
Accurate silhouettes – do polyhedral models suffice?

Chris Heunen

September 2, 2003

Abstract

We investigate whether polyhedral models suffice for accurate silhouette computation. Therefore, we set up a
theoretical framework, a mathematical foundation, to compare various algorithms computing silhouettes on spatial
and topological accuracy. Within this carefully constructed environment, we can argue on a formal basis why some
silhouette-computing algorithms are better than others. In doing so, we distinguish image space algorithms and object
space algorithms. We show that only object space algorithms that respect topology are accurate enough for general
applications.

1 Introduction

Silhouettes are a key part in non-photorealistic rendering
[GG99]. They are also important in other applications,
like mesh simplification [LE97], collision detection, sweep-
ing, and various graphical user interfaces. Various algo-
rithms have been developed to compute such silhouettes
[BE99, HZ00, NM00, RC99, Her99]. Some of them assume
the commonly used polyhedral model, where objects are rep-
resented by an approximation with (flat) polygons. Espe-
cially in real-time rendering applications, where one often
sacrifices rendering quality to gain speed [MKT+97, HZ00],
the polyhedral model is often the representation of choice.
In most cases (of photo-realistic rendering), this model has
proven fairly adequate. When computing silhouettes, how-
ever, a polyhedral representation of the object might not be
sufficient for correct results.

1.1 Contributions

In this article, we investigate if there are any shortcomings to
computing silhouettes based on polygonal approximations.
Therefore, we examine various techniques, that represent a
general underlying method. Each will be discussed on the
topological feasibility of the result. In doing so, the main
focus will be on the theoretical aspect. We shall argue, on
a formal basis, why some algorithms ‘work’, where others
do not – that is, to what extent the algorithms yield the
desired results. If any other features like computation time
or memory usage stand out, however, we will not neglect to
mention them.

1.2 Image vs Object space

First, we should make a clear distinction between algorithms
that operate in object space (section 4), and ones that oper-
ate in image space (section 3); the difference being the mo-
ment in the pipeline when the algorithm is applied. Object
space algorithms work directly in the 3-dimensional space

of the model – they try to squeeze every bit of information
out, and yield full-fledged 3-dimensional silhouette curves.
Image space algorithms, in contrast, start after projection,
in the 2-d pixel array, with an additional z-buffer. As a
consequence, their results are also 2-d pixel arrays (plus the
unchanged z-buffer)1.

Since we are working from a theoretical point of view,
we analyse the results of both variants against the actual,
unprojected, three-dimensional outlines. After all, they both
have essentially the same information; the depth information
lacking in the projection in image space can be obtained by
the supplied z-buffer. Moreover, almost every application
of computing silhouettes, except perhaps non-photorealistic
rendering, requires 3-d silhouette information.

1.3 Structure of this paper

Before we can compare the various algorithms in a scientific
manner, we need to acquire the means to formalize the com-
parison. This basis is established in section 2, and sets the
stage for the rest of the article. We then successively con-
sider image space algorithms in section 3 and object space
algorithms in section 4. Finally we draw conclusions in sec-
tion 5.

2 Mise-en-scène

In this section, we set up a mathematical basis, a theoreti-
cal framework. In the rest of this paper, this framework will
be used to make an in-depth analysis of various algorithms.
This framework regards the ‘real’ surface (2.1), a polygo-
nal approximation (2.2), and silhouettes of both the surface
and the approximation (2.3). We define an error metric to
compare approximations to the actual silhouettes in 2.4, and
conclude with a discussion about their topology in 2.5.

1Image space algorithms usually rely heavily on their input being discrete pixels, since they often use edge detection. A ‘projection
space algorithm’ has not yet been tried to our knowledge, but it would fail probably.

