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Abstract. Compact categories have lately seen renewed interest via applications to quan-
tum physics. Being essentially finite-dimensional, they cannot accomodate (co)limit-based
constructions. For example, they cannot capture protocols such as quantum key distribu-
tion, that rely on the law of large numbers. To overcome this limitation, we introduce the
notion of a compactly accessible category, relying on the extra structure of a factorisation
system. This notion allows for infinite dimension while retaining key properties of compact
categories: the main technical result is that the choice-of-duals functor on the compact
part extends canonically to the whole compactly accessible category. As an example, we
model a quantum key distribution protocol and prove its correctness categorically.

1. Introduction

Compact categories were first introduced in 1972 as a class of examples in the con-
text of the coherence problem [Kel72]. They were subsequently studied first categori-
cally [Day77, KL80], and later in relation to linear logic [See89]. Interest has rejuvenated
since the exhibition of another aspect: compact categories provide a semantics for quantum
computation [AC04, Sel07]. The main virtue of compact categories as models of quantum
computation is that from very few axioms, surprisingly many consequences ensue that were
postulates explicitly in the traditional Hilbert space formalism, e.g. scalars [Abr05]. More-
over, the connection to linear logic provides quantum computation with a resource sensitive
type theory of its own [Dun06].

Much of the structure of compact categories is due to a seemingly ingrained ‘finite-
dimensionality’. This feature is most apparent in the prime example, the category of vector
spaces and linear maps. As we will see, the only compact objects in this category are
the finite-dimensional vector spaces. This poses no problems when applied to quantum
computation, where the amount of memory is physically bounded anyway. However, the
employment of compact categories is sometimes optimistically publicised as providing ‘a
semantics for quantum protocols’, or even ‘axiomatics for quantum physics’. For these
general purposes, a fixed finite dimension is a severe limitation since it rules out (co)limit
constructions and arguments. In fact, the simplest possible physical situation, that of a
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single free-moving particle in three-dimensional space, is already modeled by the infinite-
dimensional space L2(R3) of observables in traditional quantum physics [vN32]. Likewise,
an important class of quantum protocols relies on the law of large numbers. They utilise the
probabilistic nature of quantum physics to ensure that their goal is reached after sufficiently
many tries. In fact, the two most-cited papers in quantum cryptography to date, describing
quantum key distribution protocols, are of this kind [BB84, Eke91].

There have been earlier attempts to remedy the above limitation. Although he did not
have the quantum setting in mind, Barr gave a construction to embed a category with certain
minimal properties fully into a complete and cocomplete category that is *-autonomous,
a notion closely related to compactness [Bar79]. However, as we will see, the important
category of Hilbert spaces and bounded maps, that is the traditional model of quantum
physics, is neither complete nor cocomplete.

Another proposal revolves around the use of nuclear ideals [ABP99, Blu06]. Analogous
to ring theory, an ideal in this setting is a set of morphisms that is closed under composition
with arbitrary morphisms. The adjective nuclear means that the key property that enables
compact categories to model quantum protocols is postulated to hold for all morphisms in
the ideal. This seems to be the right environment to study properties of morphisms in a
quantum setting. For example, a very natural characterisation of trace-class morphisms
emerges. However, it also forces one to consider two layers, the category and the nuclear
ideal, and possible coherence with the ideal is a distraction when working with notions
that are more naturally defined on the category. For example, any bounded map between
Hilbert spaces has a dual map (in the opposite direction between the dual spaces), not just
the Hilbert-Schmidt maps (that form a nuclear ideal).

The present work introduces the notion of a compactly accessible category in order to
overcome the above limitation. It retains certain key properties of compact categories, and
simultaneously allows for infinite dimension. The main idea is to relax the requirement
that every object is compact to the requirement that every object is a directed colimit
of compact ones, imitating the fact that every vector space is the directed colimit of its
finite-dimensional subspaces. Categories in which every object is a directed colimit of
finitely presentable ones are well-known as accessible categories, and a polished theory
has developed around them [GU71, AR94]. We weaken the concept of finitely presentable
object to that of a compactly presentable one, to ensure that the key properties of compact
categories are inherited by compactly accessible categories. The central novel ingredient is
the extra structure of a factorisation system. This approach provides a proper category in
which to model quantum protocols, and hence is automatically compositional — as opposed
to ideals that typically do not include all identity maps [BPP07]. Physically, directed
colimits provide the intuition of ‘time’. The main result, that justifies our definition of
compactly accessible category, is Theorem 5.11. It shows that the choice-of-duals functor
on the compact part extends canonically to the whole compactly accessible category. It is
remarkable that this canonical extension of the choice-of-duals functor in the category of
Hilbert spaces with its canonical factorisation system in fact provides an equivalence with
the opposite category. This is another indication that the axiomatic structure of compactly
accessible categories is on target. Moreover, Theorem 6.5 proves that if the choice-of-duals
functor commutes with a dagger functor on the compact part, then so does its canonical
extension. The latter is important for the modeling of quantum physics. As an example,
we model a quantum key distribution protocol and prove its correctness categorically.
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À Alice and Bob agree upon 3 measurements m1,m2,m3.
Á Alice secretly chooses ai ∈ {1, 2, 3}, i = 1, . . . , 3n, randomly,

Bob secretly chooses bi ∈ {1, 2, 3}, i = 1, . . . , 3n, randomly.
Â They share 3n fresh qubit-pairs prepared in the Bell-state |01〉−|10〉√

2
.

We denote them by (qai , q
b
i )i=1,...,3n.

Ã Alice measures qai with mai to get ci, i = 1, . . . , 3n.
Bob measures qbi with mbi to get c′i, i = 1, . . . , 3n.

Ä Alice publicly announces ai.
Bob publicly announces bi.
Thus they determine I = {i ∈ {1, . . . , 3n} | ai 6= bi}.
With large probability #I ≤ n; if not, go to step 2.

Å Alice publicly announces ci, i ∈ I.
Bob publicly announces c′i, i ∈ I.
With large probability, ci and c′i are sufficiently correlated
by Bell’s inequality for i ∈ I; if not, go to step 2.

Æ Alice uses cj , j ∈ {1, . . . , 3n}\I as her key bits.
Bob uses 1− c′j , j ∈ {1, . . . , 3n}\I as his key bits.

Figure 1: A quantum protocol to obtain a 2n-bits shared secret key [Eke91].

Section 2 first introduces the quantum key distribution protocol mentioned above. We
recall the necessary details of compact categories in Section 3. Subsequently, Section 4 builds
up to the notion of compactly presentable object, and Section 5 then defines compactly
accessible categories and explores their structure. Dagger structure is added in Section 6,
and Section 7 models and proves correct the protocol described in Section 2. Finally,
Section 8 concludes.

2. Quantum key distribution

Quantum key distribution is the name for a collection of protocols that provide two
parties using a quantum channel between them with a shared binary string, unknowable to
anyone else. Moreover, such a scheme must be proven inherently secure by the laws of na-
ture, i.e. not depending on any unsolved or computationally unfeasible mathematical prob-
lems. The most well-known protocol in this family is that of Bennett and Brassard [BB84],
which essentially relies on Bell’s inequality and the law of large numbers to provide secure
keys.1 There are several improvements upon this protocol. Especially Ekert [Eke91] devel-
oped a very nice simplification, which is outlined in Figure 1. As Bell’s inequality provides
a means to verify that two qubits are ‘correlated enough’, eavesdroppers can be detected
with large probability. The law of large numbers thus ensures that this protocol works (up
to a negligable probability that can be specified in advance). Notice that because of the
possible jump back in steps Ä and Å, the number of fresh qubit-pairs needed is not known
in advance.

The protocol in Figure 1 will be used in Section 7 as an example that can be modeled
by compactly accessible categories. As such, we need to distinguish between correctness

1Such a protocol, like Diffie-Hellmann’s [DH76], regulates key distribution, but gives no guarantee about
authenticity of the two parties involved.
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and security. A quantum key distribution protocol is correct if both parties end up with the
same key in every run, i.e. when cj = 1−c′j for all j ∈ {1, . . . , 3n}\I and every choice of mi,
ai and bi in Figure 1. It is secure when a potential eavesdropper cannot learn any of the key
bits. In this instance, the security relies on Bell’s inequality. Thus in this case one could
say that correctness is a qualitative notion, and security a quantitative one. Because the
entire purpose of the categorical approach is to abstract away from quantitative details like
scalar factors, we will focus on correctness, and forget about the classical calculation in step
Å. Since the centre of attention in this article is the elimination of finite-dimensionality,
we will also not concern ourselves too much with the classical communication that is most
noticable in step Ä. The point is just to show that compactly accessible categories are able
to model protocols that need an a priori unknown number of resources.

3. Compact objects and compact categories

This section recalls the concept of a compact category, by considering the required
properties separately per object. It also reviews the key features of compact categories that
are so important to model quantum protocols.

