
Quantifiers for quantum logic

Chris Heunen

March 30, 2009

Abstract

We consider categorical logic on the category of Hilbert spaces. More
generally, in fact, any pre-Hilbert category suffices. We characterise closed
subobjects, and prove that they form orthomodular lattices. This shows
that quantum logic is just an incarnation of categorical logic, enabling us
to establish an existential quantifier for quantum logic, and conclude that
there cannot be a universal quantifier.

1 Introduction

Quantum logic is the study of closed subspaces of a Hilbert space [BV]. In-
triguingly, this ‘logic’ is not distributive, but only satisfies the weaker axiom of
orthomodularity. One of the shortcomings that has kept it from wide adoption
is the lack of quantifiers. In fact, it has been called a ‘non-logic’ [Abr].

On the other hand, categorical logic [LS] can be seen as a unified framework
for any kind of logic that deserves the name. It is concerned with interpreting
(syntactical) logical formulae in categories with enough structure to accommo-
date this. An important part of it is the study of subobjects of a given object
in the category at hand. Perhaps its most gratifying feature is that it gives a
canonical prescription of what quantifiers should be.

The aim of this paper is to show that quantum logic is just an incarnation of
categorical logic in categories like that of Hilbert spaces. In particular, we will
establish an existential quantifier, and conclude that there cannot be a universal
quantifier.

Section 2 first abstracts the properties of the category of Hilbert spaces that
we need. This results in an axiomatisation of (pre-)Hilbert categories greatly
resembling that of monoidal Abelian categories. In fact, any (pre-)Hilbert cat-
egory embeds into the category of (pre-)Hilbert spaces itself [Heu]. Next, Sec-
tion 3 starts the investigation of subobjects in Hilbert categories. It turns out
that the natural objects of study are not the subobjects, but the closed subobjects
or †-subobjects. Section 4 then derives a functor that behaves as an existential
quantifier according to categorical logic. Section 5 studies the emergent concept
of orthogonality in Hilbert categories. First, it proves that †-subobjects form
orthomodular lattices. Second, it exhibits a tight connection between adjoint

1

morphisms in the base category and adjoint functors between the lattices of
subobjects, the latter being important in connection to quantifiers.

Related work

The present article should not be confused with the ‘categorical quantum logic’
of [Dun]. That work develops a type theory. Of course this is related: “every
logic is a logic over a type theory” [Jac]. This paper develops the logic over ‘the
type theory of Hilbert spaces’.

This paper also differs from [Har], in that the aim is explicitly a categor-
ical logic. Another difference is that that paper restricts to those projections
that have an orthocomplement, whereas we derive orthomodularity from prior
assumptions (namely †-kernels).

Acknowledgement

The author thanks Bart Jacobs for pointing out an inaccuracy in the proof of
Theorem 15, and subsequently helping to improve it.

2 Pre-Hilbert categories

This section introduces the categories in which our study takes place, somewhat
concisely. For more information we refer to [Heu].

A functor † : Hop → H withX† = X on objects and f†† = f on morphisms is
called a †-functor ; the pair (H, †) is then called a †-category. Such categories are
automatically isomorphic to their opposite, and the †-functor witnesses this self-
duality. We can consider coherence of the †-functor with all sorts of structures.
A morphism m in such a category that satisfies m†m = id is called a †-mono
and denoted � ,2 // . Likewise, e is a †-epi, denoted � ,2, when ee† = id.
A morphism is called a †-iso when it is both †-epi and †-mono. Similarly, a
biproduct on such a category is called a †-biproduct when π† = κ, where π is a
projection and κ an injection. This is equivalent to demanding (f⊕g)† = f†⊕g†.
Also, an equaliser is called a †-equaliser when it is a †-mono, and a kernel is
called a †-kernel when it is a †-mono. Finally, a †-category H is called †-
monoidal when it is equipped with monoidal structure (⊗, C) that cooperates
with the †-functor, in the sense that (f ⊗ g)† = f† ⊗ g†, and the coherence
isomorphisms are †-isomorphisms.

Definition 1 A category is called a pre-Hilbert category when

• it has a †-functor;

• it has finite †-biproducts;

• it has (finite) †-equalisers;

• every †-mono is a †-kernel; and

2

• it is symmetric †-monoidal.

Notice that a Hilbert category is self-dual (by the †-functor), and therefore
that it automatically has all finite colimits, too.

The category preHilb itself is a pre-Hilbert category whose monoidal unit is
a simple generator, and so are its full subcategories Hilb, and fdHilb of finite-
dimensional Hilbert spaces. Also, if C is a small category and H a pre-Hilbert
category, then [C,H] is again a pre-Hilbert category. Working in pre-Hilbert
categories can be thought of as ‘natural’ or ‘baseless’ (pre-)Hilbert space theory.

