Unfolding-based Reachability Checking of Petri Nets

César Rodríguez

Dept. of Computer Science, University of Oxford, UK

Group Seminar, University of Oxford, February 20, 2014
Unfoldings: Symbolic Representations

- Compact, symbolic representation of concurrent state-space
- Originated from the partial-order semantics of Petri nets, 1970s-1980s
- Ken McMillan [CAV’92]: use them for practical verification
 - Finite, complete unfolding prefix for finite-state Petri nets
- Reachability, deadlock, LTL, . . .
Unfoldings: Symbolic Representations

- Compact, symbolic representation of concurrent state-space
- Originated from the partial-order semantics of Petri nets, 1970s-1980s
- Ken McMillan [CAV’92]: use them for practical verification
 - Finite, complete unfolding prefix for finite-state Petri nets
- Reachability, deadlock, LTL, . . .

Here we focus on

- Three semantics of Petri nets
- Unfolding structure and properties
- Unfolding construction and analysis (briefly)
Model Checking

- **System**: Model the system
 - **Modelling**: Formalization of the system model
 - **State-space exploration**: Generation of the Kripke structure K
 - **Kripke structure K**: Check whether $K \models \phi$
- **Property to verify**: Specification ϕ
 - **Formalization**: Unfolding-based Reachability of Petri Nets

Counterexample / Correct
Coping with State-space Explosion

Explosion due to
- Concurrency
- Non-determinism
- Data
- Unsafeness...
Coping with State-space Explosion

Explosion due to
- Concurrency
- Non-determinism
- Data
- Unsafeness

Alleviating state-space explosion

| Abstraction: | Aggregate similar states, by throwing away information and possibly repairing inaccuracies
| | e.g., Abstract Interpretation, CEGAR |
| Reduction: | Discard irrelevant states, by identifying equivalent computations and examining only one representative
| | e.g., Partial-order reduction |
| Compression: | Use compact lossless representation, that handles many states at once without losing any of them
| | e.g., BDDs, Unfoldings |
Coping with State-space Explosion

Explosion due to

- Concurrency
- Non-determinism
- Data
- Unsafeness...

Alleviating state-space explosion

Abstraction: Aggregate similar states, by throwing away information and possibly repairing inaccuracies. e.g., Abstract Interpretation, CEGAR

Reduction: Discard irrelevant states, by identifying equivalent computations and examining only one representative. e.g., Partial-order reduction

Compression: Use compact lossless representation, that handles many states at once without losing any of them. e.g., BDDs, Unfoldings.

- **BDDs:** exploit regularity of homogeneous components
- **Unfoldings:** exploit concurrency of components
Check whether $K \models \phi$

Counterexample / Correct
Model Checking with Net Unfoldings

- **Concurrent system**
 - Modelling
 - Petri Net
 - Unfolding construction
 - Complete prefix
 - Unfolding analysis
 - Counterexample / Correct

- **Property to verify**
 - Formalization
 - Reachability / LTL
Unfolding construction

- Initially proposed by Ken McMillan
 [McMillan 92]
- Size of the prefix reduced
 [Esparza, Römer, Vogler 96]
- Canonical prefixes
 [Khomenko, Koutny, Vogler 02]
- Comprehensive account
 [Esparza, Heljanko 08]

Unfolding analysis

- Reachability and deadlock
 [McMillan 92], [Melzer, Römer 97], [Heljanko 99],
 [Khomenko, Koutny 00]
- LTL-X
 [Esparza, Heljanko 01]
Outline

1 Petri Nets

2 Non-sequential Semantics

3 Unfolding Semantics

4 Finite, Complete Prefixes

5 Summary
Petri Nets

- Petri nets are fundamental model of **concurrent** and **distributed systems**
- Invented by **Carl Adam Petri** in the 1960s (at the age of 12)

- Petri nets contain **places** and **transitions**
- Places model **states, conditions, or resources**
- Transitions model **actions** carried out on places

A lot of literature available about Petri nets, for instance:

Petri Nets — Example

- **Places** are represented by circles.
- **Transitions** are represented by rectangles.
- **Tokens** are represented by dots.
- **Arcs** are represented by arrows connecting places and transitions.

