
CHARACTERIZATIONS OF CATEGORIES OF

COMMUTATIVE C*-SUBALGEBRAS

CHRIS HEUNEN

Abstract. We characterize the category of injective *-homomorphisms be-

tween commutative C*-subalgebras of various C*-algebras, namely C*-algebras
of operators on separable Hilbert spaces, any finite-dimensional C*-algebra,

and any commutative C*-algebra.

1. Introduction

The collection C(A) of commutative C*-subalgebras of a fixed C*-algebra A can
be made into a category under various choices of morphisms. Two natural ones
are inclusions and injective *-morphisms, resulting in categories C⊆(A) and C�(A),
respectively. Such categories are of paramount importance in the recent use of topos
theory in research in foundations of physics, that proposes a new form of quantum
logic [6, 12]. The goal of this article is to characterize which toposes are of the form
studied in that programme. Eventually this should increase insight into the intrinsic
structure of such toposes, and hence shed light on the foundations of quantum
physics such toposes aim to model. Another motivation to study categories based
on C(A) is the hope that they could lead to a noncommutative extension of Gelfand
duality, or at least to interesting invariants of C*-algebras [2, 1].

Our main result is a characterization of C�(A) for type I factors A, as well as for
finite-dimensional C*-algebras A and commutative C*-algebras A. This satisfac-
torily addresses a general theme in research in foundations of quantum mechanics.
Specifically, it answers a categorification of Piron’s problem, at least in the finite-
dimensional case: which orthomodular lattices are those of closed subspaces of
Hilbert space [18, 20, 16]? For choosing a commutative C*-subalgebra of the ma-
trix algebra Mn(C) amounts to choosing an orthonormal subset of Cn; see also [11].
We also provide an appropriate generalization to countably infinite dimension.

Similarly, such a characterization has consequences in the study of test spaces.
These are defined as collections of orthogonal subsets of a Hilbert space satisfying
some conditions, and have been proposed as axioms for operational quantum me-
chanics. One of the major questions there is again which test spaces arise from
propositions on Hilbert spaces [22].

The strategy behind our characterization is as follows. First, and this is the key
insight, we recognize C�(D) for a commutative C*-algebra D as a certain amalga-
mation of a monoid M acting on a partially ordered set P . Such amalgamations
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are characterized in Section 3. Second, we use known results to characterize the
partially ordered set P = C⊆(D), consisting of partitions of the Gelfand spectrum
of D, in Section 4. Third, we show that C�(A) is equivalent to C�(D) for a
weakly terminal object D in C�(A) for the various types of C*-algebras A, finish-
ing our characterization. This last step is the only one limiting our characterization
to C*-algebras A that are type I factors, finite-dimensional, or commutative. Fi-
nally, Section 6 discusses the relation between C� and C⊆. Part of this discussion
is already contained in the preliminaries of Section 2. Appendix A records some
intermediate results of independent interest.

2. Preliminaries

Definition 1. Write C(A), or simply C, for the collection of nonzero commutative
C*-subalgebras C of a C*-algebra A. Here, we do not require C*-algebras to have
a unit. This set of objects can be made into a category by various choices of
morphisms, such as:

• inclusions C ↪→ C ′, given by c 7→ c, yielding a (posetal) category C⊆(A);
• injective *-morphisms C � C ′, giving a (left-cancellative) category C�(A).

The main theorem in the application of topos theory to foundations of quantum
physics, that the canonical functor C 7→ C is an internal (possibly nonunital) C*-

algebra [12, Theorem 6.4.8], holds in both toposes SetC⊆ and SetC� because of the
fundamental Lemma 5 below. Categorically, C� is a more natural choice than C⊆,
and Subsection 2.1 below argues that this choice is also more interesting from an
algebraic point of view. Thus, our goal is to characterize toposes of the form SetC� .
The next theorem, due to Bunge, reduces this to characterizing the categories Cop�.

Theorem 2. Let T be an elementary topos, and f the unique geometric morphism
T → Set, which has direct image part f∗ = T(1,−). Then T is equivalent to
PSh(C) if and only if there is a morphism a : A→ I in T satisfying

• the canonical map f∗f∗∀a(X ×A)×I A→ X is epic for each X in T;
• the canonical map E ×f∗(I) f∗∀a×id(A × A) → f∗∀a((f∗(E) ×I A) × A) is

an isomorphism for each function e : E → f∗(I);
• if g : X → Y in T is epic, then so is f∗∀a(g × id);

and C = f∗(A).

Proof. See [4]. �

2.1. Invariants. Let us temporarily consider von Neumann algebras A and their
von Neumann subalgebras V(A), giving categories V⊆ and V�. We will show that
V⊆ contains exactly the same information as the projection lattice, so from that
point of view V� is possibly more interesting. See also Remark 33 below. By
extension, C� is possibly more interesting than C⊆ from this point of view, because
C(A) and V(A) coincide for finite-dimensional C*-algebras A.

Denote the category of von Neumann algebras and unital normal *-homomor-
phisms by Neumann, and write cNeumann for the full subcategory of commuta-
tive algebras. Denote the category of orthomodular lattices and lattice morphisms
preserving the orthocomplement by OMLat. The functor Proj : Neumann →
OMLat takes A to {p ∈ A | p2 = p = p∗} under the ordering p ≤ q iff pq = p. On
morphisms f : A → B it acts as p 7→ f(p). Denote the essential image of Proj by
D; traditional quantum logic is the study of this subcategory of OMLat [19].
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Denote by Poset[cNeumann] the category whose objects are sets of commu-
tative von Neumann algebras C, partially ordered by inclusion (i.e. C ≤ C ′ iff
C ⊆ C ′), and whose morphisms are monotonic functions. We may regard V⊆ as a
functor Neumann → Poset[cNeumann]. Denote the essential image of V⊆ by
C; this is a subcategory of Poset[cNeumann].

We now define two new functors, F : C → D and G : D → C. The functor F
acts on an object V⊆(A) as follows. For each C ∈ V⊆(A), we know that Proj(C)
is a Boolean algebra [19, 4.16]. Because additionally the hypothesis of Kalmbach’s
Bundle lemma, recalled below, is satisfied, these Boolean algebras unite into an
orthomodular lattice F (V⊆(A)). This assignment extends naturally to morphisms.