3 Subobjects

This section characterises closed subobjects categorically. But let us start with
some easy properties of †-mono’s.

Lemma 2 In any †-category:

(a) A †-mono which is epi is a †-iso.

(b) The composite of †-epi’s is again a †-epi.

(c) If X
f //Y

g //Z are such that both gf and f are †-epi, so is g.

(d) If m and n are †-monos, and f is an iso with nf = m, then f is a †-iso.

Proof For (a), notice that ff† = id implies ff†f = f , from which f†f = id
follows from the assumption that f is epi. For (b): gf(gf)† = gff†g† = g†g =
id. And for (c): gg† = gff†g = gf(gf)† = id. Finally, consider (d). If f is iso,
in particular it is epi. If both nf and n are †-mono, then so is f , by (c). Hence
by (a), f is †-iso. �

From now on, we work in an arbitrary pre-Hilbert category H.

Lemma 3 A morphism m is mono iff ker(m) = 0. Consequently, if mf = 0
implies f = 0 for all f , then m is mono.

Proof Suppose ker(m) = 0. Let u, v satisfy mu = mv. Put q to be the
†-coequaliser of u and v. Since q is a †-epi, q = coker(w) for some w. As
mu = mv, m factors through q as m = nq. Then mw = nqw = n0 = 0, so w
factors through ker(m) as w = ker(m) ◦ p for some p. But since ker(m) = 0,
w = 0. So q is a †-iso, and in particular mono. Hence, from qu = qv follows
u = v. Thus m is mono.

��$
ker(m)

��?????????
poo_ _ _ _

w

��u //
v

// m //

q

_��
n

??�
�

�
�

�

3

Conversely, if m is mono, it follows from m◦ker(m) = 0 = m◦0 that ker(m) = 0.
If f = 0 whenever mf = 0, then ker(m) = 0, so that m is mono. �

3.1 Factorisation

This subsection proves that any morphism f : X → Y in a pre-Hilbert category
can be factorised as an epi e : X → I followed by a †-mono m : I → Y . (In
Hilb, this is very easily proved concretely: e is simply the restriction of f to I,
the closure of its range, and m is the isometric inclusion of I into Y .) Recall that
since a pre-Hilbert category has †-kernels, it automatically also has †-cokernels
by coker(f) = ker(f†)†.

Lemma 4 Any pre-Hilbert category has a factorisation system consisting of
mono’s and †-epi’s. The factorisation is unique up to a unique †-iso. Conse-
quently, every †-epi is a †-cokernel of its †-kernel.

Proof Let a morphism f be given. Put k = ker(f) and e = coker(k). Since
fk = 0 (as k = ker(f)), f factors through e(= coker(k)) as f = me.

h

��

l

�������������

� ,2
k

//

e

_��

f //

g
//

m

??�����������
q

� ,2

r

OO

soo

We have to show that m is mono. Let g be such that mg = 0. By Lemma 3 it
suffices to show that g = 0. Since mg = 0, m factors through q = coker(g) as
m = rq. Now qe is a †-epi, being the composite of two †-epi’s. So qe = coker(h)
for some h. Since fh = rqeh = r0 = 0, h factors through k(= ker(f)) as h = kl.
Finally eh = ekl = 0l = 0, so e factors through qe = coker(h) as q = sqe. But
since e is a (†-)epi, this means sq = id, whence q is mono. It follows from qg = 0
that g = 0, and the factorisation is established.

Since †-epi’s are regular epi’s, and hence strong epi’s, functoriality of the
factorisation follows from [Bor, 4.4.5]. By Lemma 2d, the factorisation is unique
up to a †-iso.

Finally, suppose that f is a †-epi. Then both the above f = m ◦ e and
f = f ◦ id are mono-†-epi factorisations of f . Hence f = e up to the unique
mediating †-iso m, showing that f = coker(ker(f)). �

We just showed that any pre-Hilbert category has a factorisation system
consisting of mono’s and †-epi’s. Equivalently, it has a factorisation system
of epi’s and †-mono’s. Indeed, if we can factor f† as an †-epi followed by a
mono, then taking the daggers of those, we find that f†† = f factors as an epi

4

followed by a †-mono. The combination of both factorisations yields that every
morphism can be written as a †-epi, followed by a monic epimorphism, followed
by a †-mono; this can be thought of generalising polar decomposition.

