
Categorical quantum models and logics

The work in this thesis has been carried out while the author was employed at
the Radboud University Nijmegen, financially supported by the Netherlands Or-
ganisation for Scientific Research (NWO) within the Pionier projects “Program
security and correctness” during August 2005–August 2007, and “Quantization,
noncommutative geometry and symmetry” during August 2007–August 2009.

Typeset using LATEX and XY-pic

ISBN 978 90 8555 024 2
NUR 910

c© C. Heunen / Pallas Publications — Amsterdam University Press, 2009

This work is licensed under a Creative Commons
Attribution-No Derivative Works 3.0 Netherlands
License. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-nd/3.0/nl/.

http://creativecommons.org/licenses/by-nd/3.0/nl/

Categorical quantum models and logics

een wetenschappelijke proeve op het gebied van de
Natuurwetenschappen, Wiskunde en Informatica

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. mr. S.C.J.J. Kortmann,
volgens besluit van het College van Decanen

in het openbaar te verdedigen op 7 januari 2010
om 13.30 uur precies

door

Christiaan Johan Marie Heunen

geboren op 21 maart 1982
te Nijmegen

Promotores:
prof. dr. B.P.F. Jacobs
prof. dr. N.P.L. Landsman

Doctoral thesis committee:
prof. dr. S. Abramsky University of Oxford
prof. dr. M. Gehrke Radboud University Nijmegen
prof. dr. P.T. Johnstone University of Cambridge
prof. dr. I. Moerdijk Utrecht University
dr. M. Müger Radboud University Nijmegen

Preface

I cannot allow this thesis to be published without thanking those without whom
it could not have been.

First and foremost, I am deeply grateful to my promotores. Bart Jacobs, ever
cheerful, enthusiastic and ready to explain, taught me the importance of “think-
ing with one’s fingers”. From Klaas Landsman I learned the value of “social
science”, i.e. how rigorous research can be jump-started by opinions of experts
on vague ideas. I am very glad to have had the opportunity to work with such
amicable supervisors, and can only hope that their invaluable guidance is re-
flected in this thesis. I am also honoured by the effort that the members of
the doctoral committee put into reading my work. Especially Peter Johnstone,
whose remarks were spot on and reveal a very careful reading, saved me from
eternal shame, for which I thank him heartily.

In addition to my supervisors, I am indebted to my other co-authors Bas Spit-
ters, Ichiro Hasuo, Ana Sokolova and Martijn Caspers for sharing their insight.
Especially Bas came up with incomprehensibly many ideas to work out. Fur-
thermore, my colleagues in the research community always made me feel very
welcome, not only during all those conferences and workshops. In particular,
I enjoyed the encouragement, constructive criticisms and advice by John Hard-
ing, Isar Stubbe, Jamie Vicary, and Steve Vickers. In the same spirit, I thank
Bob Coecke, Marcelo Fiore and Ichiro Hasuo for inviting me on research visits to
Oxford, Cambridge and Kyoto, respectively, during which I learned a great deal.

Closer to home, I am grateful to all my colleagues at the mathematics depart-
ment, who were always ready to answer my probably blatantly obvious ques-
tions. The digital security group provided a much appreciated lively atmosphere,
despite my research topic not quite fitting in seamlessly. This homely feeling is
largely due to Miguel Andres, Łukasz Chmielewski, Flavio Garcia, Ichiro Hasuo,
Ron van Kesteren, Gerhard de Koning Gans, Ken Madlener, Peter van Rossum,
Ana Sokolova, and Alejandro Tamalet, with all of whom I shared an office over
the years. To be fair, it was not only tea and table football: there were certainly
also research discussions and reading groups, especially with Ana, Ichiro and

v

Peter, which I very much appreciated. Lastly, Wojciech Mostowski was always
ready to share his intimate knowledge of TEX when mine wasn’t deep enough.

The support I enjoyed from outside academia was perhaps just as important,
and I would like to thank all my friends for their companionship over the last
years, including the (Roman) dinners, movie nights, sailing weekends, snow-
boarding trips, and general amusement. Łukasz and Ron in addition accepted
the task of being my paranymphs. There are too many more friends to list here,
but in particular, the members of karate clubs NSKV Dojo and Shu Ken Ma Shi
should be mentioned, as the countless training hours with them provided a lot
of fun and relief. Let me conclude with some words of gratitude to my family
(in-law) for their care in my development; especially to my brothers, for keeping
my feet on the ground, and to my parents, for always being there to help, even
with the most practical of things. Finally, and most of all, I thank Lotte, for so
much more than can be mentioned here.

Utrecht, August 2009

Contents

1 Introduction 1

2 Tensors and biproducts 11
2.1 Examples . 11
2.2 Tensor products and monoids . 14
2.3 Biproducts . 22
2.4 Scalars . 29
2.5 Modules over rigs . 34
2.6 Compact objects . 41

3 Dagger categories 47
3.1 Examples . 47
3.2 Dagger structures . 56
3.3 Quantum key distribution . 66
3.4 Factorisation . 70
3.5 Hilbert modules . 80
3.6 Scalars revisited . 86
3.7 Hilbert categories . 90

4 Dagger kernel logic 99
4.1 Subobjects . 99
4.2 Orthogonality . 106
4.3 Orthomodularity . 111
4.4 Quantifiers . 117
4.5 Booleanness . 127
4.6 Subobject classifiers . 133

5 Bohrification 141
5.1 Locales and toposes . 141
5.2 C*-algebras . 150

vii

5.3 Bohrification . 156
5.4 Projections . 163
5.5 States and observables . 172

Bibliography 181

Index of categories 195

Index of notation 197

Index of subjects 199

Samenvatting 203

viii

Chapter 1

Introduction

Quantum theory is the best description of nature at very small scales to date. Its
principal new features compared to classical physics are superposition of states,
noncommutativity of observables, and entanglement. Although strange and coun-
terintuitive at first, such features can be exploited once recognised. Entangle-
ment, for example, was discovered and regarded as a paradox by Einstein, Podol-
sky and Rosen in 1935 [79], but nowadays it is mainly seen as a resource to be
used. For example, entanglement enables key distribution protocols, providing
each of the participating parties with a string of bits that is guaranteed to be
known to them only. Even more so, quantum computers employ entanglement
to solve certain problems essentially faster than a classical computer can [173].

To achieve their full potential, such new applications have to come with
mathematical proofs. Nobody will use a quantum computer for serious tasks
if the programmer cannot vouch for the correctness of the program, and the
very attractiveness of quantum key distribution for secret communication lies in
the guarantee that there can be no eavesdroppers. Because human intuition is
unreliable in the quantum world, a mathematically rigorous way to reason about
quantum situations is called for. In other words, we need a logic for quantum
physics, and that is what this thesis investigates.

Counterintuitive features of quantum physics

To illustrate the counterintuitive features of quantum physics, let us first explain
the general form of any physical theory. An isolated object is described by the set
of states in which it can be, and its empirical properties are modeled by a set of
observables, so that a state and an observable can be combined into a real value,
modeling the outcome of the act of observation, i.e. measurement. Often, we are
not sure about the exact state of an object. Therefore we allow convex combina-

1

Chapter 1. Introduction

tions of states. Observation (the pairing of a state with an observable) then only
results in a given value with a certain probability. The states about which we
have perfect knowledge, i.e. which cannot be written as convex combinations of
other states, are called pure states. Finally, there is some way to combine the
state spaces of component objects into the state space for a compound object.

The above scheme finds a natural home in classical physics, where the pure
states of an object form a set X. It might come with a topology or some geo-
metric structure, but in principle X is just a set. Observables are functions
f : X → R, such as speed. Observation of an object in a pure state x ∈ X

results in a sharp observed value f(x). Elementary propositions, like “the ob-
ject’s speed is between 10 and 20 m/s”, are dictated to be true in a pure state x,
if and only if f(x) ∈ (10, 20), i.e. if and only if x ∈ f−1(10, 20). The state of a
compound object completely determines the states of its component objects: if
X and Y are the state spaces of the component objects, then X × Y is the state
space of the compound object.

The traditional formulation of quantum physics, which is due to John von
Neumann [213], also fits the above scheme. The state space of a quantum sys-
tem has the structure of a Hilbert space X. That is, X comes with an inner
product 〈x |x′〉 that signifies the probability amplitude of a transition from state
x to state x′. Pure states are unit vectors. Observables are self-adjoint opera-
tors f : X → X. By the spectral theorem, which generalises diagonalisation of
matrices, every such operator f corresponds uniquely to a family of (so-called
projection) operators e∆ : X → X for every interval ∆ ⊆ R. In contrast to classi-
cal physics, even observation of an object in a pure state only gives probabilistic
results. Elementary propositions, like “the object’s speed is between 10 and 20
m/s” hold with probability 〈x | e(10,20)(x)〉 in state x. Objects are combined by
tensor products: if X and Y are the state spaces of the component objects, then
X ⊗ Y is the state space of the compound object.

The fact that a Hilbert space X comes with an addition is the source of the
principle of superposition. As in classical physics, pure states x and x′ can be
mixed by convex combination into a state that is no longer pure in general. But
linear combinations of x and x′ such as x+ x′ do yield pure states, in which the
probability of the object’s behaviour is not simply the sum of the probabilities
of its behaviours in states x and x′. A famous example is Schrödinger’s cat. Its
state upon inspection can either be “alive” or “dead”, making the fact that the
superposition state (“alive” + “dead”) is pure, i.e. represents perfect knowledge,
counterintuitive.

A related circumstance is noncommutativity. In both classical and quantum
physics, the observables have a particular algebraic structure modeling the si-
multaneous measurement of two observables. In the classical case, two observ-

2

ables f, g : X ⇒ R can be multiplied pointwise to obtain f · g : X → R. This is
evidently commutative: f · g = g ·f . Alternatively, regarding f and g as matrices
whose nonzero entries lie on the diagonal, multiplication becomes composition.
In the quantum case, too, two observables f, g : X ⇒ X can be composed to
get g ◦ f : X → X. But this operation is no longer commutative, giving rise to
the counterintuitive fact that observables cannot always be measured simulta-
neously without mutual disturbance.

Finally, entanglement is caused by compound quantum systems being de-
scribed by tensor products instead of Cartesian products. Hence component
objects are linked, in the sense that the state of the one instantaneously deter-
mines the state of the other upon measurement, even when separated by a large
distance. For a non-example, consider an insistent couple trying to get a job at
the same institute. Each of them independently applies for a position every day,
and each receives a response every day. Suppose that each finds the probability
of acceptance to be one in twenty, but that if one applicant is accepted, so is
the other. This could have been caused by a humane personnel officer send-
ing matching letters at an erratic institute whose policy is to randomly hire one
in twenty. Entanglement in quantum physics is counterintuitive because it can
arise without a common cause.

Categorical models

The general forms of classical and quantum physics explained above equate iso-
lated objects with their state spaces. Moreover, both settings consider multiple
interacting objects by prescribing how to form (state spaces of) compound ob-
jects. In fact, both frameworks incorporate some relationships between the state
spaces, as they define observables to be special kinds of functions. Therefore
the use of category theory suggests itself. Indeed, we will take the above one
step further, and consider all relationships between (state spaces of) objects.
For example, one object’s speed might directly influence another’s, so that there
is a function from the state space of the one to the state space of the other.
So classical physics takes place in the category of sets and functions, whereas
the category of Hilbert spaces and continuous linear transformations embodies
quantum physics.

The first part of this thesis studies properties of categories that account for
the most important qualitative aspects of quantum physics. By doing so in an
axiomatic fashion, one gains clear understanding of what features are caused by
what assumptions.

For example, we consider categories with tensor products, modeling the abil-
ity to form compound systems, including the single-state system I. The internal
structure of an object can then be recovered, as states correspond to morphisms

3

Chapter 1. Introduction

x : I → X. As a special case, so-called biproducts in a category bring about the
superposition principle, since they entail that parallel morphisms f, g : X ⇒ Y ,
and in particular states x, y : I ⇒ X, can be added to obtain another morphism
f + g : X → Y .

Entanglement requires a certain link between the component objects in ad-
dition to the ability to compose systems with tensor products ⊗. This can be
expressed axiomatically by requiring X to be a so-called compact object, so that
it has a dual object X∗, together with which it forms the entangled compound
system X∗ ⊗X.

We also explore dagger categories, in which morphisms f : X → Y can be
reversed to obtain f† : Y → X. This models a phenomenon that already occurs
in reversible computing—by the law of conservation of energy, any quantum
computation should be reversible. (Classical computers dissipate heat and can
therefore ignore it, whereas quantum computers have to address decoherence,
the quantum analogue of this issue, to function properly at all.) More generally,
a dagger on a category could be said to implement conservation of information.

We will prove that if a categorical model has superposition, entanglement,
and a dagger, as described above, it necessarily embeds into the category of
Hilbert spaces, under some additional technical assumptions.

Logic in classical physics

Having discussed both traditional models and our categorical models, we now
move to logic, which is the topic of the second part of this thesis. Let us first re-
view the classical case, in which we are led to consider elementary propositions
as subsets K of X, such as f−1(10, 20) = {x ∈ X | f(x) ∈ (10, 20)}. Observ-
ables f might be taken continuous or measurable, in which case K is an open,
or measurable, subset. But in general, K is simply a subset of X, and there-
fore the logic of classical physics is encoded by the collection of P(X) of subsets
of X. Hence K is true in state x if and only if x ∈ K. Conjunction ∧ of ele-
mentary propositions then becomes intersection of sets, disjunction ∨ becomes
union, and negation ¬ becomes complementation. The elementary proposition
that never holds is the empty set, and the proposition that always holds is the
set X itself. Moreover, propositions can be ordered by inclusion, so that K ≤ L

means that L is true when K is.

This procedure is unobjectionable, in that our logical intuition coincides with
the structure of P(X):

4

• K ∨ L is true if and only if K is true or L is true;

• K ∧ L is true if and only if K is true and L is true;

• ¬K is true if and only if K is not true;

• there is an implication⇒ : P(X)× P(X)→ P(X) satisfying

K ∧ L ≤M if and only if K ≤ (L⇒M), (1.1)

which intuitively equates deriving the conclusion M from hypotheses K
and L, and deriving the conclusion that L implies M from the hypothesis
K;

• conjunction distributes over conjunction:

K ∧ (L ∨M) = (K ∧ L) ∨ (K ∧M).

A proposition about the compound system consisting of two component ob-
jects becomes a subset K of X×Y . Hence we can consider predicates, for exam-
ple, expressing that K holds regardless of the state x ∈ X of the first component
object. Following, as before, the unobjectionable strategy of making the seman-
tics of propositions coincide with our logical intuition, this predicate ∀x∈X .K
becomes the subset {y ∈ Y | (x, y) ∈ K for all x ∈ X}. Similarly, the predicate
∃x∈X .K becomes the subset {y ∈ Y | there is an x ∈ X such that (x, y) ∈ K}.
In the category of sets and functions, categorical logic elegantly characterises
these existential and universal quantifiers as left and right adjoints to pullback,
respectively.

Traditional quantum logic

If we apply the blueprint of the logic of classical physics to quantum physics, then
we are led to consider subsets of X of the form K = {e(10,20)(x) | x ∈ X}. Since
these subsets are always closed subspaces, taking those to be the elementary
propositions stands to reason. The structure of the state space X as a Hilbert
space again enables us to build further propositions from elementary ones by
the operations on closed subspaces: one can form orthocomplements K⊥ =
{x ∈ X | 〈x |x′〉 = 0 for all x′ ∈ K} to be used as negations ¬, intersections ∧,
and closures of linear spans ∨. Directly interpreting this as a logic, however, is
fraught with difficulties, mostly owing to the fact that the collection of closed
subspaces K of X only form a so-called orthomodular (as opposed to Boolean)
lattice:

5

Chapter 1. Introduction

• there are superposition states in which K ∨ L is true while neither K or L
is;

• there are propositions K and L for which the conjunction K ∧L makes no
physical sense because the associated observables do not commute;

• ¬K is true if and only if K is false, i.e. if the probability that K holds in
state x is zero, rather than if and only if K is not true, i.e. the probability
is less than one;

• there exists no map⇒ satisfying (1.1);

• ∨ and ∧ do not distribute over each other—in an analogy due to Chris
Isham, it is possible to get neither eggs and bacon nor eggs and ham for
breakfast, when given a choice between eggs and either bacon or ham.

Moreover, the semantic interpretation of possible quantifiers in this setting
is questionable. After all, due to entanglement, restricting a pure state of a
compound system X ⊗ Y to the first component yields a state in X that is no
longer pure in general. This renders unclear how to assert predicates such as
∃x∈X .K for K ⊆ X⊗Y . Despite these objections, the above enterprise, which is
due to Garrett Birkhoff and John von Neumann, is traditionally called “quantum
logic” [30].

We can model closed subspaces categorically as kernels. We will show that
additionally requiring a dagger already suffices to recover this traditional quan-
tum logic in our categorical models. Moreover, following the prescription of
categorical logic to regard quantifiers as adjoints, we are able to establish an
existential quantifier in such categories. We will also deduce that a universal
quantifier cannot exist. However, the existential quantifier, although it exists,
does not behave entirely as expected. In a sense, it has a rather “dynamic” or
“temporal” character that is due to noncommutativity.

Bohrification

We circumvent the problem of noncommutativity by using categorical logic in a
different way than directly applying it to our categorical models. A category that
resembles the one of sets and functions sufficiently much to enable the interpre-
tation of higher order intuitionistic logic, is called a topos. Toposes have the
remarkable aspect that they not only embody logic, but are also generalisations
of the concept of (topological) space.

Let us consider a special kind of the categorical models discussed so far,
namely a C*-algebra A, which is possibly noncommutative. We will construct
a specific topos T (A), and a canonical object A in it. The topos T (A) is based

6

on an amalgamation of all the commutative C*-subalgebras C of A. These can
be seen as “contexts” or “classical snapshots of reality”. This philosophy, due to
Niels Bohr, came to be called his “doctrine of classical concepts” [193], whose
best-known formulation is:

“However far the phenomena transcend the scope of classical phys-
ical explanation, the account of all evidence must be expressed in
classical terms. (. . .) The argument is simply that by the word exper-
iment we refer to a situation where we can tell others what we have
done and what we have learned and that, therefore, the account of
the experimental arrangements and of the results of the observations
must be expressed in unambiguous language with suitable applica-
tion of the terminology of classical physics.” [32]

Moreover, at least according to our mathematical interpretation of complemen-
tarity [110, 150], the contexts C together contain all physically relevant infor-
mation contained in the quantum system A. Being an implementation of Bohr’s
philosophy, we call A, or rather the process of obtaining it, Bohrification. Its
importance lies in the fact that A is a commutative C*-algebra when seen from
within the “universe of discourse” that is T (A). As such, it can be studied as if it
consisted of observables of a classical physical system, though not living in the
category of sets but in the unusual environment of the topos T (A). In particular,
it has a state space X. Stepping out of the topos T (A) again, X has an external
description X, that does live in the usual category of sets, which we call the
Bohrified state space of A. It comes with operations ¬, ∨, ∧ that are defined
“locally”, i.e. through commutative parts, and therefore have no interpretational
difficulties:

• K ∨ L is true if and only if K is true or L is true;

• the conjunction K ∧ L is always defined physically, as it only involves
“local” conjunctions, i.e. conjunctions of commuting observables;

• ¬K is true if and only if K is false;

• there is an implication⇒ : X ×X → X satisfying (1.1).

• disjunction and conjunction distribute over each other.

Nevertheless, the logic that X carries is not classical, but intuitionistic in na-
ture. Moreover, X carries a (generalised) topology, and therefore also shares
the spatial aspects with state spaces in classical physics.

7

Chapter 1. Introduction

Outline and results

To outline this thesis, let us list the central results of each chapter.

Chapter 2 shows that every category with tensor products as well as biproducts
is enriched in modules over a so-called rig, and that this enrichment is
functorial. Subsequently, this is used to show that such categories embed
into a category of modules.

Chapter 3 in addition assumes a dagger, as well as further assumptions about
equalisers and monomorphisms, and proves that such categories embed
into the category of Hilbert spaces. In particular, the scalars in such a
category always form an involutive field. This link to the traditional for-
malism is a satisfactory justification for considering the categorical models
we study. As an intermezzo, this chapter also proves the correctness of a
certain quantum key distribution protocol categorically.

Chapter 4 proves that kernel subobjects of a fixed object in a dagger kernel
category form orthomodular lattices. As in Chapter 3, this parallels the
situation in the traditional formalism of quantum logic. Subsequently, an
existential quantifier is established; this has not been achieved in the tra-
ditional formalism.

Chapter 5 introduces the technique of Bohrification. The definition of Bohrifi-
cation itself is closely connected to the chapter’s main result, namely that
any C*-algebra becomes commutative in its associated topos, and there-
fore has a spectrum in that topos. A large part of the chapter is devoted to
determining that spectrum explicitly.

Prerequisites

As prerequisites we assume a working knowledge of basic category theory, in-
cluding adjunctions, monoidal categories and enriched categories. Standard ref-
erences are [33, 34, 141, 163]. A full appreciation of Chapter 4 requires some fa-
miliarity with categorical logic [125, 146, 151, 154, 168, 208], but grosso modo
the chapter can be understood without this knowledge. Likewise, Chapter 5 uses
topos theory. We have strived to make this chapter understandable for readers
without knowledge of the vast literature on this subject [25, 35, 95, 131, 164],
which we cannot hope to even summarise in a single chapter.

About quantum theory we assume very little background knowledge. Some
basic Hilbert space theory [181, 214] will probably aid the reader’s intuition,

8

but is otherwise unnecessary. Similarly, there is quite a body of work concern-
ing operator algebras [56, 71, 135, 153, 206], which play a prominent role in
Chapter 5, but in this respect the chapter should be self-contained.

To end this introduction, let us mention that we will not worry about size
issues, that sometimes play a role in category theory. In particular, when enrich-
ment is at play, we consider all categories to be locally small. This will not be a
major problem, since most categories in this thesis are concrete.

9

Chapter 2

Tensors and biproducts

This chapter studies monoidal structures in a category. The motivating cate-
gory of modules over a ring has at least two such structures: tensor products
and biproducts. Moreover, the former distributes over the latter. We will see
that such structure in any category makes the homsets into modules over a rig,
and that this enrichment proceeds in a functorial way. This eventually results
in preparatory embedding theorems that pave the way for our big embedding
theorem in Chapter 3.

A lot of the developments in this chapter resemble the theory of Abelian
categories [88, 170], or, more precisely, exact categories [19]. Most of the novel
material in this chapter is based on [113].

2.1 Examples

We start this chapter by introducing several example categories that will be used
throughout.

2.1.1 Example We denote the category of rings and ring homomorphisms by
Rng, and the full subcategory of commutative rings by cRng. For a chosen
R ∈ Rng, a left-R-module is a set X equipped with a commutative addition
(+, 0) and a scalar multiplication · : R×X → X satisfying the familiar equations.
The equation (r · s) · x = r · (s · x) for r, s ∈ R and x ∈ X explains the prefix
‘left’. Analogously, a right-R-module has a scalar multiplication · : X × R → X

satisfying x · (r ·s) = (x ·r) ·s. A left-R-right-S-module is simultaneously a left-R-
module and an right-S-module with the same addition and (r ·x) ·s = r ·(x ·s). If
R is commutative, any left-R- or right-R-module is automatically a left-R-right-
R-module, and we speak simply of an R-module.

11

Chapter 2. Tensors and biproducts

A morphism of left-R-modules is a function f that is linear, i.e. that satisfies
f(x + y) = f(x) + f(y) and f(r · x) = r · f(x). A morphism of right-modules
similarly preserves the scalar multiplication on the right. Thus we get categories
RMod of left-R-modules, ModR of right-R-modules, and RModS of left-R-
right-S-modules. For R ∈ cRng, we identify ModR with RModR.

An R-module is called finitely projective if it is a retract of the R-module Rn

(with pointwise operations) for some natural number n. We denote the full sub-
categories of finitely projective modules by RfpMod, fpModR and RfpModS .
We refer to [204] for a basic (bi)categorical account of modules.

2.1.2 Example The full subcategory of cRng consisting of fields is denoted by
Fld. For K ∈ Fld, a K-module is better known as a K-vector space. In this case
VectK is just another name for ModK . We abbreviate VectC as Vect. A vector
space is finitely projective as a module precisely when it is finite-dimensional as
a vector space; we also denote fpModK as fdVectK .

An involutive field is a field K that comes with a function ‡ : K → K that
satisfies k‡‡ = k and commutes with addition and multiplication. Morphisms
of involutive fields are field morphisms that in addition preserve the involution.
These constitute a category denoted by InvFld.

A pre-Hilbert space over an involutive field K is a K-vector space X equipped
with an inner product 〈 | 〉 : X ×X → K satisfying

• 〈x | k · y〉 = k · 〈x | y〉,

• 〈x | y + z〉 = 〈x | y〉+ 〈x | z〉,

• 〈x | y〉 = 〈y |x〉‡,

• 〈x |x〉 = k‡ · k for some k ∈ K,

• 〈x |x〉 = 0 if and only if x = 0.

We take morphisms of pre-Hilbert spaces to be the adjointable functions, i.e. those
f : X → Y for which there exists a function f† : Y → X satisfying

〈f(x) | y〉Y = 〈x | f†(y)〉X . (2.1)

Such a function f is automatically linear, and its so-called adjoint f† is auto-
matically unique. Thus we have a category preHilbK , and a full subcategory
fdpreHilbK of finite dimensional pre-Hilbert spaces. We abbreviate preHilbC
by preHilb.

2.1.3 Example The inner product of a pre-Hilbert space canonically defines a
norm by ‖x‖ =

√
〈x |x〉, and hence a metric by d(x, y) = ‖x − y‖. Let K

12

2.1. Examples

be either the reals R, the complex numbers C, or the quaternions H. A pre-
Hilbert space over K is called a Hilbert space when it is Cauchy-complete with
regard to its canonical metric. A morphism of Hilbert spaces is a linear function
that is furthermore continuous. The ensuing category is denoted by HilbK .
We abbreviate HilbC by Hilb. A linear function f between Hilbert spaces is
continuous if and only if it is bounded, in the sense that there is some F ∈ K

with ‖f(x)‖ ≤ F ·‖x‖—the infimum of such F is then denoted by ‖f‖. Any linear
function between finite-dimensional Hilbert spaces is bounded and adjointable,
and hence we also write fdHilbK for fdpreHilbK . Sometimes we will also
restrict the morphisms of preHilbK to just the bounded ones, getting a category
preHilbbd

K .

2.1.4 Example The category PHilb of bounded lineair maps between Hilbert
spaces up to global phase has the same objects as Hilb, but its homsets are
quotiented by the action of the circle group U(1) = {z ∈ C | ‖z‖ = 1}. That
is, continuous linear transformations f, g : X ⇒ Y are identified when f(x) =
z · g(x) for some z ∈ U(1) and all x ∈ X. This gives a full functor P : Hilb →
PHilb.

2.1.5 Example We denote the category of (small) sets and functions by Set,
and the category of (small) categories and functors by Cat.

2.1.6 Example Sets also form the objects of a different category, denoted by
Rel. Here, a morphism from X to Y is a relation R ⊆ X × Y . Composition of
relations R ⊆ X × Y and S ⊆ Y × Z proceeds via the formula

S ◦R = {(x, z) | ∃y∈Y .(x, y) ∈ R and (y, z) ∈ S},

and the identity relation on X is the diagonal {(x, x) | x ∈ X}.

2.1.7 Example There is yet another choice of morphisms between sets as ob-
jects, namely the partial injections, forming a category PInj. A partial injection
X → Y consists of a subset dom(f) ⊆ X and an injection f : dom(f)→ Y . The
composition of f : dom(f) → Y and g : dom(g) → Z with dom(g) ⊆ Y is given
by composition of functions g ◦ f , restricted to {x ∈ dom(f) | f(x) ∈ dom(g)}.
Also, PInj can be regarded as a subcategory of Rel, since a relation R ⊆ X ×Y
can be regarded as (the graph of) a partial injection when for every x ∈ X there
is at most one y ∈ Y with (x, y) ∈ R, and for every y ∈ Y there is at most one
x ∈ X with (x, y) ∈ R.

13

Chapter 2. Tensors and biproducts

2.2 Tensor products and monoids

This section studies monoidal categories, monoids, and several relations be-
tween those notions.

2.2.1 Let us start by fixing notation. A monoidal category is a category C equip-
ped with a bifunctor ⊗ : C×C→ C, an object I ∈ C, and natural isomorphisms
λX : I⊗X → X, ρX : X⊗ I → X and αX,Y,Z : (X⊗Y)⊗Z → X⊗ (Y ⊗Z) that
satisfy the familiar coherence equations (see [163]). We will often suppress co-
herence isomorphisms in diagrams and equations when no confusion can arise.
A monoidal category is called strict when its coherence isomorphisms are identi-
ties; every monoidal category is monoidally equivalent to a strict one. It is sym-
metric when it furthermore comes with a natural isomorphism γX,Y : X ⊗ Y →
Y ⊗ X that satisfies γ ◦ γ = id and is compatible with the other coherence
isomorphisms.

2.2.2 Example Common examples of (symmetric) monoidal structures are:

• Cartesian product × on the category Set, with any singleton 1 = {∗} as
unit;

• Cartesian product × on the category Rel, with any singleton set as unit;

• product × on the category Cat, with the one-object category 1 as unit;

• disjoint union + on Set with the empty set as unit;

• disjoint union + on PInj, with the empty set as unit.

We will develop several more involved examples in this section.

2.2.3 A monoid could be seen as an internal version of a monoidal category.
Its formulation requires a monoidal ambient category: a monoid consists of an
object M , a morphism µ : M ⊗M → M and a morphism η : I → M that satisfy
the familiar unit and associativity equations:

I ⊗M
η⊗id //

λ

∼=

%%KKKKKKKKKK M ⊗M
µ

��

M ⊗ I
id⊗ηoo

∼=
ρ

yyssssssssss

M.

(M ⊗M)⊗M α
∼=
//

µ⊗id

��

M ⊗ (M ⊗M)
id⊗µ // M ⊗M

µ

��
M ⊗M µ

// M

14

2.2. Tensor products and monoids

A monoid (in a symmetric monoidal category) is commutative when the fol-
lowing diagram commutes:

M ⊗M
γ

∼=
//

µ
$$IIIIIIIII M ⊗M

µ
zzuuuuuuuuu

M.

Dually, a comonoid M in C is just a monoid in Cop. We will denote its
structure maps by ν : M → I and δ : M →M ⊗M .

2.2.4 Example Monoids in a monoidal category C organise themselves into a
category, denoted by Mon(C). A morphism (M,µ, η) → (M ′, µ′, η′) in this
category is a morphism f : M → M ′ in C that satisfies f ◦ µ = µ′ ◦ (f ⊗ f)
and f ◦ η = η′. If C is symmetric monoidal, we denote the full subcategory of
commutative monoids by cMon(C). We abbreviate Mon(Set) and cMon(Set)
by Mon and cMon, respectively.

When C is symmetric monoidal, the category cMon(C) is again symmetric
monoidal. The tensor product of monoids (M,µ, η) and (M ′, µ′, η′) has M ⊗M ′
as carrier object, with unit

I
∼= //I ⊗ I

η⊗η′ //M ⊗M ′,

and multiplication

(M ⊗M ′)⊗ (M ⊗M ′)
id⊗γ⊗id //(M ⊗M)⊗ (M ′ ⊗M ′)

µ⊗µ′ //M ⊗M ′.
(2.2)

The monoidal unit I of C becomes the monoidal unit in cMon(C) when equip-
ped with the unit id : I → I and multiplication λ : I ⊗ I → I. The coherence
isomorphisms are inherited from C.

2.2.5 Example A strict monoidal category is precisely a monoid in (Cat,×,1).
It is commutative as a monoid if and only if it is symmetric as a monoidal cat-
egory. In fact, a monoidal category is precisely a so-called pseudo-monoid in
(Cat,×,1). However, we will refrain from using much 2-category theory in this
thesis, and often restrict ourselves to strict monoidal structure.

Conversely, a monoid in Set is a strict monoidal category, when seen as
the set of morphisms on one object with composition provided by the monoid
multiplication. This one-object category is symmetric monoidal if and only if the
monoid is commutative.

15

Chapter 2. Tensors and biproducts

2.2.6 The characterisation of a monoidal category as an object of Mon(Cat)
lends itself for generalisation to enriched monoidal categories, as follows.

Let V be a symmetric monoidal category. We denote the category of V-
categories, and V-functors between them by V-Cat [141]. It is itself symmetric
monoidal again [34, Proposition 6.2.9]; we describe its structure explicitly. For
V-categories C and D, the objects of C ⊗ D are pairs (X,Y) of objects X of
C and objects Y of D. The homobject (C ⊗D)((X,Y), (X ′, Y ′)) is C(X,X ′) ⊗
D(Y, Y ′), where the tensor product is that of V. Composition is given by

(C⊗D)((X,Y), (X ′, Y ′))⊗ (C⊗D)((X ′, Y ′), (X ′′, Y ′′))
id��

C(X,X ′)⊗D(Y, Y ′)⊗C(X ′, X ′′)⊗D(Y ′, Y ′′)
id⊗γ⊗id��

C(X,X ′)⊗C(X ′, X ′′)⊗D(Y, Y ′)⊗D(Y ′, Y ′′)
◦C⊗◦D��

C(X,X ′′)⊗D(Y, Y ′′)
id��

(C⊗D)((X,Y), (X ′′, Y ′′)),

where ◦C and ◦D denote the composition of the V-categories C and D, respec-
tively. Notice that this is really a special case of (2.2).

Hence it makes sense to speak of strict monoidal V-categories as objects of
Mon(V-Cat). First of all, such a C ∈ Mon(V-Cat) is a V-enriched cate-
gory with objects |C|, and hence comes equipped with V-morphisms “identity”
i : IV → C(X,X) and “composition” ◦C : C(X,X ′)⊗V C(X ′, X ′′)→ C(X,X ′′).
Furthermore, it means that there is a V-functor ⊗C. Explicitly, we are given
a morphism ⊗C : |C| × |C| → |C| in Set, and a morphism ⊗C : C(X,X ′) ⊗V

C(Y, Y ′)→ C(X⊗CX
′, Y ⊗C Y

′) in V. Finally, it means we are given an object
IC ∈ |C|. These data satisfy the (strict) monoid requirements, like IC⊗CX = X.

Analogously, an enriched symmetric monoidal category is defined as an object
of cMon(V-Cat), and as such in addition satisfies X ⊗C Y = Y ⊗C X.

2.2.7 A left-action of a monoid M on an object X of a monoidal category C) is
a morphism • : M ⊗X → X that is compatible with the tensor product of C, in
the sense that the following diagram commutes:

M ⊗ (M ⊗X) α
∼=
//

id⊗•
��

(M ⊗M)⊗X
µ⊗id // M ⊗X

•
��

I ⊗X
η⊗idoo

λyytttttttttt

M ⊗X •
// X.

16

2.2. Tensor products and monoids

A right-action is defined similarly; if C is symmetric monoidal, every left-action
corresponds uniquely to a right-action, and we simply speak of an action. A
morphism (X, •) → (X ′, •′) of actions of M is an morphism f : X → X ′ of C
such that •′ ◦(id⊗f) = f ◦•. Thus, we get categories MAct(C) of left-actions of
M and ActM (C) of right-actions. When C = Set, we abbreviate them to MAct
and ActM , respectively. There is an obvious forgetful functor ActM (C) → C.
(See also [163, Section VII.4].)

Thus, for R ∈ Rng, we can restate Example 2.1.1 as ModR = ActR(Ab),
where Ab is the category of Abelian groups.

2.2.8 Example Continuing Example 2.2.5, we notice that the endomorphisms
C(X,X) on any object X in a category C form a monoid (in Set). We will pay
special attention to the monoid C(I, I), whose elements we call scalars, because
this monoid comes with an action on homsets called scalar multiplication. This
action • : C(I, I) × C(X,Y) → C(X,Y) is defined as the function that sends
a pair consisting of a scalar s : I → I and any morphism f : X → Y to the
composite

X
∼= // I ⊗X

s⊗f // I ⊗ Y
∼= // Y.

To see that this indeed defines an action, one readily verifies that id • f = f and
r • (s • f) = (r ◦ s) • f .

The name “scalar multiplication” is explained by the fact that the scalars in
RMod are in bijective correspondence with elements of R, so that r • f is really
pointwise scalar multiplication (on the left). The following lemma shows that
many of the familiar properties of pointwise scalar multiplication are retained in
any monoidal category.

2.2.9 Lemma For scalars r, s ∈ C(I, I) and morphisms f, g in a monoidal cate-
gory:

(a) s induces a natural transformation IdC ⇒ IdC with component s • idX at X;

(b) r • s = r ◦ s;

(c) (r • f) ◦ (s • g) = (r ◦ s) • (f ◦ g);

(d) (r • f)⊗ (s • g) = (r ◦ s) • (f ⊗ g).

PROOF See [77, Lemma 2.33] and [77, Corollary 2.34]. �

2.2.10 I is the monoidal unit of C with ⊗, and analogously Id : C → C is the
monoidal unit of the functor category [C , C] with composition as tensor prod-
uct. As a special case of 2.2.5, the set Nat(IdC, IdC) of natural transformations
IdC ⇒ IdC is a monoid under composition. If we temporarily denote the natural

17

Chapter 2. Tensors and biproducts

transformation from (a) of the previous lemma by (̂) : IdC ⇒ IdC, the assign-
ment s 7→ ŝ is a monoid morphism C(I, I) → Nat(IdC, IdC), since one easily
verifies that îd = id and r̂ • s = r̂ ◦ ŝ.

The scalars in a symmetric monoidal category are always commutative [142],
which the following lemma proves directly.

2.2.11 Lemma If C is a symmetric monoidal category, C(I, I) is a commutative
monoid. Then C 7→ C(I, I) extends to a functor cMon(V-Cat)→ cMon(V).

PROOF The following diagram establishes commutativity directly, and easily car-
ries over to the enriched case:

I
λ

∼= // I ⊗ I I ⊗ I
id⊗t
��

∼=

ρ−1
// I

t
��

I
∼=
λ=ρ

//

s

OO

t
��

I ⊗ I

s⊗id

OO

id⊗t
��

s⊗t // I ⊗ I
∼=

λ−1=ρ−1
// I

I ρ

∼= // I ⊗ I I ⊗ I

s⊗id

OO

∼=

λ−1
// I.

s

OO

Notice how this essentially uses the coherence property λI = ρI [133]. �

We will take a further look at scalars and scalar multiplication in Sections 2.4
and 3.6. For now, we spend some time developing the familiar tensor product of
vector spaces as a specific instance of a general construction due to Anders Kock
and Brian Day ([144], but see also [124]).

2.2.12 A monad on a category C is precisely a monoid in the category [C , C]
of endofunctors on C and natural transformations between them (with composi-
tion as tensor). Recall that an endofunctor T on a symmetric monoidal category
is strong if there is a “strength” natural transformation st : X ⊗TY → T (X ⊗Y)
satisfying suitable coherence conditions [145]. In particular, a monad is strong
when strength is furthermore compatible with the monad structure [124]. This
can be formulated succinctly: a strong monad on C is precisely a monoid in the
category of strong functors C→ C, with natural transformations that commute
with strength between them (see also [115]).

The strength map and its symmetric dual st′ = T (γ) ◦ st ◦ γ : TX ⊗ Y →
T (X ⊗ Y) can be combined in two ways as maps TX ⊗ TY ⇒ T (X ⊗ Y):

dst = µ ◦ T (st′) ◦ st,

dst′ = µ ◦ T (st) ◦ st′.

The monad T is called commutative if these “double strength” maps coincide.

18

2.2. Tensor products and monoids

2.2.13 Definition We are now in a position to define the Kock-Day tensor prod-
uct. Let T be a commutative monad on V, and suppose that its category of
(Eilenberg-Moore) algebras Alg(T) has coequalisers of reflexive pairs—recall
that a pair of parallel morphisms f, g : X ⇒ Y is called reflexive when there is a
common right inverse, i.e. a morphism h : Y → X satisfying f ◦ h = idY = g ◦ h.
For algebras ϕ : TX → X and ψ : TY → Y , define ϕ⊗ ψ as the coequaliser(

T 2(TX⊗TY)

T (TX⊗TY)

µ
��

)
µ◦T (dst) //

T (ϕ⊗ψ)
//

(
T 2(X⊗Y)

T (X⊗Y)

µ
��

)
//______

(
TZ

Z

ϕ⊗ψ��

)
.

If we furthermore define IAlg(T) as the free algebra µ : T 2(IV) → T (IV), we
obtain a symmetric monoidal structure on Alg(T). Moreover, the free functor
V→ Alg(T) preserves monoidal structure [124, Lemma 5.2].

The following lemma provides the monad to use in our situation.

2.2.14 Lemma IfM is a monoid in a monoidal category V, thenM⊗() : V→ V
is a monad, whose category of algebras is ActM (V). The monad M ⊗ () is strong
if V is symmetric monoidal, and it is commutative if and only if the monoid M is.

PROOF The unit and multiplication of the monad are given by

η : X
∼= //I ⊗X e⊗id //M ⊗X,

µ : M ⊗ (M ⊗X)
∼= //(M ⊗M)⊗X m⊗id //M ⊗X,

where we write e and m for the structure maps of the monoid M . If C is a
symmetric monoidal category, then there is a strength map

st : X ⊗ (M ⊗ Y) ∼= (X ⊗M)⊗ Y
γ⊗id //(M ⊗X)⊗ Y ∼= M ⊗ (X ⊗ Y).

The double strength maps boil down to

(M ⊗X)⊗ (M ⊗ Y) dst // M ⊗ (X ⊗ Y)

(M ⊗X)⊗ (M ⊗ Y)
∼= // (M ⊗M)⊗ (X ⊗ Y)

m⊗id //

γ⊗id��

M ⊗ (X ⊗ Y)

(M ⊗M)⊗ (X ⊗ Y)
m⊗id

// M ⊗ (X ⊗ Y)

(M ⊗X)⊗ (M ⊗ Y)
dst′

// M ⊗ (X ⊗ Y)

Hence they coincide if and only if the monoid M is commutative. �

19

Chapter 2. Tensors and biproducts

2.2.15 Definition Let M be a monoid in a monoidal category V. We say that V
is suitable for M when ActM (V) has coequalisers of reflexive pairs. We call V
suitable when it is suitable for any monoid in it.

This is precisely what is needed to facilitate the construction of the Kock-
Day tensor product on ActM (V). A common scenario in which this criterion is
fulfilled is when V has coequalisers of reflexive pairs and M ⊗ () has a right
adjoint.

2.2.16 Example An exemplary case is V = Set. This category is suitable for
any monoid M in it, since ActM (Set) is in fact a topos (see Chapter 5). For
X,Y ∈ ActM (Set), the Kock-Day tensor product X ⊗ Y is given explicitly by
X×Y/ ∼, where ∼ is the (least) equivalence relation determined by (m•x, y) ∼
(x,m • y), with action given by m • [x, y] = [m • x, y] = [x,m • y].

Thus, morphisms X ⊗ Y → Z correspond to functions X × Y → Z that are
M -equivariant in both variables separately. This is a general feature of the Kock-
Day tensor product, which the following example works out through comparison
with the special case of vector spaces.

2.2.17 Example Consider (complex) vector spacesX,Y, Z, i.e. objects in ModC.
Recall that a linear function f : X × Y → Z, i.e. a morphism in ModC, is called
bilinear when it is linear in each of its variables separately. The familiar ten-
sor product X ⊗ Y of vector spaces is the unique one such that linear functions
X ⊗ Y → Z correspond to bilinear functions X × Y → Z.

Now, T (X) = {ϕ : X → C | supp(ϕ) finite} defines a commutative monad
that we will study in 2.5.3, where the support is supp(ϕ) = {i ∈ I | ϕ(i) 6= 0}.
IdentifyingX,Y and Z with algebras ϕ : TX → X, ψ : TY → Y and θ : TZ → Z,
we can characterise bilinear functions as follows. A morphism f : X ⊗ Y → Z is
bilinear if and only if

θ ◦ Tf ◦ dst = f ◦ (ϕ⊗ ψ).

We call a morphism satisfying this equation in any category of algebras of a
commutative monad a bimorphism [ϕ,ψ]→ θ.

With this characterisation we can formulate the universal property of the
tensor product of vector spaces in any category of algebras of a commutative
monad. We say that a monoidal structure ⊗ on Alg(T) is universal for bimor-
phisms when for each pair of algebras ϕ,ψ, there is a bimorphism [ϕ,ψ]→ ϕ⊗ψ
through which any bimorphism [ϕ,ψ]→ θ factorises uniquely. As a special case,
the familiar tensor product of vector spaces is universal for bimorphisms.

The Kock-Day tensor product is universal for bimorphisms [124, Lemma 5.1].

2.2.18 Example The category cMon of commutative monoids is the category
of (Eilenberg-Moore) algebras for the commutative monad N̂ : Set→ Set given

20

2.2. Tensor products and monoids

by
N̂(X) = {ϕ : X → N | supp(ϕ) is finite}.

We will discuss this monad more thoroughly in 2.5.3. Hence, as a special case
of the Kock-Day tensor product, we get a monoidal structure on cMon that is
universal for bimorphisms. This monoidal structure is in general different from
that inhereted from Set as discussed in 2.2.4. For example, the unit for this
monoidal structure is (N,+, 0), the free commutative monoid on 1.

2.2.19 Example Whereas the category Hilb of Hilbert spaces has two symmet-
ric monoidal structures, namely the Cartesian product ⊕ (see also Section 2.3)
and the tensor product ⊗, only the latter descends to the category PHilb. For
example, for morphisms f, g : X ⇒ Y of Hilb, if we define f ′ = i·f and g′ = −g,
then f ∼ f ′ and g ∼ g′. But

(f ′ ⊕ g′)(x, y) = (i · f(x),−g(y)) 6= (u · f(x), u · g(y)) = (u · (f ⊕ g))(x, y)

for any u ∈ U(1), so f ⊕ g 6∼ f ′ ⊕ g′. Hence the Cartesian product ⊕ of Hilb
does not give a well-defined monoidal structure on PHilb.

On the other hand, the tensor product ⊗ on Hilb is universal for bimor-
phisms, so it does induce a well-defined monoidal structure on PHilb. For if
f ∼ f ′ and g ∼ g′, say f = u · f ′ and g = v · g′ for u, v ∈ U(1), then

f ⊗ g = (u · f ′)⊗ (v · g′) = u · v · (f ′ ⊗ g′),

whence f ⊗ g ∼ f ′ ⊗ g′.

We finish this section with the following argument, due to Peter Hilton and
Beno Eckmann, who proved it for C = Set ([78], but see also [163, Exer-
cise II.5.5]). It states that when an object carries two monoid structures and the
multiplication map of one is a monoid homomorphism with respect to the other,
then the two monoid structures coincide and are in fact commutative.

2.2.20 Lemma (Hilton-Eckmann) Let X be an object in a symmetric monoidal
category C, and let µ1, µ2 : X ⊗ X ⇒ X and η1, η2 : I ⇒ X be morphisms. If
(X,µ1, η1) and (X,µ2, η2) are both monoids and the following diagram commutes,

X ⊗X ⊗X ⊗X
µ2⊗µ2 //

id⊗γ⊗id ∼=��

X ⊗X

µ1

��

X ⊗X ⊗X ⊗X
µ1⊗µ1 ��
X ⊗X µ2

// X

(2.3)

21

Chapter 2. Tensors and biproducts

then (X,µ1, η1) = (X,µ2, η2) is in fact a commutative monoid.

PROOF First we show that η1 = η2.

I ∼=
&&LLLLLLL I

η1

��

I ⊗ I ⊗ I ⊗ I
∼= //

∼=

��

η1⊗η2⊗η2⊗η1
))TTTTTTTTT I ⊗ I

η1⊗η1��

∼=
<<xxxxxx

X ⊗X ⊗X ⊗X
id⊗γ⊗id ∼=��

µ2⊗µ2 // X ⊗X

µ1

��

X ⊗X ⊗X ⊗X
µ1⊗µ1 ��

I ⊗ I
η2⊗η2

//
∼=
xxrrrrrrr

X ⊗X µ2
// X

FFFFFF

FFFFFF

I η2
// X

To prevent a forest of diagrams, we give the rest of the proof for C = Set (as
in [78]). The reader can check for herself that it generalises to any symmetric
monoidal category. Let us further temporarily abbreviate η1 = η2 to 1, µ1(x, y)
to x · y, and µ2(x, y) to x� y.

x · y = (1� x) · (y � 1) (2.3)= (1 · y)� (x · 1) = y � x

= (y · 1)� (1 · x) (2.3)= (y � 1) · (1� x) = y · x. �

Notice that this provides an alternative proof of Lemma 2.2.11: it follows
from Lemma 2.2.9(b) that the scalars are a monoid under both • and ◦. Since
Lemma 2.2.9(c) means that diagram (2.3) commutes, the result follows from
Lemma 2.2.20.

2.3 Biproducts

This section considers a special kind of monoidal structure called biproduct.

2.3.1 As already noted in the previous section, (finite) products and coproducts
are particular instances of monoidal structure on a category. A coproduct, for
example, is a monoidal product that in addition is the vertex of a universal
cocone. We denote the legs of this universal cocone, the coprojections, by κ.
For example, we writeX1

κ1 //X1 +X2 X2,
κ2oo orX

κX //X + Y Y,
κYoo or

evenX κ //X +X ′ X ′
κ′oo . The unit object 0 of the monoidal structure is

22

2.3. Biproducts

initial, i.e. there is a unique morphism 0→ X for every object X. We denote the
codiagonal map, i.e. the cotuple [id , id] : X +X → X, by ∇.

Likewise, a product X1 × X2 comes with projections that we denote by π,
as inX1 X1 ×X2

π1oo π2 //X2. The unit object 1 of the monoidal structure is
terminal, i.e. there is a unique morphism X → 1 for every object X. We denote
the diagonal map, i.e. the tuple 〈id , id〉 : X → X ×X, by ∆.

The following theorem characterises algebraically when a monoidal product
is a coproduct, without any reference to universal properties, in a way reminis-
cent of [87] (see also [84]).

2.3.2 Theorem A symmetric monoidal structure (⊕, 0) on a category C provides
finite coproducts if and only if the forgetful functor cMon(C) → C is an isomor-
phism of categories.

PROOF Suppose that (⊕, 0) provides finite coproducts, with the coherence maps
α, λ and ρ induced by the coproducts. Denote the forgetful functor cMon(C)→
C by U , and define F : C → cMon(C) on objects as F (X) = (X,∇, u), where
∇ = [idX , idX] : X ⊕ X → X, and u is the unique morphism 0 → X. On a
morphism f , it acts as F (f) = f . Then trivially U ◦ F = Id. To prove that
also F ◦ U = Id, we show that there can be only one (commutative) monoid
structure on X ∈ C with respect to (⊕, 0), i.e. for any (X,µ, η) ∈ cMon(C)
one has µ = [id , id]. This suffices because η is necessarily the unique morphism
0→ X. We have

µ ◦ κ1 = µ ◦ [κ1 , κ2 ◦ u] ◦ κ1 = µ ◦ (id ⊕ u) ◦ κ1 = ρ ◦ κ1 = id,

since κ1 : X → X ⊕ 0 equals the coherence isomorphism ρ−1. Likewise µ ◦ κ2 =
id, so µ = [id , id], as needed.

Conversely, suppose that cMon(C)
U //C
F
oo is an isomorphism. By definition

U(X,µ, η) = X, so the monoid F (X) is carried by X. Since F is a functor, the
monoid structure maps, say ∇X : X ⊕ X → X and uX : 0 → X, are natural
in X. We first prove that 0 is an initial object. We have that (0,∇0, u0) and
(0, λ0, id0) are both monoids (in C). Moreover, they satisfy the Hilton-Eckmann
condition (2.3), so by Lemma 2.2.20 we have u0 = id0. Naturality of u yields

f = f ◦ id0 = f ◦ u0 = uX

for any f : 0 → X. Hence uX is the unique morphism 0 → X, and 0 is indeed
an initial object. Finally, we show that X ⊕ Y is a coproduct of X and Y .

Define κX : X
ρ−1
//X ⊕ 0

id⊕uY //X ⊕ Y and κY : Y λ−1
//0⊕ Y uX⊕id //X ⊕ Y as

23

Chapter 2. Tensors and biproducts

coprojections. Put [f , g] = ∇Z ◦ (f ⊕ g) : X ⊕ Y → Z for given f : X → Z and
g : Y → Z. Then

[f , g] ◦ κX = ∇Z ◦ (f ⊕ g) ◦ (id ⊕ uY) ◦ ρ
= ∇Z ◦ (id ⊕ (g ◦ uY)) ◦ (f ⊕ id) ◦ ρ u natural

= ∇Z ◦ (id ⊕ uY) ◦ (f ⊕ id) ◦ ρ ∇, u monoid

= ρ ◦ (f ⊕ id) ◦ ρ−1 = f. ρ natural

Analogously, [f , g] ◦ κY = g. Moreover, [f , g] is the unique such map since

[κX , κY] = (∇X ⊕∇Y) ◦ (id ⊕ γ ⊕ id) ◦ (id ⊕ uY ⊕ id)

◦ (ρ−1 ⊕ id) ◦ (id ⊕ uX ⊕ id) ◦ (id ⊕ λ−1)

= (∇X ⊕ id) ◦ (id ⊕∇Y) ◦ (id ⊕ uY ⊕ id) ◦ (id ⊕ γ ⊕ id)

◦ (ρ−1 ⊕ id) ◦ (id ⊕ uX ⊕ id) ◦ (id ⊕ λ−1)

= (∇X ⊕ id) ◦ (id ⊕ λ) ◦ (id ⊕ γ ⊕ id)

◦ (ρ−1 ⊕ id) ◦ (id ⊕ uX ⊕ id) ◦ (id ⊕ λ−1)

= (∇X ⊕ id) ◦ (id ⊕ uX ⊕ id) ◦ (id ⊕ λ−1)

= (id ⊕ λ) ◦ (id ⊕ λ−1) = id. �

Dually, a symmetric monoidal structure (⊕, 0) on a category C provides fi-
nite products if and only if Cop is isomorphic to the category of commutative
comonoids in C.

2.3.3 A zero object is an object 0 that is simultaneously initial and terminal.
That is, there are unique maps X → 0 and 0 → X for any object X, which we
denote by 0X,0 and 00,X . These are automatically epi and mono, respectively. For

any pair of objectsX,Y , there is a unique zero morphism 0X,Y : X
0X,0 //0

00,Y //Y.

If no confusion can arise, we abbreviate zero morphisms simply as X 0 //Y .

2.3.4 A biproduct of X1 and X2 is an object X1 ⊕ X2 that is simultaneously a
product with projections πi : X1 ⊕X2 → Xi and a coproduct with coprojections
κi : Xi → X1 ⊕X2, such that

πi ◦ κi = id, (2.4)

πi ◦ κj = 0, for i 6= j. (2.5)

A category with a chosen zero object and a chosen biproduct for each pair of
objects is said to have finite biproducts. Hence finite biproducts are a special
kind of symmetric monoidal structure on a category. Indeed, equations (2.4)
and (2.5) ensure that a choice of biproduct for each pair of objects canonically

24

2.3. Biproducts

extends to a bifunctor by f1 ⊕ f2 = f1 + f2 = f1 × f2 : X1 ⊕ X2 → Y1 ⊕ Y2

for fi : Xi → Yi, where f1 + f2 is defined as usual as [κ1 ◦ f1 , κ2 ◦ f2], and
f1× f2 = 〈f1 ◦π1 , f2 ◦π2〉. For this it suffices that 〈f1 ◦π1 , f2 ◦π2〉 ◦κi = κi ◦ fi,
as this is the defining property of f1 + f2. By equations (2.4) and (2.5) we get
〈f1 ◦ π1 , f2 ◦ π2〉 ◦ κ1 = 〈f1 ◦ π1 ◦ κ1 , f2 ◦ π2 ◦ κ1〉 = 〈f1 , 0〉. Since πi ◦ 〈f1 , 0〉 =
πi ◦κ1 ◦f1 and projections are jointly mono, indeed 〈f1 ◦π1 , f2 ◦π2〉◦κi = κi ◦fi
for i = 1. The case i = 2 is analogous.

Like products and coproducts, finite biproducts can be characterised algebra-
ically, without reference to universal properties.

2.3.5 Definition For a category C, define C� as the full subcategory of Cop×C
consisting of objects (X,X). Identifying its objects with those of C, a morphism
f : X → Y in C� is a pair of morphisms f← : Y → X, f→ : X → Y of C. This
construction works equally well for V-enriched categories.

The category C� inherits (symmetric) monoidal structure (⊗, I) from C, by
(f←, f→) ⊗ (g←, g→) = (f← ⊗ g←, f→ ⊗ g→). Hence an object in cMon(C�)
consists of a commutative monoid and a commutative comonoid in C carried by
the same object.

2.3.6 Corollary A symmetric monoidal structure (⊕, 0) on a category C provides
finite biproducts if and only if the forgetful functor cMon(C�) → C� is an
isomorphism of categories.

PROOF Suppose the underlying functor is an isomorphism. Then 0 is an initial
object by Theorem 2.3.2, and a terminal object by the dual of that theorem.
Hence 0 is a zero object. To verify equation (2.4), we abuse the notation of
Theorem 2.3.2 by ni = (uXi

)← : Xi → 0 and ui = (uXi
)→ : 0→ Xi for i ∈ {1, 2},

and put j ∈ {1, 2} such that i 6= j:

πi ◦ κi = ρ ◦ (id ⊕ nj) ◦ (id ⊕ uj) ◦ ρ−1 = ρ ◦ (id ⊕ uj) ◦ ρ−1 = id.

Also, (2.5) holds, since for i 6= j we have

π2 ◦ κ1 = λ ◦ (n1 ⊕ id) ◦ (id ⊕ u2) ◦ ρ−1

= λ ◦ (id ⊕ u2) ◦ (n1 ⊕ id) ◦ ρ−1

= 0.

The converse is trivial given Theorem 2.3.2 and its dual: if C has coinciding
finite products and coproducts, then the forgetful functor is an isomorphism. �

2.3.7 The previous corollary enables us to talk about finite biproducts in V-
enriched categories without having to resort to a product structure on V or to

25

Chapter 2. Tensors and biproducts

weighted (co)limits. In particular, it is more general than the usual notion of a
V-coproduct, which requires V to have finite products — if V is a category with
finite products, then a finite coproduct structure on C ∈ V-Cat is traditionally
regarded as V-natural isomorphisms C(X ⊕ Y,) ∼= C(X,) × C(Y,) and
C(0,) ∼= 1 [141].

We collect all enriched categories with finite biproducts and functors pre-
serving them in a category BP(V-Cat), that is defined as the full subcategory
of cMon(V-Cat) consisting of all V-categories C for which the forgetful func-
tor cMon(C�) → C� is an isomorphism. We abbreviate BP(Cat) as BP.

2.3.8 The definition of a biproduct of two objects can easily be generalised to
an arbitrary (set-indexed) family of objects. For an index set I and a family (Xi)
of objects with i ∈ I, a biproduct is an object

⊕
i∈I Xi that is simultaneously

a product with projections πj :
⊕

i∈I Xi → Xj , and a coproduct with coprojec-
tions κj : Xj →

⊕
i∈I Xi, such that equations (2.4) and (2.5) hold.

