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Abstract

This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal
assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to
(1) encompass many examples of interest, such as categories of relations, partial injections, Hilbert spaces
(also modulo phase), and Boolean algebras, and (2) have interesting categorical/logical properties, in terms
of kernel fibrations, such as existence of pullbacks, factorisation, and orthomodularity. For instance, the
Sasaki hook and and-then connectives are obtained, as adjoints, via the existential-pullback adjunction
between fibres.

1 Introduction

Dagger categories D come equipped with a special functor 1: D°? — D with XT =
X on objects and fit = f on morphisms. A simple example is the category Rel
of sets and relations, where T is reversal of relations. A less trivial example is
the category Hilb of Hilbert spaces and continuous linear transformations, where
1 is induced by the inner product. The use of daggers, mostly with additional
assumptions, dates back to [17,20]. Daggers are currently of interest in the context
of quantum computation [1,24,6]. The dagger abstractly captures the reversal of a
computation.

Mostly, dagger categories are used with fairly strong additional assumptions,
like compact closure in [1]. Here we wish to follow a different approach and start
from minimal assumptions. This paper is a first step to understand quantum logic,
from the perspective of categorical logic (see e.g. [18,15,25,13]). It grew from the
work of one of the authors [12]. Although that paper enjoys a satisfactory relation
to traditional quantum logic [11], this one generalizes it, by taking the notion of
dagger category as starting point, and adding kernels, to be used as predicates.
The interesting thing is that in the presence of a dagger functor t much else can be
derived. As usual, it is quite subtle what precisely to take as primitive.

Upon this structure of “dagger categories with kernels” the paper constructs
pullbacks of kernels and factorisation (both similar to [8]). It thus turns out that



the kernels form a “bifibration” (both a fibration and an opfibration, see [13]).
This structure can be used as a basis for categorical logic, which captures sub-
stitution in predicates by reindexing (pullback) f~! and existential quantification
by op-reindexing Jf, in such a way that J; f~. From time to time we use
fibred terminology in this paper, but familiarity with this fibred setting is not es-
sential. We find that the posets of kernels (fibres) are automatically orthomodular
lattices [14], and that the Sasaki hook and and-then connectives appear naturally
from the existential-pullback adjunction. Additionally, a notion of Booleanness is
identified for these dagger categories with kernels. It gives rise to a generic con-
struction that generalises how the category of partial injections can be obtained
from the category of relations.

Apart from this general theory, the paper brings several important examples
within the same setting—of dagger categories with kernels. Examples are the cate-
gories Rel and PInj of relations and partial injections. Additionally, the category
Hilb is an example—and, interestingly—also the category PHilb of Hilbert spaces
modulo phase. The latter category provides the framework in which physicists typ-
ically work [5]. It has much weaker categorical structure than Hilb. Finally, we
present a construction to turn an arbitrary Boolean algebra into a dagger category
with kernels. We suspect that there is a similar construction for orthomodular
lattices, but to our regret, we have not been able to produce it.

The authors are acutely aware of the fact that several of the example categories
have much richer structure, involving for instance a tensor sum @ and a tensor
product ® with associated scalars and traced monoidal structure. But investigation
of this additional structure is postponed to follow-up work [10]. There are interesting
differences between our main examples: for instance, Rel and PInj are Boolean,
but Hilb is not; in PInj and Hilb “zero-epis” are epis, but not in Rel; Rel and
Hilb have biproducts, but PInj does not.

The paper is organised as follows. After introducing the notion of dagger cat-
egory with kernels in Section 2, the main examples are described in Section 3.
Factorisation and (co)images occur in Sections 4 and 5. Finally, Section 6 intro-
duces the Sasaki hook and and-then connectives via adjunctions, and investigates
Booleanness.

2 Daggers and kernels

To start we shall work with the following notion.

Definition 2.1 A “dagger category with kernels” consists of:
(i) a dagger category D, with dagger T: D°? — D;
(ii) a zero object 0 in D;
(iii) kernels ker(f) of arbitrary maps f in D, which are {-monos.

Such a category will be called Boolean if m A n =0 = m' o n = 0, for all kernels
m,n. The name will be explained in Theorem 6.2. We shall later rephrase the
Booleanness condition as: kernels are disjoint if and only if they are orthogonal, see
Lemma 2.2.



A category DCK is formed with these dagger categories with kernels as ob-
jects and functors F' between them that preserve the relevant structure: dagger
(i.e. F(fT) = F(f)T), zero object (F(0) is again zero object), and kernels (F (k) is
kernel of F'(f) if k is kernel of f).

The dagger operation t satisfies XT = X on objects and ff = f on morphisms.
It comes with a number of definitions. A map f in D is called a {-mono(morphism)
if ff o f =1id and a t-epi(morphism) if f o ff = id. Hence f is a t-mono if and
only if fTis a f-epi. A map f is a f-iso(morphism) when it is both a f-mono and
a f-epi; in that case f~! = fT and f is sometimes called unitary (in analogy with
Hilbert spaces). An endomap p: X — X is called self-adjoint if p! = p.

The zero object 0 € D is by definition both initial and final. Actually, in the
presence of f, initiality implies finality, and vice-versa. For an arbitrary object
X € D, the unique map X — 0 is then a f-epi and the unique map 0 — X is a
f-mono. The “zero” map 0 = 0xy = (X — 0 — Y') satisfies (Ox,y)T = Oy,x. Notice
that f o 0 =0 =0 o g. Usually there is no confusion between 0 as zero object and
0 as zero map. Two maps f: X — Z and ¢g: Y — Z with common codomain are
called orthogonal, written as f L g, if gf o f = 0—or, equivalently, fT o g = 0.

We recall that a kernel of a map f: X — Y is a universal map k: ker(f) — X
with f o k = 0. Universality means that for an arbitrary g: Z — X with fog=20
there is a unique map ¢': Z — ker(f) with k o ¢’ = g. Kernels are automatically
(ordinary) monos. Definition 2.1 requires that kernels are {-monos.! We shall
write KSub(X) for the poset of (equivalence classes) of kernels with codomain X.
Sometimes we are a bit sloppy and confuse the kernel object ker(f) with the kernel
map, for instance in defining the cokernel coker(f) as ker(fT)t. This cokernel is a
t-epi. Finally, we define m* = ker(m'), which we often write as m* : M+ — X if
m : M — X. This notation is especially used when m is a mono. In diagrams we
typically write a kernel as > and a cokernel as —>.