Definition 3.1. An object X of a symmetric monoidal category C is said to be compact
when there are an object Y ∈ C and morphisms η : I → Y ⊗X and ε : X ⊗ Y → I such
that the following diagrams commute.

X
∼= // X ⊗ I

id⊗η // X ⊗ (Y ⊗X)

∼=
��

Y
∼= // I ⊗ Y

η⊗id // (Y ⊗X)⊗ Y
∼=
��

X I ⊗X∼=
oo (X ⊗ Y )⊗X

ε⊗id
oo Y Y ⊗ I∼=

oo Y ⊗ (X ⊗ Y )
id⊗η
oo

(3.1)

A symmetric monoidal category is called compact when all its objects are.

For a given compact object X, the object Y of the previous definition is called a dual
object for X. Such dual objects are unique up to isomorphism [Dun06, Proposition 2.7].
A chosen dual object for X is usually denoted by X∗. Notice that I is a compact object
in any strict symmetric monoidal category, with I∗ = I. Also, if X is compact, then so
is X∗. Moreover, any compact object X is isomorphic to its double dual X∗∗ [Dun06,
Proposition 2.13]. Let us see what the compact objects (and their dual objects) are in a
few example categories.

Example 3.2. In a posetal symmetric monoidal category, diagrams (3.1) say that an object
X is compact precisely when there is an object X∗ such that X∗ ⊗X = I = X ⊗X∗. Any
ordered commutative monoid is such a category, where the order induces the morphisms,
and the monoid multiplication and unit provide symmetric monoidal structure. Hence, the
compact objects in an ordered commutative monoid, seen as a posetal category, are precisely
its invertible elements. Thus any ordered Abelian group induces a compact category; an
Abelian group is partially ordered if and only if it is torsion-free [MR77, Theorem 1.1.3].
This example has been studied more generally under the name ‘Lambek pregroups’ [Sad06].

Example 3.3. Denote by Rel the category with sets for objects, and relations R ⊆ X ×
Y for morphisms X → Y . The composition of X R //Y

S //Z is the usual relational
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composition
S ◦R = {(x, z) ∈ X × Z | ∃y∈Y .(x, y) ∈ R ∧ (y, z) ∈ S}.

This category is symmetric monoidal by the usual set-theoretic product, with the singleton
set {∗} as its neutral element. Every object X in Rel is compact: by defining X∗ = X and

ηX = {(∗, (x, x)) : x ∈ X},
εX = {((x, x), ∗) : x ∈ X},

one easily verifies that diagrams (3.1) commute. Hence Rel is a compact category.
This example can be generalized to the Kleisli category of the monad on Set given by

P(M × −) for an arbitrary commutative monoid M instead of the trivial monoid. It can
also be generalized to the category of relations on an arbitrary regular category [CKS84].
In both generalized categories, every object is compact.

At first sight, one might expect that the category Sup of complete lattices and sup-
preserving functions is compact, but it is not [Bar79, page 99]. Its largest compact subcate-
gory is that of complete atomic boolean lattices and sup-preserving functions; this category
is equivalent to Rel.

Example 3.4. Denote by Vect the category of complex vector spaces and linear maps. It
is a symmetric monoidal category by the usual tensor product of vector spaces, with the
complex field C as unit. Any finite-dimensional vector space X is a compact object in this
category as follows. Let X∗ be the dual vector space {f : X → C | f linear}. If (ei) is a
basis for X, then the functionals ei determined by ei(ej) = δij form a basis for X∗. Define
ηX and εX by linear extension of

ηX(1) =
dim(X)∑
i=1

ei ⊗ ei,

εX(ei ⊗ ej) = ej(ei).

Diagrams (3.1) are readily seen to commute.
However, an infinite-dimensional vector space cannot be isomorphic to its double dual

because of a well-known cardinality argument [Jac53, Theorem IX.2] that we sketch briefly.
Let X be an infinite-dimensional vector space, and choose a basis B for it. Then X ∼=

∐
B C,

and so X∗ ∼=
∏
B C [AF74, Proposition 20.2]. So dim(X) � dim(X∗) � dim(X∗∗), whence

X 6∼= X∗∗ and X is not a compact object in Vect.2

Hence the full subcategory fdVect of Vect containing only the finite-dimensional vector
spaces is the largest compact subcategory of Vect.

This example can be generalized to the category of projective modules over a given
semiring: the compact objects in that category are precisely the finitely generated ones.

Example 3.5. As an extension of the previous example, consider the category Hilb of
Hilbert spaces. Its morphisms are the bounded linear maps, i.e. linear functions f : X → Y
for which there is a constant ‖f‖ such that ‖f(x)‖ ≤ ‖f‖‖x‖ for all x ∈ X. It is a symmetric
monoidal category with the usual tensor product and the complex field C as unit. Any finite-
dimensional Hilbert space X is a compact object in this category as follows. Let X∗ be
the conjugate of the dual space {f : X → C | f bounded linear}, i.e. it has the same

2For completeness’ sake, let us recall that even for a finite-dimensional vector space X, the isomorphism
X ∼= X∗ is not natural, although X ∼= X∗∗ is [Mac86, Section VII.4].



6 CHRIS HEUNEN

additive group as the dual space, but conjugated scalar multiplication. Then X∗ ⊗ X is
isomorphic to the Hilbert space of all Hilbert-Schmidt maps X → X [KR83]. Define ηX by
letting 1 correspond to the identity map under this isomorphism and extending linearly and
continuously, and define εX as the adjoint of ηX . Then diagrams (3.1) commute. Since the
identity map on X is a Hilbert-Schmidt map if and only if X is finite-dimensional, this recipe
for obtaining compact structure on X only works for finite-dimensional X. In other words,
fdHilb is a compact full subcategory of Hilb. Moreover, as Proposition 3.6(d) below shows,
a compact full subcategory of Hilb is necessarily closed. Since only the Hilbert-Schmidt
functions form a Hilbert space again [KR83], a compact full subcategory of Hilb must
consist of objects between which all continuous linear functions are automatically Hilbert-
Schmidt. That is, the largest compact full subcategory of Hilb is fdHilb.

This example can be generalized to the category of unitary representations of a given
topological group: the compact objects in that category are precisely the representations
with a finite-dimensional target space.3

Introducing the notation Ccpt for the full subcategory of compact objects of C, the pre-
vious examples thus show that Relcpt = Rel, Vectcpt = fdVect, and Hilbcpt = fdHilb.
This relates to order theory, in which ‘finite element’ and ‘compact element’ are used inter-
changeably [Joh82, AJ94]. On the one hand the name ‘finite object’ or ‘finite-dimensional
object’ would also be apt in our case, but on the other hand it would be confusing since a
compact object in Rel can be infinite as a set.

As an example of the properties of compact objects, we mention the following. They
are standard results; here we formulate them for compact objects (instead of for compact
categories).

Proposition 3.6. [Lin78] Let C be a symmetric monoidal category.
(a) If X ∈ Ccpt, then C(X,Y ) ∼= C(I,X∗ ⊗ Y ) for all Y ∈ C.
(b) If Y ∈ Ccpt, then C(X,Y ) ∼= C(X ⊗ Y ∗, I) for all X ∈ C.
(c) An object X ∈ C is compact if and only if there is an Y ∈ C such that

C(X ⊗ Y, I) ∼= C(X,X) ∼= C(I, Y ⊗X).
(d) An object X ∈ C is compact iff there is a Y ∈ C such that X ⊗ (−) is left adjoint

to Y ⊗ (−). In that case, X ⊗ (−) is also right adjoint to Y ⊗ (−).
(e) If X ∈ Ccpt, then (−)⊗X : C→ C is both continuous and cocontinuous.

The crucial property of a compact category is that a choice of dual objects X∗ extends
functorially, as follows.

Proposition 3.7. [KL80] For a morphism f : X → Y between compact objects X,Y in
some category C, define f∗ : Y ∗ → X∗ as the composite

Y ∗ ∼= Y ∗ ⊗ I
id⊗ηX // Y ∗ ⊗ (X ⊗X∗)

id⊗f⊗id// (Y ∗ ⊗ Y )⊗X∗ εY ⊗id // I ⊗X∗ ∼= X∗.

This defines a functor (−)∗ : Cop
cpt → Ccpt.

3In fact, this is where the compactness terminology seems to have originated: the group G can be
reconstructed from the described category fdURep(G) when it is compact [DR89, Müg06]. Hence the name
transferred from the group to categories resembling fdURep(G). Alternatively, one could observe that
being a Hausdorff space, a Hilbert space’s unit ball is compact if and only if it is finite-dimensional. Finally,
a Hilbert space is locally compact if and only if it is finite-dimensional [Hal82, Problem 10].