1

2.1 Underlying surface

If we want to be able to compare any approximation, we
should first consider the ideal. In our case this is the un-
derlying surface, as one usually wants to depict real-world,
or at least, continuous, objects. In order to avoid anoma-
lies, we assume this to be a fairly ‘civilized’ surface. That
is, the surface S we will look at has a piecewise continuous
differentiable parametrization f : I × J → R

3, with I and
J intervals in R: the domain I × J can be split into a finite
number of subdomains Ii × Ji, on which f is a C1 func-
tion. Thus, S consists of a finite union of smooth patches.
Furthermore, if S is closed, we choose the surface normal
∂f
∂u

× ∂f
∂v

always to point ‘outside’ (and we call this normal
∇S from now on).

Notice that this is not a serious limitation; all objects
one would usually like to model have this property. A trivial
example is the torus with inner radius R and outer radius r,
with parametrization f : [0, 2π) × [0, 2π) → R

3, (u, v) 7→
(R cosu + r cosu cos v, R sin u + r sin u cos v, r sin v).

Only in scientific visualization this could sometimes be a
problem2. Fractals, for instance, do not belong to this class,
but then again, they are not visualisable on a finite medium
anyway. In general, even in scientific applications, the func-
tions under consideration are usually continuous. However,
‘degenerate cases’ like the Möbius band and the Klein Bottle
are excluded by this definition because they have no orien-
tation and self-intersect.

2.2 Polygonal approximation

If a polygon is contained in a supporting plane Ax + By +
Cz+D = 0 then we call the vector (A, B, C) that polygon’s
normal. A polyhedral model Si is a finite union of connected
(flat) polygons (see figure 1). Let fi be the (piecewise linear)
parametrization of Si.

S

S11

Figure 1: 2-dimensional illustration of a (grey) polygonal

approximation S11 with 11 vertices to a (black) surface S

We could define some error metric E between the sur-
face S and a polygonal approximation Si now, but for our
purpose it is only important that one exists. (The quadric
and the metric measure are popular ones [EDD+95]).

Henceforth, S1, S2, . . . will be a row of polygonal ap-
proximations of S, to an arbitrary degree of accuracy3 – i.e.
limn→∞ E(S, Sn) = 0.

2.3 Outlines

Now we are ready to define silhouettes. Although silhouettes
are a highly intuitive concept, a rigid definition exists, that

stems from optics.

2.3.1 Precomputation

Besides silhouettes, more types of outlines are usually con-
sidered, typically also boundaries and creases (see figure 3).
We will not go into detail here, but intuitively, boundaries
occur where the parametrization f ‘ends’, and a crease is a
region where the surface normal ∇S abruptly changes. But
boundaries and creases can be precomputed – they do not
change as the object is transformed (i.e. are invariant under
rotation, translation, scaling, and even projection). So they
are of little interest here. One could simply check all poly-
gon edges: if it is not adjacent to any other polygon, it is a
boundary, and if it is shared by exactly two polygons whose
dihedral angle is above the threshold, it is a crease [BE99].
Instead, we focus on the silhouettes.

2.3.2 Silhouettes

A silhouette point is a point p4 on the surface S where the
angle between the surface normal ∇S(p) and the view vec-

tor from the camera to the point is 90 degrees (see figure
2). Thus, if the camera is at c, then p is a silhouette point
if and only if 〈∇S(p),p − c〉 = 0. We assumed S to be
C1, so the Implicit Function Theorem guarantees us that
all silhouette points lie on a finite union of curves. These
curves we call the silhouettes. In a polygonal approxima-
tion, a silhouette is an edge between a front-facing and a
back-facing polygon. That is, an edge between one poly-
gon with 〈(A, B, C),p − c〉 ≥ 0, and one polygon with
〈(A, B, C),p − c〉 ≤ 0, (A, B, C) being the normal of a
polygon. When the inner product equals 0, the entire poly-
gon consists of silhouette points (although the difference
between an entire silhouette polygon and a single silhouette
point does not show when seen from c).

c

silhouette point p2

silhouette point p1

S

S(p1)

S(p2)

c - p2

c - p1

Figure 2: At a silhouette point, the view vector is perpendicular

to the surface normal

Because they are defined in terms of the camera, silhouettes
are view-dependent. Therefore they need to be recomputed
every time the camera or the surface changes.

