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Abstract

A category with biproducts is enriched over (commutative) additive monoids. A category with tensor
products is enriched over scalar multiplication actions. A symmetric monoidal category with biproducts
is enriched over semimodules. We show that these extensions of enrichment (e.g. from hom-sets to hom-
semimodules) are functorial, and use them to make precise the intuition that “compact objects are finite-
dimensional” in standard cases.
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1 Introduction

Mitchell’s celebrated theorem states that every Abelian category can be embedded
in the category of modules over a ring [18]. This article is a first part of a generalisa-
tion from rings to semirings 1 , which could hopefully give a representation theorem
for semantic models of linear (quantum) computation. An important step in the
embedding theorem is that a category with biproducts is enriched over commutative
monoids. Mitchell’s proof then continues by finding an appropriate scalar multi-
plication. More recently, Abramsky observed that a category with tensor products
always has a natural scalar multiplication [1]. We will prove that tensor products
in fact provide enrichment with scalar multiplication. However, Abramsky’s and
Mitchell’s scalars differ. We combine both to show that a category that has biprod-
ucts as well as tensor products is enriched over semimodules [7]. 2 In fact, we show
that this extension of enrichment (from Set to semimodules) is functorial, and holds
for any enriching category V instead of Set. By way of introduction, let us discuss
these results in the case of ordinary categories briefly.

Biproducts give additive enrichment
Recall that a zero object is an object that is simultaneously initial and terminal. Its
existence means that there is a unique morphism 0XY : X → Y factoring through

1 A semiring is roughly a ring that does not necessarily have subtraction.
2 A semimodule is to a semiring what a module is to a ring, and a vector space to a field.
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the zero object between any two objects X and Y . A category C is said to have
binary biproducts when it has coinciding (binary) products and (binary) coproducts
such that

5X1⊕X2 ◦ ((κ1 ◦ π1)⊕ (κ2 ◦ π2)) ◦∆X1⊕X2 = idX1⊕X2 , (1)
πi ◦ κi = idXi , (2)
πj ◦ κi = 0XiXj when i 6= j, (3)

where we write X1⊕X2 for X1×X2 = X1+X2, ∆ for the diagonal 〈id, id〉, 5 for the
codiagonal [id, id], and π and κ for the projections and coprojections. A category
has finite biproducts when it has a zero object and binary biproducts. In order to
prepare for later generalisation we shall be a bit formal and write Set-Cat for the
category of Set-enriched categories, i.e. of locally small categories. We denote by
BP(Set-Cat) the category of all locally small categories with finite biproducts and
functors preserving them. By cMon(C) we denote the category of all commutative
monoids in a symmetric monoidal category C; in case C = Set, we abbreviate it to
cMon. Section 2 considers an extension of enrichment that for ordinary categories
is given as follows.

Theorem 1.1 Locally small categories with finite biproducts are cMon-enriched,
and this is functorially so: there is a functor BP(Set-Cat) −→ cMon-Cat.

Proof. We describe the monoid structure on the homset C(X, Y ) additively. The
sum f + g : X → Y of f : X → Y and g : X → Y is given by

f + g : X ∆ // X ⊕X
f⊕g // Y ⊕ Y

5 // Y. (4)

The monoid unit is the zero morphism 0XY : X → Y . Since morphisms in
BP(Set-Cat) preserve biproducts, they also preserve this enrichment. 2

Tensor products give scalar multiplication enrichment
In any monoidal category C, the endomorphisms of the monoidal unit can be con-
sidered as a monoid of scalars, since one can define an action of it on the category
called scalar multiplication as follows [1]. For a scalar s : I → I and any morphism
f : X → Y of C, define s • f : X → Y as

X
∼= //I ⊗X

s⊗f //I ⊗ Y
∼= //Y.

In particular, C(I, I) forms a monoid with idI as unit, and s • t as multiplica-
tion. Thus we have the following lemma. For a fixed monoid M in C, we denote
by ActM (C) the category of (left) actions of M [15, Section VII.4]; we use the
shorthand ActM = ActM (Set).

Lemma 1.2 If C is a locally small monoidal category, then C(I, I) acts upon its
homsets. In other words, C(X, Y ) ∈ ActC(I,I).

Proof. To verify that the scalar multiplication defined above is an action one has
to check that idI • f = f and s • (t • f) = (s • t) • f . 2
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This is the first step towards proving that every symmetric monoidal category
C is enriched over ActC(I,I). To complete the reasoning we need to ensure that
composition is a morphism in ActC(I,I). Because s• (g ◦f) = g ◦ (s•f) = (s•g)◦f ,
we first have to equip ActC(I,I) with a tensor structure, universal for bimorphisms.
For this it suffices that C is symmetric monoidal. This will be proven in detail in
Section 3 using techniques by Kock and Day. For now, let us just state the result
without proof. We write Act = Act(Set) for the category of (left) actions of an
arbitrary monoid, to be explained in more detail later.