COMPACTLY ACCESSIBLE CATEGORIES AND QUANTUM KEY DISTRIBUTION 7

For future reference, let us mention that the correspondence in Proposition 3.6(a,b)
of morphisms f : X → Y to their names pfq : I → X∗ ⊗ Y and to their conames
xfy : X ⊗ Y ∗ → I satisfies [Dun06, Lemma 2.18]:

(id ⊗ g) ◦ pfq = pg ◦ fq = (f∗ ⊗ id) ◦ pgq. (3.2)

Moreover, the choice-of-duals functor (−)∗ preserves limits and colimits. When D : J→
C is any diagram in a compact category, we can speak of its dual diagram D∗ : J → Cop

determined by D∗ = (−)∗ ◦ D. This construction extends to compact diagrams in any
category: we say a diagram in any category C is compact if it factors through Ccpt. We
use the term compact (co)limit for a (co)limit of a compact diagram.

Proposition 3.8. If C is a compact category, (−)∗ : Cop → C preserves limits and colimits,
i.e. for any diagram D : J→ C, we have (lim(D))∗ ∼= lim(D∗) and (colim(D))∗ ∼= colim(D∗)
in Cop.

Proof. If C is a compact category, the functor (−)∗ : Cop → C is an equivalence of cate-
gories [Dun06, Proposition 2.13].

4. Compactly presentable objects

The next section discusses a kind of category in which every object is a colimit of
compact ones. However, taking colimits of just compact objects is not enough to retain
a ‘choice-of-duals-functor’ as in Proposition 3.7. This section strengthens the notion of
compact object as the constituent of the colimits accordingly, drawing inspiration from the
notion of finitely presentable object. An extra ingredient is the structure of a factorisation
system.

4.1. Finitely presentable objects. Intuitively, a finitely presentable object is one that
can be described algebraically using a finite number of generators and finitely many equa-
tions [AR94]. Recall that a preorder is directed when every two elements have a common
upper bound; a directed colimit is a colimit of a directed preorder considered as a diagram.
Likewise, a preorder is codirected when its opposite is directed, and a codirected limit is a
limit of a codirected preorder considered as a diagram.

Definition 4.1. An object X in a category C is called finitely presentable when the hom-
functor4 C(X,−) : C→ Set preserves directed colimits.5

Writing this out, we see that X is finitely presentable when for any directed diagram
D : J → C, any colimit cocone dj : D(j) → Y and any morphism f : X → Y , there are
j ∈ J and a morphism g : X → D(j) such that f = dj ◦ g. Moreover, this morphism g is

4If needed, one should replace Set by some suitably larger universe.
5This definition can be extended to λ-presentable, for a regular cardinal λ. Finite presentability then

coincides with ω-presentability. Later notions, like finitely accessible category, can also be extended, but for
the sake of clarity of presentation we do not do so in this article.
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essentially unique, in the sense that if f = dj ◦g = dj ◦g′, then D(j → j′)◦g = D(j → j′)◦g′
for some j′ ∈ J.

D(1) //

d1 ##GGGGGGGGG
D(2) //

d2
��

D(3) //

d3

{{wwwwwwwww
· · · // D(j) //

dj

ssggggggggggggggggggggggggggg · · ·

Y X
f

oo

g

OO�
�
�

The following example shows that finite presentability is certainly an interesting prop-
erty in the context of compact objects in categories.

Example 4.2. In the posetal category induced by an ordered commutative monoid as
in Example 3.2, an object X is finitely presentable precisely when in case X is smaller
than a supremum of some directed set D, it is already smaller than some element of D.
(This is closely related to a compact or finite element of a lattice in the order theoretical
sense [Joh82, AJ94].)

The next example shows that in some categories, the finitely presentable objects are
precisely the compact ones.

Example 4.3. An object in Set is finitely presentable if and only if it is a finite set. An
object in Vect or Hilb is finitely presentable if and only if it is finite-dimensional.

However, the following example shows that Rel has only one finitely presentable object.
This contrasts sharply with Example 3.3, that shows that every object in Rel is compact.

Example 4.4. The only finitely presentable object of Rel is the empty set.

Proof. Since ∅ is an initial object in Rel, any morphism ∅ → colim(D) is the empty relation,
which factors uniquely through any D(j).

Conversely, suppose that X has an element x. Consider the directed diagram D : N→
Rel, where N is a partial order seen as a category, determined by D(n) = {0, . . . , n − 1}
and D(n → m) = {(i, i) : i = 0, . . . , n − 1}. Its colimit in Rel is N, with colimit cocone
dn = {(i, i) : i = 0, . . . , n−1} ⊆ D(i)×N. Define a relation R ⊆ X×N by R = {(x, n) : n ∈
N}. If this relation were to factor through any Dn then its image would have to be finite,
which it is not. Hence X is not finitely presentable.

It is interesting to note that, in a sense, the notion of compact object is stronger than
that of finitely presentable object. By Proposition 3.6(d), the compact part Ccpt of any cat-
egory C is monoidal closed, and hence enriched over itself. Since the C-functor C(X,−) is
C-cocontinuous for X ∈ Ccpt [Lin78, Proposition 6], one might think that Proposition 3.6(e)
implies that every compact object of a category is finitely presentable. However, there is a
distinction between cocontinuity of C(X,−) in this enriched setting [Lin76] and ‘ordinary’
finite presentability. For example, sets and relations can be seen as an ordinary Set-category
Rel with hom-sets P(X × Y ), but also as a Rel-category Rel with hom-objects X × Y .
However, cocontinuity in Rel is different entirely from cocontinuity in Rel: the former just
means that X × (−) preserves all colimits in Rel, whereas the latter means that Rel(X,−)
preserves all colimits in Rel. In other words:

X × colim(D) ∼= colimX ×D(j), but

P(X × colim(D)) 6∼= colimP(X ×D(j)), except for X = ∅,
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where D : J → Rel is a diagram, and the colimit is taken in Rel. This explains why Rel
has only one finitely presentable object and every object is compact, but every object of
Rel is compact and finitely presentable.

4.2. Factorisation systems. To arrive at a suitable notion that is stronger than com-
pactness of objects but retains the essential properties of finite presentability, we recall a
concept that was popularised by Freyd and Kelly [FK72] but whose origins can be traced
back to Mac Lane [Mac50] and Isbell [Isb57] (see also [BW84, Exercises 5.5] or [Bor94,
Section 5.5]).

Definition 4.5. A weak factorisation system (E,M) for a category C consists of two classes
of morphisms E and M of C such that

• E and M both contain all isomorphisms of C, and are closed under composition;
• Every morphism f of C can be factored as f = m ◦ e for some m ∈ M and e ∈ E;

and
• The factorisation is functorial, in the sense that for morphisms u, v with v ◦m ◦ e =
m′ ◦ e′ ◦ u for m,m′ ∈M and e, e′ ∈ E, there is a morphism w making the following
diagram commute.

e // //

u

��
w

���
�
�

v

��

//m//

e′
// // //

m′
//

A weak factorisation system is called a factorisation system when the morphism w above
is unique.

If no confusion about the (weak) factorisation system at hand can arise, we use the
notation � for morphisms in E, and � for morphisms in M . Furthermore, we denote by
M(X,Y ) the set of morphisms in M with domain X and codomain Y . Also, we denote by
M(X,−) the corresponding functor C→ Set.

Example 4.6. Any posetal category has a factorisation system where E consists of all
identity morphisms, and M comprises all morphisms.

Example 4.7. An epimorphism in Vect is a surjective linear map, a monomorphism in
Vect is an injective linear map. These provide a factorisation system for Vect.

Likewise, an epimorphism in Hilb is a continuous linear map with dense image, and a
monomorphism in Hilb is an injective continuous linear map. These provide a factorisation
system for Hilb.

Proof. Every epimorphism in Vect is regular since it is the coequaliser of its cokernel
pair [Bor94, Example 4.3.10a]. Since the pullback of a surjective linear map is again a
surjective linear map, the monomorphisms and (regular) epimorphisms form a factorisation
system for Vect [BW84, Exercise 5.5.4]. The situation in Hilb is analogous, except that
the image first needs to be closed to be a genuine Hilbert space.
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The fact that the bicategory of relations is defined as a subbicategory of the bicategory of
spans [CKS84, FS90] inspires the following weak factorisation system for our other running
example, Rel.

Example 4.8. Call a relation R ⊆ X×Y functional if ∀x∈X∃!y∈Y [(x, y) ∈ R], and oppositely
functional if ∀y∈Y ∃!x∈X [(x, y) ∈ R]. Denote by M the collection of functional relations, and
by E the collection of oppositely functional relations. Then (E,M) is a factorisation system
for Rel.

Proof. First, isomorphisms in Rel are isomorphisms in Set, so that these are certainly in
both E and M . Obviously, E and M are closed under composition.

Secondly, any morphism R ⊆ X × Y of Rel factors as R = m ◦ e for

e = {(x, (x, y)) : x ∈ X, y ∈ Y | (x, y) ∈ R} ⊆ X ×R,
m = {((x, y), y) : x ∈ X, y ∈ Y | (x, y) ∈ R} ⊆ R× Y.

with e ∈ E and m ∈M .
Thirdly, we show that the factorisation is functorial. Assume

X
e // //

U
��

R Y

V
��

//m//

X ′
e′
// // R′ Y ′//

m′
//

for e, e′ ∈ E and m,m′ ∈M . Then

W = {((x, y), (x′, y′)) ∈ R×R′ | (x, x′) ∈ U, (y, y′) ∈ V }
is the unique relation between R and R′ making both squares commute.

