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Abstract. Interpretational problems with quantum mechanics can be phrased

precisely by only talking about empirically accessible information. This prompts

a mathematical reformulation of quantum mechanics in terms of classical me-
chanics. We survey this programme in terms of algebraic quantum theory.

1. Introduction

The mathematical formalism of quantum mechanics is open to interpretation.
For example, the measurement problem, the uncertainty principle, the possibility
of deterministic hidden variables, and the reality of the wave function, are all up
for debate1. Classical mechanics shares none of those interpretational questions.
This articles surveys a mathematical reformulation of quantum mechanics in terms
of classical mechanics, intended to bring the interpretational issues with the former
to a crisp head. The ideas behind this ongoing programme can be phrased in
several formulations. For definiteness we will work within algebraic quantum theory.
The rest of this introduction summarizes that framework and discusses four salient
features, before giving an overiew of the rest of this article.

Algebraic quantum theory. The traditional formalism of quantum theory holds
that the (pure) state space is a Hilbert space H, that (sharp) observables corre-
spond to self-adjoint operators on that Hilbert space, and that (undisturbed) evo-
lution corresponds to unitary operators. Algebraic quantum theory instead takes
the observables as primitive, and the state space is a derived notion. Self-adjoint
operators combine with unitaries to give all bounded operators, and these form
a so-called C*-algebra B(H). However, superselection rules mandate that not all
self-adjoint operators correspond to valid observables. Thus one considers arbitrary
C*-algebras, rather than only those of the formB(H). Nevertheless it turns out that
any C*-algebra A embeds into B(H) for some Hilbert spaceH, and in that sense C*-
algebra theory faithfully captures quantum theory. Finally, one could impose extra
conditions on a C*-algebra, leading to so-called AW*-algebras, and W*-algebras,
also known as von Neumann algebras. A good example to keep in mind is the
algebra Mn(C) of n-by-n complex matrices, or direct sums Mn1

(C)⊕· · ·⊕Mnk
(C).

To pass from pure to mixed states (density matrices), from sharp to unsharp ob-
servables (positive operator valued measurements), and from undisturbed evolution
to including measurement (quantum channels), the traditional formalism prescribes
completely positive maps. These find their natural home in the algebraic formula-
tion. States of a C*-algebra A can then be recovered as unital (completely) positive
maps A→ C. Observables with n outcomes are unital (completely) positive maps

1The latter two of course have rigorous restrictions: hidden variables by the Bell inequalities [9]

and the Kochen–Specker theorem [80], discussed below, and reality of the wave function by the
Pusey–Barrett–Rudolph theorem [90].
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Cn → A; sharp observables correspond to homomorphisms. Evolution is described
by a completely positive map A → A; undisturbed evolution corresponds to a
homomorphism.

For more information on algebraic quantum theory see [16, 79, 77, 10, 37, 99,
35, 91].

Gelfand duality. The advantage of algebraic quantum theory is that it places
quantum mechanics on the same footing as classical mechanics. The (pure) state
space in classical mechanics can be any locally compact Hausdorff topological space
X, (sharp) observables are continuous functions X → R, and evolution is given
by homeomorphisms X → X. This leads to the C*-algebra C0(X) of continuous
complex-valued functions on X vanishing at infinity; for compact X we write C(X).
A simple example is the algebra Cn, where X is a discrete space with n points.

Again we can pass from classical mechanics to the probabilistic setting of sta-
tistical mechanics by considering completely positive maps. States of C(X) can
be recovered as unital (completely) positive maps C(X) → C as before; pure
states x ∈ X correspond to homomorphisms. Observables with n outcomes are
(completely) positive maps Cn → C(X), and sharp observables correspond to ho-
momorphisms. Stochastic evolution is described by a (completely) positive map
C(X)→ C(X); deterministic evolution corresponds to a homomorphism.

Note that multiplication in C(X) is commutative, whereas B(H) was noncom-
mutative. Gelfand duality says that any commutative C*-algebra C is of the
form C(X) for some compact Hausdorff space X, called its spectrum and writ-
ten as Spec(C). That is, C ∼= C(Spec(C)) and X ∼= Spec(C(X)). Moreover, this
gives a dual equivalence of categories: if f : X → Y is a continuous function then
C(f) : C(Y ) → C(X) is a homomorphism, and conversely, if f : C → D is a ho-
momorphism, then Spec(f) : Spec(D) → Spec(C) is a continuous function. Thus
C*-algebra theory is often regarded as noncommutative topology.

For more information we refer to [36, 6, 82, 101] in addition to references above.