We start with some basic observations.

Lemma 2.2 In a dagger category with kernels,

(i) ker(X RN V)= (X i X) and ker(X i X)=(0 9 X); they yield the top and
bottom elements 1,0 € KSub(X);

) ker(er(f)) = 0;

) ker(coker(ker(f))) = ker(f), as subobjects;

) m+t =m if m is a kernel;

) f factors through g iff f L g iff g L f iff g factors through f;L; in particular
m < nt iff n < mt, for monos m,n; hence (—)*: KSub(X)—KSub(X)°P;

(vi) if m <n, for monos m,n, say via m =n o ¢, then:
(a) if m,n are T-monic, then so is p;
(b) if m is a kernel, then so is .

1 This requirement involves a subtlety: kernels are closed under arbitrary isomorphisms but t-monos are
only closed under f-isomorphisms. Hence we should be more careful in this requirement. What we really
mean is that for every kernel there is a f-mono that is isomorphic to it. Hence we can always choose a
kernel in such a way that it is a f-mono.



(vil) Booleanness amounts tom A n =0 < m L n, i.e. disjointness is orthogonality,
for kernels.

Proof. We skip the first two points because they are obvious and start with the
third one. Consider for an arbitrary f: X — Y the diagram:

ker(f)> b X ! Y
A A
k/ p / \A f’
| :
ker(coker(ker(f))) coker(ker(f))

By construction f o k =0 and ¢ o k = 0. Hence there are f’ and k' as indicated.
Since f ol = f'ocol = f o0 =0 one gets ¢. Hence the kernels ¢ and k are
equal, as subobjects.

For the fourth point we now notice that if m = ker(f),

m*+ = ker(ker(m")T) = ker(coker(ker(f))) = ker(f) = m.
Next,

f factors through g+ <= gfo f =0
< flog=0 < g factors through f=.

If, in the sixth point, m = n o ¢ and m,n are f-monos, then ¢! o ¢ = (nf o m)T o
o =mlonop=mlom=1id. And if m = ker(f), then ¢ = ker(f o n), since:
(1) fonogp=fom=0,and (2) if f on o g =0, then there is a unique 1) with
m o1 =n o g; but then ¢ o1 = g since n is monic.

Finally, Booleanness means that m A n = 0 implies m’ o n = 0, which is
equivalent to nf o m = 0, which is m L n by definition. The reverse implication is
easy: if mo f=nog,then f=mlomo f=mlonog=00g=0. Similarly,
g = 0. Hence the zero object 0 is the pullback of m,n. O

Certain constructions from the theory of Abelian Categories [8] also work in the

current setting. This applies to the pullback construction in the next result, but
also, to a certain extend, to the factorisation of Section 4.

Lemma 2.3 Pullbacks of kernels exist, and are kernels again. FExplicitly, given a
kernel n and map f one obtains a pullback:

y—>—n
fl(n)I In as  f~(n) = ker(coker(n) o f).
X— —y

In case this f is a T-epi, then so is f.
By duality there are of course similar results about pushouts of cokernels.

Proof. For convenience write m = f~1(n) = ker(coker(n) o f). By construction,
coker(n) o f o m = 0, so that f o m factors through ker(coker(n)) = n, say via
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f'* M — N withn o f/ = f o m, as in the diagram. This yields a pullback: if
a: Z — X and b: Z — N satisfy f o a =n o b, then coker(n) o f o a = coker(n) o
no f' =00 f' =0, so that there is a unique map c: Z — M with m o ¢ = a. Then
f' o ¢ = b because n is monic.

In case f is a t-epi we have f o fT = id. Hence there are two adjacent pullbacks:

N— oy N
4 Y
"I =l I”
T
y 1 x—1 .y

Then f’ o f" = id because n is monic. Further, f/ =mfomo f" =mio flon=
fTonton = fT. Hence f' is t-epi. O
Corollary 2.4 Given these pullbacks of kernels,

(i) the mapping X — KSub(X) yields an indexed category D°? — PoSets and
forms a setting in which one can develop categorical logic for dagger categories;

(ii) the following diagram is a pullback,

showing that, logically speaking, falsum—i.e. the bottom element 0 € KSub(Y')—
is in general not preserved under substitution. Also, negation (—)* does not
commute with substitution, because 1 = 0+ and f~(1) = 1. O

One may also describe the indexed category KSub from (i) as a split fibration [13]
KSub(D)
( u]iD ) where the “total” category KSub(D) has (equivalence classes of ) kernels

m

M — X as objects, and morphisms (M — X) — (N - Y) are maps f: X — Y
in D with:

M----- -N
mz ; Xn i.e. with m < f~1(n).
X Y

We shall sometimes refer to this fibration as the “kernel fibration”. Every functor
F: D — E in DCK induces a map of fibrations:

KSub(D) KSub(E)
l i (1)
D £ E

because I preserves kernels and pullbacks of kernels—the latter since pullbacks can
be formulated in terms of constructions that are preserved by F', see Lemma 2.3.
As we shall see, in some situations, this diagram (1) is a pullback—also called a
change-of-base situation in this context, see [13]. It means that the map KSub(X) —
KSub(FX) is an isomorphism.

Being able to take pullbacks of kernels has some important consequences.
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Lemma 2.5 Kernels are closed under composition—and hence cokernels are, too.

Proof. We shall prove the result for cokernels, because it uses pullback results as
we have just seen. So assume we have (composable) cokernels e, d; we wish to show
e o d = coker(ker(e o d)). We first notice, using Lemma 2.3,

ker(e o d) = ker(coker(ker(e)) o d) = d™ ! (ker(e)),
yielding a pullback:

d B

>D ¢ >E

We intend to prove e o d = coker(m). Clearly, e o d o m = e o ker(e) o d' =0 o
d =0. And if f: X — Y satisfies f o m = 0, then f o ker(d) = f o m o ¢ =0,
so because d = coker(ker(d)) there is f': D — Y with f/ o d = f. But then:
f'oker(e)od = f'odom = fom=0. Then f’ o ker(e) = 0, because d’ is
T-epi because d is, see Lemma 2.3. This finally yields f”: F — Y with f” oe = f’.
Hence f"oeod=f. O

As a result, the logic of kernels has intersections, preserved by substitution.
More precisely, the indexed category KSub(—) from Corollary 2.4 is actually a
functor KSub: D°? — MSL to the category MSL of meet semi-lattices. Each
poset KSub(X) also has disjunctions, by m V n = (m* A nt)+, but they are not
preserved under substitution/pullback f~'. But we do have m V m* = (m* A
mtH)t = (mt Am)t =0t =1

Proposition 2.6 Orthomodularity holds: for kernels m < n, say via @ with n o
p =m, one has pullbacks:

€1

M>—72 N i <P
| L
i

M>—= X<~—"——= )t

This means that m V (m* A n) = n.