Lemma 3. Let (Bi) be a family of Boolean algebras such that ∨i = ∨j, ¬i = ¬j,
and 0i = 0j on intersections Bi ∩Bj. If ≤ on

⋃
iBi is transitive, then

⋃
iBi is an

orthomodular lattice.

Proof. See [15, 1.4.22]. �

The functor G acts on the projection lattice L of a von Neumann algebra as
follows. Consider all complete Boolean sublattices B of L as a poset under inclusion.
For each B, the continuous functions on its Stone spectrum form a commutative
von Neumann algebra. Thus we obtain an object G(L) in C, and this assignment
extends naturally to morphisms.

Theorem 4. The objects Proj and V⊆ of Neumann/Cat are equivalent.

Neumann
V⊆

ww

Proj

''
C

F //' D
G

oo

Proof. Follows directly from the definitions and the previous lemma. �

Indeed, both V⊆(A) and Proj(A) capture the Jordan algebra structure of A [10].
Returning to the setting of C*-algebras, notice that the previous theorem fails.

There are C*-algebras without any projections, except for 0 and 1. But every
C*-algebra has many commutative C*-subalgebras: every self-adjoint element gen-
erates one, and every element of a C*-algebra decomposes into a linear combi-
nation of self-adjoint elements. It might also be worth remarking that the functor
C⊆ : Cstar→ Poset[cCstar] factors through the category of partial C*-algebras [2].

2.2. Functoriality. The assignment A 7→ C⊆(A) extends to a functor: given a
*-homomorphism ϕ : A→ B, direct images C 7→ ϕ(C) form a morphism of posets,
for if C ⊆ C ′, then ϕ(C) ⊆ ϕ(C ′). Well-definedness relies on the following lemma.

Lemma 5. The set-theoretic image of a C*-algebra under a *-homomorphism is
again a C*-algebra.

Proof. See [14, Theorem 4.1.9]. �

The assignment A 7→ C�(A) has to be adapted to be made functorial. Either we
only consider injective *-homomorphisms A� B, or we restrict the target category
C�(A) as follows.
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Lemma 6. There is a functor Cstar → Cat, sending A to the subcategory of
C�(A) with morphisms those i : C → C ′ satisfying

i−1(I ∩ C ′) = I ∩ C
for all closed (two-sided) ideals I of A.

Proof. Let ϕ : A→ B be a *-homomorphism, and let i be as in the statement of the
lemma. Then i induces a well-defined injective *-homomorphism ϕ(C) → ϕ(C ′)
precisely when ϕ(c1) = ϕ(c2) ⇐⇒ ϕ(i(c1)) = ϕ(i(c2)). Since ϕ and i are linear,
this comes down to ϕ(c) = 0 ⇐⇒ ϕ(i(c)) = 0, i.e. ker(ϕ) ∩ C = ker(ϕ ◦ i). This
becomes I ∩ C = i−1(I ∩ C ′) for I = ker(ϕ), and is therefore satisfied. �

Notice that when A is a topologically simple algebra, e.g. a matrix algebra, the
subcategory of the previous lemma is actually the whole category C�(A).

3. Amalgamations

This section introduces the notion of a poset-monoid-amalgamation, and char-
acterizes such categories. This is interesting in its own right, but even more so
because it will turn out that C� is of this form. The main idea is to separate out
symmetries into a monoid action, leaving just a partial order.

Definition 7. An action of a monoid M on a category C is a functor F : M →
Cat(C,C). Write mx for the action of Fm on an object x of C, and mf for
the action of Fm on a morphism f of C. The action is called interpolative when
C(x,m2m1z) 6= ∅ implies C(x,m1y) 6= ∅ and C(y,m2z) 6= ∅ for some object y.

Any action of a commutative monoid M on a partially ordered set P is inter-
polative: if p ≤ m2m1r, taking q = m2r gives p ≤ m1q and q ≤ m2r.

Definition 8. If a monoid M acts on a category C, then we can make a new
category C oM whose objects are those of C, and whose morphisms x → y are
pairs (m, f) such that dom(f) = x and cod(f) = my. Composition and identities
are inherited from M and C.

If the category C in the previous definition is a partially ordered set P , then
P oM has as objects p ∈ P , and morphisms p→ q are m ∈M such that p ≤ mq,
with unit and composition from M .

An illustrative example to keep in mind is the following. Let M be the group
of unitary n-by-n matrices. Let P be the lattice of subspaces of Cn, ordered by
inclusion. Then M acts on P . Morphisms in P oM between subspaces V ⊆ Cn
and W ⊆ Cn are unitary matrices U such that U−1(v) ∈W for all v ∈ V .

This section characterizes categories of the form P o M for an interpolative
action of a monoid M on a poset P with a least element. Recall that a retraction
of a functor is a left-inverse. An object 0 is weakly initial when for any object x
there exists a (not necessarily unique) morphism 0→ x.

Lemma 9. If a category A has a weak initial object 0 and a faithful retraction F
of the inclusion A(0, 0)→ A, then its objects are preordered by

x ≤ y ⇐⇒ ∃f ∈ A(x, y). F (f) = 1.

Proof. Clearly ≤ is reflexive, because F (idx) = 1. It is also transitive, for if x ≤ y
and y ≤ z, then there are f : x → y and g : y → z with F (f) = 1 = F (g), so that
g ◦ f : x→ z satisfies F (g ◦ f) = F (g) ◦ F (f) = 1 ◦ 1 = 1 and x ≤ z. �
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Definition 10. A category A is called a poset-monoid-amalgamation when there
exist a partial order P and a monoid M such that:

(A1) there is a weak initial object 0, unique up to isomorphism;
(A2) there is a faithful retraction F of the inclusion A(0, 0)→ A;
(A3) there is an isomorphism α : A(0, 0)→M of monoids;
(A4) there is an equivalence (A,≤)

β //
Pβ′oo of preorders;

(A5) for each object x there is an isomorphism f : x→ β′(β(x)) with F (f) = 1;
(A6) for each object y and m : 0 → 0, there is f : x → y such that F (f) = m,

and f ′ = fg with F (g) = 1 for any f ′ : x′ → y with F (f ′) = m;
(A7) if F (f) = m2m1 for a morphism f , then f = f2f1 with F (fi) = mi.

