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We prove that quantum theory realizes all possible (in)compatibility relations among sets of observables.
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The general impossibility of jointly implementing arbitrary
sets of measurements is a fundamental feature of quantum the-
ory. Indeed, it is a key ingredient that enables a demonstration
of the nonclassicality of quantum theory in proofs of Bell’s
theorem [1] and the Kochen-Specker theorem [2]. A finite
set of measurements is called jointly measurable or compati-
ble if there exists a single measurement whose various coarse-
grainings recover the original measurements. The problem of
characterizing the joint measurability of observables has been
studied in the literature [3, 4], and at least the joint measura-
bility of binary qubit observables has been completely charac-
terized [5, 6]. The connection between Bell inequality viola-
tions and the joint measurability of observables has also been
quantitatively studied [7, 8].

A natural question that arises when thinking about the
(in)compatibility of observables is the following: given a
set of (in)compatibility relations on a set of vertices repre-
senting observables, do they admit a quantum realization?
That is, can one write down a positive-operator valued mea-
sure (POVM) for each vertex such that the (in)compatibility
relations among the vertices are realized by the assigned
POVMs? After formally defining these notions, we answer
this question in the affirmative by providing an explicit con-
struction of POVMs for any set of (in)compatibility rela-
tions. This is our main result. We will use the terms ‘(not)
jointly measurable’ and ‘(in)compatible’ interchangeably in
this paper. Our motivation for studying this question arose
from the simplest example of joint measurability relations
that is realizable with POVMs but does not admit a realiza-
tion in quantum theory with projective measurements. This
joint measurability scenario, referred to as Specker’s sce-
nario [9, 11, 12], involves three binary measurements that
can be jointly measured pairwise but not triplewise: that
is, for the set of binary measurements {M1,M2,M3}, the
(in)compatibility relations are given by the collection of com-
patible subsets {{M1,M2}, {M2,M3}, {M1,M3}}. The re-
maining nontrivial subset (with at least two observables),
namely {M1,M2,M3}, is incompatible. This can be pictured
as a hypergraph (Fig. 1).

Specker’s scenario has been exploited to violate a gener-
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FIG. 1. Specker’s scenario.

alized noncontextuality inequality using a set of three qubit
POVMs realizing this scenario [10–12]. This novel demon-
stration of contextuality in quantum theory raises the ques-
tion whether there exist other contextuality scenarios—for ex-
ample in an observable-based hypergraph approach as in [13,
14]—that do not admit a proof of quantum contextuality us-
ing projective measurements, but do admit such a proof us-
ing POVMs. A necessary first step towards answering this
question is to figure out what compatibility scenarios are re-
alizable in quantum theory. One can then ask whether these
scenarios allow nontrivial correlations that rule out general-
ized noncontextuality [10]. We take this first step by prov-
ing that, in principle, all joint measurability hypergraphs are
realizable in quantum theory. The realizability of all joint
measurability graphs via projective measurements has been
shown recently [15]. This prompted our question whether
all joint measurability hypergraphs are realizable via POVMs.
Our positive answer includes joint measurability hypergraphs
that do not admit a realization using projective measurements.
We allow any amount of POVMs on Hilbert spaces of any di-
mension, but focus on observables with discrete spectrum and
(in)compatibility relations involving finitely many of them to
prevent measure-theoretic technicalities.

We start with a more detailed discussion of the relevant con-
cepts.
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POVMs. A positive operator valued measure (POVM) on
a Hilbert space H is a mapping x 7→ M(x) from an outcome
set X to the set of positive semidefinite operators,

M(x) ∈ B(H), M(x) ≥ 0,

such that the POVM elements M(x) sum to the identity oper-
ator, ∑

x∈X
M(x) = I.

If M(x)2 = M(x) for all x ∈ X , then the POVM becomes a
“projection valued measure”, or simply a projective measure-
ment.