4.3. Compactly presentable objects. The following observation is a combination of
the notions of compactness of objects and finite presentability that did not coincide in
Rel. Since the ‘monomorphisms’ in Example 4.8 are functions, M(X,−) preserves directed
colimits in Rel if and only if X is a finite set by Example 4.3. This property that we name
‘compact presentability’ is now lifted to a definition, because it turns out to be exactly what
we need in Section 5.

Definition 4.9. A compact object X in a symmetric monoidal category C is said to be
compactly presentable6 with respect to a weak factorisation system (E,M), when M(X,−)
preserves directed compact colimits.

Explicitly, a compact object X is compactly presentable (with respect to a weak fac-
torisation system) when for any directed compact diagram D : J→ C, any colimit cocone
dj : D(j) → Y and any morphism m : X � Y in M , there are j ∈ J and a morphism

6The terminology is slightly unfortunate, because by the notation in the literature [AR94, GU71] it
might suggest that C(X,−) preserves colimits of λ-directed diagrams for a ‘compact cardinal’ λ. Although
Definition 4.9’s raison d’être is to ensure the existence of the functor (−)∗ in Section 5, we refrain from a
notational name like ‘star-presentable object’. Likewise, ‘locally compact object’ has other connotations.
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n : X � D(j) in M such that m = dj ◦n. Moreover, this morphism n is essentially unique,
in the sense that if m = dj ◦n = dj ◦n′, then D(j → j′)◦n = D(j → j′)◦n′ for some j′ ∈ J.

D(1) //

d1 ##GGGGGGGGG
D(2) //

d2
��

D(3) //

d3

{{wwwwwwwww
· · · // D(j) //

dj

ssggggggggggggggggggggggggggg OO
n
OO�
�

· · ·

Y oo m
oo X

Notice that compact presentability is a strictly stronger notion than compactness of
objects. This might be surprising because the former depends on the structure of a weak
factorisation system whereas the latter does not. However, this is resolved by noting that
the definition of compact presentability explicitly includes the clause that the object must
be compact. Also, compact presentability is strictly weaker than finitely presentable and
compact, because only composition with ‘monomorphisms’ is required to preserve certain
colimits, instead of composition with all morphisms. This is clearly exhibited when we
consider which objects are compactly presentable in our example categories.

Example 4.10. In a posetal category induced by an ordered commutative monoid as in
Example 3.2, with the factorisation system of Example 4.6, an object X is compactly
presentable when it is invertible and in case it is smaller than a supremum of some directed
set D of invertible elements, it is already smaller than some element of D.

Proof. Since the ‘monomorphisms’ in the factorisation system of Example 4.6 are all mor-
phisms, compactly presentable in this case coincides with compact and finitely presentable.
The result thus follows by substituting Example 4.2 into Definition 4.9.

Example 4.11. In Rel, with the factorisation system of Example 4.8, the compactly
presentable objects are the finite sets.

Proof. Since the ‘monomorphisms’ in the factorisation system in Rel of Example 4.8 are
functions, an object in Rel is compactly presentable precisely when it is finitely presentable
in Set, which happens precisely when it is a finite set by Example 4.3.

Example 4.12. In Vect and Hilb, with the factorisation system of Example 4.7 the
compactly presentable objects are the finite-dimensional spaces.

Proof. Let X be a finite-dimensional vector space, D : J → Vect a directed compact
diagram, and f : X → colim(D) an injective linear map. Since we can choose a finite basis
for X, also Im(f) is finite-dimensional. Hence, by induction, Im(f) can be written as the
span of a finite number of basis vectors of colim(D), for any basis of colim(D). Since these
basis vectors must be in some D(j), so is their span, and thus f factors through D(j),
essentially uniquely.

Conversely, if f factors through a finite-dimensional space, X must be finite-dimensional,
since rank(f) = dim(X) because f is injective. The situation in Hilb is analogous.

Example 4.10 shows that the object I is not necessarily compactly presentable: a
counterexample is the category induced by (Q,+,≤), since we have 0 ≤ supn(− 1

n), but of
course 0 6≤ − 1

n for all n. Hence the compactly presentable objects do not form a monoidal
subcategory in general. However, we can ensure that the tensor product of compactly
presentable objects is again compactly presentable by the following assumptions on the
(weak) factorisation system: ηX ∈M and εX ∈ E for all X ∈ Ccpt, and M is closed under
tensor products.
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5. Compactly presentable categories and
compactly accessible categories

The main idea of this article is very simple. To overcome the limitation of finite-dimen-
sionality inherent in compact categories, we consider categories in which every object is a
directed colimit of compact objects. Although directed colimits of monomorphisms between
compact objects would suffice, the definitions turn out to be more concise in the general
case.

In Vect, this is an extension of choosing a basis for every vector space: if (en) is a
(well-ordered) basis for X, then X is the colimit of the totally ordered diagram

span(e1) // span(e1, e2) // span(e1, e2, e3) // · · ·

where the morphisms are the obvious inclusions. Conversely, not every totally ordered
diagram provides a basis for its colimit vector space, even if the constituent objects’ di-
mension increases by one. However, every vector space is the directed colimit of its
finite-dimensional subspaces, even if the dimension of the vector space is uncountable.
For example, consider the free complex vector space V = F (R) on the basis R. Let
VB = {ϕ : R → C | ϕ(x) 6= 0 ⇒ x ∈ B} for B ∈ Pfin(R) be the finite-dimensional
subspaces. Then V = F (R) = F (colimB B) = colimB F (B) = colimB VB. Thus the slip-
pery cardinality issue surrounding colimits of bases is defused by the information relating
different subspaces encoded in the diagram of all finite-dimensional subspaces. Nevertheless,
the choice of a basis is a good intuition for a directed colimit of compact objects.

Since we will ultimately consider such categories that moreover have an involution on
the entire category (see Section 6), we might as well consider coherence of the choice-of-
duals with colimits. For this, demanding colimits of compact objects is not enough — it
turns out we need every object to be a directed colimit of compactly presentable objects to
construct a choice-of-duals-functor on the entire category.

5.1. (Directed) colimits. Before we can postulate every object to be a (directed) colimit
of some well-behaved kind of objects, a natural first requirement is that the category must
have all (directed) colimits. Fortunately, our running example categories satisfy this.

In a posetal category, colimits correspond to suprema, and limits to infima. Hence the
category of Example 3.2 has directed limits and codirected limits precisely when its partial
order structure has directed infima and directed suprema. It is complete and cocomplete
when it is a complete lattice ordered commutative monoid.

Lemma 5.1. Rel has directed colimits and codirected limits, but is neither complete nor
cocomplete.

Proof. It suffices to show that Rel has colimits of totally ordered diagrams [AR94, Corol-
lary 1.7]. Let Rn ⊆ Xn×Xn+1 be such a chain. Put X ′n = {x ∈ Xn | ∃y∈Xn+1 .(x, y) ∈ Rn},
and X =

∐
nX

′
n/∼, where ∼ is the smallest equivalence relation such that x∼ y when

(x, y) ∈ Rn. Then Sn = {(x, [x]) ∈ X ′n × X | x ∈ X ′n} ⊆ Xn × X is a cocone. To show
that it is universal, suppose that Tn ⊆ Xn × Y is another cocone. Then Tn ⊆ X ′n × Y , for
if some (x, y) ∈ Tn with x 6∈ X ′n, then (x, y) 6∈ Tn+1 ◦Rn contradicts the fact that Tn forms
a cocone. Define T ⊆ X × Y by T = {([x], y) ∈ X × Y | x ∈ X ′n | (x, y) ∈ Tn}; this is
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well-defined since Tn is a cocone. Moreover,

T ◦ Sn = {(x, y) ∈ Xn × Y | x ∈ X ′n ∧ ([x], y) ∈ T}
= {(x, y) ∈ Xn × Y | x ∈ X ′n ∧ (x, y) ∈ Tn}
= Tn,

whence T is a mediating morphism. Finally, it is the unique such relation, since if also
T ′ ◦ Sn = Tn, then ([x], y) ∈ T ′ for (x, y) ∈ X ′n × Y iff (x, y) ∈ Tn, so T ′ = T . Hence X is a
colimit and Sn a colimiting cocone.

However, Rel lacks equalizers. To see this, consider the sets X = {0, 1} and Y = {0},
and the parallel relations R = X × Y and S = {(0, 0)} ⊆ X × Y . Their equaliser must be
contained in T = {(0, 0)} ⊆ {0} ×X. Now T ′ = {0} ×X also satisfies R ◦ T ′ = S ◦ T ′, but
does not factor through any subrelation of T .

The fact that Rel is a self-dual category establishes the statements about codirected
limits and completeness.