Theorem 1.3 A symmetric monoidal Set-category C is enriched over ActC(I,I).
This is functorially so: there is a functor cMon(Set-Cat) −→ Act-Cat.

Semimodule enrichment
If C is a symmetric monoidal category, then so is cMon(C). Hence one can consider
monoid objects in the latter category. First of all, such a ‘double monoid’ object is an
object of cMon(C), i.e. a commutative monoid that we write additively as (S, +, 0).
Furthermore, it carries monoid structure I 1 //S S ⊗ S·oo . Because the latter
are morphisms in cMon(C), we can recognize the objects of Mon(cMon(C)) as
S ∈ C equipped with a commutative monoid structure (+, 0) and a monoid structure
(·, 1) such that

s · (s′ + s′′) = (s · s′) + (s · s′′),
(s + s′) · s′′ = (s · s′′) + (s · s′′),

s · 0 = 0 = 0 · s.

In other words: Mon(cMon) = SRng, the category of semirings. This identi-
fication allows one to consider a semiring whose carrier is not a set: we define
SRng(C) = Mon(cMon(C)) for any symmetric monoidal category C. Although
the multiplication (i.e. the outer monoid multiplication ·) need not be commuta-
tive in general, we will mostly consider only the full subcategory cSRng(C) of
commutative semirings.

Given a monoid object S in a symmetric monoidal category cMon(C), one can
consider the actions of S on objects of the category. In a similar fashion as above, we
can recognize these as semimodules over the semiring S; the commutative monoid
that is being acted upon then is the additive group of the semimodule. After all, a
semimodule is a space of ‘vectors’ that can be added, and can be multiplied by a
scalar [7]. In other words: ActS(cMon) = SModS , the category of semimodules
over S. This identification allows one to consider a semimodule without an under-
lying set: we define SModS(C) = ActS(cMon(C)) for any symmetric monoidal
category C.

Let us consider a few examples. It is well-known that Z-modules are simply
Abelian groups, so that ActZ(cMon) ∼= Ab. Since an action of N on a commutative
monoid is already completely fixed by its monoid structure, we have ActN(cMon) ∼=
cMon(Set). Looking at the Boolean semiring B = ({0, 1},max, 0,min, 1), we can
identify an action of B on a commutative monoid L as an idempotent commutative
monoid, because l = 1 · l = max(1, 1) · l = max(1 · l, 1 · l) = max(l, l). Hence
ActB(cMon) ∼= SLat, the category of (bounded) semilattices.
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Now suppose we have a locally small category C with finite biproducts as well
as tensor products, i.e. C ∈ cMon(BP(Set-Cat)). 3 Then it is enriched with both
addition and scalar multiplication distributing over it. In other words, combinining
Theorems 1.1 and 1.3 gives the following result, that is studied in more detail in
Section 4.

Corollary 1.4 There is a functor cMon(BP(Set-Cat)) −→ SMod-Cat.

Proof. If C and D are symmetric monoidal categories, then a symmetric monoidal
functor C → D restricts to a functor cMon(C) → cMon(D). So Theorem 1.1 pro-
vides a functor cMon(BP(Set-Cat)) → cMon(cMon-Cat). The general version
of Theorem 1.3 that we will prove later provides a functor cMon(cMon-Cat) →
Act(cMon)-Cat. Composing both functors establishes the result. 2

Summarizing, we have the following diagram.

(SMod(Set))-Cat //

��

(cMon(Set))-Cat

��

cMon(BP(Set-Cat))

55kkkkkkkkk
//

��

BP(Set-Cat)

77ooooooo

��

(Act(Set))-Cat // Cat

cMon(Set-Cat) //

55kkkkkkkkk
Set-Cat

77ooooooooo

(5)

In order for the combination of Theorems 1.1 and 1.3 to make sense, the whole story,
or at least Theorem 1.3, has to be generalized to an enriched setting. Sections 2–4
explain the above diagram in more detail, and generalize it to enriching categories V
that not necessarily equal Set. Section 5 applies this to make precise the intuition
that compact objects are “finite-dimensional” in these cases.

2 Additive enrichment

This section proves that a V-category with finite biproducts can be seen as a
cMon(V)-category, and that this change of perspective is functorial. Before this
general version of Theorem 1.1 can even be stated, we need to consider an enriched
version of the notion of biproduct. The following theorem characterizes algebraically
how to recognize when a tensor product is in fact a coproduct, in a way reminiscent
of [6] (see also [5]).

Theorem 2.1 Let (C,⊕, 0) be a symmetric monoidal category. Then (⊕, 0) pro-
vides finite coproducts if and only if the forgetful functor cMon(C) → C is an
isomorphism of categories.