Proof. The square on the left is obviously a pullback. For the one on the right we
use a simple calculation, following Lemma 2.3:

n~t(mt)
= ker(coker(ker(m')) o n)

mt on) since m' is a cokernel



where the marked equation holds because n o ¢ = m, so that ¢ = nf on o ¢ =
n o m and thus ¢’ = m! o n. Then:

mV (mtAn) = (nogp)\/(nogpL)(;)no(cp\/gol) =noid = n.

The marked equation holds because n o (—) preserves joins, since it is a left adjoint:
nok <miff k <n (m), for kernels k,m. O

The following notion does not seem to have an established terminology. Hence
we introduce our own.

Definition 2.7 In a category with a zero object, a map m is called a zero-mono if
m o f =0 implies f = 0, for each map f. Dually, e is zero-epi if f o e = 0 implies
f =0. In diagrams we write >o> for zero-monos and —o= for zero-epis.

Clearly, a mono is zero-mono, since m o f = 0 = m o 0 implies f = 0 if m is
monic. The following points are worth making explicit.

Lemma 2.8 In a dagger category with kernels,
(i) m is a zero-mono iff ker(m) = 0 and e is a zero-epi iff coker(e) = 0;

(ii) ker(m o f) = ker(f) if m is a zero-mono, and similarly, coker(f o e) =
coker(f) if e is a zero-epi.

(iii) a kernel which is zero-epic is an isomorphism. O

We shall mostly be interested in zero-epis (instead of zero-monos), because they
arise in the factorisation of Section 4. In the presence of equalisers, zero-epis are
ordinary epis. This applies to Hilb and PInj. This fact is not really used, but is
included because it gives a better understanding of the situation.

Lemma 2.9 IfD happens to have equalisers, then zero-epis in D are ordinary epis.

Proof. Assume a zero-epi e: £ — X with two maps f,g: X — Y satisfying f o
e =g oe. We need to prove f = g. Let m: M »— X be the equaliser of f, g, with
h = coker(m), as in:

f
? 86— X Y
g
4P\||/ / gh:coker(m)
M

This e factors through the equaliser m, as indicated, since e o f = e o g. Then:
hoe=homop=00¢ =0. Hence h = 0 because e is zero-epi. But then
m = ker(h) = ker(0) = id, so that f = g. O

3 Main examples

This section will describe our four main examples, namely Rel, PInj, Hilb and
PHilb, and additionally a general construction to turn a Boolean algebra into a
dagger category with kernels.



3.1 The category Rel of sets and relations

Sets and binary relations R C X x Y between them can be organised in the familiar
category Rel, using relational composition. Alternatively, such a relation may be
described as a Kleisli map X — P(Y) for the powerset monad P; in line with
this representation we sometimes write R(z) = {y € Y |R(x,y)}. A third way is
to represent such a morphism in Rel as (an equivalence class of) a pair of maps
(X & R22Y) whose tuple (r1,79): R — X x Y of legs is injective.

There is a simple dagger operation on Rel by reversal of relations: Rf(y,z) =
R(z,y). A map R: X — Y is a t-mono in Rel if Rf o R = id, which amounts to
the equivalence:

/

ElyGY- R($, y) N R(xl,y) — I=x,
for all z,2” € X. It can be split into two statements:

/

Veex.Jyey. R(z,y) and VYV, pex.Vyey.R(z,y) A R(z,y) =z =2

Hence such a f-mono R is given by a span of the form:

T1 R T2
(X/ \Y> (2)

with surjection as first leg and injection as second leg. A f-epi has the same shape,
but with legs exchanged.

The empty set 0 is a zero object in Rel, and the resulting zero map 0: X — Y
is the empty relation ) € X x Y.

The category Rel also has kernels. For an arbitrary map R: X — Y one takes
ker(R) = {z € X | ~3yey. R(x,y)} with map k: ker(R) — X in Rel given by
k(x,2") & x =a'. Clearly, Ro k =0. And if S: Z — X satisfies R o S = 0, then
—Jex. R(x,y) A S(z,z), for all z € Z and y € Y. This means that S(z,x) implies
there is no y with R(x,y). Hence S factors through the kernel k. Kernels are thus
of the following form:

K
(K/ \X> with K ={z € X|R(x) =0}.

Kernels are thus essentially given by subsets: KSub(X) = P(X). Indeed, Rel is
Boolean, in the sense of Definition 2.1. A cokernel has the reversed shape.

Finally, a relation R is zero-mono if its kernel is 0, see Lemma 2.8. This means
that R(x) # ), for each x € X, so that R’s left leg is a surjection.

Proposition 3.1 In Rel there are proper inclusions:
kernel C t-mono C mono C zero-mono.

Subsets of a set X correspond to kernels in Rel with codomain X.

There is of course a dual version of this result, for cokernels and epis.
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Proof. We still need to produce (1) a zero-mono which is not a mono, and (2) a
mono which is not a f-mono. As to (1), consider R C {0,1} x {a,b} given by
R ={(0,a),(1,a)}. Its first leg is surjective, so R is a zero-mono. But it is not
a mono: there are two different relations {(x,0)},{(x,1)} C {*} x {0,1} with R o
{(x0)} ={(x,a)} = Ro{(x, 1)}

As to (2), consider the relation R C {0,1} x {a,b, ¢} given by R = {(0,a), (0,b),
(1,b),(1,¢)}. Clearly, the first leg of R is a surjection, and the second one is neither
an injection nor a surjection. We check that R is monic. Suppose S,T: X — {0, 1}
satisfy R o S = R o T. If S(x,0), then (R o S)(z,a) = (R o T)(x,a), so that
T(x,0). Similarly, S(z,1) = T(z,1). O

We add that the pullback R~1(n) of a kernel n = (N = N » Y) along a
relation R C X x Y, as described in Lemma 2.3 is the subset of X given by the
modal formula Og(n)(z) = R~ Y(n)(z) & (V,. R(z,y) = N(y)). As is well-known
in modal logic Op preserves conjunctions, but no disjunctions. Interestingly, the
familiar “graph” functor G: Sets — Rel yields a map of fibrations:

Sub(Sets) KSub(Rel)
| l 3)
Sets g Rel

which forms actually a pullback (or a “change-of-base” situation, see [13]). This
means that the familiar logic of sets can be obtained from this kernel logic on
relations. In this diagram we use that inverse image is preserved: for a function
f+ X — Y and predicate N C Y one has:

G(f)THN) = Og(p)(N) = {z € X | V. G(f)(z,y) = N(y)}
={zeX |V f(z)=y= N(y)}
= {z e X[ N(f(2))}
= fTH).