Example 11. If P is a partial order with least element, and M is a monoid acting
interpolatively on P , then P oM satisfies (A1)–(A7).

Proof. The least element 0 of P is a weak initial object, satisfying (A1). Conditions
(A2)–(A4) are satisfied by definition, and (A5) is vacuous. To verify (A6) for q ∈ P
and m ∈M , notice that mq ≤ mq, and if p ≤ mq, then certainly p ≤ 1mq. Finally,
(A7) is satisfied precisely because the action is interpolative. �

We can rephrase (A6) as: for each object y and morphism m : 0→ 0, there is a
greatest element of the set {f : x→ y | F (f) = m}, preordered by f ≤ g iff f = hg
for some morphism h satisfying F (h) = 1.

Lemma 12. If A satisfies (A1)–(A7), then it induces an interpolative action of M
on P given by pm = β(x) if f : x→ β′(p) is a greatest element with α(F (f)) = m.

Proof. First, notice that for any p ∈ P and m ∈ M there exists a greatest f : x→
β′(p) with α(F (f)) = m by (A6). If there is another greatest f ′ : x′ → β′(p)
with α(F (f ′)) = m, then there are morphisms g : x → x′ and g′ : x′ → x with
F (g) = 1 = F (g′). Hence F (gg′) = 1 = F (g′g), and because F is faithful, g is an
isomorphism with g′ as inverse. So x ∼= x′, and therefore β(x) ∼= β(x′). But because
P is a partial order, this means β(x) = β(x′). thus the action is well-defined on
objects.

To see that it is well-defined on morphisms, suppose that p ≤ q. Then there is a
morphism f : β′(p)→ β′(q) with F (f) = 1. For any m : 0→ 0, we can find maximal
fp : xp → β′(p) with F (fp) = m, and maximal fq : xq → β′(q) with F (fq) = m.
Now ffp : xp → β′(q) has F (ffq) = m. Because fq is a maximal such morphism,
ffp factors through fq. That is, there is h : xp → xq with fq = ffph and F (h) = 1.
So mp ≤ mq.

Next, we verify that this assignment is functorial G → Cat(P, P ). Clearly
idβ′(p) is maximal among morphisms f : x → β′(p) with F (f) = 1. Therefore
1p = β(β′(p)) = p.

For m2,m1 ∈ M and p ∈ P , we have m1p = β(x1) where f1 : x1 → β′(p) is
maximal with α(F (f1)) = m1. So m2(m1p) = β(x2) where f2 : x2 → β′(β(x1)) is
maximal with α(F (f2)) = m2. By (A5), there is an isomorphism h : x1 → β′(β(x1))
with F (h) = 1. So h−1f2 : x2 → x1 is maximal with α(F (h−1f2)) = m2. This
gives f = f1h

−1f2 : x2 → β′(p) with α(F (f)) = m1m2. If g : y → β′(p) has
α(F (g)) = m1m2, then by (A7) there are g2 : y → z and g1 : z → β′(p) with



6 CHRIS HEUNEN

g = g1g2 and α(F (gi)) = mi.

x2
f2 //

f

��
β′(β(x1))

h−1
// x1

f1 // β′(p)

zhk

ff k <<
g1

33

y

l

OO

g2

22
g

CC

By maximality of f1, there is a k with g1 = f1k and α(F (k)) = 1. And by
maximality of f2, there is an l with hkg2 = f2l and α(F (l)) = 1. Hence

g = g1g2 = f1kg2 = f1h
−1hkg2 = f1h

−1f2l = fl.

So f is maximal with F (f) = m1m2. Thus (m2m1)p = β(x2) = m2(m1p).
Finally, to see that the action is interpolative, suppose that p ≤ m2m1r. Then

there is f : p → m2m1r with F (f) = 1. By definition, m2m1r = β(u) where
k : u → β′(r) is maximal with α(F (k)) = m2m1. By (A7), k = k2k1 for some ki
with α(F (ki)) = mi. Say y = cod(k1) = dom(k2), and take q = β(y). By definition,
m2r = β(z2) where h2 : z2 → β′(r) is maximal with α(F (h2)) = m2. Hence there
is f2 : y → z2 such that k2 = h2f2, and F (β(f2)) = 1. That is, q ≤ m2r. Similarly,
by definition m1q = β(y1), where g1 : y1 → β′(q) is maximal with α(F (g1)) = m1.
Hence there is f1 : u→ y1 such that k1 = g1f1 with F (β(f1)) = 1. So the morphism
β(f1)f : p→ m1q satisfies F (β(f1)f) = 1. That is, p ≤ m1q. �

Theorem 13. If A satisfies (A1)–(A7), then there is an equivalence A→ P oM
given by x 7→ β(x) on objects and f 7→ α(F (f)) on morphisms.

Proof. First, it follows from (A6) that the assignment of the statement is well-
defined, i.e. that α(F (f)) is indeed a morphism of P oM . Indeed, if f : x → y,
then we need to show that β(x) ≤ α(F (f)) · β(y). Unfolding the definition of the
action, this means we need to find a maximal k : x′ → β′(β(y)) with F (f) = F (k),
such that β(x) ≤ β(x′). Unfolding the definition of the preorder, this means we
need to find a morphism h′ : β′(β(x)) → β′(β(x′)) with F (h′) = 1. By (A5), it
suffices to find h : x → x′ with F (h) = 1 instead. But by (A6), there exists a
maximal k : x′ → β′(β(y)) with F (k) = F (f). By its maximality, there exists
h : x→ x′ with F (h) = 1 and f = kh. In particular, β(x) ≤ β(x′).

Functoriality follows directly from the previous lemma, so indeed we have a well-
defined functor A→ P oM . Moreover, our functor is essentially surjective because
β is an equivalence, and it is faithful because F is faithful.

Finally, to prove fullness, let m : β(x) → β(y) be a morphism in P oM . This
means that β(x) ≤ β(y)m, which unfolds to: there are a morphism f : x → z and
a split monomorphism h : z → β′(β(y)) in A with F (f) = 1 and h maximal with
α(F (h)) = m. By (A5), this is equivalent to the existence of a morphism f : x→ z
with F (f) = 1 and a morphism h : z → y in A maximal with α(F (h)) = m. Now
take k = hf : x→ y in A. Then

α(F (k)) = α(F (hf)) = α(F (h))α(F (f)) = m · α(1) = m · 1 = m.