Proof. Suppose that (⊕, 0) provides finite coproducts, with the coherence maps
α, λ and ρ induced by the coproducts. Let U : cMon(C) → C be the forgetful

3 Objects of cMon(Cat) are strict symmetric monoidal categories, i.e. categories in which there are not
just isomorphisms between X⊗(Y ⊗Z) and (X⊗Y )⊗Z and so on, but equalities. To ease the presentation,
we therefore mean strict (symmetric) monoidal categories whenever we talk about categories with tensor
products, especially in the general V-enriched setting, although some results are more general.
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functor acting on objects as U(X, µ, η) = X and on morphisms as U(f) = f .
Define C : C → cMon(C) on objects as C(X) = (X,5, u), where 5 = [idX , idX ] :
X ⊕ X → X, and u is the unique morphism 0 → X. On a morphism f , it acts as
C(f) = f . Then trivially U ◦ C = Id. To prove that also C ◦ U = Id, we show
that there can be only one (commutative) monoid structure on X ∈ C with respect
to (⊕, 0), i.e. for any (X, µ, η) ∈ cMon(C) one has that µ = [id, id]. This suffices
because η is necessarily the unique morphism 0 → X. We have

µ ◦ κ1 = µ ◦ [κ1, κ2 ◦ u] ◦ κ1 = µ ◦ (id ⊕ u) ◦ κ1 = ρ−1 ◦ κ1 = id,

since κ1 : X → X ⊕ 0 equals the coherence isomorphism ρ. Likewise µ ◦ κ2 = id, so
µ = [id, id], as needed.

Conversely, suppose that cMon(C)
U //C
C

oo is an isomorphism. By definition

U(X, µ, η) = X, so the monoid C(X) is carried by X. Since C is a functor, the
monoid structure maps, say 5X : X ⊕X → X and uX : 0 → X, are natural in X.
We first prove that 0 is an initial object. We have that (0,50, u0) and (0, λ0, id0) are
both monoids (in C). Moreover they satisfy the Hilton-Eckmann condition (A.1),
so by Theorem A.1 in Appendix A we have u0 = id0. Naturality of u yields

f = f ◦ id0 = f ◦ u0 = uX

for any f : 0 → X. Hence uX is the unique morphism 0 → X, and 0 is indeed an
initial object. Finally, we show that X⊕Y is a coproduct of X and Y . Define as co-

product injections κ : X
ρ //X ⊕ 0id⊕uY //X ⊕ Y and κ′ : Y λ //0⊕ Y

uX⊕id//X ⊕ Y .
For given f : X → Z and g : Y → Z, put [f, g] = 5Z ◦ (f ⊕ g) : X ⊕ Y → Z. Then

[f, g] ◦ κX = 5Z ◦ (f ⊕ g) ◦ (id ⊕ uY ) ◦ ρ

= 5Z ◦ (id ⊕ (g ◦ uY )) ◦ (f ⊕ id) ◦ ρ (u natural)

= 5Z ◦ (id ⊕ uY ) ◦ (f ⊕ id) ◦ ρ (5, u monoid)

= ρ−1 ◦ (f ⊕ id) ◦ ρ = f. (ρ natural)

Analogously, [f, g] ◦ κY = g. Moreover, [f, g] is the unique such map since

[κX , κY ] = (5X ⊕5Y ) ◦ (id ⊕ γ ⊕ id) ◦ (id ⊕ uY ⊕ id)
◦ (ρ⊕ id) ◦ (id ⊕ uX ⊕ id) ◦ (id ⊕ λ)

= (5X ⊕ id) ◦ (id ⊕5Y ) ◦ (id ⊕ uY ⊕ id) ◦ (id ⊕ γ ⊕ id)
◦ (ρ⊕ id) ◦ (id ⊕ uX ⊕ id) ◦ (id ⊕ λ)

= (5X ⊕ id) ◦ (id ⊕ λ−1) ◦ (id ⊕ γ ⊕ id)
◦ (ρ⊕ id) ◦ (id ⊕ uX ⊕ id) ◦ (id ⊕ λ)

= (5X ⊕ id) ◦ (id ⊕ uX ⊕ id) ◦ (id ⊕ λ)

= (id ⊕ λ−1) ◦ (id ⊕ λ) = id.

2

Dually, a symmetric monoidal structure (⊕, 0) on a category C provides finite
products if and only if Cop is isomorphic to the category of commutative comonoids
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in C. Let us write C� for the full subcategory of Cop × C consisting of objects
(X, X). Its objects can be identified with those of C, and a morphism f : X → Y

in C� is a pair of morphisms f← : Y → X, f→ : X → Y of C. If C is (symmetric)
monoidal (closed), so is C�. Hence an object in cMon(C�) consists of a monoid
and a comonoid in C with the same carrier object. Thus we arrive at the following
algebraic characterization of how to recognize when a tensor product in fact provides
finite biproducts.

Corollary 2.2 Let (C,⊕, 0) be a symmetric monoidal category. Then (⊕, 0) pro-
vides finite biproducts if and only if the underlying functor cMon(C�) → C� is
an isomorphism.