2When considering an implicit surface this is also problematic, but that is a field of study in itself [LC87].
3Though it is not necessary, for j > i, Sj usually has more edges (and vertices) than Si. Note that even in the special case where f (of

S) is the graph of a function of x and y, it is a NP-hard problem to decide whether an approximation with i vertices exists [HDD+93].
This is not a problem though, since any number of vertices will do for our purposes.

4We use the convention that bold faced letters denote vectors.

2

(a) (b) (c) (d)
Figure 3: On a capped half torus: (a) boundaries, (b) creases, (c) silhouettes, and (d) all outlines. Note that in (a), the

parametrization is closed in one parameter only, so the dashed line is no boundary.

2.4 Error metric

Say the silhouettes of S, as seen from c, are given by curves
s1, . . . , sn : R → R

3. An algorithm computing (an approx-
imation to) the silhouettes of S (from a particular view-
point) yields a set of curves s̃1, . . . , s̃k. The main question
is whether s1, . . . , sn and s̃1, . . . , s̃k are equivalent (that is,

whether
⋃n

i=1
{si(x) : x ∈ Domsi

} =
⋃k

i=1
{s̃i(x) : x ∈

Domesi
}). If not, is it possible to compute the s̃i so that

they at least lie arbitrarily close to the si?
But how do we compare the s̃i to the si? Well, since we

are working in R
3, we already have the Euclidean distance:

d(x,y) =
√
〈x − y,x − y〉

So, a natural way to define the distance d between a point
p and a curve s : I → R

3 would be to take the distance
between that p and the closest point on s:

d(p, s) = inf{d(p, s(t)) : t ∈ I}

Using this, we can compare an entire curve s̃ : Ĩ → R
3 to s:

d(s̃, s) = sup{d(s̃(t), s) : t ∈ Ĩ}

This formula is known as the one-sided Haussdorf distance
[KLS96], because it is generally (when defined for unre-
stricted sets) not symmetric. But when defined for curves,
it is indeed a metric5. As the metric for the deviation of an
approximation to the actual surface we define

δ((s̃1, . . . , s̃k), (s1, . . . , sn)) =
k∑

i=1

min{d(s̃i, sj) : 1 ≤ j ≤ n}

which we abbreviate to δ(s̃, s). So, the Euclidean distance
leads to a (very natural) error metric δ that we can apply to
the results of the various algorithms, to see how well they
approximate the actual silhouettes.

Notice that we have set up δ to compare curves in R
3,

but we have never actually used that the dimension of this
R-vectorspace is 3. We could interpret δ as a metric on
curves in R

2 just as well.

2.5 Topology

Approximation in a spatial sense is nice. But if the approxi-
mation s̃ fundamentally differs in structure from the actual
silhouette s, we are not content. Small structural differ-
ences might still considerably distort the computation based

on the approximation s̃. Therefore it seems worthwhile to
compare the topology of s̃ to s, to see if any peculiarities
are introduced in the approximation s̃, which did not exist
in the s.

The types of topologies of approximations to the ac-
tual silhouettes (figure 4(a)) we will encounter are limited:
they are either correct (figure 4(b)) or have ‘crossroads’ (see
figure 4(c)). Intuitively, these are clearly not topologically
equivalent. This intuition is easily proved using the Compo-
nent Theorem: if topological spaces are equivalent, leaving
out any point in either one should result in the same number
of components as leaving it out in the other.

(a) (b) (c) (d) (e)

Figure 4: (a) Actual silhouettes, (b) approximation with the

same topology as (a), (c) approximation with a different

topology as (a): (d) shows that leaving out a point in (a) yields

2 components, whereas in (e) the same action can yield 3

components6.