3.2 Closed subobjects, pullbacks

A subobject of an object X in a †-category is an equivalence class of mono’s
m : M � X, where m is equivalent to n : N � X if there is an isomorphism
f : M → N satisfying nf = m. The class of subobjects of X is denoted Sub(X).
It is partially ordered by M ≤ N iff there is a morphism f : M → N with
nf = m. It also has a largest element, represented by idX : X → X. Because
a pre-Hilbert category has pullbacks, Sub(X) is in fact a meet-semilattice1, the
meet of M and N being represented by the pullback of m and n. Moreover,
for each f : X → Y , pullback along f induces a meet-preserving map f−1 :
Sub(Y) → Sub(X). Thus we have a functor Sub : Hop → MeetSLat, the
inverse image functor.

A †-subobject is a subobject that can be represented by a †-mono. We write
ClSub(X) for the class of †-subobjects of X. It inherits the partial ordering of
Sub(X). It can be characterised precisely when a subobject m is a †-subobject,
namely when there is an isomorphism ϕ such that m†m = ϕ†ϕ [Sel, 5.6].

Lemma 5 †-subobjects are stable under pullbacks. Explicitly, given a †-mono
n and map f one obtains a pullback

M
f ′ //

_��
f−1(n)

��

� N��
n

��
X

f
// Y

as f−1(n) = ker(coker(n) ◦ f).

Proof For convenience, write m = f−1(n) = ker(coker(n)◦f). By construction,
coker(n) ◦ f ◦m = 0, so that f ◦m factors through ker(coker(n)) = n, say via
f ′ : M → N with n ◦ f ′ = f ◦ m, as in the diagram. This yields a pullback:
if a : Z → X and b : Z → N satisfy f ◦ a = n ◦ b, then coker(n) ◦ f ◦ a =
coker(n) ◦ n ◦ f ′ = 0 ◦ f ′ = 0, so that there is a unique map c : Z → M with
m ◦ c = a. Then f ′ ◦ c = b because n is monic. �

Hence every morphism f : X → Y induces a meet-preserving map f−1 :
ClSub(Y)→ ClSub(X). Thus we have a functor

ClSub : Hop →MeetSLat,

that we also call the inverse image functor with abuse of terminology.
1We disregard size issues here. A †-category is called †-well-powered if ClSub(X) is a set

for all objects X in it. Since ClSub(X) for X ∈ Hilb is the set of closed subspaces of X, Hilb
is †-well-powered.

5

Recall that a universal closure operation [Bor, 5.7.1] consists in giving for
every m ∈ Sub(X) a m ∈ Sub(X), satisfying (i) m ≤ m, (ii) m ≤ n ⇒ m ≤ n,
(iii) m = m, and (iv) f−1(m) = f−1(m).

Lemma 6 m 7→ ker(coker(m)) is a universal closure operation.

Proof For (i): coker(m) ◦m = 0, so m ≤ ker(coker(m)). For (ii): if m ≤ n,
then coker(m) ◦ ker(coker(m)) = 0,

M
m

**TTTTTTTTTTTTTTT

��

X

coker(n)
55kkkkkkkkkkkkkkk

coker(m)

))SSSSSSSSSSSSSSS

N

n
44jjjjjjjjjjjjjjj

OO

0

44iiiiiiiiiiiiiiii

ker(coker(n))

OO

so ker(coker(m)) ≤ ker(coker(n)). For (iii): since ker(coker(m)) ∈ ClSub(X),
we have ker(coker(ker(coker(m)))) = ker(coker(m)) by Lemma 4. Finally, (iv)
is just Lemma 5. �

Lemma 7 There is a reflection Sub(X)
ker(coker(−)) //

⊥ ClSub(X)? _oo .

Proof We have to prove that ker(coker(m)) ≤ n iff m ≤ n for a mono m and a
†-mono n. By (i) of Lemma 6 we have m ≤ ker(coker(m)), proving one direction.
The converse direction is just (ii) of Lemma 6. �

The previous lemma could be interpreted as a moral justification for studying
the (replete) semilattice of closed subobjects instead of that of subobjects.

3.3 Projections

Instead of closed subobjects, it turns out we can also consider projections. A
projection on X is a morphism p : X → X satisfying p ◦ p = p = p†. We define
Proj(X) as the set of all projections on X. It is partially ordered by defining
p v q iff p ◦ q = p.

Proposition 8 There is an order isomorphism ClSub(X) ∼= Proj(X).

Proof Any closed subobject m yields a projection mm†. Conversely, any pro-
jection p gives a closed subobject Im(p).