Bohr’s doctrine of classical concepts. To summarize, both classical systems
and quantum systems are first-class citizens that can interact in the algebraic frame-
work. Classical systems are commutative algebras C, and quantum systems are
noncommutative ones A. An example of an interaction is measurement, as given
by maps C → A. Having no superfluous unreachable outcomes in Spec(C) of
the measurement corresponds to injectivity of these maps. So the information all
possible measurements can give us about a possibly noncommutative algebra A is
its collection C(A) of commutative subalgebras C. In other words: all empirically
accessible information in a quantum system is encoded in its family of classical
subsystems. This observation is known as the doctrine of classical concepts and
dates back to Bohr [14, 62].

The main aim of this paper is to survey what can be said about the quantum
structure A based on its many classical faces C(A), explaining the title. Structures
based on C(A) should also have fewer interpretational difficulties, as mentioned
before, because they are grounded in classical mechanics.

The Kadison–Singer problem. A case in point is the long-standing but recently
solved Kadison–Singer problem [78, 87]. In a noncommutative C*-algebra, not all
observables are compatible, in the sense that they can be measured simultaneously.
What can at most be measured in an experiment are those observables in a single
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commutative subalgebra. The best an experimenter can do is repeat the experiment
to determine the values of those observables, giving a pure state of that commutative
subalgebra. Ideally this tomography procedure should determine the state of the
entire system.

The Kadison–Singer result says that this procedure indeed works in the discrete
case. Let H be a Hilbert space of countable dimension. Then B(H) has a discrete
maximal commutative subalgebra `∞(N) consisting of operators that are diagonal
in a fixed basis. The precise result is that a pure state of `∞(N) extends uniquely
to a pure state of B(H). Thus (the state of) a quantum system is characterized by
what we can learn about it from experiments, giving a positive outlook on Bohr’s
doctrine of classical concepts.

The Kochen–Specker theorem. Nevertheless, Bohr’s doctrine of classical con-
cepts should be interpreted carefully. It does not say that collections of states of
each classical subsystem assemble to a state of the quantum system. That is ruled
out by the Kochen–Specker theorem. In physical terms: local deterministic hidden
variables are impossible; one cannot assign definite values to all observables of a
quantum system in a noncontextual way, i.e. giving coherent states on classical
subsystems. In mathematical terms: Gelfand duality does not extend to noncom-
mutative algebras via C(A); this will be discussed in more detail in Section 2. More
precisely, the zero map is the only function Mn(C)→ C(X) that restricts to homo-
morphisms C → C(X) for each C ∈ C(Mn(C)) when n ≥ 3. This extends to more
general noncommutative A that do not contain a subalgebra M2(C). See [80, 91, 17].

Overview of this article. Section 2 continues in more depth the discussion of the
structure of quantum systems from the perspective just sketched. In particular, it
covers exactly how much of A can be reconstructed from C(A), and makes precise
the link between the Kochen–Specker theorem and noncommutative Gelfand dual-
ity. Section 3 shows how to interpret a quantum system A as a classical system via
C(A) by changing the rules of the ambient set theory, and discusses the surround-
ing interesting interpretational issues. Section 4 considers fine-graining. Increasing
chains of classical subsystems give more and more information about the quantum
system. We discuss C(A) from this information-theoretic point of view, called do-
main theory. Section 5 explains how to incorporate dynamics into C(A), turning it
into a so-called active lattice. It turns out that this extra information does make
C(A) into a full invariant, from which one can reconstruct A! This raises interest-
ing interpretational questions: its active lattice can be regarded as a configuration
space that completely determines a quantum system. By encoding more than static
hidden variables, it circumvents the obstructions of Section 2. To obtain an equiva-
lence for quantum systems like Gelfand duality did for classical ones, it thus suffices
to characterize the active lattices arising this way. This is examined in Section 6.
Finally, Section 7 considers to what extent the successes of the doctrine of classical
concepts in the previous sections are due to the use of algebraic quantum theory,
and to what extent they generalize to other formulations.

We have tried to keep the exposition accessible to readers with a background in
quantum theory. For many technical details we therefore point out references.
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2. Invariants

Bohr’s doctrine of classical concepts teaches that a quantum system can only be
empirically understood through its classical subsystems. These classical subsystems
should therefore contain all the physically relevant information about the quantum
system.

Definition 2.1. For a unital C*-algebra A, write C(A) for its family of commutative
unital C*-subalgebras C (with the same unit as A). We can think of it either as
a partially ordered set under inclusion, or as a diagram that remembers that the
points of the partially ordered set are C*-algebras C.

The question is then: how does the mathematical formalism of the quantum
theory of A translates into terms of C(A)? Ideally, we would like to reconstruct A
from C(A). A priori, C(A) is merely an invariant of A. This section investigates
how strong an invariant it is. The first step is to realize that, from C(A), we can
reconstruct A as a set, as well as operations between commuting elements. This
can be made precise by the notion of a piecewise C*-algebra, which is basically a
C*-algebra that forgot how to add or multiply noncommuting operators.

