IONet: Learning to Cure the Curse of Drift in Inertial Odometry

Changhao Chen, Xiaoxuan Lu, Andrew Markham, Niki Trigoni
Department of Computer Science
University of Oxford
AAAI 2019 29th Jan 2019
changhao.chen@cs.ox.ac.uk
Why we study inertial localization

GNSS:
- serious attenuation and multi-path effect

Inertial sensors:
- Unique, completely self-contained
- Widespread, deployed on smartphones, robots, drones
Indoor Pedestrian Navigation

Existing Methods:
Strapdown Inertial Navigation System (SINS)

Pedestrian Dead Reckoning (PDR)
The Curse of Drift

Attitude Update:

Direction Cosine \(\mathbf{C}_b^n(t) = \mathbf{C}_b^n(t - 1) \ast \mathbf{\Omega}(t) \) (1)

Angular Velocity \(\mathbf{\Omega}(t) = \mathbf{C}^{b_{t-1}}_{b_t} = I + \frac{\sin(\sigma)}{\sigma} [\sigma \times] + \frac{1 - \cos(\sigma)}{\sigma^2} [\sigma \times]^2 \) (3)

Relative Rotation Matrix

Velocity Update:

Velocity \(\mathbf{v}(t) = \mathbf{v}(t - 1) + ((\mathbf{C}_b^n(t - 1)) \ast \mathbf{a}(t) - \mathbf{g}_n) dt \) (4)

Gravity

Location Update:

Location \(\mathbf{L}(t) = \mathbf{L}(t - 1) + \mathbf{v}(t - 1) dt \) (5)

Accelerations
Tracking Down a Cure

Velocity

\[
[C_b^n \ v \ L]_t = f([C_b^n \ v \ L]_{t-1}, [a \ w]_t)
\]

Angular Velocity

Orientation
Location
Accelerations

Location Update

\[
\Delta L = \int_{t=0}^{n-1} v(t) \, dt
\]

- Break the cycle of continuous Integration
- Segment inertial data into independent windows
Sequence-based Model

\[
(\Delta l, \Delta \psi) = f_\theta(v^b(0), g^b_0, \hat{a}_{1:n}, \hat{w}_{1:n})
\]

Initial Velocity Gravity

Polar Vector

Inertial measurements

Location Update

\[
\begin{align*}
x_n &= x_0 + \Delta l \cos(\psi_0 + \Delta \psi) \\
y_n &= y_0 + \Delta l \sin(\psi_0 + \Delta \psi)
\end{align*}
\]

Inertial measurements

Polar Vector

Learning the parameters

\[
\theta^* = \arg \min_{\theta} \ell(f_\theta(X), Y)
\]

Loss function

\[
\ell = \sum \| \Delta \tilde{l} - \Delta l \|^2_2 + \kappa \| \Delta \tilde{\psi} - \Delta \psi \|^2_2
\]
Figure 3: Overview of IONet framework
Comparison of Different Frameworks

![Comparison of Different Frameworks](image.png)
Tests Involving Multiple Users and Devices

Figure 4: Performance in experiments involving different users.

Figure 5: Performance in experiments involving different devices.
Large-scale Indoor Localization

Figure 6: Trajectories on Floor A

(a) Handheld

(b) In Pocket

(c) In Handbag

Figure 7: Trajectories on Floor B

(a) Handheld

(b) In Pocket

(c) In Handbag
Trolley Tracking Experiment

(a) Ground Truth
(b) IONet
(c) Tango

Figure 9: Trolley tracking trajectories of (a) Ground Truth (b) IONet (c) Tango

Figure 12: CDF of Trolley Tracking
Contributions

- Cast the inertial tracking problem as a sequential learning approach.
- Propose the first deep neural network (DNN) framework that learns location transforms from raw IMU data.
- Conducted extensive experiments across different attachments, users/devices and new environment.
- In addition, our model can generalize to a more general motion.
Thanks for your attention!

Changhao Chen
changhaihao.chen@cs.ox.ac.uk