3.2  The category PInj of sets and partial injections

There is a subcategory PInj of Rel also with sets as objects but with “partial
injections” as morphisms. These are special relations F' C X xY satisfying F'(z,y) A
F(z,y) =y =49 and F(x,y) A F(2',y) = x = 2/. We shall therefore often write
morphisms f: X — Y in PInj as spans with the notational convention

(X;Ly):<;yfﬁ;>,
fa

where spans (X I F — Y) and (X a2 Y) are equivalent if there is an
isomorphism ¢: F' — G with g; o ¢ = f;, for i = 1, 2—like for relations.

Composition of X 1, Y % Z can be described as relational composition, but

also via pullbacks of spans. The identity map X — X is given by the span of
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identiti}es X <f—< X — X. T}he in}/olution is inherited from Rel and can be described
as (X “F2Y) = (v & F 2 X).

f f . .
It is not hard to see that f = (X ~F > Y) is a t-mono—i.e. satisfies
ff o f = id—if and only if its first leg fi: F ~ X is an isomorphism. For
convenience we therefore identify a mono/injection m: M »— X in Sets with the

corresponding {-mono (M £< M2 X ) in PInj.

By duality: f is t-epi iff f1 is t-mono iff the second leg f5 of f is an isomorphism.
Further, f is a -iso iff f is both f-mono and f-epi iff both legs fi; and fo of f are
isomorphisms.

Like in Rel, the empty set is a zero object, with corresponding zero map given
by the empty relation, and 0 = 0.

For the description of the kernel of an arbitrary map f = (X £< F >fi Y) in

PInj we shall use the ad hoc notation -1 F ?—>fl X for the negation of the first leg
fi: F — X, as subobject/subset. It yields a map:

1 F _
ker<f>=< - \1>
—F X

It satisfies f o ker(f) = 0. It is a f-mono by construction. Notice that kernels are
the same as {-monos, and are also the same as zero-monos. They all correspond to
subsets, so that KSub(X) = P(X) and PInj is Boolean, like Rel.

The next result summarises what we have seen so far and shows that PInj is
very different from Rel (see Proposition 3.1).

Proposition 3.2 In PInj there are proper identities:
kernel = t-mono = mono = zero-mono.

These all correspond to subsets.

3.3 The category Hilb of Hilbert spaces

Our third example is the category Hilb of (complex) Hilbert spaces and continuous
linear maps. Recall that a Hilbert space is a vector space X equipped with an inner
product, i.e. a function (— | —) : X x X — C that is linear in the first and anti-linear
in the second variable, satisfies (z|x) > 0 with equality if and only if z = 0, and
(z|y) = (y|z). Moreover, a Hilbert space must be complete in the metric induced
by the inner product by d(z,y) = /{(z —y |z — y).

The Riesz representation theorem provides this category with a dagger functor.
Explicitly, for f: X — Y a given morphism, f7: ¥ — X is the unique morphism
satisfying

(f(@) [y)y = (| FH(y)x
for all z € X and y € Y. The zero object is inherited from the category of (com-
plex) vector spaces: it is the zero-dimensional Hilbert space {0}, with unique inner
product (0]0) = 0.
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In the category Hilb, f-mono’s are usually called isometries, because they pre-
serve the metric: fT o f =id if and only if

d(fz, fy) = (fl@—y) | fle—y))2 = (@ —y| (fT o Nz —y))? = d(z,y).

Kernels are inherited from the category of vector spaces. For f : X — Y, we can
choose ker(f) to be (the inclusion of) {x € X | f(z) = 0}, as this is complete with
respect to the restricted inner product of X. Hence kernels correspond to (inclusions
of) closed subspaces. Being inclusions, kernels are obviously f-monos. Hence Hilb
is indeed an example of a dagger category with kernels. However, Hilb is not
Boolean. The following proposition shows that it is indeed different, categorically,
from Rel and PlInj.

Proposition 3.3 In Hilb one has:

kernel = t-mono C mono = zero-mono.

Proof. For the left equality, notice that both kernels and isometries correspond
to closed subspaces. It is not hard to show that the monos in Hilb are precisely
the injective continuous linear functions, establishing the middle proper inclusion.
Finally, Hilb has equalisers by eq(f, g) = ker(g — f), which takes care of the right
equality. (|

As is well-known, the £? construction forms a functor ¢£2: PInj — Hilb (but not
a functor Sets — Hilb), see e.g. [2,9]. Since it preserves daggers, zero object and
kernels it is a map in the category DCK, and thus yields a map of kernel fibrations
like in (1). It does not form a pullback (change-of-base) between these fibrations,
since the map KSubprnj(X) = P(X) — KSubmib(¢*(X)) is not an isomorphism.

3.4 The category PHilb: Hilbert spaces modulo phase

The category PHilb of projective Hilbert spaces has the same objects as Hilb, but
its homsets are quotiented by the action of the circle group U(1) = {z € C | |z| = 1}.
That is, continuous linear transformations f,g : X — Y are identified when x = z-y
for some phase z € U(1).

Equivalently, we could write PX = X;/U(1) for an object of PHilb, where
X € Hilb and X; = {# € X | ||z|| = 1}. Two vectors z,y € X; are therefore
identified when & = z - y for some z € U(1). Continuous linear transformations
f,9: X — Y then descend to the same function PX — PY precisely when they are
equivalent under the action of U(1). This gives a full functor P : Hilb — PHilb.

The dagger of Hilb descends to PHilb, because if f = z - g for some z € U(1),
then

(f(@)|y) =2 (g(x)|y) = 2 (x| g"(v)) = (x| 2- g (v)),

whence also fT =z g7, making the dagger well-defined.