Definition 2.2. A piecewise C*-algebra consists of a set A with

• a reflexive and symmetric binary (commeasurability) relation � ⊆ A×A;
• elements 0, 1 ∈ A;
• a (total) involution ∗ : A→ A;
• a (total) function · : C×A→ A;
• a (total) function ‖ − ‖ : A→ R;
• (partial) binary operations +, · : � → A;

such that every set S ⊆ A of pairwise commeasurable elements is contained in a set
T ⊆ A of pairwise commeasurable elements that forms a commutative C*-algebra
under the above operations.

Of course any commutative C*-algebra is a piecewise C*-algebra. More generally,
the normal elements (those commuting with their own adjoint) of any C*-algebra A
form a piecewise C*-algebra. Notice that C(A) makes perfect sense for any piecewise
C*-algebra A. To make precise how we can reconstruct the piecewise structure of
A from C(A), we will use the language of category theory [85]. C*-algebras, with
∗-homomorphisms between them, form a category. We can also make piecewise
C*-algebras into a category with the following arrows: (total) functions f : A→ B
that preserve commeasurability and the algebraic operations, whenever defined.

The precise notion we need is that of a colimit. Suffice it to say here that a
colimit, when it exists, is a universal solution that compatibly pastes together a
given diagram into a single object. Thinking of A as the whole and C(A) as its
parts, we would like to know whether the whole is determined by the parts. The
following theorem says that C(A) indeed contains enough information to reconstruct
A as a piecewise C*-algebra.

Theorem 2.3. [11] Every piecewise C*-algebra is the colimit of its commutative
C*-subalgebras in the category of piecewise C*-algebras.

This means that the diagram C(A) determines the piecewise C*-algebra A: if
C(A) and C(B) are isomorphic diagrams, then A and B are isomorphic piecewise
C*-algebras. Moreover, the previous theorem gives a concrete way to reconstruct A



THE MANY CLASSICAL FACES OF QUANTUM STRUCTURES 5

from C(A). An important point to note here is that the reconstruction is happening
in the setting of piecewise C*-algebras. We could not have taken the colimit in
the category of commutative C*-algebras instead. Indeed, one way to reformulate
the Kochen–Specker theorem in terms of colimits is the following. The following
reformulation might not look much like the original, but it is nevertheless equivalent,
and more suited to our purposes; see also [80, p66].

Theorem 2.4. [80, 92] If n ≥ 3, then the colimit of C(Mn(C)) in the category of
commutative C*-algebras is the degenerate, 0-dimensional, C*-algebra.

In fact, the colimit of C(A) degenerates for many more C*-algebras A than just
Mn(C), such as any W*-algebra that has no direct summand C or M2(C) [12, 27].

As mentioned in the introduction, Gelfand duality is a functor from the cate-
gory of commutative C*-algebras to the category of compact Hausdorff topological
spaces. That is, a systematic way to assign a space to a C*-algebra, that respects
functions. Interpreted physically: any classical system is determined by a configu-
ration space in a way that respects operations on the system. The previous theorem
can be used to show that there is no such configuration space determining quan-
tum systems — at least, if the notion of configuration space is to be a conservative
extension of the classical notion. The latter can be made precise as a continuous
functor from the category of compact Hausdorff spaces to some other category with
a degenerate space like the empty set, more precisely, a strict initial object 0.

Theorem 2.5. [12] Suppose there exist a category conservatively extending that of
compact Hausdorff spaces and a functor F completing the following square.

commutative C*-algebras

C*-algebras

compact Hausdorff spaces

?

Spec

F

⊆ ⊆

Then F (Mn(C)) = 0 for n ≥ 3. In particular, F cannot be a dual equivalence.

This rules out many possible quantum configuration spaces that have been pro-
posed for the bottom right role in the square; in particular many generalized notions
of topological spaces, such as sets, topological spaces themselves, pointfree topo-
logical spaces, ringed spaces, quantales, toposes, categories of sheaves, and many
more [92, 12, 93]. In particular, the state space of a C*-algebra, as discussed in the
introduction, will not do for us, even though it is one of the most important tools
associated with a C*-algebra [7]. That explains why we deliberately talk about
‘configuration spaces’. In the classical case the two notions coincide. The previous
theorem shows that serious notions of quantum configuration space must be less
conservative. This points the way towards good candidates: Sections 3 and 5 will
cover two that do fit the bill.