Hence our functor is full, and we conclude that it is (half of) an equivalence. �

Remark 14. If M is a group, we can replace (A6) and (A7) by the neater condition

(A6’) for each y and m : 0→ 0 there is an isomorphism f : x→ y with F (f) = m.
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Moreover, we do not need the action to be interpolative in this case. Instead of as in
Lemma 12, the action is then recovered by mp = β(x) when there is an isomorphism
f : x → β′(p) with α(F (f)) = m, and Theorem 13 still holds. This gives a neater
characterization of amalgamations of group actions on posets with a least element.
However, the monoid of interest in the appropriate infinite-dimensional setting is
not a group, see Section 5 below.

4. Partition lattices

This section recalls a characterization of the partition lattice of a compact Haus-
dorff space due to Firby [7, 8]. This also gives a characterization of C⊆(A) for
commutative C*-algebras A.

An equivalence relation ∼ on a compact Hausdorff space X is closed when the
set {x ∈ X | ∃u ∈ U. x ∼ u} is closed for every closed U ⊆ X. Closed equivalence
relations on X, also called partitions, form a partial order P (X) under refinement :

∼ ≤ ≈ ⇐⇒
(
∀x, y ∈ X.x ∼ y =⇒ x ≈ y

)
.

Notice that quotients of a compact Hausdorff space by an equivalence relation are
again compact Hausdorff if and only if the equivalence relation is closed.

An element b of a lattice is called bounding when (i) it is zero or an atom; or
(ii) it covers an atom and dominates exactly three atoms; or (iii) for distinct atoms
p, q there exists an atom r ≤ b such that there are exactly three atoms less than
r ∨ p and exactly three atoms less than r ∨ q. A collection of atoms of a lattice
with at least four elements is called single when it is a maximal collection of atoms
of which the join of any two dominates exactly three atoms (not necessarily in the
collection). A collection B of nonzero bounding elements of a lattice is called a
1-point when (i) its atoms form a single collection; and (ii) if a is bounding and
a ≥ b ∈ B, then a ∈ B; and (iii) any a ∈ B dominates an atom p ∈ B.

Theorem 15. A lattice L with at least four elements is isomorphic to P (X) for a
compact Hausdorff space X if and only if:

(P1) L is complete and atomic;
(P2) the intersection of any two 1-points contains exactly one atom,

and any atom belongs to exactly two 1-points;
(P3) for bounding a, b ∈ L that are contained in a 1-point,

{p ∈ Atoms(L) | p ≤ a ∨ b}
= {p ∈ Atoms(L) | if x is a 1-point with p ∈ x then a ∈ x or b ∈ x};

for bounding a, b ∈ L that are not contained in a 1-point,

{p ∈ Atoms(L) | p ≤ a ∨ b} = {p ∈ Atoms(L) | p ≤ a or p ≤ b};

(P4) for 1-points x 6= y there are bounding a, b with a 6∈ x, b 6∈ y, and a ∨ b = 1;
(P5) joins of nests of bounding elements are bounding;
(P6) for nonzero a ∈ L, the collection B of bounding elements equal to or covered

by a is the unique one satisfying:
•
∨
B = a;

• no 1-point contains two members of B;
• if c is bounding, b1 ∈ B, and no 1-point contains b1 and c, then there

is a bounding b ≥ c such that (i) there is no 1-point containing both
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b and b1, and (ii) whenever there is a 1-point containing both b and
b2 ∈ B, then b ≥ b2;

(P7) any collection of nonzero bounding elements that is not contained in a
1-point has a finite subcollection that is not contained in a 1-point;

and X is (homeomorphic to) the set of 1-points of L, where a subset is closed if it is
a singleton 1-point or it is the set of 1-points containing a fixed bounding element.

Proof. See [8]. �

Remark 16. The axiom responsible for compactness of X is (P7). The previous
theorem holds for locally compact Hausdorff spaces X when we replace (P7) by

(P7’) every 1-point contains a bounding b such that {l ∈ L | l ≥ b} satisfies (P7).

Indeed, because (P1)–(P6) already guarantee Hausdorffness, we may take local
compactness to mean that every point has a compact neighbourhood that is closed.
And closed sets correspond to sets of 1-points containing a fixed bounding element.

Corollary 17. A lattice L is isomorphic to C⊆(A)op for a commutative C*-algebra
A of dimension at least three if and only if it satisfies (P1)–(P6) and (P7’). The
C*-algebra A is unital if and only if L additionally satisfies (P7).

Proof. The lattice C⊆(A) is that of subobjects of A in the category of commutative
(unital) C*-algebras and (unital) nondegenarate *-homomorphisms. Recall that a
subobject is an equivalence class of monomorphisms into a given object, where two
monics are identified when they factor through one another by an isomorphism. The
dual notion is a quotient : an equivalence class of epimorphisms out of a given object.
By Gelfand duality, C⊆(A) is isomorphic to the opposite of the lattice of quotients
of X = Spec(A). But the latter is precisely P (X)op, because categorical quotients
in the category of (locally) compact Hausdorff spaces are quotient spaces. �

If X is compact and discrete, then P (X) becomes the lattice of partitions of a
finite set, and neater characterizations are available. In particular, the following
alleviates the restriction in the previous theorem that L have at least four elements.

Recall that a lattice is semimodular if a ∨ b covers b whenever a covers a ∧ b. A
lattice is geometric when it is atomic and semimodular. An element x in a lattice
is modular when a ∨ (x ∧ y) = (a ∨ x) ∧ y for all a ≤ y. The Möbius function of a
finite lattice is the unique function µ : L → Z satisfying

∑
y≤x µ(x) = δ0,x. It can

be defined recursively by µ(0) = 1 and µ(x) = −
∑
y≤x µ(x) for x > 0; see [3]. The

characteristic polynomial of a finite lattice L is
∑
x∈L µ(x) · λdim(1)−dim(x).

Theorem 18. A lattice L is isomorphic to P ({1, . . . , n+ 1}) if and only if:

(F1) it is geometric;
(F2) if rank(x) = rank(y), then ↑x ∼= ↑ y;
(F3) it has a modular coatom;
(F4) its characteristic polynomial is (λ− 1) · · · (λ− n).