Also dagger kernels in Hilb descend to PHilb. More precisely, the kernel
ker(f) = {x € X | f(x) = 0} of a morphism f : X — Y is well-defined, for if
f=2z-f for some z € U(1), then

ker(f) = {z € X | - f'() = 0} = {w € X | /() = 0} = kex(f").
11



Proposition 3.4 In PHilb one has:

kernel = t-mono C mono = zero-mono.

Proof. It remains to be shown that every zero-mono is a mono. Solet m: Y — Z
be a zero-mono, and f,g : X — Y arbitrary morphisms in PHilb. More precisely,
let m, f and g be morphisms in Hilb representing the equivalence classes [m], [f]
and [g] that are morphisms in PHilb. Suppose that [m o f] = [m o g]. Then
mo f~mog,saymof=z-(mog)forzeU(l). Somo (f—=z-g)=0,and
f—z-g =0 since m is zero-mono. Then f = z- g and hence f ~ g, i.e. [f] = [g].
Thus m is mono. O

The full functor P : Hilb — PHilb preserves daggers, the zero object and
kernels. Hence it is a map in the category DCK. In fact it yields a pullback
(change-of-base) between the corresponding kernel fibrations.

KSub(Hilb) KSub(PHilb)
l l (4)
Hilb P PHilb

3.5  From Boolean algebras to dagger categories with kernels

The previous four examples were concrete categories. At the end we add a generic
construction, which turns an arbitrary Boolean algebra into a (Boolean) dagger
category with kernels.

To start, let B with (1, A) be ‘ameet semi-lattice. We can turn it into a category,
for which we use the notation B. The objects of B are elements z € B, and its
morphisms z — y are elements f € B with f < z,y, i.e. f < x A y. There
is an identity xz: * — =z, and composition of f: x — y and ¢g: y — 2z is simply
fANg:ax — z This Bisa dagger category with ff = f. Amap f:z — yisa
f-mono if ff o f = f A f = 2. Hence a f-mono is of the form z: 2 — y where
z <y.

It is not hard to see that the construction B ~— B is functorial: a morphism
h: B — C of meet semi-lattices yields a functor h:B—C by z — h(z). It clearly
preserves t.

Proposition 3.5 If B is a Boolean algebra, then B is a Boolean dagger category
with kernels. This yields a functor BA — DCK.

Proof. The bottom element 0 € B yields a zero object 0 € B , and also a zero map
0: z — y. For an arbitrary map f:  — y there is a kernel ker(f) = —f A x, which is
a f-mono ker(f): ker(f) — x in B. Clearly, foker(f)=fA-fAxz=0Ax=0.
If also g: z — « satisfies f o g =0, then g < 2,z and f A g = 0. The latter yields
g < —f and thus g < —=f A x = ker(f). Hence g forms the required mediating map
g: z — ker(f) with ker(f) o g = g.

Notice that each {-mono m: m — x, where m < z, is a kernel, namely of its
cokernel -m A z: x — (—-m A x). For two kernels m: m — x and n: n — x, where
m,n < x, one has m < n as kernels iff m < n in B. Thus KSub(z) = | z, which is

12



again a Boolean algebra (with negation —,m = —m A z). The intersection m A n
as subobjects is the meet m A n in B. This allows us to show that B is Boolean: if
mAn=0,themmon=mon=mAn=0. O

It remains an open question whether a similar construction can be performed for
orthomodular lattices (see [14]), instead of Boolean algebras. The straightforward
extension of the above construction does not work: in order to get kernels one needs
to use the and-then connective (&, see Proposition 6.1) for composition; but & is
neither associative nor commutative, unless the lattice is Boolean [16].

4 Factorisation

In this section we assume that D is an arbitrary dagger category with kernels. We
will show that each map in D can be factored as a zero-epi followed by a kernel,
in an essentially unique way. This factorisation leads to existential quantifiers 3, as
usual.

The “image” Im(f) of f: X — Y is defined as Im(f) = ker(coker(f)) with
kernel map (and hence f-mono) is: Im(f)>—Y obtained as follows. First take
the kernel:

;
ker(fT)DLYLX

and define iy as the kernel of kT as in:

Im(f) = ker(k‘T)DLY%ker(fT)

s (5)
f: ¥

X

The map ef: X — Im(f) is obtained from the universal property of kernels, since
E' o f = (ff o B)f = 0f = 0. Since if is a f-mono, this e; is determined as
€f = id o €f = (if)T oif cef= (if)T o] f
The image of a map f is therefore defined as kernel ker(coker(f)). Conversely,
every kernel m = ker(f) arises as an image, since ker(coker(m)) = m by Lemma 2.2.
The maps that arise as ey in (5) can be characterised.

Proposition 4.1 The maps in D that arise of the form ey, as in diagram (5), are
precisely the zero-epis.

Proof. We first show that e; is a zero-epi. Assume therefor a map h: ker(kf) — Z
satisfying h o ey = 0. Recall ey = (if)" o f, so that:

flo(iyohly=(ho(if)l o f) =(hoep)l =07 =0.

This means that iy o h! factors through the kernel of ff, say via a: Z — ker(f1)
with koa =iy o hi. Since k is a f-mono we now get:

a:kTokoa:kToifohTzoohT:O.
13



But then iy o hW=koa=ko0=0= iy 00, so that ht = 0, because if is mono,
and h = 0, as required.

Conversely, assume g: X — Y is a zero-epi, so that coker(g) = 0 by Lemma 2.8.
Trivially, iy = ker(coker(g)) = ker(X — 0) = idx, so that e; = g. O

The factorisation f = iy o ey from (5) describes each map as a zero-epi followed
by a kernel. In fact, these zero-epis and kernels also satisfy what is usually called
the “diagonal fill-in” property.

Lemma 4.2 In any commuting square of shape

o o
J/ l there is a (unique) diagonal J{ L7 i

making both triangles commute.
As a result, the factorisation (5) is unique up to isomorphism. Indeed, kernels
and zero-epis form a factorisation system (see [3]).

Proof. Assume the zero-epi e: F — Y and kernel m = ker(h): M — X satisfy
mo f =goe,as below,

E

A

M

Then: hogoe=homo f=00 f=0and h o g=0 because e is zero-epi. This
yields the required diagonal d: Y — M with m o d = g because m is the kernel of
h. Using that m is monic we get d o e = f. g

—G>

b X —> 2

Factorisation standardly gives a left adjoint to inverse image (pullback), corre-
sponding to existential quantification in logic. In this self-dual situation there are
alternative descriptions.