3 Image space algorithms

The easiest way to compute silhouettes is perhaps in image
space, using existing graphics packages to do all the hard
work. By rendering images in different ways and then post-
processing, an image space algorithm can produce fairly con-
vincing results quickly. We shortly explain how image space
algorithms work, considering the two major features of ren-
derers used, namely the z-buffer in 3.1, and the so-called
normal-buffer in 3.2. In 3.3 we carry out the analysis which
shows if image space algorithms yield feasible results.

3.1 Using depth

Most renderers (like OpenGL) generate a z-buffer, where
the intensity of every pixel represents the relative depth of
that point in the model. This can be used to detect silhou-
ettes. The idea behind using the z-buffer is that the varia-
tion in depth between adjacent pixels is usually small over

5A metric in the space of curves in R
3, that is.

6If the point that was left out was on a ‘loop’, rather than a ‘crossroad’, the result will be 1 component, which is not equivalent either.

3

a continuous surface, whereas it is large between surfaces.
Thus, one can detect C0 discontinuities, i.e. silhouettes, by
applying an edge-detection filter on the z-buffer (usually a
Sobel filter, like in [ST90]). Algorithms implementing this
approach include [Her99, Cur98, NM00, RC99].

3.2 Using surface normal

Instead of interpolating depth, resulting in a z-buffer, one
could also interpolate the surface (polygon) normal, result-
ing in a normal-buffer [Her99]. The edges in this normal-
buffer now correspond with changes in surface orientation,
i.e. C1 discontinuities. Augmenting the edges extracted
from the z-buffer with these edges from the normal-buffer
results in detection of C0 and C1 discontinuities, that is,
silhouettes and creases.

Raskar and Cohen [RC99] further note that only the first
two layers of (visible) polygons are needed and utilizes that
to gain speed. But the principle limitations drawn in the
following still apply. So, we will not elaborate this in more
detail.

3.3 Accuracy

Let us have a look at what happens if we look upon an
algorithm as in 3.1 and 3.2 using the mathematical frame-
work we set up in section 2. As mentioned in section 1.2, a
fair comparison of algorithms is only made in 3 dimensions.
However, since image space algorithms are mainly used only
to proceed with resulting projected silhouettes (for example
in photo-realistic rendering), we also consider the behavior
in 2 dimensions.

3.3.1 In 3 dimensions

Suppose we are rendering a picture of resolution n × n,
mapped onto [0, 1] × [0, 1] ⊂ R

2, and for arguments sake,
assume the edge detection process of 3.2 really yields sil-
houettes. If we had some way of connecting neighboring
‘edge pixels’ into curves ([NM00] and [Cur98] provide such
a method), one might be tempted to let n → ∞, using that
the distance between a pixel’s midpoint and its border is at

most
√

2

2n
, to get

δ(s, s̃) ≤
k∑

i=1

δ(s, s̃i) ≤
k∑

i=1

√
2

2n
=

√
2

k

2n

where k is the number of ‘black pixels’ in the edge map (see
figure 5(a)). (After all, the deviation of any curve connect-
ing two ‘black pixels’ from the actual curve must still be
within those pixels). This converges to 0, since k � n2 be-
cause the actual silhouettes are infinitesimally thin compared
to the plane as n → ∞. So, δ(s, s̃) ≤ ε for an arbitrary ε.

Using the z-buffer, one could then back-project the
curves found to R

3. This back-projection is error-prone, but
even if it would be perfect, we have lost too much informa-
tion along the way. Consider, for example, the surface pa-
rameterized by f(u, v) = (u, v sin v, v), 0 ≤ v ≤ 4π, as seen
from 0 (see figure 5(b)). An image space algorithm could
never detect the two overlapping silhouette points, because

they are projected on the same pixel. For 3-dimensional out-
put computations, image space algorithms just start from
too little input.

n

n

(a)

y

z

0

(b)
Figure 5: Image space algorithms – (a) naively achieving

accuracy using rendering resolution, (b) a situation where image

space algorithms are doomed to fail

3.3.2 In 2 dimensions

When we compare the curves with the metric that our δ

induces on R
2 (see 2.4), however, things work out better.