The question of noncommutative extensions of Gelfand duality is also very inter-
esting from a purely mathematical perspective. As mentioned in the introduction,
C*-algebra theory can be regarded as noncommutative topology. Adding more
structure than mere topology leads to noncommutative geometry, which is a rich
field of study [23]. However, it takes place entirely on the algebraic side. Finding
the right notion of quantum configuration space could reintroduce geometric intu-
ition, which is usually very powerful [5, 44]. For example, in certain cases extensions
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of C(A) can be used to compute the K-theory of A, which is a way to study homo-
topies of the configuration space underlying A, that includes many local-to-global
principles [25]. Similarly, closed ideals of a W*-algebra A, that are important be-
cause they correspond to open subsets in the classical case, are in bijection with
certain piecewise ideals of C(A) [26].

So far we have considered C(A) as a diagram of parts of the whole. We finish
this section by considering it as a mere partially ordered set, where we forget that
elements have the structure of commutative C*-algebras. That is, we only consider
the shape of how the parts fit together. This information is already enough to
determine the piecewise structure of A, but as a Jordan algebra. The self-adjoint
elements of a C*-algebra form a Jordan algebra under the product a◦b = 1

2 (ab+ba).
In fact, any Jordan algebra is the direct sum of one of this form and an exceptional
one, such as quaternionic matrices Mn(H) [53]. Piecewise Jordan algebras and
their homomorphisms are defined analogously to Definition 2.2. The structure of
quantum observables leads naturally to the axioms of Jordan algebras [37].2 The
following theorem justifies that point of view.

Theorem 2.6. [49] Let A and B be C*-algebras. If C(A) and C(B) are isomorphic
partially ordered sets, then A and B are isomorphic as piecewise Jordan algebras.

A little more can be said. Any isomorphism f : C(A) → C(B) is implemented
by an isomorphism g : A → B of piecewise Jordan algebras, in the sense that
f(C) = {g(c) | c ∈ C}. In fact, this g is unique, unless A is either C2 or M2(C).
For AW*-algebras3, more is true, because of Gleason’s theorem, that we will meet
in Section 5: we can actually reconstruct the full linear structure rather than just
piecewise linear structure. Type I2 AW*-algebras are those of the form M2(C)
for a commutative AW*-algebra C. AW*-algebras with a type I2 direct summand
correspond to the exceptional case n = 2 in the Kochen–Specker Theorem 2.4. We
will call them atypical, and algebras without a type I2 direct summand typical, as
we will meet this exception often.

Corollary 2.7. [31, 50] Let A and B be typical AW*-algebras. If C(A) and C(B) are
isomorphic partially ordered sets, then A and B are isomorphic as Jordan algebras.

Whereas the C*-algebra product is associative but need not be commutative,
the Jordan product is commutative but need not be associative; commutative C*-
subalgebras correspond to associative Jordan subalgebras. Indeed, the previous
theorem generalizes to Jordan algebras in those terms [51].

3. Toposes

In this section we consider C(A) as a diagram. That is, we regard it as an
operation that assigns to each classical subsystem C ∈ C(A) of the quantum system
A a classical system C. What kind of operation is this diagram C 7→ C? We can
think of it as a set S(C) that varies with the context C ∈ C(A). Moreover, this

2Modern mathematical physics tends to prefer C*-algebras, as their theory is slightly less
complicated, and the connections to Jordan algebras are so tight anyway [53].

3An AW*-algebra is a C*-algebra A that has enough projections, in the sense that every

C ∈ C(A) is the closed linear span of its projections, and those projections work together well,

in the sense that orthogonal families in the partially ordered set of projections have least upper
bounds [10]. See also Section 5. They are more general than W*-algebras, and much of the theory

of W*-algebra generalizes to AW*-algebras, such as the type decomposition.
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contextual set respects coarse-graining: if C ⊆ D, then S(C) ⊆ S(D). That is, when
the measurement context C grows to include more observables, the information
contained in the set S(C) assigned to it grows along accordingly. Hence, these
contextual sets are functors S from C(A), now regarded as a partially ordered set,
to the category of sets and functions. The totality of all such functors forms a
category. In fact, contextual sets form a particularly nice category, namely a topos.

A topos is a category that shares a lot of the properties of the category of sets
and functions. In particular, one can do mathematics inside a topos: we may
think about objects of a topos as sets, that we may specify and manipulate using
logical formulae. Of course this internal perspective comes with some caveats.
Most notably, if a proof is to hold in the internal language of any topos, it has
to be constructive: we are not allowed to use the axiom of choice or proofs by
contradiction, and have to be careful about real numbers. We cannot go into more
detail here, but for more information on topos theory see [74].

One particular object of interest in the topos of contextual sets over C(A) is our
canonical contextual set C 7→ C. It turns out that this object is a commutative
C*-algebra, which we can formulate and prove according to the logic of the topos
of contextual sets.

Theorem 3.1. [62] Let A be a C*-algebra. In the topos of contextual sets over
C(A), the canonical contextual set C 7→ C is a commutative C*-algebra.