Proposition 4.3 For f: X — Y, the pullback functor f~': KSub(Y) — KSub(X)
from Lemma 2.3 has a left adjoint 35 given as image:

(M>L>X> — <Im(fom)>3mn>Y)

Alternatively, 35(m) = ((fT)_l(mL))L.

Proof. It is standard/straightforward that m < f~!(n) iff there is a p: M — N
with n o ¢ = f om iff 3y(m) < n. For the alternative description:

(D7) <m et < (7))
<= thereis a ¢: Nt — Mt with m* oy = fTont
<(i—)>thereisagp:M—>Nwithno¢:fom
< m < fl(n).

14



For the direction (=) of the marked equivalence, recall that n = ker(coker(n)),
so we show: coker(n) o f om = (ff o nH)f om = (m+ o ) o m = T o
coker(m) o m = ¢’ 0 0 = 0. The reverse direction works similarly: given ¢ one
gets: mto flont = (fom)font =mop)font=¢plonfont=¢loc0=0.

O

KSub(D)
This adjunction 3¢ - f ~! makes the kernel fibration ( 5 ) an opfibration,

and thus a bifibration, see [13].
Recall the Beck-Chevalley condition: if the left square below is a pullback, then
the right one must commute.

Pty KSub(P) < KSub(Y)
b ¢ 3 o (BO)
X—>2 KSub(X)<—~KSub(Z)

This condition ensures that 3 commutes with substitution. Beck-Chevalley holds
for the pullbacks from Lemma 2.3 that are known to exist. In the notation from
Lemma 2.3, for kernels k: K — Y and g: Y — Z,

F713,4(k)) = f~Y(g o k) because both g, k are kernels
= q (k) op by composition of pullbacks
= (g7 (k)).

In Hilb all pullbacks exist and Beck-Chevalley holds for all of them by [4, II,
Proposition 1.7.6] using Hilb’s biproducts and equalisers.

The final result in this section brings more clarity; it underlies the relations
between the various maps in the propositions in the previous section.

Lemma 4.4 If zero-epis are (ordinary) epis, then t-monos are kernels.
Recall that Lemma 2.9 tells that zero-epis are epis in the presence of equalisers.

Proof. Suppose m: M — X is a {-mono, with factorisation m =i o e as in (5),
where ¢ is a kernel and a f-mono, and e is a zero-epi and hence an epi by assumption.
We are done if we can show that e is an isomorphism. Since m = i o e and 7 is
f-monic we get if om =ifoioe=e. Henceel ce= (it om)foe=mtoioe=
m! o m = id because m is t-mono. But then also e o el = id because e is epi and
eoeloe=e. O

Example 4.5 In the category Rel the image of a morphism (X & R 2 V) is
the relation igp = (Y — Y’ —Y) where Y/ = {y € Y | 3,. R(z,y)} is the image
of the second leg 5 in Sets. The associated zero-epi is eg = (X < R = Y').

Existential quantification 3z(M) from Proposition 4.3 corresponds to the modal
diamond operator (for the reversed relation R'):

Jr(M) ={y €Y | Tuem R(z,y)} = gt (M) = =0Opi (=M).
15



It is worth mentioning that the “graph” map of fibrations (3) between sets and
relations is also a map of opfibrations: for a function f: X — Y and a predicate
M C X one has:

g (M) = {y | 3. G(f)(z,y) A M(2)}
={yl 3. f(z) =y A M(z)}
= {f(z) | M(x)}
where Jy in the last line is the left adjoint to pullback f ~1 in the category Sets.
id
In PInj the image of a map f = (X £< F >J2> Y)is given as iy = (F SR >f—2> Y).
id
The associated map ey is (X I F F), so that indeed f =iy o e;. Notice that
this ey is a {-epi in PInj.
In Hilb, the image of a map f : X — Y is (the inclusion of) the closure of the
set-theoretic image {y € Y | J,ex.y = f(x)}. This descends to PHilb: the image

of a morphism is the equivalence class represented by the inclusion of the closure of
the set-theoretic image of a representative.

The functor ¢?: PInj — Hilb is a map of opfibrations: for a partial injection

f=X I F >]E>Y) and a kernel m : M — X in PInj one has:

Jpz(py (€3 (m)) = Impgzan (€2 (f 0 m))
= Imppg, (M@ : (M) Ny : Y. Z o(z)))
z€(fom)~1(y)
= {p € >(X) | supp(p) € FN M}
= {p € *(X) | supp(p) C F N M}
= (2(fy 0 f; ' (m))
= (*(35(m)).

Also the full functor P: Hilb — PHilb is a map of opfibrations: for f: X — Y
and a kernel m : M ~— X in Hilb one has:

Jps(Pm) = Impwip (P(f o m))
={f(z) |z € M}
=P({f(z) [z € M})
= P(Impup(f o m))
= P(3f(m)).

In the category B obtained from a Boolean algebra the factorisation of f: x — y
is the composite t—— f——y. In particular, for m < x, considered as kernel m: m —
x one has I¢(m) = (m A f: (mA f) = x).

Example 4.6 In [19] the domain Dom(f) of a map f: X — Y is the negation of
its kernel, so Dom(f) = ker(f)*, and hence a kernel itself. It can be described as
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an image, namely of f1, since:
Dom(f) = ker(f)* = ker(ker(f)") = ker(coker(f1)) = st

It is shown in [19] that the composition f o Dom(f) is zero-monic—or “total”, as
it is called there. This also holds in the present setting, since:

foDom(f) = fo ipr = (igi 0 efT)T Ol = (efT)T ° (ifT)T Olipr = (efT)T.

This eg+ is zero-epic, by Proposition 4.1, so that (e fT)T is indeed zero-monic.

There is one further property that is worth making explicit, if only in examples.
In the kernel fibration over Rel one finds the following correspondences.

KSub(X) = P(X) = Sets(X,2) = Sets(X,P(1)) = Rel(X, 1).

This suggests that one has “kernel classifiers”, comparable to “subobject classifiers”
in a topos—or more abstractly, “generic objects”, see [13]. But the naturality that
one has in toposes via pullback functors f~! exists here via their left adjoints 3 7
Indeed, there are natural “characteristic” isomorphisms:

KSub(X) = P(X) char Rel(1, X)
(M C X)—A{(*,z) | x € M}.