Since Sn approximates S to an arbitrary ε, so do the pro-
jections of s̃ and s. So, image space algorithms are fine,
when 2-dimensional output is used only, i.e. when all you
care about is the projection, whose topology might not be
pleasing – since it is completely ignored, the topology of the
output might well be different from the actual curves. More-
over, there is no way at all to inspect topology in the projec-
tion (let alone correct), since overlapping (intersections of)
silhouettes, which are perfectly ‘legal’ can look exactly the
same as a ‘crossroad’ (see 2.5).

Apart from that, the method of cranking up the render-
ing resolution is of course extremely crude. Most renderers
are not designed to render beyond a certain range of reso-
lutions. Moreover, computation time rises at least quadrat-
ically with the resolution.

4 Object space algorithms

In an object space algorithm, in contrast to image space
algorithms, one wants to build up the s̃i directly in the 3-
dimensional space from the si. The simplest approach to
computing silhouette curves would be to replace the smooth
surface by a polygonal approximation, and find the silhouette
edges of that. However, there can be significant differences
between using S and Si (as described in 2.5). We discuss
this widely adopted method in section 4.1. In section 4.2
we look at a more sophisticated method, and we see that
this technique is always topologically pleasing. Finally, we
consider some methods to speed up the process of finding
silhouettes in object space in section 4.3.

4.1 Brute force

Silhouette edges are simple to find in a polygonal approxi-
mation, as elaborated in 2.3.2. We simply iterate over all

edges in the model, and look at the polygons adjacent to
each edge. Consider two of those two polygons, and say
they have normals n1 and n2. We recapitulate from section

4

2.3.2: in this case the edge is a silhouette edge is if and only
if 〈n1,n2〉 ≤ 0.

The silhouette edges thus found are contained within
the same polygons that also contain the actual silhou-
ettes. So, for every s̃i : Ĩi → R

3, we have δ(s̃, s) ≤∑k

i=1
min |Ĩi|2. And every polygon’s area converges to zero

if we take denser approximations. More precisely, because
limn→∞ E(S, Sn) = 0, also limn→∞ |Ĩi| = 0. And since
x 7→ x2 is continuous, also |Ĩi|2 → 0 as n → ∞. So,

0 ≤ limn→∞ δ(s̃, s) ≤ limn→∞

∑k

i=1
|Ĩi|2 = 0.

However, there is no basis to claim that this brute force
method is also topologically accurate. Since we have not
demanded anything about the normals of the polygonal ap-
proximation Sn in relation to the normals of the actual sur-
face S, it could be that only one polygon’s normal is ‘wrong’,
and its surrounding polygons are ‘right’. In that situation,
all edges of this ‘wrong’ polygon will be tagged as silhou-
ette edges. Implementations show that this happens quite
frequently. No matter how dense the approximation is, the
topology will differ. Instead of a continuous curve, a curve
with ‘crossroads’ (see 2.5) results, a ‘twig with branches’ if
you will (see figure 6: the blue silhouette edges have ‘cross-
roads’, whereas the actual, dashed grey, silhouettes do not).

4.2 Interpolating the straightforward

Hertzmann and Zorin [HZ00] use a small refinement of this
naive approach, by linearly approximating the silhouettes.
Remember that silhouettes are defined as the zero set of
g(p) = 〈∇S(p), c − p〉. Assume the true surface normal
∇S(p) is known at each vertex p, so g(p) can be computed
at each vertex. By linearly interpolating g over all edges,
and connecting the resulting points, we obtain the s̃i (see
figure 6, the red lines). The s̃i will now consist of line seg-
ments inside each polygon of the polygonal approximation.
So, following the very same analysis as in 4.1, we see that
this method also spatially approaches the actual silhouettes.