Proof. See [23]. �

5. Weakly terminal subalgebras

Denote by S(X) the monoid of continuous functions f : X � X with dense
image on a locally compact Hausdorff space X.
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Proposition 19. For any locally compact Hausdorff space X, the monoid S(X)
acts interpolatively on P (X) by

(f ∼) = (f × f)−1(∼).

Proof. First of all, notice that f ∼ is reflexive, symmetric and transitive, so indeed
is a well-defined equivalence relation on X, which is closed because f is continuous.
Concretely, x(f ∼)y if and only if f(x) ∼ f(y). Moreover, clearly id∼ = ∼, and
g(f ∼) = (gf)∼, so the above is a genuine action.

To see that the action is interpolative, let ∼,∼∼∼ be equivalence relations on X,
let f, g : X � X be continuous maps with dense image, and suppose ∼ ≤ (gf ∼∼∼).
Define ≈ as the closed equivalence relation on X generated by (f × f)(∼) =
{(f(x), f(y)) | x ∼ y}. If x ∼ y, then by definition f(x) ≈ f(y), so x(f ≈)y.
In other words, ∼ ≤ (f ≈), so there is a morphism ∼ → (f ≈) in P (X). If x ≈ y,
then there are x1, . . . , xn with x = f(x0), y = f(xn), f(x2i) = f(x2i+1), and
x2i+1 ∼ x2i+2. Hence gf(x)∼∼∼ gf(x1)∼∼∼ gf(x2)∼∼∼ · · ·∼∼∼ gf(xn)∼∼∼ gf(y). That is,
there is a morphism ≈ → (g∼∼∼). �

Lemma 20. If A = C(X) for a locally compact Hausdorff space X, there is an
isomorphism C�(A)op ∼= P (X) o S(X) of categories.

Proof. By definition, objects C of C�(A) are subobjects of C(X) in the category of
commutative C*-algebras. By Gelfand duality, these correspond to quotients of X
in the category of locally compact Hausdorff spaces. But these, in turn, correspond
to closed equivalence relations on X, establishing a bijection between the objects
of C�(A) and P (X).

A morphism C → C ′ in C�(A) corresponds through Gelfand duality to an
epimorphism g : Y ′ � Y between the corresponding spectra. Writing the quotients
as Y = X/∼ and Y ′ = X/≈ for closed equivalence relations ∼ and ≈, we find that
g corresponds to a continuous f : X → X with dense image respecting equivalence:

x ≈ y =⇒ f(x) ∼ f(y).

But this just means ≈ ≤ (∼ f). In other words, this is precisely a morphism
f : ≈ → ∼ in P (X) o S(X). �

Lemma 21. If C�(A) has a weak terminal object D, then there is an equivalence
C�(A) ' C�(D) of categories.

Proof. Clearly the inclusion C�(D) ↪→ C�(A) is a full and faithful functor, so it
suffices to prove that it is essentially surjective. Let C ∈ C�(A). Then there exists
an injective *-homomorphism f : C → D because D is weakly terminal. Hence
C ∼= f(C) ∈ C�(D). �

Lemma 22. If A = B(H) for a separable Hilbert space H, then C�(A) has a weak
terminal object. The latter is *-isomorphic to:

• `∞({1, . . . , n}) when dim(H) = n;
• L∞(0, 1)⊕ `∞(N) when H is infinite-dimensional.

Proof. Let C ∈ C�(A). By Zorn’s lemma, C is a C*-subalgebra of a maximal
element of C⊆(A). A maximal element in C⊆(A) for a von Neumann algebra A is
itself a von Neumann algebra, because it must equal its weak closure. It is known
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that maximal abelian von Neumann subalgebras of A = B(H) for an infinite-
dimensional separable Hilbert space H are unitarily equivalent to one of the fol-
lowing: L∞(0, 1), `∞({0, . . . , n}) for n ∈ N, `∞(N), L∞(0, 1) ⊕ `∞({0, . . . , n}) for
n ∈ N, or L∞(0, 1) ⊕ `∞(N) (see [14, Theorem 9.4.1]). Each of these allows an
injective *-homomorphism into the latter one, D = L∞(0, 1) ⊕ `∞(N). Therefore,
there exists a morphism C → D in C�(A) for each C in C�(A), so that D is weakly
terminal in C�(A).

If dim(H) = n, then of the possibilities above, the maximal elements of C⊆(A)
can only be `∞({1, . . . ,m}) for m ≤ n. Hence, by a similar argument as for the
infinite-dimensional case, D = `∞({1, . . . , n}) is weakly terminal in C�(A). �

The results of [21] indicate that the previous lemma might be extended to show
that C�(A) has a weak terminal object for any von Neumann algebra A. But
Theorem 15 only characterizes (locally) compact Hausdorff spaces, not the Gelfand
spectra of von Neumann algebras, which are more specific hyperstonean spaces.
We now arrive at our main result: the next theorem characterizes C� for type I
factors.

Theorem 23. For a category A, the following are equivalent:

• the category A is equivalent to C�(Mn(C))op;
• the category A is equivalent to P (n) o S(n);
• the following hold:

– A satisfies (A1)–(A5) and (A6’);
– (A,≤) satisfies (F1)–(F4) for n− 1;
– A(0, 0) is isomorphic to the symmetric group on n elements.

For a separable infinite-dimensional Hilbert space H, the following are equivalent:

• the category A is equivalent to C�(B(H))op;
• the category A is equivalent to P (X) o S(X), where X is the topological

space Spec(L∞(0, 1)) t Spec(`∞(N));
• the following hold:

– A satisfies (A1)–(A7);
– (A,≤) satisfies (P1)–(P7), giving a topological space X;
– A(0, 0) is isomorphic to the monoid S(X);
– X is homeomorphic to Spec(L∞(0, 1)) t Spec(`∞(N)).