Notice that for I = ∅ this reduces to a zero object; moreover, having finite
biproducts reduces to the special case I = {1, 2}.

2.3.9 Example The category Rel has arbitrary biproducts, provided by disjoint
union and the empty set. Given an I-indexed family of sets Xi, the biproduct⊕

i∈I Xi is the disjoint union {ϕ : I →
⋃
i∈I Xi | ϕ(i) ∈ Xi}, with projections

πj = {(ϕ,ϕ(j)) | ϕ ∈
⊕

i∈I Xi} ⊆
⊕

i∈I Xi × Xj , and coprojections κj =
{(ϕ(j), ϕ) | ϕ ∈

⊕
i∈I Xi} ⊆ Xj ×

⊕
i∈I Xi.

2.3.10 Example The category cMon has arbitrary products. Given an I-indexed
family of commutative monoids Xi, its product is just the Cartesian product∏
i∈I Xi of the underlying sets with pointwise operations. This category also

has arbitrary coproducts: the coproduct of the above family is the direct sum
{ϕ : I →

⋃
i∈I Xi | ϕ(i) ∈ Xi, supp(ϕ) finite}. The coprojections κj : Xj →⊕

i∈I Xi are determined by supp(κj(x)) = {j} and κj(x) = x.
These coincide for finite families, and indeed cMon has finite biproducts.

The zero-object is the trivial monoid {0}.

2.3.11 Example The category VectK has infinite products and coproducts, too,
but only has finite biproducts, in much the same way as the previous example.
The biproduct X1⊕X2 is the set X1×X2 with pointwise operations. Projections
are given by πi(x1, x2) = xi, the coprojections are κ1(x) = (x, 0) and κ2(x) =
(0, x). The zero-object is the 0-dimensional vector space {0}.

2.3.12 Example The categories preHilbK and HilbK inherit finite biproducts
from VectK . The inner product on X1 ⊕X2 is given by

〈(x1, x2) | (y1, y2)〉X1⊕X2 = 〈x1 | y1〉X1 + 〈x2 | y2〉X2 .

26

2.3. Biproducts

This prescription shows that infinite biproducts might be problematic. Indeed,
they cannot exist in HilbK , as the following lemma shows.

2.3.13 Lemma The category Hilb does not have infinite coproducts.

PROOF Consider the following counterexample. Define an N-indexed family
Xn = C of objects of Hilb. Suppose the family (Xn) had a coproduct X with
coprojections κn : Xn → X. Define fn : Xn → C by fn(z) = n · ‖κn‖ · z. These
are bounded maps, since ‖fn‖ = n · ‖κn‖. Then for all n ∈ N the norm of the
cotuple f : X → C of (fn) must satisfy

n · ‖κn‖ = ‖fn‖ = ‖f ◦ κn‖ ≤ ‖f‖ · ‖κn‖,

so that n ≤ ‖f‖. This contradicts the boundedness of f . �

2.3.14 The previous lemma implies that Hilb does not have directed colimits
(see 4.2.13 below), either. For example, any colimit of

C κ //C2 κ //C3 κ // · · ·

would also be a coproduct of a countable number of copies of C, and hence
cannot exist. This invalidates Lemma 5.3 of [112], which observation is due to
Peter Johnstone. So Hilb is not a dagger compactly accessible category, as it is
called in that article.

2.3.15 In spite of the previous lemma, Hilb does have objects that resemble
infinite coproducts, except that they obey the universal property only partially.

Let I be an arbitrary index set, and let Xi ∈ Hilb for all i ∈ I. Put

X = {(xi)i∈I ∈
∏
i∈I

Xi |
∑
i∈I
‖xi‖2 <∞},

where the product is that of Vect. Here, the sum
∑
i∈I ai for an arbitrary (pos-

sibly uncountable) index set I is defined as the supremum of
∑
i∈J ai where

J ranges over the finite subsets of I. When ai are all positive, this is well-
defined [135]. Equipped with the inner product

〈(xi)i | (yi)i〉X =
∑
i∈I
〈xi | yi〉Xi

,

X becomes a Hilbert space [135].
The object X looks like a biproduct of the objects Xi. Indeed, there are

evident injections κi : Xi → X defined by (κi(x))i = x and (κi(x))j = 0 for
i 6= j. There are also evident projections πi : X → Xi determined by πi((xj)j) =

27

Chapter 2. Tensors and biproducts

xi. These satisfy equations (2.4) and (2.5). However, X does not satisfy the
universal requirements for a (bi)product, as witnessed by the previous lemma.
It is, however, universal in a restricted sense, as follows.

Let us call a cone gi : Y → Xi bounded when
∑
i∈I ‖gi‖2 <∞. Then the tuple

g : Y → X is well-defined by g(y) = (gi(y))i∈I and is the unique morphism
satisfying πi ◦ g = gi. Likewise, calling a cocone fi : Xi → Y bounded when∑
i∈I ‖fi‖2 < ∞, the cotuple f : X → Y is well-defined by f(x) =

∑
i∈I fi(xi),

and is the unique morphism satisfying f ◦κi = fi. Hence we could say that Hilb
does not just have finite biproducts, but has bounded biproducts. Note, however,
that the cone consisting of projections is not a bounded cone itself. Nor is the
cocone of coprojections bounded.

2.3.16 A similar phenomenon already occurs in the category preHilb. For an
arbitrary index set I and Xi ∈ preHilb for all i ∈ I, the coproduct of vector
spaces

∐
i∈I Xi = {ϕ : I →

⋃
i∈I Xi | ϕ(i) ∈ Xi, supp(ϕ) finite}, equipped with

the canonical inner product

〈ϕ |ψ〉‘
i∈I Xi

=
∑
i∈I
〈ϕ(i) |ψ(i)〉Xi

is a well-defined object of preHilb. It inherits the coprojections κj from Vect,
as these are adjointable (namely with πj as adjoint). However, not all cotuples
exist. Given fi : Xi → Y , there is a function [fi]i∈I :

∐
i∈I Xi → Y defined by

ϕ 7→
∑
i∈I fi(ϕ(i)). If this function were adjointable, its adjoint should be the

function g : Y →
∐
i∈I Xi given by g(y)(i) = f†i (y) in

∐
i∈I Xi. But the latter

function is not well-defined, as its support need not be finite.
The relationship between these phenomena in preHilb and Hilb will be

discussed in 3.1.14.

2.3.17 In a category with finite biproducts, we can add morphisms f, g : X ⇒
Y by defining f + g as the composite

X
∆ // X ⊕X

f⊕g // Y ⊕ Y ∇ // Y.

With the zero morphism 0: X → Y as unit, this makes every homset into a com-
mutative monoid. The following theorem shows that this works when we start
with any V-enriched category with finite products (instead of a Set-category),
and moreover that this ‘lifting of enrichment’ is functorial.

2.3.18 Theorem There is a functor ()⊕ : BP(V-Cat) −→ (cMon(V))-Cat.

28

2.4. Scalars

PROOF Let (C,⊕, 0) ∈ BP(V-Cat). It comes equipped with maps

∆X : IV → C(X,X ⊕X),

∇X : IV → C(X ⊕X,X),

uX : IV → C(0, X),

nX : IV → C(X, 0).

The objects of C⊕ are those of C. The carrier of the homobject C⊕(X,Y) is
C(X,Y) ∈ V. Its monoid unit 0XY : IV → C(X,Y) is given by

0XY : IV
∼= // IV ⊗ IV

nX⊗uY// C(X, 0)⊗C(0, Y)
◦C // C(X,Y).

The monoid multiplication +: C(X,Y)⊗C(X,Y)→ C(X,Y) of the homobject
C(X,Y) is given as follows:

C(X,Y)⊗C(X,Y)
+ //_____________

⊕
��

C(X,Y)

C(X ⊕X,Y ⊕ Y)

∼= &&LLLLLLLLLL C(X,X ⊕X)⊗C(X ⊕X,Y ⊕ Y)⊗C(Y ⊕ Y, Y)

(◦C)◦(id⊗◦C)

OO

IV ⊗C(X ⊕X,Y ⊕ Y)⊗ IV.
∆X⊗id⊗∇Y

44hhhhhhhhhhhhhhhhhh

Composition ◦C is a monoid morphism for this structure because ⊕ is a V-
functor. We leave it to the reader to show that this data indeed defines a com-
mutative monoid; essentially it is an enriched version of the argument for Set-
categories.

Since a morphism in BP(V-Cat) is a V-functor that strictly preserves the
biproduct structure, and because ∆,∇, n, u are natural, this assignment C 7→
C⊕ is functorial. �

2.4 Scalars

Let us now have a more in-depth look at the scalars introduced in Example 2.2.8.
We will see that, just like biproducts lift Set-enrichment to cMon-enrichment,
tensor products make Set-enrichment into Act(Set)-enrichment. The next sec-
tion will show that these two liftings of enrichment can be combined. This
section shows that, in particular, the scalars have more structure than just that
of a monoid.

29

Chapter 2. Tensors and biproducts

2.4.1 A rig is a set R carrying two monoid structures, a commutative one writ-
ten additively as (+, 0), and the other written multiplicatively as (•, 1), that
distribute over each other in the sense that

s • 0 = 0, (2.6)

0 • s = 0, (2.7)

r • (s+ t) = r • s+ r • t, (2.8)

(s+ t) • r = s • r + t • r. (2.9)

A rig is called commutative when its multiplication is. Rigs are also known as
semirings [94].

Morphisms of rigs are functions that preserve both monoid structures. Thus
we have a category Rg of rigs, and a full subcategory cRg of commutative rigs.

2.4.2 Example There are plenty of examples of rigs. Every (commutative) ring,
such as Z, is obviously a (commutative) rig. But N with its usual addition and
multiplication is an example of a rig that is not a ring. In fact, it is an initial
object in the category cRg.

Also, every bounded distributive lattice is a commutative rig, with the bottom
element as 0, the top element as 1, join as + and meet as •.

Finally, the set B = {0, 1} is called the Boolean rig with operations deter-
mined by 1 + 1 = 1.

If a category has finite biproducts as well as tensor products, and each functor
X ⊗ has a right adjoint, the tensor products automatically distribute over the
biproducts, by

τ = 〈id ⊗ π1 , id ⊗ π2〉 : X ⊗ (Y ⊕ Z)
∼=−→ (X ⊗ Y)⊕ (X ⊗ Z), (2.10)

τ−1 = [id ⊗ κ1 , id ⊗ κ2]. (2.11)

This distributivity descends to the scalars, which form another example in of a
rig, as in the following lemma.

2.4.3 Proposition The scalars in a (symmetric) monoidal category with finite
biproducts form a (commutative) rig.

PROOF We already saw in Lemma 2.2.11 that the scalars C(I, I) in a (symmet-
ric) monoidal category C form a (commutative) monoid (•, id). Also, 2.3.17
showed that if C also has finite biproducts then its scalars form a commutative
monoid under (+, 0). Hence it suffices to verify equations (2.7)–(2.9). Equa-

30

2.4. Scalars

tion (2.8) is established by the following commutative diagram.

I

r•(s+t)

��

I

λ−1
��

I

∆��

I

(r•s)+(r•s)

��

I ⊗ I
id⊗∆ ��

I ⊕ I
λ−1⊕λ−1
��

λ−1

ttiiiiiiiiiii

I ⊗ (I ⊕ I)
r⊗(s⊕t)

��

τ // (I ⊗ I)⊕ (I ⊗ I)
(r⊗s)⊕(r⊗t)
��

I ⊗ (I ⊕ I)
id⊗∇ ��

τ //

λ **UUUUUUUUUUU
(I ⊗ I)⊕ (I ⊗ I)

λ⊕λ��
I ⊗ I
λ ��

I ⊕ I
∇��

I I I I

Equation (2.9) is proven analogously. Finally, equation (2.7), and analogously
equation (2.6), is shown as follows.

I
0 // 0

I

0•s ��

λ−1
// I ⊗ I

0⊗s ��

0⊗id // 0⊗ I
id⊗s��

ρ // 0

I I ⊗ I
λ
oo 0⊗ I

0⊗id
oo 0

ρ−1
oo

I 0
0

oo
�

2.4.4 As noted in Example 2.2.18, cMon is a (symmetric) monoidal category.
Hence we can consider monoids in it. First of all, an object R of Mon(cMon) is
a commutative monoid, which we shall write additively as (R,+, 0). This inner
monoid carries a monoid structure N //R R⊗Roo in the category cMon.
The latter consists of a unit element 1 ∈ R for a binary operation • : R×R→ R

which is a bimorphism. This means that • is a monoid morphism both in its
first variable, i.e. equations (2.7) and (2.8) hold, and in its second variable,
i.e. equations (2.6) and (2.9) hold. Hence we can categorically characterise rigs
as monoids in the category of commutative monoids: Rg = Mon(cMon). Also,
we have cRg = cMon(cMon).

We now set out to prove that scalar multiplication makes a category enriched
over actions, in a similar fashion as biproducts make a category enriched over
commutative monoids.

31

Chapter 2. Tensors and biproducts

2.4.5 We can use the Kock-Day tensor product for the monad M ⊗ () pro-
vided by the scalar monoid M = C(I, I) in any symmetric monoidal category
C. This monad is commutative by Lemma 2.2.14 because the scalar monoid
is, by Lemma 2.2.11. The following theorem shows that scalar multiplication
in fact provides enrichment, i.e. that composition is a morphism in ActM with
respect to the Kock-Day tensor product. Moreover, the enriched category C and
the enriching category ActM have ‘the same scalars’.

2.4.6 Theorem If a category C is symmetric monoidal, then it is enriched over
V = ActM , where M = C(I, I), in such a way that IV ∼= C(I, I).

PROOF Put the homobject C(X,Y) ∈ V to be the set C(X,Y) with the action
C(I, I) × C(X,Y) → C(X,Y) on it given by scalar multiplication as (s, f) 7→
s • f . The composition morphism C(X,Y) ⊗ C(Y, Z) → C(X,Z) is now the
unique one through which the bimorphism C(X,Y) ×C(Y, Z) → C(X,Z), de-
termined by (f, g) 7→ g ◦ f , factors; this is a morphism in V. The identity
morphism 1→ C(X,X) is given by ∗ 7→ idX ; this is also a morphism in V, since
1 carries the trivial action. One easily verifies that these satisfy the requirements
of an enriched category. Finally, since the free functor V → ActM (V) pre-
serves monoidal structure, there is an isomorphism IActM (V)

∼= M ⊗ IV ∼= M of
monoids. �

2.4.7 Whereas the previous theorem covers the case of Set-enriched categories,
the following theorem gives the general construction. It incorporates func-
toriality; but for that we first need to get rid of the indexing monoid M in
ActM (V). We denote the Grothendieck completion

∫
M∈cMon(V)

ActM (V) of
the indexed category cMon(V)op → Cat by Act(V). Explicitly, Act(V) has
pairs (M,α) with M ∈ cMon(V) and α ∈ ActM (V) as objects; morphisms
from (M,α : M ⊗X → X) to (N, β : N ⊗ Y → Y) in Act(V) are pairs of mor-
phisms f : M → N and g : X → Y in V satisfying β ◦ (f ⊗ g) = g ◦ α [99]. If
V is symmetric monoidal, then so is Act(V), whence it makes sense to talk of
Act(V)-enriched categories.

2.4.8 Theorem If V is a suitable symmetric monoidal category, there is a functor

()⊗ : cMon(V-Cat) −→ (Act(V))-Cat.

PROOF We first describe how ()⊗ acts on objects. Let C ∈ cMon(V-Cat),
cf. 2.2.6. The objects of the V-category C and the Act(V)-category C⊗ are the
same. The homobjects are determined by the action of scalar multiplication,
i.e. C⊗(X,Y) is the action

C(I, I)⊗V C(X,Y)
⊗C //C(I ⊗C X, I ⊗C Y) = C(X,Y).

32

2.4. Scalars

The identity on X is the morphism

C(I, I)
∼= //C(I, I)⊗ IV

id⊗iX //C(I, I)⊗C(X,X)
⊗C //C(X,X)

in V. It is a morphism of actions IActC(I,I)(V) → C⊗(X,X) since IActM (V)

is the action µ : M ⊗M //M . A lengty but straightforward calculation that
uses the structure of the Kock-Day tensor product in ActM (V), now shows that
these data in fact provide an enrichment.

We now turn to the action of ()⊗ on morphisms. Let F be a morphism
C → D in cMon(V-Cat). Define its image F⊗ to work on objects X ∈ C⊗ as
F⊗(X) = F (X). It also acts on morphisms as F — since F is a ‘(strict) monoidal
V-functor’, it is automatically a (scalar multiplication) action morphism.

C(I, I)⊗V C(X,Y)
⊗C //

FII⊗VFXY ��

C(I ⊗C X, I ⊗C Y)
FXY��

C(X,Y)
FXY��

D(I, I)⊗V D(FX,FY)
⊗D

// D(I ⊗D FX, I ⊗D FY) D(FX,FY)

That is, F⊗XY is indeed a morphism in Act(V). �

2.4.9 The extension of enrichment in the previous theorem is initial, in the
sense that the forgetful functor C(I,) : C → V of any symmetric monoidal
V-enriched category C factors through it, as illusstrated in the following com-
mutative diagram of monoidal functors:

C
C(I,) //

C(I,) ''OOOOOOOOOOOOO V

ActC(I,I)(V).

(α : C(I,I)⊗V→V)7→V

77ooooooooooooo

2.4.10 By Lemma 2.2.14, it only makes sense to put the Kock-Day tensor prod-
uct on ActC(I,I) when C(I, I) is commutative. Hence we can only speak of
enrichment in that case. Nonetheless, we can also consider the functor C(I,)
when the tensor product in C is not symmetric. In fact, the following lemma
shows that certain homsets have a remnant of the scalar multiplication action,
even if a tensor product is not available.

2.4.11 Lemma If C is a monoidal category, and s : I → I and f : X → I are
morphisms, then s • f = s ◦ f . Hence even in case C is not monoidal we have
C(X, I) ∈ ActC(I,I), and analogously C(I,X) ∈ C(I,I)Act.

33

Chapter 2. Tensors and biproducts

PROOF We prove the right-action; the left version is analogous:

X

f

��

s•f //

λ−1))RRRRRRRR I

I ⊗X

id⊗f

��

s⊗f
))SSSSSSSS

I ⊗ I

λ

<<zzzzzzzzzzz

I ⊗ I s⊗id

55kkkkkkkk

I
λ−1=ρ−1

55lllllllll
s

// I.

λ−1=ρ−1

bbDDDDDDDDDDD

Notice how we use λI = ρI in much the same way as in Lemma 2.2.11. �

2.5 Modules over rigs

Part of the structure that descends from the category to the scalars, as in the
previous section, applies to all homsets. This section shows that categories with
both tensor products and biproducts are enriched in modules over rigs, and uses
this to prove preliminary embedding theorems.

2.5.1 A left-module over a rig R is a set X equipped with a commutative ad-
dition (+, 0) and a scalar multiplication • : R × X → X, satisfying the famil-
iar equations. Right-R-modules are defined analogously, as are left-R-right-S-
modules for rigs R,S (cf. Example 2.1.1). Taking linear functions between mod-
ules over a rig R as morphisms, we obtain categories that we denote by RMod,
ModR and RModS . This overloading of notation is justified because it coin-
cides with the previous meaning in case R is a ring. Modules over rigs are also
known as semimodules [94].

2.5.2 Example It is well-known that Z-modules are simply Abelian groups, that
is, ModZ ∼= Ab. A Q-module is precisely a divisible torsion-free Abelian group:
ModQ ∼= divtfAb. Since an action of N on a commutative monoid is already
completely fixed by its monoid structure, we have ModN ∼= cMon. Looking
at the Boolean rig, we can identify an action of B = ({0, 1},max, 0,min, 1) on
a commutative monoid L as an idempotent commutative monoid, because l =
1 · l = max(1, 1) · l = max(1 · l, 1 · l) = max(l, l). Hence ModB ∼= SLat, the
category of bounded semilattices.

2.5.3 Much of the behaviour of ModR for R ∈ cRg is explained by the fact
that it is algebraic. Consider the functor R̂ : Set→ Set defined on objects by

R̂(X) = {ϕ : X → R | supp(ϕ) finite},

34

2.5. Modules over rigs

and acting on a function f : X → Y as

R̂(f)(ϕ)(y) =
∑

x∈f−1(y)

ϕ(x).

R̂ is a monad in Set. Its unit η : X → R̂(X) is given by the Kronecker function

η(x)(x′) =
{

1 if x = x′,

0 otherwise.

Its multiplication µ : R̂(R̂(X))→ R̂(X) is matrix multiplication

µ(Φ)(x) =
∑

ϕ∈ bR(X)

Φ(ϕ) · ϕ(x).

In fact, (̂) is a functor from Rg to the category of monads on Set. The category
of (Eilenberg-Moore) algebras of R̂ is ModR. Hence, the latter is complete [23,
Theorem 3.4.1] and cocomplete [23, Proposition 9.3.4].

In particular, this category has kernels, i.e. equalisers of a morphism and
the zero morphism, and cokernels, i.e. coequalisers of a morphism and the zero
morphism. Moreover, as the construction of finite biproducts in ModR for a ring
R does not need subtraction of scalars, it descends to ModR for a rig R.

2.5.4 However, monos and epis in ModR for a rig R might not behave as
expected, due to the absence of subtraction of scalars.

A morphism is mono precisely when it is injective. However, not every mono
is a kernel. A submodule X of Y ∈ModR is called subtractive when y + y′ ∈ X
and y′ ∈ X imply y ∈ X for all y, y′ ∈ Y . A mono m : X → Y in ModR is a
kernel if and only if m(X) is subtractive. An example of an injective function
that is not a kernel is the inclusion N→ Z in ModN.

Epimorphisms are harder to characterise. We can, however, recognise reg-
ular epimorphisms, i.e. the coequalisers. They are precisely the surjective mor-
phisms. Equivalently, f : X → Y is surjective if and only if it is epi and f(X) is
subtractive. An example of an epi that is not regular is the inclusion N → Z in
ModN. An example of a regular epi that is not a cokernel is f : P{0, 1} → {0, 1}
determined by f(∅) = 0 and f({0}) = f({1}) = f({0, 1}) = 1.

2.5.5 Definition An object G is a generator when f = g : X ⇒ Y whenever
f ◦ x = g ◦ x for all x : G→ X. This is precisely what is needed to make C(G,)
faithful. For example, the rig R itself is a generator in ModR.

An object P ∈ C is projective when for every regular epi X � Y , any mor-

35

Chapter 2. Tensors and biproducts

phism P → Y factors through X:

P

~~}
}

}
}

��
X // // Y.

Hence P is projective precisely when C(P,) preserves regular epis. The pro-
jective objects in ModR for a rig R are precisely the projective modules, i.e. the
retracts of free ones. In particular, the rig R itself, seen as a (free) module, is a
projective object.

An object X is called finitely projective when there are a projective generator
G, some natural number n, and a regular epi

⊕n
i=1G� X.

2.5.6 As in 2.4.4, we can characterise modules over rigs categorically. As a
rig R is an object in Mon(cMon), we can consider its category of actions
RAct(cMon). An object in this category consists of a commutative monoid
(X,+, 0) with an action • : R⊗X → X. The latter is a morphism in cMon, and
hence corresponds to a bimorphism • : R × X → X in Set. As such it satisfies
the action equations

1 • x = x, (2.12)

(r • s) • x = r • (s • x), (2.13)

the equations for being a left homomorphism, and those for a right homomor-
phism:

0 • x = 0, (2.14)

(r • x) + (s • x) = (r + s) • x, (2.15)

r • 0 = 0, (2.16)

(r • x) + (r • y) = r • (x+ y). (2.17)

In other words, (X,+, 0, •) is precisely a module over the rigR. Also, morphisms
in this category are precisely linear functions. Hence RMod = RAct(cMon).
We can now define Mod = Act(cMon) as the category of modules over any
rig.

Now, Theorems 2.3.18 and 2.4.8 can be combined, showing that categories
with both biproducts and tensor products are in fact enriched in modules over
their scalars. The stock example is the category ModR itself, in which the hom-
sets are again R-modules by pointwise addition and scalar multiplication. Be-

36

2.5. Modules over rigs

cause of equation (2.10), we can speak of strict monoidal categories with finite
biproducts as objects of Mon(BP).

2.5.7 Theorem There is a functor

()⊕⊗ : cMon(BP) −→Mod-Cat.

PROOF First, notice that the functor ()⊕ of Theorem 2.3.18 is strong monoidal.
That is, (C×D)⊕ ∼= C⊕ ×D⊕ for C,D ∈ cMon(BP). Moreover, 1⊕ = 1 [34].
Hence ()⊕ restricts to a functor

cMon(()⊕) : cMon(BP) −→ cMon(cMon-Cat).

The desired functor is then the composition ()⊕⊗ = ()⊗ ◦ cMon(()⊕) with
the functor from Theorem 2.4.8. �

2.5.8 If we combine all functors so far with forgetful ones, we can summarise
Theorems 2.3.18, 2.4.8 and 2.5.7 by the following diagram:

Mod-Cat //

��

cMon-Cat

��

cMon(BP(Cat))

66mmmmmmmm
//

��

BP(Cat)

88qqqqqqq

��

Act-Cat // Cat

cMon(Cat) //

66mmmmmmmm
Cat.

88qqqqqqq

The next corollary is the basis for several embedding theorems.

2.5.9 Corollary If C is a symmetric monoidal category with biproducts, then there
is a functor C(I,) : C →ModR, where R = C(I, I). It is faithful if and only if
I is a generator. �

Following Lemma 2.4.11, we can extend the previous corollary to the situa-
tion where C does not have tensor products.

2.5.10 Theorem If C has biproducts, then there is a functor C(I,) : C→ RMod
for any object I ∈ C, where R = C(I, I). This functor:

(a) is faithful if and only if I is a generator;

(b) is full when I is a projective generator and every object of C is finitely projec-
tive;

37

Chapter 2. Tensors and biproducts

(c) preserves finite biproducts;

(d) preserves coequalisers and hence all finite colimits if and only if I is projective;

(e) is monoidal when C is monoidal and I is its monoidal unit.

PROOF We already know that C(I,) can be regarded as a functor to cMon
as well as to RAct(Set). Hence to prove that it is a functor to RMod, it suf-
fices to show that C(I,X) has the distribution properties (2.14)–(2.17). Equa-
tions (2.14) and (2.16) are immediate: 0 • x = x ◦ 0 = 0, and equations (2.15)
and (2.17) follow from properties of the biproduct:

(r • x) + (s • x) = (x ◦ r) + (x ◦ s)
= ∇ ◦ ((x ◦ r)⊕ (x ◦ s)) ◦∆

= ∇ ◦ (x⊕ x) ◦ (r ⊕ s) ◦∆

= x ◦ ∇ ◦ (r ⊕ s) ◦∆

= x ◦ (r + s)

= (r + s) • x.

Right-distributivity is analogous.
In proving part (b), we temporarily write the action of C(I,) on morphisms

as T : C(X,Y) → RMod(C(I,X),C(I, Y)). Let Φ: C(I,X) → C(I, Y) in
RMod. We must find ϕ : X → Y in C such that Φ(x) = ϕ ◦ x for all x : I → X

in C.
Suppose first that I = X. Then Φ(x) = Φ(idI ◦ x) = Φ(idI) ◦ x since Φ

is a morphism of left-R-modules. So ϕ = Φ(idI) satisfies Φ(x) = ϕ ◦ x for all
x : I → X.

In general, since X is finitely projective, there are an n ∈ N and a regular epi
p :
⊕n

i=1 I � X. Denote by Φi the morphism

Φi : C(I, I)
T (κi) //C(I,

⊕n
i=1 I)

T (p) //C(I,X) Φ //C(I, Y) in RMod.

So, by the previous case (I = X), for each i ∈ I there is ϕi ∈ C(I, Y) such
that Φi(x) = ϕi ◦ x for all x ∈ S. Define ϕ̄ = [ϕi]

n
i=1 :

⊕n
i=1 I → Y , and write

Φ̄ = Φ ◦ T (p) : C(I,
⊕n

i=1 I)→ C(I, Y). Then, for x ∈ C(I,
⊕n

i=1 I):

Φ̄(x) = Φ(p ◦ x) = Φ(p ◦ (
∑
i∈I

κi ◦ πi) ◦ x) =
n∑
i=1

Φ(p ◦ κi ◦ πi ◦ x)

=
n∑
i=1

Φi(πi ◦ x) =
n∑
i=1

ϕi ◦ πi ◦ x = ϕ̄ ◦ x.

38

2.5. Modules over rigs

Since p is a regular epi, it is a coequaliser, say

M
m
//

m′ //⊕n
i=1I

p // // X.

Now,
ϕ̄ ◦m = Φ̄(m) = Φ(p ◦m) = Φ(p ◦m′) = Φ̄(m′) = ϕ̄ ◦m′,

so there is a (unique) ϕ : X → Y such that ϕ̄ = ϕ ◦ p. Let x : I → X. Because I
is projective, there is an x′ : I →

⊕n
i=1 I such that x = p ◦ x′. Finally

Φ(x) = Φ(p ◦ x′) = Φ̄(x′) = ϕ̄ ◦ x′ = ϕ ◦ p ◦ x′ = ϕ ◦ x.

Thus C(I,) is full.
As for (c): since biproducts are in particular products, we have C(I,X⊕Y) ∼=

C(I,X) ⊕ C(I, Y) because of the universal property of a product. Then (d)
follows immediately.

Finally, to prove (e), suppose that C is monoidal. By definition we have
R = C(I, I). We still need to exhibit a natural transformation with components
C(I,X) ⊗ C(I, Y) → C(I,X ⊗ Y) in RMod. That is, we need a bimorphism
C(I,X) × C(I, Y) → C(I,X ⊗ Y). But that is easy: map x : I → X and

y : I → Y to the composite I
∼= //I ⊗ I

x⊗y //X ⊗ Y . One easily verifies that
this is natural, bilinear, which satisfies the required coherence properties. �

We conclude this section with some further context, summarising well-known
results and placing the developments leading to the previous theorem in the per-
spective of established literature.

2.5.11 For certain well-behaved categories C with finite biproducts, the pre-
vious theorem can be strengthened by prefacing it with a functor that embeds
C into a category with finite biproducts and a projective generator. This is ac-
complished by the process of Lubkin completion due to Saul Lubkin and was
further developed by Michael Barr [19, 34, 159]. It works for regular categories,
i.e. categories with coequalisers of kernel pairs in which regular epimorphisms
are stable under pullbacks. As a corollary to 2.5.3 — and as might be expected
from 2.5.4 — the category ModR for R ∈ Rg is regular. We now summare this
construction. We do not pursue full detail, as the next chapter considers a novel
embedding theorem of categories for which the Lubkin completion cannot be
performed in principle.

2.5.12 Theorem (Lubkin-Barr) If C is a small regular category, there are a small
cMon-enriched regular category D and a full and faithful functor C→ [D, cMon]

39

Chapter 2. Tensors and biproducts

that preserves finite limits and coequalisers.1

If C furthermore has finite biproducts, this functor automatically preserves all
finite colimits as well.

PROOF By Example 2.2.18, the category cMon satisfies the conditions set out
in [19, III.5.12]. Hence the statement follows from [19, Theorem III.1.3]. �

The next few lemmas show explicitly that the cMon-category [D, cMon] of
the previous theorem has a projective generator, namely the functor

U =
∐
X∈D

D(X,) : D→ cMon.

2.5.13 Lemma U is a projective object in [D, cMon].

PROOF Since a coproduct of projectives is again projective [33, Proposition 4.6.7],
it suffices to show that for X ∈ D, the representable functor D(X,) is projec-
tive in [D, cMon]. For F,G ∈ [D, cMon], let α : D(X,) → F , and let β : G �
F be a regular epi. Since α is just a natural transformation, it corresponds to an
f ∈ F (X) via the (enriched) Yoneda lemma. Likewise, β is a natural transfor-
mation, the components βY : G(Y) → F (Y) of which are regular epis in cMon
since colimits in functor categories are computed pointwise. That is, every βY
is a surjective monoid homomorphism. Pick g ∈ β−1

X (f) ⊆ G(X). Again via the
Yoneda lemma, g corresponds to a natural transformation γ : C(X,)→ G, and
β ◦ γ = α. Hence D(X,) is projective. �

2.5.14 Lemma Let D be a regular category and P a projective object in it. If for
distinct subobjects r : R � Y and s : S � Y , there is an y : P → S not factoring
through r, (or an y : P → R not factoring through s), then P is a generator.

PROOF In any regular category, any morphism f : X → Y can be written as

a composition X // //Im(f) // //Y of a regular epi and a mono (see Exam-
ple 3.4.13). Now, given f 6= g : X ⇒ Y , their images Im(f)� Y and Im(g)�
Y are distinct. So there is an y : P → Im(f) not factoring through Im(g):

P

x

||x
x

x
x

x
x

y
��

Im(f) Y////

X

f̄ 22 22fffffff

ḡ
,, ,,XXXXXXX

Im(g) Y.////

1In the context of Theorem 2.5.10(e) and Definition 3.6.1 in the next chapter, it is noteworthy
that the objects of D bijectively correspond to subobjects of the terminal object whenever C has
equalisers. [19, Theorem III.1.6]

40

2.6. Compact objects

So there is an x : P → X such that Im(f) ◦ y = Im(f) ◦ f̄ ◦ x = f ◦ x. If
f ◦ x = g ◦ x, then Im(f) ◦ y = Im(g) ◦ ḡ ◦ x, so y would factor through Im(g).
Hence f ◦ x 6= g ◦ x, and thus P is a generator. �

2.5.15 Lemma U is a generator for [D, cMon].

PROOF By the previous lemma, it suffices to prove that for distinct subobjects
α : S ⇒ F and β : T ⇒ F , there is a γ : U ⇒ S not factoring through T . Since
α 6= β, we can assume there is a Z ∈ D with αZ : S(Z) � F (Z) not factoring
through βZ : T (Z) � F (Z). Pick an element w ∈ αZ(S(Z)) such that w 6∈
βZ(T (Z)), say w = αZ(z) for z ∈ S(Z). Define c ∈

∏
X∈C S(X) by πZ(c) = z

and supp(c) = {X}. By the Yoneda lemma[∐
X∈C

C(X,), S
] ∼= ∏

X∈C

[C(X,), S] ∼=
∏
X∈C

S(X).

Denote the natural transformation corresponding to c by γ :
∐
X∈C C(X,) ⇒

S, and the element corresponding to
∏
X∈C[C(X,), S] by γ′. If γ were to factor

through T , then γ′Z : C(Z,) ⇒ S would factor through T . In particular, then
πZ(γ′Z) : C(Z,Z)→ S(Z) would factor through T (Z), whence πZ(c) = z ∈ S(Z)
would factor through T (Z) via βZ . But this is a contradiction, and hence γ does
not factor through T . �

Since the construction of the functor in Theorem 2.5.12 is such that its image
consists of finitely projective objects [19, Proposition III.5.10], we can conclude
with the following theorem.

2.5.16 Theorem Any small regular category with finite biproducts has a full em-
bedding into the category of modules over a rig that preserves all finite colimits. �

2.6 Compact objects

This section studies objects that can be ‘reversed’ in a particular sense. In quan-
tum theory, the relationship between such a ‘reversible’ object and its dual ac-
counts for the information flow between entangled particles—this perspective
will be exemplified in Section 3.3. In standard cases, compact objects turn out
to correspond to finite-dimensional modules under the embedding theorem of
the previous section.

2.6.1 Before we formally define the notion of a compact object, let us discuss
the terminology “compact”, for an object, or “compact closed”, for a category in
which every object is compact. As we will see in Example 3.2.14, the category

41

Chapter 2. Tensors and biproducts

[G, fdHilb] of finite-dimensional unitary representations of a given group G is
a compact closed category. This example is where the compactness terminology
seems to have originated: the group G can be reconstructed from [G, fdHilb]
when it is compact [132, 149, 207]. Hence the name “compact” transferred
from the group to categories resembling [G, fdHilb].

Alternatively, one could observe that being a Hausdorff space, the unit ball
of a Hilbert space (in its norm topology) is compact if and only if it is finite-
dimensional. Finally, a Hilbert space is locally compact if and only if it is finite-
dimensional [104, Problem 10].

Compact closed categories were first introduced in 1972 as a class of exam-
ples in the context of the coherence problem [140]. They were subsequently
studied first from the perspective of categorical algebra [65, 142], and later in
relation to linear logic [195]. Interest has rejuvenated since the discovery of the
aspect that we use in this thesis: compact closed categories model (aspects of)
quantum computation [2, 197]. However, none of these references explain the
origin of the name “compact”.

Compact closed categories and closely related variants that are not necessar-
ily symmetric are known under an abundance of different names in the litera-
ture: rigid, pivotal, autonomous, sovereign, spherical, ribbon, tortile, balanced,
category with conjugates [200].

2.6.2 Definition An object X of a symmetric monoidal category is said to be
compact when it carries a compact structure, i.e. there are an object Y and mor-
phisms η : I → Y ⊗ X and ε : X ⊗ Y → I such that the following diagrams
commute:

X
ρ−1
// X ⊗ I

id⊗η // X ⊗ (Y ⊗X)

α−1

��

Y
λ−1
// I ⊗ Y

η⊗id // (Y ⊗X)⊗ Y

α

��
X I ⊗X

λ
oo (X ⊗ Y)⊗X

ε⊗id
oo Y Y ⊗ Iρ

oo Y ⊗ (X ⊗ Y).
id⊗η
oo

(2.18)

A compact closed category is a symmetric monoidal category whose objects are
compact.

2.6.3 For a given compact object X, the object Y of the previous definition is
called a dual object for X. Such dual objects are unique up to isomorphism [188,
2.5.4]. A chosen dual object for X is usually denoted by X∗. Notice that I is
a compact object in any symmetric monoidal category, with I∗ = I. Also, if X
is compact, then so is X∗. Moreover, any compact object X is isomorphic to its
double dual X∗∗ [188, 2.5.4.3].

42

2.6. Compact objects

2.6.4 A bicategory is a category that is weakly enriched over Cat, in the sense
that composition is only associative up to isomorphism—see [26], [157] or [33,
Section 7.7]. For example, the category Mod may be regarded as a bicategory,
whose objects are commutative rings.

Any monoidal category may be regarded as a one-object bicategory, whose
single homobject is the given category, and whose composition is provided by
the given monoidal structure. As in any 2-category, it makes sense to consider
adjunctions in a bicategory. Two compact objects in a symmetric monoidal cat-
egory are dual to each other precisely when they are both left and right adjoint
to each other as morphisms in the induced one-object bicategory. Under this
identification, η and ε are the unit and counit of the adjunction [65, 158].

2.6.5 Example In a posetal symmetric monoidal category, diagrams (2.18) say
that an object X is compact precisely when there is an object X∗ such that
X∗ ⊗ X = I = X ⊗ X∗. Any ordered commutative monoid is such a category,
where the order induces the morphisms, and the monoid multiplication and unit
provide symmetric monoidal structure. Hence the compact objects in an ordered
commutative monoid, seen as a posetal category, are precisely its invertible el-
ements. Thus any ordered Abelian group induces a compact closed category;
an Abelian group is partially ordered if and only if it is torsion-free [171, The-
orem 1.1.3]. This example has been studied more generally under the name of
“Lambek pregroups” [189].

2.6.6 Example In the category Vect, any finite-dimensional vector space X is
a compact object, with compact structure as follows. Let X∗ be the dual vector
space {f : X → C | f linear}. If (ei) is a basis for X, then the functionals θi

determined by θi(ei) = 1 and θi(ej) = 0 when i 6= j form a basis for X∗. Define
ηX and εX by linear extension of

ηX(1) =
dim(X)∑
i=1

θi ⊗ ei,

εX(ei ⊗ θj) = θj(ei).

Diagrams (2.18) are readily seen to commute.
An infinite-dimensional vector space cannot be isomorphic to its double dual

because of a well-known cardinality argument [127, Theorem IX.2], which we
sketch briefly. Let X be an infinite-dimensional vector space, and choose a ba-
sis B for it. Then X ∼=

∐
B C, and so X∗ ∼=

∏
B C [8, Proposition 20.2]. So

dim(X) � dim(X∗) � dim(X∗∗), whence X 6∼= X∗∗ and X is not a compact
object in Vect. For completeness’ sake, let us recall here that even for a finite-
dimensional vector space X, the isomorphism X ∼= X∗ is not natural, although

43

Chapter 2. Tensors and biproducts

X ∼= X∗∗ is [163, Section VII.4]. Thus the full subcategory fdVect of Vect
consisting of finite-dimensional vector spaces is the largest compact closed sub-
category of Vect.

The following lemma generalises this example to the category of modules
over a commutative rig R: the compact objects in that category are precisely
the finitely projective ones. Recall from Example 2.1.1 that a module over R is
called free if it is of the form RX for some X ∈ Set, with pointwise operations;
the cardinality of X is its dimension. A module is called projective if it is a retract
of a free one, and finitely projective if it is a retract of a finite-dimensional free
one.

2.6.7 Lemma For a commutative rig R, an object X ∈ ModR is compact if and
only if it is finitely projective.

PROOF [103, Lemma 1.3] The category ModR is enriched over itself. So if X
is compact, there is an isomorphism a : ModR(X,X) → X ⊗ModR(X,R) in
ModR. By the structure of the tensor product in ModR, we can write a(idX) =∑n
i=1 xi ⊗ ϕi for some xi ∈ X and ϕi : X → R and i = 1, . . . , n. Define f : X →

Rn by f(x) = (ϕ1(x), . . . , ϕn(x)), and g : Rn → X by g(r1, . . . , rn) =
∑n
i=1 ri ·xi.

Diagrams (2.18) then yield
∑n
i=1 ϕ

i(x) · xi = x, so that g ◦ f = idX . Hence X is
a retract of the finite-dimensional free module Rn. �

We now recall a few basic properties of compact objects that will be useful
later. The following proposition shows that compact closed categories are indeed
closed.

2.6.8 Proposition [158] Let C be a symmetric monoidal category.

(a) If X ∈ C is compact, then C(X,Y) ∼= C(I,X∗ ⊗ Y) for all Y ∈ C.

(b) If Y ∈ C is compact, then C(X,Y) ∼= C(X ⊗ Y ∗, I) for all X ∈ C.

(c) An object X ∈ C is compact if and only if there is an Y ∈ C such that
C(X ⊗ Y, I) ∼= C(X,X) ∼= C(I, Y ⊗X).

(d) An object X ∈ C is compact iff there is a Y ∈ C such that X ⊗ () is left
adjoint to Y ⊗ (). In that case, X ⊗ () is also right adjoint to Y ⊗ (). �

2.6.9 For future reference, let us explicate the bijections in (a) and (b) of the
previous proposition. In (a), a morphism f : X → Y corresponds to its name
pfq = (f ⊗ id) ◦ η : I → X∗ ⊗ Y . It satisfies the following absorption rules [77,
Lemma 2.18]:

(id ⊗ g) ◦ pfq = pg ◦ fq = (f∗ ⊗ id) ◦ pgq. (2.19)

44

2.6. Compact objects

Likewise, in (b), f corresponds to its coname xfy = ε ◦ (f ⊗ id) : X ⊗ Y ∗ → I.

A prominent property of a compact closed category is that a choice of dual
objects X∗ extends functorially, as in the following proposition.

2.6.10 Proposition [142] For a morphism f : X → Y in a compact closed cate-
gory C, define f∗ : Y ∗ → X∗ as the composite

Y ∗ ∼= Y ∗ ⊗ I
id⊗ηX // Y ∗ ⊗ (X ⊗X∗)

id⊗f⊗id// (Y ∗ ⊗ Y)⊗X∗ εY ⊗id // I ⊗X∗ ∼= X∗.

This defines a “choice-of-duals” functor ()∗ : Cop → C. In fact, ()∗ is an equiva-
lence since ()∗∗ ∼= Id. �

We end this chapter by making precise the intuition that compact objects
‘behave finite-dimensionally’ in standard cases, by considering their image under
the embedding of Theorem 2.5.10.

2.6.11 Proposition Let C be a symmetric monoidal category with finite biprod-
ucts, and denote its scalars by R = C(I, I). Suppose that the monoidal functor
C(I,) : C → ModR of Theorem 2.5.10 is strong monoidal. If X is a compact
object in C, then C(I,X) is finitely projective.

PROOF Strong monoidal functors preserve compact objects [158, Proposition 3],
and Lemma 2.6.7 shows that the compact objects in ModR are precisely the
finitely projective R-modules. �

2.6.12 The fact that the functor C(I,) is strong monoidal means that the
canonical coherent morphisms

C(I,X)⊗C(I, Y) ∼= C(I,X ⊗ Y) (2.20)

are isomorphisms. Here, the tensor product on the left-hand side is that of R-
modules, i.e. the Kock-Day tensor product of Example 2.2.18. Hence the require-
ment in the previous proposition means that the tensor product of C “behaves
bilinearly”. This is quite a natural restriction.

45

Chapter 3

Dagger categories

This chapter studies categories in which one can reverse morphisms. That is,
categories with a self-duality that is made explicit by a so-called dagger. Possible
extra structure, such as the tensor products and biproducts studied in the previ-
ous chapter, is then required to be compatible with this dagger. The presence of
a dagger turns out to have profound consequences. For example, we will prove
that the scalars in a Hilbert category—a special kind of dagger category with
biproducts and tensor products—form a subfield of the complex numbers, and
that the whole category embeds into that of Hilbert spaces. The material in this
chapter is based on [114] and [116].

3.1 Examples

After formally defining the object of study, this section considers several exam-
ples: first concrete ones, and then more general ones.

3.1.1 Definition A dagger is a contravariant, identity-on-objects, involutive endo-
functor, i.e. a functor † : Dop → D on a category D with X† = X on objects
and f†† = f on morphisms. We will call f† the adjoint morphism of f or sim-
ply the adjoint of f . A category that comes equipped with a dagger is then
called a dagger category. Together with dagger functors, i.e. functors F satisfying
F (f†) = F (f)†, dagger categories form a (large) category DagCat.

3.1.2 The use of daggers, mostly with additional assumptions, dates back to
[162, 179]. They have recently been considered independently as axiomatising
features in the context of quantum physics in the form portrayed in this chap-
ter ([2, 197], but see also [12, 93, 105] for similar situations with additional
assumptions).

47

Chapter 3. Dagger categories

In general, naming concepts after some notation is inferior to finding a de-
scriptive name, since notation is susceptible to change. However, in this case
‘involutive’ instead of ‘dagger’ is not flexible enough, because it is not clear what
exactly is involuted—objects, morphisms, or both?—as we will see in Exam-
ple 3.1.8. We follow [199], and use ‘dagger’ as prefix to signify compatibility,
e.g. ‘dagger functor’, and ‘dagger biproduct’, ‘dagger kernel’, in Section 3.2.

3.1.3 Example Any groupoid is a dagger category, in which the adjoint of a
morphism is given by its inverse. In particular, discrete categories are dagger
categories. As a non-example, consider a partially ordered set as a category. If it
were to have a dagger, then the category would collapse to a discrete one.

3.1.4 Example The category Rel of sets and relations introduced in Exam-
ple 2.1.6 has a dagger. The adjoint of R ⊆ X × Y is its relational converse:

R† = {(y, x) | (x, y) ∈ R} ⊆ Y ×X.

It is instructive to represent a morphism R ⊆ X × Y in Rel as (an equivalence

class of) a pair of maps
(
X R

r1oo r2 //Y
)

whose tuple 〈r1 , r2〉 : R → X × Y
of legs is injective. The dagger then becomes(

X R
r1oo r2 // Y

)†
=
(
Y R

r2oo r1 // X
)
.

3.1.5 Example The subcategory PInj of Rel consisting of sets and partial in-
jections, introduced in Example 2.1.7, inherits the dagger from Rel. Morphisms
in PInj can be represented as spans of monomorphisms with the notational
convention (

X
f //Y

)
=
(
X Foo

f1oo // f2 //Y
)
,

where spans
(
X Foo

f1oo // f2 //Y
)

and
(
X Goo

g1oo // g2 //Y
)

are identified if there
is an isomorphism ϕ : F → G with gi ◦ϕ = fi for i = 1, 2 — like for relations. In
this representation, the dagger becomes a simple swap of legs, as before.

3.1.6 Example The category preHilb of pre-Hilbert spaces of Example 2.1.2
has a dagger built in to its definition. Since morphisms are adjointable functions,
we can take the dagger of a morphism to be its adjoint. This satisfies f†† = f

since

〈f††(x) | y〉 = 〈y | f††(x)〉‡ = 〈f†(y) |x〉‡ = 〈x | f†(y)〉 = 〈f(x) | y〉.

In our context, the category Hilb of Hilbert spaces, discussed in Exam-
ple 2.1.3, is the most important example of a dagger category. Because of

48

3.1. Examples

the completeness of Hilbert spaces, every continuous linear function between
Hilbert spaces has a unique adjoint [135, Theorem 2.4.2], determined by the
equation

〈f(x) | y〉 = 〈x | f†(y)〉.

The dagger of Hilb descends to the category PHilb of Example 2.1.4, be-
cause if f = z · g for some z ∈ U(1), then

〈f(x) | y〉 = z̄ · 〈g(x) | y〉 = z̄ · 〈x | g†(y)〉 = 〈x | z̄ · g†(y)〉,

whence f† = z̄ · g†.

3.1.7 Example Let us mention some examples of dagger categories occurring
in the literature without explaining them completely.

Every *-category in the sense of [93] is a dagger category (with certain extra
properties). For example, Hilbert modules over a fixed C*-algebra (see Chap-
ter 5) form a dagger category. A more interesting example of a dagger category
is the following. Objects are *-morphisms ρ : A → A for some fixed unital *-
algebraA, morphisms ρ→ σ are a ∈ A such that a = a·ρ(1), and a·ρ(b) = σ(b)·a
for all b ∈ A.

All n-dimensional manifolds form the objects of a category whose morphisms
are so-called cobordisms. These are n+ 1-dimensional manifolds, whose bound-
ary is the disjoint union of its domain and codomain manifolds. This category is
a dagger category; the dagger of a cobordism is its reversal [147].

3.1.8 Example This example describes ‘the mother of all dagger categories’.
A functor ∗ : Cop → C is called involutive when ∗ ◦ ∗ = Id. (Daggers are

special cases that furthermore fix objects.) Define a category InvAdj as follows.
Its objects are pairs (C, ∗) of a category with an involution. A morphism (C, ∗)→
(D, ∗) is functor F : Cop → D that has a left adjoint, where two such functors are
identified when they are naturally isomorphic. The identity morphism on (C, ∗)
is the functor ∗ : Cop → C; its left adjoint is ∗op : C → Cop. The composition
of F : Cop → D and G : Dop → E is defined by G ◦ ∗op ◦ F : Cop → E; its left
adjoint is F ′ ◦ ∗ ◦G′, where F ′ a F and G′ a G.

Let us show that it is not arbitrary to require a left adjoint instead of a right
one. A contravariant functor from C to D can be written both as a (covariant)
functor F : Cop → D or as a (covariant) functor F op : C → Dop. The latter
version has a right adjoint G : Dop → C when C(X,GY) ∼= D(Y, FX), or equiv-
alently, when the former version has a left adjoint. (Such an adjunction is also
called ‘adjoint on the right’ [88].) Hence right adjoints of contravariant functors
can also be seen as left adjoints.

49

Chapter 3. Dagger categories

InvAdj is a dagger category: the adjoint of a morphism F : Cop → D is the
right adjoint of F op : C→ Dop . Since G a F if and only if F op a Gop, we have
F op a F †, so (F †)op a F , but also (F †)op a F ††. Because adjoints are unique op
to natural isomorphism, thus [F] = [F ††], as equivalence classes.

3.1.9 Example An orthoposet is a partially ordered set L that comes with a func-
tion ⊥ : L → L satisfying x⊥⊥ = x and y⊥ ≤ x⊥ when x ≤ y. They form the
objects of a category InvGal. A morphism L → M in this category is an anti-
tone Galois connection between L and M , i.e. a pair of two functions f∗ : L→M

and f∗ : M → L, such that f∗(y) ≤ x iff y ≤ f∗(x), and f∗(x) ≥ f∗(x′)
when x ≤ x′, and f∗(y) ≥ f∗(y′) when y ≤ y′. The identity morphism on L

is then given by the pair (⊥,⊥), and the composition of (g∗, g∗) and (f∗, f∗) is
(g∗◦ ⊥ ◦f∗, f∗◦ ⊥ ◦g∗).

Thus, InvGal is a full subcategory of InvAdj. We can make it into a dagger
category by defining (f∗, f∗)† = (f∗, f∗).

Before we look at more general examples, let us study some relations be-
tween the concrete examples of dagger categories we have seen until now. The
following proposition is novel, as far as we know.

3.1.10 Proposition There is a full, faithful, and injective-on-objects dagger func-
tor Sub: Rel→ InvGal.

PROOF On objects, Sub takes a set X to the orthoposet of its subsets (P(X),⊆).
If R ⊆ X × Y , then Sub(R) sends U ⊆ X to {y ∈ Y | ∀x∈U .(x, y) 6∈ R}. Hence
Sub(R) : P(X)op → P(Y). This assignment is functorial, as for S ⊆ Y × Z:

(Sub(S) ◦InvGal Sub(R))(U) = (Sub(S) ◦ ⊥◦Sub(R))(U)

= Sub(S)({y ∈ Y | ∃x∈U .(x, y) ∈ R})
= {z ∈ Z | ∀x∈U∀y∈Y .(x, y) 6∈ R ∨ (y, z) 6∈ S}
= {z ∈ Z | ∀x∈U .(x, z) 6∈ S ◦R}
= Sub(S ◦R)(U).

Indeed, Sub(R) has a left adjoint (by the adjoint functor theorem) as it preserves
infima:

Sub(R)
(⋃

i

Ui

)
= {y ∈ Y | ∀x∈S

i Ui
.(x, y) 6∈ R}

=
⋂
i

{y ∈ Y | ∀x∈Ui
.(x, y) 6∈ R} =

⋂
i

Sub(R)(Ui)

50

3.1. Examples

Let us show that Sub preserves the dagger.

U ⊆ Sub(R†)(V) = {x ∈ X | ∀y∈V .(x, y) 6∈ R}
⇐⇒ ∀x∈U∀y∈V .(x, y) 6∈ R
⇐⇒ V ⊆ Sub(R)(U) = {y ∈ Y | ∀x∈U .(x, y) 6∈ R}

So indeed Sub(R†) a Sub(R), so that Sub(R†) = Sub(R)†.
Towards faithfulness, let R,R′ ⊆ X,Y and suppose that Sub(R) 6= Sub(R′).

Then by definition there is some U ⊆ X such that {y | ∀x∈U .(x, y) 6∈ R} 6= {y |
∀x∈U .(x, y) 6∈ R′}. Without loss of generality, there are U ⊆ X and y ∈ Y with
∀x∈U .(x, y) 6∈ R and ∃x∈U .(x, y) 6∈ R′. In other words, there are x ∈ X and
y ∈ Y with (x, y) ∈ R′ but not (x, y) ∈ R. So R 6= R′. Thus Sub is faithful.

For fullness, let f : P(X) → P(Y) be given such that f(
⋃
i Ui) =

⋂
i f(Ui).

Define R = {(x, y) | y 6∈ f({x})} ⊆ X × Y . Then

f(U) = f
(⋃
x∈U
{x}
)

=
⋂
x∈U

f({x}) =
⋂
x∈U
{y ∈ Y | y ∈ f({x})}

=
⋂
x∈U
{y ∈ Y | (x, y) 6∈ R} = {y ∈ Y | ∀x∈U .(x, y) 6∈ R} = Sub(R)(U),

establishing that Sub is full. �

There is a very similar functor from Hilb to InvGal, as the following propo-
sition shows. This one is not full, however. Both functors will play a prominent
role in Chapter 4.

3.1.11 Proposition There is a faithful dagger functor ClSub: Hilb → InvGal
that is injective on objects.

PROOF On objects, define ClSub to take a Hilbert space X to the poset of its
closed subspaces. This is indeed an orthoposet, since the involution M⊥ = {x ∈
X | ∀m∈M .〈x |m〉 = 0} satisfies N⊥ ⊆ M⊥ when M ⊆ N . If f : X → Y

is a bounded linear transformation between Hilbert spaces, then the functor
ClSub(f) : ClSub(X)op → ClSub(Y) sends a subspace M ⊆ X to f(M)⊥. It
follows from [174] that the adjoint f† of f is sent to a (left) adjoint of ClSub(f);
see also Theorem 4.4.9 and Theorem 4.4.11 below. To show faithfulness, let
f, f ′ : X ⇒ Y and suppose ClSub(f) 6= ClSub(f ′). Then by definition there is
M ∈ ClSub(X) such that f(M)⊥ 6= f ′(M)⊥. Without loss of generality, there
are M ∈ ClSub(X), m ∈ M , and y ∈ Y with 〈f(m) | y〉 = 0 6= 〈f ′(m) | y〉. So
f(m) 6= f ′(m), whence f 6= f ′. Thus ClSub is faithful. �

3.1.12 Every Hilbert space is automatically a pre-Hilbert space. Conversely, ev-
ery pre-Hilbert space can be completed to a Hilbert space into which it densely

51

Chapter 3. Dagger categories

embeds, by the process of Cauchy completion [181, I.3]. A bounded adjointable
function between pre-Hilbert spaces then extends to a bounded linear function
between the resulting Hilbert spaces [181, I.7]. These two functors form a core-

flection preHilbbd //
⊥ Hilb? _oo .

3.1.13 There is a dagger functor `2 : PInj→ Hilb. It acts on a set X as

`2(X) = {ϕ : X → C |
∑
x∈X
|ϕ(x)|2 <∞},

which is a Hilbert space under the inner product 〈ϕ |ψ〉 =
∑
x∈X ϕ(x)·ψ(x) [135].

The functor sends a partial injection
(
X Moo

f1oo // f2 //Y
)

to the linear func-
tion `2(f) : `2(X)→ `2(Y) determined informally by `2(f) = () ◦ f†. Explicitly,
`2(f)(ϕ)(y) =

∑
m∈f−1

2 (y) ϕ(f1(m)). This is a well-defined morphism in Hilb:∑
y∈Y

∣∣`2(f)(ϕ)(y)
∣∣2 =

∑
y∈Y

∣∣ ∑
m∈f−1

2 (y)

ϕ(f1(m))
∣∣2 ≤∑

y∈Y

∑
m∈f−1

2 (y)

|ϕ(f1(m))|2

=
∑
m∈M

|ϕ(f1(m))|2 ≤
∑
x∈X
|ϕ(x)|2 <∞.

To verify that this assignment is functorial, suppose that
(
Y Noo

g1oo // g2 //Z
)

is

another morphisms. Their composition g ◦ f is given by
(
X Poo

p1oo // p2 //Z
)
,

where P = {(m,n) ∈ M × N | f2(m) = g1(n)}, with p1(m,n) = f1(m) and
p2(m,n) = g2(n). Hence

(`2(g) ◦ `2(f))(ϕ)(z) =
∑

n∈g−1
2 (z)

∑
m∈f−1

2 (g1(n))

ϕ(f1(m)) =
∑

(m,n)∈P,g2(n)=z

ϕ(f1(m))

=
∑

(m,n)∈p−1
2 (z)

ϕ(p1(m,n)) = (`2(g ◦ f))(ϕ)(z).