This procedure is called Bohrification:

(1) Start with a quantum system A.
(2) Change the rules of the ambient set theory and logic by moving to the topos

of contextual sets over C(A).
(3) The quantum system A turns into a classical system, given by the canonical

contextual set C 7→ C.

Thus we may study the quantum system A as if it were a classical system. Of
course, we lose the same information as in the previous section. For example, we
can only hope to reconstruct the Jordan structure of A from the contextual set
C 7→ C. Nevertheless, placing it in a topos of its peers opens up many possibilities.
In particular, we may try to find a configuration space inside the topos. It turns out
that Gelfand duality can be formulated so that its proof is constructive, and hence
applies inside the topos. This involves talking about locales rather than topological
spaces. We may think of a locale as a topological space that forgot it had points;
most of topology can be formulated to work for locales as well. Again we cannot
go into more detail here, but for more information on locales see [73].

Corollary 3.2. [8] Let A be a C*-algebra. In the topos of contextual sets over
C(A), there is a compact Hausdorff locale X such that the canonical contextual set
is of the form C(X).

We will call this locale X the spectral contextual set. In general it is not just
the contextual set C 7→ Spec(C). However, it does resemble that if we think about
bundles instead of contextual sets [97, 39]. Also, if we reverse the partial order on
C(A), the assignment C 7→ Spec(C) plays the role of the canonical contextual set.
So there are two approaches:

• Either one uses C(A), the canonical contextual set C 7→ C is a commutative
C*-algebra, and the spectral contextual set X does not take a canonical
form [62, 63, 18, 64, 103, 89].
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• Or one uses the opposite order, the spectral contextual set X is a locale of
the canonical form C 7→ Spec(C), and the commutative C*-algebra C(X)
does not take a canonical form [33, 34, 32, 42].

For a comparison, see [102]. For this overview article, the choice of direction does
not matter so much. In any case X is an object inside the topos of contextual
sets, and as such we may reason about it as a locale. In particular, we may wonder
whether it is a topological space, that is, whether it does in fact have enough points.
It turns out that the Kochen–Specker Theorem 2.4 can be reformulated as saying
that not only does X not have enough points, in fact it has no points at all. This
illustrates the need to use locales rather than topological spaces.

Proposition 3.3. [17] Let A be a C*-algebra satisfying the Kochen–Specker The-
orem 2.4. In the topos of contextual sets over C(A), the spectral contextual set has
no points.

Thus Bohrification turns a quantum system A into a locale X inside the topos
of contextual sets over C(A). There is an equivalence between locales X inside such
a topos over C(A), and certain continuous functions from a locale Spec(A) to C(A)
outside the topos [75]. This gives a way to cut out the whole topos detour, and
assign to the quantum system A a configuration space that we will temporarily call
Spec(A) for the rest of this section.

Proposition 3.4. [65] For any C*-algebra A, the internal locale X is determined
by a continuous function from some locale Spec(A) to C(A).

In many cases Spec(A) will in fact have enough points, i.e. will be a topological
space [65, 102] – despite Proposition 3.3. The construction A 7→ Spec(A) circum-
vents the obstruction of Theorem 2.5 for several reasons. First, when the C*-algebra
A is commutative, Spec(A) turns out to be a locale based on C(A), rather than on
A itself; therefore what we are currently denoting by Spec(A) does not match the
Gelfand spectrum of A. Second, the construction A 7→ Spec(A) is not functorial:
it only respects functions that reflect commutativity [11].

We can only touch on it briefly here, but one of the main features of building the
topos of contextual sets over C(A) and distilling the configuration space Spec(A)
is that they encode a contextual logic. This logic is intuitionistic, and therefore
very different form traditional quantum logic [18]. The latter concerns the set
Proj(A) of yes-no questions on the quantum system A; more precisely, the set of
sharp observables with two outcomes. These correspond to projections: p ∈ A
satisfying p2 = p = p∗. They are partially ordered by p ≤ q when pq = p, which
should be read as saying that p implies q. Similarly, least upper bounds in Proj(A)
are logical disjunctions [91]. AW*-algebras A are determined to a great extent
by their projections, and indeed the quantum logic Proj(A) carries precisely the
same amount of information as C(A) [56]. For more information about this topos-
theoretic approach to quantum logic, we refer to [63, 62, 64, 18, 33, 34, 32, 97, 103].

To connect contextual sets to probabilities and the Born rule, we have to translate
states of A into terms of the spectral contextual set X, and observables of A into
terms of the canonical contextual set C 7→ C. For the latter one has to resort to
approximations, as not every a ∈ A will be present in each C ∈ C(A); this process is
sometimes called daseinisation [34]. The former has a satisfying solution in terms
of piecewise states: piecewise linear (completely) positive maps A→ C.
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Theorem 3.5. [63, 96, 17] There is a bijective correspondence between piecewise
states on an AW*-algebra A, and states of the canonical contextual set C 7→ C
inside the topos of contextual sets over C(A).4

By Gleason’s theorem (see Section 5), we can say more for AW*-algebras.