Allowed patterns:

Forbidden patterns:
Petri Nets — Example

The are places
The are transitions
The are tokens
The are arcs

Allowed patterns:

Forbidden patterns:
Petri Nets — Example

The are places
The are transitions
The are tokens
The are arcs

Allowed patterns:

Forbidden patterns:
Petri Nets — Example

The circles are places
The rectangles are transitions
The dots are tokens
The arrows are arcs

Allowed patterns:

Forbidden patterns:
Petri Nets — Example

The \(\bigcirc \) are places
The \(\square \) are transitions
The \(\bullet \) are tokens
The \(\rightarrow \) are arcs

Allowed patterns:

Forbidden patterns:
Petri Nets — Example

The are places
The are transitions
The are tokens
The are arcs

Allowed patterns:

Forbidden patterns:
A Petri net is a tuple $N := \langle P, T, F, m_0 \rangle$ such that

- P: finite set of places
- T: finite set of transitions
- $F \subseteq P \times T \cup T \times P$: flow relation
- $m_0: P \to \{0, 1\}$: initial marking

The preset and postset of a transition or place x are:

Preset:
\[\cdot x := \{ y \in P \cup T : (y, x) \in F \} \]

Postset:
\[x^\bullet := \{ y \in P \cup T : (x, y) \in F \} \]
A marking of N is a function $m: P \rightarrow \mathbb{N}$ that maps places to the number of tokens they contain.

$m(idle_1) = 1$
$m(mux) = 1$
$m(idle_2) = 1$

$m(p) = 0$ for any other $p \in P$
A marking of N is a function $m: P \rightarrow \mathbb{N}$ that maps places to the number of tokens they contain.

- m (mutex) = 2
- m (cs$_2$) = 3
- $m(p) = 0$ for any other $p \in P$
A transition t is enabled at a marking m iff

$$m(p) \geq 1 \text{ for all } p \in \bullet t,$$

i.e., if the marking covers the preset of t.

exit$_2$ is enabled, but enter$_2$ is not.
A transition \(t \) is enabled at a marking \(m \) iff
\[
m(p) \geq 1 \text{ for all } p \in \bullet t,
\]
i.e., if the marking covers the preset of \(t \).

Only \(\text{start}_1 \) and \(\text{start}_2 \) are enabled.
A transition \(t \) enabled at marking \(m \) can fire, producing a new marking \(m' \), denoted as

\[
 m \xrightarrow{t} m'
\]

where \(m' \) is defined as

\[
 m'(p) = m(p) + \begin{cases}
 1 & \text{if } p \in t^\bullet \setminus \bullet t \\
 -1 & \text{if } p \in \bullet t \setminus t^\bullet \\
 0 & \text{otherwise}
 \end{cases}
\]

for all \(p \in P \).
Definition

A transition t enabled at marking m can fire, producing a new marking m', denoted as

$$m \xrightarrow{t} m'$$

where m' is defined as

$$m'(p) = m(p) + \begin{cases}
1 & \text{if } p \in t^* \setminus \bullet t \\
-1 & \text{if } p \in \bullet t \setminus t^* \\
0 & \text{otherwise}
\end{cases}$$

for all $p \in P$.

![Petri Net Diagram](image)
Let \(N := \langle P, T, F, m_0 \rangle \) be a Petri net,

Definition: operational semantics

The **operational semantics** of \(N \) is the edge-labelled transition system \(M_N := \langle S, \Delta, s_0 \rangle \) defined as

- \(S := \) set of markings \(m: P \rightarrow \mathbb{N} \) of \(N \)
- \(\Delta := \{ \langle m, t, m' \rangle: \text{there is } t \in T \text{ such that } m \xrightarrow{t} m' \} \)
- \(s_0 := m_0 \), the initial marking of \(N \)
Let \(N := \langle P, T, F, m_0 \rangle \) be a Petri net,

Definition: operational semantics

The **operational semantics** of \(N \) is the edge-labelled transition system

\[
M_N := \langle S, \Delta, s_0 \rangle
\]

defined as

- \(S := \) set of markings \(m: P \to \mathbb{N} \) of \(N \)
- \(\Delta := \{\langle m, t, m'\rangle: \) there is \(t \in T \) such that \(m \xrightarrow{t} m' \}\}
- \(s_0 := m_0 \), the initial marking of \(N \)

Definition

The **reachability set** of \(N \) is the smallest set \(\text{reach}(N) \) satisfying