Proof. Suppose the underlying functor is an isomorphism. Then 0 is an initial
object by Theorem 2.1, and a terminal object by the dual of that Theorem. Hence
0 is a zero object. Condition (1)–(3) are satisfied; let us show e.g. condition (2):

πX ◦ κX = ρ−1 ◦ (id ⊕ nY ) ◦ (id ⊕ uY ) ◦ ρ = ρ−1 ◦ (id ⊕ uY ) ◦ ρ = idX .

The converse is trivial: if C has coinciding finite products and coproducts, then
Theorem 2.1 and its dual show that the underlying functor is an isomorphism. (See
also footnote 3.) 2

Compare this to the following: a category C is self-dual, i.e. C ∼= Cop, if and
only if the forgetful functor C� → C is an isomorphism.

We now turn this algebraic characterization of biproducts in locally small cat-
egories into a definition of biproducts in V-categories. The notion of monoid in a
monoidal category duly enriches. For an enriching (symmetric) monoidal category
V, we speak of C ∈ cMon(V-Cat) as a ‘(symmetric) monoidal V-category’. This
means that C comes equipped with morphisms

⊗C : C(X, Y )⊗V C(X ′, Y ′) → C(X ⊗C X ′, Y ⊗C Y ′)

in V. A (commutative) monoid object in C then consists of an object X ∈ C
together with morphisms µ : IV → C(X ⊗C X, X) and η : IV → C(IC, X), making
the appropriate diagrams (in V) commute. The definition of C� above also works
for V-enriched categories C. Hence Corollary 2.2 enables us to talk about finite
biproducts in V-enriched categories without having to resort to product structure
on V or weighted (co)limits. In particular, it is more general than the usual no-
tion of a V-coproduct, which needs V to have finite products — if V is a category
with finite products, then finite coproduct structure on a V-category C is tradition-
ally regarded as V-natural isomorphisms C(X ⊕ Y,−) ∼= C(X,−) × C(Y,−) and
C(0,−) ∼= 1 [11]. Let us collect all enriched categories with finite biproducts in a
category. For a symmetric monoidal category V, define BP(V-Cat) as the full sub-
category of cMon(V-Cat) consisting of V-categories C such that the underlying
functor cMon(C�) → C� is an isomorphism.

We are now in a position to tackle the general version of Theorem 1.1. The next
theorem proves that V-enrichment of a category that has biproducts in the above
sense can be lifted to an enrichment over cMon(V).
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Theorem 2.3 Let V be a symmetric monoidal category. There is a functor

(−)⊕ : BP(V-Cat) −→ (cMon(V))-Cat.

Proof. Let (C,⊕, 0) ∈ BP(V-Cat). It comes equipped with ∆X : IV → C(X, X⊕
X), 5X : IV → C(X ⊕ X, X), uX : IV → C(0, X) and nX : IV → C(X, 0).
The objects of C⊕ are those of C. The carrier of the homobject C⊕(X, Y ) is
C(X, Y ) ∈ V. Its monoid unit 0XY : IV → C(X, Y ) is given by

0XY : IV
∼= // IV ⊗ IV

nX⊗uY// C(X, 0)⊗C(0, Y ) ◦C // C(X, Y )

The monoid multiplication + : C(X, Y ) ⊗ C(X, Y ) → C(X, Y ) of the homobject
C(X, Y ) is given as follows.

C(X, Y )⊗C(X, Y ) + //____________

⊕ ��

C(X, Y )

C(X ⊕X, Y ⊕ Y )
∼= ''PPPPPPP C(X, X ⊕X)⊗C(X ⊕X, Y ⊕ Y )⊗C(Y ⊕ Y, Y )

(◦C)◦(id⊗◦C)
OO

IV ⊗C(X ⊕X, Y ⊕ Y )⊗ IV
∆X⊗id⊗5Y

22fffffffffffffff

Composition ◦C is a monoid morphism for this structure because ⊕ is a V-functor.
We leave it to the reader to show that this data indeed defines a commutative
monoid; essentially it is an enriched version of the argument for Set-categories.

Since a morphism in BP(V-Cat) is a V-functor that (strictly) preserves the
biproduct structure, and because ∆,5, n, u are natural, this assignment C 7→ C⊕

is functorial. 2

3 Scalar multiplication enrichment

The introduction set the first step towards proving that every monoidal category C is
enriched over ActC(I,I)(Set). Before we consider the general enriched situation, let
us complete the reasoning in the Set-enriched setting, by ensuring that composition
is a morphism in ActC(I,I)(Set). Because s • (g ◦ f) = g ◦ (s • f) = (s • g) ◦ f , this
requires that ActC(I,I)(Set) is equipped with a tensor structure that is universal for
bimorphisms. This will occupy us for the next few lemmas, that apply techniques
developed by Kock and Day ([13], but see also [10]).

Lemma 3.1 If C is a locally small (symmetric) monoidal category, then C(I, I) is
a (commutative) monoid.

Proof. [12,1] By the Hilton-Eckmann argument (see Appendix A) the monoid
(C(I, I), •, idI) coincides with (C(I, I), ◦, idI), and is in fact commutative. The
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following diagram establishes commutativity directly.