Moreover, the s̃i connect points in the interior of the
edges of the mesh, and form either closed loops or non-
intersecting chains connecting points on the boundaries or
creases, similar in structure to the actual silhouette curves.

Thus, the s̃i will have the same topology as the si! This
guarantees a convincing image of S (but it may of course
not accurately reflect features smaller than one polygon).

Figure 6: The topology of the non-interpolated silhouettes

(blue) differs from the actual silhouettes (dashed grey), whereas

the linear interpolation (red) has the same topology as the

actual silhouettes.

4.3 Speeding up

Both the methods of 4.1 and 4.2 require a complete traversal
of the polygonal model. So, they must have a time com-
plexity of at least O(n), if n is the number of polygons7. By
being clever, one can reduce this to O(

√
n) in at least two

ways: by using geometric duality (4.3.1), or via a gaussian
map (4.3.2).

4.3.1 Using geometric duality

Hertzmann and Zorin [HZ00] suggest a method to speed up
the finding of silhouettes, making use of geometric duality.
They carry out the calculation in projective space, rather
than in the affine R

3. This way, there is no need to com-
pletely traverse the polygonal approximation in order to find
silhouettes, but only the polygons that actually contain sil-
houette lines. As this method does not alter the resulting
set, it does not compromise accuracy. If m is the number of
silhouettes, this method is O(m) in time. In a typical set-
ting (i.e. in an average rendering), this is roughly the same
as O(

√
n), where n is the number of polygons.

4.3.2 Via a Gaussian map

Benichou and Elber [BE99] propose a different speedup, ef-
fectively based on the same. Their idea is to transform the
problem to another context, where a subdivision is possible.
First, for all vertices p, ∇S(p) is projected onto the unit
cube (via the Gaussian sphere). Next, the problem is di-
vided into six smaller ones, since a cube has six faces. This
method is also O(m) in time, where m is the number of sil-
houettes, which is typically O(

√
n), where n is the number

of polygons. This is achieved through an O(n) precompu-
tation.

However, Benichou and Elber [BE99] yield silhouettes
composed from edges, i.e. not interpolated. So, they face
the same problem as image space algorithms; namely that
the topology of s̃ differs from that of s. This can be fixed
though: interpolation can be done on the unit cubes faces
as well.

5 Conclusion

We considered piecewise C1 surfaces, and have set up a
mathematical framework to compare silhouette computation
algorithms based merely on their specification. Especially
the spatial error metric δ works nicely when reasoning for-
mally about the (‘extent of’) correctness of algorithms.

Image space algorithms for detecting silhouettes are usu-
ally fast and easy, but only yield acceptable results when fur-
ther calculations are solely based on the projection. More-
over, they may introduce singularities. So, from a topo-
logical point of view, image space algorithms are not ac-

7This is the same as O(n), where n is the number of edges, since a triangle has only 3 edges, and every polygon can be triangulated
(in linear time or less).

5

ceptable. Image space algorithms are mostly used for non-
photorealistic rendering, where speed and rough results are
often more important than accuracy.

When aiming for a x × y rendering resolution, image
space algorithms are typically O(xy) in time (after the time
complexity of the rendering itself, over which such methods
have no control).

Object space algorithms, in contrast, are more involved,
but can yield (very) accurate results. Among object space
algorithms, we can distinguish two kinds: those that are
topologically correct, and those that might not be. Topo-
logical accuracy can be achieved by linear interpolation, as
in [HZ00] – without compromising computation time.

Object space algorithms can be improved by clever tech-
niques. If n is the number of polygons in a model, accurate
silhouette edges can be computed in O(

√
n) time. Typically

this is significantly slower than image space algorithms, since
existing rendering packages are entirely optimized.

All in all, the answer to the title, “Do polyhedral models
suffice for accurate silhouettes?”, thus is: “Yes, polyhedral
models suffice, but only if used clever enough.”.