Joint measurability of POVMs. A finite set of POVMs

{M1, . . . ,MN},

where measurement Mi has outcome set Xi, is said to be
jointly measurable or compatible if there exists a POVM M
with outcome set X1 × X2 × · · · × XN that marginalizes to
each Mi with outcome set Xi, meaning that

Mi(xi) =
∑

x1,...,�xi,...,xN

M(x1, . . . , xN )

for all outcomes xi ∈ Xi.
Joint measurability hypergraphs. A hypergraph consists

of a set of vertices V , and a family E ⊆ {e | e ⊆ V } of
subsets of V called edges. We think of each vertex as repre-
senting a POVM, while an edge models joint measurability of
the POVMs it links. Since every subset of a set of compatible
measurements should also be compatible, a joint measurabil-
ity hypergraph should have the property that any subset of an
edge is also an edge,

e ∈ E, e′ ⊆ e =⇒ e′ ∈ E.

Additionally, we focus on the case where each edge e is a fi-
nite subset of V . This makes a joint measurability hypergraph
into an abstract simplicial complex.

Every set of POVMs onH has such an associated joint mea-
surability hypergraph. Hence characterizing joint measurabil-
ity of quantum observables comes down to figuring out their
joint measurability hypergraph. Our main result solves the
converse problem. Namely, every abstract simplicial complex
arises from the joint measurability relations of a set of quan-
tum observables.

Theorem. Every joint measurability hypergraph admits a
quantum realization with POVMs.

Proof. We begin by proving a necessary and sufficient crite-
rion for the joint measurability of N binary POVMs Mk :=
{Ek

+, E
k
−} of the form

Ek
± :=

1

2
(I ± ηΓk) , (1)

where the Γkare generators of a Clifford algebra as in the Ap-
pendix. The variable η ∈ [0, 1] is a purity parameter. Since
Γ2
k = I , the eigenvalues of Γk are ±1, so that Ek

± is indeed
positive. The following derivation of a joint measurability cri-
terion is adapted from a proof first obtained in [11], and sub-
sequently revised in [12], for the joint measurability of a set
of noisy qubit POVMs.

Because Γk is traceless by (9), we can recover the purity
parameter η as

Tr(ΓkE
k
±) = ±η

2
d,

so that

η =
1

Nd

N∑
k=1

∑
xk∈Xk

Tr(xkΓkE
k
xk

), (2)

where we have introduced one separate outcome xk ∈ Xk :=
{+1,−1} for each measurement Mk.

If all Mk = {Ek
+, E

k
−} together are jointly measurable,

then there exists a joint POVM M = {Ex1...xN
} satisfying

Ek
xk

=
∑

x1,...��xk,...xN

Ex1...xN
.

Writing ~x := (x1, . . . , xN ) and ~Γ := (Γ1, . . . ,ΓN ), this as-
sumption together with (2) implies that

η =
1

Nd

∑
~x

Tr

[(
N∑

k=1

xkΓk

)
Ex1...xN

]

≤ 1

Nd

∑
~x

‖~x · ~Γ‖ Tr [E~x]

=
1

N
‖~x · ~Γ‖,

where the last step used the normalization
∑

~xE~x = I . Since
(~x · ~Γ)2 =

∑
kX

2
k = N · I by (10), we have ‖~x · ~Γ‖ =

√
N ,

and therefore

η ≤ 1√
N
,

a necessary condition for joint measurability of Mk.
To show that this condition is also sufficient, we consider

the joint POVM M = {E~x} given by

Ex1...xN
:=

1

2N

(
I + η ~x · ~Γ

)
. (3)

We start by showing that this indeed defines a POVM,

Ex1...xN
≥ 0,

∑
x1,...,xN

Ex1...xN
= I.

Positivity follows again from noting that the eigenvalues of
~x ·~Γ are±

√
N by (10), and normalization from

∑
~x ~x ·~Γ = 0.

Since ∑
x1,...,��xk,...,xN

Ex1...xN
=

1

2
(I + ηxkΓk)
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coincides with (1), we have indeed found a joint POVM
marginalizing to the given Mk.