I λ

∼= // I ⊗ I I ⊗ I

id⊗t
��

∼=
ρ−1

// I

t
��

I
∼=

λ=ρ
//

s

OO

t
��

I ⊗ I

s⊗id

OO

id⊗t
��

s⊗t // I ⊗ I
∼=

λ−1=ρ−1
// I

I ρ
∼= // I ⊗ I I ⊗ I

s⊗id

OO

∼=
λ−1

// I

s

OO

Notice how this essentially uses the coherence axiom λI = ρI . 2

If V is a symmetric monoidal category, then so is V-Cat [3]. Hence it makes
sense to talk of (strict) monoidal V-categories as objects of Mon(V-Cat). In fact,
the previous lemma extends functorially and enriches: if V is a symmetric monoidal
category, then there is a functor cMon(V-Cat) → cMon(V).

Recall that a monad T on a symmetric monoidal category is called strong if there
is a “strength” natural transformation st : X ⊗ TY → T (X ⊗ Y ) satisfying certain
conditions. The monad is called commutative if both iterated “double strength”
maps TX ⊗ TY → T (X ⊗ Y ) coincide [10, Definition 3.4].

Lemma 3.2 If V is a monoidal category and M ∈ Mon(V), then M ⊗ (−) : V →
V is a monad, whose category of algebras is ActM (V). If V is symmetric monoidal,
then the monad M ⊗ (−) is strong. The monad M ⊗ (−) is commutative if and only
if the monoid M is.

Proof. The unit and multiplication of the monad are given by

η : X
∼= //I ⊗X

e⊗id //M ⊗X,

µ : M ⊗ (M ⊗X)
∼= //(M ⊗M)⊗X

m⊗id //M ⊗X.

If C is symmetric monoidal, then there is a strength map

st : X ⊗ (M ⊗ Y ) ∼= (X ⊗M)⊗ Y
γ⊗id //(M ⊗X)⊗ Y ∼= M ⊗ (X ⊗ Y ).

The double strength maps boil down to

(M ⊗X)⊗ (M ⊗ Y ) dst // M ⊗ (X ⊗ Y )

(M ⊗X)⊗ (M ⊗ Y )
∼= // (M ⊗M)⊗ (X ⊗ Y ) m⊗id //

γ⊗id��

M ⊗ (X ⊗ Y )

(M ⊗M)⊗ (X ⊗ Y )
m⊗id

// M ⊗ (X ⊗ Y )

(M ⊗X)⊗ (M ⊗ Y )
dst′

// M ⊗ (X ⊗ Y )

Hence they coincide if and only if the monoid M is commutative. 2

Lemma 3.3 Let V be a symmetric monoidal closed category, M ∈ cMon(V),
and suppose ActM (V) has coequalizers of reflexive pairs. Then ActM (V) is a
symmetric monoidal closed category, in which X ⊗ Y is universal such that every
bimorphism X × Y → Z factors through it.
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Proof. Apply [10, Lemma 5.3]. The resulting tensor product structure is such that
there are universal bimorphisms [10, Lemma 5.1]. 2

A special case of the previous lemma is V = Set. In this case ActM (V) has
coequalizers of reflexive pairs since it is in fact a topos. For X, Y ∈ ActM (Set),
the tensor product X ⊗ Y is given explicitly by X × Y/ ∼, where ∼ is the least
equivalence relation determined by (m · x, y) ∼ (x,m · y), with action given by
m · [x, y] = [m · x, y] = [x,m · y].

There is more structure behind the previous lemma than stated there. In fact,
since V 7→ M ⊗ V is the free functor V → ActM (V), it is a morphism of sym-
metric monoidal categories, i.e. it preserves the symmetric monoidal structure 4 . In
particular, there is an isomorphism IActM (V)

∼= M ⊗ IV of (commutative) monoids.
In case V = Set and M = C(I, I) this shows that the monoidal structure on V
provided by Lemma 3.3 and that on C have ‘the same scalars’.

Note 1 From now on, we will assume that the symmetric monoidal category V
is such that ActC(I,I)(V) has coequalizers of reflexive pairs. This ensures that
ActC(I,I)(V) is again a symmetric monoidal category, and hence it makes sense to
talk about enrichment over it. We will only use this technical assumption for this
reason.

A common scenario in which the above assumption is fulfilled is when V is a
symmetric monoidal closed category that has coequalizers of reflexive pairs, like in
the situation V = Set above. (In fact, it suffices if C(I, I)⊗(−) has a right adjoint.)

Now that we have developed a monoidal structure on ActC(I,I)(Set) that is uni-
versal for bimorphisms, we can use the scalar multiplication action as an enrichment.
The following theorem summarizes this main insight.

Theorem 3.4 Every locally small symmetric monoidal category C is enriched over
the symmetric monoidal closed category V = ActC(I,I)(Set), in such a way that
IV ∼= C(I, I).