Let us verify that these maps are each others inverses. Starting with a closed
subobject represented by m, we end up with Im(mm†). Since m is †-mono and
m† is †-epi, this is already a factorisation in the sense of Lemma 4, and hence
Im(mm†) = m as closed subobjects. Conversely, a projection p maps to ii†,

6

where p factors as p = ie for an epi e : X → I and †-mono i = Im(p). By
functoriality of the factorisation it follows from pp = p that pi = i. Now

i = pi = p†i = (ie)†i = e†i†i = e†,

so indeed ii† = ie = p.
Finally let us consider the order. If m ≤ n as subobjects, say m = nϕ for a †-

mono ϕ, then mm†nn† = nϕϕ†n†nn† = nn†nn† = nn†, so indeed mm† v nn†.
Conversely, if p v q, then pq = p, whence Im(pq) = Im(p), so that indeed
Im(p) ≤ Im(q) by functoriality of the factorisation. �

Consequently, every result we derive about the partial order of closed sub-
objects holds for the projections and vice versa.

4 Existential quantifier

This section establishes an existential quantifier, i.e. a left adjoint to the inverse
image functor that satisfies the Beck-Chevalley condition.

Proposition 9 ClSub(X) is a lattice.

Proof Since we already know that ClSub(X) is a meet-semilattice, it suffices
to show that it has joins and a least element. Joins follow from e.g. [Bor, 4.2.6].

Explicitly, M ∨N � ,2 m∨n //X is given by Im(s), where s = [m,n] : M⊕N → X.
The closed smallest subobject, the bottom element of ClSub(X), is given by

0 � ,2 0 //X . �

The †-mono m : M � Y arising in the factorisation of a morphism f : X →
Y of H is called the (direct) image of f , denoted Im(f). Notice that Im(f)
defines a unique †-subobject, although the representing †-mono is only unique
up to a †-iso. This †-subobject is denoted ∃f . More generally, for n : N � ,2 //X
in ClSub(X), we define

∃f (N) = Im(fn),

which gives a well-defined map ∃f : ClSub(X) → ClSub(Y) for any morphism
f : X → Y of H.

Theorem 10 Let f : X → Y be a morphism of H. The map ∃f : ClSub(X)→
ClSub(Y) is monotone and left-adjoint to f−1 : ClSub(Y) → ClSub(X). If
g : Y → Z is another morphism then ∃g ◦ ∃f = ∃g◦f : ClSub(X) → ClSub(Z).
Also ∃id = id.

Proof We follow the proof of [But, Lemma 2.5]. For monotonicity of ∃f let
M ≤ N in ClSub(X). First factorise n and then M → ∃fN to get the following

7

diagram.

X
f // Y

N // //
_LR

n

OO

∃fN
_LR

OO

M // //
_LR

OO

�dl

m

55

I
_LR

OO

Now M // //I � ,2 //Y is an epi-†-mono factorisation of fm, so I represents
∃fM , and ∃fM ≤ ∃fN .

To show the adjunction, let M ∈ ClSub(X) and N ∈ ClSub(Y), and consider
the solid arrows in the following diagram.

X
f // Y

f−1N

�__LR

OO

// N
_LR

n

OO

M // //
K@I

m

EE���������������

<<y
y

y
y

∃fM

=={
{

{
{MAJ

FF

If ∃fM ≤ N then the right dashed map ∃fM → N exists and the outer square
commutes. Hence, since f−1N is a pullback, the left dashed map M → f−1N
exists, and M ≤ f−1N . Conversely, if M ≤ f−1N , factorise the map M → N
to get the image of M under f . In particular, this image then factors through
N , whence ∃fM ≤ N .

Finally, the identity ∃g ◦ ∃f = ∃g◦f just states how left adjoints compose. �

4.1 The Beck-Chevalley condition

Recall the Beck-Chevalley condition: if the left square below is a pullback, then
the right one must commute.

P
_�

q //

p

��

Y

g

��
X

f
// Z

⇒

ClSub(P)

∃p

��

ClSub(Y)

∃g

��

q−1
oo

ClSub(X) ClSub(Z)
f−1

oo

(BC)

It ensures that the semantics of the existential quantifier is sound with respect
to substitution. To show that our ∃f satisfies (BC), we will assume that the
monoidal unit C of our pre-Hilbert category H is a simple generator. Recall
that an object C is called a generator when fx = gx for all x : C → X implies
f = g : X → Y . It is called simple when Sub(C) = {0, C}. In this case, [Heu,

8

Theorem 4.6] shows that H is enriched over Abelian groups, so that we can talk
of adding and subtracting morphisms.

Lemma 11 In a pre-Hilbert category whose monoidal unit is a simple genera-
tor, epi’s are stable under pullback.