Proof. Combine the previous three lemmas with Theorem 13, and Theorem 18
or Theorem 15. The last condition in the infinite-dimensional case is the same
as X ∼= Spec(L∞(0, 1) ⊕ `∞(N)), because Gelfand duality turns products of C*-
algebras into coproducts of compact Hausdorff spaces. �

The Gelfand spectrum of `∞(N) is the Stone-Čech compactification of the dis-
crete topology of N. In other words, Spec(`∞(N)) consists of the ultrafilters on
N. A topological space is homeomorphic to Spec(L∞(0, 1)) if and only if it is
compact, Hausdorff, totally disconnected, and its clopen subsets are isomorphic
to the Boolean algebra of (Borel) measurable subsets of the interval (0, 1) modulo
(Lebesgue) negligible ones. Notice that both spaces are compact, justifying the use
of (P7) instead of (P7’) in the previous theorem.

5.1. Finite-dimensional C*-algebras. In the finite-dimensional case, we can ac-
tually do better than factors: the next theorem characterizes C�(A) for any finite-
dimensional C*-algebra A.
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Lemma 24. If C�(Ai) has a weak terminal object Di for each i in a set I, then
the C*-direct sum

⊕
i∈I Di is a weak terminal object in C�(

⊕
i∈I Ai).

Proof. Let C ∈ C(
⊕

i∈I Ai). Then C is contained in the commutative subalgebra⊕
i∈I πi(C) of

⊕
i∈I Ai. Because each Di is weakly terminal, there exist morphisms

fi : πi(C) → Di. Therefore
⊕

i∈I fi is a morphism
⊕

i∈I πi(C) →
⊕

i∈I Di, and
thus the latter is weakly terminal in C�(

⊕
i∈I Ai). �

Theorem 25. A category A is equivalent to C�(A)op for a finite-dimensional
C*-algebra A if and only if there are n1, . . . , nk ∈ N such that:

• A satisfies (A1)–(A5) and (A6’);

• (A,≤) satisfies (F1)–(F4) for (
∑k
i=1 ni)− 1;

• A(0, 0) is isomorphic to the symmetric group on
∑k
i=1 ni elements;

•
∑k
i=1 n

2
i = dim(A).

Proof. Every finite-dimensional C*-algebra A is of the form
⊕k

i=1Mni(C) with

n =
∑k
i=1 n

2
i [5, Theorem III.1.1]. By Lemmas 21, 22, and 24, we have

C�(A) ' C�(

k⊕
i=1

Cni) ∼= C�(C(
∑k

i=1 ni)).

So by Lemma 20, C�(A)op ' P (X) o S(X) for the discrete space X with
∑k
i=1 ni

points. Now the statement follows from Theorems 13 and 18. �

6. Inclusions versus injections

This section compares C⊆ to C�. For any category C, recall that the category∫
C
P of elements of a presheaf P ∈ PSh(C) is defined as follows. Objects are

pairs (C, x) of C ∈ C and x ∈ P (C). A morphism (C, x) → (D, y) is a morphism
f : C → D in C satisfying x = P (f)(y).

Lemma 26. For any P ∈ PSh(C), the toposes PSh(C)/P and PSh(
∫
C
P ) are

equivalent.

Proof. See [17, Exercise III.8(a)]; we write out a proof for the sake of explicitness.
Define a functor F : PSh(C)/P → PSh(

∫
C
P ) by

F
(
Q

α⇒ P
)
(C, x) = α−1C (x),

F
(
Q

α⇒ P
)(

(C, x)
f→ (D, y)

)
= Q(f),

F (Q
β⇒ Q′)(C,x) = βC .

Define a functor G : PSh(
∫
C
P )→ PSh(C)/P by G(R) = (Q

α⇒ P ) where

Q(C) =
∐

x∈P (C)

R(C, x),

Q(C
f→ D) = R

(
(C,P (f)(y))

f→ (D, y)
)
,

αC(κx(r)) = x,
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where κx : R(C, x) →
∐
x∈P (C)R(C, x) is the coproduct injection. The functor G

acts on morphisms as

G(R
β⇒ R′)C =

∐
x∈P (C)

β(C,x).

Then one finds that GF (Q
α⇒ P ) = (Q

α⇒ P ), and FG(R) = R̂, where

R̂(C, x) = {x} ×R(C, x),

R̂
(
(C, x)

f→ (D, y)
)

= id ×R
(
(C,P (f)(y))

f→ (D, y)
)
.

Thus there is a natural isomorphism R ∼= R̂, and F and G form an equivalence. �

Definition 27. Define a presheaf Aut ∈ PSh(C�) by

Aut(C) = {i : C
∼=→ C ′ | C ′ ∈ C},

Aut
(
C

k
� D

)(
j : D

∼=→ D′
)

= j
∣∣
k(C)
◦ k : C

∼=→ j(k(C)).

Notice that Aut(C) contains the automorphism group of C. Also, any automor-
phism of A induces an element of Aut(C).

The category
∫
C� Aut of elements of Aut unfolds explicitly to the following.

Objects are pairs (C, i) of C ∈ C and a *-isomorphism i : C
∼=→C ′. A morphism

(C, i)→ (D, j) is an injective *-homomorphism k : C � D such that i = j ◦ k.

Lemma 28. The categories C⊆ and
∫
C� Aut are equivalent.

Proof. Define a functor F : C⊆ →
∫
C� Aut by F (C) = (C, idC) on objects and

F (C ⊆ D) = (C ↪→ D) on morphisms. Define a functor G :
∫
C� Aut → C⊆ by

G(C, i) = i(C) = cod(i) on objects and G
(
k : (C, i) → (D, j)

)
= (i(C) ⊆ j(D)) on

morphisms. Then GF (C) = C, and FG(C, i) = (i(C), idi(C)) ∼= (C, i), so that F
and G implement an equivalence. �

Theorem 29. The toposes PSh(C⊆) and PSh(C�)/Aut are equivalent.

Proof. Combining the previous two lemmas, the equivalence is implemented explic-
itly by the functor F : PSh(C�)/Aut→ PSh(C⊆) defined by

F
(
P

α⇒ Aut
)
(C) = α−1C (idC)

F
(
P

α⇒ Aut
)
(C ⊆ D) = P (C ↪→ D)

and the functor G : PSh(C⊆)→ PSh(C�)/Aut defined by G(R) =
(
P

α⇒ Aut
)
,

P (C) =
∐

i : C
∼=→C′

R(i(C)),

P
(
C

k
� D

)
=

∐
j : D

∼=→D′

R
(
j(k(C)) ⊆ j(D)

)
,

αC(κi(r)) = i.