1. \(m_0 \in \text{reach}(N) \)
2. If \(m \in \text{reach}(N) \) and \(m \xrightarrow{t} m' \), for any \(t \in T \), then \(m' \in \text{reach}(N) \).
Petri Nets — Operational Semantics: Example

\[\text{mutex} \]

\[\text{cs}_2 \]

\[\text{exit}_2 \]

\[\text{waiting}_2 \]

\[\text{enter}_2 \]

\[\text{start}_2 \]

\[\text{idle}_2 \]

\[\text{cs}_1 \]

\[\text{exit}_1 \]

\[\text{start}_1 \]

\[\text{idle}_1 \]

\[\text{waiting}_1 \]

\[\text{enter}_1 \]
Petri Nets — Operational Semantics: Example
A run, or firing sequence of N is any sequence of transitions

$$t_1 t_2 t_3 \ldots \in T^* \cup T^\omega$$

which labels at least one path

$$m_0 \xrightarrow{t_1} m_1 \xrightarrow{t_2} m_2 \xrightarrow{t_3} \ldots$$

in M_N starting from the initial marking m_0. The set of runs of N is denoted by $\text{runs}(N)$.
Definition

A marking \(m \) of \(N \) is

- \(k \)-bounded if \(m(p) \leq k \) for all \(p \in P \);
- bounded if it is \(k \)-bounded for some \(k \in \mathbb{N} \);
- safe if it is 1-bounded.

By extension \(N \) is safe or bounded if all markings in \(\text{reach}(N) \) so are.
A marking m of N is
- k-bounded if $m(p) \leq k$ for all $p \in P$;
- bounded if it is k-bounded for some $k \in \mathbb{N}$;
- safe if it is 1-bounded.

By extension N is safe or bounded if all markings in $\text{reach}(N)$ so are.

The Petri net N is bounded iff $\text{reach}(N)$ is finite.

- All nets we have seen so far were safe
- For the rest of the talk, we focus on bounded Petri nets
Reachability Problem
- Given: a net \(N \) and a marking \(m \)
- Decide: if \(m \in \text{reach}(N) \)

Coverability Problem
- Given: a net \(N \) and a partial function \(M : P \to \mathbb{N} \)
- Decide: if there is \(m \in \text{reach}(N) \) such that \(m(p) \geq M(p) \) for all places \(p \in P \)

Boundedness Problem
- Given: a net \(N \)
- Decide: whether \(\text{reach}(N) \) is finite, i.e., whether \(N \) is bounded
Petri Nets — Decidability and Complexity

<table>
<thead>
<tr>
<th></th>
<th>Bounded net</th>
<th>Unbounded net</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reachability</td>
<td>PSPACE-complete</td>
<td>EXPSPACE-hard</td>
</tr>
<tr>
<td>Coverability</td>
<td>PSPACE-complete</td>
<td>EXSPACE-complete</td>
</tr>
<tr>
<td>LTL model checking</td>
<td>PSPACE-complete</td>
<td>Undecidable</td>
</tr>
<tr>
<td>Boundedness</td>
<td>N/A</td>
<td>EXPSPACE-complete</td>
</tr>
</tbody>
</table>
Communicating Automata

\[a \rightarrow b \rightarrow c \rightarrow d \]

\[c \rightarrow e \rightarrow f \]

\[a \rightarrow b \rightarrow e \rightarrow f \]

\[a \rightarrow b \rightarrow c \rightarrow d \]

\[c \rightarrow e \rightarrow f \]

\[a \rightarrow b \rightarrow e \rightarrow f \]

\[a \rightarrow b \rightarrow e \rightarrow f \]

\[a \rightarrow b \rightarrow e \rightarrow f \]

\[a \rightarrow b \rightarrow e \rightarrow f \]

\[a \rightarrow b \rightarrow e \rightarrow f \]

\[a \rightarrow b \rightarrow e \rightarrow f \]

\[a \rightarrow b \rightarrow e \rightarrow f \]

\[a \rightarrow b \rightarrow e \rightarrow f \]

\[a \rightarrow b \rightarrow e \rightarrow f \]

\[a \rightarrow b \rightarrow e \rightarrow f \]

\[a \rightarrow b \rightarrow e \rightarrow f \]

\[a \rightarrow b \rightarrow e \rightarrow f \]

\[a \rightarrow b \rightarrow e \rightarrow f \]

\[a \rightarrow b \rightarrow e \rightarrow f \]

\[a \rightarrow b \rightarrow e \rightarrow f \]

\[a \rightarrow b \rightarrow e \rightarrow f \]

\[a \rightarrow b \rightarrow e \rightarrow f \]
Concurrent Boolean Programs

L0:
 a := 1;
 while (a) b := 0;
 goto L0;