Proof The proof of [Bor, Proposition 1.7.6] works verbatim. �

The previous lemma entails that H is a regular category, and hence that all
results of [But] apply. Thus, in such a category H one can soundly interpret
regular logic, in particular the existential quantifier.

Theorem 12 In a pre-Hilbert category whose monoidal unit is a simple gener-
ator, (BC) holds.

Proof The proof of [But, Lemma 2.9] works verbatim. �

Also the Frobenius identity holds. Let f : X → Y be a morphism of Hilb.
Let M ∈ ClSub(X) and N ∈ ClSub(Y). Then ∃f (M ∧ f−1N) = ∃fM ∧ N as
†-subobjects of Y . For a proof, we refer to [But, Lemma 2.6].

5 Orthogonality

We will now recover the orthogonal subspace construction from the †-functor in
any pre-Hilbert category. The idea is to mimick the fact that ker(f)⊥ = Im(f†)
in Hilb.

Proposition 13 There is an involutive functor (−)⊥ : ClSub(X)op → ClSub(X)
determined by m⊥ = ker(m†) for m ∈ ClSub(X).

Proof To show that the above definition extends functorially, letm,n ∈ ClSub(X)
be such that m ≤ n. Say that m factors through n by m = ni for i : M → N .
Then

m† ◦ ker(n†) = i† ◦ n† ◦ ker(n†) = i† ◦ 0 = 0.

Hence ker(n†) factors through ker(m†), that is, n⊥ ≤ m⊥.
We finish the proof by showing that ⊥ is involutive:

m⊥⊥ = (ker(m†))⊥ = ker(ker(m†)†) = ker(coker(m)) = m.

Here, the last equation follows from Lemma 4. �

The functor (−)⊥ cooperates with ∧ and ∨ as expected.

Lemma 14 ClSub(X) is an orthocomplemented lattice, that is, m ∧ m⊥ = 0
and m ∨m⊥ = 1 for all m ∈ ClSub(X). (A forteriori, the cotuple [m,m⊥] is a
†-iso.)

9

Proof Recall that m ∧m⊥ is defined as the †-pullback

M ∧M⊥
_�

� ,2 p //____
_��

q

���
�
�

M⊥_��
ker(m†)

��
M

� ,2
m

// X

Because m is a †-mono, we have q = m† ◦m ◦ q = m† ◦ ker(m†) ◦ p = 0 ◦ p = 0.
Hence m ∧m⊥ = m ◦ q = m ◦ 0 = 0.

To prove the second claim, let f satisfy f ◦ [m,m⊥] = 0. Then f ◦m = 0, so
f factors through coker(m) as f = g ◦ coker(m). Also f ◦m⊥ = 0, so

g = g ◦ ker(m†)† ◦ ker(m†) = f ◦ ker(m†) = 0,

whence f = 0. So, by Lemma 3, [m,m⊥] is epi. Hence [m,m⊥] factors as
id ◦ [m,m⊥], but also as (m ∨m⊥) ◦ p. So m ∨m⊥ must be a †-iso. That is,
m ∨m⊥ = 1.

Let us prove that [m,m⊥] is also a †-mono, and hence even a †-iso:

[m,m⊥]† ◦ [m,m⊥] = 〈m†, ker(m†)†〉 ◦ [m, ker(m†)]

=
(

m† ◦m m† ◦ ker(m†)
ker(m†)† ◦m ker(m†)† ◦ ker(m†)

)
= idM⊕M⊥ . �

However, (−)⊥ has poor ‘substitution properties’, as it does not commute
with pullbacks. For a counterexample in Hilb, let X = C2, Y = C, f =
π : X → Y : (x, y) 7→ x and m = 0 : 0 → Y . Then f−1(m⊥) = C2, but
(f−1(m))⊥ = {(x, 0) | x ∈ C}.

In spite of this, a special case of “(−)⊥ is stable under pullbacks” still holds:
we now recover orthomodularity of ClSub(X) using the previous lemma.

Theorem 15 ClSub(X) is an orthomodular lattice: for m ≤ n ∈ ClSub(X),
say via ϕ with n ◦ ϕ = m, one has the following pullbacks.

M
� ,2 ϕ //

� N��
n

��

P

��

�lrϕ⊥oo �_

M
� ,2 m // X M⊥

�lrm⊥oo

This means that m ∨ (m⊥ ∧ n) = n.