This proves the theorem. �

Hence the topos PSh(C�) is an étendue: the unique natural transformation from
Aut to the terminal presheaf is (objectwise) epic, and the slice topos PSh(C�)/Aut
is (equivalent to) a localic topos.
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Lemma 30. If F : C → D is (half of) an equivalence, X is any object of C and
Y ∼= F (X), then the slice categories C/X and D/Y are equivalent.

Proof. Let G : D → C be the other half of the given equivalence, and pick an
isomorphism i : Y → F (X). Define a functor H : C/X → D/Y by H(a : A→ X) =
(i ◦ Fa : FA → Y ) and H(f : a → b) = Ff . Define a functor K : D/Y → C/X
by K(a : A → Y ) = (η−1X ◦ Gi ◦ Ga : GA → X) and K(f : a → b) = Gf . By
naturality of η−1 we then have KH(a) ∼= a. And because Gε = η−1 we also have
HK(a) ∼= a. �

Lemma 31. If the categories C and D are equivalent, then the toposes PSh(C)
and PSh(D) are equivalent.

Proof. Given functors F : C → D and G : D → C that form an equivalence, one
directy verifies that (−) ◦G : PSh(C)→ PSh(D) and (−) ◦ F : PSh(D)→ PSh(C)
also form an equivalence. �

Theorem 32. If C�(A) and C�(B) are equivalent categories, then C⊆(A) and
C⊆(B) are Morita-equivalent posets, i.e. the toposes PSh(C⊆(A)) and PSh(C⊆(B))
are equivalent.

Proof. If C�(A) ' C�(B), then PSh(C�(A)) ' PSh(C�(B)) by Lemma 31. More-
over, the object AutB is (isomorphic to) the image of the object AutA under this
equivalence. Hence

PSh(C⊆(A)) ' PSh(C�(A))/AutA ' PSh(C�(B))/AutB ' PSh(C⊆(B))

by Theorem 29. �

Remark 33. Hence C�(A) is an invariant of the topos PSh(C⊆(A)) as well as of
the C*-algebra A. It is not a complete invariant for the latter, however, as shown
by Lemma 22. For example, C�(Mn(C)) ' C�(Cn), but C⊆(Mn(C)) 6∼= C⊆(Cn),
and certainly Mn(C) 6∼= Cn.

We have relied heavily on equivalences of categories, and indeed a logical formula
holds in the topos PSh(C) if and only if it holds in PSh(D) for equivalent categories
C and D. Therefore one might argue that C� has too many morphisms, as com-
pared to C⊆, for toposes based on it to have internal logics that are interesting from
the point of view of foundations of quantum mechanics. Instead of equivalences,
one could consider isomorphisms of categories. This also resembles Piron’s original
question more closely. After all, an equivalence of partial orders is automatically
an isomorphism. The following theorem shows that C�(A) is a weaker invariant of
A than C⊆(A), in this sense.

Theorem 34. If C�(A) and C�(B) are isomorphic categories, then C⊆(A) and
C⊆(B) are isomorphic posets.

Proof. Let K : C�(A)→ C�(B) be an isomorphism. Suppose that C,D ∈ C�(A)
satisfy C ⊆ D. Consider the subcategory C�(D) of C�(A). On the one hand, by
Lemma 20 it is isomorphic to P (X) o S(X) for X = Spec(D), and therefore has a
faithful retraction FA of the inclusion C�(D) → C�(D)(0, 0) by Theorem 13. On
the other hand, K maps it to C�(K(D)), which is isomorphic to P (Y ) o S(Y ) for
Y = Spec(K(D)), and therefore similarly has a retraction FB . Moreover, we have
KFA = FBK. Now, by Theorem 13, inclusions in C� are characterized among all
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morphisms f by F (f) = 1. Hence FB(K(C ↪→ D)) = KFA(C ↪→ D) = K(1) = 1,
and therefore K(C) ⊆ K(D). �

It remains open whether existence of an isomorphism C⊆(A) ∼= C⊆(B) implies
existence of an isomorphism C�(A) ∼= C�(B). This question can be reduced as
follows, because every injective *-morphism factors uniquely as a *-isomorphism
followed by an inclusion. Supposing an isomorphism F : C⊆(A)→ C⊆(B), we have
C�(A) ∼= C�(B) if and only if there is an isomorphism G : C∼=(A) → C∼=(B) that
coincides with F on objects. Now, in case A is (isomorphic to) Mn(C), (so is
B, and) if C,D ∈ C(A) are isomorphic then so are F (C) and F (D): if C ∼= D,
then dim(C) = dim(D), so dim(F (C)) = dim(F (D)) because F preserves maximal
chains, and hence F (C) ∼= F (D). However, it is not clear whether this behaviour
is functorial, i.e. extends to a functor G.

Appendix A. Inverse semigroups and étendues

The direct proof of Theorem 29 follows from [13, A.1.1.7], but it can also be ar-
rived at through a detour via inverse semigroups, based on results due to Funk [9].
This appendix describes the latter intermediate results, which might be of indepen-
dent interest. Fix a unital C*-algebra A.

Definition 35. Define a set T with functions T × T ·→ T and T
∗→ T by:

T =

{
C

i
� A | C ∈ C, i is an injective *-homomorphism

}
,

(C ′
i′

� A) · (C
i
� A) = (i−1(C ′)

i′◦i
� A),

(C
i
� A)∗ = (i(C)

i−1

� A).

The multiplication is well-defined, because the inverse image of a *-algebra under
a *-homomorphism is again a *-algebra, and the inverse image of a closed set
is again a closed set, so that i−1(C) is indeed a commutative C*-algebra. The
operation * is well-defined because of Lemma 5; and on the image, i−1 is a well-
defined injective *-homomorphism. One can verify that together, these data form
an inverse semigroup; that is, multiplication is associative, and i∗ is the unique
element with ii∗i = i and i∗ii∗ = i∗.

Lemma 36. For (C
i
� A) ∈ T , we have i∗i = (C ↪→ A) and ii∗ = (i(C) ↪→ A).

Proof. For the former claim:

(C
i
� A)∗ · (C

i
� A) = (i(C)

i−1

� A) · (C
i
� A) = (i−1(i(C))

i−1◦i
� A) = (C ↪→ A).