It follows directly from the definition that `2(id) = id. Hence `2 : PInj → Hilb
is indeed a functor. The following calculation shows that it is a dagger functor.
For ϕ ∈ `2(X) and ψ ∈ `2(Y):

〈`2(f)(ϕ) |ψ〉`2(Y) =
∑
y∈Y

`2(f)(ϕ)(y) · ψ(y) =
∑
y∈Y

∑
m∈f−1

2 (y)

ϕ(f1(m)) · ψ(y)

=
∑
m∈M

ϕ(f1(m)) · ψ(f2(m)) =
∑
x∈X

∑
m∈f−1

1 (x)

ϕ(x) · ψ(f2(m))

=
∑
x∈X

ϕ(x) · (
∑

m∈f−1
1 (x)

ψ(f2(m))) = 〈ϕ | `2(f†)(ψ)〉`2(X).

52

3.1. Examples

The restriction `2 : finPInj→ fdHilb to the category of finite sets and partial
injections extends to a functor `2 : finSet → fdHilb, but neither to a functor
finRel → fdHilb, nor to a functor Set → Hilb. This was first noticed in [21],
and further studied in [102].

3.1.14 The functor `2 could be seen as a sort of free functor, as it factors via
preHilbbd by the coreflection of 3.1.12.

Define a functor F : PInj → preHilbbd as follows. A set X is mapped to
F (X) = {ϕ : X → C | supp(ϕ) finite} with 〈ϕ |ψ〉FX =

∑
x∈X ϕ(x) · ψ(x). On

a morphism f : X → Y , it is defined as Ff(ϕ)(y) =
∑
m∈f−1

2 (y) ϕ(f1(m)). Then
Ff is adjointable (with adjoint F (f†)), and bounded:

‖Ff(ϕ)‖ =
(∑
y∈Y

∣∣∣ ∑
x∈f−1(y)

ϕ(x)
∣∣∣2) 1

2 ≤
(∑
y∈Y

∑
x∈f−1(y)

|ϕ(x)|2
) 1

2

=
(∑
x∈Dom(f)

|ϕ(x)|2
) 1

2 ≤
(∑
x∈X
|ϕ(x)|2

) 1
2

= ‖ϕ‖.

One could say that F is the free vector space functor that equips its output with
the canonical inner product, except that it needs to be restricted to PInj. Finally,
`2(X) is the Cauchy completion of F (X), and the extension of F (f) is `2(f).

We can summarise the above relationships by the following commuting dia-
gram of dagger categories.

preHilbbd
//

⊥ Hilb? _oo
ClSub // InvGal � � // InvAdj

PInj

ffMMMMMMMMMMMMMM
`2

OO

� � // Rel

Sub

OO 88qqqqqqqqqqqqqqq

The rest of this section is concerned with more general examples of dagger cat-
egories.

3.1.15 Example If D and E are dagger categories, then the category [D,E] of
dagger functors and natural transformations is again a dagger category. The
adjoint α† : G ⇒ F of a natural transformation α : F ⇒ G is determined com-
ponentwise, by (α†)X = (αX)†, as is verified for f : X → Y in D by:

(α†)Y ◦G(f) = (G(f)† ◦ (α†)†Y)† = (G(f†) ◦ αY)†

= (αX ◦ F (f†))† = ((α†)†X ◦ F (f)†)† = F (f) ◦ (α†)X .

53

Chapter 3. Dagger categories

A particularly important special case is the category [G,Hilb] for a group G.
An object in this category is a functor U : G → Hilb; on objects, U(∗) gives a
Hilbert space HU . On morphisms, U(g) gives a bounded linear transformation
U(g) : HU → HU , such that U(h) ◦ U(g) = U(h ◦ g). The fact that U must pre-
serve the dagger means that U(g−1) = U(g)†. Hence the objects of [G,Hilb]
of are precisely the unitary representation of the group G. Likewise, the mor-
phisms are precisely intertwiners between representations. It could be said that
representation theory (see e.g. [166]) is all about the study of the categories of
the form [G,Hilb].

3.1.16 Definition The construction C� of Definition 2.3.5 extends to a func-
tor ()� : Cat → DagCat as follows. Given a functor F : C → D, define
F� : C� → D� by F�(X) = F (X) and F�(f←, f→) = (F (f←), F (f→)).

The following theorem shows that C� is the cofree dagger category. The func-
tor ()� resembles a ‘diagonal’ Chu construction [20], and is used in reversible
computation [126]. There is also a parallel with Corollary 2.3.6: a category C
is self-dual, i.e. C ∼= Cop, if and only if the forgetful functor C� → C is an
isomorphism.

3.1.17 Theorem The functor ()� is right adjoint to the evident forgetful functor
DagCat→ Cat.

PROOF We are to establish a natural correspondence

(C, †) F //D� in DagCat

C
G
//D in Cat

Define the transpose of F by F∨(X) = F (X) and F∨(f) = (F (f))→. This
is a well-defined functor. Define the transpose of G by G∧(X) = G(X) and
G∧(f) = (G(f†), G(f)). It is a well-defined dagger functor. Moreover

F∨∧(f) = (F∨(f†), F∨(f))

= ((F (f†))→, (F (f))→)

= ((F (f)†)→, (F (f))→)

= (F (f)←, F (f)→)

= F (f)

and
G∧∨(f) = (G∧(f))→ = (G(f†), G(f))→ = G(f). �

54

3.1. Examples

3.1.18 Definition Let a category C be given. Define a category Zigzag(C) with
the same objects as C, as follows. A morphism from X to Y in Zigzag(C)
consists of a natural number n = 1, 2, . . ., objects X2, . . . , Xn and X1, . . . , Xn of
C, and morphisms X1 · · · Xn

X

1f
==|||||

X2

f1
aaDDDDD

2f
=={{{{{

Xn

fn−1
aaCCCCC

nf
<<zzzzz

Y

fn
aaBBBBB

 ,

subject to the identifications Z ′ Z

X

f AA���
Z ′

<<<
<<< g AA���

Y

h\\999

 ∼
 Z

X

g◦f AA���
Y

h\\999

 (3.1)

and Z Z ′

X

f BB���
Z ′

��� ���
g]]:::

Y

h]];;;

 ∼
 Z

X

f AA���
Y

g◦h\\999

 . (3.2)

Composition of such ‘zigzag’ morphisms is defined by juxtaposition. The identity

on X is
(
X X X

)
. Thus we have a category Zigzag(C). In fact, this

is a dagger category by

(1f, f1, . . . , nf, fn)† = (fn, nf, . . . , f1, 1f).

Any morphism in Zigzag(C) can be written in normal form by using (3.1)
and (3.2), read from left to right. The normal form of f then has the smallest n
possible, and no if = id or fi = id except perhaps 1f = id or fn = id.

For a functor F : C→ D, define Zigzag(F) : Zigzag(C)→ Zigzag(D) by

Zigzag(F)(X) = F (X),

Zigzag(F)(1f, f1, . . . , n, fn) = (F (1f), F (f1), . . . , F (nf), F (fn)).

Thus we have a functor Zigzag : Cat→ DagCat. The following theorem shows
that Zigzag(C) is the free dagger category.

3.1.19 Theorem The functor Zigzag() is left adjoint to the evident forgetful
functor DagCat→ Cat.

55

Chapter 3. Dagger categories

PROOF We are to establish a natural correspondence

Zigzag(C) F //(D, †) in DagCat

C
G
//D in Cat

Define the transpose of F by F∨(X) = F (X) and F∨(f) = F
(
X

f //Y Y
)
;

this is a well-defined functor. Define the transpose of G by G∧(X) = G(X) and
G∧(1f, f1, . . . , n, fn) = G(fn)† ◦G(nf) ◦ · · ·G(f1)† ◦G(1f); this is a well-defined
dagger functor. Moreover

F∨∧

 X1 Xn

X

1f BB���
X2

f1^^<<<
· · · Xn

nf @@���
Y

fn
\\999

= (F∨(fn))† ◦ F∨(nf) ◦ · · · ◦ (F∨(f1))† ◦ F∨(1f)

= F

 Xn

Xn

��� ���
Y

fn
UU+++

 ◦ F
 Xn

Xn

nf
GG���
Xn

000
000

 ◦ · · · ◦ F
 X1

X1

��� ���
X2

f1
VV...

 ◦ F
 X1

X

1f
II���
X1

...
...

= F

 X1 X1 Xn Xn

X

1f ??~~~~
X1

CCC
CCC {{{ {{{

X2

f1aaBBB
· · · Xn

nf =={{{{
Xn

DDDD
DDDD zzzz

zzzz
Y

fn__@@@@

= F

 X1 Xn

X

1f BB���
X2

f1^^<<<
· · · Xn

nf @@���
Y

fn
\\999

 ,

and
G∧∨(f) = G∧

(
X

f //Y Y
)

= G(id)† ◦G(f) = G(f). �

The categories Rel and PInj are both quotient categories of Zigzag(Set).
The previous two theorems can be summarised by the following diagram.

DagCat

��
Cat

Zigzag

OO

a ()�

OO

a

3.2 Dagger structures

In a category with an explicit self-duality in the form of a dagger, it makes sense
to consider compatibility of the dagger with all kinds of structures. This section

56

3.2. Dagger structures

considers how a dagger interacts with monomorphisms, epimorphisms, tensor
products, biproducts, kernels and equalisers.

3.2.1 Definition A monomorphism f in a dagger category is called a dagger
mono when f† ◦ f = id, i.e. when it is split by its own adjoint. An epimorphism
is called a dagger epi when f ◦ f† = id, i.e. when its adjoint is dagger mono.
A dagger iso is a morphism that is both dagger mono and dagger epi, i.e. a
morphism whose adjoint is its inverse.

Some authors transfer terminology from Hilb to any dagger category. For
example, dagger monos are also called isometries, since they are precisely the
ones that preserve the metric:

〈f(x) | f(y)〉 = 〈x | (f† ◦ f)(y)〉 = 〈x | y〉.

Likewise, dagger isos are also called unitaries. However, in keeping with 3.1.2,
we prefer to prefix structures with dagger, with two exceptions that have no ob-
vious equivalent in this terminology. A morphism f : X → X is self-adjoint when
f† = f . A projection is a self-adjoint idempotent morphism, i.e. a morphism
f : X → X that satisfies f† = f = f ◦ f .

Let us illustrate the differences between e.g. monos and dagger monos in
several of our examples.

3.2.2 Example The requirement that a morphism R ⊆ X×Y in Rel is a dagger
mono amounts to the equivalence

∃y∈Y . (x, y) ∈ R ∧ (x′, y) ∈ R ⇐⇒ x = x′

for all x, x′ ∈ X. This can be split into two statements:

∀x∈X .∃y∈Y . (x, y) ∈ R and ∀x,x′∈X,y∈Y . (x, y) ∈ R ∧ (x′, y) ∈ R⇒ x = x′.

Hence a dagger mono R is given by a span of the form(
X R

r1oooo // r2 //Y
)
.

A dagger epi has the same shape, but with legs exchanged.
Here is an example of a mono which is not a dagger mono. Consider the

relation R ⊆ {0, 1} × {a, b, c} given by R = {(0, a), (0, b), (1, b), (1, c)}. Clearly,
the first leg of R is a surjection, and the second one is neither an injection
nor a surjection. To verify that R is monic, suppose S, T : X → {0, 1} satisfy
R ◦ S = R ◦ T . If (x, 0) ∈ S, then (x, a) ∈ (R ◦ S) = (R ◦ T), so that (x, 0) ∈ T .
Similarly, (x, 1) ∈ S ⇒ (x, 1) ∈ T .

57

Chapter 3. Dagger categories

3.2.3 Example Consider a morphism f =
(
X Foo

f1oo // f2 //Y
)

in PInj. Since

f† ◦ f =
(
X Foo

f1oo // f1 //X
)
, the morphism f is a dagger mono if and only if

its first leg f1 : F � X is an isomorphism. We can therefore identify a mono

m : M � X in Set with the corresponding dagger mono
(
M M // m //X

)
in PInj. In fact, being a mono in PInj and being a dagger mono are precisely
the same thing. For if m : X → Y is a mono in PInj that is not dagger mono,
then there is an x ∈ X with x 6∈ m1(M); hence there are different partial
injections f, g : 1⇒ X such that m ◦ f = m ◦ g, which is a contradiction. Dually,
the dagger epis in PInj coincide with all epis.

3.2.4 Example It is not hard to see that the monos in Hilb are precisely the
injective continuous linear transformations. On the other hand, we already saw
in 3.1.2 that the dagger monos in Hilb are precisely the isometries. The range
{f(x) | x ∈ X} of an isometry f : X → Y is automatically a closed subspace of
Y since isometries are injective [10, Proposition 4.5.2].

Dually, dagger epimorphisms in Hilb are automatically surjective [10, Propo-
sition 4.6.1], but the epis in Hilb are precisely the continuous linear transfor-
mations whose range is dense. Indeed, if e : X → Y satisfies f ◦ e = g ◦ e for
all f, g : Y → Z and e has dense range, we can write y = limn e(xn) for y ∈ Y ,
whence

f(y) = f(lim
n
e(xn)) = lim

n
f(e(xn)) = lim

n
g(e(xn)) = g(lim

n
e(xn)) = g(y).

Conversely, suppose that e : X � Y is epi. If we denote by e(X) the closure of
e’s range in Y , then Y/e(X) is again a Hilbert space, and the induced projection
p : Y → Y/e(X) is continuous and linear. Then p ◦ e = 0 ◦ e, whence p = 0, and
e(X) = Y .

Here is an example of a morphism that is both mono and epi, but is neither a
dagger mono nor a dagger epi. Define f : `2(N)→ `2(N) by f(ϕ)(n) = 1

nϕ(n). It
is injective, self-adjoint, and hence also has dense range. But it is not surjective,
as ϕ ∈ `2(N) determined by ϕ(n) = 1

n is not in its range. Its range therefore
cannot be a closed subspace.

3.2.5 Example For any category C, a morphism f of C� is a mono precisely
when f→ is mono and f← is epi. But f is dagger mono if and only if(f←)◦(f→) =
idX , i.e. when f← is a mono that is split by f→.

Dually, epis and dagger epis have the same characterisation, with constituents
exchanged. In particular, f is a dagger isomorphism if and only if (f←) =
(f→)−1.

58

3.2. Dagger structures

3.2.6 Example For any category C, a morphism f of Zigzag(C) in normal form
is dagger monic if and only if fi = id = if for all i = 1, . . . , n. That is, the only
dagger monos are the identities, and dually, the only dagger epis are identities.
But there can be more monos than just identities. For example, any f which has
a normal form with 1f an isomorphism and f1 epic in C, is monic in Zigzag(C).
One can see this by assuming f ◦ g = f ◦h and distinguishing the different cases
discerning whether the last legs of g and h, and the first leg 1f of f are identities.
Also, any f in normal form for which 1f is monic and non-split epic in C, is
monic in Zigzag(C).

We now move on to the interaction between a dagger and monoidal struc-
tures.

3.2.7 Definition A dagger (symmetric) monoidal category is a dagger category
(D, †) that carries a (symmetric) monoidal structure (D,⊗, I) for which (f ⊗
g)† = f† ⊗ g† for all morphisms f and g, and whose coherence isomorphisms
α, ρ, λ (and γ) are dagger isomorphisms.

A dagger (strong) monoidal functor is a functor between dagger monoidal
categories that is simultaneously dagger and (strong) monoidal.

3.2.8 Example The symmetric monoidal categories (Rel,×, 1), (PInj,×, 1) and
(Hilb,⊗,C) are all dagger symmetric monoidal categories, when equipped with
the daggers covered in Examples 3.1.4, 3.1.5 and 3.1.6, respectively.

3.2.9 Definition An object X of a dagger symmetric monoidal category is said
to be dagger compact when it carries a dagger compact structure: this is a compact
structure such that ηX = ε†X ◦ γX∗,X .

I
ε†X //

ηX

##GGGGGGGGG X∗ ⊗X
γX∗,X

��
X ⊗X∗

A dagger compact closed category is a dagger symmetric monoidal category whose
objects are dagger compact.

3.2.10 In any dagger compact closed category D, the choice-of-duals functor
of Proposition 2.6.10 commutes with the dagger [197, Definition 2.9]). Hence
there is a covariant functor ()∗ : D → D determined by X∗ = X∗ on objects
and acting as f∗ = f∗† = f†∗. In Hilb, this functor maps a morphism to its
complex conjugate.

59

Chapter 3. Dagger categories

3.2.11 Example The complex field C forms a metric space, and hence can be
regarded as a ([0,∞)-enriched) category, with the metric providing homob-
jects [155]. By combining this with Example 2.6.5, it turns out that we can
regard C as a dagger compact closed category, as follows. Objects are just com-
plex numbers x ∈ C. Morphisms x → y are z ∈ C satisfying |z| = y − x.
Define identities by idx = 0. Composition of u : x → y and v : y → z is given by
v ◦ u = |v|+ |u|. This is indeed well-defined, for

|v ◦ u| = ||v|+ |u|| = |v|+ |u| = (z − y) + (y − x) = z − x.

This category has a symmetric monoidal structure, given on objects by x⊗y =
x + y, and on morphisms by u ⊗ v = u + v. The unit for this (strict) monoidal
structure is I = 0. This even provides a symmetric monoidal closed structure,
by y (z = z − y. Moreover, every object x is compact, by x∗ = −x. Finally,
there is a dagger, given by complex conjugation: u† = ū. Thus we can regard
the complex numbers as a dagger compact closed category.

3.2.12 Example In the category Rel of sets and relations, every object X is
compact: by defining X∗ = X and

ηX = {(∗, (x, x)) | x ∈ X},
εX = {((x, x), ∗) | x ∈ X},

one easily verifies that diagrams (2.18) commute. In fact, this makes X dagger
compact. Thus Rel is a dagger compact closed category.

This example can be generalised to the Kleisli category of the monad on Set
given by P(M×−) for an arbitrary commutative monoid M instead of the trivial
monoid. It can also be generalised to the category of relations on an arbitrary
regular category [44]. In both the Kleisli categories and the relation categories
above, every object is compact.

At first sight, one might expect that the category Sup of complete lattices
and supremum-preserving functions is compact, but it is not [20, page 99]. Its
largest compact closed subcategory is that of complete atomic Boolean lattices
and sup-preserving functions; this category is equivalent to Rel. Coincidentally,
Sup is the category of Eilenberg-Moore algebras for the powerset monad, and
Rel is the category of Kleisli algebras for that monad.

3.2.13 Continuing 2.6.12, notice that the tensor product × in Rel does not
satisfy the requirement of “behaving bilinearly”. Indeed, the left-hand side
Rel(1, X)⊗Rel(1, Y) of (2.20) can be identified with (P(X)×P(Y))/ ∼, where
∼ is the least equivalence relation determined by (∅, V) ∼ (U, ∅) for U ⊆ X and
V ⊆ Y . But the right-hand side Rel(1, X × Y) is P(X × Y), which is of higher

60

3.2. Dagger structures

cardinality in general. This explains why compact objects in Rel can be infi-
nite as sets. This keeps us from calling compact objects “finite objects”, which
would make sense from the perspective of Examples 2.6.5 and 2.6.6 and the
next example.

3.2.14 Example One can extend Example 2.6.6 to Hilb. For a Hilbert space
X, let X∗ be the conjugate of the dual space Hilb(X,C) = {f : X → C |
f bounded linear}, i.e. it has the same additive group as the dual space, but
conjugated scalar multiplication. In general, X∗⊗X is isomorphic to the Hilbert
space of all Hilbert-Schmidt maps X → X [135]. For finite-dimensional X,
define ηX by letting 1 correspond to the identity map under this isomorphism
and extending linearly and continuously, and define εX as the adjoint of ηX .
Then diagrams (2.18) commute. Hence any finite-dimensional Hilbert space X
is a dagger compact object Hilb.

Since the identity map on X is a Hilbert-Schmidt map if and only if X is
finite-dimensional, this recipe for obtaining compact structure on X only works
for finite-dimensional X. In other words, fdHilb is a full compact closed sub-
category of Hilb. Moreover, a full compact closed subcategory of Hilb is neces-
sarily closed by Proposition 2.6.8(d). Since only the Hilbert-Schmidt operators
form a Hilbert space again [135], a full compact closed subcategory of Hilb
must consist of objects between which all continuous linear functions are auto-
matically Hilbert-Schmidt. That is, the largest full compact closed subcategory
of Hilb is fdHilb.

This example can be generalised to the category [G,Hilb] of unitary repre-
sentations of a given group G, as discussed in Example 3.1.15. The compact ob-
jects in that category are precisely the representations with a finite-dimensional
carrier space.

3.2.15 Definition A dagger category (D, †) has (finite) dagger biproducts when
it has (finite) biproducts with κi = π†i . In the algebraic characterisation of
Corollary 2.3.6, this is equivalent to ∆† = ∇ and u† = n.

3.2.16 Both (Rel, †,+, ∅) and (Hilb, †,⊕, 0) are examples of dagger biproduct
categories. The category PInj inherits the dagger symmetric monoidal structure
(+, ∅) from Rel, but it does not provide biproducts in the former category. Ob-
serve, nevertheless, that the ‘free vector space functor’ F : PInj → preHilbbd

from 3.1.14 preserves this dagger monoidal structure (+, ∅). Hence so does the
functor `2 : PInj → Hilb. Compare 2.3.15 and 2.3.16. This suggests to study
the dagger symmetric monoidal structure (+, ∅) on PInj. It is coaffine, i.e. its
unit ∅ is an initial object (and also a final one, in the presence of a dagger).

61

Chapter 3. Dagger categories

3.2.17 Proposition The category finPInj of finite sets and partial injections is
the free dagger coaffine category on one object. More precisely, there is a functor
1: 1 → finPInj such that for every dagger coaffine category D and every functor
G : 1→ D, there is a unique dagger monoidal functor D : finPInj→ D satisfying
D ◦ 1 ∼= G, canonically.

1
1 //

G))SSSSSSSSSSSSSS finPInj
∃! D��
D

PROOF Define the functor 1 by picking a singleton set {∗} in finPInj. Iden-
tify the functor G with an object of the category D. We define the functor D
as follows. On objects, D sends a set X to ⊕x∈XG. To define its action on
morphisms, we use the fact that the category finInj of finite sets and injections
is the free coaffine category on one object, i.e. that there is a unique functor
D′ : finInj→ D such thatD′◦1 ∼= Gwith the same action on objects asD [176].

Given a partial injection
(
X Foo

f1oo // f2 //Y
)
, notice that F must be a finite set,

and factor it as
(
F F // f1 //X

)†
followed by

(
F F // f2 //Y

)
. Define

D(f) = D′(f2) ◦D′(f1)†. The desired properties of D now follow from those of
D′. �

3.2.18 It is interesting to note that picking G = C ∈ fdHilb in the previous
proposition results in D being the (restricted) functor `2 : finPInj→ fdHilb.

The previous proposition suggests that PInj could be characterised as the
free dagger category with ‘infinite symmetric monoidal’ structure whose unit is
initial. Although ‘infinite tensor products’ have not been studied in the literature,
the unbiased categories of [157] could be generalised to fit these requirements.
However, we refrain from doing so here.

3.2.19 If a category C has biproducts, then C� has dagger biproducts. The
zero object in C� is that of C, and X ⊕ Y in C� is the object X ⊕ Y in C. The
projection in C� is determined by π← = κ and π→ = π, where the right-hand
sides are the biproduct morphisms in C.

The category Zigzag(C) need not have a zero object, even if C has one;

there is still a morphism
(

0 0 X
0oo

)
, but it is by no means the unique

one. Hence Zigzag() need not preserve biproducts.

3.2.20 Definition A dagger equaliser of two morphisms f, g : X ⇒ Y is an
equaliser of f, g that is a dagger mono. In particular, a dagger kernel of f : X →

62

3.2. Dagger structures

Y is a dagger equaliser of f and 0: X → Y :

·
ker(f) // X

f //
0

// Y.

·

OO�
�
�

77ooooooooooo

There is a subtlety in saying that a category has dagger equalisers: equalisers are
closed under precomposition with arbitrary isomorphisms, but dagger equalisers
are only closed under precomposition with dagger isomorphisms. Hence we say
that a dagger category has dagger equalisers when it has (finite) equalisers and
for every equaliser there is a dagger mono that is isomorphic to it. The same
goes for dagger kernels. A dagger category that has dagger equalisers is called
a dagger equaliser category, and a dagger category that has (a zero object and)
dagger kernels is called a dagger kernel category. The latter form a category
DagKerCat, the morphisms of which are dagger functors that preserve the
zero object and kernels. In diagrams, we draw dagger kernels as � ,2 // .

3.2.21 If a dagger category has limits of a certain symmetric shape, then it also
has colimits of that shape. For ifD : J→ D is a diagram in a dagger category, we
can consider the reversed diagram † ◦Dop : Jop → D. If the latter diagram has
a limit cone lj : L → D(j), then l†j : D(j) → L is a colimit cone for the original
diagram.

Thus, if a dagger category has dagger equalisers, it also has dagger coequalis-
ers, i.e. coequalisers that can be chosen to be dagger epi. And if a dagger cate-
gory has dagger kernels, it also has dagger cokernels, i.e. cokernels that can be
chosen to be dagger epi, by coker(f) = ker(f†)†. In diagrams, we draw dagger
cokernels as � ,2.

3.2.22 Example Perhaps the best example of dagger kernels can be given in
categories with dagger biproducts. Then ker(π1) = κ2 and ker(π2) = κ1, almost
by definition. Certainly π1 ◦κ2 = 0, and if π1 ◦ f = 0 for some f : X → X1⊕X2,
then f = 〈κ1◦π1◦f , κ2◦π2◦f〉 = 〈0 , κ2◦π2◦f〉 = κ2◦〈0 , π2◦f〉, so that f indeed
factors uniquely through κ2. Similarly, coker(κ1) = π2 and coker(κ2) = π1.

3.2.23 Example The category Rel has dagger kernels. For an arbitrary mor-
phism R : X → Y one takes ker(R) = {x ∈ X | ¬∃y ∈ Y. (x, y) ∈ R} with map
k : ker(R) → X in Rel given by k = {(x, x) | x ∈ ker(R)}. Clearly, R ◦ k = 0.
And if S : Z → X satisfies R ◦ S = 0, then ¬∃x ∈ X. (x, y) ∈ R ∧ (z, x) ∈ S,
for all z ∈ Z and y ∈ Y . This means that (z, x) ∈ S implies there is no y with
(x, y) ∈ R. Hence S factors through the kernel k. Kernels are therefore of the

63

Chapter 3. Dagger categories

following form: K

|||||| !!
!!BB

K X

 with K = {x ∈ X | ¬∃y∈Y . (x, y) ∈ R}.

Since relations of this form are dagger mono by Example 3.2.2, Rel has dagger
kernels. But not every dagger mono is a dagger kernel. Notice that kernels
correspond to subsets of X.

However, Rel does not have dagger equalisers, since it even lacks equalisers.
To see this, consider the sets X = {0, 1} and Y = {0}, and the parallel relations
R = X × Y and S = {(0, 0)} ⊆ X × Y . Their equaliser must be contained in
T = {(0, 0)} ⊆ {0} ×X. Now T ′ = {0} ×X also satisfies R ◦ T ′ = S ◦ T ′, but
does not factor through any subrelation of T .

3.2.24 Example The category PInj also has dagger kernels. For the description

of the kernel of a morphism f =
(
X

f1
� F

f2
� Y

)
we shall use the ad hoc notation

¬f1 : ¬1F � X for the complement of the first leg f1 : F � X as a subset,
yielding

ker(f) =

 ¬1F

uuuuuuuu "" ¬f1
""EEE

¬1F X

 .

This satisfies f ◦ ker(f) = 0, and is a dagger mono by construction. Notice that
in PInj, too, kernels correspond to subsets. But in PInj, unlike in Rel, every
dagger mono is a dagger kernel by Example 3.2.3. Seeing that PInj even has
dagger equalisers is easier in the notation of Example 2.1.7. The equaliser of
f, g : X ⇒ Y is the inclusion of{

x ∈ X | x 6∈ (dom(f) ∪ dom(g)) ∨
(
x ∈ (dom(f) ∩ dom(g)) ∧ f(x) = g(x)

)}
into X. Indeed, for g = 0 this reduces to the above ker(f).

3.2.25 Example The category Hilb has dagger equalisers. The equaliser of
morphisms f, g : X ⇒ Y is the inclusion of the subspace {x ∈ X | f(x) = g(x)}
into X. Since this subspace is always closed, its inclusion is a dagger mono by
Example 3.2.4. As a special case, Hilb also has dagger kernels. But we can also
derive dagger equalisers from dagger kernels, since the equaliser of f and g is
the kernel of g − f .

Every dagger mono m : X � ,2 //Y in Hilb is a dagger kernel, namely of the
orthogonal projection onto the orthocomplement of its range {m(x) | x ∈ X}
(see Example 4.2.4).

64

3.2. Dagger structures

3.2.26 The functor `2 : PInj → Hilb preserves dagger kernels: for a partial

injection f =
(
X Foo

f1oo // f2 //Y
)

we have

ker(`2(f)) = {ϕ ∈ `2(X) | `2(f)(ϕ) = 0}

=
{
ϕ ∈ `2(X) | ∀y∈Y .

∑
u∈f−1

2 (y)

ϕ(f1(u)) = 0
}

= {ϕ ∈ `2(X) | ∀u∈F . ϕ(f1(u)) = 0}
= {ϕ ∈ `2(X) | supp(ϕ) ⊆ ¬1F}
= `2(¬1F)

= `2(ker(f)).

However, `2 does not preserve dagger equalisers. For a counterexample, take
X = {0, 1}, Y = {a}, and let f, g : X ⇒ Y be the partial injections f = {(0, a)}
and g = {(1, a)}. Their equaliser in PInj is ∅. But

eq(`2(f), `2(g)) = {ϕ ∈ `2(X) | `2(f)(ϕ) = `2(g)(ϕ)}

=
{
ϕ ∈ `2(X) | ∀y∈Y .

∑
u∈f−1

2 (y)

ϕ(f1(u)) =
∑

v∈g−1
2 (y)

ϕ(g1(v))
}

= {ϕ : {0, 1} → C | ϕ(0) = ϕ(1)}
∼= C.

Hence eq(`2(f), `2(g)) ∼= C 6∼= {∅} = `2(eq(f, g)).

3.2.27 Example Dagger kernels in Hilb descend to PHilb. More precisely, the
kernel ker(f) = {x ∈ X | f(x) = 0} of a morphism f : X → Y is well-defined,
for if f = z · f ′ for some z ∈ U(1), then

ker(f) = {x ∈ X | z · f ′(x) = 0} = {x ∈ X | f ′(x) = 0} = ker(f ′).

However, dagger equalisers do not descend from Hilb to PHilb. Defining
the equaliser of f, g : X ⇒ Y as (the inclusion of) {x ∈ X | f(x) = g(x)} is not
respected by the equivalence relation. For if f = u · f ′ and g = v · g′ for some
u, v ∈ U(1), then there is no reason why f(x) = u · f ′(x) = v · g′(x) = g(x)
should hold if and only if f ′(x) = g′(x), except when u = v.

3.2.28 Example If C and D are dagger categories, then the dagger functor cat-
egory [C , D] has dagger kernels whenever D does. The kernel is computed
objectwise. Let F,G : C ⇒ D and α : F ⇒ G be given. The assignment
K(X) = ker(αX) on objects defines a functor K : C → D that acts on mor-

65

Chapter 3. Dagger categories

phisms as follows. For f : X → Y in C, we have

αY ◦ (Ff ◦ ker(αX)) = Gf ◦ αX ◦ ker(αX) = Gf ◦ 0 = 0,

inducing a morphism Kf : KX → KY . In a diagram:

KX
� ,2ker(αX) //

Kf

���
�
� FX

Ff

��

αx // GX

Gf

��
KY

� ,2
ker(αY)

// FY αY

// GY.

This also shows that ker(αX) defines a natural transformation K ⇒ F . It is the
kernel of α in [C , D]. Similarly, [C , D] has dagger equalisers when D does.

3.2.29 Example For any category C, kernels in the cofree dagger category C�

are given by ker(f) = (ker(f→), coker(f←)), if the latter pair exists and coincides
in C.

The free dagger functor Zigzag() need not preserve zero objects, as seen
in 3.2.19, and hence also need not preserve kernels.

3.3 Quantum key distribution

We have now gathered enough categorical structure to consider an application.
As an intermezzo to the theory, this section models a certain quantum key dis-
tribution protocol and prove its correctness. This exemplifies the point of view
that compact objects model a (one-time) quantum communication channel, as
recognised by [2, 72, 101].

3.3.1 Quantum key distribution is the name for a collection of protocols that
provide two parties (traditionally called Alice and Bob) with a shared binary
string, unknowable to anyone else, using a quantum channel between them.
Moreover, such a scheme must be provably secure by the laws of nature, i.e. its
security may not depend on any unsolved or computationally unfeasible mathe-
matical problems. Like Whitfield Diffie and Martin Hellmann’s [70], such a pro-
tocol regulates key distribution, but gives no guarantee about authenticity of the
two parties involved. The best-known protocol in this family is that of Charles
Bennett and Giles Brassard [27], which essentially relies on Bell’s inequalities
and the law of large numbers to provide secure keys. There are several im-
provements upon this protocol. In particular, Arthur Ekert [80] has developed
a very nice simplification of the Bennett-Brassard protocol, which is outlined in
Figure 3.3.1. As Bell’s inequalities provide a means to verify that two qubits

66

3.3. Quantum key distribution

1. Alice and Bob agree upon 3 measurements m1,m2,m3.

2. Alice secretly chooses ai ∈ {1, 2, 3} for i = 1, . . . , 3n randomly,
Bob secretly chooses bi ∈ {1, 2, 3} for i = 1, . . . , 3n randomly.

3. They share 3n fresh qubit-pairs prepared in the Bell state |01〉−|10〉√
2

.
We denote these by (xai , x

b
i)i=1,...,3n.

4. Alice measures xai with mai
to obtain ci for i = 1, . . . , 3n.

Bob measures xbi with mbi to obtain c′i for i = 1, . . . , 3n.

5. Alice publicly announces ai.
Bob publicly announces bi.
Thus they determine I = {i ∈ {1, . . . , 3n} | ai 6= bi}.
With large probability #I ≤ n; if not, go to step 2.

6. Alice publicly announces ci for i ∈ I.
Bob publicly announces c′i for i ∈ I.
With large probability, ci and c′i are sufficiently correlated
by Bell’s inequality for i ∈ I; if not, go to step 2.

7. Alice uses cj for j ∈ {1, . . . , 3n}\I as her key bits.
Bob uses 1− c′j for j ∈ {1, . . . , 3n}\I as his key bits.

Figure 3.3.1: Ekert’s quantum protocol to obtain a 2n-bits shared secret key [80].

are ‘sufficiently correlated’, potential eavesdroppers can be detected with large
probability. The law of large numbers thus ensures that this protocol works (up
to a negligible probability that can be specified in advance).

3.3.2 We need to distinguish between correctness and security. A quantum key
distribution protocol is correct if in each and every run both parties end up with
the same key (which may, of course, depend on the particular run), i.e. when
cj = 1 − c′j for all j ∈ {1, . . . , 3n}\I and every choice of mi, ai and bi in Fig-
ure 3.3.1. It is secure when a potential eavesdropper cannot learn any of the key
bits. In this instance, the security relies on Bell’s inequalities. Hence in this case
one could say that correctness is a qualitative notion, whilst security is a quan-
titative one. Because the very purpose of our categorical approach is to abstract
away from quantitative details, we will focus on correctness, and forget about
the classical calculation in steps 5 and 6. Our point is just to show that compact
objects are capable of modeling protocols involving quantum communication via
a pair of entangled qubits.

67

Chapter 3. Dagger categories

One final ingredient that we must consider before modeling the above pro-
tocol categorically, is classical communication.

3.3.3 A compact structure can be seen as a single instance of quantum com-
munication. In the traditional formalism of quantum information theory [173],
the preparation of a pair of qubits in a so-called Bell state is precisely equiva-
lent to the compact structure on X = C2 described in Example 3.2.14. The fact
that performing an operation on X also affects X∗ is reflected by the existence
of ε and commutativity of diagrams (2.18): thus we can regard id : X → X

or its name η = pidq : I → X∗ ⊗ X as a quantum channel capable of a one-
time quantum communication. Graphical languages make this fact a bit more
intuitive [2, 197, 200].

Let us now consider classical communication. The following definition of
classical structure, which is due to Bob Coecke and Duško Pavlović [49–52],
counterfactually exploits the fact that quantum data cannot be cloned or for-
gotten [69, 216]. In contrast to a compact structure, which accommodates a
single instance of communication, a classical structure accommodates any finite
amount of communication.

3.3.4 Definition A classical structure in a dagger symmetric monoidal category
is a commutative comonoid (A, δ : A→ A⊗A, ν : A→ I) such that δ is a dagger
mono satisfying the Frobenius condition:

A⊗A δ† //

id⊗δ
��

A

δ

��

A⊗ (A⊗A)
α ∼=��

(A⊗A)⊗A
δ†⊗id

// A⊗A.

(3.3)

(This condition is named after Ferdinand G. Frobenius, who first studied the
requirement that A ∼= A∗ as right A-modules for a ring A in the context of group
representations [147, 2.2.19])

3.3.5 Example In the category fdHilb of finite-dimensional Hilbert spaces, any
choice of an orthonormal basis (e1, . . . , en) for an object A provides it with a
classical structure by (linear extension of) the assignments

δ(ei) = ei ⊗ ei,
ν(ei) = 1.

68

3.3. Quantum key distribution

In fact, all classical structures in fdHilb are of this form [53], so in this case
we can think of a classical structure as an object equipped with a choice of
orthonormal basis.

Each choice of biproduct in the same category provides a standard choice
of orthonormal basis for any object A: since there is a dagger isomorphism
A ∼=

⊕n
i=1C for some n ∈ N, the standard basis for Cn transfers to A by [51,

Lemma 3.7]. The comparison with Theorem 2.3.2 then lets one regard classical
structure as ‘partial biproduct structure’.

The following lemma shows that classical communication can be seen as
an extra structure on a compact object—namely a special kind of comonoid,
modeling copying and deleting of classical information.

3.3.6 Lemma [52] If (δ, ν) is a classical structure for an object A in a symmetric
monoidal category, then A∗ = A, η = δ ◦ ν† and ε = ν ◦ δ† provide compact
structure for A. �

Classical and quantum structures are related by measurement. The next def-
inition is an unsophisticated version of the notion defined in [50]. For example,
it disregards probabilities, that are of major importance in quantum information
theory. Nevertheless, it suffices for our purposes.

3.3.7 Definition A measurement of a compact object X with respect to a classi-
cal structure (A, δ, ν) in a dagger symmetric monoidal category is a dagger epi
m : X → A.

3.3.8 We model the protocol of Figure 3.3.1 as follows. The qubit is modeled
by a compact object X, and a classical structure A represents the bit. Let us
denote the measurements that step 1 provides by mi : X → A. The quantum
communication channel is set up by the morphism η : I → X∗ ⊗X, after which
Alice receives and can only act upon X∗, and Bob’s operations are restricted to
X. Alice’s procedure for obtaining the ci that might eventually become her key
bits, then, is the morphism

X∗ ⊗X
(mi)∗⊗mi //A∗ ⊗A ν⊗id //I ⊗A

∼= //A.

Likewise, Bob’s procedure is

X∗ ⊗X
(mi)∗⊗mi //A∗ ⊗A id⊗ν //A∗ ⊗ I

∼= //A.

We are now in a position to prove the correctness of the protocol categori-
cally, i.e. to prove that Alice and Bob in fact end up with equal key bits, without
assuming anything about the measurements mi or the external choices of ai and

69

Chapter 3. Dagger categories

bi. It suffices to prove this for each individual key bit that arises from Alice
and Bob using the same measurement, because step 7 discards the other bits.
Hence the correctness of the protocol comes down to the correctness of each of
its rounds, and is therefore proved by the following theorem.

3.3.9 Theorem The following diagram commutes for any measurement m : X →
A:

X∗ ⊗X
m∗⊗m // A∗ ⊗A

ν⊗id // I ⊗A
∼= // A

I

ηX 44iiiiiiii

ηX **UUUUUUUU

X∗ ⊗X
m∗⊗m

// A∗ ⊗A
id⊗ν

// A∗ ⊗ I ∼=
// A.

(3.4)

PROOF First, notice that

(m∗⊗m)◦ηX = (m∗⊗m)◦pidXq
(2.19)= (m∗⊗ id)◦pmq (2.19)= pm◦m†q = pidAq.

since m ◦m† = id by Definition 3.3.7. The commutativity of the above diagram
is then established by the following calculation that uses Lemma 3.3.6.

(ν ⊗ id) ◦ (m∗ ⊗m) ◦ ηX = (ν ⊗ id) ◦ pidAq
= (ν ⊗ id) ◦ δ ◦ ν†

= (id ⊗ ν) ◦ δ ◦ ν†

= (id ⊗ ν) ◦ pidAq
= (id ⊗ ν) ◦ (m∗ ⊗m) ◦ ηX . �

3.4 Factorisation

Dagger kernel categories have a feature that will turn out to be important later:
every morphism can be factored as a dagger cokernel followed by a morphism
of a type to be detailed later, followed by a dagger kernel. This section studies
this phenomenon, starting with some basic observations.

3.4.1 Lemma In a dagger kernel category, for any morphism f ,

(a) ker(X 0 //Y) = (X � ,2 id //X);

(b) ker(ker(f)) = 0;

(c) ker(coker(ker(f))) = ker(f).

70

3.4. Factorisation

PROOF Since (a) and (b) are elementary, we only prove (c). For an arbitrary
f : X → Y , consider the following diagram.

ker(f) � ,2 k //

k′

���
�
� X

f //

c

� $,RRRRRRRRRRRRRRR Y

ker(coker(ker(f)))
+ 29 l

55kkkkkkkkkkkkkkkk
l′

OO�
�
�

coker(ker(f)).

f ′

OO�
�
�

By construction, f ◦ k = 0 and c ◦ k = 0. Hence there are f ′ and k′ as indicated.
Since f ◦ l = f ′ ◦ c ◦ l = f ′ ◦ 0 = 0 one gets l′. Hence the kernels l and k are
equal as subobjects. �

3.4.2 Lemma For monosm,n in a dagger category withm ≤ n, say viam = n◦ϕ:

(a) if m,n are dagger mono, then so is ϕ;

(b) if m is a kernel, then so is ϕ.

PROOF If m = n ◦ ϕ and m,n are dagger mono, then

ϕ† ◦ ϕ = (n† ◦m)† ◦ ϕ = m† ◦ n ◦ ϕ = m† ◦m = id.

And if m = ker(f), then ϕ = ker(f ◦n), since: (1) f ◦n◦ϕ = f ◦m = 0, and (2) if
f ◦ n ◦ g = 0, then there is a unique ψ with m ◦ ψ = n ◦ g; but then ϕ ◦ ψ = g,
since n is monic. �

3.4.3 Proposition In a dagger kernel category, pullbacks of kernels exist and are
kernels again. Explicitly, given a kernel n and map f , one obtains a pullback

M
f ′ //

_��
f−1(n)

��

� N��
n

��
X

f
// Y

as f−1(n) = ker(coker(n) ◦ f).

If f is a dagger epi, then so is f ′.

PROOF For convenience write m = f−1(n) = ker(coker(n) ◦ f). By construction,
coker(n) ◦ f ◦ m = 0, so that f ◦m factors through ker(coker(n)) = n, say via
f ′ : M → N with n ◦ f ′ = f ◦m, as in the diagram. This yields a pullback. For if
a : Z → X and b : Z → N satisfy f ◦ a = n ◦ b, then

coker(n) ◦ f ◦ a = coker(n) ◦ n ◦ b = 0 ◦ b = 0,

71

Chapter 3. Dagger categories

so that there is a unique map c : Z →M with m ◦ c = a. Then f ′ ◦ c = b because
n is monic.

In case f is dagger epic, f ◦f† ◦n = n. Hence there is a morphism f ′′ making
following diagram commute, as the right square is a pullback:

N

f ′′ &&M
M

M

f†◦n
--

id

$$
M

_�
f ′ //

_��
m

��

N_��
n

��
X

f
// Y.

Then f ′′ = m† ◦m ◦ f ′′ = m† ◦ f† ◦ n = f ′† ◦ n† ◦ n = f ′†. Hence f ′ is dagger
epic, too. �

3.4.4 Lemma In a dagger kernel category, kernels are closed under composition,
and hence so are cokernels.

PROOF We shall prove the result for cokernels, because it uses the pullback of
the previous proposition. Assume we have (composable) cokernels e, d; we wish
to show e ◦ d = coker(ker(e ◦ d)). First notice, using Proposition 3.4.3,

ker(e ◦ d) = ker(coker(ker(e)) ◦ d) = d−1(ker(e)),

yielding a pullback

A
d′ //

_��
m=ker(e◦d)

��

� B��
ker(e)

��
K

� ,2
ker(d)

//

ϕ

88ppppppp
X

d

� ,2D e
� ,2E.

We intend to prove e ◦ d = coker(m). Clearly,

e ◦ d ◦m = e ◦ ker(e) ◦ d′ = 0 ◦ d′ = 0.

And if f : X → Y satisfies f ◦m = 0, then f ◦ ker(d) = f ◦m ◦ϕ = 0, so because
d = coker(ker(d)) there is f ′ : D → Y with f ′ ◦ d = f . But then

f ′ ◦ ker(e) ◦ d′ = f ′ ◦ d ◦m = f ◦m = 0.

Then f ′◦ker(e) = 0, because d′ is dagger-epi because d is (see Proposition 3.4.3).
This finally yields f ′′ : E → Y with f ′′ ◦ e = f ′. Hence f ′′ ◦ e ◦ d = f . �

72

3.4. Factorisation

As the following notion does not seem to have an established terminology,
we introduce our own.

3.4.5 Definition In a category with a zero object, a morphism m is called a zero
mono if m ◦ f = 0 implies f = 0 for each f . Dually, e is zero epi if f ◦ e = 0

implies f = 0. In diagrams we write // ◦ // for zero monos and ◦ // // for zero
epis.

Clearly, any epi is a zero epi, since f ◦ e = 0 = 0 ◦ e implies f = 0 if e is
epic. The following lemma shows that the converse also holds in the presence
of dagger equalisers.

3.4.6 Lemma In a dagger equaliser category where every dagger mono is a kernel,
zero epis are ordinary epis.

PROOF Assume a zero epi e : E → X with two maps f, g : X ⇒ Y satisfying
f ◦ e = g ◦ e. We need to prove f = g. Let m : M � X be the equaliser of f, g,
with h = coker(m):

E ◦
e // //

ϕ

���
�
� X

f //
g

//

h=coker(m)_��

Y.

M
0 4<

m

77pppppppppppp
Z

This e factors through the equaliser m, as indicated, since f ◦ e = g ◦ e. Then
h ◦ e = h ◦m ◦ ϕ = 0 ◦ ϕ = 0. Hence h = 0 because e is a zero epi. But then
m = ker(h) = ker(0) = id, so that f = g. �

3.4.7 Lemma In a dagger kernel category,

(a) e is a zero epi if and only if coker(e) = 0;

(b) coker(f ◦ e) = coker(f) when e is a zero epi;

(c) a kernel which is zero epi is an isomorphism. �

Needless to say, since a dagger category is self-dual, the dual statements of all
results in this section until now are also true. For example, ker(m ◦ f) = ker(f)
for a zero mono m.

3.4.8 Proposition In Rel there are proper inclusions

kernel (dagger mono (mono (zero mono.

73

Chapter 3. Dagger categories

In PInj there are proper identities

kernel = dagger mono = mono = zero mono.

In Hilb and PHilb one has

kernel = dagger mono (mono = zero mono.

PROOF We still need to produce a zero mono in Rel that is not mono, and prove
that every zero mono in PHilb is a mono. For the first, consider the relation
R ⊆ {0, 1} × {a, b} given by R = {(0, a), (1, a)}. Its first leg is surjective, so R is
a zero mono by the dual of Lemma 3.4.7(a) and Example 3.2.23. But it is not
a mono: there are two different relations {(∗, 0)}, {(∗, 1)} ⊆ {∗} × {0, 1} with
R ◦ {(∗, 0)} = {(∗, a)} = R ◦ {(∗, 1)}.

For the second, let m : Y → Z be a zero mono, and let f, g : X ⇒ Y be
arbitrary morphisms in PHilb. More precisely, let m, f and g be morphisms in
Hilb representing the equivalence classes [m], [f] and [g], which are morphisms
in PHilb. Suppose that [m◦f] = [m◦g]. Then m◦f ∼ m◦g, say m◦f = z ·m◦g
for z ∈ U(1). So m ◦ (f − z · g) = 0, and f − z · g = 0 since m is zero mono. Then
f = z · g and hence f ∼ g, i.e. [f] = [g]. Thus m is mono. �

The following concept was popularised by Peter Freyd and Max Kelly [89],
but its origins can be traced back to Saunders Mac Lane [161] and John Is-
bell [121] (see also [23, Exercises 5.5] or [33, Section 5.5]).

3.4.9 Definition A factorisation system (E,M) for a category C consists of two
classes E and M of morphisms of C such that

• E and M both contain all isomorphisms of C, and are closed under com-
position;

• every morphism f of C can be factored as f = i ◦ e for some i ∈ M and
e ∈ E; and

• the factorisation is functorial, in the sense that for morphisms u, v with
v ◦ i ◦ e = i′ ◦ e′ ◦ u for i, i′ ∈M and e, e′ ∈ E, there is a unique morphism
w making the following diagram commute:

· e //

u

��

·

w

���
�
�

i // ·

v

��
·

e′
// ·

i′
// ·.

74

3.4. Factorisation

We will often denote i ∈M and e ∈ E with i ◦ e = f by if and ef .

3.4.10 The requirement that a factorisation system (E,M) is functorial is often
formulated as the following equivalent diagonal fill-in property. For e ∈ E, i ∈M
and arbitrary morphisms f, g satisfying i◦f = g ◦ e, there is a unique d such that
f = d ◦ e and g = i ◦ d.

·

f

��

e // ·
d

���
�

�
�

�

g

��
·

i
// ·

3.4.11 “Factorisation” can be taken more literally by viewing M and E as sub-
categories of C and saying C = M ◦ E [187]. In any factorisation system, each
of the classes E and M determines the other via ‘orthogonality’ [33, Proposi-
tion 5.5.3]. Let us call a factorisation system (E,M) in a dagger category a
dagger factorisation system when M† = E. A dagger factorisation system then
resembles a square root, as C = E† ◦ E, or “E =

√
C”.

3.4.12 Example Any posetal category has a factorisation system where E con-
sists of all identity morphisms, and M comprises all morphisms.

3.4.13 Example Regular categories, as discussed in 2.5.11, have a factorisation
system consisting of monomorphisms and regular epis; see [169, Section 3.4]
or [23, Exercise 5.5.4].

For example, the category Vect is regular, and hence it has a factorisation
system of monos and regular epis. The regular epis in Vect are just the surjective
morphisms [33, Example 4.3.10a], and the monos are just the injective ones.

The next few lemma’s lead to a theorem stating that dagger kernel categories
have a factorisation system consisting of zero epis and dagger kernels.

3.4.14 Any morphism f : X → Y in a dagger kernel category factors through

Im(f) = ker(coker(f)) via if : Im(f) � ,2 //Y , as follows. First take the kernel

ker(f†) � ,2 k // Y
f† // X,

and define if as the dagger kernel of k†.

Im(f) = ker(k†) � ,2 if // Y
k† � ,2ker(f†)

X

f

;;xxxxxxxxxx
ef

OO�
�
�

(3.5)

75

Chapter 3. Dagger categories

The map ef : X → Im(f) is obtained from the universal property of kernels,
since k†◦f = (f†◦k)† = 0† = 0. Since if is a dagger mono, this ef is determined
as ef = (if)† ◦ if ◦ ef = (if)† ◦ f .

The image of f is therefore defined as kernel ker(coker(f)). Conversely, every
kernel m = ker(f) arises as an image, since ker(coker(m)) = m by Lemma 3.4.1.

The maps arising as ef in (3.5) can be characterised as follows.

3.4.15 Lemma The morphisms in a dagger kernel category that arise of the form
ef , as in (3.5), are precisely the zero epis.

PROOF We first show that ef is a zero epi. Assume that h : ker(k†)→ Z satisfies
h ◦ ef = 0. Since ef = (if)† ◦ f , we have

f† ◦ (if ◦ h†) = (h ◦ (if)† ◦ f)† = (h ◦ ef)† = 0† = 0.

This means that if ◦ h† factors through the kernel of f†, say via a : Z → ker(f†)
with k ◦ a = if ◦ h†. Since k is a dagger mono we now get

a = k† ◦ k ◦ a = k† ◦ if ◦ h† = 0 ◦ h† = 0.

But then if ◦ h† = k ◦ a = k ◦ 0 = 0 = if ◦ 0, so that h† = 0 because if is mono.
Thus h = 0, as required.

Conversely, assume that g : X → Y is a zero epi. Then coker(g) = 0 by
Lemma 3.4.7. By the same Lemma, ker

(
(0 → X)†

)
is the identity idX . By

construction, this is the image of g, so that eg = g. �

3.4.16 Lemma In a dagger kernel category, any commuting square that is of the

shape

· ◦ // //

��

·

��
· � ,2 // ·

has a (unique) diagonal

· ◦ // //

��

·

�����
�

�
�

· � ,2 // ·
making both triangles com-

mute.

PROOF Assume the zero epi e : E → Y and the kernel k = ker(h) : K � ,2 //X
satisfy k ◦ f = g ◦ e.

E ◦
e // //

f

��

Y

g

��
K

� ,2
k
// X

h
// Z

Then h ◦ g ◦ e = h ◦ k ◦ f = 0 ◦ f = 0 and hence h ◦ g = 0, because e is zero
epi. This yields the required diagonal d : Y → K with k ◦ d = g, because k is the
kernel of h. Using that k is monic we get d ◦ e = f . �

76

3.4. Factorisation

3.4.17 Theorem Dagger kernel categories have a factorisation system consisting
of zero epis and (dagger) kernels. �

As a corollary to the previous theorem, the following lemma brings more clar-
ity to our running examples in Proposition 3.4.8. Compare also Lemma 3.4.6.

3.4.18 Lemma In any dagger kernel category: if zero epis are (ordinary) epis,
then dagger monos are kernels.

PROOF Suppose m : M � ,2 //X is a dagger mono, with factorisation m = i ◦ e
as in (3.5), where i is a dagger kernel, and e is a zero epi and hence an epi
by assumption. We are done if we can show that e is an isomorphism. Since
m = i ◦ e and i is dagger mono, we have i† ◦m = i† ◦ i ◦ e = e. Hence

e† ◦ e = (i† ◦m)† ◦ e = m† ◦ i ◦ e = m† ◦m = id.

But then also e ◦ e† = id, because e is epi and e ◦ e† ◦ e = e. �

3.4.19 Suppose that D is a dagger equaliser category in which every dagger
mono is a kernel, and coequalisers are stable under pullback. Then it is also a
regular category (cf. 2.5.11), and the factorisation systems of Example 3.4.13
and Theorem 3.4.17 coincide by Lemma 3.4.6. It is tempting to call such cate-
gories dagger regular categories.

3.4.20 Theorem 3.4.17 shows that any dagger kernel category has a factori-
sation system consisting of zero epis and dagger kernels. Equivalently, it has
a factorisation system of dagger cokernels and zero monos, by taking daggers.
Both factorisation systems can be combined as follows. Any map f : X → Y

in a dagger kernel category factors as f = if ◦ ef , where if = ker(coker(f)) is
a kernel and ef is a zero epi. We can apply the same factorisation to f†. The

dual of its image, (if†)† = coker(ker(f)) : X � ,2 Im(f†) , is commonly called
the coimage of f . It is a dagger cokernel by construction. Thus we have

X
f //

◦MMMM

ef && &&MMMM
Y Y

f† //

◦NNNN

e
f† && &&NNNN

X.

Im(f)
1 4= if

88qqqqqqq
Im(f†)

0 4<
i†f

77ppppppp

77

Chapter 3. Dagger categories

By combining these factorisations we get two mediating maps m by diagonal
fill-in:

X
f //

◦JJJJJ
ef

$$ $$JJJJJ

(i
f†)
†

w�!
7777777777777777 Y Y

f† //

◦JJJJJ
e

f†

$$ $$JJJJJ

(if)†

v�
6666666666666666 X.

Im(f)
4 5?

if

::ttttttttt

Im(f†)
4 5?

i
f†

99ttttttttt

Im(f†)
CC

◦��������

(e
f†)
†

CC���������

mf

OO

Im(f)
CC

◦��������

(ef)†

CC���������

m
f†

OO

We claim that (mf)† = mf† . This easily follows from the fact that (if†)† is epi:

(mf†)
† ◦ (if†)

† = (if† ◦mf†)
† = (ef)†† = ef = mf ◦ (if†)

†.

Moreover, mf is both a zero epi and a zero mono. As a result we can factorise
each map f : X → Y as

X
(i

f†)
†

coimage

� ,2Im(f†) // ◦
(m

f†)
†=mf

zero epi
zero mono

// // Im(f) � ,2 if

image
// Y (3.6)

This coimage may also be reversed, so that a morphism can also be understood
as a pair of kernels with a zero mono/epi between them:

X Im(f†) // ◦ // //�lr
i
f†oo Im(f) � ,2 if // Y.

We briefly describe the factorisation (3.6) in a few examples. These show
that the two outer kernel maps perform some “bookkeeping” to adjust the types;
the real action takes place in the middle. This can be thought of as a generalisa-
tion of polar decomposition in Hilbert space theory [104, Problem 105].

3.4.21 Example Any morphism (X R
r1oo r2 //Y) in Rel factors through the

(set-theoretic) images X ′ � X of r1 and Y ′ � Y of r2. In diagrammatic order
(with notation f ; g = g ◦ f): R

r1
����� r2

��999

X Y

 =

 X ′
��
���� >>>

>>>

X X ′

 ;

 R
r1 ������� r2�� ��;;;

X ′ Y ′

 ;

 Y ′

������ ��
��;;

Y ′ Y

 .

In the spirit of 3.4.11, the above three-way factorisation system can be re-
fined by splitting the middle class, of zero monos that are zero epic, in two parts

78

3.4. Factorisation

to arrive at a (two-way) factorisation system that is compatible with the dagger
of Rel, as follows. Any morphism in Rel factors as the adjoint of (the graph of)
a function followed by (the graph of) a function: R

r1
����� r2

��999

X Y

 =

 R

r1����� 999
999

X R

 ;

 R

������ r2
��999

R Y

 .

3.4.22 Example In PInj, the middle part m in (3.6) is the identity: F
��f1
���� �� f2

��99

X Y

 =

 F
��f1
���� 999

999

X F

 ;

 F

������ �� f2
��99

F Y

 .