L1:
 b := 1;
 while (b) a := 0;
 goto L1;

\[a := 1 \]
\[\sim a \]
\[b := 0 \]
\[\sim b \]
\[\text{while } a \]

\[\text{goto L0} \]
Counter Abstractions

\[x_1, x_2 \]

\(x_1 := 0 \)
\(x_2 := 0 \)
\[x_1 = 0 \]
\(x_1 := \neg x_1 \)
\(x_2 := 1 \)
\[x_2 = 1 \]
\[x_1 = 0 \]

Shared variables (finite state)

Program (finite state, unbounded replication)
Counter Abstractions
Counter Abstractions

\[x_1, \neg x_1, x_2, \neg x_2 \]
Outline

1 Petri Nets

2 Non-sequential Semantics

3 Unfolding Semantics

4 Finite, Complete Prefixes

5 Summary
State-Explosion: Concurrency

2^3 reachable markings

\[\begin{align*}
\text{p}_1 & \xleftarrow{t_2} \text{p}_2 \\
\text{p}_3 & \xleftarrow{t_4} \text{p}_4 \\
\text{p}_5 & \xleftarrow{t_6} \text{p}_6
\end{align*}\]
State-Explosion: Concurrency

- 2^3 reachable markings
- And 2^n if n processes instead of 3
Processes (or configurations) of a Petri Net

![Petri Net Diagram]

- start₁, start₂, enter₁
- start₂, start₁, enter₁
Processes (or configurations) of a Petri Net

Labels and conditions

Labelled, acyclic, and safe

Represents multiple interleavings of the same concurrent behaviour

\[\text{start}_1, \text{start}_2, \text{enter}_1 \]

\[\text{start}_2, \text{start}_1, \text{enter}_1 \]

\[\text{idle}_1, \text{mutex}, \text{idle}_2 \]
Processes (or configurations) of a Petri Net

![Petri Net Diagram]

- **start**\(_1\), **start**\(_2\), **enter**\(_1\)
- **start**\(_2\), **start**\(_1\), **enter**\(_1\)

Events and conditions

- Labelled, acyclic, and safe
- Represents multiple interleavings of the same concurrent behaviour
Processes (or configurations) of a Petri Net

Events and conditions
Labelled, acyclic, and safe
Represents multiple interleavings of the same concurrent behaviour

César Rodríguez (Oxford)
Processes (or configurations) of a Petri Net

\[\text{start}_1, \text{start}_2, \text{enter}_1, \text{start}_2, \text{start}_1, \text{enter}_1 \]
Processes (or configurations) of a Petri Net

\begin{align*}
\text{start}_1, \text{start}_2, \text{enter}_1, \\
\text{start}_2, \text{start}_1, \text{enter}_1, \\
\text{start}_1, \text{enter}_1, \text{start}_2
\end{align*}
Processes (or configurations) of a Petri Net

- **Events and conditions**
- **Labelled, acyclic, and safe**
- Represents multiple interleavings of the same concurrent behaviour

start₁, start₂, enter₁
start₂, start₁, enter₁
start₁, enter₁, start₂
Processes are acyclic, i.e., partial orders

Associated to a (set of) run

Every two events e, e' are either

1. Concurrent, denoted $e \parallel e'$, as copies of start$_1$ and start$_2$
2. Causally related, denoted $e < e'$, as start$_1$ and enter$_1$
Non-sequential Semantics

The non-sequential semantics of N is the set $\text{conf}(N)$ of all processes associated to the runs of N, i.e., $\text{conf}(N) := \{ C_\sigma : C_\sigma$ is the process of some $\sigma \in \text{runs}(N) \}$.
The non-sequential semantics of N is the set $\text{conf}(N)$ of all processes associated to the runs of N, i.e.,

$$\text{conf}(N) := \{ C_\sigma : C_\sigma \text{ is the process of some } \sigma \in \text{runs}(N) \}$$

- Each process is a Mazurkiewicz trace or a labelled partial order or...
What if we fuse common parts of multiple processes?

We get a branching process or unfolding prefix. Events may now be in conflict, denoted by $e \# e'$, as enter\(_1\) and enter\(_2\).
What if we fuse common parts of multiple processes?

- We get a branching process or unfolding prefix.
- Events may now be in conflict, denoted by \(e \not\equiv e' \), as \(\text{enter}_1 \) and \(\text{enter}_2 \).
What if we fuse common parts of multiple processes?