Corollary 3.6. [24, 28] There is a bijective correspondence between states of a
typical AW*-algebra A, and states of the canonical contextual set C 7→ C inside the
topos of contextual sets over C(A).

Combining daseinisation with the above results gives rise to a contextual Born
rule, justifying the Bohrification procedure of Theorem 3.1 [39]. Summarizing, we
can formulate the physics of the quantum system A completely in terms of C(A)
and its topos of contextual sets, and work within there as if dealing with a classical
system.

To end this section let us mention some other related work. The ‘amount of
nonclassicality’ of the contextual logic discussed of A measures the computational
power of the quantum system A [84]. For philosophical aspects of Bohrification and
related constructions, see [61, 38]. Similar contextual ideas have been used to model
quantum numbers [4]. Finally, contextuality and the Kochen–Specker theorem can
be formulated more generally than in algebraic quantum theory [1].

4. Domains

The partially ordered set C(A) of empirically accessible classical contexts C of
a quantum system A embodies coarse-graining. As in the introduction, we think
of each C ∈ C(A) as consisting of compatible observables that we can measure
together in a single experiment. Larger experiments, involving more observables,
should give us more information, and this is reflected in the partial order: if C ⊆ D,
then D contains more observables, and hence provides more information. If A itself
is noncommutative, the best we can do is approximate it with larger and larger
commutative subalgebras C. This sort of informational approximation is studied
in computer science under the name domain theory [3, 43]. This section discusses
the domain-theoretic properties of C(A). Domain theory is mostly concerned with
partial orders where every element can be approximated by finite ones, as those are
the ones we can measure in practice, leading to the following definitions.

Definition 4.1. A partially ordered set (C,≤) is directed complete when every
ascending chain {Di} has a least upper bound

∨
iDi. An element C approximates

D, written C � D, when D ≤
∨

iDi implies C ≤ Di for any chain {Di} and
some i. An element C is finite when C � C. A continuous domain is a directed
complete partially ordered set every element of which satisfies D =

∨
{C | C � D}.

An algebraic domain is a directed complete partially ordered set every element f
which is approximated by finite ones: D =

∨
{C | C � C ≤ D}.

Lemma 4.2. [30, 96] If A is a C*-algebra, then C(A) is a directed complete partially
ordered set, in which

∨
i Ci is the norm-closure of

⋃
i Ci.

We saw in Section 2 that C(A) captures precisely the structure of A as a (piece-
wise) Jordan algebra. Order-theoretic techniques give an alternative proof of Corol-
lary 2.7. First, we can recognize the dimension of A from C(A). Recall that

4The cited references consider W*-algebras, but the proof holds for AW*-algebras because
Gleason’s theorem does so, see Section 5. The same goes for the references in Corollary 3.6.
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a partially ordered set is Artinian when: every nonempty subset has a minimal
element; every nonempty filtered subset has a least element; every descending se-
quence C1 ≥ C2 ≥ · · · eventually becomes constant. The dual notion, satisfying an
ascending chain condition, is called Noetherian.

Proposition 4.3. [83] A C*-algebra A is finite-dimensional if and only if C(A) is
Artinian, if and only if C(A) is Noetherian.

By the Artin-Wedderburn theorem, we know that any finite-dimensional C*-
algebra A is a direct sum of matrix algebras Mni

(C). It is therefore specified up
to isomorphism by the numbers {ni}, which we can extract from the partially
ordered set C(A). A partially ordered set C is called directly indecomposable when
C = C1 × C2 implies that either C1 or C2 is a singleton set.

Proposition 4.4. [83] If A =
⊕n

i=1 Mni
(C), then the C*-subalgebras Mni

(C) cor-
respond to directly indecomposable partially ordered subsets Ci of C(A), and further-
more ni is the length of a maximal chain in Ci.

The previous proposition does not generalize to arbitrary C*-algebras, which
need not have a decomposition as a direct sum of factors. One might expect that
C(A) is a domain when A is approximately finite-dimensional, as this would match
with the intuition of approximation using information practically obtainable. How-
ever, there also needs to be a large enough supply of projections for this to work;
see also Section 3. It turns out that the correct notion is that of scattered C*-
algebras [72], that is, C*-algebras A for which every positive map A→ C is a sum
of pure ones.

Theorem 4.5. [66] A C*-algebra A is scattered if and only if C(A) is a continuous
domain if and only if C(A) is an algebraic domain.