3.4.23 Example A morphism f : X → Y in Hilb factors as f = i ◦m ◦ e. The
third part i : I → Y is given by i(y) = y, where the image I is the closure
{f(x) | x ∈ X}. The first part e : X → E is given by orthogonal projection on the
closureE = {f†(y) | y ∈ Y }; explicitly, e(x) is the unique x′ such that x = x′+x′′

with x′ ∈ E and 〈x′′ | z〉 = 0 for all z ∈ E (see Example 4.2.4). Using the fact
that the adjoint e† : E → X is given by e†(x) = x, we deduce that the middle
part m : E → I is determined by m(x) = (i ◦ m)(x) = (f ◦ e†)(x) = f(x).
Explicitly,(

X
f //Y

)
=
(
X

e � ,2E

)
;
(
E

m //I

)
;
(
I � ,2 i //Y

)
.

This description descends to PHilb.

3.4.24 Definition A morphism f in a dagger category is called a partial isometry
when it factors as f = i ◦ e for a dagger mono i and a dagger epi e.

3.4.25 In the category Hilb, the previous definition coincides with the usual
notion. Every morphism in PInj is a partial isometry, and the functor `2 : PInj→
Hilb preserves partial isometries.

The composition of partial isometries need not be a partial isometry again.
For example, consider the partial isometries κ : C → C2 and 1

2

√
2∇ : C2 → C

in Hilb. Their composite is given by x 7→ 1
2

√
2x. This is not a partial isometry

anymore, since it factors as C
1/
√

2// //C � ,2 id //C .

3.4.26 Lemma If f is a partial isometry in a dagger category, then f†◦f and f ◦f†
are projections. In dagger equaliser categories the converse also holds. Moreover, if
one of f ◦ f† and f† ◦ f is a projection, so is the other.

79

Chapter 3. Dagger categories

PROOF Suppose that f is a partial isometry, say f = i◦e for a dagger mono i and
a dagger epi e. Then f†◦f ◦f†◦f = e†◦i†◦i◦e◦e†◦i†◦i◦e = e†◦i†◦i◦e = f†◦f ,
and (f† ◦ f)† = f† ◦ f , so f† ◦ f is a projection. Likewise, f ◦ f† is a projection.

Conversely, suppose that f† ◦ f is a projection. Factorise f = i ◦ e for a zero
epi e and a dagger kernel i. Since f† ◦ f ◦ f†f = f† ◦ f , we have

e† ◦ e = e† ◦ i† ◦ i ◦ e = e† ◦ i† ◦ i ◦ e ◦ e† ◦ i† ◦ i ◦ e = e† ◦ e ◦ e† ◦ e.

Because e is epi by Lemma 3.4.6, it follows that e† = e† ◦ e ◦ e†. And because
e† is mono, one has id = e ◦ e†. So e is a dagger epi, and hence f is a partial
isometry. �

3.5 Hilbert modules

This section develops another example of a dagger kernel category, namely that
of Hilbert modules over an involutive rig, and studies its categorical properties.
Analogously to Section 2.5, one could say that this category is the prime example
of a dagger monoidal category with dagger biproducts, for this section shows
that the latter always embed into a category of Hilbert modules.

3.5.1 A (commutative) involutive rig is a (commutative) rig R that is equipped
with a function ‡ : R→ R satisfying

r‡‡ = r,

(r + s)‡ = r‡ + s‡,

(r · s)‡ = s‡ · r‡,
0‡ = 0.

An element r of an involutive rig is called positive, denoted r ≥ 0, when it is
of the form r = s‡ · s. The set of all positive elements of an involutive rig R is
denoted by R+.

3.5.2 Let R be an involutive rig. For every left-R-module X, there is also a
right-R-module X‡, whose carrier set and addition are the same as before, but
whose scalar multiplication x · r is defined in terms of the scalar multiplication
of X by r‡ · x.

A morphism f : X → Y of RModS induces a morphism f‡ : X‡ → Y ‡ of
SModR, by f‡(m) = f(m). Thus an involution ‡ on a commutative rig R in-
duces an involutive functor ‡ : ModR →ModR.

Now, just as pre-Hilbert spaces are vector spaces over an involutive field
carrying an inner product (cf. Example 2.1.2), we can consider modules over

80

3.5. Hilbert modules

involutive rigs with an inner product in general. The following definition is
a novel extension of Hilbert modules over less general notions than involutive
rigs.

3.5.3 Definition Let R and S be involutive rigs. A left-R-right-S-module X

is called a Hilbert left-R-right-S-module, or simply Hilbert module, when it is
equipped with a morphism 〈 | 〉 : X‡ ⊗X → S of SModS , satisfying

• 〈x | y〉 = 〈y |x〉‡;

• 〈x |x〉 ≥ 0;

• 〈x | 〉 = 〈y | 〉 ⇒ x = y.

The Hilbert module is called strict if furthermore

• 〈x |x〉 = 0⇒ x = 0.

3.5.4 Example A commutative involutive rig R is itself a Hilbert R-module by
〈r | s〉R = r‡ · s. Recall that a rig R is multiplicatively cancellative when r · s = r · t
and r 6= 0 imply s = t [94]. In that case, R is a strict Hilbert R-module.

3.5.5 Example Hilbert C*-modules [152] are examples of Hilbert modules over
a C*-algebra. These special kinds of rings will be introduced in Chapter 5, where
they play an important role. Such Hilbert modules are automatically strict, since
the base rig is a ring, in which subtraction is available.

3.5.6 Example Hilbert modules over involutive rigs also generalise Hilbert mod-
ules over involutive quantales [175]. A quantale is basically a rig in which ad-
dition can take an infinite number of arguments. More precisely, a quantale is a
monoid in the category of complete lattices.

The following choice of morphisms is also the standard choice of morphisms
between Hilbert modules over C*-algebras and Hilbert modules over quantales.

3.5.7 Definition A function f : X → Y between HilbertR-modules is adjointable
when there is a function f† : Y → X such that 〈f‡(x) | y〉Y = 〈x | f†(y)〉X for all
x ∈ X‡ and y ∈ Y . Adjointable functions are automatically module homomor-
phisms.

We will mostly be interested in commutative involutive rigs R. Hilbert R-
modules and adjointable maps organise themselves in a category HModR. We
denote by sHModR the full subcategory of strict Hilbert R-modules.

81

Chapter 3. Dagger categories

3.5.8 There is another analogy for this choice of morphisms. If we write X∗

for the dual R-module Mod(X,R) of X, Definition 3.5.3 resembles that of a
‘diagonal’ object of the Chu construction [20] on ModR. The Chu construction
provides a ‘generalised topology’, like an inner product provides a vector space
provides with a metric and hence a topology [22].

3.5.9 The adjoint f† is unique since the power transpose of the inner product
is a monomorphism by definition. However, it does not necessarily exist, except
in special situations like (Cauchy-complete) Hilbert spaces (R = C or R = R))
and bounded semilattices (R = B, see [175]).

The choice of morphisms ensures that HModR and sHModR are dagger
categories. We now study some of their properties. The following lemma could
be read as a generalisation of the Riesz-Fischer theorem [181, Theorem III.1].

3.5.10 Proposition The category HModR is enriched over ModR, and

HModR(R,X) = ModR(R,X) ∼= X,

where we suppress the forgetful functor HModR →ModR.

PROOF For X,Y ∈ HModR, the zero map X → Y in ModR is adjointable,
and hence a morphism in HModR; its adjoint is the zero map Y → X. If
f, g : X ⇒ Y are adjointable, then so is f + g, as its adjoint is f† + g†. If r ∈ R
and f : X → Y is adjointable, then so is r · f , as its adjoint is r‡ · f†:

〈r · f(x) | y〉Y = r‡ · 〈f(x) | y〉Y = r‡ · 〈x | f†(y)〉X = 〈x | r‡ · f†(y)〉X .

Since composition is bilinear, HModR is enriched over ModR.
Suppose X ∈ HModR, and f : R → X is a morphism in ModR. Define a

morphism f† : X → R in ModR by f† = 〈f(1) | −〉X . Then

〈f(r) |x〉X = 〈r · f(1) |x〉X = r‡ · 〈f(1) |x〉X = r‡ · f†(x) = 〈r | f†(x)〉R.

Hence f ∈ HModR(R,X). Obviously HModR(R,X) ⊆ ModR(R,X). The
fact that R is a generator for ModR proves the last claim ModR(R,X) ∼= X. �

3.5.11 Notice from the proof of the above proposition that the inner product of
X can be reconstructed from HModR(R,X). Indeed, if we temporarily define
x : R→ X by 1 7→ x for x ∈ X, then we can use the adjoint by

〈x | y〉X = 〈x(1) | y〉X = 〈1 |x†(y)〉S = x†(y) = x† ◦ y(1).

We can go further by providing HModR(R,X) itself with the structure of a

82

3.5. Hilbert modules

Hilbert R-module: for f, g ∈ HModR(R,X), put 〈f | g〉HModR(R,X) = f† ◦ g(1).
Then the above proposition can be strengthened as follows.

3.5.12 Proposition For any X ∈ HModR there exists a dagger isomorphism
X ∼= HModR(R,X).

PROOF Let f : X → HModR(R,X) and g : HModR(R,X) → X be the R-
module homomorphisms determined by f(x) = x · () and g(ϕ) = ϕ(1). Then
f ◦ g = id and g ◦ f = id, and furthermore f† = g:

〈x | g(ϕ)〉X = 〈x |ϕ(1)〉X = (x · ())† ◦ ϕ(1)

= 〈x · () |ϕ〉HModR(R,X) = 〈f(x) |ϕ〉HModR(R,X). �

Recall that (a subset of) a rig is zerosumfree when r+s = 0 implies r = s = 0
for all elements r and s in it [94]. For example, B, Z+ = N, Q+ and C+ = R+

are zerosumfree, but no ring is. Hence the following proposition for example
applies to N,Z,Q,R and C.

3.5.13 Proposition The category HModR has finite dagger biproducts. When
R+ is zerosumfree, sHModR has finite dagger biproducts.

PROOF Let H1, H2 ∈ HModR be given. Consider the R-module H = H1 ⊕H2

from 2.5.3. Equip it with the inner product

〈h |h′〉H = 〈π1(h) |π1(h′)〉H1 + 〈π2(h) |π2(h′)〉H2 . (3.7)

Suppose that 〈h | 〉H = 〈h′ | 〉H . For every i ∈ {1, 2} and h′′ ∈ Hi, one then has

〈πi(h) |h′′〉Hi
= 〈h |κi(h′′)〉H = 〈h′ |κi(h′′)〉H = 〈πi(h′) |h′′〉Hi

,

whence πi(h) = πi(h′), and so h = h′. Thus H is a Hilbert R-module. The maps
κi are morphisms of HModR, as their adjoints are given by πi : H → Hi:

〈h |κi(h′)〉H = 〈π1(h) |π1κi(h′)〉H1 + 〈π2(h) |π2κi(h′)〉H2 = 〈πi(h) |h′〉Hi .

For sHModR we need to verify that H is strict when H1 and H2 are. Suppose
〈h |h〉H = 0. Then 〈π1(h) |π1(h)〉H1 + 〈π2(h) |π2(h)〉H2 = 0. Since R+ is zero-
sumfree, we have 〈πi(h) |πi(h)〉Hi = 0 for i = 1, 2. Hence πi(h) = 0, because Hi

is strict. Thus h = 0, and H is indeed strict. �

3.5.14 Proposition The category HModR is symmetric dagger monoidal. When
R is multiplicatively cancellative, sHModR is symmetric dagger monoidal.

83

Chapter 3. Dagger categories

PROOF Let H,K be Hilbert R-modules; then H ⊗ K is again an R-module.
Define an equivalence relation ∼ on H ⊗K by setting

h⊗ k ∼ h′ ⊗ k′ iff 〈h | 〉H · 〈k | 〉K = 〈h′ | 〉H · 〈k′ | 〉K : H ⊕K → S.

This is a congruence (see [94]), so H ⊗H K = H ⊗K/∼ is again an R-module.
Defining an inner product on it by

〈[h⊗ k]∼ | [h′ ⊗ k′]∼〉H⊗HK = 〈h |h′〉H · 〈k | k′〉K

makes H ⊗H K into a Hilbert module.

Now let f : H → H ′ and g : K → K ′ be morphisms of HModR. Define a
morphism f ⊗H g : H⊗HK → H ′⊗HK ′ by (f ⊗H g)([h⊗k]∼) = [f(h)⊗g(k)]∼.
This is a well-defined function, for if h⊗ k ∼ h′ ⊗ k′, then

〈f(h) | 〉H′ · 〈g(k) | 〉K′ = 〈h | f†()〉H · 〈k | g†()〉K
= 〈h′ | f†()〉H · 〈k′ | g†()〉K
= 〈f(h′) | 〉H′ · 〈g(k′) | 〉K′ ,

and hence (f ⊗H g)(h⊗ k) ∼ (f ⊗H g)(h′ ⊗ k′). Moreover, it is adjointable, and
hence a morphism of HModR:

〈(f ⊗H g)(h⊗ k) | (h′ ⊗ k′)〉H′⊗HK′ = 〈f(h)⊗ g(k) |h′ ⊗ k′〉H′⊗HK′

= 〈f(h) |h′〉H′ · 〈g(k) | k′〉K′
= 〈h | f†(h′)〉H · 〈k | g(k′)〉K
= 〈h⊗ k | f†(h′)⊗ g†(k′)〉H⊗HK

= 〈h⊗ k | (f† ⊗ g†)(h′ ⊗ k′)〉H⊗HK .

In the same way, one shows that the coherence isomorphisms α, λ, ρ and γ of
the tensor product in ModR respect ∼, and descend to dagger isomorphisms in
HModR. For example:

〈λ(r ⊗ h) |h′〉H = 〈r · h |h′〉H
= r‡〈h |h′〉H
= 〈r | 1〉R · 〈h |h′〉H
= 〈r ⊗ h | 1⊗ h′〉R⊗HH

= 〈r ⊗ h |λ−1(h′)〉R⊗HH ,

so λ† = λ−1. A routine check shows that (⊗H , R) makes HModR into a sym-
metric monoidal category.

84

3.5. Hilbert modules

Finally, let us verify that these tensor products descend to sHModR when R
is multiplicatively cancellative. Suppose that

0 = 〈[h⊗ k]∼ | [h⊗ k]∼〉H⊗HK = 〈h |h〉H · 〈k | k〉K .

Then since R is multiplicatively cancellative, either 〈h |h〉H = 0 or 〈k | k〉H = 0.
Since H and K are assumed strict, this means that either h = 0 or k = 0. In
both cases we conclude [h⊗ k]∼ = 0, so that H ⊗H K is indeed strict. �

Theorem 2.5.10 shows that categories with finite biproducts embed into
some ModR. We end this section by showing that in the presence of a dag-
ger this embedding factors through HModR. We start with an extension of
Proposition 2.4.3.

3.5.15 Lemma Let D be a dagger symmetric monoidal category with finite dagger
biproducts. Then R = D(I, I) is a commutative involutive rig.

PROOF By Proposition 2.4.3, R is a commutative rig. The dagger provides an
involution onR. One easily verifies that this satisfies the requirements of 3.5.1.�

3.5.16 Lemma Let D be a dagger symmetric monoidal category with finite dagger
biproducts. There is a dagger functor D(I,) : D→ HModR for R = D(I, I).

PROOF We start by putting an R-valued inner product on D(I,X). Inspired by
Proposition 3.5.12, we define 〈 | 〉 : D(I,X)‡ ⊗D(I,X) → D(I, I) by (linear
extension of) 〈x | y〉 = x† ◦ y for x, y ∈ D(I,X). The Yoneda lemma shows that
its power transpose x 7→ x† ◦ () is a monomorphism. Thus D(I,X) is a Hilbert
left-R-module.

Moreover, the image of a morphism f : X → Y of D under D(I,) is indeed
a morphism of sHModR, that is, it is adjointable, since

〈f ◦ x | y〉D(I,Y) = (f ◦ x)† ◦ y = x† ◦ f† ◦ y = 〈x | f† ◦ y〉D(I,X)

for x ∈ D(I,X) and y ∈ D(I, Y). This also shows that D(I,) is a dagger
functor. �

The next sections will consider preservation properties of the functor in the
previous lemma, but we can at once see that it preserves dagger kernels.

3.5.17 Lemma Let D be a dagger symmetric monoidal category with finite dagger
biproducts. The functor D(I,) : D → HModR of the previous lemma preserves
dagger kernels.

85

Chapter 3. Dagger categories

PROOF Suppose that k = ker(f) : K � ,2 //X is a kernel of f : X → Y in D.
We have to show that D(I, k) = k ◦ () : D(I,K) � ,2 //D(I,X) is a kernel of
D(I, f) = f ◦ () : D(I,X)→ D(I, Y) in sHModR. First of all, one indeed has
D(I, f) ◦ D(I, k) = D(I, f ◦ k) = 0. Now suppose that l : Z → D(I,X) also
satisfies D(I, f) ◦ l = 0. That is, for all z ∈ Z, we have f ◦ (l(z)) = 0. Since
k is a kernel, for each z ∈ Z there is a unique mz : I → K with l(z) = k ◦mz.
Define a function m : Z → D(I,K) by m(z) = mz. This is a well-defined module
morphism, since l is; for example,

k ◦mz+z′ = l(z + z′) = l(z) + l(z′) = (k ◦mz) + (k ◦mz′) = k ◦ (mz +mz′),

so that m(z + z′) = m(z) + m(z′) because k is mono. In fact, m is the unique
module morphism satisfying l = D(I, k) ◦ m. Since k is a dagger mono, we
have m = D(I, k†) ◦ l. So as a composition of adjointable module morphisms
m is a well-defined morphism of sHModR. Thus D(I, k) is indeed a kernel of
D(I, f). �

3.6 Scalars revisited

This section studies what consequences additional assumptions on a dagger sym-
metric monoidal category with dagger biproducts have for its scalars. We con-
sider the following cases: dagger equalisers, the monoidal unit being a so-called
simple object, and the monoidal unit being a generator. It turns out that under
these circumstances the scalars form an involutive field, and even a subfield of
the complex numbers. This is inspired by [211], and extends this paper in the
following way: the single additional assumption that dagger monos are kernels
guarantees the scalars to be a field, thus eliminating the need to freely add dif-
ferences and quotients. This section also relates to [178, 215], although it uses
no topology.

3.6.1 Definition An object I of a category D is simple when Sub(I) = {0, I},
and D(I, I) is at most of continuum cardinality.

Here Sub(I) denote the subobjects of I, i.e. equivalence classes of monomor-
phisms into I— this will be recalled in some detail in 4.1.1. There are always at
least two subobjects, namely 0: 0 � I and id : I � I. When there are no oth-
ers (and the size condition is satisfied), I is simple. For example, C is a simple
object in Hilb. Intuitively, simple objects can be thought of as 1-dimensional.
They can also be thought of as supercompact topological spaces [81].

3.6.2 Convention For the rest of this section, we fix a dagger symmetric mon-
oidal category D with finite dagger biproducts, and denote its commutative in-

86

3.6. Scalars revisited

volutive rig of scalars by R = D(I, I).

3.6.3 Lemma If D has dagger kernels, then the functor D(I,) : D → HModR
of Lemma 3.5.16 takes values in sHModR.

PROOF [211, Lemma 2.11] We have to prove that x† ◦ x = 0 implies x = 0, for
every x : I → X in D. If x† ◦ x = 0, then x factors through k = ker(x†), say by
x = k ◦ x′:

I
x′

wwo o o o o o
x
��

K
� ,2
k=ker(x†)

// X
x† //
0

// I.

But since kernels are dagger monos,

x = k ◦ x′ = k ◦ k† ◦ k ◦ x′ = k ◦ coker(x) ◦ x = k ◦ 0 = 0. �

3.6.4 Corollary If D has dagger kernels, then R+ is zerosumfree.

PROOF Suppose that scalars r, s : I ⇒ I satisfy r† ◦ r + s† ◦ s = 0. By definition,

0 = r† ◦ r + s† ◦ s
= ∇ ◦ (r† ◦ r ⊕ s† ◦ s) ◦∆

= ∇ ◦ (r† ⊕ s†) ◦ (r ⊕ s) ◦∆

= ((r ⊕ s) ◦∆)† ◦ ((r ⊕ s) ◦∆).

Hence by the previous lemma (r⊕ s) ◦∆ = 0. That means 〈r , s〉 = (r⊕ s) ◦∆ =
0 = 〈0 , 0〉. Thus r = s = 0. �

3.6.5 Lemma If D has equalisers and I is simple, then R is multiplicatively can-
cellative.

PROOF [211, 3.5] Suppose that r ◦ s = r ◦ t and r 6= 0 for scalars r, s, t ∈ R.
Then the equaliser e = eq(s, t) ∈ Sub(I). Since I is assumped simple, e is either
zero or isomorphic. We will show the impossibility of e = 0, so that it must be
isomorphic, whence s = t. Because r ◦ s = r ◦ t, there is a r̄ such that r = e ◦ r̄.

I
r̄

wwo o o o o o
r
��

E //
e=eq(s,t)

// X
s //
t

// I

So if e = 0, then r = e ◦ r̄ = 0 ◦ r̄ = 0, which is a contradiction. �

87

Chapter 3. Dagger categories

The previous lemma can be strengthened. An (involutive) division rig is a
(involutive) rig in which every nonzero element has a multiplicative inverse.
Commutative division rigs are also called semifields [94].

3.6.6 Lemma If D has dagger equalisers, every dagger mono is a kernel, and I is
simple, then R is a division rig, wich multiplicative inverse r−1 given by composi-
tional inverse r−1.

PROOF We will show that R is a division rig by proving that any r ∈ R is either
zero or iso, using the factorisation of Theorem 3.4.17. Factorise r as r = i ◦ e
for a dagger mono i : J � ,2 //I and a zero epi e : I ◦ // //J . Since I is assumed
simple, either i is zero or i is isomorphic. If i = 0 then r = 0. If i is iso, then r is
zero epi. By Lemma 3.4.6, r is epi, so r† is mono. Again, either r† = 0, in which
case r = 0, or r† is isomorphic. In this last case r is also isomorphic. �

3.6.7 Convention Until now, we have allowed rigs R with 0 = 1. Sometimes
this unique trivial rig is excluded from consideration by convention. For exam-
ple, fields usually require 0 6= 1 by definition. In our case, the rig R being trivial
is equivalent to the category D being trivial, i.e. D being the one-morphism (and
hence one-object) category. The results in the rest of this section assume D to
be non-trivial. The main theorem, Theorem 3.7.18, holds regardlessly.

3.6.8 Lemma If D has dagger equalisers, every dagger mono is a kernel, and I is
simple, then R is an involutive field.

PROOF Applying [94, 4.34] to the previous lemma yields that R is either ze-
rosumfree, or a field. Assume, towards a contraction, that it is zerosumfree.
Consider the kernel k : K → I ⊕ I of the codiagonal ∇ : I ⊕ I → I. Defining
ki = πi ◦ k : K → I, we have k1 + k2 = 0. Hence also k1 ◦ k†1 + k2 ◦ k†1 = 0, and
so k1 ◦ k†1 = 0. But then k1 = 0, and hence k2 = 0. Thus ker(∇) = 0. But then,
by Lemma 3.4.7(a) and Lemma 3.4.6, ∇ is mono, whence κ1 = κ2, which is a
contradiction. Finally, the dagger on D provides an involution on the field R. �

3.6.9 Note that the scalars of PHilb are R+, which is not a ring. Since C is a
simple generator in PHilb, this entails that the category PHilb either does not
have dagger equalisers, or does not have finite dagger biproducts. Likewise, the
previous lemma shows that Rel does not have dagger equalisers.

3.6.10 Theorem If D has dagger equalisers, every dagger mono is a kernel, and
I is a simple generator, then R is an involutive field of characteristic zero and at
most continuum cardinality, with R+ zerosumfree.

88

3.6. Scalars revisited

PROOF We still have to prove that for all scalars r : I → I the property r +
· · · + r = 0 implies r = 0, where the sum contains n copies of r, for all n ∈
{1, 2, 3, . . .}.. So suppose that r + · · · + r = 0. By definition, r + · · · + r =
∇n ◦ (r ⊕ · · · ⊕ r) ◦ ∆n = ∇n ◦ ∆n ◦ r, where ∇n = [id]ni=1 :

⊕n
i=1 I → I and

∆n = 〈id〉ni=1 : I →
⊕n

i=1 I are the n-fold (co)diagonals. But 0 6= ∇n ◦ ∆n =
(∆n)† ◦∆n by Lemma 3.6.3. Since R is a field, this means that r = 0. �

To prove that any field as in the previous theorem in fact embeds into the
complex numbers, we cite two well-known results from algebra and model the-
ory. Recall that a field is algebraically closed when every polynomial over it of
degree at least 1 has a root.

3.6.11 Lemma [98, Theorem 4.4] Any field of characteristic zero and at most con-
tinuum cardinality can be embedded in an algebraically closed field of characteristic
zero and continuum cardinality. �

3.6.12 Lemma [47, Proposition 1.4.10] All algebraically closed fields of charac-
teristic zero and continuum cardinality are isomorphic. �

3.6.13 Theorem If D has dagger equalisers, every dagger mono is a kernel, and I
is a simple generator, then there is a monomorphism R� C of fields. �

3.6.14 The isomorphism of Lemma 3.6.12 is by no means canonical; there can
be very many such isomorphisms. This is caused by the reliance of the proof of
the above lemma on Zorn’s lemma, or equivalently, on the axiom of choice. In
particular, the embedding of fields of the previous theorem does not necessarily
preserve the involution.

3.6.15 For (not necessarily symmetric) dagger monoidal categories, the scalars
form only a skew field of characteristic zero and at most continuum cardinal-
ity. One might suspect that any such skew field embeds into the quaternions.
However, this is not the case. First, there is no canonical definition stating that
a skew field is algebraically closed [148]. Second, the technique of adding a
continuum of transcendentals does not apply in this case [167]. Third, not all
algebraically closed skew fields of the same cardinality are isomorphic [55].

3.6.16 There are size issues at play in the above theorem. Definition 3.6.1,
of a simple object, requires that R be of at most continuum cardinality, but
Lemmas 3.6.11 and 3.6.12 hold for higher cardinalities as well. Moreover, the
usual algebraic definition of simple object does not include the size requirement.

Thus, although the complex numbers are very familiar, we could also take
Theorem 3.6.10 at face value, and drop the unappealing size requirement. The-
orem 3.7.8 below would then give an embedding into preHilbR for an involu-
tive field R instead of into preHilbC, but it would preserve the dagger on the
nose.

89

Chapter 3. Dagger categories

3.6.17 The above theorem is of interest to reconstruction programmes that try
to the mathematical structure of quantum theory from simpler assumptions, for
among the things to be reconstructed are the scalars [153, 177]. For example,
[201] shows that if an orthomodular pre-Hilbert space is infinite dimensional,
then the base field is either R or C, and the space is a Hilbert space.

3.7 Hilbert categories

This section axiomatically defines (pre-)Hilbert categories as dagger categories
that moreover enjoy the “dagger properties” that we studied in the previous sec-
tions. It finishes the chapter by proving analogues of the embedding theorem in
Chapter 2 in the presence of a dagger. This justifies the names: (pre-)Hilbert cat-
egories embed into the category of (pre-)Hilbert spaces, preserving all pertinent
structure.

3.7.1 Definition A category is called a pre-Hilbert category when:

• it has a dagger;

• it has finite dagger biproducts;

• it has (finite) dagger equalisers;

• every dagger mono is a kernel;

• it is symmetric dagger monoidal.

3.7.2 Lemma If D is an arbitrary pre-Hilbert category, then there is a functor
D(I,) : D→ sHModR, where R = D(I, I). This functor:

(a) is faithful if and only if I is a generator;

(b) preserves the dagger;

(c) preserves dagger biproducts;

(d) preserves dagger equalisers, and hence all finite limits and colimits;

(e) is monoidal when I is simple;

PROOF We already saw in Lemma 3.6.3 that the desired functor exists and that
it satisfies (b) of that lemma. Also (a) has been demonstrated before in Theo-
rem 2.5.10, so we start with (c). Notice that by Corollary 3.6.4, the category
sHModR indeed has dagger biproducts, as described in Proposition 3.5.13. By
definition of product in D, we have D(I,X ⊕ Y) ∼= D(I,X)⊕D(I, Y).

90

3.7. Hilbert categories

We move to (d). It easy to see that F = D(I,) is an Ab-functor, that is,
(f + g) ◦ () = (f ◦) + (g ◦). Hence it follows from Lemma 3.5.17 that F
preserves (dagger) equalisers:

F (eq(f, g)) = F (ker(f − g)) = ker(F (f − g)) = ker(Ff − Fg) = eq(Ff, Fg).

Since F preserves equalisers and finite products, it preserves all finite limits.
Because it also preserves the self-duality †, also all finite colimits are preserved.

For (e), notice that by Lemma 3.6.6, the category sHModR indeed has dag-
ger tensor products, as described in Proposition 3.5.14. We must give a natu-
ral transformation ϕX,Y : D(I,X) ⊗ D(I, Y) → D(I,X ⊗ Y) and a morphism
ψ : R → D(I, I). Since R = D(I, I), we can simply take ψ = id. Define ϕ by
mapping x⊗ y for x : I → X and y : I → Y to the composite

I
∼= //I ⊗ I

x⊗y //X ⊗ Y.

It is easily seen that ϕ and ψ make the required coherence diagrams commute.�

3.7.3 Just like in Theorem 2.5.10, the functor from the previous embedding is
full when I is a projective generator and every object of D is finitely projective.
However, the technique used in Chapter 2 to embed a regular category fully
into one with a projective generator that makes every object finitely projective
does not apply here. There, moving from C to [C, cMon] provided a structure-
preserving embedding of categories. But in the setting of dagger categories,
there is no analogue of cMon. Moreover, whereas

∐
X∈D D(X,) would be

the obvious candidate for a projective generator in [D, cMon], pre-Hilbert cate-
gories tend not to have infinite coproducts (cf. 2.3.15 and 2.3.16).

3.7.4 If H is a pre-Hilbert category and D is a dagger category, then [D,H]
is again a pre-Hilbert category. But even if the monoidal unit of H is simple,
the monoidal unit of [D,H] no longer is for nontrivial D. Hence an extension
of the above embedding theorem to I that are not necessarily simple requires
reconstructing D from Sub(I). Compare footnote 1 on page 40.

In a pre-Hilbert category D whose monoidal unit is a simple generator, the
scalars embed into the complex field by Theorem 3.6.13. We will now construct
a functor HModR → HModS from a homomorphism f : R → S of involutive
rigs, and apply this construction to R � C. Thus we will extend the previous
theorem to a structure-preserving embedding D→ HModC = preHilb.

This technique is called extension of scalars, and is well known in the setting
of modules (see e.g. [9, 10.8.8]). Let us first consider in some more detail the
construction on modules over rigs.

91

Chapter 3. Dagger categories

3.7.5 Let R and S be commutative rigs, and let f : R→ S be a homomorphism
of rigs. Then any S-module X can be considered an R-module XR by defining
scalar multiplication r ·x in XR in terms of scalar multiplication in X by f(r) ·x.
In particular, we can regard S as an R-module. Hence it makes sense to look at
S ⊗R X. Somewhat more precisely, we can view S as a left-S-right-R-module,
and X as a left-R-module. Hence S ⊗R X becomes a (left-)S-module. This
construction induces a functor f∗ : ModR →ModS , acting on morphisms g as
id ⊗R g. It is easily seen to be strong monoidal and to preserve biproducts and
kernels.

Moreover, the fact that any S-module can be seen as an R-module via f

immediately induces another functor f∗ : ModS → ModR. This one is called
restriction of scalars along f . In fact, f∗ is right adjoint to f∗ [33, 3.1.6e].

Now let us change to the setting of Hilbert modules, where R and S are
involutive rigs, and f : R → S is a morphism of involutive rigs. The next
lemma shows that extension of scalars along f lifts to a functor f∗ : sHModR →
sHModS (under some conditions on S and f). However, since we do not know
how to fashion an R-valued inner product out of an S-valued one in general, it
seems impossible to construct an adjoint functor f∗ : sHModS → sHModR.

3.7.6 Lemma Let R be a commutative involutive rig, S a multiplicatively cancella-
tive commutative involutive ring, and f : R � S a monomorphism of involutive
rigs. There is a functor f∗ : sHModR → sHModS . This functor:

(a) is faithful;

(b) preserves the dagger;

(c) preserves dagger biproducts when both R+ and S+ are zerosumfree;

(d) is strong monoidal when R is multiplicatively cancellative.

PROOF Let X be a strict Hilbert R-module. Defining the carrier of f∗X to be
S ⊗R X turns it into an S-module as before. Furnish it with

〈s⊗ x | s′ ⊗ x′〉f∗X = s‡ · s′ · f(〈x |x′〉X).

Assume 0 = 〈s ⊗ x | s ⊗ x〉f∗X = s‡ · s · f(〈x |x〉X). Since S is multiplicatively
cancellative, either s = 0 or f(〈x |x〉X) = 0. In the former case s⊗ x = 0. In the
latter case 〈x |x〉X = 0, since f is injective, and because X is strict this yields
x = 0, whence s ⊗ x = 0. Since S is a ring, this implies that f∗X is a strict
Hilbert S-module. For if 〈x | −〉f∗X = 〈x′ | −〉f∗X then 〈x− x′ | −〉f∗X = 0, so in
particular 〈x− x′ |x− x′〉f∗X = 0. Hence x− x′ = 0 and x = x′.

92

3.7. Hilbert categories

Moreover, the image of a morphism g : X → X ′ of sHModR under f∗ is a
morphism of sHModS , as its adjoint is id ⊗ g†:

〈(id ⊗ g)(s⊗ x) | s′ ⊗ x′〉f∗X′ = 〈s⊗ g(x) | s′ ⊗ x′〉f∗X′
= s‡ · s′ · f(〈g(x) |x′〉X′)
= s‡ · s′ · f(〈x | g†(x′)〉X)

= 〈s⊗ x | s′ ⊗ g†(x′)〉f∗X
= 〈s⊗ x | (id ⊗ g†)(s′ ⊗ x′)〉f∗X .

Obviously, f∗ is faithful, and preserves the dagger, proving (a) and (b). For
(c): if dagger biproducts are available, then f∗ preserves them, since biproducts
distribute over tensor products. Finally, we show (d). If tensor products are
available, showing that f∗ preserves them comes down to giving an isomorphism
S → S⊗RR and a natural isomorphism (S⊗RX)⊗S (S⊗RY)→ S⊗R (X⊗RY).
The obvious candidates for these satisfy the coherence diagrams, making f∗

strong monoidal. �

3.7.7 The extension of scalars functor f∗ of the above lemma is full if and
only if f is a regular epimorphism, i.e. iff f is surjective. For an illustrative
example, consider the inclusion f : N ↪→ Z, which is obviously not surjective. We
find that f∗ : sHModN → sHModZ sends an object X ∈ sHModN to X

∐
X,

with additive inverses being provided by swapping the two terms X. If g is
a morphism, then f∗(g) sends (x, x′) to (g(x), g(x′)). Consider h : X

∐
X →

X
∐
X, determined by h(x, x′) = (x′, x). If h = f∗(g) for some g, then (x′, x) =

h(x, x′) = (f∗(g))(x, x′) = (g(x), g(x′)), so g(x) = x′ and g(x′) = x for all
x, x′ ∈ X. Hence g must be constant, contradicting h = f∗(g). Thus f∗ is not
full.

Collecting previous results now establishes the following embedding theorem
for pre-Hilbert categories.

3.7.8 Theorem If D is a pre-Hilbert category whose monoidal unit I is simple,
then there is a functor F : D → preHilb. It depends on the monomorphism
D(I, I) � C of Theorem 3.6.13, by acting on objects as F (X) = C ⊗ D(I,X).
The functor F :

(a) is faithful if and only if I is a generator;

(b) preserves the dagger up to an isomorphism of the base field;

(c) preserves all finite limits and colimits;

(d) is monoidal.

93

Chapter 3. Dagger categories

PROOF The only claim that does not follow directly from previous results is (c).
We need to prove that extension of scalars f∗ along f : D(I, I)� C preserves all
finite limits and colimits. This comes down to a calculation in the well-studied
situation of module theory, see [9, Exercise 10.8.5]. �

The notion of compact object from Section 2.6 characterises when the em-
bedding of pre-Hilbert categories takes values in finite-dimensional pre-Hilbert
spaces; see also 2.6.12.

3.7.9 Corollary Let D be a compact pre-Hilbert category whose monoidal unit I
is a simple generator. If D(I,) is strong monoidal, then it takes values in fdHilb.

PROOF Combine Theorem 3.7.8 and Proposition 2.6.11. �

3.7.10 The previous corollary opens the way to diagram chasing (see e.g. [34,
Section 1.9]): to prove that a diagram commutes in a pre-Hilbert category, it
suffices to prove this in pre-Hilbert spaces, where one has access to actual ele-
ments. When the embedding is strong monoidal, this partly explains the main
result in [108], namely that an equation holds in all so-called traced symmetric
monoidal categories if and only if it holds in finite-dimensional vector spaces;
every compact closed category is traced symmetric monoidal. Moreover, in com-
bination with the fact that the categories of finite-dimensional pre-Hilbert spaces
and finite-dimensional Hilbert spaces coincide, this partly explains the main re-
sult in [198], namely that an equation holds in all dagger traced symmetric
monoidal categories if and only if it holds in finite-dimensional Hilbert spaces.

Up to now we have concerned ourselves with algebraic structure only. To
arrive at the category of Hilbert spaces and continuous linear maps, some anal-
ysis now comes into play. To extend the previous theorem to an embedding
into the category of Hilbert spaces, we will postcompose it with the reflection

preHilbbd //
⊥ Hilb? _oo induced by Cauchy completion, as discussed in 3.1.12.

We impose another axiom on the morphisms of D to ensure they end up in
preHilbbd instead of preHilb. To do so we first study the positive scalars in
some more detail.

3.7.11 Lemma In a pre-Hilbert category whose monoidal unit I is simple, a scalar
r : I → I is positive if and only if it is of the form r = f† ◦ f for some f : I → X.

PROOF One direction is obvious: if r is positive, then by definition r = s† ◦ s for
some s : I → I. Conversely, suppose that r = f† ◦ f for f : → X. Factorise f as

94

3.7. Hilbert categories

f = i ◦ e with i dagger mono and e epi.

Im(f)
� �'

i ""EEEEEEE
Im(f)

!!
e†

!!DDDDDDDD

I

e
== ==zzzzzzzz
f

// X
f†

//
i†

9 7Byyyyyyyy
I

Since I is simple, e† is either zero or isomorphic. In the former case r = f†f =
0 = 0† ◦0 for 0: I → I. In the latter case, there is an isomorphism d : I → I such
that r = f† ◦ f = d† ◦ d. �

3.7.12 Lemma In a pre-Hilbert category whose monoidal unit is simple, the posi-
tive scalars R+ are a sub-involutive-rig of the scalars R.

PROOF [107, Proposition 7.5] Obviously, 0 and 1 are positive. If r = f† ◦ f and
s = g† ◦ g are positive, then so are

r • s = λ−1 ◦ (r ⊗ s) ◦ λ = ((f ⊗ g) ◦ λ)† ◦ ((f ⊗ g) ◦ λ),

r + s = ∇ ◦ (r ⊕ s) ◦∆ = ((f ⊕ g) ◦∆)† ◦ ((f ⊕ g) ◦∆),

by the previous lemma. Hence R+ is a subrig of R. Finally, if r = f† ◦ f is
positive, so is r† = f† ◦ f = r, making R+ an involutive rig. �

3.7.13 In a pre-Hilbert category whose monoidal unit is a simple generator, the
relation on scalars defined by r ≤ s iff s = r + p for some p ∈ R+ is a partial
order: reflexivity is immediate, transitivity follows from the previous lemma,
and anti-symmetry follows from the fact that R is a ring.

3.7.14 Definition In a pre-Hilbert category whose monoidal unit is a simple
generator, a scalar r : I → I is said to bound a morphism g : X → Y when
x† ◦ g† ◦ g ◦ x ≤ r† ◦ x† ◦ x ◦ r for all x : I → X. A morphism is called bounded
when it has a bound.

A Hilbert category is a pre-Hilbert category whose morphisms are bounded.
In the category Hilb this coincides with the usual notion of bounded map.

3.7.15 Almost by definition, the functor D(I,) of Lemma 3.7.2 preserves
boundedness of morphisms when D is a Hilbert category. The following lemma
shows that also the extension of scalars of Theorem 3.7.8 preserves bounded-
ness. It is noteworthy that a combinatorial condition (boundedness) on the
category D ensures an analytic property (continuity) of its image in preHilb,
as we never even assumed a topology on the scalar field, let alone assuming
completeness.

95

Chapter 3. Dagger categories

3.7.16 Lemma Let R be a commutative involutive rig, S a multiplicatively can-
cellative commutative involutive ring, and f : R � S a monomorphism of in-
volutive rigs. If g : X → Y is bounded in sHModR, then f∗(g) is bounded in
sHModS , in the notation of Lemma 3.7.6.

PROOF First, notice that f : R → S preserves the canonical order: if r ≤ r′, say
r + t‡ · t = r′ for r, r′, t ∈ R, then f(r) + f(t)‡ · f(t) = f(r + t‡ · t) = f(r′), so
f(r) ≤ f(r′).

Suppose 〈g(x) | g(x)〉Y ≤ r‡ · r · 〈x |x〉X for all x ∈ X and some r ∈ R. Then
f(〈g(x) | g(x)〉Y) ≤ f(r‡ · r · 〈x |x〉X) = f(r)‡f(r)f(〈x |x〉X) for x ∈ X. Hence
for s ∈ S:

〈f∗g(s⊗ x) | f∗g(s⊗ x)〉f∗Y = 〈(id ⊗ g)(s⊗ x) | (id ⊗ g)(s⊗ x)〉f∗Y
= 〈s⊗ g(x) | s⊗ g(x)〉f∗Y
= s‡ · s · f(〈g(x) | g(x)〉Y)

≤ s‡ · s · f(r)‡ · f(r) · f(〈x |x〉X)

= f(r)‡ · f(r) · 〈s⊗ x | s⊗ x〉f∗X .

Because elements of the form s ⊗ x form a basis for f∗X = S ⊗R X, we thus
have

〈f∗g(z) | f∗g(z)〉f∗Y ≤ f(r)‡f(r)〈z | z〉f∗X

for all z ∈ f∗X. In other words: f∗(g) is bounded (namely, by f(r)). �

3.7.17 Being a left adjoint, Cauchy completion preHilbbd //
⊥ Hilb? _oo pre-

serves colimits. Because of the dagger, this means it preserves all finite limits
and colimits. It is also strong monoidal, by definition of the tensor products in
Hilb.

Combining the previous lemma with Theorem 3.7.8 now results in the main
theorem of this section.

3.7.18 Theorem If D is a Hilbert category whose monoidal unit I is simple, then
there is a functor F : D → Hilb. It depends on the monomorphism D(I, I) � C
of Theorem 3.6.13, by acting on objects as F (X) = C⊗D(I,X). The functor F :

(a) is faithful if and only if I is a generator;

(b) preserves the dagger up to an isomorphism of the base field;

(c) preserves all finite limits and colimits;

(d) is monoidal. �

96

3.7. Hilbert categories

3.7.19 Notice that the embedding of the Hilbert category Hilb into itself thus
constructed is (isomorphic to) the identity functor.

Theorems 3.7.8 and 3.7.18 justify taking (pre-)Hilbert categories as our cat-
egorical models for quantum theory, as indicated in Chapter 1. Except for what
will be described in the next chapter, (pre-)Hilbert categories have all the struc-
ture needed to model quantum protocols. The above theorems show that they
enjoy a satisfactory relation to the traditional formalism of quantum theory,
namely that of Hilbert spaces.

To end this chapter, let us put (pre-)Hilbert categories and Theorem 3.7.18
into historical context by sketching related approaches.

3.7.20 Proposition 1.14 of [93] proves that any C*-category embeds into Hilb.
Here, a C*-category is a category such that:

1. it is enriched over complex Banach spaces and linear contractions;

2. it has an antilinear dagger;

3. every f : X → Y satisfies f† ◦ f = 0⇒ f = 0,
and there is a g : X → X with f† ◦ f = g† ◦ g;

4. ‖f‖2 = ‖f† ◦ f‖ for every morphism f .

See also Example 3.1.7. The embedding of a C*-category into Hilb uses power-
ful analytical methods, as it is basically an extension of the Gelfand-Naimark
theorem (see Chapter 5) showing that every C*-algebra (i.e. one-object C*-
category) can be realised concretely as an algebra of operators on a Hilbert
space. Compare the previous definition to 3.7.1: the axioms of (pre-)Hilbert cat-
egories are much weaker. For example, nothing about the base field is built into
the definition. In fact, 3.6.10 derives the fact that the base semiring is a field.
For the same reason, our situation also differs from Tannakian categories [67],
that are otherwise somewhat similar to our (pre-)Hilbert categories. Moreover,
(pre-)Hilbert categories do not presuppose any enrichment, but derive it from
prior principles.

3.7.21 A related embedding theorem is [72] (see also [105] for a categori-
cal account). It characterises categories that are equivalent to the category of
finite-dimensional unitary representations of a uniquely determined compact su-
pergroup. Without explaining the postulates, let us mention that the categories
C considered:

1. are enriched over complex vector spaces;

2. have an antilinear dagger;

97

Chapter 3. Dagger categories

3. have finite biproducts;

4. have tensor products (I,⊗);

5. satisfy C(I, I) ∼= C;

6. every projection dagger splits;

7. every object is compact.

Our Definition 3.7.1 also required 2,3, and 4 above. Furthermore, we used that
I is a simple generator, which is an analogue of 5. But notice, again, that 1 above
presupposes a base field C, and enrichment over complex vector spaces, whereas
(pre-)Hilbert categories do not. We will come back to point 7 in Corollary 3.7.9
below.

3.7.22 This is taken a step further by [11], which follows the “categorification”
programme originating in homotopy theory [139]. A 2-Hilbert space is a category
that:

1. is enriched over Hilb;

2. has an antilinear dagger;

3. is Abelian;

The category 2Hilb of 2-Hilbert spaces turns out to be monoidal. Hence it
makes sense to define a symmetric 2-H*-algebra as a commutative monoid in
2Hilb, in which furthermore every object is compact. Then, [11] proves that
every symmetric 2-H*-algebra is equivalent to a category of continuous unitary
finite-dimensional representations of some compact supergroupoid. Again, the
proof is basically a categorification of the Gelfand-Naimark theorem. Although
the motivation for 2-Hilbert spaces is a categorification of a single Hilbert space,
they resemble our (pre-)Hilbert categories, that could be seen as a characteri-
sation of the category of all Hilbert spaces. However, there are important dif-
ferences. First of all, axiom 1 above again presupposes both the complex num-
bers as a base field, and a nontrivial enrichment. For example, as (pre-)Hilbert
categories assume no enrichment, we do not have to consider coherence with
conjugation. Moreover, [11] considers only finite dimensions, whereas the cat-
egory of all Hilbert spaces, regardless of dimension, is a prime example of a
(pre-)Hilbert category (see also Corollary 3.7.9 below). Finally, 2-Hilbert space
is an Abelian category, whereas a (pre-)Hilbert category need not be. After all,
by Example 3.2.4, the Hilbert category Hilb has epic monomorphisms that are
not isomorphic.

98

Chapter 4

Dagger kernel logic

Whereas the previous chapters considered categorical models, which could be
considered as a type theory, this chapter develops the corresponding categorical
logic. By studying kernel subobjects as predicates, it turns out that there are
tight connections to what is traditionally called quantum logic [30]: namely, the
lattice of kernel subobjects in a dagger kernel category is always orthomodular.
We establish an existential quantifier in said categories, and show that there
can be no universal quantifier. This situation has hardly been considered by
quantum logicians, but the categorical approach makes such structure apparent.
Nonetheless, we will see that the categorical logic of dagger kernel categories
is of a different nature from traditional settings studied in categorical logic: the
former turns out to have a ‘dynamic’ character. Finally, we characterise and study
the setting where the induced logic of a dagger kernel category is classical. This
chapter is both a concise introduction to categorical logic and a synthesis of the
results in [116] and some unpublished results obtained in cooperation with Bart
Jacobs.

4.1 Subobjects

It could be said that categorical logic is the study of subobjects in a category.
Intuitively, the latter correspond to predicates. In this section, we study so-
called kernel subobjects in dagger kernel categories. These turn out to give
an appropriate notion of predicate for quantum logic. For example, we will
prove that such subobjects correspond to certain projections, and also to closed
subobjects in a precise sence—this is reminiscent of the correspondence between
projections and closed subspaces in Hilbert space theory.

99

Chapter 4. Dagger kernel logic

4.1.1 Recall that the collection of monomorphisms into an object X in a cate-
gory forms a preorder: for monos m : M → X and n : N → X we define m ≤ n

if there is a (necessarily unique, monic) ϕ : M → N satisfying m = n ◦ ϕ. This
preorder can made into a partial order by taking equivalence classes, considering
m and n equivalent if m ≤ n and n ≤ m. Equivalently, m and n are equivalent if
there is an isomorphism ϕ : M → N with m = n ◦ ϕ. Such an equivalence class
[m] is called a subobject of X. The collection of subobjects of X is denoted by
Sub(X). We will often not distinguish a subobject [m] from a representative m.

4.1.2 Example In the category Set, a subobject of an object X can simply be
seen as a subset of the set X. Hence Sub(X) ∼= P(X) in Set. In the category
Mon of monoids, subobjects of M correspond to submonoids of M . In the
category Rg of rigs, subobjects of R correspond to subrigs of R. In the category
ModR for some rig R, subobjects correspond to submodules. In the category
Hilb, subobjects correspond to Hilbert subspaces, i.e. closed linear subspaces.

4.1.3 Definition We say that a subobject in a dagger kernel category (cf. Defini-
tion 3.2.20) is a kernel subobject when its representatives are kernels, i.e. when
every representative m : M � X of the subobject is a kernel of some morphism
f : X → Y . Consequently, every kernel subobject can be represented by a dagger
mono (cf. [199]).

The collection KSub(X) of kernel subobjects of X inherits the partial order
of Sub(X): for k : K → X and l : L→ X we define k ≤ l if there is a ϕ : K → L

satisfying k = l ◦ ϕ. By Lemma 3.4.2, ϕ is also a kernel. The order on KSub(X)
is a special case of a partial order on homsets, as in Definition 4.1.5 below.

4.1.4 Example Let us review what kernel subobjects are in the dagger kernel
categories we met in Section 3.2. By Example 3.2.23, we have KSub(X) ∼= P(X)
in the category Rel. By Example 3.2.24, the same holds in the subcategory PInj.
Notice that in the latter category KSub(X) = Sub(X) by Proposition 3.4.8. In
the category Hilb, any subobject can be represented by isometric inclusion of
a closed linear subspace and therefore is a kernel subobject by Example 3.2.25.
The situation in PHilb is similar by Example 3.2.27: elements of KSub(X)
correspond to closed subspaces of X too.

4.1.5 Definition Let f, g : X ⇒ Y be parallel morphisms in a dagger kernel
category. Factorise them as f = if ◦mf ◦ (if†)† and g = ig ◦mg ◦ (ig†)†. Define
f ≤ g if and only if there are (necessarily unique, dagger monic) ϕ : Im(f) →

100

4.1. Subobjects

Im(g) and ψ : Im(f†)→ Im(g†), so that in the diagram

Im(f†)
mf // Im(f)

� $, if

((QQQQQQQ

ϕ

���
�
�
�

X

(i
f†)
† , 2:lllllll

(i
g†)
† � $,RRRRRRR Y

Im(g†) mg

//

ψ†

OO�
�
�
�

Im(g)
- 3: ig

66mmmmmmm

(4.1)

one has

ψ† ◦ (ig†)
† = (if†)

†, ϕ ◦mf = mg ◦ ψ, ϕ† ◦mg = mf ◦ ψ†, ig ◦ ϕ = if .

4.1.6 Lemma The relation ≤ is a partial order on each homset of a dagger kernel
category, with the zero morphism as least element.

PROOF Reflexivity is easily established by taking ϕ = id and ψ = id. For tran-
sitivity, suppose that f ≤ g via ϕ and ψ, and that g ≤ h via α and β. Then the
four conditions in the previous definition are fulfilled by α ◦ϕ and ψ ◦ β, so that
f ≤ h. Finally, for anti-symmetry, suppose that f ≤ g via ϕ and ψ, and that
g ≤ f via α and β.

Then if ◦ α ◦ ϕ = ig ◦ ϕ = if , so that α ◦ ϕ = id. Similarly, β ◦ ψ = id. By
Lemma 3.4.1 α is a dagger mono so that α† = α† ◦ α ◦ ϕ = ϕ. Similarly, β† = ψ,
and therefore:

f = if ◦mf ◦ (if†)
† = if ◦ α ◦ ϕ ◦mf ◦ (if†)

† = ig ◦mg ◦ ψ ◦ (if†)
†

= ig ◦mg ◦ β† ◦ (if†)
†

= ig ◦mg ◦ (ig†)
†

= g.

Finally, for any f we have 0 ≤ f by taking ϕ = ψ = 0. �

4.1.7 Example Let f, g : X ⇒ Y be morphisms in PInj. Writing out Defini-
tion 4.1.5, we see that f ≤ g if and only if there is a ϕ : F � G such that
fi = gi◦ϕ, in the notation of Example 3.1.5. That is, the order of Definition 4.1.5
coincides with the order on homsets of PInj induced by that of spans.

4.1.8 Example We now give explicit characterisations of the order in homsets
of Rel and Hilb. An easy way to obtain these will be given in 4.2.12 below.

In Rel we have R ≤ S for R,S ⊆ X × Y if and only if S = R ∪ R′ for some
R ⊆ X × Y with R ∩ R′ = ∅. That is, R ≤ S if and only if R ⊆ S as subsets of
X × Y .

101

Chapter 4. Dagger kernel logic

In Hilb, we have f ≤ g for f, g : X ⇒ Y if and only if g = f + f ′ for
some f ′ : X → Y with Im(f) and Im(f†) orthogonal to Im(f ′) and Im((f ′)†),
respectively. (This is stronger than just Im(f) ≤ Im(g).)

4.1.9 The partial order of Definition 4.1.5 does not provide an enrichment, in
general. For example, consider the morphisms κ1,∆: C ⇒ C2 in Hilb. Then
κ1 ≤ ∆, since κ1 + κ2 = ∆ and Im(κ1) ⊥ Im(κ2) and Im(π1) ⊥ Im(π2). We also
have∇◦κ1 = id and∇◦∆ = 2. Suppose that id ≤ 2. Then, in diagram (4.1), we
must have ϕ = ψ = id since iid = iid† = i2 = i2† = id. But then ϕ ◦mid = id 6=
2 = m2 ◦ ψ, which contradicts Definition 4.1.5. This shows that the order is not
preserved by postcomposition, in general. Nevertheless, the order is preserved
under several special types of composition, as in the next lemma.

4.1.10 Lemma If parallel morphisms in a dagger kernel category satisfy f ≤ g,
then:

(a) i ◦ f ≤ i ◦ g for a dagger mono i;

(b) f ◦ e ≤ g ◦ e for a dagger epi e;

(c) f† ≤ g†.

We omit the proof.
Before moving on to functorial properties of KSub in Section 4.4, we first

study KSub(X) in isolation, relating it to traditional quantum logic in several
ways. We start with a correspondence between kernel subobjects and certain
projections.

4.1.11 Recall that a projection on an object X in an arbitrary dagger kernel
category is a self-adjoint idempotent morphism, i.e. a morphism p : X → X that
satisfies p† = p = p ◦ p. The collection Proj(X) of projections on X carries a
preorder structure in which p v q iff p ◦ q = p. To see that it is in fact a partial
order, suppose p ◦ q = p and q ◦ p = q. Then

p = p ◦ q = p† ◦ q† = (q ◦ p)† = q† = q,

so that v is indeed antisymmetric.

4.1.12 Proposition For any objectX in a dagger kernel category, there is an order
isomorphism

P : (KSub(X),≤)
∼=−→ ({p ∈ Proj(X) | p ≤ id},v),

given by P (m) = m ◦m† and P−1(p) = Im(p).
If zero epis are epis, then p ≤ id holds for any p ∈ Proj(X).

102

4.1. Subobjects

PROOF Clearly, P (m) is a projection satisfying P (m) ≤ id, by taking ϕ = ψ = m

in diagram (4.1). Also, the image of any morphism is by definition a kernel
subobject, so that P−1 is well-defined. Let us verify that these maps are each
other’s inverses. For m ∈ KSub(X), we have

P−1 ◦ P (m) = P−1(m ◦m†) = Im(m ◦m†) = m.

Conversely, if p ∈ Proj(X), note that p = ip ◦mp ◦ (ip)†. If p satisfies p ≤ id, then
there are ϕ,ψ : Im(p)⇒ X with ψ† = (ip)†, ϕ◦mp = ψ, ϕ† = mp◦ψ† and ϕ = ip.
This yields ψ = ip and mp = id. Hence p = ip ◦ (ip)† = P (Im(p)) = P ◦P−1(m).

Now let us consider the order. If m ≤ n as subobjects, say m = n ◦ ϕ for a
dagger mono ϕ, thenm◦m†◦n◦n† = n◦ϕ◦ϕ†◦n†◦n◦n† = n◦ϕ◦ϕ†◦n† = m◦m†,
so indeed P (m) v P (n). Conversely, if p v q, then p ◦ q = p, whence Im(p ◦ q) =
Im(p), so that indeed P−1(p) ≤ P−1(q) by functoriality of the factorisation.

If zero epis are epis, we write for a projection p,

ip ◦ ep = p = p ◦ p = p† ◦ p = (ep)† ◦ (ip)† ◦ ip ◦ ep = (ep)† ◦ ep.

and obtain ip = (ep)†. Hence p = P (ip) and therefore p ≤ id. �

Compare the previous proposition to Lemma 3.4.26. We now consider the
inclusion of KSub(X) in Sub(X). It will turn out that the former can be charac-
terised as the closed subobjects of the latter, in a precise sense.

4.1.13 Let X be an object in a dagger kernel category. A closure operation on
Sub(X) [29] consists in giving an m ∈ Sub(X) for every m ∈ Sub(X), in such a
way that:

(i) m ≤ m;

(ii) if m ≤ n then m ≤ n;

(iii) m = m;

4.1.14 Lemma In a dagger kernel category, m 7→ Im() = ker(coker()) is a
closure operation.

PROOF Part (i) is easy: coker(m) ◦ m = 0, so m ≤ ker(coker(m)). To see (ii),
suppose m ≤ n. Then coker(n) ◦ ker(coker(m)) = 0,

M **
m

**VVVVVVVVVVVVV
��

��

·

X

coker(n)
) 18iiiiiiiiiiiii

coker(m)

� &-UUUUUUUUUUUUU

N
44

n
44hhhhhhhhhhhhh ·,

_LR

· 0

44hhhhhhhhhhhhhh_LR
ker(coker(m))

OO

103

Chapter 4. Dagger kernel logic

so that ker(coker(m)) ≤ ker(coker(n)). Finally, part (iii) follows directly from
Lemma 3.4.1(c). �

4.1.15 Lemma There is a reflection Sub(X)
ker(coker()) //

⊥ KSub(X)? _oo for any object
X in a dagger kernel category where dagger monos are kernels.