Lemma 5.2. Vect is complete and cocomplete.

Proof. The category Vect is algebraic, i.e. monadic over Set. Hence it is complete [BW84,
Theorem 3.4.1] and cocomplete [BW84, Proposition 9.3.4]. This is also easily seen by
directly constructing products, coproducts, kernels and cokernels [Mac98, Section V.2].

Lemma 5.3. Hilb has directed colimits and codirected limits, but is neither complete nor
cocomplete.

Proof. It suffices to show that Hilb has colimits of totally ordered diagrams [AR94, Corol-
lary 1.7]. Denote by Hilb≤1 the category of Hilbert spaces and contractions. Define a
functor F : Hilb → Hilb≤1 by F (H) = H, acting on morphisms as F (f) = ‖f‖−1 · f if
f 6= 0 and F (0) = 0. One easily proves that F creates colimits of totally ordered diagrams.
Since Hilb≤1 is known to have directed colimits [AR94, Example 2.3.9], so does Hilb.

To see that Hilb does not have all colimits, consider the following counterexample.
Define an N-indexed family Hn = C of objects of Hilb, and define fn : Hn → C by
fn(z) = n · z. These are certainly bounded maps since ‖fn‖ = n. Suppose the family (Hn)
had a coproduct H. Then, for all n ∈ N, the norm of the cotuple f : H → C of (fn) must
satisfy

n = ‖fn‖ = ‖f ◦ κn‖ ≤ ‖f‖ · ‖κn‖ = ‖f‖,
where κn denotes the coproduct injection, that may be assumed to have unit norm. This
contradicts the boundedness of f , so Hilb is not cocomplete. Notice that diverging be-
haviour as in the above counterexample is excluded by directed diagrams.

The fact that Hilb is a self-dual category establishes the statements about codirected
limits and completeness.

5.2. Finitely accessible categories. For reference we now recall the kind of categories
in which every object is a (directed) colimit of finitely presentable objects. The next sub-
section will imitate this construction with compactly presentable objects instead of finitely
presentable ones.
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Definition 5.4. A category is called locally finitely presentable when it is cocomplete and
has a set7 A of finitely presentable objects such that every object is a directed colimit of
objects from A.

Definition 5.5. A category is called finitely accessible when it has directed colimits and
there is a set A of finitely presentable objects such that every object is a directed colimit
of objects from A.

Locally finitely presentable categories are precisely the free cocompletions of small cat-
egories [AR94, Theorem 1.46], and finitely accessible categories are precisely the free co-
completions of small categories with respect to directed colimits [AR94, Theorem 2.26].
This might suggest that it suffices to take the free cocompletion of a compact category with
respect to directed colimits. However, then it is not clear how to extend the choice-of-duals-
functor to the resulting accessible category (if it is possible at all).

5.3. Compactly accessible categories. As mentioned above, this subsection mimicks
Definitions 5.4 and 5.5 using compactly presentable objects. The reason for this adaptation
will become clear in the next subsection: it ensures that the choice-of-duals-functor extends
to the entire category. Since our main example, Hilb, is not cocomplete but has directed
colimits by Lemma 5.3, we are mostly interested in (compactly) accessible categories, but
for completeness we also consider locally (compactly) presentable categories.

However, first we need to require the weak factorisation system to cooperate with
compactness. Compact presentability of objects already takes into account the ‘monomor-
phisms’, and the next definition fixes coherence with the ‘epimorphisms’.

Definition 5.6. A (weak) factorisation sytem is called compactly presentable if quotients
preserve compact presentability, that is, if X � Y and X is compactly presentable, then so
is Y .

The (weak) factorisation systems for posetal categories, Rel, Vect and Hilb we met in
Examples 4.7 and 4.8 are all easily seen to be compactly presentable. If X is a finite set and
there is a surjection onto Y , then surely Y is finite. Likewise, if X is a finite-dimensional
vector space and there is a surjection onto Y , then also Y must be finite-dimensional.

Definition 5.7. A category C is called locally compactly presentable if
• it is symmetric monoidal;
• it has compact limits and compact colimits;
• it is equipped with a compactly presentable weak factorisation system; and
• it has a set A of compactly presentable objects such that every object is a directed

colimit of objects of A.

Definition 5.8. A category C is called compactly accessible if
• it is symmetric monoidal;
• it has directed compact colimits and codirected compact limits;
• it is equipped with a compactly presentable weak factorisation system; and
• it has a set A of compactly presentable objects such that every object is a directed

colimit of objects of A.

7In fact, we allow a set A of finitely presentable objects, such that every object is a directed colimit of
objects isomorphic to an object from A. That is, we only require the full subcategory of those objects to be
essentially small, i.e. its skeleton must be small.
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Since every set is a directed colimit (in Rel) of the diagram of its finite subsets (ordered
by inclusion)8, we see that Rel, equipped with the factorisation system of Example 4.11, is
a compactly accessible category by collecting earlier results.

Of course, every compactly presentable category is a compactly accessible category. But
also Vect and Hilb (and their generalisations indicated in Examples 3.4 and 3.5), equipped
with their canonical factorisation systems (see Example 4.7), are examples of compactly
accessible categories. Hence the previous definition at least succeeds in overcoming the
limitation of finite-dimensionality.

We also see that the posetal category induced by an directed-complete ordered Abelian
group of Example 3.2 is a compactly accessible category precisely if every element is a
directed supremum of the compact elements below it, i.e. when the Abelian group is in fact
ordered by an algebraic domain [AJ94].

5.4. Properties of compactly accessible categories. Compactly accessible categories
inherit some of the pleasant properties from compact categories, and others only partly. The
choice-of-duals-functor, that is arguably the most important feature of a compact category,
extends canonically. We first define the construction on morphisms, and then prove it to
be functorial.

Definition 5.9. Let f : X → Y be a morphism in a compactly accessible category C. Pick
directed compactly presentable diagrams C : I → C and D : J → C with colimit cocones
ci : C(i)→ X and dj : D(j)→ Y . Let limit cones c∗i : X∗ → C∗(i) and d∗j : Y ∗ → D∗(j) be
given. We define a morphism f∗ : X∗ → Y ∗ as follows.

Every f ◦ci factors as C(i)
fi // //Xi Y//

mi// . Because C(i) is compactly presentable, so is

Xi, and hence there is a ji ∈ J such that mi factors as Xi
ni //D(ji)

dji //Y . Because of the
functorial property of the weak factorisation system and directedness of D, the morphisms
f∗i ◦ n∗i ◦ d∗ji form a cone from vertex Y ∗ to C∗. Define f∗ to be the unique mediating
morphism Y ∗ → X∗.

C(i)

cicolim

��

fi

!! !!CCCCCCCC
D(ji)

colimdji

��

C∗(i) D∗(ji)
n∗i

{{xxxxxxxx

Xi

ni

<<z
z

z
z

X∗i

f∗i
bbEEEEEEEE

X
f

// Y
##

mi

##GGGGGGGGG
X∗

c∗ilim

OO

Y ∗

limd∗ji

OO

f∗
oo_ _ _ _ _ _ _ _ _

Lemma 5.10. Let X
f //Y

g //Z be morphisms in a compactly accessible category C.
Pick directed compactly presentable diagrams C : I → C, D : J → C and E : K → C
with colimit cocones ci : C(i) → X, dj : D(j) → Y , and ek : E(k) → Z. Let limit cones
c∗i : X∗ → C∗(i), d∗j : Y ∗ → D∗(j) and e∗k : Z∗ → E∗(k) be given. Then (g ◦ f)∗, as defined
above, equals f∗ ◦ g∗.

8Notice that, up-to-isomorphism, there is only a set of finite sets (namely N).
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Proof. According to the construction in the previous definition, we get the following com-
muting diagrams.

C(i)

ci

��

fi

�� ��>>>>>>>
D(ji)

dji

��

gi

�� ��???????
E(k′i)

ek′
i

��

C(i)

ci

��

(g◦f)i

�� ��>>>>>>>
E(k′′i )

ek′′
i

��

Xi

ni

>>~
~

~
~

Yi

n′i

??�
�

�
�

Zi

n′′i

>>}
}

}
}

X
f

// Y g
//

!!

mi

!!CCCCCCC

Z
  

m′i
  BBBBBBB

X
g◦f

// Z
!!

m′′i
!!CCCCCCC

The functoriality of the weak factorisation system provides a morphism wi making the
following diagram commute.

C(i)

ci

��

fi // //

(g◦f)i )) ))TTTTTTTTTTTTTTTTTTTT Xi
ni // D(ji)

gi

$$ $$IIIIIIIIII

Zi wi

//_____ Yi

X
f

// Y g
// Z
##

m′i
##GGGGGGGGG

**m′′i

**UUUUUUUUUUUUUUUUUUU

Because E is a directed diagram, there exist ki ∈ K and morphisms a′ : k′i → ki and
a′′ : k′′i → ki of K. So the following diagram commutes.