Compare this to the situation using commutative W*-subalgebras V(A) of a
W*-algebra A: V(A) is a continuous or algebraic domain only when A is finite-
dimensional [30]. Connecting back to Theorem 3.5 and Corollary 3.6, let us notice
that C can also be regarded as a domain using the interval topology: smaller
intervals approximate an ideal complex number better than larger ones. Moreover,
(piecewise) states A→ C respect such approximations: the induced functions from
C(A) to the interval domain on C are Scott continuous [30, 96].

There are several topologies one could adorn C(A) with. As any partially ordered
set, it carries the order topology. We have just mentioned the Scott topology on
directed complete partially ordered sets. For the purposes of information approx-
imation we are interested in, there is the Lawson topology, which refines both the
Scott topology and the order topology. If the domain is continuous, the topolog-
ical space will be Hausdorff. The topological space will be compact for so-called
FS-domains, which C(A) happens to be.

Corollary 4.6. [43] For a scattered C*-algebra A, the Lawson topology makes
X = C(A) compact Hausdorff. Hence to each scattered C*-algebra A we may assign
a commutative C*-algebra C(X).

The assignment A 7→ C(C(A)) is not functorial, does not leave commutative
C*-algebras invariant, and of course only works for scattered C*-algebras A in the
first place [66]. Hence there is no contradiction with Theorem 2.5.
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There are also several topologies on could put on C(A) inspired by the topology
of A itself. For example, it turns out that for A = M2(C), the set C(A) is in
bijection with the one-point compactification of the real projective plane RP2, and
one could build topologies inspired by that analogy [39]. One could also consider the
Hausdorff metric that sets the distance between C,D ∈ C(A) to be the maximum
of supc∈C infd∈D ‖c− d‖ and supd∈D infc∈C ‖c− d‖. A specific version of this is the
so-called Effros–Maréchal topology [47], which turns out to be related to the order
topology [66].

5. Dynamics

So far we have only considered kinematics of the quantum system A, by looking
for configuration spaces based on C(A). It is clear, however, that C(A) in itself is
not enough to reconstruct all of A. For a counterexample, observe that any C*-
algebra A has an opposite C*-algebra Aop in which the multiplication is reversed.
Clearly C(A) and C(Aop) are isomorphic as partially ordered sets, but there exist
C*-algebras A that are not isomorphic to Aop as C*-algebras [22]. So we need to add
more information to C(A) to be able to reconstruct A as a C*-algebra, which is the
topic of this section. To do so, we bring dynamics into the picture. For motivation
of why dynamics and configuration spaces should go together, see also [95].

We begin by viewing dynamics as a 1-parameter group. The traditional view is
that the 1-parameter group consists of unitary evolutions of the Hilbert space. In
algebraic quantum theory, this becomes a 1-parameter group of isomorphisms A→
A of the C*-algebra. We can similarly consider 1-parameter groups of isomorphisms
C(A)→ C(A) of partially ordered sets.

Definition 5.1. Let A be a C*-algebra. A 1-parameter group in A is an injection
ϕ : R → Aut(A), that assigns to each t ∈ R an isomorphism ϕt : A → A of C*-
algebras, satisfying ϕ0 = 1 and ϕt+s = ϕt ◦ ϕs. A 1-parameter group in C(A)
is an injection α : R → Aut(C(A)), that assigns to each t ∈ R an isomorphism
αt : C(A)→ C(A) of partially ordered sets, satisfying αt+s = αt ◦ αs.

The following theorem shows that both notions in fact coincide. A factor is an
algebra with trivial center, that is, a single superselection sector: Mn(C) is a factor,
but Mm(C)⊕Mn(C) is not, because its center is two-dimensional. More precisely,
the following theorem shows that the only freedom between the two notions in the
previous definition lies in permutations of the center.

Theorem 5.2. [52, 29] Let A be a typical AW*-factor. Any 1-parameter group in
C(A) is induced by a 1-parameter group in A, and vice versa.

So C*–dynamics of A can be completely justified in terms of C(A).
We now switch gear. By Stone’s theorem, 1-parameter groups of unitaries eith

in certain W*-algebras correspond to self-adjoint (possibly unbounded) observables
h. Thus we may forget about the explicit dependence on a time parameter and
consider single self-adjoint elements of C*-algebras. In fact, we will mostly be
interested in symmetries: self-adjoint unitary elments s = s∗ = s−1.

Symmetries are tightly linked to projections. Every projection p gives rise to a
symmetry 1−2p, and every symmetry s comes from a projection (1−s)/2. As they
are unitary, the symmetries of a C*-algebra A generate a subgroup Sym(A) of the
unitary group. For a commutative C*-algebra A = C(X), symmetries compose,
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so that Sym(A) consists of symmetries only. For A = Mn(C), it turns out that
Sym(A) consists of those unitaries whose determinant is 1 or −1. This ‘orientation’
is what we will add to C(A) to make it into a full invariant of A.

