by a marking reachable in N
- And all markings of N are represented in \mathcal{P}_N

So given \mathcal{P}_N and a marking *m* of *N*, checking whether *m* is reachable in *N* is NP-complete in \mathcal{P}_N

- Reductions to SAT, linear programming, stable models, ...
- Analysis time generally much smaller than unfolding time

Unfolding Analysis — Reachability

Given a set of places M of the net, generate

- $\phi^{\text{reach, M}}$ satisfiable iff places M reachable in N
- Encodes existence of a configuration (partially-ordered run) that marks M

Partial-order Reduction vs Unfoldings

	Partial-order reduction	Unfoldings
Underlying structure	Interleavings	Partial order
Idea	Discard equivalent states	Compress equivalent states
Cycles	Allowed	Unfolded
Independence	Static	Dynamic
Analysis	Linear time	NP-complete
Mainstream	✓	×

cf. ongoing work with Subodh

Unfolding Other Models of Concurrency

Unfoldings applicable to other models of concurrency:

- Process algebras
- Communicating automata
- Concurrent boolean programs
- High-level nets
- Unbounded nets
- Nets with read arcs
- Time Petri nets
- . . .

Unfolding Other Models of Concurrency

Unfoldings applicable to other models of concurrency:

- Process algebras
- Communicating automata
- Concurrent boolean programs
- High-level nets
- Unbounded nets
- Nets with read arcs
- Time Petri nets
- . . .
- and very soon programs!

cf. work with Bjoern and Subodh

- Compact representation of a finite, concurrent state spaces
- Structure, properties, and construction of unfoldings
- Reachability analysis: based on SAT or on-the-fly
- Applicable to other formalisms with notion of concurrency

- Compact representation of a finite, concurrent state spaces
- Structure, properties, and construction of unfoldings
- Reachability analysis: based on SAT or on-the-fly
- Applicable to other formalisms with notion of concurrency

Unfoldings do not address other sources of explosion:

- Non-deterministic choices (\rightarrow merged processes)
- Oncurrent read access (→ contextual unfoldings)
- Non-safe or unbounded nets (\rightarrow currently working on it)
- Data