Thus η ≤ 1√
N

is a necessary and sufficient condition for
the joint measurability of M1, . . . ,MN .

For arbitrary N , then, we can construct N POVMs on a
Hilbert space of appropriate dimension such that any N − 1
of them are compatible, whereas all N together are incompat-
ible: simply take M1, . . . ,MN from (1) for any purity param-
eter η satisyfing

1√
N

< η ≤ 1√
N − 1

.

For example, η = 1/
√
N − 1 will work. The above reasoning

guarantees that allN of them together are not compatible, and
also that the M1, . . . ,MN−1 are compatible. By permuting
the labels and observing that the above reasoning did not rely
on any specific ordering of the Γk, we conclude that anyN−1
measurements among the M1, . . . ,MN are compatible.

What we have established so far is that, if we are given any
N -vertex joint measurability hypergraph where every subset
of N − 1 vertices is compatible (i.e. belongs to a common
edge), but the N -vertex set is incompatible, then the above
construction provides us with a quantum realization of it.
These “Specker-like” hypergraphs are crucial to our construc-
tion. For example, for N = 3, we obtain a simple realization
of Specker’s scenario (Fig. 1). For N = 2, we simply obtain
a pair of incompatible observables. Given an arbitrary joint
measurability hypergraph, the procedure to construct a quan-
tum realization is now the following:

1. Identify the minimal incompatible sets of vertices in the
hypergraph. A minimal incompatible set is an incom-
patible set of vertices such that any of its proper sub-
sets is compatible. In other words, it is a Specker-like
hypergraph embedded in the given joint measurability
hypergraph.

2. For each minimal incompatible set, construct a quantum
realization as above. Vertices that are outside this mini-
mal incompatible set can be assigned a trivial POVM in
which one outcome is deterministic, represented by the
identity operator I . Let Hi denote the Hilbert space on
which the minimal incompatible set is realized, where i
indexes the minimal incompatible sets.

3. Having thus obtained a quantum representation of each
minimal incompatible set, we simply “stack” these to-
gether in a direct sum over the Hilbert spaces on which
each of the minimal incompatible sets are realized. On
this larger direct sum Hilbert spaceH = ⊕iHi, we then
have a quantum realization of the joint measurability
hypergraph we started with.

For any edge e ∈ E, the associated measurements are compat-
ible on everyHi, and therefore also onH. On the other hand,
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FIG. 2. A joint measurability hypergraph for N = 4.
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FIG. 3. Minimal incompatible sets for the joint measurability hyper-
graph in Fig. 2.

every e′ ⊆ V that is not an edge is contained in some mini-
mal incompatible set (or is itself already minimal), and there-
fore the associated POVMs are incompatible on someHi, and
hence also onH.

A simple example. To illustrate these ideas, we construct
a POVM realization of a simple joint measurability hyper-
graph that does not admit a representation with projective
measurements (Fig. 2). This hypergraph can be decomposed
into three minimal incompatible sets of vertices (Fig. 3).
Two of these are Specker scenarios for {M1,M2,M4} and
{M2,M3,M4}, and the third one is a pair of incompati-
ble vertices {M1,M3}. For the minimal incompatible set
{M1,M2,M4}, we construct a set of three binary POVMs,
Ak ≡ {Ak

+, A
k
−} with k ∈ {1, 2, 4} on a qubit Hilbert space

H1 given by

Ak
± :=

1

2

(
I ± 1√

2
Γk

)
, (4)

where the matrices {Γ1,Γ2,Γ4} can be taken to be the Pauli
matrices,

Γ1 = σz, Γ2 = σx, Γ4 = σy,
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similar to (8). The remaining vertex M3 can be taken to be
the trivial POVM A3 = {0, I} on H1. A similar construction
works for the second Specker scenario {M2,M3,M4} by set-
ting Bk := {Bk