For the latter claim:

(C
i
� A) · (C

i
� A)∗ = (C

i
� A) · (i(C)

i−1

� A)

= ((i−1)−1(C)
i◦i−1

� A) = (i(C) ↪→ A).

This proves the lemma. �

Definition 37. For any inverse semigroup T , one can define the groupoid G(T )
whose objects are the idempotents of T , i.e. the elements e ∈ T with e2 = e. A
morphism e→ f is an element t ∈ T satisfying e = t∗t and tt∗ = f .
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Proposition 38. The groupoids G(T ) and C∼= are isomorphic.

Proof. An element (C
i
� A) of T is idempotent when i−1(C) = C and i2 = i

on C. That is, the objects of G(T ) are the inclusions (C ↪→ A) of commutative
C*-subalgebras; we can identify them with C.

A morphism C → C ′ in G(T ) is an element (D
j
� A) of T such that (C ↪→ A) =

j∗j = (D ↪→ A) and (C ′ ↪→ A) = jj∗ = (j(D) ↪→ A), i.e. C = D and C ′ = j(D).
That is, a morphism C → C ′ is an injective *-homomorphism j : C � C ′ that
satisfies j(D) = C ′, i.e. that is also surjective. In other words, a morphism C → C ′

is a *-isomorphism C → C ′. �

Definition 39. For any inverse semigroup T , one can define a partial order on the
set E(T ) = {e ∈ T | e2 = e} of idempotents by e ≤ f iff e = fe.

In fact, G(T ) is not an ordered groupoid, with G(T )0 = E(T ).

Proposition 40. The posets E(T ) and C⊆ are isomorphic.

Proof. As with G(T ), objects of E(T ) can be identified with C. Moreover, there is
an arrow C → C ′ if and only if

(C ↪→ A) = (C ′ ↪→ A) · (C ↪→ A) = (C ∩ C ′ ↪→ A),

i.e. when C ∩ C ′ = C. That is, there is an arrow C → C ′ iff C ⊆ C ′. �

Also, G(T ) is always a subcategory of the following category L(T ).

Definition 41. For any inverse semigroup T , one can define the left-cancellative
category L(T ) whose objects are the idempotents of T . A morphism e → f is an
element t ∈ T satisfying e = t∗t and t = ft.

Proposition 42. The categories L(T ) and C� are isomorphic.

Proof. As with G(T ), objects of L(T ) can be identified with C. A morphism C → C ′

in L(T ) is an element (j : D � A) of T such that (C ↪→ A) = j∗j = (D ↪→ A) and

(D
j
� A) = (C ′ ↪→ A) · (D

j
� A) = (j−1(C ′)

j
� A).

That is, a morphism C → C ′ is an injective *-homomorphism j : C � A such
that C = j−1(C ′). Hence we can identify morphisms C → C ′ with injective *-
homomorphisms j : C � C ′. �

Every ordered groupoid G has a classifying topos B(G). We now describe the
topos B(G(T )) explicitly, unfolding the definitions on [9, page 487].

For a presheaf P : Cop⊆ → Set, define another presheaf P ∗ : Cop⊆ → Set by

P ∗(C) = {(j, x) | j ∈ C∼=(A)(C,C ′), x ∈ P (C ′)}.
On a morphism C ⊆ D, the presheaf P ∗ : P ∗(D)→ P ∗(C) acts as

(k : D′
∼=→ D, y ∈ P (D′)) 7−→

(
k
∣∣
C

: C
∼=→ k(C), P (k(C) ⊆ D′)(y)

)
.

An object of B(G(T )) is a pair (P, θ) of a presheaf P : Cop⊆ → Set and a natural

transformation θ : P ∗ ⇒ P . A morphism (P, θ)→ (Q, ξ) is a natural transformation
α : P ⇒ Q satisfying α◦θ = ξ ◦α∗, where the natural transformation α∗ : P ∗ ⇒ Q∗

is defined by α∗C(j, x) = (j, αC(x)).

Lemma 43. The toposes PSh(C�) and B(G(T )) are equivalent.
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Proof. Combine Proposition 42 with [9, Proposition 1.12]. Explicitly, (P, θ) in
B(G(T )) gets mapped to F : C�(A)op → Set defined by F (C) = P (C) and

F (k : C � D)(y) = θC(k : C
∼=→ k(C), P (k(C) ⊆ D)(y)).

Conversely, F in PSh(C�) gets mapped to (P, θ), where

P (C) = F (C),

P (C ⊆ D) = F (C ↪→ D),

θC(j : C
∼=→ C ′, x ∈ F (C ′)) = F (C ′

j−1

→ C ⊆ D)(x).

�

There is a canonical object S = (S, θ) in B(G(T )), defined as follows.

S(C) = {i : C � A},
S(C ⊆ D)(j : D � A) = (j

∣∣
C

: C � A).

In this case S∗ becomes

S∗(C) = {(j, i) | j : C
∼=→ C ′, i : C ′ � A},

S∗(C ⊆ D)(j, i) = (j |C : C
∼=→ j(C), i

∣∣
j(C)

: j(C) � A).

Hence we can define a natural transformation θ : S∗ ⇒ S by

θC(j, i) = i ◦ j.

The equivalence of the previous lemma maps S in B(G(T )) to D in PSh(C�):

D(C) = {i : C � A},
D(k : C � D)(j : D � A) = (j ◦ k : C � A).

Technically, the topos B(G(T )) is an étendue: the unique morphism from some
object S to the terminal object is epic, and the slice topos B(G(T ))/S is (equivalent
to) a localic topos. The following lemma makes the latter equivalence explicit.

Lemma 44. The toposes B(G(T ))/S and PSh(C⊆) are equivalent.

Proof. Combine Proposition 40 with equation (1) in [9, page 488]. �

Combining the previous two lemmas, we find:

Theorem 45. The toposes PSh(C�)/D and PSh(C⊆) equivalent. �

In our specific application, we have more information and it is helpful to reformu-
late things slightly. By Lemma 5, giving an injective *-homomorphism i : C � A is
the same as giving a *-isomorphism C ∼= C ′ for some C ′ ∈ C (by taking C ′ = i(C)).
Hence S is isomorphic to the object Aut = (Aut, θ) in B(G(T )) with θC(j, i) = i◦j.
This leads to Theorem 29.
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