Proof. Put the homobject C(X, Y ) ∈ ActC(I,I)(Set) to be the set C(X, Y ) with
the action α : C(X, Y ) × C(I, I) → C(X, Y ) on it given by scalar multiplication
as α(f, s) = s • f . The composition morphism C(X, Y ) ⊗ C(Y, Z) → C(X, Z) is
now the unique one through which the bimorphism C(X, Y )×C(Y, Z) → C(X, Z),
determined by (f, g) 7→ g ◦ f , factors; this is a morphism in ActC(I,I)(Set). The
identity morphism 1 → C(X, X) is given by ∗ 7→ idX ; this is also a morphism
in ActC(I,I)(Set) since 1 carries the trivial action. One easily verifies that these
satisfy the requirements of an enriched category. 2

Whereas the previous theorem covers the case of Set-enriched categories, the
following theorem gives the general construction. It incorporates functoriality; but
for that we first need to get rid of the indexing monoid M in ActM (V). We de-
note by Act(V) the Grothendieck completion

∫
M∈cMon(V) ActM (V) of the indexed

category cMon(V)op → Cat. Explicitly, Act(V) has as objects pairs (M,α) with
M ∈ cMon(V) and α ∈ ActM (V). Morphisms from (M,α : M ⊗ X → X) to
(N, β : N ⊗ Y → Y ) in Act(V) are pairs of morphisms f : M → N and g : X → Y

4 If moreover V is a topos, it is also a geometric morphism of toposes [16].
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satisfying β ◦ (f ⊗ g) = g ◦ α [8]. If V is symmetric monoidal, then so is Act(V),
whence it makes sense to talk of (Act(V))-enriched categories.

Theorem 3.5 Let V be a symmetric monoidal category. There is a functor

(−)⊗ : cMon(V-Cat) −→ (Act(V))-Cat.

Proof. We first describe how (−)⊗ works on objects. Let C ∈ cMon(V-Cat). This
means that C is a V-enriched category, and hence comes equipped with e.g. mor-
phisms iX : IV → C(X, X). Furthermore, it means that there is a V-functor ⊗C;
explicitly, we are given a morphism ⊗C : |C| × |C| → |C| in Set, and a morphism
⊗C : C(X, X ′) ⊗V C(Y, Y ′) → C(X ⊗C X ′, Y ⊗C Y ′) in V. Finally, it means we
are given an object IC ∈ |C|. These data satisfy the (strict) monoid requirements,
like IC ⊗C X = X.

The objects of the V-enriched category C and the Act(V)-enriched category
C⊗ are the same: |C⊗| = |C|. The homobjects are determined by the action of
scalar multiplication, i.e. C⊗(X, Y ) is the action

C(I, I)⊗V C(X, Y ) ⊗C //C(I ⊗C X, I ⊗C Y ) = C(X, Y ).

The identity on X is the morphism

C(I, I)
∼= //C(I, I)⊗ IV

id⊗iX //C(I, I)⊗C(X, X) ⊗C //C(X, X)

in V. It is a morphism of actions IActC(I,I)(V) → C⊗(X, X) since IActM (V) is the
action M ⊗M m //M . An involved but straightforward calculation, that uses the
structure of the tensor product in ActM (V), now shows that these data in fact
provide an enrichment.

We now turn to the action of (−)⊗ on morphisms. Let F be a morphism C → D
in cMon(V-Cat). Define its image F⊗ to work on objects X ∈ C⊗ as F⊗(X) =
F (X). It also works on morphisms as F — since F is a ‘(strict) monoidal V-functor’,
it is automatically a (scalar multiplication) action morphism.

C(I, I)⊗V C(X, Y ) ⊗C //

FII⊗VFXY ��

C(I ⊗C X, I ⊗C Y )
FXY��

C(X, Y )
FXY��

D(I, I)⊗V D(FX, FY ) ⊗D

// D(I ⊗D FX, I ⊗D FY ) D(FX, FY )

That is, F⊗XY is indeed a morphism in Act(V). 2

The extension of enrichment in the previous theorem is initial, in the sense that
the ‘forgetful’ functor C(I,−) : C → V of any symmetric monoidal V-enriched
category C factors through it, as in the following commutative diagram of monoidal
functors.

C
C(I,−) //

C(I,−) ((QQQQQQQQQ V

ActC(I,I)(V)
(α:C(I,I)⊗V→V ) 7→V

66mmmmmmmmm
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4 Semimodule enrichment

This section considers the situation arising from a monoidal V-category with finite
biproducts. By the previous two sections, we know that such a category can be
seen both as a cMon(V)-category and as an Act(V)-category. Using the correct
distributivity we will show that it can in fact be seen as a category enriched over
semimodules.