We get a branching process or unfolding prefix

Events may now be in conflict, denoted by $e \not\equiv e'$, as enter$_1$ and enter$_2$
The unfolding \mathcal{U}_N is the net that results from fusing together the common parts of all configurations in $\text{conf}(\mathcal{N})$.

- Acyclic and safe
- Labelling is a homomorphism
- Infinite in general
Inductive Definition — Example

Remarks

- \mathcal{U}_N is acyclic, 1-safe
- Labelling is a homomorphism
- Infinite in general
- Finite, complete unfolding prefix
Remarks

- \mathcal{U}_N is acyclic, 1-safe
- Labelling is a homomorphism
- Infinite in general
- Finite, complete unfolding prefix
Inductive Definition — Example

Remarks

\(\mathcal{U}_N \) is acyclic, 1-safe
Labelling is a homomorphism

Infinite in general
Finite, complete unfolding prefix
Inductive Definition — Example

Remarks

- \mathcal{U}_N is acyclic, 1-safe
- Labelling is a homomorphism
- Infinite in general
- Finite, complete unfolding prefix
Inductive Definition — Example

Remarks

- \mathcal{U}_N is acyclic, 1-safe
- Labelling is a homomorphism
- Infinite in general
- Finite, complete unfolding prefix
Remarks

- U_N is acyclic, 1-safe
- Labelling is a homomorphism
- Infinite in general
- Finite, complete unfolding prefix
Inductive Definition — Example

Remarks
- \mathcal{U}_N is acyclic, 1-safe
- Labelling is a homomorphism
- Infinite in general
- Finite, complete unfolding prefix
Inductive Definition — Example

Remarks
- \mathcal{U}_N is acyclic, 1-safe
- Labelling is a **homomorphism**
- Infinite in general
- Finite, **complete** unfolding prefix
Remarks

- \mathcal{U}_N is acyclic, 1-safe
- Labelling is a homomorphism
- Infinite in general
- Finite, complete unfolding prefix
Let \(N := \langle P, T, F, m_0 \rangle \) be a safe Petri net. The unfolding

\[\mathcal{U}_N := \langle B, E, G, D, \tilde{m}_0 \rangle \]

is the safe, acyclic net defined by:

\[p \in m_0 \]
\[c = \langle \bot, p \rangle \in B \quad h(c) = p \quad c \in \tilde{m}_0 \]

\[t \in T \quad X \subseteq B \quad h(X) = \bullet t \quad X \text{ is coverable} \]
\[e = \langle X, t \rangle \in E \quad \bullet e = X \quad h(e) = t \]

\[e \in E \quad h(e) = t \quad t^\bullet = \{ p_1, \ldots, p_n \} \]
\[c_i = \langle e, p_i \rangle \in B \quad e^\bullet = \{ c_1, \ldots, c_n \} \quad h(c_i) = p_i \]

- \(h \) is a Petri net homomorphism.
Structural Relations

Definition

Causality: $e < e'$ iff e' occurs \Rightarrow e occurs before

Conflict: $e \# e'$ iff e and e' never occur in the same run

Concurrency: $e \parallel e'$ iff not $e < e'$ and not $e' < e$ and not $e \# e'$
Configurations

A set of events C is a configuration iff:

1. $e, e' \in C$ and $e' < e$ implies $e' \in C$ (causally closed)
2. $\neg e \# e'$ for all $e, e' \in C$ (conflict free)

Intuition: C configuration iff all its events can be sorted to form a run.
A set of events C is a configuration iff:

1. $e \in C \land e' < e \Rightarrow e' \in C$ (causally closed)
2. $\neg e \neq e'$ for all $e, e' \in C$ (conflict free)

Intuition: C configuration iff all its events can be sorted to form a run.
Outline

1. Petri Nets
2. Non-sequential Semantics
3. Unfolding Semantics
4. Finite, Complete Prefixes
5. Summary
\(\mathcal{U}_N \) is the result of unfolding ‘as much as possible’

Finite unfolding prefix \(\mathcal{P}_N \) results if you stop construction
\(U_N \) is the result of unfolding ‘as much as possible’

Finite unfolding prefix \(\mathcal{P}_N \) results if you stop construction

If \(N \) has finitely many reachable markings...
Verification with Unfoldings: Finite, Complete Prefixes