Proof The square on the left is obviously a pullback. For the one on the right

10

we use a simple calculation, following Lemma 5:

n−1(m⊥) = ker(coker(m⊥) ◦ n)

= ker(coker(ker(m†)) ◦ n)

= ker(m† ◦ n) since m† is a cokernel
(∗)
= ker(ϕ†)

= ϕ⊥,

where the marked equation holds because n ◦ ϕ = m, so that ϕ = n† ◦ n ◦ ϕ =
n† ◦m and thus ϕ† = m† ◦ n. Then:

m ∨ (m⊥ ∧ n) = (n ◦ ϕ) ∨ (n ◦ ϕ⊥)
(∗)
= n ◦ (ϕ ∨ ϕ⊥) = n ◦ id = n.

The marked equation holds because n ◦ (−) preserves joins, since it is a left
adjoint: n ◦ k ≤ m iff k ≤ n−1(m), for †-subobjects k,m. �

Corollary 16 There cannot be right adjoints f−1 a ∀f for all morphisms f of
H, that satisfy the Beck-Chevalley condition.

Proof If there would be, then ∧ would have a right adjoint in every ClSub(X) [AB,
3.4.16]. That is, there would be an implication. But the prime example Hilb
shows that ClSub(X) is in general not a Heyting algebra. �

Lemma 17 The functor ⊥: ClSub(X)op → ClSub(X) is an equivalence of
categories. In particular, it is both left and right adjoint to its opposite ⊥op:
ClSub(X)→ ClSub(X)op.

Proof This means precisely that m⊥ ≤ n iff n⊥ ≤ m, which holds since ⊥ is
involutive. �

The following theorem, inspired by [Pal], provides a connection between ad-
joint morphisms in a pre-Hilbert category and adjoint functors between lattices
of †-subobjects. It explicates the relationship between ∃f and ∃f† .

Theorem 18 For a morphism f : X → Y , define

f⊥ =⊥Y ◦∃opf : ClSub(X)op → ClSub(Y).

Then
(f⊥)op a (f†)⊥.

Proof In general, for g : Y → X, the adjunction (f⊥)op a g⊥ means that for
M ∈ ClSub(X) and N ∈ ClSub(Y),

ClSub(Y)op(⊥op
Y ◦∃f (M), N) ∼= ClSub(X)(M,⊥X ◦∃opf†

(N)).

11

That is, n ≤ ker(Im(fm)†) iff m ≤ ker(Im(gn)†). That means that in

L
0 //

	 �(
ker(l†)

$$IIIIIIIII J $$
j†

$$HHHHHHHHH

M

q

OO�
�
�

� ,2 m // X

l†
6 6@

vvvvvvvvv g† // Y
n† � ,2N

M
� ,2

m
//

i $$ $$IIIIIIIIII X
f

// Y
n†

� ,2

coker(k)
� �(

HHHHHHHHH N

I
6 6@ k

::vvvvvvvvv

0
// K

p

OO�
�
�

(1)

we must show that there is a p making the lower diagram commute iff there is
a q making the upper one commute, for the special case g = f†. So, let such a
q be given. Then

n† ◦ k ◦ i = n† ◦ f ◦m = j ◦ l† ◦m = j ◦ l† ◦ ker(l†) ◦ q = j ◦ 0 ◦ q = 0 = 0 ◦ i,

and since i is epi, n†k = 0. Hence n† factors through coker(k) via some p.
Conversely, given p, we have

j† ◦ l† ◦m = n† ◦ f ◦m = n† ◦ k ◦ i = p ◦ coker(k) ◦ k ◦ i = p ◦ 0 ◦ i = 0 = j† ◦ 0,

so since j† is mono, l†m = 0. Hence m factors through ker(l†) via some q. �

In a diagram, the adjunction of the previous theorem is the following.

ClSub(X)

`

∃f // ClSub(Y)

⊥op
Y

��
ClSub(X)op

⊥X

OO

ClSub(Y)op
∃op

f†

oo

A converse to this theorem needs some preparation, and the assumption that
the monoidal unit is a simple generator.

Lemma 19 Let C be a simple object in a pre-Hilbert category. If f, g : X → C
satisfy ker(f) ≤ ker(g), then g = sf for some s : C → C. Unless f = 0, this s
is unique.

Proof Consider ∃fX ∈ ClSub(C). Either ∃fX = 0, or ∃fX is an iso and hence
a †-iso since it is a †-mono.

If ∃fX = 0, then f = 0. So ker(f) is a †-iso, and since ker(f) ≤ ker(g), also
ker(g) is †-iso, whence g = 0. Thus g = 0f .

If ∃fX is a †-iso, in particular it is epi, and so is f . It can be factorised as
a †-epi f ′ followed by a mono sf .

I ((sf

((QQQQQQQ

X

f ′
- 3:mmmmmmm

f
// // C

12

Now either sf = 0 or sf is iso. If sf = 0 then ∃fX = 0 and hence f = 0, so
that we are done by g = 0f . Hence we may assume sf iso.