Zi
n′′i //

wi

��

E(k′′i )
E(a′′) // E(ki)

eki

&&NNNNNNNN

Z

Yi
n′i

// E(k′i) E(a′)
// E(ki)

eki

88pppppppp

Hence we get compatible cones Z∗ → C∗, as in the following diagram.

C∗(i) Z∗i
(g◦f)∗ioo E∗(k′′i )

n′′∗ioo E∗(ki)
E(a′′)∗oo

Z∗

e∗ki

eeJJJJJJJJJJ

e∗kiyytttttttttt

X∗i

f∗i

OO

Y ∗in∗i ◦g∗i
oo

w∗i

OO

E∗(k′i)n′∗i

oo E∗(ki)
E(a′)∗
oo

Thus by uniqueness of the mediating morphism, (g ◦ f)∗ = f∗ ◦ g∗.
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Theorem 5.11. There is a canonical functor (−)∗ : Cop → C on any compactly accessible
category C, extending that on Ccpt.

Proof. An easy diagram chase shows directly that the construction in Definition 5.9 satisfies
id∗ = id. Combining this with Lemma 5.10, we see that colim(C) ∼= colim(D) for compactly
presentable directed diagrams C and D implies that lim(C∗) ∼= lim(D∗). Hence picking
one representative X∗ of each isomorphism class lim(D∗) where X ∼= colim(D) provides
an action (−)∗ : Cop → C on objects. Definition 5.9 subsequently gives an action on
morphisms, and Lemma 5.10 shows that this is indeed functorial.

If we ensure that the choice of representatives X∗, Y ∗ coincides with the choice of duals
for X,Y ∈ Ccpt, then the situation for a morphism f : X → Y collapses, so that the f∗ of
Definition 5.9 indeed coincides with the f∗ of Proposition 3.7. After all, C,D : 1→ C with
C(∗) = X and D(∗) = Y are compact directed diagrams.

In Vect, equipped with its usual factorisation system (of Example 4.7), the functor (−)∗

of the previous theorem maps an object to its usual dual vector space (and a morphism to
its usual dual). Hence, the dual-space functor of vector spaces is entirely determined when a
choice of dual spaces of just the finite-dimensional vector spaces (and a factorisation system)
has been fixed.

However, by allowing infinite-dimensionality in compactly accessible categories, we also
partly lost some properties of compact categories. For example, the functor (−)∗ is no
longer an equivalence.

Proposition 5.12. The isomorphism X ∼= X∗∗ holds for compact objects X in a compactly
accessible category C, but not for any object.

Proof. For compact objects we have Proposition 3.8. As a counterexample for non-compact
objects, we already saw in Example 3.4 that an infinite-dimensional vector space is not
isomorphic to its double dual by a cardinality argument.

Unfortunately this entails that the choice-of-duals-functor is no longer necessarily invo-
lutive up to isomorphism outside the compact part of the category. However, for the present
purpose this is not a major issue, because the ‘essence’ of a quantum protocol resides in the
compact part; the cocompletion aspect is only used because the dimension is not a priori
bounded.

However, the canonical factorisation system in Hilb (see Example 4.7) provides a canon-
ical extension of the choice-of-duals functor that is an equivalence. It is remarkable that
such a functor can be derived from the axiomatic structure of compactly accessible cate-
gories.

Likewise, a compactly accessible category is no longer a tensored *-category [Müg06]
in the sense that the tensor does not necessarily cooperate with the choice-of-duals-functor
outside the compact part of the category.

Proposition 5.13. If X or Y is compact, then (X⊗Y )∗ ∼= X∗⊗Y ∗, but this isomorphism
does not hold in general in a compactly accessible category.

Proof. Without loss of generality, assume X to be compact. Let a directed compactly
presentable diagram D : J → C with colimit Y be given. Since X∗ is also compact, we
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have by Proposition 3.6(e) that

(X ⊗ Y )∗ = (X ⊗ colim
j

(D(j)))∗

= (colim
j

(X ⊗D(j)))∗

= lim
j

(X∗ ⊗D∗(j))

= X∗ ⊗ (lim
j

(D∗(j)))

= X∗ ⊗ Y ∗.
However, for infinite-dimensional vector spaces X and Y it is not necessarily true that

(X ⊗ Y )∗ ∼= X∗ ⊗ Y ∗.
Again, it is interesting to remark that the previous proposition does hold for all Hilbert

spaces X and Y , since every Hilbert space is naturally isomorphic to its dual (by the Riesz
representation theorem).

6. Dagger compactly accessible categories

Although the choice-of-duals is arguably the most important feature, to model quantum
protocols one needs a compact category to have a second involutive structure coherent with
choice-of-duals [AC04, Sel07]. In the prime example category of finite-dimensional Hilbert
spaces, this second structure provides complex conjugation, whereas the choice-of-duals
accounts for transposition of matrices.

Definition 6.1. A dagger category is a category C equipped with an involutive, identity-
on-objects functor (−)† : Cop → C.

All kinds of terminology transfers from Hilb to any dagger category. For example, a
morphism f in a dagger category is called an isometry when f † ◦ f = id, and unitary when
furthermore f ◦ f † = id.

Definition 6.2. A dagger symmetric monoidal category is a symmetric monoidal category
C that is simultaneously a dagger category, such that

(f ⊗ g)† = f † ⊗ g†,
and the associativity, left-unit, right-unit and symmetry monoidal structure isomorphisms
are unitary.

Examples of dagger symmetric monoidal categories are Rel and Hilb. In Rel, the
dagger structure is given on morphisms by R† = {(y, x) : (x, y) ∈ R}. The dagger structure
in Hilb is provided by the Riesz representation theorem: for a morphism f : X → Y of
Hilb, there is a unique morphism f † : Y → X satisfying 〈f(x) | y〉 = 〈x | f †(y)〉 for all x ∈ X
and y ∈ Y [KR83, Theorem 2.4.2].

We now adapt the definition of ‘dagger compact category’ slightly to encompass com-
pactly accessible categories. First, the dagger structure should cooperate with the weak
factorisation system.
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Definition 6.3. A (weak) factorisation system (E,M) in a dagger category is called a
dagger (weak) factorisation system when e† is in M for each e in E, and m† is in E for each
m in M .9

The (weak) factorisation systems of Rel and Hilb of Examples 4.7 and 4.8 are obviously
dagger (weak) factorisation systems with respect to the above dagger structure.

The next definition essentially states that a category C is dagger compactly acces-
sible when it is a dagger category that is also compactly accessible, and Ccpt is dagger
compact [Sel07].

Definition 6.4. A dagger compactly accessible category is a compactly accessible category
C that is also a dagger category, such that the weak factorisation system is a dagger
weak factorisation system, and σ ◦ ε†X = ηX : I → X∗ ⊗ X for all X ∈ Ccpt, where
σ : X ⊗X∗ → X∗ ⊗X denotes the symmetry isomorphism.

Of course, our running example categories Rel and Hilb are both dagger compactly
accessible categories, since Relcpt and Hilbcpt are dagger compact categories.

The most important property of a dagger structure in relation to a compact category is
that the dagger functor commutes with the choice-of-duals-functor. This provides ‘complex
conjugation’. This pleasant property is retained in full in dagger compactly accessible
categories.

Theorem 6.5. For every morphism f : X → Y in a dagger compactly accessible category
f †∗ = f∗† : X∗ → Y ∗ holds.

Proof. Since (−)† is a strict involution, if ci : X → C(i) is a limit cone, then c†i : C†(I)→ X
is a colimit cocone, and vice versa. Moreover, since the weak factorisation system re-
spects the dagger, if f : X → Z factors as X e // //Y Z//

m// , then f † : Z → X factors as

Z
m† // //Y X//

e†// . Hence in the defining diagrams of f∗† and f †∗ below,

C∗(i)

c∗†i

��

f∗†i

!!DDDDDDDD
D∗(ji)

d∗†ji

��

C∗(ij)
(n′i)

∗

""FFFFFFFF
D∗(j)

X∗i

n∗†ji

<<yyyyyyyyy
X∗ij

(f†)∗j
<<yyyyyyyy

X∗
f∗†

// Y ∗ X∗

c∗ij

OO

f†∗
// Y ∗

d∗j

OO

one has that d∗†ji ◦ n
∗†
ji
◦ f∗†i and d∗†j ◦ (f †)∗j ◦ (n′i)

∗ form the same cocone. Since also c∗†i and

c∗†ij form the same cocone, the mediating morphisms f∗† and f †∗ coincide.

By the previous theorem, there is a covariant functor (−)∗ : C → C determined by
X∗ = X∗ on objects and acting as f∗ = f∗† = f †∗ on morphisms [Sel07, Definition 2.9].
In Hilb with its usual factorisation system (of Example 4.7), it maps a morphism to its
complex conjugate.