+, B
k
−} with k ∈ {2, 3, 4} to be

Bk
± :=

1

2

(
I ± 1√

2
Γk

)
, (5)

where

Γ2 = σz, Γ3 = σx, Γ4 = σy

act on another qubit Hilbert space H2. The remaining ver-
tex M1 can be assigned the trivial POVM, B1 = {0, I}. The
third minimal incompatible set {M1,M3} can similarly be ob-
tained on another qubit Hilbert spaceH3 asCk := {Ck

+, C
k
−},

with k ∈ {1, 3}, given by

Ck
± :=

1

2
(I ± Γk), (6)

where now e.g. Γ1 = σz and Γ3 = σx. The remaining vertices
M2 and M4 can both be assigned the trivial POVM C2 =
C4 := {0, I} onH3.

In the direct sum Hilbert space H := H1 ⊕ H2 ⊕ H3, we
then have a POVM realization of the joint measurability hy-
pergraph of Fig. 2, given by

Mk
± := Ak

± ⊕Bk
± ⊕ Ck

±.

Discussion. The main result of this paper settles an impor-
tant question: do there exist joint measurability hypergraphs
that quantum theory does not admit? We have shown that this
is not the case. Quantum theory allows enough freedom for
any conceivable set of (in)compatibility relations between an
arbitrary number of observables to be realized in the theory.
Our simple construction is probably not the most efficient
one for a given joint measurability hypergraph: for Fig. 2,
our representation lives on a six-dimensional Hilbert space. It
remains open what the most efficient construction—requiring
the smallest Hilbert space dimension—for a given joint
measurability hypergraph is. Concerning quantum contex-
tuality, it should be interesting to see whether our sets of
POVMs can lead to nonclassical correlations in the scenarios
associated to the underlying joint measurability hypergraphs.
On the theoretical side, our result opens the door to the use in
quantum contextuality of homology theory, matroid theory,
and other powerful combinatorical machinery that relies on
hypergraphs, and vice versa.

APPENDIX: CLIFFORD ALGEBRAS

A Clifford algebra consists of a finite set of hermitian ma-
trices Γ1, . . . ,ΓN satisfying the relations1

1 Strictly speaking, this is a representation of a Clifford algebra, but the dif-
ference between algebras and their representations is not relevant here.

ΓjΓk + ΓkΓj = 2δjkI, (7)

Clifford algebras are the mathematical structure behind the
definition of spinors and the Dirac equation [16]. They
can be constructed recursively as follows [16, Sec. 16.3].
Given Γ1, . . . ,ΓN living on a Hilbert space HN , one obtains
Γ1, . . . ,ΓN+2 onHN ⊗ C2 by the following rules.

1. For each i = 1, . . . , N , substitute

Γi → Γi ⊗ σz.

2. Further, define

ΓN+1 := I ⊗ σx, ΓN+2 := I ⊗ σy.

It is easy to show that if the original Γi satisfy (7), then
so do the new ones. One can simply start the recursion with
Γ1 = 1 on the one-dimensional Hilbert space H1 := C, and
then apply the construction as often as necessary to obtain any
finite number of matrices satisfying (7). For example, a single
iteration gives the Pauli matrices

Γ1 = σz, Γ2 = σx, Γ3 = σy, (8)

while after two iterations one has

Γ1 = σz ⊗ σz, Γ2 = σx ⊗ σz,

Γ3 = σy ⊗ σz, Γ4 = I ⊗ σx, Γ5 = I ⊗ σy.

The Clifford algebra relations (7) have many interesting
consequences. For example for N ≥ 2, one has for any k
and j 6= k,

Tr(Γk) = Tr(ΓkΓjΓj) = −Tr(ΓjΓkΓj)

= −Tr(ΓkΓjΓj) = −Tr(Γk),

so that

Tr(Γk) = 0. (9)

Another consequence is that(∑
k

XkΓk

)2

=

(∑
k

X2
k

)
· I (10)

for arbitrary real coefficients Xk.
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