Since ker(f ′) ≤ ker(f) ≤ ker(g) we are thus left with the following situation.

L � #+ ker(g)

((PPPPPPPP C

X

f ′
. 3;nnnnnnnn

g ((PPPPPPPPP

K
_LR

p

OO

. 3; ker(f ′)

66nnnnnnnn
C

Now f ′ = coker(ker(f ′)), and

g ◦ ker(f ′) = g ◦ ker(g) ◦ p = 0 ◦ p = 0.

Hence there is a unique s′ such that g = s′ ◦ f ′. Finally, putting s = s′s−1
f

satisfies g = s′f ′ = s′s−1
f f = sf . �

In a monoidal category, morphisms s : C → C play the role of scalars,
and multiplication with them is natural. As mentioned before, if C is a simple
generator, then the scalars comprise an involutive field [Heu, Theorem 4.6]. The
following lemma summarises some well-known (and easily proved) results.

Lemma 20 Let H be a monoidal category. Then H(C,C) is an involutive
semiring that acts on H by scalar multiplication as follows: for s : C → C and
f : X → Y , s • f is defined by

X
s•f //

∼= ��

Y

C ⊗X
s⊗f

// C ⊗ Y

∼=
OO

Moreover, scalar multiplication is natural, that is, (s•g)◦f = g◦(s•f). Finally,
s • f = s ◦ f for s : C → C and f : X → C. �

Now we can state and prove a converse to Theorem 18.

Theorem 21 In a pre-Hilbert category whose monoidal unit is a simple gen-
erator, if (f⊥)op a g⊥, then g = s • f† for a scalar s. Unless f = 0, this s is
unique.

Proof The adjunction of the hypothesis means that there is a q making the
upper diagram in (1) commute iff there is a p making the lower one commute.
So, if n†fm = 0, then n†ki = 0, and because i is epi hence n†k = 0. So p
exists, whence q exists, so that n†g†m = j†0q = 0. Taking m = ker(n†f) thus
gives that ker(n†f) ≤ ker(n†g†) for all n. Applying Lemma 19 yields that for all
n : C → Y , there exists sn : C → C such that n†g† = snn

†f . Using Lemma 20
and dualising, this becomes: for all n : C → Y , there is sn : C → C with
gn = (s†n • f†)n. We will show that all sn are in fact equal to each other (or

13

zero). If all y : C → Y would have y = 0, then Y ∼= 0, in which case g = 0 • f†.
Otherwise, pick an y : C → Y with y 6= 0. There is an s : C → C with
gy = (s†•f†)y. Put n′ = yy†n : C → Y and n′′ = ker(y†)◦ker(y†)†◦n : C → Y .
Then

n′ + n′′ = [id, id] ◦ ((y ◦ y† ◦ n)⊕ (ker(y†) ◦ ker(y†)† ◦ n)) ◦ 〈id, id〉
= [y, y⊥] ◦ [y, y⊥]† ◦ n
= n.

Moreover,

(s†n′ • f
†)n′ = gn′ = gyy†n = (s† • f†)yy†n = (s† • f†)n′,

so sn′ = s. Finally

(s†n′ • f
†)n′ + (s†n′′ • f

†)n′′ = gn′ + gn′′

= gn

= (s†n • f†)n
= (s†n • f†)n′ + (s†n • f†)n′′.

Hence sn = sn′ = s for all n : C → Y , and we have gn = (s† • f†)n. But since
C is a generator, g = s† • f†. Reviewing our choice of s in the above proof, we
see that it is unique unless f = 0. �

As a consequence, we find that, modulo scalars, the passage from morphisms
f to functors ⊥ ◦∃opf is one-to-one.

A Fibred account

We can summarise our results in terms of fibred category theory [Jac]. There are
fibrations Sub(H)→ H and ClSub(H)→ H. The latter is in fact a fibration of
meet-semilattices by Lemma 5. The reflection of Lemma 7 is a fibred reflection.
Our functor ∃ of Theorem 10 is a fibred coproduct, and hence truely provides a
existential quantifier.

The assignments H → Sub(H), X 7→ idX assemble into a fibred terminal
object 1 : H → Sub(H), also for H → ClSub(H). The fibrations Sub(H) → H
and ClSub(H) → H admit comprehension. This means that 1 : H → Sub(H)
has a right adjoint, usually denoted by {−} : Sub(H) → H. Indeed, if we take
{m : M � X} = M , then Sub(H)(idX ,m) ∼= H(X, {m}).