Then, for S: X — Y in Rel,

S o char(M) = {(*,y) | 3z.char(M)(x,x) A S(x,y)}
{(,9) | 30 M(2) A S(z, )}

() | 3s(M) ()

char(3g(M)).

Hence one could say that Rel has a kernel “op-classifier”.

The same thing happens in the dagger categories B from Subsection 3.5. There
one has, for x € B,

KSub(z) = |z d;r B(1,z)
(m<z)b——>(m: 1 — x)

As before, f o char(m) = f A m = 3y(m) = char(3¢(m)).

5 Images and coimages

We continue to work in an arbitrary dagger category D with kernels. In the previous
section we have seen how each map f: X — Y in D can be factored as f =iy o ey
where the image iy = ker(coker(f)): Im(f) ~— Y is a kernel and ef is a zero-
epi. We can apply this same factorisation to the dual ff. The dual of its image,
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(i) = coker(ker(f)): X — Im(fT), is commonly called the coimage of f. It is a
cokernel and f-epi by construction. Thus we have:

f
X : Y Y =X
\S; VV \O; VJ/

Im(f) Im(fT)

By combining these factorisations we get two mediating maps m by diagonal fill-in,
as in:

We claim that (my)? = mi. This follows easily from the fact that (iz)T is epi:

t =

(i)t o (i)t = (igr ompr)t = (ef)TT =ep =my o (i)l

Moreover, m is both a zero-epi and a zero-mono.
As a result we can factorise each map f: X — Y in D as:

(ifT)T

my 7:f
X —oimage P (fN)—e=Tm(f)o—e— v (6)
zero-epi

zZero-mono

This coimage may also be reversed, so that a map in D can also be understood as
a pair of kernels with a zero-mono/epi between them, as in:

X<Zf—lr<11m(f'r)}oe>1m(f)[>l;>y

The two outer kernel maps perform some “bookkeeping” to adjust the types; the
real action takes place in the middle, see the examples below. The category PInj
consists, in a sense, of only these bookkeeping maps, without any action. This will
be described more systematically in Definition 6.4.

Example 5.1 We briefly describe the factorisation (6) in Rel, PInj and Hilb,
using diagrammatic order for convenience (with notation f;g =g o f).
For a map (X <~ R 22 Y) in Rel we take the images X’ — X of 7; and Y’ - Y’

of ro in:
R ! R Y’
7’1/ \\7‘2 — /(\ 7 7“1% \Tg ’ // \
X Y X X' X' Y’ Y’ Y

In PInj the situation is simpler, because the middle part m in (6) is the identity,
18



(h/F\fz):(h/F\\>;<//F\fz>'
Xy X r)\F v

In Hilb, a morphism f : X — Y factors as f = ¢ o m o e. The third part
i:I —Y is given by i(y) = y, where [ is the closure { f(z) : € X}. The first part
e : X — E is given by orthogonal projection on the closure E = {ff(y) : y € Y};
explicitly, e(z) is the unique 2’ such that x = 2’ 4+ 2" with 2’ € F and (2" |2z) =0
for all z € E. Using the fact that the adjoint ef : E — X is given by ef(z) = z, we
deduce that the middle part m : E — I is determined by m(z) = (i o m)(z) = (f o
e (z) = f(x). Explicitly,

(XLY):(XLE);(E&I);(ILY).

6 Categorical logic

In this final section we further investigate the logic of dagger categories with kernels.
We shall first see how the so-called Sasaki hook [14] arises naturally in this setting,
and then investigate Booleanness.

For a kernel m: M — X we shall write P(m) = m o m': X — X. This
P(m) is easily seen to be a self-adjoint idempotent?: one has P(m)! = P(m)
and P(m) o P(m) = P(m). The endomap P(m): X — X associated with a
kernel/predicate m on X maps everything in X that is in m to itself, and what
is perpendicular to m to 0, as expressed by the equations P(m) o m = m and
P(m) o m* = 0. Of interest is the following result. It makes the dynamical aspects
of quantum logic described in [7] explicit.

Proposition 6.1 For kernels m: M — X, n: N — X the pullback P(m)~t(n) is
the Sasaki hook, written here as D:

m>Dn d:efP(m)_l(n) = m*V (mAn).

The associated left adjoint 3p () P(m)~! yields the “and then” operator:

k&m X 3pan (k) = m A (m* v k),

so that the “Sasaki adjunction” holds by construction:
k&m<n<=k<mDn.

Quantum logic based on this “and-then” & connective is developed in [16], see

also [21,22]. This & connective is in general non-commutative and non-associative .

Some basic properties are: m& m=m, 1 &m=m&1=m,0&m=m&0=0,

2 Sometimes these self-adjoint idempotents are called projections, but we shall use “projection” slightly
differently, see [10], namely with additional requirement that it is less than or equal to the identity, for a
suitably defined order on homsets.

3 The “and-then” connective & should not be confused with the multiplication of a quantale [23], since the
latter is always associative.
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and both k & m < n, kt & m <n imply m < n (which easily follows from the
Sasaki adjunction).

Proof. Consider the following pullbacks.

P—>N Q——>plt
_ _
pl In T\L I(m/\n)L— ker(pfomt)
M>—">X Mv>—">X
Then:
1

mt Vv (mAn) = (mA(mAn)t)
= ker ((m A (m A n)b)T)
= ker (TT o mT)
= ker (ker(coker((m A n)*) o m)! o ml)
by definition of r as pullback, see Lemma 2.3
= ker ( ker(coker(ker(p' o mT)) o m)T o mT)
= ker (ker(pJr omlom)lo mT)
because pf o m' is a cokernel, see Lemma 2.5
= ker(coker(p) o m')
= (m) ()
= (mf) ™ (m~'(n))
= P(m)~Y(n). O
We now turn to Booleanness. As we have seen, the categories Rel, PInj and

B (for a Boolean algebra B) are Boolean, but Hilb and PHilb are not. We start
with a result that justifies the name “Boolean”.

Theorem 6.2 A dagger category with kernels is Boolean if and only if each poset
KSub(X) is a Boolean algebra.