9‘Factorisation’ can be taken more literally by viewing M and E as subcategories of C and saying
C = M ◦ E. A dagger factorisation system then resembles a square root, as C = E† ◦ E, or “E =

√
C”.
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6.1. Structure or property? As a technical intermezzo, let us consider the status of
compact accessibility: is it a structure or a property? A compactly accessible category
requires a compactly presentable weak factorisation system. Initially it is not clear that this
will uniquely exist. This makes compact accessibility into a structure, whereas compactness
is a property.

First, notice that a compactly presentable factorisation system always exists. Any
symmetric monoidal category has a compactly presentable factorisation system in which E
is comprised of all isomorphisms and M consists of all morphisms.

This immediately shows that a compactly presentable factorisation system is not unique.
A forteriori, this shows that the notion of compact presentability of objects is not indepen-
dent of the chosen factorisation system: in Rel with the above factorisation system, every
object is compactly presentable, whereas in Rel with the factorisation system of Exam-
ple 4.8, only the finite sets are.

However, although these intermediate considerations might not be independent of the
factorisation system used, the canonical extension of the choice-of-duals functor is, as soon
as it is on objects. The following proposition states this rigorously.

Proposition 6.6. Let (E,M) and (E′,M ′) both be compactly presentable weak factorisation
systems for a symmetric monoidal category C. If objects X,Y are compactly presentable
with respect to both factorisation systems, then X∗, Y ∗ are independent of the factorisation
system used. Moreover, in that case f∗ is independent of the factorisation system used for
any morphism f : X → Y .

Proof. The claim on objects is just a reformulation of the hypothesis. Let us consider
the claim on morphisms in the notation of Definition 5.9: suppose ci : C(i) → X and
dj : D(j) → Y are colimit cones, and that f ◦ ci factors as mi ◦ ei and m′i ◦ e′i in both
factorisation systems, respectively. Then there are ni and n′i such that mi = dji ◦ ni and
m′i = dj′i ◦ n

′
i. Since D is directed, there is a di with di ◦ ni = mi and di ◦ n′i = m′i. So

di ◦ni ◦ ei = f ◦ ci = di ◦n′i ◦ e′i, whence e∗i ◦n∗i ◦ d∗i and e′∗i ◦n′∗i ◦ d∗i form compatible cones,
and both mediating morphisms f∗ coincide.

With the intuition of footnote 9, one might suspect that a factorisation system is unique
in the presence of a dagger functor. In any factorisation system, each of the classes E and M
is determined by the other via so-called orthogonality E = M⊥ [Bor94, Proposition 5.5.3].
Thus, the larger E is, the smaller M can be. But compatibility with the dagger functor
moreover requires E = M †, guaranteeing that E and M balance each other in size. However,
here is an example of a dagger category with two different dagger compactly presentable
factorisation systems. For any category C, the cofree dagger category C� has the same
objects; a morphism X → Y in C� consists of a pair of morphisms f← : Y → X and
f→ : X → Y of C, with (f←, f→)† = (f→, f←). All kinds of structures lift through this
construction. If C is symmetric monoidal, so is C�. An object in C is compact iff it is in
C�. An object in C is compactly presentable iff it is in C�. A factorisation system for C
lifts to a dagger factorisation system for C�. Thus, a compactly presentable factorisation
system for C lifts to a dagger compactly presentable factorisation system for C�. Hence the
above example in Rel provides an example of a dagger category Rel� with two different
dagger compactly presentable factorisation systems.

Still, in all our example categories the dagger compactly presentable factorisation sys-
tems had a very canonical feel to them. All in all, dagger factorisation systems suggest
themselves as a worthy subject of further study in their own right.
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6.2. Classical structures and measurements. Finally, we need to model measurements
in our semantics. These can be dealt with categorically [CP06] — the following definitions
recall the necessary notions, adapted to the compactly accessible setting.

Definition 6.7. An object C in a dagger compactly accessible category C is said to be a
classical structure when it is equipped with a commutative comonoid structure

C ⊗ C C
δoo ε //I

in which δ is an isometry, that moreover satisfies δ ◦ δ† = (δ† ⊗ id) ◦ (id ⊗ δ).

The precise meaning of the technical condition is not important here. The idea is
that δ provides a ‘copying’ operation, and ε a ‘deleting’ operation. The definition thus
counterfactually exploits the fact that quantum data cannot be cloned or forgotten. We
remark that a classical structure (C, δ, ε) automatically satisfies Diagrams (3.1) with C∗ =
C, η = δ ◦ ε† and ε = ε ◦ δ†. For more information we refer to [CP06].

We tentatively call an object in a dagger compactly accessible category that is not
equipped with a fixed classical structure a quantum object. Any infinite-dimensional Hilbert
space is a quantum object in Hilb, since it cannot carry any classical structure as that would
entail finite-dimensionality [Koc03]. We refer to [CD08] for a way to select quantum objects
representing qubits.

The type of a (demolition) measurement now is X → C, for a classical structure C.
As in the traditional Hilbert space formalism, we first define a basis, or projector-valued
spectrum, in which to measure.

Definition 6.8. A demolition projector-valued spectrum on an object X in a dagger com-
pactly accessible category C is a morphism p : X → C, whose codomain C is a classical
structure, that satisfies p ◦ p† = idC .

In other words, a demolition projector-valued spectrum is the adjoint of an isometry,
and hence the splitting of an idempotent [Sel06].

Now, a demolition measurement is nothing but a shell around a projector-valued spec-
trum that ‘eliminates global phases’ [CP06]. We ignore this and use measurement and
projector-valued spectrum as synonyms.

7. Quantum key distribution, categorically

With dagger compactly accessible categories in place as a semantics, the stage is now
set to model the quantum key distribution protocol in Figure 1. As mentioned before, as
of yet we can only model the qualitative steps À, Á, Â, Ã and Æ categorically. In fact, the
entire purpose of a categorical semantics is to abstract away from the quantative details
in steps Ä and Å. Though a categorical version of inequalities like Bell’s would not be
superfluous, it is outside of the scope of this article.

7.1. The quantum channel. The feature of the protocol in Figure 1 that cannot be
accomodated in a dagger compact category is the possibly unbounded need for fresh qubit-
pairs. Hence, as a preparation we set up an object from which to draw an a priori unknown
number of qubit-pairs. Let C be a dagger compactly accessible category. Select a quantum
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object X in C, such that X∗ ⊗X is compactly presentable, to represent the qubit. Define
a diagram D : N→ C by

D(n) = (X∗ ⊗X)⊗n = (X∗ ⊗X)⊗ · · · ⊗ (X∗ ⊗X)︸ ︷︷ ︸
n times

,

D(n→ n+ 1) : D(n) ∼=
//D(n)⊗ I

id⊗η
//D(n+ 1)

This is a directed compactly presentable diagram, and hence it has a colimit Z = colim(D).
This object Z will function as a store of qubit-pairs that are guaranteed to be fresh; it
models the quantum channel (and the index N of the colimit represents ‘time’). Notice that
this is not possible with X alone since that object is compact.10

One can now draw a fresh qubit-pair from the quantum channel Z as follows. Let
dn : D(n) → Z be a colimit cone. Then id ⊗ dn−1 : D(n) → (X∗ ⊗X) ⊗ Z forms another
cone to Z, and hence there is a unique mediating morphism d : Z → (X∗ ⊗X)⊗ Z.

The following reasoning shows that d : Z → (X∗ ⊗X) ⊗ Z is in fact an isomorphism.
Since X∗ ⊗X is a compact object, (X∗ ⊗X)⊗ (−) is cocontinuous by Proposition 3.6(e).
Hence we have:

(X∗ ⊗X)⊗ Z = (X∗ ⊗X)⊗ colim
n

((X∗ ⊗X)⊗n)

∼= colim
n

((X∗ ⊗X)⊗(n+1))

∼= colim
n

((X∗ ⊗X)⊗n) = Z.

Moreover, the diagram I
d0 //Z (X∗ ⊗X)⊗ Zd−1

oo is initial in the sense that for any given

diagram I
f //A (X∗ ⊗X)⊗A

goo there is a unique mediating morphism Z → A. It is
constructed via the colimit. We can understand Z as a list object with elements fromX∗⊗X:
these objects are usually defined as initial algebras of the functor 1 + (X∗ ⊗X)⊗ (−), but
since our situation does not necessarily provide a coproduct we used cospans instead.11

Thus Z models the quantum channel, and d : Z → (X∗ ⊗X) ⊗ Z represents drawing
one fresh qubit-pair prepared in Bell state.

7.2. The categorical model of the protocol. Having dealt with the qubit and the
quantum channel, step À now provides us with demolition measurements mi : X → C,
where the classical structure C represents the bit. The protocol in Figure 1 can now be
modelled as follows.