PROOF We have to prove that ker(coker(m)) ≤ n iff m ≤ n for a mono m

and a dagger mono n. By (i) of Lemma 4.1.14 we have m ≤ ker(coker(m)),
proving one direction. For the converse direction, (ii) of Lemma 4.1.14 shows
that ker(coker(m)) ≤ ker(coker(n)). To finish the proof, we note that n =
ker(coker(n)), since dagger monos are kernels. �

Finally, we relate the partial orders KSub(X) to the notions of simple object
and generator. In doing so, we will discover that the latter notions, which might
have seemed arbitrary restrictions on the category to be embedded in Chapters 2
and 3, turn out to correspond to well-known notions in order theory.

4.1.16 Definition For elements x, y of a poset, we say that y covers x when
x < y and x ≤ z < y implies z = x (where z < y if and only if z ≤ y and
z 6= y). An element a of a poset with least element 0 is called an atom when it
covers 0. Equivalently, an atom cannot be expressed as a join of strictly smaller
elements. Consequently, 0 is not an atom. A poset is called atomic if for any
x 6= 0 in it there exists an atom a with a ≤ x. Finally, a lattice is atomistic when
every element is a join of atoms [64].

4.1.17 Proposition For an arbitrary object I in a dagger kernel category, the fol-
lowing are equivalent:

(a) idI = 1 is an atom in KSub(I);

(b) KSub(I) = {0, 1};

(c) each nonzero kernel x : I → X is an atom in KSub(X).

PROOF For (a) ⇒ (b), let m be a kernel into I. Because m ≤ idI and the latter
is an atom, we have that m = 0 or m is isomorphism. Thus KSub(I) = {0, 1}.

To prove (b)⇒ (c), suppose that m ≤ x for kernels m : M → X and x : I →
X. Say m = x ◦ ϕ for ϕ : M � I. Then ϕ is a kernel by Lemma 3.4.2. Since
KSub(I) = {0, 1}, either ϕ is zero or ϕ is isomorphism. Hence either m = 0 or
m = x as subobjects. So x is an atom. Finally, (c)⇒ (a) is trivial. �

4.1.18 Definition If I satisfies the conditions of the previous lemma, we call it
a KSub-simple object. To distinguish KSub-simple objects from simple objects,

104

4.1. Subobjects

as defined in Definition 3.6.1, we will also call the latter Sub-simple. Any Sub-
simple object is KSub-simple.

Similarly, let us call I a KSub-generator if f = g : X ⇒ Y whenever f ◦ x =
g ◦ x for all kernels x : I � ,2 //X. Any KSub-generator is a generator.

4.1.19 Lemma If a dagger kernel category D has a KSub-simple KSub-generator
I, then beneath any element of KSub(X) lies a nonzero element of the form x : I →
X. Hence KSub(X) is atomic, and its atoms are the nonzero kernels x : I → X.

PROOF Suppose that there is a nonzero kernel m : M → X through which no
nonzero kernel x : I → X factors. If f : I → M is a kernel, then x = m ◦ f is a
kernel that factors through m, so x must be 0. And since m is mono, in that case
also f = 0. Hence 0 is the only kernel I → M . Because I is a KSub-generator,
it follows that D(M,Y) = {0} for any object Y . But then m = 0, which is a
contradiction. �

4.1.20 Definition Denote the set of atoms of KSub(X) by AtomX . For a subset
B of KSub(X) and an element m ∈ KSub(X), write B[m] = {b ≤ m | b ∈ B}.

4.1.21 Lemma If a dagger kernel category has a KSub-simple KSub-generator I,
then KSub(X) is atomistic for any object X.

PROOF Let m ∈ KSub(X). We show that m is the least upper bound of the set
AtomX [m] = {x ≤ m | x atom}. Obviously m is an upper bound. Suppose
that x ≤ n for all x ∈ AtomX [m]. We have to prove that m ≤ n, or equivalently,
m = n◦n†◦m. Since I is a KSub-generator, it suffices to provem◦y = n◦n†◦m◦y
for all kernels y : I → M . Now, x = m ◦ y is an atom by Proposition 4.1.17,
satisfying x ≤ m. Hence x ≤ n, so that m ◦ y = x = n ◦ n† ◦ x = n ◦ n† ◦m ◦ y.
Thus KSub(X) is atomistic. �

We finish this section by showing that any KSub(X) is a meet-semilattice.
The next two sections will exhibit much richer structure.

4.1.22 Proposition For an object X in a dagger kernel category, KSub(X) is a
bounded meet-semilattice. Explicitly, its least element is 0 = ker(idX) : 0 → X, its
greatest element is 1 = idX = ker(0) : X → X, and meets are defined by pullback.

PROOF By Proposition 3.4.3, KSub(X) has (finite) meets—for k, l ∈ KSub(X),
define k ∧ l ∈ KSub(X) as the pullback:

K ∧ L � ,2 k
−1(l) //

_��

l−1(k)

��

	 �(
k∧l

$$I
I

I
I

I
I K_��

k

��
L

� ,2
l

// X. �

105

Chapter 4. Dagger kernel logic

4.2 Orthogonality

In the category of Hilbert spaces, the existence of inner products (and hence
of adjoint morphisms) induces the notion of orthogonality, with a satisfactory
geometric intuition. In this section, we widen the concept of orthogonality to
any dagger kernel category. The foremost consequence is that any KSub(X) is
an orthomodular lattice, as the next section will show. This section concentrates
on the fact that orthogonality makes any KSub(X) into a lattice.

4.2.1 Definition In a dagger category with a zero object, morphisms f : X → Z

and g : Y → Z with a common codomain are called orthogonal, denoted f ⊥ g,
when g† ◦ f = 0, or equivalently, when f† ◦ g = 0.

4.2.2 Example In Hilb, morphisms f : X → Z and g : Y → Z are orthogonal
precisely when 〈f(x) | g(y)〉 = 0 for all x ∈ X and y ∈ Y , i.e. when f(x) ⊥ g(y)
in the Hilbert space Z for every pair of elements x of X and y of Y .

4.2.3 Definition For a morphism k : K → X in a dagger kernel category, we
define k⊥ = ker(k†). When k is a kernel subobject, we call k⊥ its orthogonal
kernel subobject, and denote it by k⊥ : K⊥ � ,2 //X .

4.2.4 Example Let k ∈ KSub(X) be a kernel subobject in Hilb. We can rep-
resent it by (the isometric inclusion of) a closed subspace K ⊆ X, as in Exam-
ple 3.2.4. Then k† : X → K is the orthogonal projection of X onto K. Every
element x of the Hilbert space X can be written uniquely in the form x = y + z,
with y ∈ K and z ⊥ u for all u ∈ K. Then k†(x) = k†(y + z) = y. Hence

K⊥ = ker(k†) = {x ∈ X | ∀u∈K .〈u |x〉 = 0}.

(See [135, 2.5].) The same holds in PHilb.
Identifying a kernel subobject of X in Rel with a subset K ⊆ X, one easily

sees that K⊥ = {x ∈ X | x 6∈ K}. The same holds for PInj.

4.2.5 Lemma In a dagger kernel category one has k⊥⊥ = k for each kernel sub-
object k. Hence every KSub(X) is a so-called orthoposet.

PROOF Say k = ker(f). Then:

k⊥⊥ = ker(ker(k†)†) = ker(coker(ker(f))) = ker(f) = k. �

4.2.6 Lemma In a dagger kernel category, the following are equivalent:

(a) f factors through g⊥;

106

4.2. Orthogonality

(b) f ⊥ g;

(c) g ⊥ f ;

(d) g factors through f⊥.

In particular, m ≤ n⊥ if and only if n ≤ m⊥. Hence there are functors

()⊥ : KSub(X)
∼=−→KSub(X)op. �

If we interpret the elements of KSub(X) as predicates on X, then the functor
()⊥ acts like a negation on predicates. In some ways it indeed behaves as
expected of a negation, as in the following lemma.

4.2.7 Lemma In a dagger kernel category, the functor⊥ : KSub(X)op → KSub(X)
is an equivalence of categories. In particular, it is both left and right adjoint to its
opposite ⊥op : KSub(X)→ KSub(X)op.

PROOF This means that m⊥ ≤ n iff n⊥ ≤ m, which holds as ⊥ is involutive. �

But the properties of ()⊥ resemble those of a negation only so far, as the
following corollary to Proposition 3.4.3 exhibits.

4.2.8 Corollary The following diagram is a pullback:

K
_�

0 //
_��

ker(f)
��

0_��
0
��

X
f

// Y,

showing that, logically speaking, falsum—i.e. the bottom element 0 ∈ KSub(Y)—is
in general not preserved under substitution. Also, negation ()⊥ does not commute
with substitution, because 1 = 0⊥ and f−1(1) = 1.

4.2.9 In Proposition 4.1.22 we saw that every KSub(X) is a meet-semilattice in
a dagger kernel category. Combining this with the functor ()⊥ : KSub(X)op →
KSub(X), we find that KSub(X) is a lattice, by defining k ∨ l = (k⊥ ∧ l⊥)⊥.
Joins are not necessarily preserved by pullback along a morphism f , but we do
have:

k ∨ k⊥ = (k⊥ ∧ k⊥⊥)⊥ = (k⊥ ∧ k)⊥ = 0⊥ = 1.

In other words, KSub(X) is an orthocomplemented lattice.

As an intermezzo, we can now characterise the order of Definition 4.1.5 in
terms of biproducts, if these are available. The following two results also apply
to PInj, with its coaffine structure of disjoint union instead of ⊕. For simplicity,
we only state them using biproducts.

107

Chapter 4. Dagger kernel logic

4.2.10 Lemma For parallel morphisms f, g, h in a dagger kernel category with
dagger biproducts:

(a) h⊥(f + g) if and only if h⊥ f and h⊥ g;

(b) If f + g = 0 then f = g = 0;

(c) If f + g = f then g = 0.

PROOF For (a), observe that h⊥ f if and only if ih⊥ if . Hence h⊥ f and h⊥ g
if and only if i†f ◦ ih = 0 and i†g ◦ ih = 0. This is equivalent to

i†f+g ◦ ih = [if , ig]† ◦ ih = 〈i†f , i
†
g〉 ◦ ih = 0,

and hence to h⊥(f + g).
For (b), assume that f + g = 0. Then [if , ig] ◦ 〈ef , eg〉 = f + g = 0. Since

[if , ig] is monic, this entails 〈ef , eg〉 = 0. Hence ef = eg = 0 and f = g = 0.
For (c), assume that f + g = f . Then

[if , ig] ◦ 〈ef , eg〉 = f + g = f = if ◦ ef = [if , ig] ◦ κ1 ◦ ef ,

so that 〈ef , eg〉 = κ1 ◦ ef . But then eg = π2 ◦ 〈ef , eg〉 = π2 ◦κ1 ◦ ef = 0, whence
g = 0. �

4.2.11 Proposition If a dagger category D has dagger biproducts, its homsets
carry a partial order, in which f ≤ g if and only if there is an f ′ such that f ⊥ f ′
and f†⊥(f ′)† and f + f ′ = g. This order coincides with that of Definition 4.1.5
when there is a (necessarily unique dagger) isomorphism ϕ : K ⊕ K⊥ → X with
ϕ ◦ κ1 = k and ϕ ◦ κ2 = k⊥ for every k ∈ KSub(X).

PROOF Reflexivity is easy: f ≤ f by picking f ′ = 0. For transitivity, assume
f ≤ g and g ≤ h, say by f + f ′ = g and g + g′ = h with f ⊥ f ′, f†⊥(f ′)†, g⊥ g′
and g†⊥(g′)†. Picking f ′′ = f ′ + g′ yields f + f ′′ = h. By Lemma 4.2.10(a),
we obtain f ⊥ f ′′ and f†⊥(f ′′)†, whence f ≤ h. For anti-symmetry, assume that
f ≤ g and g ≤ f , say by f + f ′ = g and g + g′ = f with f ⊥ f ′, f†⊥(f ′)†, g⊥ g′
and g†⊥(g′)†. Then f = f + (f ′ + g′), so that f ′ + g′ = 0 by Lemma 4.2.10(c),
and so f ′ = g′ = 0 by Lemma 4.2.10(b). But then f = g. Thus ≤ is a partial
order.

To show that this partial coincides with the one of Definition 4.1.5, first as-
sume f + f ′ = g, where f ⊥ f ′ and f†⊥(f ′)†. The factorisation of f + f ′ yields

108

4.2. Orthogonality

a diagram of the form (4.1), namely:

Im(f†)
mf // Im(f) � '. if

++VVVVVVVVVVVVV_��

κ1

���
�
�

X

(i
f†)
† ' 07gggggggggggggg

〈(i
f†)
† , (i(f′)†)

†〉
WW

� '.WW
Y.

Im(f†)⊕ Im((f ′)†)
mf⊕mf′

//

π1=κ†1

_LR�
�
�

Im(f)⊕ Im(f ′)
(07 [if ,if′]

44hhhhhhhhhh

Conversely, assume ϕ,ψ as in diagram (4.1), so that there are isomorphisms
[ϕ , ϕ⊥] : Im(f) ⊕ Im(f)⊥ → Im(g), and [ψ , ψ⊥] : Im(f†) ⊕ Im(f†)⊥ → Im(g†).
Since ϕ† ◦mg = mf ◦ ψ†, there is an n making the following diagram commute:

Im(f†)⊥ � ,2ker(ψ†)=ψ⊥ //

n
���

�
Im(g†)

ψ† � ,2

mg

��

Im(f†)

mf

��
Im(f)⊥ � ,2

ker(ϕ†)=ϕ⊥
// Im(g)

ϕ†

� ,2Im(f).

Hence

[ϕ , ϕ⊥] ◦ (mf ⊕ n) ◦ [ψ , ψ⊥]† = [ϕ ◦mf , ϕ
⊥ ◦ n] ◦ [ψ , ψ⊥]†

= mg ◦ [ψ , ψ⊥] ◦ [ψ , ψ⊥]† = mg. (4.2)

Now put

f ′ =
(
X

(i
g†)
†

//Im(g†)
(ψ⊥)† //Im(f†)⊥ n //Im(f)⊥

ϕ⊥ //Im(g)
ig //Y

)
.

Then

f† ◦ f ′ = f† ◦ ig ◦ ϕ⊥ ◦ n ◦ (ψ⊥)† ◦ (ig†)
†

= (ef)† ◦ (if)† ◦ ig ◦ ϕ⊥ ◦ n ◦ (ψ⊥)† ◦ (ig†)
†

= (ef)† ◦ (if)† ◦ ig ◦ ker((if)† ◦ ig) ◦ n ◦ (ψ⊥)† ◦ (ig†)
†

= (ef)† ◦ 0 ◦ n ◦ (ψ⊥)† ◦ (ig†)
† = 0,

whence f ⊥ f ′. Analogously f†⊥(f ′)†. Finally, we verify that f + f ′ = g:

g = ig ◦mg ◦ (ig†)
†

= ig ◦ [ϕ , ϕ⊥] ◦ (mf ⊕ n) ◦ [ψ , ψ⊥]† ◦ (ig†)
† (by (4.2))

= [ig ◦ ϕ , ig ◦ ϕ⊥] ◦ (mf ⊕ n) ◦ 〈ψ† ◦ (ig†)
† , (ψ⊥)† ◦ (ig†)

†〉
= (if ◦mf ◦ (if†)

†) + (ig ◦ ϕ⊥ ◦ n ◦ (ψ⊥)† ◦ (ig†)
†) = f + f ′ �

109

Chapter 4. Dagger kernel logic

4.2.12 Since Rel and Hilb both have dagger biproducts satisfying the require-
ment of the previous proposition, we have an explicit characterisation of the
order on their homsets, justifying Example 4.1.8.

We finish this section by showing that the existence of directed colimits suf-
fices for the kernel subobject lattice to be complete.

4.2.13 Recall that a preorder is directed when every two elements have a com-
mon upper bound; a directed colimit is a colimit of a directed preorder considered
as a diagram.

The following lemma is a special case of [33, Proposition 2.16.3].

4.2.14 Lemma If a category C has directed colimits and X is an object in it, then
the slice category C/X has directed colimits as well.

PROOF Let (ki)i∈I be a directed diagram in C/X. Then (Ki)i∈I is a directed
diagram in C; let ci : Ki → K be a colimit.

Ki

ci

 AAAAAAAA
//

ki

��0
0000000000000 Kj

cj

~~}}}}}}}}

kj

����������������

K

k

��
X

Then there is a morphism k : K → X such that ki = k ◦ ci, i.e. there is a cone
ci : ki → k in C/X.

Suppose that di : ki → l is a cone in C/X. That is, suppose that morphisms
di : Ki → L satisfy ki = l ◦ di. Then (di)i∈I forms a cone in C, so there is a
ϕ : K → L with di = ϕ ◦ ci. Hence l ◦ϕ ◦ ci = k ◦ ci for all i ∈ I. Since the ci are
jointly epimorphic, we have l ◦ϕ = k. Hence l ◦ϕ = k in C/X, and the diagram
(ki)i∈I indeed has a colimit in C/X, namely ci : ki → k. �

The previous lemma specialises to kernel subobjects, as follows.

4.2.15 Lemma If a dagger kernel category D has directed colimits, then KSub(X)
has directed colimits for every X ∈ D.

PROOF Lemma 4.1.15 extends to a reflection D/X
Im() //
⊥ KSub(X)? _oo . In-

deed, for f : Y → X in D/X and k : K � X in KSub(X), we find that mor-
phisms d : if → k in KSub(X) correspond bijectively to morphisms ϕ : f → k in

110

4.3. Orthomodularity

D/X by using diagonal fill-in on the following diagram:

Y

ϕ

���
�
� ◦

ef // // Im(f)
d

||y
y

y
y _��

if

��
K

� ,2
k
// X.

Let a directed diagram in KSub(X) be given. Regarded as a diagram in D/X, it
has a colimit c. Because Im() is a left adjoint, Im(c) is a colimit for the diagram
in KSub(X). Hence KSub(X) has directed colimits if D/X does, which is the
case if D has directed colimits by the previous lemma. �

4.2.16 Proposition If a dagger kernel category D has directed colimits, KSub(X)
is a complete lattice for every X ∈ D.

PROOF Combine the previous lemma with the fact that a lattice is complete if it
has directed joins ([130, Lemma I.4.1], or [137, Lemma 2.12]). �

4.3 Orthomodularity

This section shows that any KSub(X) is an orthomodular lattice, thereby jus-
tifying the study of dagger kernel categories in the context of quantum logic.
We then study the totality of orthomodular lattices as the objects of a particular
dagger kernel category.

4.3.1 Definition An orthocomplemented lattice is called an orthomodular lattice
when it satisfies k ∨ (k⊥ ∧ l) = l, (or, equivalently, k = l ∧ (l⊥ ∨ k)) if k ≤
l [136]. This is the notion that has come to be known as “the logic of quantum
mechanics” after the work of Garett Birkhoff and John von Neumann [30].

4.3.2 Lemma If k : K � X is a kernel subobject in a dagger kernel category, then
k ◦ () : KSub(K) → KSub(X) is left adjoint to k−1(), and therefore preserves
joins.

PROOF For kernel subobjects l,m one has l ≤ ker(coker(m) ◦ k) = k−1(m) if
and only if coker(m) ◦ k ◦ l = 0. But the latter holds if and only if k ◦ l ≤
ker(coker(m)) = m by Lemma 3.4.1(c). �

4.3.3 Theorem For any object X in a dagger kernel category, KSub(X) is an
orthomodular lattice.

111

Chapter 4. Dagger kernel logic

PROOF We first prove that if kernel subobjects k, l of X in a dagger kernel cate-
gory satisfy k ≤ l, say via ϕ with l ◦ ϕ = k, one has pullbacks

K
_�

� ,2 ϕ // L_��
l

��

P�_

��

�lrϕ⊥oo

K
� ,2 k // X K⊥.

�lrk⊥oo

The square on the left is obviously a pullback. For the one on the right we
use a simple calculation, following Proposition 3.4.3:

l−1(k⊥) = ker(coker(k⊥) ◦ l)
= ker(coker(ker(k†)) ◦ l)
= ker(k† ◦ l) (since k† is a cokernel)

∗= ker(ϕ†)

= ϕ⊥,

where the marked equation holds because l◦ϕ = k, so that ϕ = l† ◦ l ◦ϕ = l† ◦k,
and therefore ϕ† = k† ◦ l. Then:

k ∨ (k⊥ ∧ l) = (l ◦ ϕ) ∨ (l ◦ ϕ⊥) ∗= l ◦ (ϕ ∨ ϕ⊥) = l ◦ id = l,

where the marked equation holds because by Lemma 4.3.2. Hence KSub(X) is
an orthomodular lattice. �

4.3.4 In connection to 3.7.15, Lemma 4.1.14 and Lemma 4.1.15, a relevant fact
is that a pre-Hilbert space is complete if and only if its lattice of closed subspaces
is orthomodular [7]. However, preHilb is not a dagger kernel category, for if
f : X → Y , then {x ∈ X | f(x) = 0} is again an object of preHilb, but the
its inclusion into X is not necessarily adjointable. Hence the previous theorem
fortunately does not imply that every pre-Hilbert space is a Hilbert space.

The following definition collects all orthomodular lattices into a category,
choosing the morphisms such that it becomes a dagger kernel category. The rest
of this section studies that category.

4.3.5 Definition We denote by OMLatGal the full subcategory of InvGal of
Example 3.1.9 consisting of orthomodular lattices. Let us write out the mor-
phisms, recalling Example 3.1.9. A morphism f : X → Y in OMLatGal is an
antitone Galois connection, i.e. a pair of functions f∗ : Xop → Y and f∗ : Y →
Xop such that:

112

4.3. Orthomodularity

• x ≤ f∗(y) if and only if y ≤ f∗(x);

• f∗(x) ≥ f∗(x′) when x ≤ x′;

• f∗(y) ≥ f∗(y′) when y ≤ y′.

The identity morphism on X is given by the pair (⊥,⊥), and composition is
determined by

(g ◦ f)∗ = g∗◦ ⊥ ◦f∗,
(g ◦ f)∗ = f∗◦ ⊥ ◦g∗.

The components f∗ : Xop → Y and f∗ : Y → Xop of a morphism f : X →
Y in OMLatGal are not required to preserve any structure, but the Galois
connection yields that f∗ preserves meets, as a right adjoint, and therefore sends
joins in X (meets in Xop) to meets in Y . Dually, f∗ sends joins in Y to meets in
X.

4.3.6 The category OMLatGal inherits the dagger from InvGal:

(f∗, f∗)† = (f∗, f∗).

A morphism f : X → Y is a dagger mono in OMLatGal precisely when it
safisfies f∗(f∗(x)⊥) = x⊥ for all x ∈ X, because id∗(x) = x⊥ = id∗(x) and

(f† ◦ f)∗(x) = f∗(f∗(x)⊥) = (f† ◦ f)∗(x).

4.3.7 Lemma Let f, g : X ⇒ Y be morphisms of OMLatGal. One has f = g if
either f∗ = g∗ or f∗ = g∗.

PROOF We prove that f∗ = g∗ if f∗ = g∗. For all x ∈ X and y ∈ Y ,

x ≤ f∗(y) ⇐⇒ y ≤ f∗(x) = g∗(x) ⇐⇒ x ≤ g∗(y).

Given y, this holds for all x, and so in particular for x = f∗(y) and x = g∗(y),
which yields f∗(y) = g∗(y). �

4.3.8 Lemma Let X be an orthomodular lattice, and a ∈ X.

(a) The (principal) downset ↓a = {u ∈ X | u ≤ a} is again an orthomodular
lattice, with order and meets as in X, and with orthocomplement ⊥a given by
u⊥a = a ∧ u⊥, where ⊥ is the orthocomplement of X.

(b) There is a dagger mono ↓a � ,2 //X in OMLatGal, for which we also write
a, determined by a∗(u) = u⊥ and a∗(x) = a ∧ x⊥.

113

Chapter 4. Dagger kernel logic

PROOF For (a), let u ∈ ↓a. Then

u⊥a⊥a = a ∧ (a ∧ u⊥)⊥ = a ∧ (a⊥ ∨ u) = u,

by orthomodularity, since u ≤ a. We thus obtain a morphism in OMLatGal,
because for arbitrary u ∈ ↓a and x ∈ X:

x ≤ a∗(u) = u⊥ ⇐⇒ u ≤ x⊥ ⇐⇒ u ≤ a ∧ x⊥ = a∗(x).

This map a : ↓a→ X is a dagger mono since

a∗(a∗(u)⊥) = a∗(u⊥⊥) = a∗(u) = a ∧ u⊥ = u⊥a . �

Later, in Proposition 4.6.5, we shall see that the maps ↓ a � ,2 //X of the
previous lemma are precisely the kernels in the category OMLatGal. But we
first show that this category has kernels in the first place.

4.3.9 The category OMLatGal has a zero object 0, namely the one-element
orthomodular lattice {∗}. We can write its unique element as ∗ = 0 = 1. Let
us show that the lattice 0 is indeed a final object in OMLatGal. Let X be an
arbitrary orthomodular lattice. The only function f∗ : X → 0 is f∗(x) = 1. We
will show that it has a left adjoint f∗ : 0→ X defined by f∗(1) = 1:

f∗(1) = 1 ≤ x in Xop

1 ≥ x in X

1 ≤ 1 = f∗(x) in 0.

Likewise, the unique morphism g : 0 → Y is given by g∗(1) = 1 and g∗(y) = 1.
Hence the zero morphism z : X → Y is determined by z∗(x) = 1 and z∗(y) = 1.

4.3.10 Proposition The category OMLatGal is a dagger kernel category. Explic-
itly, the kernel of f : X → Y is k : ↓k → X, where k = f∗(1), as in Lemma 4.3.8.

PROOF The composition f ◦ k is the zero morphism ↓k → Y . First, for u ∈
↓f∗(1):

(f ◦ k)∗(u) = f∗(k∗(u)⊥) = f∗(u) = 1,

because u ≤ f∗(1) (in X) and so f∗(u) ≤ 1 (in Y). And for y ∈ Y :

(f ◦ k)∗(y) = k∗(f∗(y)⊥) = f∗(y) ∧ f∗(1) = f∗(y ∨ 1) = f∗(1) = k = 1↓k.

Now suppose that g ◦ k equals the zero morphism for g : Z → X. Then
f∗ ◦ ⊥◦g∗ = 1 and g∗ ◦ ⊥◦f∗ = 1. Hence for z ∈ Z we have 1 ≤ f∗(g∗(z)⊥),

114

4.3. Orthomodularity

so g∗(z)⊥ ≤ f∗(1) = k. Define h∗ : Zop → ↓k by h∗(z) = g∗(z) ∧ k, and define
h∗ : ↓k → Zop by h∗(u) = g∗(u). Then h∗ a h∗ since for u ≤ k and z ∈ Z:

h∗(u) = g∗(u) ≤ z in Zop

u ≤ g∗(z) in K

u ≤ g∗(z) ∧ k = h∗(z) in K,

whence h is a well-defined morphism of OMLatGal. It satisfies

(k ◦ h)∗(z) = k∗(h∗(z)⊥↓k)

= k∗((g∗(z) ∧ k)⊥↓k)

= ((g∗(z) ∧ k)⊥↓k ∧ k)⊥

= ((g∗(z) ∧ k)⊥ ∧ k ∧ k)⊥

= (g∗(z) ∧ k) ∨ k⊥

= g∗(z)

by orthomodularity, since k = f∗(1)⊥ ≤ g∗(z) because g∗(z)⊥ ≤ f∗(1) = k,
which follows from 1 ≤ f∗(g∗(z)⊥). Hence h is a mediating morphism satisfying
k ◦ h = g. It is the unique such morphism, since k is a dagger mono and hence a
mono, as we will now show to finish the proof: for u ∈ K we have k∗(k∗(u)⊥) =
k∗(u) = u⊥K . �

4.3.11 Proposition The category OMLatGal has (finite) dagger biproducts. Ex-
plicitly, X1 ⊕X2 is the Cartesian product of orthomodular lattices, and the copro-
jection κ1 : X1 → X1⊕X2 is defined by (κ1)∗(x) 7→ (x⊥, 1) and (κ1)∗(x, y) = x⊥.
The projections are given by πi = (κi)†.

PROOF Let us first verify that κ1 is a well-defined morphism of OMLatGal, i.e.
that (κ1)∗ a (κ1)∗:

κ∗1(x, y) = x⊥ ≤ z in Xop

(x, y) ≤ (z⊥, 1) = (κ1)∗(z) in X ⊕ Y .

Since (κ1)∗
(
(κ1)∗(x)⊥

)
= (κ1)∗

(
(x⊥, 1)⊥

)
= (κ1)∗

(
x, 0
)

= x⊥, one finds that κ1

is a dagger mono. Likewise, there is a dagger mono κ2 : X2 → X1 ⊕ X2. For
i 6= j, one finds that (κj)† ◦ κi is the zero morphism.

To show that X1 ⊕X2 is indeed a coproduct, let morphisms fi : Xi → Y be

115

Chapter 4. Dagger kernel logic

given. We then define the cotuple [f1 , f2] : X1 ⊕X2 → Y by

[f1 , f2]∗(x1, x2) = (f1)∗(x1) ∧ (f2)∗(x2),

[f1 , f2]∗(y) = (f∗1 (y), f∗2 (y)).

Indeed [f1 , f2]∗ a [f1 , f2]∗, making it a well-defined morphism:

[f1 , f2]∗(y) = (f∗1 (y), f∗2 (y)) ≤ (x1, x2) in (X1 ⊕X2)op

f∗i (y) ≤ xi in Xop
i

y ≤ (fi)∗(xi) in Y

y ≤ (f1)∗(x1) ∧ (f2)∗(x2) = [f1 , f2]∗(x1, x2) in Y .

Then

([f1 , f2] ◦ κ1)∗(x) = [f1 , f2]∗((κ1)∗(x)⊥)

= [f1 , f2]∗((x⊥, 1)⊥)

= (f1)∗(x) ∧ (f2)∗(0)

= (f1)∗(x) ∧ 1 = (f1)∗(x),

so that [f1 , f2]◦κ1 = f1. Likewise, [f1 , f2]◦κ2 = f2. Moreover, if g : X1⊕X2 →
Y also satisfies g ◦ κi = fi, then:

[f1 , f2]∗(x1, x2) = (f1)∗(x1) ∧ (f2)∗(x2)

= g∗
(
(κ1)∗(x1)⊥

)
∧ g∗

(
(κ2)∗(x2)⊥

)
= g∗

(
(x⊥1 , 1)⊥

)
∧ g∗

(
(1, x⊥2)⊥

)
= g∗

(
x1, 0

)
∧ g∗

(
0, x2

)
= g∗

(
(x1, 0) ∨ (0, x2)

)
= g∗

(
x1, x2

)
. �

4.3.12 Example The dagger biproducts of OMLatGal provide it with enrich-
ment in commutative monoids by Theorem 2.3.18. This boils down to

(f + g)∗(x) = f∗(x) ∧ g∗(x),

(f + g)∗(y) = f∗(y) ∧ g∗(y).

The associated order, as in Proposition 4.2.11, is determined by

f ≤ g ⇐⇒ g = f + g ⇐⇒ g∗ ≤ f∗ and g∗ ≤ f∗ pointwise.

116

4.4. Quantifiers

Thus the category OMLatGal is enriched over join-semilattices.

4.3.13 It is unclear whether the category OMLatGal has other monoidal
structures besides biproducts. Next to the disadvantages mentioned in Chap-
ter 1, there are no suitable tensor products of orthomodular lattices such that
KSub(X)⊗KSub(Y) ∼= KSub(X ⊗ Y) in the category Hilb. The lack of such a
tensor product is one of the main sources of criticism on programmes that try to
explain the mathematical structure of quantum physics through orthomodular
lattices [100, 129, 165, 177, 209].

4.4 Quantifiers

The previous sections mostly studied KSub(X) of a single object X in isolation.
This section studies morphisms between different kernel subobject lattices. We
have already seen one such morphism: pulling back along f : X → Y gives a
morphism f−1 : KSub(Y) → KSub(X) of meet-semilattices. One of the major
insights of categorical logic is that quantifiers can be described as adjoints to
substitution: existential quantification ∃f is left adjoint to f−1, whilst universal
quantification ∀f is right adjoint to f−1 [131, 154]. Notice that this general
prescription, when applied to our quantum setting, is of a different nature from
earlier attempts at quantifiers for quantum logic [128, 183], as it concerns mul-
tiple orthomodular lattices instead of a single one.

We start by constructing ∃f (thus defined) from the factorisation system of a
dagger kernel category, as is standard [131, Lemma A1.3.1]. Subsequently we
prove that it is left adjoint to f−1.

4.4.1 Definition For a given kernel subobject k : K � ,2 //X and a morphism
f : X → Y in a dagger kernel category, define ∃f (k) = Im(f ◦ k), using the fac-
torisation of Theorem 3.4.17. This yields a well-defined function ∃f : KSub(X)→
KSub(Y).

4.4.2 Theorem [43, Lemma 2.5] Let f : X → Y be a morphism in a dagger
kernel category. The map ∃f : KSub(X)→ KSub(Y) is monotone and left-adjoint
(in the category of posets) to f−1 : KSub(Y)→ KSub(X). If g : Y → Z is another
morphism then ∃g ◦ ∃f = ∃g◦f : KSub(X)→ KSub(Z). Also ∃id = id.

PROOF For monotonicity of ∃f , let k ≤ l in KSub(X). First factorise l and then

117

Chapter 4. Dagger kernel logic

K → ∃f (l) to obtain the following diagram:

K
7 7A

k

##� ,2 //

◦
����

L
� ,2

l
//

◦
����

X

f

��
I

� ,2 // ∃fL � ,2 // Y.

Now K ◦ // //I � ,2 //Y is a zero epi/dagger mono factorisation of f ◦ k, so I

represents ∃f (k), and ∃f (k) ≤ ∃f (l). To show the adjunction, let k ∈ KSub(X)
and l ∈ KSub(Y), and consider the solid arrows in the following diagram:

X
f // Y

f−1L

�__LR

OO

// L.
_LR
l

OO

K ◦ // //
I?H

k

DD													

;;w
w

w
w

∃fK

<<y
y

y
yK@I

EE�������������

If ∃f (k) ≤ l, then the right dashed map ∃fK → L exists and the outer square
commutes. Hence, since f−1L is a pullback, the left dashed map K → f−1L

exists, and k ≤ f−1(l). Conversely, if k ≤ f−1(l), factorise the map K → L

to obtain the image of f ◦ k. In particular, this image then factors through L,
whence ∃f (k) ≤ l. Finally, ∃g ◦∃f = ∃g◦f just states how left adjoints compose.�

4.4.3 Proposition For f : X → Y and k ∈ KSub(X) in a dagger kernel category,

one has ∃f (k) =
(

(f†)−1(k⊥)
)⊥

.

PROOF One has:(
(f†)−1(k⊥)

)⊥
≤ l ⇐⇒ l⊥ ≤ (f†)−1(k⊥)

⇐⇒ there is a ψ : L⊥ → K⊥ with k⊥ ◦ ψ = f† ◦ l⊥
∗⇐⇒ there is a ϕ : K → L with l ◦ ψ = f ◦ k
⇐⇒ k ≤ f−1(l).

For the direction (⇒) of the marked equivalence, recall that l = ker(coker(l)), so

coker(l) ◦ f ◦ k = (f† ◦ l⊥)† ◦ k = (k⊥ ◦ ψ)† ◦ l = ψ† ◦ coker(k) ◦ k = 0.

118

4.4. Quantifiers

The reverse direction works similarly: given ϕ, one obtains

k† ◦ f† ◦ l⊥ = (f ◦ k)† ◦ l⊥ = (l ◦ ϕ)† ◦ l⊥ = ϕ† ◦ l† ◦ l⊥ = ϕ† ◦ 0 = 0. �

4.4.4 Definition A bounded lattice X is called a Heyting algebra when, regard-
ing X as a category, () ∧ x has a right adjoint x⇒ () for every x ∈ X. Explic-
itly, a Heyting algebra X comes with a monotone function ⇒ : Xop × X → X

satisfying x ≤ (y ⇒ z) if and only if x ∧ y ≤ z.

4.4.5 Lemma Suppose there are right adjoints ∀f to f−1 : KSub(Y)→ KSub(X)
for each f : X → Y in a dagger kernel category. Then each KSub(X) is a Heyting
algebra.

PROOF For k, l ∈ KSub(X), define (k ⇒ l) = ∀k(k−1(l)). This is again a kernel
subobject of X. Let K be the domain of k. Then for any m ∈ KSub(X):

m ≤ ∀k(k−1(l)) = (k ⇒ l) in KSub(X)

k−1(m) ≤ k−1(l) in KSub(K)

m ∧ k ≤ l in KSub(X),

where the last equivalence follows from Lemma 4.3.2. �

4.4.6 Definition A distributive lattice is a lattice satisfying the following equa-
tions:

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z), (4.3)

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). (4.4)

4.4.7 Example A Heyting algebra is necessarily a distributive lattice, because
() ∧ x, being a left adjoint, preserves colimits, i.e. joins.

For an example of a nondistributive lattice, consider the lattice KSub(C2) in
the category Hilb. For the kernel subobjects represented by

κ1 : C→ C2,

κ2 = (κ1)⊥ : C→ C2,

∆ = 〈id , id〉 : C→ C2,

we have κ1 ∧ (∆ ∨ κ2) = κ1 ∧ 1 = κ1 6= 0 = 0 ∨ 0 = (κ1 ∧ ∆) ∨ (κ1 ∧ κ2). By
the previous lemma, we conclude that there are dagger kernel categories that
do not have universal quantifiers. Section 4.5 will give a wider class of dagger
kernel categories that do not have universal quantifiers.

119

Chapter 4. Dagger kernel logic

4.4.8 In categorical logic, quantifiers usually have to satisfy an additional con-
dition, namely the so-called Beck-Chevalley condition—if the left square below is
a pullback, then the right one must commute:

P
_�

q //

p

��

Y

g

��
X

f
// Z

⇒

KSub(P)

∃p

��

KSub(Y)

∃g

��

q−1
oo

KSub(X) KSub(Z).
f−1
oo

This condition ensures that ∃ commutes with substitution. Beck-Chevalley holds
for those pullbacks from Proposition 3.4.3 that are known to exist. For a kernel
k ∈ KSub(Y), we have

f−1(∃g(k)) = f−1(g ◦ k) (because both g, k are kernels)

= q−1(k) ◦ p (by composition of pullbacks)

= ∃p(q−1(k)).

If the dagger kernel category has biproducts and equalisers, then Beck-Chevalley
holds for all morphisms by [33, II, Proposition 1.7.6]. But in general, Beck-
Chevalley cannot be expected to hold in dagger kernel categories because of
Corollary 4.2.8.

Up to now, we have considered KSub to be a functor taking values in the
category of meet-semilattices. Towards showing that it in fact takes values in
the category OMLatGal, we now establish a connection between adjoint mor-
phisms and adjoint functors between the corresponding kernel subobject lattices.
Thus we will explicate the relationship between ∃f and ∃f† , inspired by [174].

4.4.9 Theorem For a morphism f : X → Y in a dagger kernel category, define2

KSub(f)∗ = (∃f ())⊥ : KSub(X)→ KSub(Y).

Then KSub(f)∗ is left adjoint to KSub(f†)∗.

PROOF We use the alternative description of Proposition 4.4.3 for k ∈ KSub(X)

2Formally, we should consider opposites of certain functors. For example, KSub(f)∗ is really
⊥◦∃opf : KSub(X)op → KSub(Y) instead of ⊥◦∃f . We suppress them so as not to clutter our
notation.

120

4.4. Quantifiers

and l ∈ KSub(Y):

KSub(f)∗(k) = ∃f (k)⊥ = (f†)−1(k⊥) ≤ l in KSub(Y)op

l ≤ (f†)−1(k⊥) in KSub(Y)

∃f†(l) ≤ k⊥ in KSub(X)

k ≤ ∃f†(l)⊥ = KSub(f†)∗(l) in KSub(X). �

In a diagram, the adjunction of the previous theorem is the following:

KSub(X)

`

∃f // KSub(Y)

⊥
��

KSub(X)op

⊥

OO

KSub(Y)op.
∃

f†

oo

For pre-Hilbert categories whose monoidal unit is a simple generator, there is a
converse to the previous theorem.

4.4.10 Lemma Let I be a simple object in a pre-Hilbert category. If f, g : X ⇒ I

satisfy ker(f) ≤ ker(g), then g = r ◦ f for some r : I → I, which is unique unless
f = 0.

PROOF Factorise f as f = ef ◦ if for a cokernel ef and a kernel if . Then either
if = 0 or if = 1, since I is simple. In the first case, f = 0, whence g = 0 ◦ f . In
the second case, f is a cokernel, and we are left with the following situation:

L � $, ker(g)

((RRRRRRRR I

X

f
66mmmmmmmmm

g ((RRRRRRRRR

K
_LR

ϕ

OO

, 2: ker(f)

66llllllll
I.

Now f = ef = coker(ker(ef)) = coker(ker(f)) by Lemma 3.4.1(c), and we have
g ◦ ker(f) = g ◦ ker(g) ◦ ϕ = 0. Hence there is a unique r such that g = r ◦ f . �

4.4.11 Theorem In a pre-Hilbert category whose monoidal unit I is a simple gen-
erator, if KSub(f)∗ a KSub(g)∗, then g = r • f† for a scalar r : I → I, which is
unique unless f = 0.

PROOF In general, for g : Y → X, the adjunction KSub(f)∗ a KSub(g)∗ means
that for m ∈ KSub(X) and n ∈ KSub(Y), one has n ≤ ker(Im(f ◦m)†) if and

121

Chapter 4. Dagger kernel logic

only if m ≤ ker(Im(g ◦ n)†).

L
0 //

� !)
ker(l†)

&&LLLLLLLLLLL J %%

◦LLLLL
j†

%%LLLLLL

M

ϕ

OO�
�
�

� ,2 m // X

l†

2 5=rrrrrrrrrrr g† // Y
n† � ,2N

M
� ,2

m
//

◦LLLLLL

i
&& &&LLLLLL

X
f

// Y
n†

� ,2

coker(k)
� !)LLLLLLLLLLL N

I
2 5=

k

99rrrrrrrrrrr
0

// K

ψ

OO�
�
�

(4.5)

Hence the adjunction of the hypothesis means that there is a ϕ making the upper
diagram in (4.5) commute if and only if there is a ψ making the lower one
commute. So, if n† ◦ f ◦m = 0, then n† ◦ k ◦ i = 0, and because i is a zero epi
it follows that n† ◦ k = 0. So ψ exists, whence ϕ exists, so that n† ◦ g† ◦ m =
j† ◦0◦ϕ = 0. Taking m = ker(n† ◦f) thus gives that ker(n† ◦f) ≤ ker(n† ◦g†) for
all n. Applying Lemma 4.4.10 yields that for all n : I → Y , there exists rn : I → I

such that n† ◦ g† = rn ◦ n† ◦ f . Using 2.2.9(c), this becomes: for all n : I → Y ,
there exists rn : I → I with g ◦ n = (r†n • f†) ◦ n. We will show that all rn are
in fact equal to each other (or to zero). If all y : I → Y would have y = 0, then
Y ∼= 0, in which case g = 0 • f†. Otherwise, pick an y : I → Y with y 6= 0.
There is an r : I → I with g ◦ y = (r† • f†) ◦ y. Put n′ = y ◦ y† ◦ n : I → Y and
n′′ = ker(y†) ◦ coker(y) ◦ n : I → Y . Then

n′ + n′′ = [id, id] ◦ ((y ◦ y† ◦ n)⊕ (ker(y†) ◦ ker(y†)† ◦ n)) ◦ 〈id, id〉
= [y, y⊥] ◦ [y, y⊥]† ◦ n
= n.

Moreover,

(r†n′ • f
†) ◦ n′ = g ◦ n′ = g ◦ y ◦ y† ◦ n = (r† • f†) ◦ y ◦ y† ◦ n = (r† • f†) ◦ n′,

so rn′ = r. Finally

((r†n′ • f
†) ◦ n′) + ((r†n′′ • f

†) ◦ n′′) = (g ◦ n′) + (g ◦ n′′)
= g ◦ n
= (r†n • f†) ◦ n
= ((r†n • f†) ◦ n′) + ((r†n • f†) ◦ n′′).

Hence rn = rn′ = r for all n : I → Y , and we have g ◦n = (r† • f†) ◦n. But since

122

4.4. Quantifiers

I is a generator, g = r† • f†. Reviewing our choice of r in the above proof, we
see that it is unique unless f = 0. �

As a consequence, we find that, modulo scalars, the passage from morphisms
f to functors KSub(f)∗ is one-to-one. We are now ready to view KSub as a
functor taking values in OMLatGal.

4.4.12 Proposition Let D be a dagger kernel category. Then KSub is a functor
D→ OMLatGal. It acts on morphisms f : X → Y of D as

KSub(f)∗ = (∃f ())⊥,

KSub(f)∗ = f−1(()⊥).

PROOF On objects, we already saw that KSub(X) is an orthomodular lattice in
Theorem 4.3.3. On morphisms, it is indeed the case that KSub(f)∗ a KSub(f)∗:

KSub(f)∗(n) = f−1(n⊥) ≤ m in KSub(X)op

m ≤ f−1(n⊥) in KSub(X)

∃f (m) ≤ n⊥ in KSub(Y)

n ≤ (∃f (m))⊥ = KSub(f)∗(m) in KSub(Y). �

We now set out to prove that the functor KSub: D→ OMLatGal preserves
a great deal of the structure of D.

4.4.13 Lemma In a dagger kernel category, for any l : L→ X in KSub(X), there
is an order isomorphism KSub(L) ∼= KSub(X)[l] = ↓l ⊆ KSub(X).

PROOF The direction KSub(L)→ KSub(X)[l] of the desired bijection is given by
m 7→ l ◦m. This is well-defined since a composition of kernels is again a kernel.
The other direction KSub(X)[l] → KSub(L) is n 7→ ϕ, where n = l ◦ ϕ. One
easily checks that these maps are each other’s inverse, and preserve the order.�

4.4.14 Theorem Let D be an arbitrary dagger kernel category. Then the functor
KSub: D→ OMLatGal is a morphism of DagKerCat.

PROOF By Theorem 4.4.9 we have KSub(f)∗ a KSub(f†)∗, whence KSub(f†) =
KSub(f)†. Preservation of the zero object is easy: KSub(0) = {0} = 0. Next,
let l : L → X be the kernel of a morphism f : X → Y in D. By Corollary 4.2.8,
l can be described as inverse image l = f−1(0) = f−1(1⊥) = KSub(f)∗(1).
Hence Lemma 4.4.13 and Lemma 4.3.8 yield the isomorphism on the left in the

123

Chapter 4. Dagger kernel logic

following diagram:

KSub(L) �)0 KSub(l)

,,ZZZZZZZZZ

l◦() ∼=
��

KSub(X)
KSub(f) // KSub(Y)

↓l $.5 l

22ddddddddddddd

It yields a commuting triangle since for n ∈ KSub(K),

KSub(l)∗(n) = ∃l(n)⊥ = Im(l ◦ n)⊥ = (l ◦ n)⊥ = l∗(l ◦ n).

Similarly for m ∈ KSub(X),

l ◦KSub(l)∗(m) = l ◦ l−1(m⊥) = l ∧m⊥ = l∗(m). �

4.4.15 Example 4.4.7 showed that the orthomodular lattices KSub(X) in a
dagger kernel category do not have a Heyting implication ⇒, in general. The
best possible approximation is the Sasaki hook⇒S [62, 82]. This is defined by

x⇒S y = x⊥ ∨ (x ∧ y),

and satisfies x ∧ y ≤ z iff x ≤ y ⇒S z for y and z that are compatible, in the
sense that y = (y ∧ z⊥) ∨ (y ∧ z).

The following proposition shows that the Sasaki hook arises naturally in our
setting of dagger kernel categories. Thus it makes the dynamical aspects of
quantum logic described in [54] explicit.

4.4.16 Proposition For kernels m : M � ,2 //X , n : N � ,2 //X in a dagger kernel
category, the pullback P (m)−1(n) is the Sasaki hook:

m⇒S n = P (m)−1(n).

The associated left adjoint ∃P (m) a P (m)−1 yields the and then operator k & m

defined as ∃P (m)(k) = m ∧ (m⊥ ∨ k), so that the following “Sasaki adjunction”
holds by construction: k & m ≤ n ⇐⇒ k ≤ m⇒S n.

PROOF Consider the following pullbacks:

P
_�

p

��

q // N_��
n

��

Q
_�

r

��

s // P⊥_��
(m∧n)⊥= ker(p†◦m†)
��

M
� ,2
m
// X M

� ,2
m
// X.

124

4.4. Quantifiers

Then:

m⊥ ∨ (m ∧ n) =
(
m ∧ (m ∧ n)⊥

)⊥
= ker

(
(m ∧ (m ∧ n)⊥)†

)
= ker

(
r† ◦m†

)
= ker

(
ker(coker((m ∧ n)⊥) ◦m)† ◦m†

)
(by Proposition 3.4.3)

= ker
(

ker(coker(ker(p† ◦m†)) ◦m)† ◦m†
)

= ker
(

ker(p† ◦m† ◦m)† ◦m†
)

(by Lemma 3.4.4)

= ker(coker(p) ◦m†)

=
(
m†
)−1(p)

=
(
m†
)−1(m−1(n))

= P (m)−1(n). �

4.4.17 Quantum logic based on the and then connective & is developed in
[156], see also [184, 185]. This & connective is in general noncommutative
and non-associative. (In particular, the and then connective & should not be
confused with the multiplication of a quantale, since the latter is always asso-
ciative.) Some basic properties, which easily follow from the Sasaki adjuntion,
are:

• m & m = m;

• 1 & m = m & 1 = m;

• 0 & m = m & 0 = 0;

• if k & m ≤ n and k⊥ & m ≤ n, then m ≤ n.

The noncommutativity of & in general indicates that categorical logic in dagger
kernel categories is temporal, in the sense that the order of asserting predicates
matters.

4.4.18 Example The pullback R−1(l) of a kernel l = (L = L � Y) along a
relation R ⊆ X × Y , as described in Proposition 4.4.16, is the subset of X given
by the modal formula

�R(l)(x) = R−1(l)(x) ⇐⇒ (∀y∈Y .(x, y) ∈ R⇒ y ∈ L).

As is well known in modal logic,�R preserves conjunctions, but not disjunctions.
This again exhibits the dynamic character of the categorical logic of dagger ker-
nel categories.

125

Chapter 4. Dagger kernel logic

The functor KSub: D → OMLatGal can be seen as an indexed category,
and is therefore essentially the same thing as a fibration via the Grothendieck
construction that we used before in 2.4.7; see [125, Section 1.10] or [4]. We
end this section with a discussion of ‘fibred’ properties of the functor KSub, but
instead of (op)fibrations, we only consider (op)indexed posets for simplicity.

4.4.19 Definition An indexed poset is a functor F : Cop → POSet to the cate-
gory of partially ordered sets and monotone functions. These form a very simple
instance of categorical logic. Intuitively, regarding the objects X of the index
category C as types, F (X) are predicates (with free variable ranging) over that
type X. Quantifiers then boil down to ∃f a Ff a ∀f for morphisms f of C.

A morphism of indexed posets from F : Bop → POSet to G : Cop → POSet
is a functor H : B→ C for which there is a natural transformation F ⇒ G◦Hop.
A morphism H of indexed posets is called a change-of-base when the natural
transformation is a natural isomorphism. Indexed posets and their morphisms
form a category IPOSet.

Similarly, an op-indexed poset if a functor F : C → POSet, and a morphism
of op-indexed posets F → G is a functor H for which there is a natural transfor-
mation F ⇒ G ◦H. The category of op-indexed posets is denoted by oIPOSet.

4.4.20 Proposition There is a functor DagKerCat → IPOSet that acts on an
object D as the functor KSub∗ determined by X 7→ KSub(X) and f 7→ KSub(f)∗.

There is also a functor DagKerCat → oIPOSet that acts on an object D as
the functor KSub∗ determined by X 7→ KSub(X) and f 7→ KSub(f)∗.

PROOF A morphism F : D → E of DagKerCat induces a natural transforma-
tion KSub∗ ⇒ KSub∗ ◦ F op, since for f : X → Y in D and l ∈ KSub∗(Y),

(F ◦KSub∗(f))(l) = F (f−1(l⊥))

= (Ff)−1((Fl)⊥) (by Proposition 3.4.3)

= (Ff)−1(F (l⊥)) = (KSub∗(f) ◦ F)(l),

because F preserves kernels and daggers. Similarly, F induces a natural trans-
formation KSub∗ ⇒ KSub∗ ◦ F , since

(F ◦KSub∗(f))(l) = F ((∃f (l))⊥)

= F ((f†)−1(l⊥))

= ((Ff)†)−1((Fl)⊥)

= (∃Ff (Fl))⊥ = (KSub∗(f) ◦ F)(l),

where we used the alternative description of ∃ of Proposition 4.4.3. �

126

4.5. Booleanness

4.4.21 Example The contravariant powerset functor induces an indexed poset
P : Setop → POSet. The graph functor G : Set→ Rel now induces a morphism
P → KSubRel of indexed categories, since for f : X → Y in Set and L ⊆ Y :

G(f)−1(L) = {x ∈ X | ∀y∈Y .(x, y) ∈ G(f)⇒ y ∈ L}
= {x ∈ X | ∀y∈Y .f(x) = y ⇒ y ∈ L}
= {x ∈ X | f(x) ∈ L}
= f−1(L).

In fact, the graph functor induces a change-of-base, as P(X) ∼= KSubRel(G(X))
by Example 4.1.4. Hence the familiar categorical logic of Set can be obtained
from the logic of the dagger kernel category Rel. (See also [111].)

The graph functor is also a morphism of op-indexed posets: for f : X → Y

and K ⊆ X in Set, one has

∃G(f)(K) = {y ∈ Y | ∃x∈X .(x, y) ∈ G(f) ∧ x ∈ K}
= {y ∈ Y | ∃x∈X .f(x) = y ∧ x ∈ K}
= {f(x) | x ∈ K} = ∃f (K),

where ∃f in the last line is left adjoint to pullback f−1 in the category Set.

4.4.22 Example By 3.2.26, the functor `2 : PInj → Hilb of 3.1.13 is a mor-
phism of DagKerCat, and hence induces a morphism of indexed posets and
a morphism of op-indexed posets. It is not a change-of-base, since the map
KSubPInj(X) = P(X)→ KSubHilb(`2(X)) is not an isomorphism.

4.4.23 Example The functor P : Hilb → PHilb of Example 2.1.4 is a mor-
phism of DagKerCat by Example 3.2.27. Hence it induces a morphism of
indexed posets, and a morphism of op-indexed posets. In fact, it induces a
change-of-base, since kernels in PHilb are precisely kernels in Hilb by Exam-
ple 3.2.27.

4.5 Booleanness

This section characterises precisely when the kernel subobject lattices in a dag-
ger kernel category represent classical logics, i.e. when they are not just ortho-
modular lattices but Boolean algebras. Accordingly, such dagger kernel cate-
gories are called Boolean. This notion gives rise to a generic construction that
generalises the way the category of partial injections can be obtained from the
category of relations. We also discuss a method of turning an arbitrary Boolean
algebra into a Boolean dagger kernel category.

127

Chapter 4. Dagger kernel logic

4.5.1 Definition A dagger kernel category is called Boolean if k ∧ l = 0 implies
k† ◦ l = 0, for all kernels k, l.

4.5.2 Lemma A dagger kernel category is Boolean if and only if

k ∧ l = 0 ⇐⇒ k⊥ l

for all k, l ∈ KSub(X), i.e. when kernels are disjoint if and only if they are orthog-
onal.

PROOF Booleanness means that k ∧ l = 0 implies k† ◦ l = 0, which is equivalent
to l† ◦ k = 0, which is k⊥ l by definition. The reverse implication is easy, too: if
k ◦ f = l ◦ g, then f = k† ◦ k ◦ f = k† ◦ l ◦ g = 0 ◦ g = 0. Similarly, g = 0. Hence
the pullback of k and l is the zero object 0. �

4.5.3 A Boolean algebra is a Heyting algebra that is at the same time an or-
thomodular lattice with the same lattice operations. More precisely, a Boolean
algebra is a Heyting algebra in which x = x⊥⊥ for all x, where x⊥ is defined to
be (x⇒ 0). It is usual to denote the latter by ¬x instead of x⊥ in case the alge-
bra is Boolean. Boolean algebras form a category BoolAlg, whose morphisms
are functions that preserves finite meets and joins.

4.5.4 Theorem A dagger kernel category is Boolean if and only if KSub(X) is a
Boolean algebra for each object X.

PROOF We already know from Theorem 4.3.3 that each KSub(X) is an ortho-
modular lattice. As a distributive orthomodular lattice is Boolean, it suffices
to show that distributivity k ∧ (l ∨ m) = (k ∨ l) ∧ (k ∨ m) is equivalent to the
Booleanness requirement k ∧ l = 0⇒ k⊥ l.

First, assume Booleanness. Then

(k ∧ (k ∧ l)⊥) ∧ l = (k ∧ l) ∧ (k ∧ l)⊥ = 0.

Hence k ∧ (k ∧ l)⊥ ≤ l⊥. Similarly, k ∧ (k ∧m)⊥ ≤ m⊥. Therefore,

k ∧ (k ∧ l)⊥ ∧ (k ∧m)⊥ ≤ l⊥ ∧m⊥ = (l ∨m)⊥,

whence
k ∧ (k ∧ l)⊥ ∧ (k ∧m)⊥ ∧ (l ∨m) = 0.

But then we are done by using Booleanness again:

k ∧ (l ∨m) ≤ ((k ∧ l)⊥ ∧ (k ∧m)⊥)⊥ = (k ∧ l) ∨ (k ∧m).

128

4.5. Booleanness

For the converse, suppose that k ∧ l = 0. Then

k = k ∧ 1

= k ∧ (l ∨ l⊥)

= (k ∧ l) ∨ (k ∧ l⊥) (by distributivity)

= 0 ∨ (k ∧ l⊥) = k ∧ l⊥,

whence k ≤ l⊥. �

4.5.5 Example The previous theorem entails that Rel and PInj are Boolean
dagger kernel categories, whereas Hilb, PHilb and OMLatGal are not.

It also entails that Boolean dagger kernel categories cannot have universal
quantifiers, as in the following corollary, which extends Example 4.4.7.

4.5.6 Corollary A dagger kernel category that is not Boolean cannot have right
adjoints ∀f to f−1 for all morphisms f .

PROOF If the category is not Boolean, by the previous theorem there is an object
X such that KSub(X) is an orthomodular lattice that is not Boolean. That means
that KSub(X) is not distributive, and hence cannot be a Heyting algebra. Hence
the existence of universal quantifiers would contradict Lemma 4.4.5. �

The Booleanness property can be strengthened in the following way.

4.5.7 Proposition The following are equivalent for a dagger kernel category D:

(a) D is Boolean;

(b) for each pullback of kernels

P
_�

q //

p

��

K_��
k

��
L

� ,2
l
// X

one has l† ◦ k = p ◦ q†.

PROOF It is easy to see that the definition of Booleanness is the special case P =
0. To see the converse, put another pullback left to the one in the proposition:

0
_� //

��

P
_�

q //

p

��

K_��
k

��
P⊥

� ,2
p⊥
// L

� ,2
l
// X.