Proof. We already know that each poset KSub(X) is an orthomodular lattice, with
bottom 0, top 1, negation (—)* (by Lemma 2.2), intersections A (by Lemma 2.5),
and joins m V n = (m* A nt)t. What is missing is distributivity m A (n V k) =
(m Vv n) A (mV k). We show that it is equivalent to the Booleanness requirement
mAn=0=m Ln Recall: m Lniff nf om =0iff m <nt = ker(nh).

First, assume Booleanness. To start,

(mA(mAR) Y)Y An=mAn)A(mAn)t=0
Hence m A (m A n)t < nt. Similarly, m A (m A k)* < k. Therefore:
mA (mAn)EA(mAR)E<ntAEN=(nv k)L,

and thus:
m A (mAn)EA(mAE)EA(VE)=0.
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But then we are done by using Booleanness again:
mAMVE) <(mAn)tAmAkR)D)E=(mAn) v (mAk).
The other direction is easier: if m A n =0, then:

m=mAl=mA (nVnt)
= (mAn)V (mAn*) by distributivity

=0V (mAnt) = mAnt.

Hence m < nt. O
The Booleanness property can be strengthened in the following way.

Proposition 6.3 The Booleanness requirement m A n = 0 = m < n*, for all
kernels m,n, is equivalent to the following: for each pullback of kernels:

P—L2oN

J
qi In one has nfom =poql.
M= X

Proof. It is easy to see that the definition of Booleanness is the special case P = 0.
For the converse, we put another pullback on top of the one in the proposition:

|7

HP

] I

1
I>L>N
_

bS]

n

<=2 4g<~—o

m

Mr—X

We use that p,q are kernels by Lemma 2.3. We see m A (n o pt) = 0, so by
Booleanness we obtain:

m < (nopt)t = ker ((n o ker(ph)))
= ker(coker(p) o nf)
= (n")"!(p),

where the pullback is as described in Lemma 2.3. Hence there is a map ¢: M — P
with p o ¢ = nf o m. This means that ¢ = pl opo =pl onfom = (nop)fo
m = (moq)t om=q' oml om=¢'. Hence we have obtained p o ¢" = nf o m, as
required. O

Definition 6.4 Let D be a Boolean dagger category with kernels. We write D i
for the category with the same objects as D; morphisms X — Y in Dg.x are
cokernel-kernel pairs (¢, k) of the form X ——e>—+~>Y . The identity X — X is

21



X4 o x40 X and composition of X —¢ Mt Y and Y —% Nt =7 is
the pair (¢f o ¢,1 o p) obtained via the pullback:

pLtsnN>tsyz

qIJ k Idf (7)

X —S>M>—>Y

To be precise, we identity (c, k) with (¢ o ¢,k o 1), for isomorphisms ¢.

The reader may have noticed that this construction generalises the definition of
PlInj. Indeed, now we can say PInj = Relg k.

Theorem 6.5 The category Dk i as described in Definition 6.4 is again a Boolean
dagger category with kernels, with a functor D: Dg.x — D in DCK and a change-
of-base situation (pullback):

KSub(Dxgck) KSub(D)
Dkex s D
Moreover, in D i one has:
kernel = t-mono = mono = zero-mono,

and Dg.x is universal among such categories.

Proof. The obvious definition (c, k)T = (k, ') yields an involution on Dg.x. The
zero object 0 € D is also a zero object 0 € Dg.x with zero map X ——>0>—Y
consisting of a cokernel-kernel pair. A map (c, k) is a t-mono if and only if (¢, k) o
(c,k) = (kt, k) is the identity; this means that k = id.

The kernel of a map (d,1) = (Y -4oN->7) is ker(d,l) = (NJ-gngDiY),
so that ker(d,l) is a {-mono and (d,l) o ker(d,l) = 0. If also (d,l) o (¢,k) = 0,
then k A df = 0 so that by Booleanness, k < (df)*, say via ¢: M — Nt with
(d")* o ¢ = k. Then we obtain a mediating map (c,p) = (X —SsM>—2>N1)
which satisfies ker(d, 1) o (c,¢) = (id, (d")*) o (¢, ) = (¢, (d)* 0 ¢) = (¢, k). It is
not hard to see that maps of the form (id,m) in D i are kernels, namely of the
cokernel (m*,id).

The intersection of two kernels (id,m) = (M=—Mr"=X) and (id,n) =
(N=——=N>">X) in Dg.k is the intersection m A n: P — X in D, with pro-
jections (P=—=P>——>M ) and (P——=P>—>N). Hence if the intersection of
(id,m) and (id,n) in Dg.x is 0, then so is the intersection of m and n in D, which
yields nf o m = 0. But then in Dg.x, (id,n)" o (id,m) = (nf,id) o (id,m) = 0.
Hence D gk is also Boolean.

Finally, there is a functor Dg.x — D by X — X and (¢, k) — k o ¢. Composi-
tion is preserved by Proposition 6.3, since for maps as in Definition 6.4,

(d,1) o (c,k) = (¢foc,lop)——lopogqioc= (lod)o(koc).
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We have already seen that KSub(X) in Dk is isomorphic to KSub(X) in D. This
yields the change-of-base situation.

We have already seen that kernels and f-monos coincide. We now show that
they also coincide with zero-monos. So let (d,l): Y — Z be a zero-mono. This
means that (d,l) o (¢,k) =0 = (¢, k) = 0, for each map (c, k). Using diagram (7),
this means: d' A k = 0 = k = 0. By Booleanness, the antecedent df A k = 0 is
equivalent to k < (df)* = ker(d), which means d o k = 0. Hence we see that d is
zero-monic in D, and thus an isomorphism (because it is already a cokernel).

Finally, let E be a Boolean dagger category with kernels in which zero-monos
are kernels, with a functor F': E — D in DCK. Every morphism f in E factors
as f =iy o ey for a kernel iy and a cokernel ef. Hence G: E — Dg.k defined by
G(X) = F(X) and G(f) = (ef,i¢) is the unique functor satisfying F =D o G. O

7 Conclusions and future work

The paper shows that a “dagger category with kernels” forms a powerful notion
that not only captures many examples of interest in quantum logic but also pro-
vides basic structure for categorical logic. Several research avenues are still open:
construction of dagger categories with kernels from orthomodular lattices (like in
Subsection 3.5 for Boolean algebras), or further investigation of the relevance of
“opfibred” structure in this setting (like for “op-classifiers” at the end of Section 4).
A follow-up paper [10] is in preparation; it extends the present setting with
tensors (both sums @ and products ®), which lead to further logical structure.
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