When we say ‘a monoidal V-category C with finite biproducts’, we mean C ∈
cMon(BP(V-Cat)). 5 After all, even if V = Set the tensor product distributes
over the biproduct by

τ = 〈id ⊗ π1, id ⊗ π2〉 : X ⊗ (Y ⊕ Z)
∼=−→ (X ⊗ Y )⊕ (X ⊗ Z),

τ−1 = [id ⊗ κ1, id ⊗ κ2],

but the biproduct rarely distributes over the tensor product, so that considering
BP(cMon(V-Cat)) is not so sensible. This resonates well with the observation
in the introduction that cSRng(Set) equals cMon(cMon(Set)), where the multi-
plicative structure distributes over the additive structure. The stock example is the
category of complex vector spaces and linear functions, in which one can multiply
(tensor) and add (direct sum) objects as well as morphisms.

A first sign of this distributivity is seen when reconsidering Lemma 3.1 in a
monoidal V-category that moreover has finite biproducts. Then C(I, I) is not just
a monoid, but in fact a commutative semiring.

Corollary 4.1 Let V be a symmetric monoidal category. There is a functor

cMon(BP(V-Cat)) −→ cSRng(V).

Proof. It acts on objects by sending (C,⊗, I,⊕, 0) to C(I, I). We already saw
that (C(I, I), •, idI) is a monoid, and that (C(I, I),+, 0) is a commutative monoid.
Hence it suffices to verify distributivity and annihilation. We only consider the case
V = Set, which enriches easily, so that the diagrams are clearer. Distributivity is
established by the following commutative diagram.

I
s•(t+r) // I

I
λ // I ⊗ I

id⊗∆ // I ⊗ (I ⊕ I)
s⊗(t⊕r) //

τ��

I ⊗ (I ⊕ I) id⊗5 //

τ�� λ−1

**UUUUUUUUU I ⊗ I λ−1 // I

I ∆
// I ⊕ I

λ⊕λ
//

λ
44iiiiiiiii

(I ⊗ I)⊕ (I ⊗ I)
(s⊗t)⊕(s⊗r)

// (I ⊗ I)⊕ (I ⊗ I)
λ−1⊕λ−1

// I ⊕ I 5
// I

I
(s•t)+(s•r)

// I

5 This automatically takes care of coherence in the not-necessarily strict case [14]. See also footnote 3.
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Annihilation is shown as follows.

I
! // 0

I
0•s ��

λ // I ⊗ I
0⊗s ��

!⊗id // 0⊗ I
id⊗s��

ρ−1
// 0

I I ⊗ I
λ−1

oo 0⊗ I
!⊗id

oo 0
ρ−1

oo

I 0
!

oo

So indeed C(I, I) ∈ cSRng(V). Because a morphism in cMon(BP(V-Cat)) is
a V-functor that preserves both the monoidal structure and the biproduct, and a
morphism in cSRng(V) = cMon(cMon(V)) is a morphism that respects •, 1,+
and 0, the above assignment is functorial. 2

Let us denote by SMod(V) = Act(cMon(V)) the category of semimodules
over an arbitrary semiring in V. (In particular, SMod(V) is symmetric monoidal;
in case V = Set, the induced monoidal structure coincides with that given by
extension-of-scalars [17].)

Corollary 4.2 Let V be a symmetric monoidal category. There is a functor

(−)⊕⊗ : cMon(BP(V-Cat)) −→ (SMod(V))-Cat.

Proof. Notice that (−)⊕ is a symmetric monoidal functor. That is, if C,D ∈
cMon(BP(V-Cat)), then (C⊗D)⊕ ∼= C⊕⊗C⊕, where the tensor product is that
of V-categories. Moreover, 1⊕ = 1 [11,3]. Hence (−)⊕ restricts to cMon((−)⊕) :
cMon(BP(V-Cat)) → cMon((cMon(V))-Cat). The desired functor is then the
composition (−)⊕⊗ = (−)⊗ ◦ cMon((−)⊕). 2

If we combine all the functors so far with forgetful ones, we can summarize the
entire article (so far) in the following diagram, generalizing diagram (5) from Set
to V.

(SMod(V))-Cat //

��

(cMon(V))-Cat

��

cMon(BP(V-Cat))

66llllllll
//

��

BP(V-Cat)

88qqqqqq

��

(Act(V))-Cat // Cat

cMon(V-Cat) //

66llllllll
V-Cat

88qqqqqqqq

5 Compactness and dimension

Categories with tensor products and biproducts have lately been studied as se-
mantical models of quantum computation [2]. Especially compact objects in such
categories play an important role. An object X of a symmetric monoidal category C
is called compact when there are an object X∗ ∈ C and morphisms η : I → X∗⊗X

12
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and ε : X ⊗X∗ → I that make the following diagrams commute.

X
∼= //X ⊗ I

id⊗η //X ⊗ (X∗ ⊗X)
∼=
��

X∗
∼= //I ⊗X∗

η⊗id //(X∗ ⊗X)⊗X∗

∼=
��

X I ⊗X∼=
oo (X ⊗X∗)⊗X

ε⊗id
oo X∗ X∗ ⊗ I∼=

oo X∗ ⊗ (X ⊗X∗)
id⊗η
oo

(6)

Compact objects ‘behave finite-dimensionally’. Indeed, in the prime example cate-
gories of complex vector spaces or Hilbert spaces, the compact objects are precisely
the finite-dimensional ones. Our semimodule enrichment now puts us in a position
to make this intuition precise.