In fact, the fibration ClSub(H) → H is a bifibration by Theorem 10 and
[Jac, 9.1.2] – notice that the Beck-Chevalley condition is not needed for this.
Thus, ClSub(H)op → Hop, (m : M � ,2 //X) 7→ X is also a fibration. The
following proposition shows that orthogonality can be extended to a functor
between fibrations, but it is not a fibred functor, basically because it does not
commute with pullback.

14

Proposition 22 (−)⊥ extends to a functor ClSub(H)op → ClSub(H) satisfy-
ing

ClSub(H)op

��

(−)⊥ // ClSub(H)

��
Hop

(−)†
// H

(2)

However, it is not a fibred functor.

Proof We can understand (−)⊥ as a functor ClSub(H)op → ClSub(H) by
extending its action on morphisms as follows. Let (f, g) be a morphism m→ n,
that is, let f : X → Y and g : M → N satisfy fm = ng. We are to define a
morphism (f, g)⊥ : n⊥ → m⊥, that is, a pair f⊥ : Y → X and g⊥ : N⊥ →M⊥

satisfying f⊥ ◦ n⊥ = m⊥ ◦ g⊥. Put f⊥ = f†. Then

m† ◦ f† ◦ n⊥ = g† ◦ n† ◦ ker(n†) = g† ◦ 0 = 0,

so there is a g⊥ such that f† ◦ n⊥ = ker(m†) ◦ g⊥ = m⊥ ◦ g⊥. It must be

g⊥ = (m⊥)† ◦m⊥ ◦ g⊥ = ker(m†)† ◦ f† ◦ n⊥ = coker(m) ◦ f† ◦ ker(n†).

This explicitly defines the functor (−)⊥ : ClSub(H)op → ClSub(H). It makes
the square (2) commute. Now, a morphism (f, g) : m → n of ClSub(H) is
Cartesian (over f) iff f = ngm† = nn†fmm†. Consequently, the morphism
(f, g)⊥ : n⊥ → m⊥ in ClSub(H)op is Cartesian iff

f† = ker(m†) ◦ ker(m†)† ◦ f† ◦ ker(n†) ◦ ker(n†)†.

Thus, (−)⊥ is a fibred functor iff f† = ker(m†) ker(m†)†f† ker(n†) ker(n†)†

whenever f = nn†fmm† for any morphism f and †-mono’s m and n.
Finally, we come to our counterexample. Take m = κM for M 6= 0, f = mm†

and n = idM⊕M . Then f = mm† = mm†mm† = nn†fmm†. But ker(m†) = κ′

so ker(m†)† = π′ and ker(n†) = 0, so

ker(m†) ◦ ker(m†)† ◦ f† ◦ ker(n†) ◦ ker(n†)†. = κ′ ◦ π′ ◦ f† ◦ 0 = 0 6= f†.

Hence (−)⊥ is not a fibred functor. �

References

[AB] Steve Awodey and Andrej Bauer. Introduction to categorical logic.

[Abr] Samson Abramsky. Temperley-lieb algebra: From knot theory to logic
and computation via quantum mechanics. In Goong Chen, Louis Kauff-
man, and Sam Lomonaco, editors, Mathematics of Quantum Computing
and Technology, pages 415–458. Taylor and Francis, 2007.

15

[Bor] Francis Borceux. Handbook of Categorical Algebra 1: Basic Category
Theory. Encyclopedia of Mathematics and its Applications 50. Cam-
bridge University Press, 1994.

[But] Carsten Butz. Regular categories and regular logic. BRICS Lecture Series
LS-98-2, 1998.

[BV] Garett Birkhoff and John Von Neumann. The logic of quantum mechan-
ics. Annals of Mathematics, 37:823–843, 1936.

[Dun] Ross Duncan. Types for Quantum Computing. PhD thesis, Oxford Uni-
versity Computer Laboratory, 2006.

[Har] John Harding. Orthomodularity in dagger biproduct categories. submit-
ted to International Journal of Theoretical Physics, 2008.

[Heu] Chris Heunen. An embedding theorem for Hilbert categories. submitted
to Theory and Applications of Categories, 2008.

[Jac] B. Jacobs. Categorical Logic and Type Theory. Number 141 in Studies
in Logic and the Foundations of Mathematics. North Holland, 1999.

[LS] Joachim Lambek and Phil Scott. Introduction to higher order categorical
logic. Cambridge University Press, 1986.

[Pal] Paul H. Palmquist. Adjoint functors induced by adjoint linear transfor-
mations. Proceedings of the American Mathematical Society, 44(2):251–
254, 1974.

[Sel] Peter Selinger. Idempotents in dagger categories. In QPL 2006, pages
87–101, 2006.

16