6 Future work

The result of this article can be seen as a form of existential
proof. We know now (i.e., we can prove) that accurate
silhouette computation algorithms exist. The challenge that
lies ahead is to create faster ones, while preserving topolog-
ically correct results. Knowing that sound methods exist to
compute them, silhouettes can be used safely in ever more
applications as basic building blocks.

Acknowledgements

The author would like to thank Peter Klok for helping the
research get started, Jozef Hooman for the tedious task of
spotting small grammatical and logical errors in many iter-
ations, Martijn Grooten for providing a crash course in ele-
mental topology, and Lotte Hollands for valuable discussions
on parts of the mathematical content of this article.

References

[BE99] F. Benichou and G. Elber. Output sensitive extrac-
tion of silhouettes from polygonal geometry. Proc.
Pacific Graphics, pages 60–69, 1999.

[BJ98] Thomas F. Banchoff and Ockle Johnson. The normal
euler class and singularities of projections for polyhe-

dral surfaces in 4-space. Topology, 37(2):419–439,
1998.

[Cur98] C.J. Curtis. Loose and sketchy animation. Visual
proceedings of Siggraph ’98, page 317, 1998.

[EDD+95] Matthias Eck, Tony DeRose, Tom Duchamp, Hugues
Hoppe, Michael Lounsbery, and Werner Stuetzle.
Multiresolution analysis of arbitrary meshes. Com-
puter Graphics, 29(Annual Conference Series):173–
182, 1995.

[GG99] A. Gooch and B. Gooch. Non-Photorealistic Render-
ing, chapter 8: Using Non-Photorealistic Rendering
to Communicate Shape. A.K. Peters, 1999.

[HDD+93] Hugues Hoppe, Tony DeRose, Tom Duchamp, John
McDonald, and Werner Stuetzle. Mesh optimiza-
tion. Computer Graphics, 27 (Annual Conference
Series):19–26, 1993.

[Her99] A. Hertzmann. Introduction to 3d non-photorealistic
rendering: Silhouettes and outlines. SIGGRAPH ’99
Course Notes, 1999.

[HZ00] Aaron Hertzmann and Denis Zorin. Illustrating
smooth surfaces. In Kurt Akeley, editor, Siggraph
2000, Computer Graphics Proceedings, pages 517–
526. ACM Press / ACM SIGGRAPH / Addison Wes-
ley Longman, 2000.

[KLS96] Reinhard Klein, Gunther Liebich, and W. Strasser.
Mesh reduction with error control. Proceedings of
Visualisation ’96, pages 311–316, 1996.

[LC87] William E. Lorensen and Harvey E. Cline. March-
ing cubes: A high resolution 3d surface construction
algorithm. Computer Graphics, (4):163–169, July
1987.

[LE97] David Luebke and Carl Erikson. View-dependent sim-
plification of arbitrary polygonal environments. Com-
puter Graphics, 31(Annual Conference Series):199–
208, 1997.

[MKT+97] Lee Markosian, Michael A. Kowalski, Samuel J.
Trychin, Lubomir D. Bourdev, Daniel Goldstein, and
John F. Hughes. Real-time nonphotorealistic ren-
dering. Computer Graphics, 31(Annual Conference
Series):415–420, 1997.

[NM00] J.D. Northrup and L. Markosian. Artistic silhouettes:
A hybrid approach. ACM SIGGRAPH, 2000.

[RC99] Ramesh Raskar and Michael Cohen. Image precision
silhouette edges. 1999 ACM Symposium on Interac-
tive 3D Graphics, pages 135–140, April 1999.

[ST90] T. Saito and T. Takahashi. comprehensible render-
ing of 3-d shapes. Proceedings of SIGGRAPH ’90
(Dalles, Texas, August 6–10), 24(4):197–206, 1990.

[Whi55] H. Whitney. On singularities of mappings of eu-
clidean spaces. Annals of Mathematics, pages 374–
410, 1955.

6