Recall that an S-semimodule is called free if it is of the form SX for some
X ∈ Set, with pointwise operations; the cardinality of X is its dimension. A
semimodule is called projective if it is a retract of a free one [7]. If it is a retract of
a finite-dimensional free semimodule, it is projective of finite type.

Lemma 5.1 Let S ∈ SRng. If M is a compact object in SModS, then it is
projective of finite type.

Proof. [9, Lemma 1.3] SModS is closed and hence enriched over itself. So if M is
compact, then there is an isomorphism a : SModS(M,M) → M ⊗ SModS(M,S)
in SModS . Say a(idM ) =

∑n
i=1 mi ⊗ ϕi for mi ∈ M and ϕi : M → S and

i = 1, . . . , n. Define f : M → Sn by f(m) = (ϕ1(m), . . . , ϕn(m)), and g : Sn → M

by g(r1, . . . , rn) =
∑n

i=1 miri. Diagram (6) then yields that
∑n

i=1 miϕ
i(m) = m for

all m ∈ M , whence g ◦ f = idM . 2

Let C be a locally small symmetric monoidal category with finite biproducts.
One easily shows that the ‘forgetful’ functor C(I,−) : C → SModC(I,I) is monoidal,
that is, there is a natural transformation with components C(I,X) ⊗ C(I, Y ) →
C(I,X⊗Y ). If it is moreover a natural isomorphism, it preserves compact objects.
This is the case when the tensor product resembles the usual algebraic one used
in standard quantum physics to model entanglement. Combining this with the
previous lemma gives us the following precise version of the intuition that compact
objects are ‘finite-dimensional’ in the standard setting.

Corollary 5.2 If X is a compact object in a locally small symmetric monoidal cat-
egory C with finite biproducts, and C(I,−) : C → SModC(I,I) is strong monoidal,
then C(I,X) is a projective semimodule of finite type.

6 Future work

The fact that symmetric monoidal categories with biproducts are enriched over
semimodules is a first step towards a representation theorem for categories that
are Abelian except for an absence of subtraction. We intend to formulate the
properties required of such categories to replace the well-behavedness of mono’s,
kernels, epi’s and cokernels, and subsequently prove that every such category embeds
into a category of semimodules. An interesting matter then is the relationship
between Mitchell’s scalars and Abramsky’s scalars. Finally, such a category that
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moreover has a dagger (see [2]) could hopefully embed into a category of inner
product semimodules.
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A The Hilton-Eckmann argument

The following argument is due to Hilton and Eckmann ([4], but see also [15, Exer-
cise II.5.5]), who proved it for C = Set. It states that when an object carries two
monoid structures and the multiplication map of one is a monoid homomorphism
with respect to the other, then the two monoid structures coincide and are in fact
commutative.

Theorem A.1 (Hilton-Eckmann) Let (C,⊗, I) be a symmetric monoidal cate-
gory. Suppose given an object X ∈ C and morphisms µ1, µ2 : X ⊗ X → X and
η1, η2 : I → X. If (X, µ1, η1) and (X, µ2, η2) are both monoids (in C) and the
following diagram commutes,

X ⊗X ⊗X ⊗X
µ2⊗µ2//

id⊗γ⊗id ∼=��
X ⊗X

µ1

��
X ⊗X ⊗X ⊗X

µ1⊗µ1 ��
X ⊗X µ2

// X

(A.1)

then (X, µ1, η1) = (X, µ2, η2) is in fact a commutative monoid (in C).

Proof. First we show that η1 = η2.

I ∼=
&&MMMMMMMM I

η1

��

I ⊗ I ⊗ I ⊗ I
∼= //

∼=

��

η1⊗η2⊗η2⊗η1

**UUUUUUUUUU I ⊗ I
η1⊗η1��

∼=
;;wwwwww

X ⊗X ⊗X ⊗X
id⊗γ⊗id ∼=��

µ2⊗µ2// X ⊗X

µ1

��

X ⊗X ⊗X ⊗X
µ1⊗µ1 ��

I ⊗ I η2⊗η2

//
∼=

xxqqqqqqqq
X ⊗X µ2

// X

GG
GG

GG

GG
GG

GG

I η2
// X

To prevent a forest of diagrams, we give rest of the proof for C = Set. The reader
can check for herself that it generalizes to any symmetric monoidal category. Let
us further abbreviate η1 = η2 to 1, µ1(x, y) to x ◦ y, and µ2(x, y) to x • y.

x ◦ y = (1 • x) ◦ (y • 1)
(A.1)
= (1 ◦ y) • (x ◦ 1) = y • x

= (y ◦ 1) • (1 ◦ x)
(A.1)
= (y • 1) ◦ (1 • x) = y ◦ x.

2
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