129

Chapter 4. Dagger kernel logic

We use that p, q are kernels by Proposition 3.4.3. Then k ∧ (l ◦ p⊥) = 0, so by
Booleanness:

k ≤ (l ◦ p⊥)⊥ = ker
(

(l ◦ ker(p†))†
)

= ker(coker(p) ◦ l†)
= (l†)−1(p),

where the pullback is as described in Proposition 3.4.3. Hence there is a map
ϕ : K → P such that p ◦ ϕ = l† ◦ k. This means that

ϕ = p† ◦ p ◦ ϕ = p† ◦ l† ◦ k = (l ◦ p)† ◦ k = (k ◦ q)† ◦ k = q† ◦ k† ◦ k = q†.

Thus p ◦ q† = l† ◦ k, as required. �

4.5.8 Proposition 4.5.7 could be understood as saying that Boolean dagger ker-
nel categories have composition by pullback. In this sense, it is remarkable that
the map `2 : PInj → Hilb of 3.1.13 manages to be a functorial at all. After all,
PInj has composition by pullback, but Hilb does not. In fact, the requirement
of Proposition 4.5.7(b) holds for kernels k, l in Hilb if and only if k⊥ l. Hence
composition in Hilb coincides with composition by pullback only on orthogonal
parts of Hilb, and the functor `2 lands in such a part.

4.5.9 Example We now develop a class of examples by associating a Boolean
dagger kernel category to every Boolean algebra. To start, let B with (1,∧) be
a meet semi-lattice. We can turn this structure into a category, for which we
use the notation B̂. The objects of B̂ are elements x ∈ B, and its morphisms
x → y are elements f ∈ B with f ≤ x, y, i.e. f ≤ x ∧ y. There is an identity
x : x → x, and composition of f : x → y and g : y → z is simply f ∧ g : x → z.
This B̂ is a dagger category with f† = f . A map f : x → y is a dagger mono if
f† ◦f = f ∧f = x. Hence dagger monos are of the form x : x→ y where x ≤ y.

The construction B 7→ B̂ is functorial: a morphism h : B → C of meet semi-
lattices yields a functor ĥ : B̂ → Ĉ by x 7→ h(x). It clearly preserves the dagger.

4.5.10 Proposition If B is a Boolean algebra, then B̂ is a Boolean dagger kernel
category, yielding a dagger functor BoolAlg → DagKerCat. Moreover, every
dagger mono in B̂ is a kernel, and KSub bB(x) is the (principal) downset ↓x.

PROOF The bottom element 0 ∈ B yields a zero object 0 ∈ B̂, and also a zero
map 0: x→ y. For an arbitrary map f : x→ y there is a kernel ker(f) = ¬f ∧ x,
which is a dagger mono ker(f) : ker(f)→ x in B̂. Clearly, f ◦ ker(f) = f ∧¬f ∧
x = 0 ∧ x = 0. If also g : z → x satisfies f ◦ g = 0, then g ≤ x, z and f ∧ g = 0.

130

4.5. Booleanness

The latter yields g ≤ ¬f and therefore g ≤ ¬f ∧ x = ker(f). Hence g forms the
required mediating map g : z → ker(f) with ker(f) ◦ g = g.

Notice that each dagger mono k : k → x, where k ≤ x, is a kernel, namely of
its cokernel ¬k∧x : x→ (¬k∧x). For two kernels k : k → x and l : l→ x, where
k, l ≤ x, one has k ≤ l as kernels if and only if k ≤ l in B. Thus KSub(x) = ↓x,
which is again a Boolean algebra (with negation ¬xk = ¬k∧x). The intersection
k∧l as subobjects is the meet k∧l in B. This allows us to show that B̂ is Boolean:
if k ∧ l = 0, then k† ◦ l = k ◦ l = k ∧ l = 0. �

4.5.11 In the category B̂ obtained from a Boolean algebra B, the factorisa-
tion of f : x → y is the composite x

f //f
f //y . In particular, for k ≤ x,

considered as a kernel k : k → x, one has ∃f (k) = (k ∧ f : (k ∧ f)→ x).

We now turn to a generic construction that generalises the way the category
of partial injections can be obtained from the category of relations.

4.5.12 Definition Let D be a Boolean dagger kernel category. We write Dkck

for the category with the same objects as D, but with morphisms X → Y given

by cokernel-kernel pairs (c, k) of the form (X c � ,2 • � ,2 k //Y). The identity on

X is the pair (X
id � ,2X � ,2 id //X), and the composition of (X c � ,2K � ,2 k //Y)

and (Y d � ,2L � ,2 l //Z) is the pair (q† ◦ c, l ◦ p) obtained via the pullback

P
_�

� ,2 p //
_��
q

��

L_��
d†

��

� ,2 l // Z

X c
� ,2K

� ,2
k
// Y.

(4.6)

To be precise, we identify (c, k) with (ϕ ◦ c, k ◦ ϕ−1), for isomorphisms ϕ.

Indeed, as a case in point PInj = Relkck. The ()kck construction has a
universal property, as the following theorem shows.

4.5.13 Theorem For a Boolean dagger kernel category D, the category Dkck is
again a Boolean dagger kernel category. There is a morphism D : Dkck → D in
DagKerCat, and KSubDkck(X) ∼= KSubD(X). Moreover, in Dkck one has

kernel = dagger mono = mono = zero mono,

and Dkck is universal among Boolean dagger kernel categories E with a morphism
catEkck → D and in which every zero mono is a kernel.

PROOF The obvious definition (c, k)† = (k†, c†) makes Dkck into a dagger cat-
egory. The zero object 0 ∈ D is also a zero object 0 ∈ Dkck with zero map

131

Chapter 4. Dagger kernel logic

X � ,2 0 � ,2 //Y consisting of a cokernel-kernel pair. A morphism (c, k) is a
dagger mono if and only if (c, k)† ◦ (c, k) = (k†, k) is the identity; this means that
k = id.

The kernel of a morphism (d, l) = (Y d � ,2L � ,2 l //Z) is

ker(d, l) = (L⊥
id � ,2L⊥

� ,2(d
†)⊥ //Y),

so that ker(d, l) is a dagger mono and (d, l)◦ker(d, l) = 0. If also (d, l)◦(c, k) = 0,
then k ∧ d† = 0. Hence, by Booleanness, k ≤ (d†)⊥, say via ϕ : K → L⊥ with

(d†)⊥◦ϕ = k. We obtain a mediating map (c, ϕ) = (X c � ,2K � ,2 ϕ //L⊥), which
satisfies ker(d, l) ◦ (c, ϕ) = (id, (d†)⊥) ◦ (c, ϕ) = (c, (d†)⊥ ◦ ϕ) = (c, k). It is not
hard to see that morphisms of the form (id, k) in Dkck are kernels, namely those
of the cokernel (k⊥, id). Thus Dkck is a dagger kernel category.

The intersection of two kernels (id, k) = (K K � ,2 k //X) and (id, l) =

(L L
� ,2 l //X) in Dkck is the intersection k ∧ l : P � X in D, with projec-

tions (P P � ,2 //K) and (P P � ,2 //L). Hence if the intersection of
(id, k) and (id, l) in Dkck is 0, then so is the intersection of k and l in D, from
which l† ◦ k = 0 follows. But then (id, l)† ◦ (id, k) = (l†, id) ◦ (id, k) = 0 in Dkck.
Hence Dkck is Boolean.

There is a functor D : Dkck → D acting on objects as D(X) = X and on
morphisms by D(c, k) = k ◦ c. Composition is preserved by Proposition 4.5.7,
since for morphisms as in Definition 4.5.12,

(d, l) ◦ (c, k) = (q† ◦ c, l ◦ p) 7−→ l ◦ p ◦ q† ◦ c = (l ◦ d) ◦ (k ◦ c).

We have already seen that kernels and dagger monos coincide. We now show
that they also coincide with zero monos. So let (d, l) : Y → Z be a zero-mono.
This means that (d, l) ◦ (c, k) = 0 ⇒ (c, k) = 0, for each map (c, k). Using
diagram (4.6), this means d† ∧ k = 0 ⇒ k = 0. By Booleanness, the antecedent
d† ∧ k = 0 is equivalent to k ≤ (d†)⊥ = ker(d), which means d ◦ k = 0. Hence
we see that d is a zero mono in D, and therefore is an isomorphism (because it
is already a cokernel).

Finally, let E be a Boolean dagger kernel category in which zero monos are
kernels, with a functor F : E → D in DagKerCat. Every morphism f in E
factors as f = if ◦ ef for a kernel if and a cokernel ef . Hence G : E → Dkck

defined by G(X) = F (X) and G(f) = (ef , if) is the unique functor satisfying
F = D ◦G. �

132

4.6. Subobject classifiers

4.6 Subobject classifiers

To finish this chapter, we recall the notion of a subobject classifier and adapt it
to our situation of kernel subobjects.

4.6.1 A subobject classifier in a category C with a terminal object 1 is a mo-
nomorphism > : 1 → Ω such that for any mono m : M → X there is a unique
χm : X → Ω such that the following diagram is a pullback:

M
_���

m

��

// 1
��
>
��

X χm

// Ω.

Sometimes the object Ω alone is referred to as the subobject classifier [131,
A1.6]. Hence a subobject classifier Ω induces a natural isomorphism Sub(X) ∼=
C(X,Ω), where the former functor acts on morphisms by pullback, the latter acts
by precomposition, and the correspondence is the specific pullback [m] 7→ χm
above.

4.6.2 Example The category Set has a subobject classifier Ω = {0, 1}, with the
morphism > : 1→ Ω determined by >(∗) = 1.

For any small category C, the functor category [C,Set] has a subobject clas-
sifier, which we now describe. A cosieve S on an object X ∈ C is a collection of
morphisms with domain X such that f ∈ S implies g ◦ f ∈ S for any morphism
g that is composable with f . For X ∈ C, elements of Ω(X) are the cosieves on
X [131, A1.6.6]. On a morphism f : X → Y , the action Ω(f) : Ω(X)→ Ω(Y) is
given by

Ω(f)(S) = {g : Y → Z | Z ∈ C, g ◦ f ∈ S}.

Moreover, one has F ∈ Sub(G) for functors F,G : C ⇒ Set if and only F is a
subfunctor of G, in that F (X) ⊆ G(X) for all X ∈ C.

In the especially easy case that C is a partially ordered set, seen as a category,
a cosieve S on X is just an upper set above X, in the sense that Y ∈ S and Y ≤ Z
imply Z ∈ S and X ≤ Y .

To adapt this notion to our setting of kernel subobjects, we first study the
object {0, 1} in the category OMLatGal. We start by explicitly describing the
factorisation that results from OMLatGal being a dagger kernel category, as in
Theorem 3.4.17.

133

Chapter 4. Dagger kernel logic

4.6.3 Lemma Let f : X → Y be an arbitrary morphism in OMLatGal. Then:

coker(f) =
(
Y

c � ,2↓f∗(1)
)
, c∗(y) = y⊥ ∧ f∗(1),

c∗(v) = v⊥,

Im(f) =
(
↓(f∗(1)⊥) � ,2 if //Y

)
, (if)∗(v) = v⊥,

(if)∗(y) = y⊥ ∧ f∗(1)⊥,(
X ◦

ef // // ↓f∗(1)⊥
)
, (ef)∗(x) = f∗(x) ∧ f∗(1)⊥,

(ef)∗(v) = f∗(v),(
↓f∗(1) // ◦

mf // // ↓f∗(1)⊥
)
, (mf)∗(x) = f∗(x) ∧ f∗(1)⊥,

(mf)∗(v) = f∗(v) ∧ f∗(1)⊥.

Moreover, f is zero epi if and only if f∗(1) = 0.

PROOF This is just a matter of unravelling definitions. For instance,

coker(f) = ker(f†)† =
(
↓(f†)∗(1) � ,2 //Y

)† =
(
Y

� ,2↓f∗(1)
)
,

Im(f) = ker(coker(f)) = ker
(
Y

� ,2↓f∗(1)
)

=
(
↓f∗(1)⊥ � ,2 //Y

)
.

Hence f is zero epi, which by definition means coker(f) = 0, if and only if
f∗(1) = 0. We check that if ◦ ef = f , as required.

(if ◦ ef)∗(x) =
(
(ef)∗(x)⊥ ∧ f∗(1)⊥

)⊥ = (f∗(x) ∧ f∗(1)⊥) ∨ f∗(1) = f∗(x),

by orthomodularity, using that f∗(1) ≤ f∗(x), since x ≤ 1. The morphism ef is
indeed zero epic since (ef)∗(1) = f∗(1) ∧ f∗(1)⊥ = 0.

Next we first observe:

f∗(x ∨ f∗(1)) = f∗(x) ∧ f∗(f∗(1)) = f∗(x) ∧ 1 = f∗(x), (4.7)

since 1 ≤ f∗(f∗(1)). We use this twice below:

(mf ◦ (if†)
†)∗(x) = (mf)∗

(
f∗(1)⊥ ∧ ((f†)∗(1)⊥ ∧ x⊥)⊥

)
= f∗

(
f∗(1)⊥ ∧ (f∗(1) ∨ x)

)
∧ f∗(1)⊥

= f∗
(
f∗(1) ∨ (f∗(1)⊥ ∧ (f∗(1) ∨ x))

)
∧ f∗(1)⊥ (by (4.7))

= f∗(f∗(1) ∨ x) ∧ f∗(1)⊥

= f∗(x) ∧ f∗(1)⊥ (by (4.7))

= (ef)∗(x).

134

4.6. Subobject classifiers

The morphism mf is a zero epi:

(mf)∗(1) = f∗(f∗(1)⊥) ∧ f∗(1)⊥ (since 1 on the left is the greatest element of ↓f∗(1)⊥)

= f∗(f∗(1) ∨ f∗(1)⊥) ∧ f∗(1)⊥ (by (4.7))

= f∗(1) ∧ f∗(1)⊥ = 0.

Similarly, one shows that mf is a zero mono. �

4.6.4 Lemma Let f : X → Y be a morphism in OMLatGal. Its inverse and
direct images are given explicitly by:

KSub(Y)
f−1

// KSub(X) KSub(X)
∃f // KSub(Y)(

↓b→ Y) � //
(
↓f∗(b⊥)→ X

) (
↓a→ X) � //

(
↓(f∗(a)⊥)→ Y

)
.

PROOF For b ∈ Y , we have by Proposition 3.4.3 and Lemma 4.6.3:

f−1(↓b→ Y) = ker(coker(↓b→ Y) ◦ f)

= ker((Y → ↓c) ◦ f) (for c = b∗(1↓b) = (1↓b)⊥ = b⊥)

= ↓a→ X = ↓f∗(b⊥)→ X,

where

a = (c† ◦ f)∗(1↓b) = f∗(c∗(1↓c)⊥) = f∗(c⊥⊥) = f∗(c) = f∗(b⊥).

The description of the direct image follows from Lemma 4.6.3:

∃f (↓a→ X) = Im(f ◦ (↓a→ X)) = ↓b→ Y = ↓(f∗(a)⊥)→ Y,

where
b = (f ◦ a)∗(1↓a)⊥ = f∗(a∗(1↓a)⊥)⊥ = f∗(a⊥⊥)⊥. �

The following proposition fulfills our promise after Lemma 4.3.8 that the
principal downsets in an orthomodular lattice are precisely the dagger kernels
in the category OMLatGal.

4.6.5 Proposition In OMLatGal, every dagger mono of the form a : ↓a→ X of
Lemma 4.3.8, for a ∈ X, is a kernel. This yields an isomorphism

X
∼= // KSub(X)

a � // (a : ↓a→ X)

of orthomodular lattices that is natural, in the sense that for f : X → Y in

135

Chapter 4. Dagger kernel logic

OMLatGal the following diagram commutes:

X

∼=
��

⊥◦f∗ // Y
∼=
��

f∗◦⊥ // X
∼=
��

KSub(X)
∃f

// KSub(Y)
f−1

// KSub(X).

PROOF We first check that a : ↓a→ X is indeed a kernel, namely of its cokernel
coker(a) : X → ↓a∗(1), see Lemma 4.6.3, where a∗(1) = a∗(1↓a) = a∗(a) = a⊥.
So ker(coker(a)) = coker(a)∗(1) = coker(a)∗(1↓a⊥) = coker(a)∗(a⊥) = a⊥⊥ = a.

Proposition 4.3.10 says that the mapping X → KSub(X) is surjective. We
now show that it is an injective homomorphism of orthomodular lattices reflect-
ing the order, so that it is an isomorphism of orthomodular lattices.

Assume that a ≤ b in X. We can define ϕ : ↓a→ ↓b by ϕ∗(x) = x⊥b = b∧ x⊥
and ϕ∗(y) = a∧ y⊥, for x ∈ ↓a and y ∈ ↓b. Then y ≤ ϕ∗(x) iff x ≤ ϕ∗(y), so that
ϕ is a morphism in OMLatGal. In order to show a ≤ b in KSub(X) we prove
b ◦ ϕ = a. First, for x ∈ ↓a,

(b ◦ ϕ)∗(x) = b∗
(
ϕ∗(x)⊥b

)
= b∗

(
x⊥b⊥b

)
= b∗(x) (because x ∈ ↓a ⊆ ↓b)

= x⊥

= a∗(x).

The map X → KSub(X) does not only preserve the order, but also reflects it: if
we have an arbitrary ψ : ↓a→ ↓b with b ◦ ψ = a, then:

a = a⊥⊥ = a∗(a)⊥ = (b ◦ ψ)∗(a)⊥

= b∗(ψ∗(a)⊥b)⊥

= ψ∗(a)⊥b⊥⊥

= ψ∗(a)⊥b

= b ∧ ψ∗(a)⊥

≤ b.

This map also preserves ⊥, since(
↓a � ,2 a //X

)⊥ = ker(a†) =
(
↓b � ,2 b //X

)
,

136

4.6. Subobject classifiers

where, according to Proposition 4.3.10,

b = (a†)∗(1) = a∗(1) = 1⊥ = a⊥,

since a is the greatest element in ↓a.

It remains to show that the mapping X → KSub(X) preserves finite meets.
It is almost immediate that it sends the top element 1 ∈ X to the identity map
(top) in KSub(X). It also preserves finite conjunctions, since the intersection of
the kernels ↓a → X and ↓b → X is given by ↓(a ∧ b) → X. Since a ∧ b ≤ a, b

there are appropriate maps ↓(a ∧ b) → ↓a and ↓(a ∧ b) → ↓b. Suppose that we
have maps k → ↓a and k → ↓b, where k : ↓f∗(1)→ X is a kernel of f : X → Y .
Since, as we have seen, the order is reflected, we obtain f∗(1) ≤ a, b, and thus
f∗(1) ≤ a ∧ b, yielding the required map ↓f∗(1)→ ↓(a ∧ b).

Finally, the naturality follows from Lemma 4.6.4. �

4.6.6 In OMLatGal, the adjunction ∃f a f−1 that exists in arbitrary dagger
kernel categories boils down to the adjunction between f∗ a f∗ in the definition
of morphisms in OMLatGal:

∃f (↓a→ X) ≤ (↓b→ Y) ⇐⇒ (↓f∗(a)⊥ → Y) ≤ (↓b→ Y)

⇐⇒ f∗(a)⊥ ≤ b
⇐⇒ b⊥ ≤ f∗(a)

⇐⇒ a ≤ f∗(b⊥)

⇐⇒ (↓a→ X) ≤ (↓f∗(b⊥)→ X)

⇐⇒ (↓a→ X) ≤ f−1(↓b→ X).

4.6.7 In OMLatGal, the Sasaki hook ⇒S and the and then operator & of
Proposition 4.4.16 amount to their usual definitions in the theory of orthomod-
ular lattices [82, 136]. In the category OMLatGal, the projection P (m) of
Proposition 4.1.12 becomes P (↓a→ X) = a ◦ a† : X → X. One finds:

(↓a→ X)⇒S (↓b→ X) = P (↓a→ X)−1(↓b→ X) = (↓c→ X),

where, according to Lemma 4.6.4,

c = (a ◦ a†)∗(b⊥) = a∗
(
a∗(b⊥)⊥a

)
=
(
a ∧ (a ∧ b)⊥

)⊥ = a⊥ ∨ (a ∧ b) = a⇒S b.

Similarly for the and then operator &:

(↓a→ X) & (↓b→ X) = ∃P (↓b→X)(↓a→ X) = (↓c→ X),

137

Chapter 4. Dagger kernel logic

where the description of Lemma 4.6.4 yields:

c = (b ◦ b†)∗(a)⊥ = b∗
(
b∗(a)⊥a

)⊥ =
(
b ∧ (b ∧ a⊥)⊥

)⊥⊥ = b ∧ (b⊥ ∨ a) = a & b.

4.6.8 One can define a weakest precondition modality [f] from dynamic logic
[14, 15, 68] in the setting of the previous example. For a morphism f : X → Y

in OMLatGal and y ∈ Y , define

[f](y) = f∗(y⊥)

for “y holds after f”. This operation [f]() preserves meets, as usual. An element
a ∈ X yields a test operation a? = P (a) = a◦a†. Then one can recover the Sasaki
hook a⇒S b via this modality as [a?]b, and therefore recover the complement a⊥

as [a?]0. This again exhibits the temporal, dynamic character of the categorical
logic of dagger kernel categories.

We are now ready to consider “kernel subobject classifiers” for dagger kernel
categories. We start with the category OMLatGal.

4.6.9 Lemma Let 2 = {0, 1} be the 2-element Boolean algebra, considered an
orthomodular lattice 2 ∈ OMLatGal. For each orthomodular lattice X, there is
an isomorphism (of sets)

X
∼= // OMLatGal(2, X)

that maps a ∈ X to a : 2→ X, given by

a∗(w) =
{

1 if w = 0
a⊥ if w = 1

a∗(x) =
{

1 if x ≤ a⊥
0 otherwise.

This isomorphism is natural, as for f : X → Y the following diagram commutes:

X

∼=
��

⊥◦f∗ // Y
∼=
��

OMLatGal(2, X)
f◦()

// OMLatGal(2, Y).

PROOF The thing to note is that for a map f : 2 → X in OMLatGal we have
f∗(0) = 1, because f∗ : 2op → Y is a right adjoint. Hence we can only choose
a = f∗(1) ∈ X. Once this is chosen, the left adjoint f∗ : X → 2op is completely
determined, namely as 1 ≤ f∗(x) iff x ≤ f∗(1).

138

4.6. Subobject classifiers

As for naturality, the following suffices:

(f ◦ a)∗(1) = f∗(a∗(1)⊥)

= f∗(a⊥⊥)

= f∗(a)⊥⊥

= f∗(a⊥)∗(1)

= (⊥◦f∗)(a)∗(1). �

4.6.10 Corollary The 2-element lattice 2 ∈ OMLatGal is a “kernel subobject
opclassifier”. That is, there is are isomorphisms

KSub(X)
χ

∼=
// OMLatGal(2, X),

that are natural in that χ ◦ ∃f = f ◦ χ for any f : X → Y .

PROOF Of course we use the isomorphisms KSub(X) ∼= X ∼= OMLatGal from
Proposition 4.6.5 and Lemma 4.6.9, so that χ(↓a → X) = a. Then, for f : X →
Y :

χ
(
∃f (↓a→ X)

)
∗(1) = χ

(
↓(f∗(a)⊥)→ Y

)
∗(1)

= (f∗(a)⊥)∗(1)

= f∗(a)⊥⊥

= f∗(a⊥⊥)

= f∗(a∗(1)⊥)

= (f ◦ a)∗(1)

= (f ◦ χ(↓a→ X))∗(1). �

A similar phenomenon occurs in Rel, and in the Boolean dagger kernel cat-
egories B̂ constructed from Boolean algebras B as in Definition 4.5.12.

4.6.11 Lemma The singleton set 1 ∈ Rel is a “kernel subobject opclassifier”. That
is, there is are isomorphisms

KSub(X)
χ

∼=
//Rel(1, X),

that are natural in that χ ◦ ∃S = S ◦ χ for any S : X → Y .

PROOF In the category Rel, there are the following correspondences:

KSub(X) ∼= P(X) ∼= Set(X, 2) ∼= Set(X,P(1)) ∼= Rel(X, 1).

139

Chapter 4. Dagger kernel logic

These induce an isomorphism χ given by

KSub(X) = P(X)
χ

∼=
// Rel(1, X)

(K ⊆ X) � // {(∗, x) | x ∈ K}.

To verify naturality, let S : X → Y in Rel. Then

S ◦ χ(K) = {(∗, y) | ∃x.(∗, x) ∈ χ(K) ∧ (x, y) ∈ S}
= {(∗, y) | ∃x.x ∈ K ∧ (x, y) ∈ S}
= {(∗, y) | ∃S(K)(y)}
= χ(∃S(K)). �

4.6.12 Lemma The greatest element 1 of a Boolean algebra B is a “kernel subob-
ject opclassifier” for B̂. That is, there is are isomorphisms

KSub(X)
χ

∼=
//B̂(1, X),

that are natural in that χ ◦ ∃x = x ◦ χ for any x : X → Y .

PROOF For x ∈ B, one has

KSub(x) = ↓x
χ

∼=
// B̂(1, x)

(k ≤ x) � // (k : 1→ x)

As in the proof of the previous lemma f ◦ χ(k) = f ∧ k = ∃f (k) = χ(∃f (k)). �

Since there is no evident “kernel subobject opclassifier” for Hilb, we refrain
from casting the phenomena observed above in an official definition.

140

Chapter 5

Bohrification

This final chapter studies C*-algebras, which can be considered as one-object
versions of the categories studied in Chapters 2 and 3. Commutative C*-algebras
are algebras of observables for classical physics, their Gelfand spectra being
the corresponding state spaces, whereas noncommutative ones model quantum
physics. In noncommutative geometry, noncommutative C*-algebras are seen as
generalised spaces. Locales in toposes are another generalisation of the concept
of space. We introduce a technique to construct a generalised space (locale in
a topos) in the latter sense from a generalised space (C*-algebra) in the former
sense, and call this procedure Bohrification, since it attemps to capture Niels
Bohr’s ‘doctrine of classical concepts’ mathematically. In the language of the
logic that comes with the topos, the original C*-algebra becomes commutative,
and therefore can be studied using (constructive) classical methods. Thus we
establish a concept of quantum state space that carries both spatial and logical
aspects. This approach was inspired by [40, 75, 76, 122, 123].

The results in this chapter were published as [45, 117–119].

5.1 Locales and toposes

This section introduces locales and toposes by summarising well-known results.
Both are generalisations of the concept of topological space, and both also carry
logical structures. We start with complete Heyting algebras. These can be made
into categories in several ways. We consider a logical, an order theoretical, and
a spatial perspective.

5.1.1 Definition A morphism of complete Heyting algebras is a function that pre-
serves the operations ∧,

∨
and ⇒, as well as the constants 0 and 1. We denote

141

Chapter 5. Bohrification

the category of complete Heyting algebras and their morphisms by CHey. This
gives a logical perspective on complete Heyting algebras.

5.1.2 Definition Example 4.4.7 showed that Heyting algebras are necessarily
distributive, since ()∧x has a right adjoint and hence preserves colimits. When
a Heyting algebra is complete, arbitrary joins exist, whence the following infini-
tary distributive law holds:(∨

i∈I
yi
)
∧ x =

∨
i∈I

(yi ∧ x). (5.1)

Conversely, a complete lattice that satisfies this infinitary distributive law is a
Heyting algebra by defining y ⇒ z =

∨
{x | x ∧ y ≤ z}. This gives an order-

theoretical perspective on complete Heyting algebras. The category Frm of
frames has complete Heyting algebras as objects; morphisms are functions that
preserve finite meets and arbitrary joins. The categories Frm and CHey are not
identical, because a morphism of frames does not necessarily have to preserve
the Heyting implication.

5.1.3 Definition The category Loc of locales is the opposite of the category of
frames. This gives a spatial perspective on complete Heyting algebras.

5.1.4 Example To see why locales provide a spatial perspective, let X be a
topological space. Denote its topology, i.e. the collection of open sets in X,
by O(X). Ordered by inclusion, O(X) satisfies (5.1), and is therefore a frame.
If f : X → Y is a continuous function between topological spaces, then its in-
verse image f−1 : O(Y)→ O(X) is a morphism of frames. We can also consider
O(f) = f−1 as a morphism O(X) → O(Y) of locales, in the same direction as
the original function f . Thus, O() is a covariant functor from the category Top
of topological spaces and continuous maps to the category Loc of locales.

5.1.5 Convention To emphasise the spatial aspect of locales, we will follow the
convention that a locale is denoted by X, and the corresponding frame by O(X)
(whether or not the the frame comes from a topological space) [164, 212]. Also,
we will denote a morphism of locales by f : X → Y , and the corresponding
frame morphism by f−1 : O(Y) → O(X) (whether or not f−1 is indeed the
pullback of a function between topological spaces). A fortiori, we will write
C(X,Y) for Loc(X,Y) = Frm(O(Y),O(X)).

5.1.6 A point x of a topological space X may be identified with a continuous
function 1 → X, where 1 is a singleton set with its unique topology. Extending
this to locales, a point of a locale X is a locale map 1 → X, or equivalently, a

142

5.1. Locales and toposes

frame map O(X)→ O(1). Here, O(1) = {0, 1} = Ω is the subobject classifier of
Set, as detailed in Example 4.6.2.

Likewise, an open of a locale X is defined as a locale morphism X → S,
where S is the locale defined by the Sierpinski space, i.e. {0, 1} with {1} as the
only nontrivial open. The corresponding frame morphism O(S) → O(X) is
determined by its value at 1, so that we may consider opens in X as morphisms
1→ O(X) in Set. If X is a genuine topological space and O(X) its collection of
opens, then each such morphism 1→ O(X) corresponds to an open subset of X
in the usual sense.

The set Pt(X) of points of a locale X may be topologised in a natural way,
by declaring its opens to be the sets of the form Pt(U) = {p ∈ Pt(X) | p−1(U) =
1} for some open U ∈ O(X). This defines a functor Pt: Loc → Top [130,
Theorem II.1.4]. In fact, there is an adjunction

Top
O() //
⊥ Loc.
Pt

oo

It restricts to an equivalence between so-called spatial locales and sober topolog-
ical spaces. Any Hausdorff topological space is sober [130, Lemma I.1.6].

5.1.7 Example Let (P,≤) be a partially ordered set. This can be turned into a
topological space by endowing it with the Alexandrov topology, in which open
subsets are upper sets in P ; principal upper sets form a basis for the topology.
The associated locale Alx(P) = O(P) thus consists of the upper sets UP in P .

If we give a set P the discrete order, then the Alexandrov topology on it is
the discrete topology (in which every subset is open), and so O(P) is just the
power set P(P).

As another example, we now study a way to construct frames (locales) by
generators and relations. The generators form a meet-semilattice, and the rela-
tions are combined into one suitable so-called covering relation. This technique
has been developed in the context of formal topology [191, 192].

5.1.8 Definition Let L be a meet-semilattice. A covering relation on L is a rela-
tion C ⊆ L× P(L), written as xCU when (x, U) ∈ C, satisfying:

(a) if x ∈ U then xCU ;

(b) if xCU and U CV (i.e. yCV for all y ∈ U) then xCV ;

(c) if xCU then x ∧ yCU ;

(d) if x ∈ U and x ∈ V , then xCU ∧V (where U ∧V = {x∧ y | x ∈ U, y ∈ V }).

143

Chapter 5. Bohrification

5.1.9 Example IfX ∈ Top, thenO(X) has a covering relation defined by U CU
iff U ⊆

⋃
U , i.e. iff U covers U .

5.1.10 Definition LetDL be the partially ordered set of all lower sets in a meet-
semilattice L, ordered by inclusion. A covering relation C on L induces a closure
operation () : DL→ DL, namely U = {x ∈ L | xCU}. We define

F(L,C) = {U ∈ DL | U = U} = {U ∈ P(L) | xCU ⇒ x ∈ U}. (5.2)

As () is a closure operation, andDL is a frame [130, Section 1.2], so is F(L,C).

5.1.11 Proposition The frame F(L,C) is the free frame on a meet-semilattice L
satisfying x ≤

∨
U whenever xCU for the covering relation C. The canonical

inclusion i : L → F(L,C), defined by i(x) = (↓x), is the universal map satisfy-
ing i(x) ≤

∨
U whenever xCU . That is, if f : L → F is a morphism of meet-

semilattices into a frame F satisfying f(x) ≤
∨
f(U) if xCU , then f factors

uniquely through i.

L
i //

f ''PPPPPPPPPPP F(L,C)

��
F

If f generates F , in the sense that V =
∨
{f(x) | x ∈ L, f(x) ≤ V } for each V ∈ F ,

there is an isomorphism of frames F ∼= F(L,C) where xCU iff f(x) ≤
∨
f(U).

PROOF Given f , define g : F(L,C) → F by g(U) = f(
∨
U). For x, y ∈ L satis-

fying xC ↓y, one then has f(x) ≤ g(
∨
↓y) = f(y), whence g ◦ i(y) =

∨
{f(x) |

xC ↓y} ≤ f(y). Conversely, yC ↓y because y ∈ ↓y, so that f(y) ≤
∨
{f(x) |

xC ↓y} = g ◦ i(y). Therefore g ◦ i = f . Moreover, g is the unique such frame
morphism. The second claim is proven in [6, Theorem 12]. �

5.1.12 Definition Let (L,C) and (M,J) be meet-semilattices with covering re-
lations. A continuous map f : (M,J) → (L,C) is a function f∗ : L → P(M)
with:

(a) f∗(L) = M ;

(b) f∗(x) ∧ f∗(y)J f∗(x ∧ y);

(c) if xCU then f∗(x)J f∗(U) (where f∗(U) =
⋃
u∈U f

∗(U)).

We identify two such functions if f∗1 (x)J f∗2 (x) and f∗2 (x)J f∗1 (x) for all x ∈ L.

5.1.13 Proposition Each continuous map f : (M,J) → (L,C) is equivalent to a
frame morphism F(f) : F(L,C)→ F(M,J) given by F(f)(U) = f∗(U).

144

5.1. Locales and toposes

5.1.14 In fact, the previous proposition extends to an equivalence F between
the category of frames and that of formal topologies, which a generalisation of
the above triples (L,≤,C), where ≤ is merely required to be a preorder. In
this more general case, the axioms on the covering relation C take a slightly
different form. For this, including the proof of the previous proposition, we
refer to [6, 24, 172].

We now generalise the concept of locales by introducing toposes.

5.1.15 Definition A topos is a category that has finite limits, exponentials (i.e.
right adjoints ()X to ()×X), and a subobject classifier (see 4.6.1).

5.1.16 Example The category Set of sets and functions is a topos: the expo-
nential Y X is the set of functions X → Y , and the set Ω = {0, 1} is a subobject
classifier (see Example 4.6.2).

For any small category C, the functor category [C,Set] is a topos. Limits
are computed pointwise [33, Theorem 2.15.2], exponentials are defined via the
Yoneda embedding [164, Proposition I.6.1], and the cosieve functor Ω of Exam-
ple 4.6.2 is a subobject classifier.

5.1.17 Example Without further explanation, let us mention that a sheaf over
a locale X is a functor from Xop (where the locale X is regarded as a category
via its order structure) to Set that satisfies a certain continuity condition. The
category Sh(X) of sheaves over a locale X is a topos. Its subobject classifier is
Ω(x) = ↓x [35, Example 5.2.3].

The categories Sh(X) and Sh(Y) are equivalent if and only if the locales X
and Y are isomorphic. Thus, toposes are generalisations of locales and hence of
topological spaces. Moreover, a morphism X → Y of locales induces morphisms
Sh(X) → Sh(Y) of a specific form: a so-called geometric morphism S → T
between toposes is a pair of functors f∗ : T → S and f∗ : S → T, of which f∗

preserves finite limits, with f∗ a f∗. We denote the category of toposes and
geometric morphisms by Topos.

5.1.18 If X is the locale resulting from putting the Alexandrov topology on a
poset P , then [P,Set] ∼= Sh(X). In this sense Example 5.1.16 is a special case of
Example 5.1.17. We call the category [P,Set] for a poset P a Kripke topos.

One could say that sheaves are the prime example of a topos in that they
exhibit its spatial character as a generalisation of topology. However, this chap-
ter is primarily concerned with functor toposes, and will therefore not mention
sheaves again. We now switch to the logical aspect inherent in toposes, by
sketching their internal language and its semantics. For a precise description,
we refer to [131, Part D], [164, Chapter VI], or [35, Chapter 6].

145

Chapter 5. Bohrification

5.1.19 In a (cocomplete) topos T, each subobject lattice Sub(X) is a (com-
plete) Heyting algebra. Moreover, pullback f−1 : Sub(Y) → Sub(X) along
f : X → Y is a morphism of (complete) Heyting algebras. Finally, there are al-
ways both left and right adjoints ∃f and ∀f to f−1. This means that we can write
down properties about objects and morphisms in T using familiar first order
logic. For example, the formula ∀x∈M∀y∈M .x·y = y·xmakes sense for any object
M and morphism · : M ×M →M in T, and is interpreted as follows. First, the
subformula x · y = y · x is interpreted as the subobject a : A // //M ×M given
by the equaliser of M ×M · //M and M ×M

γ //M ×M · //M . Next,
the subformula ∀y∈M .x · y = y · x is interpreted as the subobject b = ∀π1(a) ∈
Sub(M), where π1 : M ×M →M . Finally, the whole formula ∀x∈M∀y∈M .x · y =
y · x is interpreted as the subobject c = ∀π(b) ∈ Sub(1), where π : M → 1. The
subobject c ∈ Sub(1) is classified by a unique χc : 1 → Ω. This, then, is the
truth value of the formula. In general, a formula ϕ is said to hold in the topos
T, denoted by ϕ, when its truth value factors through the subobject classifier
> : 1→ Ω.

If T = Set, the subobject a is simply the set {(x, y) ∈M ×M | x · y = y · x},
and therefore the truth value of the formula is 1 ∈ Ω if for all x, y ∈M we have
x · y = y · x, and 0 ∈ Ω otherwise. But the above interpretation can be given
in any topos T, even if there are few or no ‘elements’ 1 → M . Thus we can
often reason about objects in a topos T as if they were sets. Indeed, the fact
that a topos has exponentials and a subobject classifier means that we can use
higher order logic to describe properties of its objects, by interpreting a power
set P(X) as the exponential ΩX , and the inhabitation relation ∈ as the subobject
of X ×ΩX that is classified by the transpose X ×ΩX → Ω of id : ΩX → ΩX . All
this can be made precise by defining the internal or Mitchell-Bénabou language
of a topos, which prescribes in detail which logical formulae about the objects
and morphisms of a topos are “grammatically correct” and which ones hold.

5.1.20 The interpretation of the internal language takes an especially easy form
in Kripke toposes. We now give this special case of the so-called Kripke-Joyal
semantics. First, let us write JtK for the interpretation of a term t as in 5.1.19.
For example, in the notation of 5.1.19, JxK is the morphism id : M → M , and
Jx · yK is the morphism · : M ×M →M . We now inductively define p ϕ(~a) for
p ∈ P , a formula ϕ in the language of [P,Set] with free variables xi of type Xi,
and ~a = (a1, . . . , an) with ai ∈ Xi(p):

• p (t = t′)(~a) if and only if JtKp(~a) = Jt′Kp(~a);

• p R(t1, . . . , tk)(~a) if and only if (Jt1Kp(~a), . . . , JtkK(~a)) ∈ R(p), where R
is a relation on X1 × · · · ×Xn interpreted as a subobject of X1 × · · · ×Xn;

• p (ϕ ∧ ψ)(~a) if and only if p ϕ(~a) and p ϕ(~a);

146

5.1. Locales and toposes

• p (ϕ ∨ ψ)(~a) if and only if p ϕ(~a) or p ϕ(~a);

• p (ϕ⇒ ψ)(~a) if and only if q ϕ(~a) implies q ψ(~a) for all q ≥ p;

• p ¬ϕ(~a) if and only if q ϕ(~a) for no q ≥ p;

• p ∃x∈X .ϕ(~a) if and only if p ϕ(a,~a) for some a ∈ X(p);

• p ∀x∈X .ϕ(~a) if and only if q ϕ(a,~a) for all q ≥ p and a ∈ X(q).

It turns out that ϕ holds in [P,Set], i.e. ϕ, precisely when p ϕ(~a) for all
p ∈ P and all ~a ∈ X1(p)× · · · ×Xn(p).

5.1.21 The axioms of intuitionistic logic hold when interpreted in any topos,
and there are toposes in whose internal language formulae that are not derivable
from the axioms of intuitionistic logic do not hold. For example, the principle of
excluded middle ϕ ∨ ¬ϕ does not hold in the topos Sh(R) [35, 6.7.2]. Thus, we
can derive properties of objects of a topos as if they were sets, using the usual
higher-order logic, as long as our reasoning is constructive, in the sense that we
use neither the axiom of choice, nor the principle of excluded middle.

The astute reader will have noticed that the account of this chapter up to
now has been constructive in this sense (including the material around Propo-
sition 5.1.11). In particular, we can speak of objects in a topos T that satisfy
the defining properties of locales as locales within that topos. Explicitly, these are
objects L that come with morphisms 0, 1: 1 ⇒ L and

∧
,
∨

: ΩL ⇒ L for which
the defining formulae of locales, such as (5.1), hold in T [35, Section 6.11].
The category of such objects is denoted by Loc(T), so that Loc(Set) ∼= Loc.
For the rest of this chapter we will also take care to use constructive reasoning
whenever we reason in the internal language of a topos.

5.1.22 We have two ways of proving properties of objects and morphisms in
toposes. First, we can take an external point of view. This occurs, for example,
when we use the structure of objects in [P,Set] as Set-valued functors. Sec-
ondly, we can adopt the internal logic of the topos, as above. In this viewpoint,
we regard the topos as a ‘universe of discourse’. At least intuitionistic reasoning
is valid, but more logical laws might hold, depending on the topos one is study-
ing. To end this section, we consider the internal and external points of view in
several examples.

5.1.23 Example Let T be a topos, and X an object in it. Externally, one simply
looks at Sub(X) as a set, equipped with the structure of a Heyting algebra in the
category Set. Internally, Sub(X) is described as the exponential ΩX , or P(X),
which is a Heyting algebra object in the topos T [164, p. 201].

147

Chapter 5. Bohrification

5.1.24 Example For any poset P , the category Loc([P,Set]) is equivalent to the
slice category Loc/Alx(P) of locale morphisms L→ Alx(P) from some locale L
to the Alexandrov topology on P (by 5.1.18 and [134]). Therefore, an internal
locale object L in [P,Set] is described externally as a locale morphism f : L →
Alx(P), determined as follows. First, O(L)(P) is a frame in Set, and for U in
Alx(P), the action O(L)(P) → O(L)(U) on morphisms is a frame morphism.
Since O(L) is complete, there is a left adjoint l−1

U : O(L)(U)→ O(L)(P), which
in turn defines a frame morphism f−1 : O(Alx(P)) → O(L)(P) by f−1(U) =
l−1
U (1). Taking L = O(L)(P) then yields the desired locale morphism.

5.1.25 Example Let L be a locale object in the Kripke topos over a poset P .
Internally, a point of L is a locale morphism 1 → L, which is the same thing as
an internal frame morphism O(L)→ Ω. Externally, one looks at Ω as the frame
Sub(1) in Set. Since Sub(1) ∼= O(Alx(P)) in [P,Set], one finds Loc([P,Set]) ∼=
Loc/Alx(P). By Example 5.1.24, L has an external description as a locale mor-
phism f : K → L, so that points in L are described externally by sections of f ,
i.e. locale morphisms g : L → K satisfying f ◦ g = id. Compare the fact that
O(Loc(T)) = SubT(1) for any topos T to footnote 1 on page 40.

5.1.26 Locales already possess a logical aspect as well as a spatial one, as the
logical perspective on complete Heyting algebras translates to the spatial per-
spective on locales. Elements 1 → O(L) of the Heyting algebra O(L) are the
opens of the associated locale L, to be thought of as propositions, whereas points
of the locale correspond to models of the logical theory defined by these propo-
sitions [212].

More precisely, recall that a formula is positive when it is built from atomic
propositions by the connectives ∧ and ∨ only, where ∨ but not ∧ is allowed to
be indexed by an infinite set. This can be motivated observationally: to verify a
proposition

∨
i∈I pi, one only needs to find a single pi, whereas to verify

∧
i∈I pi

the validity of each pi needs to be established [5], an impossible task in practice
when I is infinite. A geometric formula then is one of the form ϕ ⇒ ψ, where ϕ
and ψ are positive formulae.

Thus a frame O(L) defines a geometric propositional theory whose propo-
sitions correspond to opens in L, combined by logical connectives given by the
lattice structure of O(L). Conversely, a propositional geometric theory T has
an associated Lindenbaum algebra O([T]), defined as the poset of formulae of T

modulo provable equivalence, ordered by entailment. This poset turns out to
be a frame, and the set-theoretical models of T bijectively correspond to frame
morphisms O([T]) → {0, 1}. Identifying {0, 1} in Set with Ω = O(1), one finds
that a model of the theory T is a point 1→ [T] of the locale [T]. More generally,
by Example 5.1.24 one may consider a model of T in a frame O(L) to be a locale
morphism L→ [T].

148

5.1. Locales and toposes

5.1.27 Example Consider models of a geometric theory T in a topos T. Exter-
nally, these are given by locale morphisms Loc(T) → [T] [164, Theorem X.6.1
and Section IX.5]. One may also interpret T in T and thus define a locale [T]T
internal to T. The points of this locale, i.e. the locale morphisms 1 → [T]T or
frame morphisms O([T]T)→ Ω, describe the models of T in T internally.

5.1.28 Example Several important internal number systems in Kripke toposes
are defined by geometric propositional theories T, and can be computed via
Example 5.1.17 and 5.1.18. Externally, the frame O([T]) corresponding to the
interpretation of T in [P,Set] is given by the functorO([T]) : p 7→ O(↑p×[T]) [45,
Appendix A].

5.1.29 Example As an application of the previous example, we recall an explicit
construction of the Dedekind real numbers (see [85] or [131, D4.7.4]. Define the
propositional geometric theory TR generated by formal symbols (q, r) ∈ Q × Q
with q < r, ordered as (q, r) ≤ (q′, r′) iff q′ ≤ q and r ≤ r′, subject to the
following relations:

(q1, r1) ∧ (q2, r2) =
{

(max(q1, q2),min(r1, r2)) if max(q1, q2) < min(r1, r2)
0 otherwise

(q, r) =
∨
{(q′, r′) | q < q′ < r′ < r}

1 =
∨
{(q, r) | q < r}

(q, r) = (q, r1) ∨ (q1, r) if q ≤ q1 ≤ r1 ≤ r.

This theory may be interpreted in any topos T with a natural numbers ob-
ject, defining an internal locale RT. Points p of RT, i.e. frame morphisms
p−1 : O(RT)→ Ω, correspond to Dedekind cuts (L,U) by [164, p. 321]:

L = {q ∈ Q | p |= (q,∞)};
U = {r ∈ Q | p |= (−∞, r)},

where (q,∞) and (−∞, r) are defined in terms of the formal generators of the
frame O(Q) by (q,∞) =

∨
{(q, r) | q < r} and (−∞, r) =

∨
{(q, r) | q < r}. The

notation p |= (q, r) means that m−1(q, r) is the subobject classifier > : 1 → Ω,
where (q, r) is seen as a morphism 1→ Q×Q→ O(RT). Conversely, a Dedekind
cut (L,U) uniquely determines a point p by (q, r) 7→ > iff (q, r) ∩ U 6= ∅ and
(q, r) ∩ L 6= ∅. The Dedekind real numbers are therefore defined in any topos T
as the subobject of P(QT)×P(QT) consisting of those (L,U) that are points of
RT.

One may identify Pt(RSet) with the field R in the usual sense, and O(RSet)
with the usual Euclidean topology on R.

149

Chapter 5. Bohrification

In case T = [P,Set] for a poset P , one finds that O(RT) is the functor
p 7→ O(↑p × RSet); cf. Example 5.1.28. The latter set may be identified with
the set of monotone functions ↑p → O(RSet). When P has a least element, the
functor Pt(RT) may be identified with the constant functor p 7→ RSet.

5.2 C*-algebras

This section considers a generalisation of the concept of topological space dif-
ferent from locales and toposes, namely so-called C*-algebras [71, 135, 206].
These operator algebras also play a large role in quantum theory [101, 153,
196]. We first give a constructive definition of C*-algebras that can be inter-
preted in any topos (with a natural numbers object), after [16–18].

5.2.1 In any topos (with a natural numbers object) the rationals Q can be inter-
preted [164, Section VI.8], as can the Gaussian rationals CQ = {q+ri | q, r ∈ Q}.
For example, the interpretation of CQ in the Kripke topos over a poset P is the
constant functor that assigns the set CQ to each p ∈ P .

5.2.2 A monoid in VectK for someK ∈ Fld is called a (unital)K-algebra—not
to be confused with Eilenberg-Moore algebras of a monad. It is called commuta-
tive when the multiplication of its monoid structure is. A *-algebra is an algebra
A over an involutive field, together with an antilinear involution ()∗ : A→ A.

More generally, we can think of an algebra as a monoid in a monoidal cat-
egory with biproducts, and of a *-algebra as a monoid in a dagger monoidal
category with dagger biproducts [210].

5.2.3 Definition A seminorm on a *-algebra A over CQ is a relation N ⊆ A×Q+

satisfying

(0, p) ∈ N,
∃q∈Q+ .(a, q) ∈ N,

(a, q) ∈ N ⇒ (a∗, q) ∈ N,
(a, r) ∈ N ⇐⇒ ∃q<r.(a, q) ∈ N,

(a, q) ∈ N ∧ (b, r) ∈ N ⇒ (a+ q, p+ r) ∈ N,
(a, q) ∈ N ∧ (b, r) ∈ N ⇒ (ab, qr) ∈ N,

(a, q) ∈ N ⇒ (za, qr) ∈ N (|z| < r),

(1, q) ∈ N (q > 1),

for all a, b ∈ A, q, r ∈ Q+, and z ∈ CQ. If this relation furthermore satisfies

(a∗a, q2) ∈ N ⇐⇒ (a, q) ∈ N

150

5.2. C*-algebras

for all a ∈ A and q ∈ Q+, then A is said to be a pre-semi-C*-algebra.
A seminorm N is called a norm if a = 0 whenever (a, q) ∈ N for all q ∈ Q+.

One can then formulate a suitable notion of completeness in this norm that does
not rely on the axiom of choice, namely by considering Cauchy sequences of
sets instead of Cauchy sequences [18]. A C*-algebra is a pre-semi-C*-algebra A
whose seminorm is a norm in which A is complete. Notice that a C*-algebra
by definition has a unit; what we defined as a C*-algebra is sometimes called a
unital C*-algebra in the literature.

A morphism between C*-algebras A and B is a linear function f : A → B

satisfying f(ab) = f(a)f(b), f(a∗) = f(a)∗ and f(1) = 1. C*-algebras and their
morphisms form a category CStar. We denote its full subcategory of commuta-
tive C*-algebras by cCStar.

5.2.4 Classically, a seminorm induces a norm, and vice versa, by (a, q) ∈ N if
and only if ‖a‖ < q. Hence a C*-algebra is precisely (the homset of) a one-object
C*-category. The latter notion was introduced in Example 3.1.7.

5.2.5 The geometric theory TR of Example 5.1.29 can be extended to a geo-
metric theory TC describing the complexified locale C = R+ iR. There are also
direct descriptions that avoid a defining role of R [18]. In Set, the frame O(C)
defined by TC is the usual topology on the usual complex field C. As a conse-
quence of its completeness, a C*-algebra is automatically an algebra over C (and
not just over CQ, as is inherent in the definition).

5.2.6 Example The continuous linear operators Hilb(H,H) on a Hilbert space
H form a C*-algebra. In fact, by the classical Gelfand-Naimark theorem, any C*-
algebra can be embedded into one of this form [92]. Compare Theorem 3.7.18.

5.2.7 Example A locale X is compact if every subset S ⊆ X with
∨
S = 1 has a

finite subset F ⊆ S with
∨
F = 1. It is regular if y =

∨
(

�

y) for all y ∈ X, where

�

y = {x ∈ X | x� y} and x� y iff there is a z ∈ X with z∧x = 0 and z∨y = 1.
If the axiom of dependent choice is available—as in Kripke toposes [86]—then
regular locales are automatically completely regular. Assuming the full axiom of
choice, the category KRegLoc of compact regular locales in Set is equivalent to
the category KHausTop of compact Hausdorff topological spaces. In general,
if X is a completely regular compact locale, then C(X,C) is a commutative C*-
algebra. In fact, the following theorem shows that all commutative C*-algebras
are of this form. This so-called Gelfand duality justifies regarding C*-algebras as
“noncommutative” generalisations of topological spaces [56].

5.2.8 Let us first mention two ways to characterise commutative C*-algebras
classically. First, the category CStar is monoidal, so it makes sense to speak

151

Chapter 5. Bohrification

of monoids in it. It turns out that Mon(CStar) = cCStar [120]. Compare
Lemma 2.2.20. Second, a C*-algebra A is commutative if and only if a2 = 0
implies a = 0 for all a ∈ A [73, p. 288]. Compare Lemma 3.6.3.

5.2.9 Theorem [16–18] There is an equivalence

cCStar ⊥
Σ //

KRegLocop.
C(,C)

oo

The locale Σ(A) is called the Gelfand spectrum of A. �

The previous theorem is proved in such a way that it applies in any topos.
This means that we can give an explicit description of the Gelfand spectrum.
The rest of this section is devoted to just that, following the reformulation by
Thierry Coquand and Bas Spitters which is fully constructive [57, 58].

5.2.10 To motivate the following description, we mention that the classical
proof [91, 92] defines Σ(A) to be the set of characters of A, i.e. nonzero mul-
tiplicative functionals ρ : A → C. This set becomes a compact Hausdorff topo-
logical space by the sub-base consisting of {ρ ∈ Σ(A) | |ρ(a) − ρ0(a)| < ε}
for a ∈ A, ρ0 ∈ Σ and ε > 0. A much simpler choice of sub-base would be
Da = {ρ ∈ Σ | ρ(a) > 0} for a ∈ Asa = {a ∈ A | a∗ = a}. Both the property that
the ρ are multiplicative and the fact that the Da form a sub-base may then be
expressed lattice-theoretically by letting O(Σ(A)) be the frame freely generated
by the formal symbols Da for a ∈ Asa, subject to the relations

D1 = 1, (5.3)

Da ∧ D−a = 0, (5.4)

D−b2 = 0, (5.5)

Da+b ≤ Da ∨ Db, (5.6)

Dab = (Da ∧ Db) ∨ (D−a ∧ D−b), (5.7)

supplemented with the ‘regularity rule’

Da ≤
∨
r∈Q+

Da−r. (5.8)

5.2.11 Classically, the Gelfand transform A
∼=→ C(Σ(A),C) is given by a 7→ â

with â(ρ) = ρ(a), and restricting toAsa yields an isomorphismAsa
∼= C(Σ(A),R).

Hence classically Da = {ρ ∈ Σ(A) | â(ρ) > 0}, which equals supp(â) as defined
in Example 2.2.17 (the literature sometimes defines the support of a function as

152

5.2. C*-algebras

the closure of what we call its support). In a constructive setting, we must asso-
ciate a locale morphism â : Σ(A)→ R to each a ∈ Asa, which is, by definition, a
frame morphism â−1 : O(R) → O(Σ(A)). Aided by the intuition of 5.2.10, one
finds that â−1(−∞, s) = Ds−a and â−1(r,∞) = Da−r for basic opens. Hence
â−1(r, s) = Ds−a ∧ Da−r for rationals r < s. By Example 5.1.29, we have
Asa
∼= C(Σ(A),R) = Γ(Pt(R)Sh(Σ(A))), where Γ is the global sections functor.

Hence, Asa is isomorphic (through the Gelfand transform) to the global sections
of the real numbers in the topos of sheaves on its spectrum (and A itself “is” the
complex numbers in the same sense).

5.2.12 To describe the Gelfand spectrum more explicitly, we start with the dis-
tributive lattice LA freely generated by the formal symbols Da for a ∈ Asa, sub-
ject to the relations (5.3)–(5.7). Being an involutive rig, Asa has a positive cone
A+ = {a ∈ Asa | a ≥ 0} = {a2 | a ∈ Asa} by 3.5.1. (For A = Hilb(H,H), one
has a ∈ A+ iff 〈x | a(x)〉 ≥ 0 for all x ∈ H.) The given definition of A+ induces
a partial order ≤ on A+ by a ≤ b iff 0 ≤ a − b, with respect to which A+ is a
distributive lattice. Now we define a partial order 4 on A+ by a 4 b iff a ≤ nb

for some n ∈ N. Define an equivalence relation on A+ by a ≈ b iff a 4 b and
b 4 a. The lattice operations on A+ respect ≈ and hence A+/ ≈ is a lattice. We
have

LA ∼= A+/ ≈ .

The image of the generator Da in LA corresponds to the equivalence class [a+]
in A+/ ≈, where a = a+ − a− with a± ∈ A+ in the usual way. Theorem 5.3.12
will show that the lattice LA can be computed locally in certain Kripke toposes.
In preparation, we now work towards Lemma 5.2.17 below.

5.2.13 Extending the geometric propositional logic of 5.1.26, the positive for-
mulae of a geometric predicate logic may furthermore involve finitely many
free variables and the existential quantifier ∃, and its axioms take the form
∀x∈X .ϕ(x) ⇒ ψ(x) for positive formulae ϕ,ψ. Geometric formulae form an im-
portant class of logical formulae, because they are precisely the ones whose truth
value is preserved by inverse images of geometric morphisms between toposes.
From their syntactic form alone, it follows that their external interpretation is
determined locally in Kripke toposes, as the following lemma shows.

5.2.14 Lemma [131, Corollary D1.2.14] Let T be a geometric theory, and de-
note the category of its models in a topos T by Model(T,T). For any cate-
gory C, there is a canonical isomorphism of categories Model(T, [C,Set]) ∼=
[C,Model(T,Set)]. �

153

Chapter 5. Bohrification

5.2.15 Definition A Riesz space is a vector space R over R that is simultaneously
a distributive lattice, such that f ≤ g implies f + h ≤ g + h for all h, and f ≥ 0
implies rf ≥ 0 for all r ∈ R+ [160, Definition 11.1].

An f-algebra is a commutative R-algebra R whose underlying vector space is
a Riesz space in which f, g ≥ 0 implies fg ≥ 0, and f ∧ g = 0 implies hf ∧ g = 0
for all h ≥ 0. Moreover, the multiplicative unit 1 has to be strong in the sense that
for each f ∈ R one has −n1 ≤ f ≤ n1 for some n ∈ N [217, Definition 140.8].

5.2.16 Example If A is a commutative C*-algebra, then Asa becomes an f-
algebra over R under the order defined in 5.2.12. Conversely, by the Stone-
Yosida representation theorem every f-algebra over R can be densely embedded
in C(X,R) for some compact locale X [60].

Clearly, the real field R with its usual order is an f-algebra. The spectrum of
an f-algebra R is classically defined as the space of all its representations [217];
a representation of R is a linear function σ : R → R satisfying σ(1) = 1 and
σ(f ∨ g) = σ(f) ∨ σ(g). This can also be defined constructively as a (compact,
completely regular) locale, whose points are precisely the representations, in a
way very similar to 5.2.10 [60].