- U_N is the result of unfolding ‘as much as possible’
- Finite unfolding prefix P_N results if you stop construction

Definition

Prefix P_N is marking-complete if:
for all marking m reachable in N, there is marking \tilde{m} reachable in P_N such that

$$h(\tilde{m}) = m.$$

If N has finitely many reachable markings...
\(\mathcal{U}_N \) is the result of unfolding ‘as much as possible’

Finite unfolding prefix \(\mathcal{P}_N \) results if you stop construction

Definition

Prefix \(\mathcal{P}_N \) is **marking-complete** if:

for all marking \(m \) reachable in \(N \), there is marking \(\tilde{m} \) reachable in \(\mathcal{P}_N \) such that

\[
h(\tilde{m}) = m.
\]

If \(N \) has finitely many reachable markings...

- Some **finite** and **marking-complete** \(\mathcal{P}_N \) exists
- \(\mathcal{P}_N \): symbolic representation of reachability graph
- Reachability of \(N \) is:
 - PSPACE-complete in \(N \)
 - NP-complete in \(\mathcal{P}_N \)
 - Linear in reachability graph
Unfoldings Cope with Concurrency

- 2^3 reachable markings
- And 2^n if n processes
2^3 reachable markings
And 2^n if n processes
Unfolding is of linear size
Cutoff Events

Pruning the unfolding

An event e is a cutoff if either there is an event e' such that

- $|e'| < |e|$ and
- $mark([e]) = mark([e'])$.

Remarks

- Requires building prefixes breadth-first
- Cutoff criteria relates to completeness
- Proposed by McMillan; improved by Esparza et al., among others
Let \mathcal{P}_N be a complete unfolding prefix of N:

- The reachability problem in \mathcal{P}_N can be solved in polynomial time
- Every reachable marking of \mathcal{P}_N is labelled by a marking reachable in N
- And all markings of N are represented in \mathcal{P}_N

So given \mathcal{P}_N and a marking m of N, checking whether m is reachable in N is NP-complete in \mathcal{P}_N

- Reductions to SAT, linear programming, stable models, . . .
- Analysis time generally much smaller than unfolding time
Given a set of places M of the net, generate

- $\phi^{\text{reach, } M}$ satisfiable iff places M reachable in N
- Encodes existence of a configuration (partially-ordered run) that marks M
Partial-order Reduction vs Unfoldings

<table>
<thead>
<tr>
<th></th>
<th>Partial-order reduction</th>
<th>Unfoldings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underlying structure</td>
<td>Interleavings</td>
<td>Partial order</td>
</tr>
<tr>
<td>Idea</td>
<td>Discard equivalent states</td>
<td>Compress equivalent states</td>
</tr>
<tr>
<td>Cycles</td>
<td>Allowed</td>
<td>Unfolded</td>
</tr>
<tr>
<td>Independence</td>
<td>Static</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Analysis</td>
<td>Linear time</td>
<td>NP-complete</td>
</tr>
<tr>
<td>Mainstream</td>
<td>✔</td>
<td>✗</td>
</tr>
</tbody>
</table>

cf. ongoing work with Subodh
Unfoldings applicable to other models of concurrency:

- Process algebras
- Communicating automata
- Concurrent boolean programs
- High-level nets
- Unbounded nets
- Nets with read arcs
- Time Petri nets
- ...
Unfoldings applicable to other models of concurrency:

- Process algebras
- Communicating automata
- Concurrent boolean programs
- High-level nets
- Unbounded nets
- Nets with read arcs
- Time Petri nets
- ...
- and very soon programs!

cf. work with Bjoern and Subodh
Summary

- Compact representation of a finite, **concurrent** state spaces
- Structure, properties, and construction of unfoldings
- Reachability analysis: based on SAT or on-the-fly
- Applicable to other formalisms with notion of concurrency

Unfoldings do not address other sources of explosion:
- Non-deterministic choices (→ merged processes)
- Concurrent read access (→ contextual unfoldings)
- Non-safe or unbounded nets (→ currently working on it)
Summary

- Compact representation of a finite, concurrent state spaces
- Structure, properties, and construction of unfoldings
- Reachability analysis: based on SAT or on-the-fly
- Applicable to other formalisms with notion of concurrency

Unfoldings do not address other sources of explosion:
- Non-deterministic choices (→ merged processes)
- Concurrent read access (→ contextual unfoldings)
- Non-safe or unbounded nets (→ currently working on it)
- Data