I
d0

À
// Z

d⊗3n

Á,Â
// (X∗ ⊗X)⊗3n ⊗ Z

Ã
(
N3n

i=1mai⊗(mbi
)∗)⊗id

uujjjjjjjjjjjjjjj

C⊗3n ⊗ C⊗3n ⊗ Z
Æ
//

Ä,Å

ffNNNNNNNNNNNNN

C⊗2n ⊗ C⊗2n ⊗ Z

Since we chose to keep classical communication external, steps Á, Ä, Å and Æ depend on
external events. Steps Ä, Å and Æ are modeled by forgetting the relevant information using
ε, and step Á is fully external. Thus, the protocol is represented by a morphism I → C⊗2n⊗

10There is a resemblance to type theory here: as X is a ‘finite type’, we need to have countably many
copies of it to be able to draw countably many distinct variable letters.

11Naming the carrier of the initial diagram (X∗ ⊗X)? instead of Z would be apt but confusing.
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C⊗2n⊗Z with probability one: starting from nothing, Alice and Bob each end up having 2n
bits, and there is still the possibility of obtaining fresh qubit-pairs on their shared quantum
channel. The probabilistic branching, and in particular the (improbable) possibility of non-
termination, could be dealt with more precisely using coalgebraic techniques [HJS06, BR97].
However, the above suffices as an illustration of the need for dagger compactly accessible
categories.

We are now in a position to prove the correctness of the protocol categorically, i.e. to
prove that Alice and Bob in fact end up with equal key bits, without assuming anything
about the demolition measurements mi or the external choices of ai and bi. It suffices
to prove this for each individual key bit that arises from Alice and Bob using the same
measurement, because step Æ discards the other bits. Hence the correctness of the protocol
comes down to the following theorem.

Theorem 7.1. The following diagram commutes for any demolition projector-valued spec-
trum m : X → C.

Z
d // X∗ ⊗X ⊗ Z

m∗⊗m⊗id // C∗ ⊗ C ⊗ Z
ε⊗id⊗id // I ⊗ C ⊗ Z

∼= // C ⊗ Z

Z
d
// X∗ ⊗X ⊗ Z

m∗⊗m⊗id
// C∗ ⊗ C ⊗ Z

id⊗ε⊗id
// C ⊗ I ⊗ Z ∼=

// C ⊗ Z

Proof. Because Z is only acted upon by the identity morphism, it suffices to prove commu-
tativity of the following diagram.

I
ηX // X∗ ⊗X

m∗⊗m// C∗ ⊗ C
ε⊗id // I ⊗ C

∼= // C

I ηX

// X∗ ⊗X
m∗⊗m

// C∗ ⊗ C
id⊗ε

// C∗ ⊗ I ∼=
// C

First, notice that

(m∗ ⊗m) ◦ ηX = (m∗ ⊗m) ◦ pidXq
(3.2)
= (m∗ ⊗ id) ◦ pmq (3.2)

= pm ◦m†q = pidCq.

since m◦m† = id by Definition 6.8. The commutativity of the above diagram is then estab-
lished by the following calculation based on the properties of classical structures discussed
after Definition 6.7.

(ε⊗ id) ◦ (m∗ ⊗m) ◦ ηX = (ε⊗ id) ◦ pidCq

= (ε⊗ id) ◦ δ ◦ ε†

= (id ⊗ ε) ◦ δ ◦ ε†

= (id ⊗ ε) ◦ pidCq
= (id ⊗ ε) ◦ (m∗ ⊗m) ◦ ηX . �

This protocol did not in fact use the choice-of-duals-functor on non-compact morphisms,
because it only operates on compact parts of a non-compact object. However, it is entirely
feasible that quantum protocols (or more general constructions in quantum physics) essen-
tially rely on the choice-of-duals-functor on non-compact parts when modeled categorically.
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8. Conclusion

With an eye towards applications in quantum theory, we developed the notion of a
compactly accessible category using the structure of a factorisation system. It is a category
that can contain objects that are not compact themselves, but are directed colimits of
compact objects, thus allowing for infinite-dimensionality. Simultaneously, it has a functor
that canonically extends the choice-of-duals on its compact part, and that commutes with
a dagger structure if one is available. The need for such a category was illustrated by
categorically modeling and proving correct a quantum key distribution protocol. The full
structure of dagger compactly accessible categories was not needed for this specific example,
in particular the extended choice-of-duals functor went unused. But in general an extended
choice-of-duals functor is convenient and even arguably necessary. Moreover, in the presence
of a dagger structure it hardly puts up more restrictions and hence is essentially for free.

Several connections to related research present themselves. First, a compact category
has a canonical trace [Abr05]. Although the nuclear ideal setting [ABP99] seems ideal to
study this phenomenon, perhaps the trace class morphisms can also be characterized by a
colimit property, analogous to the passage from compact categories to compactly accessible
ones. Secondly, compactly accessible categories can be seen as a ‘technical implementation’
of shape theory [Blu06], with the benefit of actually having concrete structure. One could
look for the initial or terminal such implementation. Thirdly, the store of qubit-pairs in
Section 7 strongly resembles Fock space [Vic07, BPS94], suggesting that compactly acces-
sible categories might be naturally employed there. Lastly, one could develop a graphical
calculus [Sel07] for (dagger) compactly accessible categories. However, for other purposes
than aiding intuition, this seems a premature optimisation.

The presented material also indicates some directions for future research. First, a cate-
gorical version of the Bell inequalities would lend a definiteness to the categorical approach
to quantum theory [AC04]. Secondly, the notion of complete positivity [Sel07] could be
extended to compactly accessible categories. The usual formulation of a completely posi-
tive morphism in a dagger compact category relies essentially on the category being closed.
As a dagger compactly accessible category is not necessarily closed (e.g. Hilb), a differ-
ent characterization of complete positivity is in order. Thirdly, the connection to linear
logic should be explored. Compact categories, as special cases of *-autonomous categories,
model a large fragment of linear logic. It is also known that Barr’s free construction of a
*-autonomous category provides a model of full linear logic when one starts with an accessi-
ble category [Bar90]. Thus compactly presentable categories qualify as likely candidates to
model linear logic, perhaps with unusual properties [Dun06]. Fourthly, locally presentable
categories are known to be precisely the models of essentially algebraic theories. Likewise,
accessible categories are precisely the axiomatisations by a basic theory in some many-sorted
first-order logic [AR94]. One could look for similar results that characterise compactly pre-
sentable categories and compactly accessible categories as models of some algebraic theories.
Lastly, extending a compact category to a compactly accessible one would be a valuable
addition to the theory developed in this article, as we have motivated compactly accessible
categories as an extension of compact ones, but gave only an axiomatic description. A con-
ceivable starting point could be the fact that accessible categories are free cocompletions of
small categories with respect to directed colimits [AR94, Theorem 2.26]. It would involve
a completion of a factorisation system with directed colimits, which would likely involve a
study of dagger factorisation systems in itself, as discussed in Section 6.1.
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[GU71] Peter Gabriel and Friedrich Ulmer. Lokal präsentierbare Kategorien. Number 221 in Lecture Notes

in Mathematics. Springer, 1971.
[Hal82] Paul Halmos. A Hilbert space problem book. Springer, 2nd edition, 1982.
[HJS06] Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace theory. In Proceedings of the 8th

International Workshop on Coalgebraic Methods in Computer Science, volume 164 of Electronic
Notes in Theoretical Computer Science, pages 47–65. Springer, 2006.

[Isb57] John Isbell. Some remarks concerning categories and subspaces. Canadian Journal of Mathematics,
9:563–577, 1957.

[Jac53] Nathan Jacobson. Lectures in Abstract Algebra, volume II: Linear Algebra. Van Nostrand, Prince-
ton, 1953.

[Joh82] Peter T. Johnstone. Stone Spaces. Cambridge University Press, 1982.
[Kel72] Max Kelly. Many Variable Functorial Calculus I, volume 281 of Lectures Notes in Mathematics,

chapter Coherence in Categories, pages 66–106. Springer, 1972.
[KL80] Max Kelly and Miguel L. Laplaza. Coherence for compact closed categories. Journal of Pure and

Applied Algebra, 19:193–213, 1980.
[Koc03] Joachim Kock. Frobenius algebras and 2-D Topological Quantum Field Theories. Number 59 in

London Mathematical Society Student Texts. Cambridge University Press, 2003.
[KR83] Richard V. Kadison and John R. Ringrose. Fundamentals of the theory of operator algebras. Aca-

demic Press, 1983.
[Lin76] Harald Lindner. Monoidale und geschlossene Kategorien. Habilitationsschrift, Universität

Düsseldorf, 1976.
[Lin78] Harald Lindner. Adjunctions in monoidal categories. Manuscripta Mathematica, 26:123–139, 1978.
[Mac50] Saunders Mac Lane. Duality for groups. Bulletin of the American Mathematical Society, 56(6):485–

516, 1950.
[Mac86] Saunders Mac Lane. Mathematics, Form and Function. Springer, 1986.
[Mac98] Saunders Mac Lane. Categories for the Working Mathematician. Springer, 2nd edition, 1998.
[MR77] Roberta B. Mura and Akbar Rhemtulla. Orderable groups, volume 27 of Lecture Notes in Pure and

Applied Mathematics. New York: Marcel Dekker, 1977.
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