For a commutative C*-algebra A, its Gelfand spectrum coincides with the
spectrum of Asa as an f-algebra, as in part (a) of the following lemma.

5.2.17 Lemma Let A be a commutative C*-algebra.

(a) The Gelfand spectrum of A coincides with the spectrum of the f-algebra Asa.

(b) The theory of f-algebras is geometric.

PROOF Part (a) is proven in [58]. For (b), notice that an f-algebra over Q is
precisely a uniquely divisible lattice-ordered ring [57, p. 151], since unique di-
visibility turns a ring into a Q-algebra (cf. Example 2.5.2). The definition of a
lattice-ordered ring can be written using equations only. The theory of torsion-
free rings, i.e. if n > 0 and nx = 0 then x = 0, is also algebraic. The theory of di-
visible rings is obtained by adding infinitely many geometric axioms ∃y.ny = x,
one for each n > 0, to the algebraic theory of rings. Finally, a torsion-free di-
visible ring is the same as a uniquely divisible ring: if ny = x and nz = x, then
n(y−z) = 0, so that y−z = 0. We conclude that the theory of uniquely divisible
lattice-ordered rings, i.e. f-algebras, is geometric, establishing (b). �

5.2.18 Proposition The lattice LA generating the spectrum of a commutative C*-
algebra A is preserved under inverse images of geometric morphisms.

PROOF By the previous lemma, Asa and hence A+ are definable by a geometric
theory. Since the relation ≈ of 5.2.12 is defined by an existential quantification,
LA ∼= A+/ ≈ is preserved under inverse images of geometric morphisms. �

154

5.2. C*-algebras

We now turn to the regularity condition (5.8), which is to be imposed on
LA. This condition turns out to be a special case of the relation � (see Exam-
ple 5.2.7).

5.2.19 Lemma For all Da, Db ∈ LA the following are equivalent:

(a) There exists Dc with Dc ∨ Da = 1 and Dc ∧ Db = 0;

(b) There exists a rational q > 0 with Db ≤ Da−q.

PROOF Assuming (a), there exists a rational q > 0 with Dc−q ∨ Da−q = 1 by [57,
Corollary 1.7]. Hence Dc∨Da−q = 1, so Db = Db∧ (Dc∨Da−q) = Db∧Da−q ≤ Da−q,
establishing (b). For the converse, choose Dc = Dq−a. �

5.2.20 In view of the above lemma, we henceforth write Db � Da if there exists
a rational q > 0 such that Db ≤ Da−q, and note that the regularity condition (5.8)
just states that the frame O(Σ(A)) is regular [57].

We recall that an ideal of a lattice L is a lower set U ⊆ L that is closed under
finite joins; the collection of all ideals in L is denoted by Idl(L). An ideal U of a
distributive lattice L is regular when

�

x ⊆ U implies x ∈ U . Any ideal U can be
turned into a regular ideal U by means of the closure operator () : DL → DL

defined by U = {x ∈ L | ∀y∈L.y � x⇒ y ∈ U} [46], with a canonical inclusion
as in Proposition 5.1.11.

5.2.21 Theorem The Gelfand spectrum O(Σ(A)) of a commutative C*-algebra A
is isomorphic to the frame of all regular ideals of LA, i.e.

O(Σ(A)) ∼= {U ∈ Idl(LA) | (∀Db∈LA
.Db � Da ⇒ Db ∈ U)⇒ Da ∈ U}.

In this realisation, the canonical map f : LA → O(Σ(A)) is given by

f(Da) = {Dc ∈ LA | ∀Db∈LA
.Db � Dc ⇒ Db ≤ Da}.

PROOF For a commutative C*-algebra A, the lattice LA is strongly normal [57,
Theorem 1.11], and hence normal. (A distributive lattice is normal if for all b1, b2
with b1∨b2 = 1 there are c1, c2 such that c1∧c2 = 0 and c1∨b1 = 1 and c2∨b2 =
1.) By [46, Theorem 27], regular ideals in a normal distributive lattice form a
compact regular frame. The result now follows from [57, Theorem 1.11]. �

5.2.22 Corollary The Gelfand spectrum of a commutative C*-algebra A is given
by

O(Σ(A)) ∼= {U ∈ Idl(LA) | ∀a∈Asa∀q>0.Da−q ∈ U ⇒ Da ∈ U}.

PROOF By combining Lemma 5.2.19 with Theorem 5.2.21. �

155

Chapter 5. Bohrification

The following theorem is the key to explicitly determining the external de-
scription of the Gelfand spectrum O(Σ(A)) of a C*-algebra A in a topos.

5.2.23 Theorem For a commutative C*-algebra A, define a covering relation C
on LA by xCU iff f(x) ≤

∨
f(U), in the notation of Theorem 5.2.21.

(a) One has O(Σ(A)) ∼= F(LA,C), under which Da 7→ ↓Da.

(b) Then DaCU iff for all rational q > 0 there is a (Kuratowski) finite U0 ⊆ U

such that Da−q ≤
∨
U0.

PROOF Part (a) follows from Proposition 5.1.11. For (b), first assume DaCU ,
and let q ∈ Q satisfy q > 0. From (the proof of) Lemma 5.2.17 we have Da ∨
Dq−a = 1, whence

∨
f(U) ∨ f(Dq−a) = 1. Because O(Σ(A)) is compact, there is

a finite U0 ⊆ U for which
∨
f(U0) ∨ f(Dq−a) = 1. Since f(Da) = 1 if and only if

Da = 1 by Theorem 5.2.21, we have Db ∨ Dq−a = 1, where Db =
∨
U0. By (5.4),

we have Da−q ∧ Dq−a = 0, and hence

Da−q = Da−q ∧ 1 = Da−q ∧ (Db ∨ Dq−a) = Da−q ∧ Db ≤ Db =
∨
U0.

For the converse, notice that f(Da) ≤
∨
{f(Da−q) | q ∈ Q, q > 0} by construction.

So from the assumption we have f(Da) ≤
∨
f(U) and hence DaCU . �

5.3 Bohrification

This section explains the technique of Bohrification. For a (generally) noncom-
mutative C*-algebra A, Bohrification constructs a topos in which A becomes
commutative. More precisely, to any C*-algebra A, we associate a particular
commutative C*-algebra A in the Kripke topos [C(A),Set], where C(A) is the
set of commutative C*-subalgebras of A. By Gelfand duality, the commutative
C*-algebra A has a spectrum Σ(A), which is a locale in [C(A),Set].

5.3.1 To introduce the idea, we outline the general method of Bohrification.
We will subsequently give concrete examples.

Let T1 and T2 be geometric theories whose variables range over only one
type, apart from constructible types such as N and Q. Suppose that T1 is a
subtheory of T2. There is a functor C : Model(T1,Set) → Poset, defined
on objects as C(A) = {C ⊆ A | C ∈ Model(T2,Set)}, ordered by inclu-
sion. On a morphism f : A → B of Model(T1,Set), the functor C acts as
C(f) : C(A) → C(B) by the direct image C 7→ f(C). Hence, there is a func-
tor T : Model(T1,Set) → Topos, defined on objects by T (A) = [C(A),Set]
and determined on morphisms by T (f)∗ = () ◦ C(f). Define the canonical

156

5.3. Bohrification

object A ∈ T (A) by A(C) = C, acting on a morphism D ⊆ C of C(A) as the
inclusion A(D) ↪→ A(C). Then A is a model of T2 in the Kripke topos T (A) by
Lemma 5.2.14.

5.3.2 Example Let T1 be the theory of groups, and T2 the theory of Abelian
groups. Both are geometric theories, and T1 is a subtheory of T2. Then C(G)
is the collection of Abelian subgroups C of G, ordered by inclusion, and the
functor G : C 7→ C is an Abelian group in T (G) = [C(G),Set].

We now turn to the setting of our interest: (commutative) C*-algebras. As
the theory of C*-algebras is not geometric, it does not follow from the arguments
of 5.3.1 that A will be a commutative C*-algebra in T (A). Theorem 5.3.8 below
will show that the latter is nevertheless true.

5.3.3 Proposition There is a functor C : CStar→ Poset, defined on objects as

C(A) = {C ∈ cCStar | C is a C*-subalgebra of A},

ordered by inclusion. Its action C(f) : C(A) → C(B) on a morphism f : A → B

of CStar is the direct image C 7→ f(C). Hence, there is a functor T : CStar →
Topos, defined by T (A) = [C(A),Set] on objects and T (f)∗ = () ◦ C(f) on
morphisms.

PROOF It suffices to show that T (f)∗ is part of a geometric morphism, which
follows from [164, Theorem VII.2.2]. �

5.3.4 Example The following example determines C(A) for A = Hilb(C2,C2),
the C*-algebra of complex 2 by 2 matrices. Any C*-algebra has a single one-
dimensional commutative C*-subalgebra, namely C, the scalar multiples of the
unit. Furthermore, any two-dimensional C*-subalgebra is generated by a pair of
orthogonal one-dimensional projections. The one-dimensional projections in A
are of the form

p(x, y, z) =
1
2

(
1 + x y + iz

y − iz 1− x

)
, (5.9)

where (x, y, z) ∈ R3 satisfies x2 + y2 + z2 = 1. Thus the one-dimensional projec-
tions in A are precisely parametrised by S2. Since 1−p(x, y, z) = p(−x,−y,−z),
and pairs (p, 1 − p) and (1 − p, p) define the same C*-subalgebra, the two-
dimensional elements of C(A) are parametrised by S2/∼, where (x, y, z) ∼
(−x,−y,−z). This space, in turn, is homeomorphic with the real projective
plane RP2, i.e. the set of lines in R3 passing through the origin.3 Parametrising

3This space has an interesting topology that is quite different from the Alexandrov topology on
C(A), but that we nevertheless ignore.

157

Chapter 5. Bohrification

C(A) ∼= {C}+ RP2, a point [x, y, z] ∈ S2/∼ then corresponds to the C*-algebra
C[x,y,z] generated by the projections {p(x, y, z), p(−x,−y,−z)}. The order of
C(A) is flat: C < D iff C = C.

5.3.5 Example We now generalise the previous example to A = Hilb(Cn,Cn)
for any n ∈ N. In general, one has C(A) =

∐n
k=1 C(k, n), where C(k, n) denotes

the collection of all k-dimensional commutative unital C*-subalgebras of A. To
parametrise C(k, n), we first show that each of its elements C is a unitary rota-
tion C = UDU∗, where U ∈ SU(n) and D is some subalgebra contained in the
algebra of all diagonal matrices. This follows from the case k = n, since each
element of C(k, n) with k < n is contained in some maximal commutative sub-
algebra. For k = n, note that C ∈ C(n, n) is generated by n mutually orthogonal
projections p1, . . . , pn of rank 1. Each pi has a single unit eigenvector ui with
eigenvalue 1; its other eigenvalues are 0. Put these ui as columns in a matrix,
called U . Then U∗piU is diagonal for all i, for if (ei) is the standard basis of Cn,
then Uei = ui for all i and hence U∗piUei = U∗piui = U∗ui = ei, while for
i 6= j one finds U∗piUej = 0. Hence the matrix U∗piU has a one at location ii

and zero’s everywhere else. All other elements a ∈ C are functions of the pi, so
that U∗aU is equally well diagonal. Hence C = UDnU

∗, with Dn the algebra of
all diagonal matrices. Thus

C(n, n) = {UDnU
∗ | U ∈ SU(n)},

with Dn = {diag(a1, . . . , an) | ai ∈ C}, and C(k, n) for k < n is obtained by par-
titioning {1, . . . , n} into k nonempty parts and demanding ai = aj for i, j in the
same part. However, because of the conjugation with arbitrary U ∈ SU(n), two
such partitions induce the same subalgebra precisely when they permute parts
of equal size. Such permutations may be handled using Young tableaux [90]. As
the size of a part is of more interest than the part itself, we define

Y (k, n) = {(i1, . . . , ik) | 0 < i1 < i2 < · · · < ik = n, ij+1 − ij ≤ ij − ij−1}

(where i0 = 0) as the set of partitions inducing different subalgebras. Hence

C(k, n) ∼=
{

(p1, . . . , pk) : pj ∈ Proj(A), (i1, . . . , ik) ∈ Y (k, n)

| dim(Im(pj)) = ij − ij−1, pj ∧ pj′ = 0 for j 6= j′
}
.

Now, since d-dimensional orthogonal projections in Cn bijectively correspond to

158

5.3. Bohrification

the d-dimensional (closed) subspaces of Cn they project onto, we can write

C(k, n) ∼=
{

(V1, . . . , Vk) : (i1, . . . , ik) ∈ Y (k, n), Vj ∈ Gr(ij − ij−1, n)

| Vj ∩ Vj′ = 0 for j 6= j′
}
,

where Gr(d, n) = U(n)/(U(d) × U(n − d)) is the well-known Grassmannian,
i.e. the set of all d-dimensional subspaces of Cn [97]. In terms of the partial flag
manifold

G(i1, . . . , ik;n) =
k∏
j=1

Gr(ij − ij−1, n− ij−1),

for (i1, . . . , ik) ∈ Y (k, n) (see [90]), we finally obtain

C(k, n) ∼= {V ∈ G(i;n) : i ∈ Y (k, n)}/ ∼,

where i ∼ i′ if one arises from the other by permutations of equal-sized parts.
This is indeed generalises the previous example n = 2. First, for any n the

set C(1, n) has a single element, as there is only one Young tableau for k = 1.
Second, we have Y (2, 2) = {(1, 2)}, so that

C(2, 2) ∼= (Gr(1, 2)×Gr(1, 1))/S(2) ∼= Gr(1, 2)/S(2) ∼= CP1/S(2) ∼= RP2.

5.3.6 Definition Let A be a C*-algebra. Define the functor A : C(A) → Set
by acting on objects as A(C) = C, and acting on morphisms C ⊆ D of C(A)
as the inclusion A(C) ↪→ A(D). We call A, or the process of obtaining it, the
Bohrification of A.

5.3.7 Convention We will underline entities internal to T (A) to distinguish be-
tween the internal and external points of view.

The particular objectA turns out to be a commutative C*-algebra in the topos
T (A), even though the theory of C*-algebras is not geometric. This resembles
the so-called “microcosm principle”, according to which structure of an internal
entity depends on similar structure of the ambient category [13, 109].

5.3.8 Theorem Operations inherited from A make A a commutative C*-algebra
in T (A). More precisely, A is a vector space over the complex field Pt(C) : C 7→ C
by

0: 1→ A, +: A×A→ A, · : Pt(C)×A→ A,

0C(∗) = 0, a+C b = a+ b, z ·C a = z · a,

159

Chapter 5. Bohrification

and an involutive algebra through

· : A×A→ A, ()∗ : A→ A

a ·C b = a · b, (a∗)C = a∗.

The norm relation is the subobject N ∈ Sub(A×Q+) given by

NC = {(a, q) ∈ C ×Q+ | ‖a‖ < q}.

PROOF Recall (Definition 5.2.3) that a pre-semi-C*-algebra is a C*-algebra that
is not necessarily Cauchy complete, and whose seminorm is not necessarily a
norm. Since the theory of pre-semi-C*-algebras is geometric, Lemma 5.2.14
shows that A is a commutative pre-semi-C*-algebra in T (A), as in 5.3.1. Let
us prove that A is in fact a pre-C*-algebra, i.e. that the seminorm is a norm. It
suffices to show that C ∀a∈Asa

∀q∈Q+ .(a, q) ∈ N ⇒ a = 0 for all C ∈ C(A).
By 5.1.20, this means

for all C ′ ⊇ C and a ∈ C ′, if C ′ ∀q∈Q+ .(a, q) ∈ N, then C ′ a = 0,

i.e. for all C ′ ⊇ C and a ∈ C ′, if C ′′ (a, q) ∈ N for all C ′′ ⊇ C ′ and q ∈ Q+,

then C ′ a = 0,

i.e. for all C ′ ⊇ C and a ∈ C ′, if ‖a‖ = 0, then a = 0.

But this holds, since every C ′ is a C*-algebra.
Finally, we prove that A is in fact a C*-algebra. Since the axiom of depen-

dent choice holds in T (A) [86], it suffices to prove that every regular Cauchy se-
quence converges, where a sequence (xn) is regular Cauchy when ‖xn − xm‖ ≤
2−n + 2−m for all n,m ∈ N. Thus we need to prove

C ∀n,m∈N.‖xn − xm‖ ≤ 2−n + 2−m ⇒ ∃x∈A.∀n∈N.‖x− xn‖ ≤ 2−n,

i.e. for all C ′ ⊇ C, if C ′ (∀n,m∈N.‖xn − xm‖ ≤ 2−n + 2−m),

then C ′ ∃x∈A.∀n∈N.‖x− xn‖ ≤ 2−n,

i.e. for all C ′ ⊇ C, if C ′ “(x)n is regular”, then C ′ “(x)n converges”.

Once again, this holds because every C ′ is a C*-algebra. �

5.3.9 Applying 5.2.9 to the commutative C*-algebra A in the topos T (A), we
obtain a locale Σ(A) in that topos. As argued in Chapter 1, Σ(A) is the ‘state
space’ carrying the logic of the physical system whose observable algebra is A.

An important property of Σ(A) is that it is typically highly non-spatial, as
the following theorem proves. This theorem is a localic extension of a topos-
theoretic reformulation of the Kochen-Specker theorem [143] due to Jeremy

160

5.3. Bohrification

Butterfield and Chris Isham [39–42].

5.3.10 Theorem LetH be a Hilbert space with dim(H) > 2, andA = Hilb(H,H).
The locale Σ(A) has no points.

PROOF The real number object in T (A) is a ring (in T (A)), so that it makes
sense to talk about multiplicative functionals (on the C*-algebra A in T (A)). It
turns out that the points of Σ(A), should they exist, are precisely the multiplica-
tive functionals on A (see [18], who explicitly use only topos-valid constructions
and reasoning). So for any point ρ : 1→ Σ(A) of the locale Σ(A) there is a map
V ρ : Asa → Pt(R). Being a morphism in T (A), the map V ρ is a natural transfor-
mation, with components V ρ(C) : Asa(C) → Pt(R)(C); by Definition 5.3.6 and
Example 5.1.29, this is just V ρ(C) : Csa → R. Hence one has a multiplicative
functional V ρ(C) for each C ∈ C(A) in the usual sense, with the naturality, or
‘noncontextuality’, property that if C ⊆ D, then the restriction of V ρ(D) to Csa

is V ρ(C). But that is precisely the kind of function on Hilb(H,H) of which the
Kochen-Specker theorem establishes the nonexistence [143]. �

5.3.11 The previous theorem holds for more general C*-algebras than just
Hilb(H,H) (for large enough Hilbert spaces H); see [74] for results on von
Neumann algebras. A C*-algebra A is called simple when its closed two-sided
ideals are trivial, and infinite when there is an a ∈ A with a∗a = 1 but aa∗ 6=
1 [61]. A simple infinite C*-algebra does not admit a dispersion-free quasi-
state [106], whence the previous theorem holds for such C*-algebras as well.

The rest of this section is devoted to describing the structure of the Gelfand
spectrum Σ(A) of the Bohrification A of A from the external point of view.

5.3.12 Theorem For a C*-algebra A and each C ∈ C(A), one has LA(C) = LC .
Moreover LA(C ⊆ D) : LC → LD is a frame morphism that maps each generator
Dc for c ∈ Csa to the same generator for the spectrum of D.

PROOF This follows from Lemma 5.2.14 and Proposition 5.2.18. �

5.3.13 The next corollary interprets DaCU in our situation, showing that also
the covering relation C can be computed locally. To do so, we introduce the
notation LA|↑C for the restriction of the functor LA : C(A)→ Set to ↑C ⊆ C(A).
Then ΩLA(C) ∼= Sub(LA|↑C) by [164, Section II.8]. Hence, by Kripke-Joyal
semantics, cf. 5.1.20, the formal variables Da and U in C DaCU for C ∈ C(A)
are to be instantiated with actual elements Dc ∈ LC = LA(C) and a subfunctor
U : ↑C → Set of LA|↑C . Since C is a subfunctor of LA × P(LA), we can speak
of CC for C ∈ C(A) as the relation LA(C)× P(LA) induced by evaluation at C.

161

Chapter 5. Bohrification

5.3.14 Corollary The covering relation C of Theorem 5.2.23 is computed locally.
That is, for C ∈ C(A), Dc ∈ LC and U ∈ Sub(LA|↑C), the following are equivalent:

(a) C DaCU(Dc, U);

(b) Dc CC U(C);

(c) for every rational q > 0 there is a finite U0 ⊆ U(C) with Dc−q ≤
∨
U0.

PROOF The equivalence of (b) and (c) follows from Theorem 5.2.23. We prove
the equivalence of (a) and (c). Assume, without loss of generality, that

∨
U0 ∈

U , so that U0 may be replaced by Db =
∨
U0. Hence the formula DaCU in (a)

means
∀q>0∃Db∈LA

.(Db ∈ U ∧ Da−q ≤ Db).

We interpret this formula step by step, as in 5.1.20. First, C (Da ∈ U)(Dc, U)
iff for all D ⊇ C one has Dc ∈ U(D). As U(C) ⊆ U(D), this is the case
iff Dc ∈ U(C). Also one has C (Db ≤ Da)(Dc′ , Dc) iff Dc′ ≤ Dc in LC .
Hence, C (∃Db∈LA

.Db ∈ U ∧ Da−q ≤ Db)(Dc, U) iff there is Dc′ ∈ U(C) with
Dc−q ≤ Dc′ . Finally, C (∀q>0∃Db∈LA

.Db ∈ U ∧ Da−q ≤ Db)(Dc, U) iff for all
D ⊇ C and all rational q > 0 there is Dd ∈ U(D) such that Dc−q ≤ Dd, where
Dc ∈ LC ⊆ LD by Theorem 5.3.12 and U ∈ Sub(LA|↑C) ⊆ Sub(LA|↑D) by
restriction. This holds at all D ⊇ C iff it holds at C, because U(C) ⊆ U(D),
whence one can take Dd = Dc′ . �

5.3.15 The following theorem explicitly determines the Gelfand spectrum Σ(A)
from the external point of view. It turns out that the functor Σ(A) is completely
determined by its value Σ(A)(C) at the least element C of C(A). Therefore, we
abbreviate Σ(A)(C) by ΣA, and call it the Bohrified state space of A.

5.3.16 Theorem For a C*-algebra A:

(a) At C ∈ C(A), the set O(Σ(A))(C) consists of the subfunctors U ∈ Sub(LA|↑C)
satisfying Dd CD U(D)⇒ Dd ∈ U(D) for all D ⊇ C and Dd ∈ LD.

(b) In particular, the set O(Σ(A))(C) consists of the subfunctors U ∈ Sub(LA)
satisfying Dc CC U(C)⇒ Dc ∈ U(C) for all C ∈ C(A) and Dc ∈ LC .

(c) The action O(Σ(A)) → O(Σ(A)) of O(Σ(A)) on a morphism C ⊆ D of C(A)
is given by truncating U : ↑C → Set to ↑D.

(d) The external description of O(Σ(A)) is the frame morphism

f−1 : O(Alx(C(A)))→ O(Σ(A))(C),

162

5.4. Projections

given on basic opens ↑D ∈ O(Alx(C(A))) by

f−1(↑D)(E) =
{
LE if E ⊇ D,
∅ otherwise.

PROOF By Theorem 5.2.23(a) and (5.2), O(Σ(A)) is the subobject of ΩLA de-
fined by the formula ∀Da∈LA

.DaCU ⇒ Da ∈ U . As in 5.3.13, elements U ∈
O(Σ(A))(C) may be identified with subfunctors of LA|↑C . Hence, by Corol-
lary 5.3.14, we have U ∈ O(Σ(A)) if and only if

∀D⊇C∀Dd∈LD
∀E⊇D.Dd CE U(E)⇒ Dd ∈ U(E),

where Dd is regarded as an element of LE . This is equivalent to the apparently
weaker condition

∀D⊇C∀Dd∈LD
.Dd CD U(D)⇒ Dd ∈ U(D),

because the latter applied at D = E actually implies the former condition since
Dd ∈ LD also lies in LE . This proves (a), (b) and (c). Part (d) follows from
Example 5.1.24. �

5.4 Projections

This section compares the quantum state spaces O(Σ(A)) with quantum logic
in the sense of Chapter 4. In a setting of operator algebras, this more tradi-
tional quantum logic of Chapter 4 concerns projections; recall from 4.1.11 that
Proj(A) = {p ∈ A | p∗ = p = p ◦ p}. Hence we need to specialise to C*-algebras
that have enough projections. The most general such class that can easily be
Bohrified turns out to consist of so-called Rickart C*-algebras. To motivate the
choice for Rickart C*-algebras, we start by recalling several types of C*-algebras
and known results about their spectra.

5.4.1 Definition Let A be a C*-algebra. Define R(S) = {a ∈ A | ∀s∈S .sa = 0}
to be the right annihilator of some subset S ⊆ A. Then A is said to be:

(a) a von Neumann algebra if it is the dual of some Banach space [190];

(b) an AW*-algebra if for each nonempty S ⊆ A there is a p ∈ Proj(A) satisfying
R(S) = pA [138];

(c) a Rickart C*-algebra if for each x ∈ A there is a p ∈ Proj(A) satisfying
R({x}) = pA [182];

163

Chapter 5. Bohrification

(d) a spectral C*-algebra if for each a ∈ A+ and each r, s ∈ (0,∞) with r < s,
there is a p ∈ Proj(A) satisfying ap ≥ rp and a(1− p) ≤ s(1− p) [203].

In all cases, the projection p turns out to be unique.

5.4.2 The class of all C*-algebras is not directly relevant to traditional quantum
logic in the sense of Chapter 4, as a generic C*-algebra may not have enough
projections. For if A is a commutative C*-algebra whose Gelfand spectrum Σ(A)
is connected, then A has no projections except for 0 and 1.

5.4.3 For the other extreme, recall the Stone representation theorem [130]: any
Boolean algebra is isomorphic to the lattice B(X) of clopen subsets of a Stone
space X, i.e. a compact Hausdorff space that is totally disconnected, in that its
only connected subsets are singletons. Equivalently, a Stone space is compact,
T0, and has a basis of clopen sets. Thus a Stone space X gives rise to a Boolean
algebra B(X) as well as to a commutative C*-algebra C(X,C). Now, a von
Neumann algebra A is commutative if and only if Proj(A) is a Boolean alge-
bra [180, Proposition 4.16]. In that case, the Gelfand spectrum Σ(A) of A may
be identified with the Stone spectrum of Proj(A). In general, if A is a commuta-
tive C*-algebra, then Proj(A) is isomorphic with the Boolean lattice B(Σ(A)) of
clopens in Σ(A). If we regard Σ(A) as consisting of characters as in 5.2.10, then
this isomorphism is given by

Proj(A)
∼=→ B(Σ(A))

p 7→ supp(p̂) = {σ ∈ Σ(A) | σ(p) 6= 0},

where p̂ is the Gelfand transform of p as in 5.2.11, and the support of the Gelfand
transform of a ∈ Asa is supp(â) = {σ ∈ Σ(A) | â(σ) 6= 0} = Da, where support
is defined as in Example 2.2.17.

5.4.4 However, the above correspondence between Boolean algebras and com-
mutative von Neumann algebras is not bijective. If A is a commutative von
Neumann algebra, then Proj(A) is complete, so that Σ(A) is not merely Stone
but Stonean, i.e. compact, Hausdorff and extremely disconnected, in that the clo-
sure of every open set is open. (The Stone spectrum of a Boolean algebra L

is Stonean if and only if L is complete.) But commutative von Neumann alge-
bras do not correspond bijectively to complete Boolean algebras either, since the
Gelfand spectrum of a commutative von Neumann algebra is not merely Stone
but has the stronger property of being hyperstonean, in that it admits sufficiently
many positive normal measures [206, Definition 1.14]. Indeed, a commutative
C*-algebra A is a von Neumann algebra if and only if its Gelfand spectrum (and
hence the Stone spectrum of its projection lattice) is hyperstonean.

164

5.4. Projections

5.4.5 Theorem A commutative C*-algebra A is:

(a) a von Neumann algebra if and only if Σ(A) is hyperstonean [206, Section III.1];

(b) an AW*-algebra if and only if Σ(A) is Stonean, if and only if Σ(A) is Stone
and B(Σ(A)) is complete [28, Theorem 1.7.1];

(c) a Rickart C*-algebra if and only if Σ(A) is Stone and B(Σ(A)) is countably
complete [28, Theorem 1.8.1];

(d) a spectral C*-algebra if and only if Σ(A) is Stone [203, Section 9.7]. �

5.4.6 Though spectral C*-algebras are the most general class in Definition 5.4.1,
their projections may not form a lattice in the noncommutative case. A major
advantage of Rickart C*-algebras is that their projections do, as in the follow-
ing proposition. Rickart C*-algebras are also of interest for classification pro-
grammes, as follows. The class of so-called real rank zero C*-algebras has been
classified using K-theory. This is a functor K from CStar to graded Abelian
groups. In fact, it is currently believed that real rank zero C*-algebras are the
widest class of C*-algebras for which A ∼= B if and only if K(A) ∼= K(B) [186,
Section 3]. Rickart C*-algebras are always real rank zero [31, Theorem 6.1.2].

5.4.7 Proposition Let A be a Rickart C*-algebra.

(a) If it is ordered by p ≤ q ⇔ pA ⊆ qA, then Proj(A) is a countably complete
lattice [28, Proposition 1.3.7 and Lemma 1.8.3].

(b) If A is commutative, then it is the (norm-)closed linear span of Proj(A) [28,
Proposition 1.8.1.(3)].

(c) If A is commutative, then it is monotone countably complete, i.e. each increas-
ing bounded sequence inAsa has a supremum inA [203, Proposition 9.2.6.1].�

5.4.8 Definition 5.4.1(a) requires the so-called ultraweak or σ-weak topology,
which is hard to internalise to a topos. There are constructive definitions of
von Neumann algebras [66, 202], but they rely on the strong operator topol-
ogy, which is hard to internalise, too. Furthermore, the latter rely on the ax-
iom of dependent choice. Although this holds in Kripke toposes, we prefer to
consider Rickart C*-algebras. All one loses in this generalisation is that the
projection lattice is only countably complete instead of complete—this is not a
source of tremendous worry, because countable completeness of Proj(A) implies
completeness if A has a faithful representation on a separable Hilbert space.
Moreover, Rickart C*-algebras can easily be Bohrified, as Theorem 5.4.11 below
shows.

165

Chapter 5. Bohrification

5.4.9 Proposition For a commutative C*-algebra A, the following are equivalent:

(a) A is Rickart;

(b) for each a ∈ A there is a (unique) [a = 0] ∈ Proj(A) such that a[a = 0] = 0,
and b = b[a = 0] when ab = 0;

(c) for each a ∈ Asa there is a (unique) [a > 0] ∈ Proj(A) such that [a > 0]a = a+

and [a > 0][−a > 0] = 0.

PROOF For the equivalence of (a) and (b) we refer to [28, Proposition 1.3.3].
Assuming (b) and defining [a > 0] = 1− [a+ = 0], we have

[a > 0]a = (1− [a+ = 0])(a+ − a−)

= a+ − a− − a+[a+ = 0] + a−[a+ = 0]

= a+, (since a−a+ = 0, so that a−[a+ = 0] = a−)

and similarly a−[a > 0] = a− − a−[a+ = 0] = 0, whence

[a > 0][−a > 0] = [a > 0](1− [(−a)+ = 0])

= [a > 0]− [a > 0][a− = 0] = 0, (since [a−[a > 0] = 0)

establishing (c). For the converse, notice that it suffices to handle the case
a ∈ A+: decomposing general a ∈ A into four positives we obtain [a = 0]
by multiplying the four associated projections. Assuming (c) and a ∈ A+, define
[a = 0] = 1 − [a > 0]. Then a[a = 0] = (1 − [a > 0]) = a+ − a[a > 0] = 0. If
ab = 0 for b ∈ A, then

Db[a>0] = Db∧[a>0] = Db ∧ D[a>0] = Db ∧ Da = Dba = D0,

so that b[a < 0] 4 0 by 5.2.12. That is, b[a < 0] ≤ n · 0 = 0 for some n ∈ N. �

5.4.10 Parallel to Proposition 5.3.3, we define CR(A) to be the collection of all
commutative Rickart C*-subalgebras C of A, and TR(A) = [CR(A),Set]. The
Bohrification A of a Rickart C*-algebra A is then defined by A(C) = C, just as
in Definition 5.3.6.

5.4.11 Theorem Let A be a Rickart C*-algebra. Then A is a commutative Rickart
C*-algebra in TR(A).

PROOF By Theorem 5.3.8, we already know that A is a commutative C*-algebra
in TR(A). Proposition 5.4.9 captures the property of a commutative C*-algebra
being Rickart in a geometric formula. Hence, by Lemma 5.2.14, A is Rickart
since every C ∈ CR(A) is. �

166

5.4. Projections

We now work towards an explicit formula for the external description of the
Gelfand spectrum of the Bohrification of a Rickart C*-algebra.

5.4.12 Lemma Let A be a commutative Rickart C*-algebra, and a, b ∈ A self-
adjoint. If ab ≥ a, then a 4 b, i.e. Da ≤ Db.

PROOF If a ≤ ab then certainly a 4 ab. Hence Da ≤ Dab = Da ∧ Db. In other
words, Da ≤ Db, whence a 4 b. �

5.4.13 Definition Recall that a function f between posets satisfying f(x) ≥
f(y) when x ≤ y is called antitone. A pseudocomplement on a distributive lattice
L is an antitone function ¬ : L → L satisfying x ∧ y = 0 iff x ≤ ¬y. Compare
Definition 4.5.1.

5.4.14 Proposition For a commutative Rickart C*-algebra A, the lattice LA has
a pseudocomplement, determined by ¬Da = D[a=0] for a ∈ A+.

PROOF Without loss of generality, let b ≤ 1. Then

Da ∧ Db = 0 ⇐⇒ Dab = D0

⇐⇒ ab = 0

⇐⇒ b[a = 0] = b (⇒ by Proposition 5.4.9)

⇐⇒ b 4 [a = 0] (⇐ since b ≤ 1,⇒ by Lemma 5.4.12)

⇐⇒ Db ≤ D[a=0] = ¬Da.

To see that ¬ is antitone, suppose that Da ≤ Db. Then a 4 b, so a ≤ nb for some
n ∈ N. Hence [b = 0]a ≤ [b = 0]bn = 0, so that ¬Db ∧ Da = D[b=0]a = 0, and
therefore ¬Db ≤ ¬Da. �

5.4.15 Lemma If A is a commutative Rickart C*-algebra, then the lattice LA sat-
isfies Da ≤

∨
r∈Q+ D[a−r>0] for all a ∈ A+.

PROOF Since [a > 0]a = a+ ≥ a, Lemma 5.4.12 gives a 4 [a > 0] and therefore
Da ≤ D[a>0]. Also, for r ∈ Q+ and a ∈ A+, one has 1 ≤ 2

r ((r − a) ∨ a), whence

[a− r > 0] ≤ 2
r

((r − a) ∨ a)[a− r > 0] =
2
r

(a[a− r > 0]).

Lemma 5.4.12 then yields D[a−r>0] ≤ D 2
r a

= Da. In total, we have D[a−r>0] ≤
Da ≤ D[a>0] for all r ∈ Q+, from which the statement follows. �

The following simplifies Theorem 5.2.21 by restricting to Rickart C*-algebras.
This result was not yet known, but is easily proved in Set.

167

Chapter 5. Bohrification

5.4.16 Theorem The Gelfand spectrum O(Σ(A)) of a commutative Rickart C*-
algebra A is isomorphic to the frame Idl(Proj(A)) of ideals of Proj(A). Hence the
regularity condition may be dropped if one uses Proj(A) instead of LA. Moreover,
O(Σ(A)) is generated by the sublattice PA = {Da ∈ LA | a ∈ A+,¬¬Da = Da} of
‘clopens’ of LA, which is Boolean by construction.

PROOF Since ¬Dp = D1−p for p ∈ Proj(A), we have ¬¬Dp = Dp. Conversely,
¬¬Da = D[a>0], so that each element of PA is of the form Da = Dp for some
p ∈ Proj(A). So PA = {Dp | p ∈ Proj(A)} ∼= Proj(A), since each projection
p ∈ Proj(A) may be selected as the unique representative of its equivalence
class Dp in LA. By Lemma 5.4.15, we may use Proj(A) instead of LA as the
generating lattice for O(Σ(A)). So O(Σ(A)) is the collection of regular ideals of
Proj(A) by Theorem 5.2.21. But since Proj(A) ∼= PA is Boolean, all its ideals are
regular, as Dp � Dp for each p ∈ Proj(A) [130]. This establishes the statement,
O(Σ(A)) ∼= Idl(Proj(A)). �

We can now give a concise external description of the Gelfand spectrum of
the Bohrification of a Rickart C*-algebra A, simplifying Theorem 5.3.16.

5.4.17 Theorem The Bohrified state space ΣA of a Rickart C*-algebra A is given
by

O(ΣA) ∼= {F : C(A)→ Set | F (C) ∈ O(Σ(C)) and

Σ(C ⊆ D)(F (C)) ⊆ F (D) if C ⊆ D}.

It has a basis given by

B(ΣA) = {G : C(A)→ Proj(A) | G(C) ∈ Proj(C) and G(C) ≤ G(D) if C ⊆ D}.

More precisely, there is an injection f : B(ΣA) → O(ΣA) given by f(G)(C) =
supp(Ĝ(C)), using the Gelfand transform of 5.2.11 in Set. Each F ∈ O(ΣA) can
be expressed as F =

∨
{f(G) | G ∈ B(ΣA), f(G) ≤ F}.

PROOF By (the proof of) Theorem 5.4.16, one can use Proj(C) instead of LA(C)
as a generating lattice for O(Σ(A)). Translating Theorem 5.3.16(b) in these
terms yields that O(ΣA) consists of subfunctors U of LA for which U(C) ∈
Idl(Proj(C)) at each C ∈ C(A). Notice that Theorem 5.3.16 holds in TR(A) as
well as in T (A) (by interpreting Theorem 5.2.23 in the former instead of in the
latter topos). Thus we obtain a frame isomorphism Idl(Proj(C)) ∼= O(Σ(C)),
and the description in the statement. �

The projections Proj(A) form a complete orthomodular lattice (see Defini-
tion 4.3.1) for any von Neumann algebra A [180]. It follows from Example 5.2.6

168

5.4. Projections

that Proj(A) is a countably complete orthomodular lattice for any Rickart C*-
algebra A. Using the description of the previous theorem, we can finally com-
pare our Bohrified state spaceO(ΣA) to the traditional “quantum logic” Proj(A).
To do so, we recall an alternative characterisation of orthomodular lattices.

5.4.18 Definition A (complete) partial Boolean algebra is a family (Bi)i∈I of
(complete) Boolean algebras whose operations coincide on overlaps:

• each Bi has the same least element 0;

• x⇒i y if and only if x⇒j y, when x, y ∈ Bi ∩Bj;

• if x⇒i y and y ⇒j z then there is a k ∈ I with x⇒k z;

• ¬ix = ¬jx when x ∈ Bi ∩Bj;

• x ∨i y = x ∨j y when x, y ∈ Bi ∩Bj;

• if y ⇒i ¬ix for some x, y ∈ Bi, and x ⇒j z and y ⇒k z, then x, y, z ∈ Bl
for some l ∈ I.

5.4.19 The requirements of a partial Boolean algebra imply that the amalgama-
tion A(B) =

⋃
i∈I Bi carries a well-defined structure ∨,∧, 0, 1,⊥, under which

it becomes an orthomodular lattice. For example, x⊥ = ¬ix for x ∈ Bi ⊆ A(B).
Conversely, any orthomodular lattice X is a partial Boolean algebra, in which
I is the collection of all orthogonal subsets of A(B), and Bi is the sublattice of
A(B) generated by I. Here, a subset E ⊆ A(B) is called orthogonal when pairs
(x, y) of different elements of E are orthogonal, i.e. x ≤ y⊥. The generated
sublattices Bi are therefore automatically Boolean. If we order I by inclusion,
then Bi ⊆ Bj when i ≤ j. Thus there is an isomorphism between the categories
of orthomodular lattices and partial Boolean algebras [63, 83, 136, 143].

5.4.20 A similar phenomenon occurs in the Heyting algebra B(ΣA) of Theo-
rem 5.4.17, when this is complete, which is the case for AW*-algebras and in
particular for von Neumann algebras (provided, of course, that we require C(A)
to consist of commutative subalgebras in the same class). Indeed, we can think
of B(ΣA) as an amalgamation of Boolean algebras: just as every Bi in Defini-
tion 5.4.18 is a Boolean algebra, every Proj(C) in Theorem 5.4.17 is a Boolean
algebra. Hence the fact that the set I in Definition 5.4.18 is replaced by the
partially ordered set C(A) and the requirement in Theorem 5.4.17 that G be
monotone are responsible for making the partial Boolean algebra O(ΣA) into a
Heyting algebra. Indeed, this construction works more generally, as the follow-
ing theorem shows. (Compare also [96] and [218], that write an orthomodular
lattice as a sheaf of Boolean and distributive ones, respectively.)

169

Chapter 5. Bohrification

5.4.21 Theorem Let (I,≤) be a partially ordered set, and Bi an I-indexed family
of complete Boolean algebras such that Bi ⊆ Bj if i ≤ j. Then

B(B) = {f : I →
⋃
i∈I

Bi | ∀i∈I .f(i) ∈ Bi and f monotone}

is a complete Heyting algebra, with Heyting implication

(g ⇒ h)(i) =
∨
{x ∈ Bi | ∀j≥i.x ≤ g(j)⇒ h(j)}.

PROOF Defining operations pointwise makes Y into a frame. For example, f ∧g,
defined by (f ∧ g)(i) = f(i) ∧i g(i), is again a well-defined monotone function
whose value at i lies in Bi. Hence, as in Definition 5.1.2, B(B) is a complete
Heyting algebra by (g ⇒ h) =

∨
{f ∈ Y | f ∧ g ≤ h}. We now rewrite this

Heyting implication:

(g ⇒ h)(i) =
(∨
{f ∈ B(B) | f ∧ g ≤ h}

)
(i)

=
∨
{f(i) | f ∈ B(B), f ∧ g ≤ h}

=
∨
{f(i) | f ∈ B(B),∀j∈I .f(j) ∧ g(j) ≤ h(j)}

=
∨
{f(i) | f ∈ B(B),∀j∈I .f(j) ≤ g(j)⇒ h(j)}

∗=
∨
{x ∈ Bi | ∀j≥i.x ≤ g(j)⇒ h(j)}.

To finish the proof, we establish the marked equation. First, suppose that f ∈
B(B) satisfies f(j) ≤ g(j)⇒ h(j) for all j ∈ I. Take x = f(i) ∈ Bi. Then for all
j ≥ i we have x = f(i) ≤ f(j) ≤ g(j) ⇒ h(j). Hence the left-hand side of the
marked equation is less than or equal to the right-hand side. Conversely, suppose
that x ∈ Bi satisfies x ≤ g(j) ⇒ h(j) for all j ≥ i. Define f : I →

⋃
i∈I Bi by

f(j) = x if j ≥ i and f(j) = 0 otherwise. Then f is monotone and f(i) ∈ Bi
for all i ∈ I, whence f ∈ Y . Moreover, f(j) ≤ g(j) ⇒ h(j) for all j ∈ I. Since
f(i) ≤ x, the right-hand side is less than or equal to the left-hand side. �

5.4.22 Proposition Let (I,≤) be a partially ordered set. Let (Bi)i∈I be complete
partial Boolean algebra, and suppose that Bi ⊆ Bj for i ≤ j. Then there is an
injection D : A(B) → B(B). This injection reflects the order: if D(x) ≤ D(y) in
Y , then x ≤ y in X.

PROOF Define D(x)(i) = x if x ∈ Bi and D(x)(i) = 0 if x 6∈ Bi. Suppose
that D(x) = D(y). Then for all i ∈ I we have x ∈ Bi iff y ∈ Bi. Since
x ∈ A(B) =

⋃
i∈I Bi, there is some i ∈ I with x ∈ Bi. For this particular i,

we have x = D(x)(i) = D(y)(i) = y. Hence D is injective. If D(x) ≤ D(y) for

170

5.4. Projections

x, y ∈ A(B), pick i ∈ I such that x ∈ Bi. Unless x = 0, we have x = D(x)(i) ≤
D(y)(i) = y. �

5.4.23 In the situation of the previous proposition, the Heyting algebra B(B)
comes with its Heyting implication, whereas the orthomodular lattice A(B) has
its Sasaki hook. Recall from 4.4.15 that the Sakaki hook satisfies the adjunction
x ≤ y ⇒S z iff x ∧ y ≤ z only for y and z that are compatible. This is the case
if and only if y and z generate a Boolean subalgebra, i.e. if and only if y, z ∈ Bi
for some i ∈ I. In that case, the Sasaki hook⇒S coincides with the implication
⇒ of Bi. Hence

(D(x)⇒ D(y))(i) =
∨
{z ∈ Bi | ∀j≥i.z ≤ D(x)(j)⇒ D(y)(j)}

=
∨
{z ∈ Bi | z ≤ x⇒ y}

= (x⇒S y).

In particular, we find that ⇒ and ⇒S coincide on Bi × Bi for i ∈ I; further-
more, this is precisely the case in which the Sasaki hook satisfies the defining
adjunction for (Heyting) implications.

However, the canonical injection D need not turn Sasaki hooks into implica-
tions in general. One finds:

D(x⇒S y)(i) =
[
x⊥ ∨ (x ∧ y) if x⇒S y ∈ Bi
0 otherwise

]
,

(D(x)⇒ D(b))(i) =
∨{

z ∈ Bi | ∀j≥i.z ≤

 1 if x 6∈ Bj
x⊥ if x ∈ Bj , y 6∈ Bj
x⊥ ∨ y if x, y ∈ Bj

}.
So if x 6∈ Bj for any j ≥ i, we have D(x⇒S y)(i) = 0 6= 1 = (D(x)⇒ D(y))(i).

5.4.24 To end this section, we consider the so-called Bruns-Lakser completion
[36, 48, 205]. The Bruns-Lakser completion of a complete lattice is a complete
Heyting algebra that contains the original lattice join-densely. It is the universal
in that this inclusion preserves existing distributive joins. Explicitly, the Bruns-
Lakser completion of a lattice L is the collection DIdl(L) of its distributive ideals.
Here, an ideal M is called distributive when (

∨
M exists and) (

∨
M) ∧ x =∨

m∈M (m ∧ x) for all x ∈ L. Now consider the orthomodular lattice X with the

171

Chapter 5. Bohrification

following Hasse diagram.

1
kkkkkkkk

SSSSSSSS

WWWWWWWWWWWWWWWWWWWWWWWWWWW

ggggggggggggggggggggggggggg

c⊥ b⊥ a⊥

d d⊥

a

qqqqqqqqq
b

MMMM

MMMM
qqqqq

qqqq

c

NNNNNNNNN

0

SSSSSSSSS
kkkkkkkkk

XXXXXXXXXXXXXXXXXXXXXXXXXXX

fffffffffffffffffffffffffff

This contains precisely five Boolean algebras, namely B0 = {0, 1} and Bi =
{0, 1, i, i⊥} for i ∈ {a, b, c, d}. Hence X = A(B) when we take I = {0, a, b, c, d}
ordered by i < j iff i = 0. The monotony requirement in B(B) becomes
∀i∈{a,b,c,d}.f(0) ≤ f(i). If f(0) = 0 ∈ B0, this requirement is vacuous. But
if f(0) = 1 ∈ B0, the other values of f are already fixed. Thus one finds that
B(B) ∼= (B1 ×B2 ×B3 ×B4) + 1 has 17 elements.

On the other hand, the distributive ideals of A(B) are given by

DIdl(X) =
{(⋃

x∈A
↓x
)
∪
(⋃
y∈B
↓y
) ∣∣∣ A ⊆ {a, b, c, d, d⊥}, B ⊆ {a⊥, b⊥, c⊥}}

− {∅}+ {X}.

This set has 72 elements. That is, not many elements of A(B) are already dis-
tributive joins in A(B), and the Bruns-Lakser completion has to freely add a lot
of elements to gain all distributive joins. In fact, in the terminology of [205],

Jdis(x) = {S ⊆ ↓x | x ∈ S},

i.e. the covering relation is the trivial one, and DIdl(X) is the Alexandrov topol-
ogy on the poset X. The canonical injection D of Proposition 5.4.22 need
not preserve the order, and hence does not satisfy the universal requirement
of which the Bruns-Lakser completion is the solution. Therefore, it is unprob-
lemetic to conclude that the construction in Theorem 5.4.21 uses more of the
structure of the orthomodular lattice A(B) to construct a smaller Heyting alge-
bra than the Bruns-Lakser completion.

5.5 States and observables

This final section considers some relationships between the external C*-algebra
A and its Bohrification A. For example, we discuss how a state on A in the
operator algebraic sense gives rise to a probability integral on Asa within T (A).
The latter corresponds to a suitably adapted version of a probability measure

172

5.5. States and observables

on O(Σ(A)), justifying the name “Bohrified” state space. We also consider how
so-called Daseinisation translates an external proposition about an observable
a ∈ Asa into a subobject of the Bohrified state space.

5.5.1 Definition A linear functional ρ : A→ C on a C*-algebra A is called posi-
tive when ρ(A+) ⊆ R+. It is a state when it is positive and satisfies ρ(1) = 1. A
state ρ is pure when ρ = tρ′ + (1− t)ρ′′ for some t ∈ (0, 1) and some states ρ′, ρ′′

implies ρ′ = ρ′′. Otherwise, it is called mixed. A state is called faithful when
ρ(a) = 0 implies a = 0 for all a ∈ A+.

States are automatically Hermitian, in the sense that ρ(a∗) is the complex
conjugate of ρ(a), or equivalently, ρ(a) ∈ R for a ∈ Asa.

5.5.2 Example If A = Hilb(X,X) for some Hilbert space X, each unit vector
x ∈ X defines a pure state on A by ρx(a) = 〈x | a(x)〉. Normal mixed states
ρ arise from countable sequences (ri) of numbers satisfying 0 ≤ ri ≤ 1 and∑
i ri = 1, coupled with a family (xi) of xi ∈ X, through ρ(a) =

∑
i riρxi

(a).
This state is faithful when (xi) comprise an orthonormal basis of X and each
ri > 0.

Taking Bohr’s doctrine of classical concepts seriously means accepting that
two operators can only be added in a meaningful way when they commute,
leading to the following notion [1, 37, 38, 165].

5.5.3 Definition A quasi-linear functional on a C*-algebra A is a map ρ : A→ C
that is linear on all commutative subalgebras and satisfies ρ(a+ib) = ρ(a)+iρ(b)
for all (possibly noncommuting) a, b ∈ Asa. It is called positive when ρ(A+) ⊆
A+, and it is called a quasi-state when furthermore ρ(1) = 1.

This kind of quasi-linearity determines when some property P of A descends
to a corresponding property P for the Bohrification A, as the following lemma
shows. To be precise, for P ⊆ A, define P ∈ Sub(A) by P (C) = P ∩ C. A
property P ⊆ A is called quasi-linear when a, b ∈ P ∩ Asa implies ra + isb ∈ P
for all r, s ∈ R.

5.5.4 Lemma Let A be a C*-algebra, and let P ⊆ A be a quasi-linear property.
Then P = A if and only if P = A.

PROOF One implication is trivial; for the other, suppose that P = A. For a ∈ A,
denote by C∗(a) the C*-subalgebra generated by a (and 1). When a is self-
adjoint, C∗(a) is commutative. So Asa ⊆ P , whence by quasi-linearity of P and
the unique decomposition of elements in a real and imaginary part, we have
A ⊆ P . �

173

Chapter 5. Bohrification

5.5.5 Definition An integral on a Riesz space R is a linear functional I : R→ R
that is positive, i.e. if f ≥ 0 then also I(f) ≥ 0. If R has a strong unit 1 (see
Definition 5.2.15), then an integral I satisfying I(1) = 1 is called a probability
integral. An integral I is faithful when I(f) = 0 and f ≥ 0 imply f = 0.

5.5.6 Example Except in the degenerate case I(1) = 0, any integral can obvi-
ously be normalised to a probability integral. The prime example of an integral is
the Riemann or Lebesgue integral on the ordered vector space C([0, 1],C). More
generally, any positive linear functional on a commutative C*-algebra provides
an example, states yielding probability integrals.

5.5.7 Definition Let R be a Riesz space. We now define the locale I(R) of prob-
ability integrals on R. First, let Int(R) be the distributive lattice freely generated
by symbols Pf for f ∈ R, subject to the relations

P1 = 1,

Pf ∧ P−f = 0,

Pf+g ≤ Pf ∨ Pg,
Pf = 0 (for f ≤ 0).

This lattice generates a frame O(I(R)) by furthermore imposing the regularity
condition

Pf =
∨
{Pf−q | q ∈ Q, q > 0}.

5.5.8 Classically, points p of I(R) correspond to probability integrals I on R,
by mapping I to the point pI given by pI(Pf) = 1 iff I(f) > 0. Conversely, a
point p defines an integral Ip = ({q ∈ Q | p |= Pf−q}, {r ∈ Q | p |= Pr−f}),
which is a Dedekind cut by the relations imposed on P(), as in Example 5.1.29.
Therefore, intuitively, Pf = {ρ : R→ R | ρ(f) > 0, ρ positive linear}.

Classically, for a locally compact Hausdorff space X, the Riesz-Markov the-
orem provides a duality between integrals on a Riesz space {f ∈ C(X,R) |
supp(f) compact} and regular measures on the Borel subsets of X. Construc-
tively, one uses so-called valuations, which are only defined on open subsets
of X, instead of measures. Theorem 5.5.13 below gives a constructively valid
version of the Riesz-Markov theorem. In preparation we consider a suitable
constructive version of measures.

5.5.9 Classically, points of the locale R of Example 5.1.29 are Dedekind cuts
(L,U) (and O(R) is the usual Euclidean topology). We now introduce two vari-
ations on the locale R. First, consider the locale Rl that is generated by formal

174

5.5. States and observables

symbols q ∈ Q subject to the following relations:

q ∧ r = min(q, r), q =
∨
{r | r > q}, 1 =

∨
{q | q ∈ Q}.

Classically, its points are lower reals, and locale morphisms to Rl correspond to
lower-semicontinuous real-valued functions. Restricting generators to 0 ≤ q ≤ 1
yields a locale denoted [0, 1]l.

5.5.10 Secondly, let IR be the locale defined by the very same generators (q, r)
and relations as in Example 5.1.29, except that we omit the fourth relation
(q, r) = (q, r1) ∨ (q1, r) for q ≤ q1 ≤ r1 ≤ r. The effect is that, classically,
points of IR again correspond to pairs (L,U) as in Example 5.1.29, except that
the lower real L and the upper real U need not combine into a Dedekind cut,
as the ‘kissing’ requirement is no longer in effect. Classically, a point (L,U) of
IR corresponds to a compact interval [sup(L), inf(U)] (including the singletons
[x, x] = {x}). Ordered by reverse inclusion, the topology they carry is the Scott
topology [3] whose closed sets are lower sets that are closed under directed joins.
Hence, each open interval (q, r) in R (with q = −∞ and r = ∞ allowed) corre-
sponds to a Scott open {[a, b] | q < a ≤ b < r} in IR, and these form the basis of
the Scott topology. Therefore, IR is also called the interval domain [172, 194].
One can think of it as approximations of real numbers by rational intervals, in-
terpreting each individual interval as finitary information about the real number
under scrutiny. The ordering by reverse inclusion is then explained as a smaller
interval means that more information is available about the real number.

In a Kripke topos [P,Set] over a poset P with a least element, one has
O(IR)(p) = O((↑p) × IR), which may be identified with the set of monotone
functions from ↑p to O(IR). This follows by carefully adapting the proof of
[164, Theorem VI.8.2].

5.5.11 Definition A continuous probability valuation on a locale X is a mono-
tone function µ : O(X)→ O([0, 1]l) such that µ(1) = 1 as well as µ(U) +µ(V) =
µ(U ∧V)+µ(U ∨V) and µ(

∨
i Ui) =

∨
i µ(Ui) for a directed family (Ui). Like in-

tegrals, continuous probability valuations organise themselves in a locale V(X).

5.5.12 Example If X is a compact Hausdorff space, a continuous probability
valuation on O(X) is the same thing as a regular probability measure on X.

5.5.13 Theorem [59] Let R be an f-algebra and Σ its spectrum. Then the lo-
cales I(R) and V(Σ) are isomorphic. A continuous probability valuation µ gives a
probability integral by

Iµ(f) = (sup
(si)

∑
siµ(Df−si ∧ Dsi+1−f), inf

(si)

∑
si+1(1− µ(Dsi−f)− µ(Df−si+1))),

175

Chapter 5. Bohrification

where (si) is a partition of [a, b] such that a ≤ f ≤ b. Conversely, a probability
integral I gives a continuous probability valuation

µI(Da) = sup{I(na+ ∧ 1) | n ∈ N}. �

5.5.14 Corollary For a C*-algebra A, the locale I(A) in T (A) of probability inte-
grals on Asa is isomorphic to the locale V(Σ(A)) in T (A) of continuous probability
valuations on Σ(A).

PROOF Interpret Theorem 5.5.13—whose proof is constructive—in T (A). �

5.5.15 Theorem There is a bijective correspondence between (faithful) quasi-states
on a C*-algebra A and (faithful) probability integrals on Asa.

PROOF Every quasi-state ρ gives a natural transformation Iρ : Asa → R whose
component (Iρ)C : Csa → R is the restriction ρ|Csa of ρ to Csa ⊆ Asa. Conversely,
let I : Asa → R be an integral. Define ρ : Asa → R by ρ(a) = IC∗(a)(a), where
C∗(a) is the sub-C*-algebra generated by a. For commuting a, b ∈ Asa, then

ρ(a+ b) = IC∗(a+b)(a+ b)

= IC∗(a,b)(a+ b)

= IC∗(a,b)(a) + IC∗(a,b)(b)

= IC∗(a)(a) + IC∗(b)(b)

= ρ(a) + ρ(b),

because I is a natural transformation, C∗(a) ∪ C∗(b) ⊆ C∗(a, b) ⊇ C∗(a + b),
and I is locally linear. Moreover, ρ is positive because I is locally positive, by
Lemma 5.5.4. Hence we have defined ρ on Asa and may extend it to A by
complex linearity. It is clear that the two maps I 7→ ρ and ρ 7→ I are each other’s
inverse. �

5.5.16 Let ρ be a (quasi-)state on a C*-algebraA. Then µρ is a continuous prob-
ability valuation onO(Σ(A)). Hence µρ() = 1 is a term of the internal language
of T (A) with one free variable of type O(Σ(A)). Its interpretation Jµρ() = 1K
defines a subobject of O(Σ(A)), or equivalently, a morphism [ρ] : O(Σ(A))→ Ω.
This transfers the classical description of states as described in Chapter 1 to the
quantum situation.

For Rickart C*-algebras, we can make Theorem 5.5.15 a bit more precise.

5.5.17 Definition (a) A probability measure on a countably complete ortho-
modular lattice X is a function µ : X → [0, 1]l that on any countably com-
plete Boolean sublattice of X restricts to a probability measure (in the tra-
ditional sense).

176

5.5. States and observables

(b) A probability valuation on an orthomodular lattice X is a function µ : X →
[0, 1]l such that µ(0) = 0, µ(1) = 1, µ(x) + µ(y) = µ(x ∧ y) + µ(x ∨ y), and
if x ≤ y then µ(x) ≤ µ(y).

5.5.18 Lemma Let µ be a probability valuation on a Boolean algebra X. Then
µ(x) is a Dedekind cut for any x ∈ X.

PROOF Since X is Boolean, we have µ(¬x) = 1−µ(x). Let q, r ∈ Q, and suppose
that q < r. We have to prove that q < µ(x) or µ(x) ≤ r. As the inequalities
concern rationals, it suffices to prove that q < µ(x) or 1− r < 1−µ(x) = µ(¬x).
This follows from 1 − (r − q) < 1 = µ(1) = µ(x ∨ ¬x) and q − r < 0 = µ(0) =
µ(x ∧ ¬x). �

The following theorem relates Definition 5.5.11 and Definition 5.5.17. Defi-
nition 5.5.11 will be applied to the Gelfand spectrum Σ(A) of the Bohrification
of a Rickart C*-algebra A. Part (a) of Definition 5.5.17 will be applied to Proj(A)
in Set for a Rickart C*-algebra A, and part (b) will be applied to the lattice PA
of Theorem 5.4.16 in T (A).

5.5.19 Theorem For a Rickart C*-algebra A, there is a bijective correspondence
between:

(a) quasi-states on A;

(b) probability measures on Proj(A);

(c) probability valuations on PA;

(d) continuous probability valuations on Σ(A).

PROOF The correspondence between (a) and (d) is Theorem 5.5.15. The cor-
respondence between (c) and (d) follows from Theorem 5.4.16 and the ob-
servation that valuations on a compact regular frame are determined by their
behaviour on a generating lattice [59, Section 3.3]; indeed, if a frame O(X) is
generated by L, then a probability measure µ on L yields a continuous probabil-
ity valuation ν on O(X) by ν(U) = sup{µ(u) | u ∈ U}, where U ⊆ L is regarded
as an element of O(X). Finally, we turn to the correspondence between (b) and
(c). Since R in T (A) is the constant functor C 7→ R (as opposed to Rl), accord-
ing to the previous lemma a probability valuation µ : Idl(Proj(A)) → [0, 1]l is
defined by its components µC : Proj(C) → [0, 1]. By naturality, for p ∈ Proj(C),
the real number µC(p) is independent of C, from which the correspondence
between (b) and (c) follows immediately. �

177

Chapter 5. Bohrification

5.5.20 We now turn to internalising an elementary proposition a ∈ (q, r) con-
cerning an observable a ∈ Asa and rationals q, r ∈ Q with q < r. If A were
commutative, then a would have a Gelfand transform â : Σ(A) → R, and we
could just internalise â−1(q, r) ⊆ Σ(A) directly. For noncommutative A, there
can be contexts C ∈ C(A) that do not contain a, and therefore the best we can
do is approximate. Our strategy is to replace the reals R by the interval domain
IR of 5.5.10. We will construct a locale morphism δ(a) : Σ(A) → IR, called
the Daseinisation of a ∈ Asa—this terminology stems from [75], but the mor-
phism is quite different from the implementation in that article. The elementary
proposition a ∈ (q, r) is then internalised as the composite morphism

1
(q,r)

//O(IR)
δ(a)−1

//O(Σ(A)),

where (q, r) maps into the monotone function with constant value ↓(q, r). (As
in 5.5.10, (q, r) is seen as an element of the generating semilattice, whereas
↓(q, r) is its image in the frame O(IR) under the canonical inclusion of Proposi-
tion 5.1.11.)

5.5.21 The interval domain O(IR) of 5.5.10 can be constructed as F(Q ×<
Q,J), as in Definition 5.1.10 [172]. The pertinent meet-semilattice Q ×< Q
consists of pairs (q, r) ∈ Q × Q with q < r, ordered by inclusion (i.e. (q, r) ≤
(q′, r′) iff q′ ≤ q and r ≤ r′), with a least element 0 added. The covering
relation J is defined by 0JU for all U , and (q, r)JU iff for all rational q′, r′

with q < q′ < r′ < r there exists (q′′, r′′) ∈ U with (q′, r′) ≤ (q′′, r′′). In
particular, we may regard O(IR) as a subobject of Q×< Q. As in 5.3.13:

O(IR)(C) ∼= {F ∈ Sub(Q×< Q) | ∀C∈C(A).F (C) ∈ O(IR)}.

5.5.22 Lemma For a C*-algebra A and a fixed element a ∈ Asa, the components
d(a)C : Q×< Q→ Sub(LA|↑C) given by

d(a)∗C(q, r)(D) = {Df−q ∧ Dr−g | f, g ∈ Dsa, f ≤ a ≤ g}
d(a)∗C(0)(D) = {D0}

form a morphism d(a)∗ : Q×< Q→ ΩLA in T (A) via 5.3.13. This morphism is a
continuous map (LA,C)→ (Q×< Q,J) in the sense of Definition 5.1.12.

Notice that since Q×< Q(C) = Q×< Q for any C ∈ C(A), the natural transfor-
mation d(a) is completely determined by its component at C ∈ C(A).

PROOF We verify that the map defined in the statement satisfies the conditions
of Definition 5.1.12.

178

5.5. States and observables

(a) We have to show that ∀Da∈LA
∃(q,r)∈Q×<Q.Da ∈ d(a)∗(q, r). By interpreting

via 5.1.20, we therefore have to prove: for all C ∈ C(A) and Dc ∈ LC there
are (q, r) ∈ Q×<Q and f, g ∈ Csa such that f ≤ a ≤ g and Dc = Df−q∧Dr−g.
Equivalently, we have to find (q, r) ∈ Q ×< Q and f, g ∈ Csa such that
f+q ≤ a ≤ r+g and Dc = Df ∧D−g. Choosing f = c, g = −c, q = −‖c‖−‖a‖
and r = ‖c‖+ ‖a‖ does the job, since Dc = Dc ∧ Dc and

f + q = c− ‖c‖ − ‖a‖ ≤ −‖a‖ ≤ a ≤ ‖a‖ ≤ ‖c‖+ ‖a‖ − c = r + g.

(b) We have to show that

 ∀(q,r),(q′,r′)∈Q×<Q∀u,v∈LA
.u ∈ d(a)∗(q, r) ∧ v ∈ d(a)∗(q′, r′)

⇒ u ∧ vC d(a)∗((q, r) ∧ (q′, r′)).

Going through the motions of 5.1.20, that means we have to prove: for all
(q, r), (q′, r′) ∈ Q ×< Q, C ⊆ D ∈ C(A) and f, f ′, g, g′ ∈ Csa, if (q′′, r′′) =
(q, r) ∧ (q′, r′) 6= 0, f ≤ a ≤ g and f ′ ≤ a ≤ g′, then

Df−q ∧ Dr−g ∧ Df ′−q′ ∧ Dr′−g′
C{Df ′′−q′′ ∧ Dr′′−g′′ | f ′′, g′′ ∈ Dsa, f

′′ ≤ a ≤ g′′}.

We distinguish the possible cases of (q′′, r′′) (which distinction is construc-
tively valid since it concerns rationals). For example, if (q′′, r′′) = (q, r′),
then q ≤ q′ ≤ r ≤ r′. So Df−q ∧ Dr′−g′ = Df ′′−q′′ ∧ Dr′′−g′′ for f ′′ = f ,
g′′ = g′, q′′ = q and r′′ = r′, whence the statement holds by (a) and (c) of
Definition 5.1.8. The other cases are analogous.

(c) We have to show that

 ∀(q,r)∈Q×<Q∀U∈P(Q×<Q).(q, r)JU ⇒ d(a)∗(q, r)C
⋃

(q′,r′)∈U

d(a)∗(q′, r′).

By 5.1.20, we therefore have to prove: for all (q, r) ∈ Q ×< Q, U ⊆ U ′ ⊆
Q×< Q, D ∈ C(A) and f, g ∈ Dsa, if (q, r)JU and f ≤ a ≤ g, then

Df−q ∧ Dr−g C{Df ′−q′ ∧ Dr′−g′ | (q′, r′) ∈ U ′, f ′, g′ ∈ Dsa, f
′ ≤ a ≤ g′}.

To establish this, it suffices to show Df−q∧Dr−g C{Df−q′∧Dr′−g | (q′, r′) ∈ U}
when (q, r)JU . Let s ∈ Q satisfy 0 < s. Then one has (q, r − s) < (q, r).
Since (q, r)JU , 5.5.21 yields a (q′′, r′′) ∈ U such that (q, r − s) ≤ (q′′, r′′),
and so r − s ≤ r′′. Taking U0 = {(q′′, r′′)}, one has r − g − s ≤ r′′ −
g and therefore Dr−g−s ≤ Dr′′−g =

∨
U0. So, by Corollary 5.3.14, we

179

Chapter 5. Bohrification

have Dr−g C{Dr′−g | (q′, r′) ∈ U}. Similarly, one finds Df−q C{Df−q′ |
(q′, r′) ∈ U}. Finally, Df−q ∧ Dr−g C{Df−q′ ∧ Dr′−g | (q′, r′) ∈ U} by Def-
inition 5.1.8(d). �

5.5.23 Definition Let A be a C*-algebra. The Daseinisation of a ∈ Asa is the
locale morphism δ(a) : Σ(A)→ IR, whose associated frame morphism δ(a)−1 is
given by F(d(a)∗), where F is the functor of Proposition 5.1.13, and d(a) comes
from Lemma 5.5.22.

5.5.24 Example The locale Σ(A) is described externally by its value at C ∈
C(A), see Theorem 5.3.16. The component at C of the Daseinisation δ(a) is
given by

δ(a)−1
C (q, r)(C) = {Df−q ∧ Dr−g | f, g ∈ Csa, f ≤ a ≤ g}.

Now suppose that A is commutative. Then, classically, Da = {ρ ∈ Σ(A) | ρ(a) >
0} as in 5.2.10. Hence Df−r = {ρ ∈ Σ(A) | ρ(f) > r}, so that

δ(a)−1
C (q, r)(C) =

⋃
f,g∈Csa
f≤a≤g

{ρ ∈ Σ(A) | ρ(f) > q and ρ(g) < r}

= {ρ ∈ Σ(A) | ∃f≤a.q < ρ(f) < r and ∃g≥a.q < ρ(g) < r}
= {ρ ∈ Σ(A) | q < ρ(a) < r}
= â−1(q, r).

5.5.25 Proposition The map δ : Asa → C(Σ(A), IR) is injective. Moreover a ≤ b

if and only if δ(a) ≤ δ(b).

PROOF Suppose that δ(a) = δ(b). Then for all C ∈ C(A), the sets La(C) =
{f ∈ Csa | f ≤ a} and Ua(C) = {g ∈ Csa | a ≤ g} must coincide with Lb(C)
and Ub(C), respectively. Imposing these equalities at C = C∗(a) and at C =
C∗(b) yields a = b. The order in Asa is clearly preserved by δ, whereas the
converse implication can be shown by the same method as the first claim of the
proposition. �

180

Bibliography

[1] Johan F. Aarnes. Quasi-states on C*-algebras. Transactions of the American Math-
ematical Society, 149:601–625, 1970.

[2] Samson Abramsky and Bob Coecke. A categorical semantics of quantum protocols.
In Logic in Computer Science 19, pages 415–425. IEEE Computer Society, 2004.

[3] Samson Abramsky and Achim Jung. Domain theory. In Handbook of Logic in
Computer Science Volume 3, pages 1–168. Oxford University Press, 1994.

[4] Samson Abramsky and Duško Pavlović. Specifying processes. In Proceedings of the
International Symposium on Category Theory In Computer Science, volume 1290 of
Springer Lecture Notes in Computer Science, pages 147–158. Springer, 1997.

[5] Samsom Abransky and Steven Vickers. Quantales, observational logic and process
semantics. Mathematical Structures in Computer Science, 3:161–227, 1993.

[6] Peter Aczel. Aspects of general topology in constructive set theory. Annals of Pure
and Applied Logic, 137:3–29, 2006.

[7] Ichiro Amemiya and Huzihiro Araki. A remark on Piron’s paper. Publications of the
Research Institute for Mathematical Sciences A, 2(3):423–427, 1966.

[8] Frank W. Anderson and Kent R. Fuller. Rings and categories of modules. Springer,
1974.

[9] Robert B. Ash. Abstract Algebra: the basic graduate year. Published online at
http://www.math.uiuc.edu/∼r-ash, 2000.

[10] Jean-Pierre Aubin. Applied Functional Analysis. Wiley Interscience, 2nd edition,
2000.

[11] John C. Baez. Higher-dimensional algebra II: 2-Hilbert spaces. Advances in Math-
ematics, 127:125–189, 1997.

[12] John C. Baez and James Dolan. Higher-dimensional algebra and topological quan-
tum field theory. Journal of Mathematical Physics, 36(11):6073–6105, 1995.

[13] John C. Baez and James Dolan. Higher-dimensional algebra III: n-categories and
the algebra of opetopes. Advances in Mathematics, 135(145–206), 1998.

181

http://www.math.uiuc.edu/~r-ash

Bibliography

[14] Alexandru Baltag and Sonja Smets. LQP: The dynamic logic of quantum informa-
tion. Mathematical Structures in Computer Science, 16(3):491–525, 2006.

[15] Alexandru Baltag and Sonja Smets. A dynamic-logical perspective on quantum
behavior. Studia Logica, 89:185–209, 2008.

[16] Bernhard Banaschewski and Christopher J. Mulvey. The spectral theory of commu-
tative C*-algebras: the constructive Gelfand-Mazur theorem. Quaestiones Mathe-
maticae, 23(4):465–488, 2000.

[17] Bernhard Banaschewski and Christopher J. Mulvey. The spectral theory of com-
mutative C*-algebras: the constructive spectrum. Quaestiones Mathematicae,
23(4):425–464, 2000.

[18] Bernhard Banaschewski and Christopher J. Mulvey. A globalisation of the Gelfand
duality theorem. Annals of Pure and Applied Logic, 137:62–103, 2006.

[19] Michael Barr. Exact categories. In Exact Categories and Categories of Sheaves,
number 236 in Lecture Notes in Mathematics, pages 1–120. Springer, 1971.

[20] Michael Barr. *-autonomous categories, volume 752 of Lecture Notes in Mathemat-
ics. Springer, 1979.

[21] Michael Barr. Algebraically compact functors. Journal of Pure and Applied Algebra,
82:211–231, 1992.

[22] Michael Barr. *-autonomous categories: once more around the track. Theory and
Applications of Categories, 6:5–24, 1999.

[23] Michael Barr and Charles Wells. Toposes, Triples and Theories. Springer, 1985.

[24] Giulia Battilotti and Giovanni Sambin. Pretopologies and uniform presentation of
sup-lattices, quantales and frames. Annals of Pure and Applied Logic, 137:30–61,
2006.

[25] John L. Bell. Toposes and Local Set Theories. An Introduction. Number 14 in Oxford
Logic Guides. Oxford University Press, 1988.

[26] Jean Bénabou. Introduction to bicategories. In Reports of the Midwest Category
Seminar, volume 47 of Lecture Notes in Mathematics, pages 1–77. Springer, 1967.

[27] Charles H. Bennett and Giles Brassard. Quantum cryptography: Public key dis-
tribution and coin tossing. In Computers, Systems and Signal Processing, pages
175–179. IEEE Computer Society, 1984.

[28] Sterling K. Berberian. Baer *-rings. Springer, 1972.

[29] Garrett Birkhoff. Lattice Theory. American Mathematical Society, 1948.

[30] Garrett Birkhoff and John von Neumann. The logic of quantum mechanics. Annals
of Mathematics, 37:823–843, 1936.

[31] Bruce Blackadar. Projections in C*-algebras. In C*-algebras: a fifty year celebration
1943–1993, pages 131–149. Providence, 1993.

182

Bibliography

[32] Niels Bohr. Discussion with Einstein on epistemological problems in atomic
physics. In Albert Einstein: Philosopher-Scientist, pages 201–241. La Salle: Open
Court, 1949.

[33] Francis Borceux. Handbook of Categorical Algebra 1: Basic Category Theory. En-
cyclopedia of Mathematics and its Applications 50. Cambridge University Press,
1994.

[34] Francis Borceux. Handbook of Categorical Algebra 2: Categories and Structures.
Encyclopedia of Mathematics and its Applications 51. Cambridge University Press,
1994.

[35] Francis Borceux. Handbook of Categorical Algebra 3: Categories of Sheaves. En-
cyclopedia of Mathematics and its Applications 52. Cambridge University Press,
1994.

[36] Günter Bruns and Harry Lakser. Injective hulls of semilattices. Canadian Mathe-
matical Bulletin, 13:115–118, 1970.

[37] Leslie J. Bunce and J. D. Maitland Wright. The Mackey-Gleason problem for vector
measures on projections in von Neumann algebras. Journal of the London Mathe-
matical Society 2, 49(1):133–149, 1994.

[38] Leslie J. Bunce and J. D. Maitland Wright. The quasi-linearity problem for C*-
algebras. Pacific Journal of Mathematics, 172(1):41–47, 1996.

[39] Jeremy Butterfield, John Hamilton, and Christopher J. Isham. A topos perspective
on the Kochen-Specker theorem: III. Von Neumann algebras as the base category.
International Journal of Theoretical Physics, 39(6):1413–1436, 2000.

[40] Jeremy Butterfield and Christopher J. Isham. A topos perspective on the Kochen-
Specker theorem: I. Quantum states as generalized valuations. International Jour-
nal of Theoretical Physics, 37(11):2669–2733, 1998.

[41] Jeremy Butterfield and Christopher J. Isham. A topos perspective on the Kochen-
Specker theorem: II. Conceptual aspects and classical analogues. International
Journal of Theoretical Physics, 38(3):827–859, 1999.

[42] Jeremy Butterfield and Christopher J. Isham. A topos perspective on the Kochen-
Specker theorem: IV. Interval valuations. International Journal of Theoretical
Physics, 41(4):613–639, 2002.

[43] Carsten Butz. Regular categories and regular logic. BRICS Lecture Series LS-98-2,
1998.

[44] Aurelio Carboni, Stefano Kasangian, and Ross Street. Bicategories of spans and
relations. Journal of Pure and Applied Algebra, 33:259–267, 1984.

[45] Martijn Caspers, Chris Heunen, Nicolaas P. Landsman, and Bas Spitters. Intuition-
istic quantum logic of an n-level system. Foundations of Physics, 39(7):731–759,
2009.

183

Bibliography

[46] Jan Cederquist and Thierry Coquand. Entailment relations and distributive lat-
tices. In Logic Colloquium ’98 (Prague), volume 13 of Lecture Notes in Logic, pages
127–139. Association for Symbolic Logic, 2000.

[47] Chen C. Chang and H. Jerome Keisler. Model Theory. North-Holland, third edition,
1990.

[48] Bob Coecke. Quantum logic in intuitionistic perspective. Studia Logica, 70:411–
440, 2002.

[49] Bob Coecke and Ross Duncan. Interacting quantum observables. In International
Colloquium on Automata, Languages and Programming, volume 5126 of Lecture
Notes in Computer Science, pages 298–310. Springer, 2008.

[50] Bob Coecke and Éric O. Paquette. POVMs and Naimark’s theorem without sums.
In Quantum Programming Languages, volume 210 of Electronic Notes in Theoretical
Computer Science, pages 15–31. Elsevier, 2006.

[51] Bob Coecke, Éric O. Paquette, and Simon Perdrix. Bases in diagrammatic quantum
protocols. In Mathematical Foundations of Programming Semantics 24, volume 218
of Electronic Notes in Theoretical Computer Science, pages 131–152. Elsevier, 2008.

[52] Bob Coecke and Duško Pavlović. Quantum measurements without sums. In Math-
ematics of Quantum Computing and Technology. Taylor and Francis, 2007.

[53] Bob Coecke, Duško Pavlović, and Jamie Vicary. A new description of orthogonal
bases. Mathematical Structures in Computer Science, 2009.

[54] Bob Coecke and Sonja Smets. The Sasaki hook is not a [static] implicative con-
nective but induces a backward [in time] dynamic one that assigns causes. Inter-
national Journal of Theoretical Physics, 43:1705–1736, 2004.

[55] Paul M. Cohn. Skew fields. Encyclopedia of Mathematics and its Applications 57.
Cambridge University Press, 1995.

[56] Alain Connes. Noncommutative Geometry. Academic Press, 1994.

[57] Thierry Coquand. About Stone’s notion of spectrum. Journal of Pure and Applied
Algebra, 197:141–158, 2005.

[58] Thierry Coquand and Bas Spitters. Constructive Gelfand duality for C*-algebras.
Mathematical Proceedings of the Cambridge Philosophical Society, 2009. To appear.

[59] Thierry Coquand and Bas Spitters. Integrals and valuations. Journal of Logic and
Analysis, 1(3):1–22, 2009.

[60] Thiery Coquand and Bas Spitters. Formal topology and constructive mathemat-
ics: the Gelfand and Stone-Yosida representation theorems. Journal of Universal
Computer Science, 11(12):1932–1944, 2005.

[61] Joachim Cuntz. The structure of multiplication and addition in simple C*-algebras.
Mathematica Scandinavica, 40:215–233, 1977.

184

Bibliography

[62] Maria L. Dalla Chiara and Roberto Giuntini. Quantum logics. In Handbook of
Philosophical Logic, volume VI, pages 129–228. Kluwer, 2002.

[63] Maria L. Dalla Chiara, Roberto Giuntini, and Richard Greechie. Reasoning in quan-
tum theory: sharp and unsharp quantum logics. Springer, 2004.

[64] Brian A. Davey and Hilary A. Priestley. Introduction to Lattices and Order. Cam-
bridge University Press, second edition, 2002.

[65] Brian J. Day. Note on compact closed categories. Journal of the Australian Mathe-
matical Society, Series A 24(3):309–311, 1977.

[66] Luminiţa (V̂ıţǎ) Dediu and Douglas Bridges. Embedding a linear subset of B(H) in
the dual of its predual. In Reuniting the Antipodes—Constructive and Nonstandard
Views of the Continuum, pages 55–61. Kluwer, 2001.

[67] Pierre Deligne. Catégories tannakiennes. In The Grothendieck Festschrift, volume 2,
pages 111–195. Birkhauser, 1990.

[68] Ellie D’Hondt and Prakash Panangaden. Quantum weakest preconditions. Mathe-
matical Structures in Computer Science, 16(3):429–451, 2006.

[69] Dennis Dieks. Communication by EPR devices. Physics Letters A, 92(6):271–272,
1982.

[70] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT-22(6):644–654, 1976.

[71] Jacques Dixmier. C*-algebras. North-Holland, 1977.

[72] Sergio Doplicher and John E. Roberts. A new duality theory for compact groups.
Inventiones Mathematicae, 98:157–218, 1989.

[73] Robert S. Doran and Victor A. Belfi. Characterizations of C*-algebras: the Gelfand-
Naimark theorems. Number 101 in Pure and Applied Mathematics. Marcel Dekker,
Inc., 1986.

[74] Andreas Döring. Kochen-Specker theorem for Von Neumann algebras. Interna-
tional Journal of Theoretical Physics, 44(2):139–160, 2005.

[75] Andreas Döring and Christopher J. Isham. A topos foundation for theories of
physics. I–IV. Journal of Mathematical Physics, 49:053515–053518, 2008.

[76] Andreas Döring and Christopher J. Isham. ‘What is a thing?’: Topos theory in the
foundations of physics. In New Structures for Physics, Lecture Notes in Physics.
Springer, 2009.

[77] Ross Duncan. Types for Quantum Computing. PhD thesis, Oxford University Com-
puter Laboratory, 2006.

[78] Beno Eckmann and Peter Hilton. Group-like structures in categories. Mathematis-
che Annalen, 145:227–255, 1962.

185

Bibliography

[79] Albert Einstein, Boris Podolsky, and Nathan Rosen. Can quantum-mechanical de-
scription of physical reality be considered complete? Physical Review, 47:777–780,
1935.

[80] Artur K. Ekert. Quantum cryptography based on Bell’s theorem. Physical Review
Letters, 67(6):661–663, August 1991.

[81] Ryszard Engelking. General Topology. Taylor & Francis, 1977.

[82] Peter D. Finch. Quantum logic as an implication algebra. Bulletin of the American
Mathematical Society, 11:648–654, 1960.

[83] Peter D. Finch. On the structure of quantum logic. Journal of Symbolic Logic,
34(2):275–282, 1969.

[84] Marcelo P. Fiore. Differential structure in models of multiplicative biadditive in-
tuitionistic linear logic. In Typed Lambda Calculi and Applications, volume 4583 of
Lecture Notes in Computer Science, pages 163–177. Springer, 2007.

[85] Michael P. Fourman and Robin J. Grayson. Formal spaces. In The L. E. J. Brouwer
Centenary Symposium, number 110 in Studies in Logic and the Foundations of
Mathematics, pages 107–122. North-Holland, 1982.

[86] Michael P. Fourman and Andre Ščedrov. The “world’s simplest axiom of choice”
fails. Manuscripta mathematica, 38(3):325–332, 1982.

[87] Thomas Fox. Coalgebras and cartesian categories. Communications in Algebra,
4(7):665–667, 1976.

[88] Peter Freyd. Abelian Categories: An introduction to the theory of functor. Harper
and Row, 1964.

[89] Peter Freyd and Max Kelly. Categories of continuous functors I. Journal of Pure
and Applied Algebra, 2, 1972.

[90] William Fulton. Young tableaux. Cambridge University Press, 1997.

[91] Isräıl M. Gelfand. Normierte Ringe. Matematicheskii Sbornik, 9(51):3–24, 1941.

[92] Isräıl M. Gelfand and Mark A. Naimark. On the imbedding of normed rings into
the ring of operators on a Hilbert space. Matematicheskii Sbornik, 12:3–20, 1943.

[93] Paul Ghez, Ricardo Lima, and John E. Roberts. w∗-categories. Pacific Journal of
Mathematics, 120:79–109, 1985.

[94] Jonathan S. Golan. Semirings and their applications. Kluwer, 1999.

[95] Robert Goldblatt. Topoi. The categorical analysis of logic. North-Holland, 1984.

[96] William H. Graves and Steve A. Selesnick. An extension of the Stone representa-
tion for orthomodular lattices. Colloquium Mathematicum, 27:21–30, 1973.

[97] Phillip Griffiths and Joseph Harris. Principles of Algebraic Geometry. Wiley, 1994.

186

Bibliography

[98] Pierre A. Grillet. Abstract Algebra. Number 242 in Graduate Texts in Mathematics.
Springer, second edition, 2007.

[99] Alexandre Grothendieck. Catégories fibrées et descente (Exposé VI). In Revêtement
Etales et Groupe Fondamental (SGA 1), number 224 in Lecture Notes in Mathemat-
ics, pages 145–194. Springer, 1970.

[100] Jack Gunson. On the algebraic structure of quantum mechanics. Communications
in Mathematical Physics, 6:262–285, 1967.

[101] Rudolf Haag. Local quantum physics. Texts and Monographs in Physics. Springer,
second edition, 1996. Fields, particles, algebras.

[102] Esfandiar Haghverdi and Phil Scott. A categorical model for the geometry of in-
teraction. Theoretical Computer Science, 350:252–274, 2006.

[103] Phùng Hô Hài. An embedding theorem for Abelian monoidal categories. Compo-
sitio Mathematica, 132:27–48, 2002.

[104] Paul Halmos. A Hilbert space problem book. Springer, 2nd edition, 1982.

[105] Hans Halvorson and Michael Müger. Algebraic quantum field theory. In Handbook
of the Philosophy of Physics, pages 731–922. North Holland, 2007.

[106] Jan Hamhalter. Traces, dispersions of states and hidden variables. Foundations of
Physics Letters, 17(6):581–597, 2004.

[107] John Harding. A link between quantum logic and categorical quantum mechanics.
International Journal of Theoretical Physics, 2008.

[108] Masahito Hasegawa, Martin Hofmann, and Gordan Plotkin. Finite dimensional
vector spaces are complete for traced symmetric monoidal categories. In Pillars
of Computer Science, number 4800 in Lecture Notes in Computer Science, pages
367–385. Springer, 2008.

[109] Ichiro Hasuo, Chris Heunen, Bart Jacobs, and Ana Sokolova. Coalgebraic com-
ponents in a many-sorted microcosm. In Conference on Algebra and Coalgebra in
Computer Science, Lecture Notes in Computer Science. Springer, 2009. To appear.

[110] Carsten Held. The meaning of complementarity. Studies in History and Philosophy
of Science Part A, 25:871–893, 1994.

[111] Claudio Hermida. A categorical outlook on relational modalities and simulations.
Information and Computation, to appear, 2009.

[112] Chris Heunen. Compactly accessible categories and quantum key distribution.
Logical Methods in Computer Science, 4(4), 2008.

[113] Chris Heunen. Semimodule enrichment. In Mathematical Foundations of Program-
ming Semantics 24, volume 218 of Electronic Notes in Theoretical Computer Science,
pages 193–208. Elsevier, 2008.

[114] Chris Heunen. An embedding theorem for Hilbert categories. Theory and Applica-
tions of Categories, 22(13):321–344, 2009.

187

Bibliography

[115] Chris Heunen and Bart Jacobs. Arrows, like monads, are monoids. In Mathemat-
ical Foundations of Programming Semantics 22, volume 158 of Electronic Notes in
Theoretical Computer Science, pages 219–236. Elsevier, 2006.

[116] Chris Heunen and Bart Jacobs. Quantum logic in dagger kernel categories. In
Quantum Physics and Logic, Electronic Notes in Theoretical Computer Science,
2009.

[117] Chris Heunen, Nicolaas P. Landsman, and Bas Spitters. The principle of general
tovariance. In International Fall Workshop on Geometry and Physics XVI, volume
1023 of AIP Conference Proceedings, pages 93–102. American Institute of Physics,
2008.

[118] Chris Heunen, Nicolaas P. Landsman, and Bas Spitters. Bohrification of operator
algebras and quantum logic. under consideration for Synthese, 2009.

[119] Chris Heunen, Nicolaas P. Landsman, and Bas Spitters. A topos for algebraic
quantum theory. Communications in Mathematical Physics, 291:63–110, 2009.

[120] Karl H. Hofmann. The Duality of Compact Semigroups and C*-Bigebras, volume
129 of Lecture Notes in Mathematics. Springer, 1970.

[121] John Isbell. Some remarks concerning categories and subspaces. Canadian Journal
of Mathematics, 9:563–577, 1957.

[122] Christopher J. Isham. Topos theory and consistent histories: The internal logic
of the set of all consistent sets. International Journal of Theoretical Physics,
36(4):785–814, 1997.

[123] Christopher J. Isham. A topos perspective on state-vector reduction. International
Journal of Theoretical Physics, 45(8):1524–1551, 2006.

[124] Bart Jacobs. Semantics of weakening and contraction. Annals of Pure and Applied
Logic, 69:73–106, 1994.

[125] Bart Jacobs. Categorical Logic and Type Theory. Number 141 in Studies in Logic
and the Foundations of Mathematics. North Holland, 1999.

[126] Bart Jacobs, Chris Heunen, and Ichiro Hasuo. Categorical semantics for arrows.
Journal of Functional Programming, 19(3–4):403–438, 2009.

[127] Nathan Jacobson. Lectures in Abstract Algebra, volume II: Linear Algebra. Van
Nostrand, Princeton, 1953.

[128] Melvin F. Janowitz. Quantifiers and orthomodular lattices. Pacific Journal of Math-
ematics, 13:1241–1249, 1963.

[129] Josef M. Jauch. Foundations of quantum mechanics. Addison-Wesley, 1968.

[130] Peter T. Johnstone. Stone spaces. Number 3 in Cambridge studies in advanced
mathematics. Cambridge University Press, 1982.

[131] Peter T. Johnstone. Sketches of an elephant: A topos theory compendium. Oxford
University Press, 2002.

188

Bibliography

[132] André Joyal and Ross Street. An introduction to Tannaka duality and quantum
groups. In Category Theory, Part II, volume 1488 of Lecture Notes in Mathematics,
pages 411–492. Springer, 1991.

[133] André Joyal and Ross Street. Braided tensor categories. Advances in Mathematics,
102:20–78, 1993.

[134] André Joyal and Miles Tierney. An extension of the Galois theory of Grothendieck.
Memoirs of the American Mathematical Society, 51(309), 1983.

[135] Richard V. Kadison and John R. Ringrose. Fundamentals of the theory of operator
algebras. Academic Press, 1983.

[136] Gudrun Kalmbach. Orthomodular Lattices. Academic Press, 1983.

[137] Gudrun Kalmbach. Measures and Hilbert lattices. World Scientific, 1986.

[138] Irving Kaplansky. Rings of operators. W. A. Benjamin, 1968.

[139] Mikhail Kapranov and Vladimir Voevodsky. 2-categories and Zamolodchikov tetra-
hedra equations. In Proceedings of Symposia in Pure Mathematics. Algebraic groups
and their generalizations: quantum and infinite-dimensional methods, volume 56,
pages 177–259. American Mathematical Society, 1994.

[140] G. Max Kelly. Many variable functorial calculus (I). In Coherence in Categories,
volume 281 of Lectures Notes in Mathematics, pages 66–105. Springer, 1970.

[141] G. Max Kelly. Basic Concepts of Enriched Category Theory. Cambridge University
Press, 1982.

[142] G. Max Kelly and Miguel L. Laplaza. Coherence for compact closed categories.
Journal of Pure and Applied Algebra, 19:193–213, 1980.

[143] Simon Kochen and Ernst Specker. The problem of hidden variables in quantum
mechanics. Journal of Mathematics and Mechanics, 17:59–87, 1967.

[144] Anders Kock. Monads in symmetric monoidal closed categories. Archiv der Math-
ematik, 21(1–10), 1970.

[145] Anders Kock. Strong functors and monoidal monads. Archiv der Mathematik,
23:113–120, 1972.

[146] Anders Kock and Gonzalo E. Reyes. Doctrines in categorical logic. In Handbook of
Mathematical Logic, pages 283–313. North-Holland, 1977.

[147] Joachim Kock. Frobenius algebras and 2-D Topological Quantum Field Theories.
Number 59 in London Mathematical Society Student Texts. Cambridge University
Press, 2003.

[148] Pavel S. Kolesnikov. Different definitions of algebraically closed skew fields. Alge-
bra and Logic, 40(4):219–230, 2001.

[149] Mark G. Krein. A principle of duality for a bicompact group and square block
algebra. Doklady Akademii Nauk SSSR, 69:725–728, 1949.

189

Bibliography

[150] Pekka. J. Lahti. Uncertainty and complementarity in axiomatic quantum mechan-
ics. International Journal of Theoretical Physics, 19:789–842, 1980.

[151] Joachim Lambek and Phil Scott. Introduction to higher order categorical logic.
Cambridge University Press, 1986.

[152] E. Christopher Lance. Hilbert C*-modules. Number 210 in London Mathematical
Society Lecture Note Series. Cambridge University Press, 1995.

[153] Nicolaas P. Landsman. Mathematical topics between classical and quantum mechan-
ics. Springer, 1998.

[154] F. William Lawvere. Functorial semantics of algebraic theories. Proceedings of the
National Academy of Sciences, 50:869–872, 1963.

[155] F. William Lawvere. Metric spaces, generalized logic, and closed categories. Ren-
diconti del Seminario Matematico e Fisico di Milano, 43:135–166, 1973. Reprint in
Theory and Applications of Categories 1:1–37, 2002.

[156] Daniel Lehmann. A presentation of quantum logic based on an and then connec-
tive. Journal of Logic and Computation, 18:59–76, 2008.

[157] Tom Leinster. Higher Operads, Higher Categories. Number 298 in London Mathe-
matical Society Lecture Note Series. Cambridge University Press, 2004.

[158] Harald Lindner. Adjunctions in monoidal categories. Manuscripta Mathematica,
26:123–139, 1978.

[159] Saul Lubkin. Imbedding of Abelian categories. Transactions of the American Math-
ematical Society, 97:410–417, 1960.

[160] Wilhelmus A. J. Luxemburg. and Adriaan C. Zaanen. Riesz spaces. I. North-
Holland, 1971.

[161] Saunders Mac Lane. Duality for groups. Bulletin of the American Mathematical
Society, 56(6):485–516, 1950.

[162] Saunders Mac Lane. An algebra of additive relations. Proceedings of the National
Academy of Sciences, 47:1043–1051, 1961.

[163] Saunders Mac Lane. Categories for the Working Mathematician. Springer, 2nd
edition, 1971.

[164] Saunders Mac Lane and Ieke Moerdijk. Sheaves in Geometry and Logic. Springer,
1992.

[165] George W. Mackey. Mathematical foundations of quantum mechanics. W. A. Ben-
jamin, 1963.

[166] George W. Mackey. The theory of unitary group representations. Chicago Lectures
in Mathematics. The University of Chicago Press, 1976.

[167] Leonid Makar-Limanov. Algebraically closed skew fields. Journal of Algebra,
93:117–135, 1985.

190

Bibliography

[168] Michael Makkai and Gonzalo E. Reyes. First Order Categorical Logic. Number 611
in Lecture Notes in Mathematics. Springer, 1977.

[169] Ernest G. Manes. Algebraic Theories. Springer, 1976.

[170] Barry Mitchell. Theory of Categories. Academic Press, 1965.

[171] Roberta B. Mura and Akbar Rhemtulla. Orderable groups. Number 27 in Lecture
Notes in Pure and Applied Mathematics. New York: Marcel Dekker, 1977.

[172] Sara Negri. Continuous domains as formal spaces. Mathematical Structures in
Computer Science, 12(1):19–52, 2002.

[173] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[174] Paul H. Palmquist. Adjoint functors induced by adjoint linear transformations.
Proceedings of the American Mathematical Society, 44(2):251–254, 1974.

[175] Jan Paseka. Hilbert Q-modules and nuclear ideals. In Proceedings of the Eighth
Conference on Category Theory and Computer Science, volume 129 of Electronic
Notes in Theoretical Computer Science, pages 1–19, 1999.

[176] Zoran Petric. Coherence in substructural categories. Studia Logica, 70(2):271–
296, 2002.

[177] Constantin Piron. Foundations of quantum physics. Number 19 in Mathematical
Physics Monographs. W.A. Benjamin, 1976.

[178] Lew Pontrjagin. Über stetige algebraischer körper. Annals of Mathematics, 33:163–
174, 1932.

[179] Dieter Puppe. Korrespondenzen in abelschen Kategorien. Mathematische Annalen,
148:1–30, 1962.

[180] Miklós Rédei. Quantum Logic in Algebraic Approach. Kluwer, 1998.

[181] Michael Reed and Barry Simon. Methods of Modern Mathematical Physics, Vol I:
Functional Analysis. Academic Press, 1972.

[182] Charles E. Rickart. General theory of Banach algebras. D. van Nostrand, 1960.

[183] Leopoldo Román. A characterization of quantic quantifiers in orthomodular lat-
tices. Theory and Applications of Categories, 16(10):206–217, 2006.

[184] Leopoldo Román and Beatriz Rumbos. A characterization of nuclei in orthomodu-
lar and quantic lattices. Journal of Pure and Applied Algebra, 73:155–163, 1991.

[185] Leopoldo Román and Rita E. Zuazua. On quantic conuclei in orthomodular lat-
tices. Theory and Applications of Categories, 2(6):62–68, 1996.

[186] Mikael Rørdam. Structure and classification of C*-algebras. In Proceedings of
the International Congress of Mathematicians, volume 2, pages 1581–1598. EMS
Publishing House, 2006.

191

Bibliography

[187] Robert Rosebrugh and Richard J. Wood. Distributive laws and factorization. Jour-
nal of Pure and Applied Algebra, 175:327–353, 2002.

[188] Neantro Saavedra Rivano. Catégories Tannakiennes. Number 265 in Lecture Notes
in Mathematics. Springer, 1972.

[189] Mehrnoosh Sadrzadeh. High level quantum structures in linguistics and multi-
agent systems. In AAAI Spring symposium on quantum interactions. Stanford Uni-
versity, 2007.

[190] Shôichirô Sakai. C*-algebras and W*-algebras. Springer, 1971.

[191] Giovanni Sambin. Intuitionistic formal spaces - a first communication. In D. Sko-
rdev, editor, Mathematical logic and its Applications, pages 187–204. Plenum, 1987.

[192] Giovanni Sambin. Some points in formal topology. Theoretical Computer Science,
305:347–408, 2003.

[193] Erhard Scheibe. The logical analysis of quantum mechanics. Pergamon, 1973.

[194] Dana Scott. Lattice theory, data types and semantics. In NYU Symposium on formal
semantics, pages 65–106. Prentice-Hall, 1972.

[195] Robert A. G. Seely. Linear logic, ∗-autonomous categories and cofree coalgebras.
In Categories in Computer Science and Logic, volume 92, pages 371–382. American
Mathematical Society, 1989.

[196] Irving E. Segal. Postulates for general quantum mechanics. Annals of Mathematics,
48:930–948, 1947.

[197] Peter Selinger. Dagger compact closed categories and completely positive maps.
In Quantum Programming Languages, volume 170 of Electronic Notes in Theoretical
Computer Science, pages 139–163. Elsevier, 2007.

[198] Peter Selinger. Finite dimensional Hilbert spaces are complete for dagger compact
closed categories. In Quantum Physics and Logic, Electronic Notes in Theoretical
Computer Science, 2008.

[199] Peter Selinger. Idempotents in dagger categories. In Quantum Programming Lan-
guages, volume 210 of Electronic Notes in Theoretical Computer Science, pages 107–
122. Elsevier, 2008.

[200] Peter Selinger. A survey of graphical languages for monoidal categories. In New
Structures for Physics, Lecture Notes in Physics. Springer, 2009.

[201] Maria P. Solèr. Characterization of Hilbert spaces by orthomodular spaces. Com-
munications in Algebra, 23:219–243, 1995.

[202] Bas Spitters. Constructive results on operator algebras. Journal of Universal Com-
puter Science, 11(12):2096–2113, 2005.

[203] Serban Stratila and Laszlo Zsido. Operator Algebras. Theta Foundation, 2009.

192

Bibliography

[204] Ross Street. Quantum Groups: a path to current algebra. Number 19 in Australian
Mathematical Society Lecture Series. Cambridge University Press, 2007.

[205] Isar Stubbe. The canonical topology on a meet-semilattice. International Journal
of Theoretical Physics, 44:2283–2293, 2005.

[206] Masamichi Takesaki. Theory of Operator Algebra I. Encyclopaedia of Mathematical
Sciences. Springer, 1979.

[207] Tadao Tannaka. Über den Dualitätssatz der nichtkommutatieven topologischen
Gruppen. Tôhoku Mathematical Journal, 45:1–12, 1939.

[208] Paul Taylor. Practical Foundations of Mathematics. Number 59 in Cambridge Stud-
ies in Advanced Mathematics. Cambridge University Press, 1999.

[209] Veeravalli S. Varadarajan. Geometry of Quantum Theory. D. van Nostrand, 1968.

[210] Jamie Vicary. Categorical formulation of quantum algebras. arXiv:0805.0432,
2008.

[211] Jamie Vicary. Categorical properties of the complex numbers. arXiv:0807.2927,
2008.

[212] Steven Vickers. Locales and toposes as spaces. In Handbook of Spatial Logics, pages
429–496. Springer, 2007.

[213] John von Neumann. Mathematische Grundlagen der Quantenmechanik. Springer,
1932.

[214] Joachim Weidmann. Lineare Operatoren in Hilberträumen I. Grundlagen. B. G.
Teubner, 2000.

[215] Edwin Weiss and Neal Zierler. Locally compact division rings. Pacific Journal of
Mathematics, 8(2):369–371, 1958.

[216] William K. Wootters and Wojciech H. Zurek. A single quantum cannot be cloned.
Nature, 299:802–803, 1982.

[217] Adriaan C. Zaanen. Riesz spaces. II. North-Holland, 1983.

[218] Elias Zafiris. Boolean coverings of quantum observable structure: a setting for
an abstract differential geometric mechanism. Journal of Geometry and Physics,
50(1–4):9–114, 2004.

193

http://www.arxiv.org/abs/0805.0432
http://www.arxiv.org/abs/0807.2927

Index of categories

Notation Description Page(s)
Act Actions of a monoid 17, 32
Alg(T) Eilenberg-Moore T -algebras 19
BP Categories with finite biproducts 26
B̂ Boolean algebra B as dagger kernel category 130
[C , D] Functors C→ D and natural transformations 18, 53
C� Cofree dagger category on C 25, 54
Cat Categories and functors 13
CHey Complete Heyting algebras 142
CStar C*-algebras and *-morphisms 151
DagCat Dagger categories and dagger functors 47
DagKerCat Dagger kernel categories 63
Dkck Kck-construction on D 131
finPInj Finite sets and partial injections 53, 61
Frm Frames 142
Hilb Hilbert spaces and continuous linear maps 13, 49
HMod Hilbert modules and adjointable morphisms 81
InvAdj Involutive categories and contravariant adjunctions 50
InvGal Orthoposets and antitone Galois connections 50
IPOSet Indexed partially ordered sets 126
KRegLoc Compact regular locales 151
Loc Locales 142
Loc(T) Locales in T 147
Mod Modules and linear transformations 12, 34, 36, 43
Mon Monoids 15
OMLatGal Orthomodular lattices and antitone Galois connections 113
PHilb Hilbert spaces and continuous linear maps up to phase 13, 49
PInj Sets and partial injections 13, 48
POSet Partially ordered sets 126

195

Index of categories

preHilb Pre-Hilbert spaces and adjointable functions 12, 48
Rel Sets and relations 13, 48
Rg Rigs 30
Set Sets and functions 13
Topos Toposes and geometric morphisms 145
Vect Vector spaces and linear transformations 12
V-Cat V-enriched categories and functors 16
Zigzag(C) Free dagger category on C 55

196

Index of notation

Asa, self-adjoints, 152
Alx(P), Alexandrov topology, 143
B[m], order generated by B,m, 105
C(X,Y), locale morphisms, 142
C∗(a), C*-algebra generated by a, 173
I, monoidal unit, 14
Im(f), image of f , 75
KSub, kernels, 100, 122, 126
LA, lattice generating spectrum, 153
P (m), projection, 102
Proj(X), projections, 102
R+, positive cone, 80, 153
Sub(X), subobjects, 100
U(1), circle group, 13, 158
X∗, dual object, 42
ef , coimage of f , 75
f∗, continuous map, 144
f∗, dual morphism, 45
f∗, left adjoint, 50, 113
f∗, dual adjoint morphism, 59
f∗, right adjoint, 50, 113
if , image of f , 75
A(), Boolean amalgamation, 169
B(), Heyting amalgamation, 169
C(), contexts, 156, 157, 166
F(L,C), free frame, 144
I(), probability integrals, 174
O(X), frame, 142
T (), Bohrification topos, 156, 157,

166
T, theory, 148
V(), probability valuations, 175
∆, diagonal, 23
∇, codiagonal, 23
Ω, subobject classifier, 133
Σ, Gelfand spectrum, 152
ΣA, Bohrified state space, 162
α, coherence isomorphism, 14
δ, classical structure, 68
ε, counit of compactness, 42
η, unit of compactness, 42
γ, symmetry isomorphism, 14
λ, coherence isomorphism, 14
ν, classical structure, 68
ρ, coherence isomorphism, 14
τ , distributivity isomorphism, 30
B, Boolean rig, 30, 34
C, complex numbers, 13, 20, 60, 151
CQ, Gaussian rationals, 150
H, quaternions, 13, 89
IR, interval domain, 175
R, real numbers, 13, 150, 174
()∗, involution, 150
•, scalar multiplication, 16
†, dagger, 47
‡, involution, 12, 80
[f , g], cotuple, 23
⇒, implication, 118

197

Index of notation

〈f , g〉, tuple, 23
C, covering relation, 143
&, and then, 124
⇒S, Sasaki hook, 124
∃f , existential quantifier, 117
〈 | 〉, inner product, 12, 81
≤, homset order, 100
≤, scalar order, 95
�, well inside, 151, 155
J K, interpretation, 146
4, spectrum order, 153

�

x, well-inside set, 151
f ⊥ g, orthogonality, 106
f ; g, composition, 78
k ∨ l, disjunction, 107
k ∧ l, conjunction, 105
k⊥, negation, 106

� ,2 , dagger cokernel, 63
� ,2 // , dagger kernel, 63
◦ // // , zero epi, 73
// ◦ // , zero mono, 73

198

Index of subjects

action, 17
adjoint morphism, 12, 47
Alexandrov topology, 143
and then, 124
atom, 104
atomic, 104
atomistic, 104

bimorphism, 20
biproduct, 24, 26

bounded, 28
Bohrification, 159, 166
Bohrified state space, 162
Boolean algebra, 128
Boolean category, 127
Boolean rig, 30, 34
bounded morphism, 95
Bruns-Lakser completion, 171

C*-algebra, 151
Rickart, 163

C*-category, 97
Cauchy completion, 52, 94
characters, 152
choice-of-duals functor, 45
classical structure, 68
closure operation, 103, 144
coaffine, 61
coimage, 77
cokernel, 35

compact closed category, 42
compact object, 42
compact structure, 42
coname, 44
continuous probability valuation, 175
cosieve, 133
covering relation, 143

dagger, 47
dagger biproduct, 61
dagger category, 47

cofree, 25, 54
free, 55

dagger coequaliser, 63
dagger cokernel, 63
dagger compact closed category, 59
dagger compact object, 59
dagger epi, 57
dagger equaliser, 62
dagger equaliser category, 63
dagger functor, 47
dagger iso, 57
dagger kernel, 62
dagger kernel category, 63

Boolean, 127
dagger monoidal category, 59
dagger regular category, 77
Daseinisation, 177, 179
Dedekind real numbers, 149, 174, 176
diagonal fill-in, 75

199

Index of subjects

dimension, 44
directed colimit, 109
distributive lattice, 119, 153

normal, 155
division rig, 87
dual object, 42

enriched monoidal category, 16
extension of scalars, 91

f-algebra, 154
factorisation system, 74

dagger, 75
finitely projective, 44
frame, 142
Frobenius condition, 68

Galois connection, 50
Gelfand duality, 151
Gelfand spectrum, 152–155, 162, 167
generator, 36, 104
geometric formula, 148, 153
geometric morphism, 145
Grothendieck completion, 32, 125

Heyting algebra, 118
Hilbert category, 95
Hilbert module, 81

strict, 81
Hilbert space, 13
Hilbert-Schmidt function, 61

ideal, 155
distributive, 171
regular, 155

image, 76
inner product, 12, 81
integral, 173
interval domain, 175

kernel, 35
kernel subobject, 100

Kock-Day tensor product, 19
Kripke topos, 145
Kripke-Joyal semantics, 146

locale, 142
compact, 151
regular, 151

Lubkin, 39

measurement, 69
Mitchell-Bénabou language, 146
module, 11, 34

finitely projective, 12, 36, 44
over a rig, 34

monad, 18
commutative, 19
strong, 18

monoid, 14
monoidal category, 14

name, 44

open, 143
orthocomplemented lattice, 107
orthogonal, 106, 127
orthogonal kernel subobject, 106
orthomodular lattice, 111
orthoposet, 50

partial Boolean algebra, 168
partial isometry, 79
point, 142
positive, 80, 153
pre-Hilbert category, 90
pre-Hilbert space, 12
probability measure, 176
probability valuation, 176
projection, 57, 102
projective, 36, 44
pseudocomplement, 166

quantale, 81, 125

200

quantum key distribution, 66
quasi-state, 173

regular category, 39
restriction of scalars, 92
Riesz space, 153
rig, 30

involutive, 80
multiplicatively cancellative, 81

Sasaki hook, 124, 170
scalar, 17
scalar multiplication, 17
Scott topology, 175
self-adjoint morphism, 57, 152
seminorm, 150
sheaf, 145
Sierpinski space, 143
simple, 86, 104, 161
state, 172
subfunctor, 133
subobject, 86, 100
subobject classifier, 132
suitable, 20
support, 20, 164

topos, 145
truth value, 146

upper set, 133

zero epi, 73
zero mono, 73
zero object, 24
zerosumfree, 83

201

Samenvatting

Kwantummechnica is de beste beschikbare beschrijving van de natuur op hele
kleine schaal. Computers worden steeds kleiner, en kunnen niet veel langer
kwantumwetten negeren. Gebruik van kwantummechanische principes levert
dan ook vele voordelen, zoals computers die essentieel sneller zijn dan klassieke,
en communicatieprotocollen waarbij afluisteren in principe onmogelijk is.

Maar de drie belangrijkste kwantummechanische principes, superpositie, en-
tanglement, en niet-commutativiteit, druisen regelrecht in tegen onze intüıtie,
opgedaan op de grotere schaal van het dagelijkse leven. Superpositie, bijvoor-
beeld, houdt in dat een kwantumbit ńıet ofwel 0 ofwel 1 hoeft te zijn, zoals een
klassiek bit, ook al is het resultaat van een meting wel altijd ofwel 0 ofwel 1.
Entanglement is de onbegrijpelijke eigenschap dat kwantumbits zo verstrengeld
kunnen raken, dat zodra de ene gemeten wordt, de uitslag van een meting van
de ander daarmee direct vastligt, zelfs als ze heel ver uiteen liggen, en zelfs
zonder gemeenschappelijke oorzaak van de uitslagen. Niet-commutativiteit,
tenslotte, zorgt ervoor dat we niet alle eigenschappen van een kwantumdeeltje
tegelijktertijd kunnen meten: eerst snelheid en dan positie meten geeft een an-
dere uitkomst dan andersom.

Omdat onze intüıtie ons in dezen in de steek laat, zijn rigoureuze wiskundige
bewijzen noodzakelijk: niemand zal een kwantumcomputer serieus gebruiken
als de programmeur niet in kan staan voor de correctheid van het programma,
en de aantrekkelijkheid van kwantumcommunicatieprotocollen schuilt juist in
de garantie dat afluisteren onmogelijk is. Met andere woorden, er is een logica
nodig voor kwantumtheorie, en daar gaat dit proefschrift over.

Om de aard van zo’n logica te begrijpen, bestuderen we niet één enkele
gëısoleerde toestandsruimte, maar alle toestandsruimtes tegelijk, en de relaties
tussen verschillende toestandsruimtes. Dit heet een categorie. Zo kunnen we
het gedrag van kwantummechanische systemen kwalitatief bestuderen, zonder
te hoeven gokken hoe ze in elkaar zitten, want dat weten we immers niet.

De eerste helft van dit proefschrift bestudeert categorieën die voldoen aan
eisen die bovengenoemde kwantummechanische principes modelleren, zoge-

203

Samenvatting

heten categorische kwantum modellen. Hoofdstuk 2 modelleert superpositie en
de eis dat twee aparte systemen samen als één groter systeem gezien kunnen
worden. Hoofdstuk 3 eist daar bovenop dat iedere relatie tussen toestandsruim-
ten omkeerbaar is, wat nodig is om kwantumcomputers aan de wet van behoud
van energie te laten voldoen. Met alleen deze axioma’s kunnen we dan al bewij-
zen dat elk zo’n categorie in te bedden is in de categorie van Hilbertruimten, die
het traditionele natuurkundige model vormt voor kwantummechanica. Zo vin-
den we bijvoorbeeld dat—ook al is daar niets over geëist—zo’n categorie altijd
scalairen heeft, die zich gedragen als complexe getallen.

De tweede helft richt zich dan op de logica in deze categorische modellen,
zogeheten categorische logica. Hoofdstuk 4 laat zien dat, wanneer je logica direct
in zulke categorische modellen probeert te interpreteren, deze dezelfde vreemde
eigenschappen heeft als wat traditioneel kwantumlogica genoemd wordt. Bij-
voorbeeld de logische connectieven ‘en’ en ‘of’; in het dagelijks leven geldt

x en (y of z) = (x en y) of (x en z)

voor willekeurige uitspraken x, y en z. Maar bij een kwantumontbijt, waarbij
je de keuze krijgt tussen een ei (x) met ofwel spek (y) ofwel ham (z), kan het
gebeuren dat je noch ei met spek, noch ei met ham voorgeschoteld wordt. Ook
uitspraken als ‘als ..., dan ...’ zijn alleen zinnig in speciale gevallen. Er wordt
echter ook duidelijk hoe existentiële kwantificatoren, zoals ‘er is een x zodat
...’ gedefinieerd en gebruikt kunnen worden. We bewijzen ook dat universele
kwantificatie, zoals ‘voor alle x geldt ...’, onmogelijk is. Dit bleef onduidelijk
in de traditionele kwantumlogica, maar wordt verhelderd door ons gebruik van
categorieën. Het blijkt dat deze kwantificaties een dynamisch, temporeel karak-
ter hebben, dat veroorzaakt wordt door niet-commutativiteit.

Tenslotte omzeilen we in hoofdstuk 5 het probleem van niet-commutativiteit
door categorische logica op een geraffineerdere manier te gebruiken. Hiervoor
zijn twee ingrediënten van belang. Ten eerste is een C*-algebra een eenvoudig
voorbeeld van onze kwantummodellen: commutatieve C*-algebras modelleren
klassieke systemen, en niet-commutatieve C*-algebras modelleren kwantumsys-
temen. Ten tweede is een topos een categorie waarin ‘normale’ (intuitionisti-
sche) logica gëınterpreteerd kan worden. Gegeven een niet-commutatieve C*-
algebra, construeren we een topos, waarin de C*-algebra commutatief wordt.
Wiskundig gezien relateren we zo de twee generalisaties van het begrip van
(topologische) ruimte. Logisch gezien is het grote voordeel dat we, met de lo-
gica van de topos, de C*-algebra dus kunnen bestuderen alsof ze een klassiek
systeem beschrijft.

204

Curriculum vitae

Chris Heunen was born on the 21st of March 1982 in Nijmegen, the Netherlands.
He grew up in Venlo, returning to Nijmegen in 1999 to begin the studies of
computer science and mathematics at the Radboud University. After spending a
semester at the University of British Columbia in Vancouver, Canada, in 2004, he
obtained M.Sc. degrees in computer science and mathematics in 2005, both cum
laude. In August 2005, Chris became a Ph.D. student at the Radboud University
Nijmegen, jointly supervised by professors Bart Jacobs and Klaas Landsman. The
topic of this Ph.D. thesis is a combination of their fields of expertise: categorical
logic and mathematical physics, respectively. As of August 2009, the author is a
postdoctoral researcher at the University of Oxford, financially supported by an
NWO Rubicon grant.

205

	Introduction
	Tensors and biproducts
	Examples
	Tensor products and monoids
	Biproducts
	Scalars
	Modules over rigs
	Compact objects

	Dagger categories
	Examples
	Dagger structures
	Quantum key distribution
	Factorisation
	Hilbert modules
	Scalars revisited
	Hilbert categories

	Dagger kernel logic
	Subobjects
	Orthogonality
	Orthomodularity
	Quantifiers
	Booleanness
	Subobject classifiers

	Bohrification
	Locales and toposes
	C*-algebras
	Bohrification
	Projections
	States and observables

	Bibliography
	Index of categories
	Index of notation
	Index of subjects
	Samenvatting