Having enough symmetries means having enough projections. Therefore we now
consider AW*-algebras rather than general C*-algebras. For commutative AW*-
algebras C(X), the Gelfand spectrumX is not just compact Hausdorff, but Stonean,
or extremally disconnected, in the sense that the closure of an open set is still open.
(For comparison, the Lawson topology in Corollary 4.6 is totally disconnected,
in the sense that connected components are singleton sets, which is weaker than
Stonean.)

Gelfand duality restricts to commutative AW*-algebras and Stonean spaces. An-
other way to put this is to say that the projections Proj(A) of a commutative AW*-
algebra A form a complete Boolean algebra, and vice versa, every complete Boolean
algebra gives a commutative AW*-algebra. There are versions of Definition 2.2 for
piecewise AW*-algebras, and piecewise complete Boolean algebras, too [68]. One
could also define a piecewise Stonean space, but the following lemma suffices here.

Lemma 5.3. [68] The category of piecewise complete Boolean algebras and the
category of piecewise AW*-algebras are equivalent.

The orthocomplement p 7→ 1 − p makes sense for the projections Proj(A) of
any C*-algebra A. We can now make precise what equivariance under symmetries
buys: it makes the difference between being able to recover Jordan structure and
C*-algebra structure.

Proposition 5.4. [68, 50] Let A and B be typical AW*-algebras, and suppose that
f : Proj(A) → Proj(B) preserve least upper bounds and orthocomplements. Then
f extends to a Jordan homomorphism A → B. It extends to a homomorphism if
additionally f

(
(1− 2p)(1− 2q)

)
=
(
1− 2f(p)

)(
1− 2f(q)

)
.

To arrive at a good configuration space for A, we can package all this information
up. We saw that Proj(A) embedded in Sym(A). Conversely, Sym(A) acts on
Proj(A): a symmetry s and a projection p give rise to a new projection sps. In
this way Proj(A) acts on itself, and we may forget about Sym(A). Including this
action leads to the notion of an active lattice AProj(A). More precisely, an active
lattice consists of a complete orthomodular lattice P , a group G generated by
1− 2p for p ∈ P within the unitary group of the piecewise AW*-algebra A(P ) with
projections P , and an action of G on P that becomes conjugation on A(P ). For
morphisms of active lattices, we refer to [68], but let us point out that thanks to
Lemma 5.3 they can be phrased in terms of projections alone, just like the above
definition of active lattice itself. We can now make precise that we can reconstruct
an AW*-algebra A from its active lattice AProj(A). Up to now we have mostly
considered reconstructions of the form “if some structures based on A and B are
isomorphic, then so are A and B”. The following theorem gives a much stronger
form of reconstruction. Recall that a functor F is fully faithful when it gives a
bijection between morphisms A→ B and F (A)→ F (B).

Theorem 5.5. [68] The functor that assigns to an AW*-algebra A its active lattice
AProj(A) is fully faithful.

It follows immediately that if A and B are AW*-algebras with isomorphic active
lattices AProj(A) ∼= AProj(B), then A ∼= B are isomorphic AW*-algebras. That is,
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its active lattice completely determines an AW*-algebra. We can therefore think of
them as configuration spaces. As mentioned before, Proj(A) contains precisely the
same information as C(A), so we could phrase active lattices in terms of C(A) as
well. This configuration space circumvents the obstruction of Theorem 2.5, because
active lattices are not a conservative extension of the ‘passive lattices’ coming from
compact Hausdorff spaces. Another thing to note about the previous theorem is
that it has no need to except atypical cases like M2(C). Finally, let us point out
that functoriality of A 7→ AProj(A) is nontrivial [67].

To get a good notion of configuration space for general quantum systems, we
would now like to pass from AW*-algebras to C*-algebras. This last step is analo-
gous to refining an underlying carrying set to a topological space. If C*-algebras are
‘noncommutative topological spaces’, then certain (so-called atomic) AW*-algebras
are ‘noncommutative discrete spaces’, that is, ‘noncommutative sets’. This motiva-
tion is why we chose to work with AW*-algebras rather than the more well-known
W*-algebras; see also [69, 81]. The theory of AW*-algebras is entirely algebraic,
whereas the theory of (commutative) W*-algebras involves a good deal of measure
theory. For example, Gelfand spectra of commutative AW*-algebras are Stonean
spaces, whereas Gelfand spectra of commutative W*-algebras are so-called hyper-
stonean spaces; they additionally have to satisfy a measure-theoretic condition that
seems divorced from topology. A similar downside occurs with projections: the
projection lattice of a commutative W*-algebra is not just a complete Boolean al-
gebra, it additionally has to satisfy a measure-theoretic condition. In particular,
projections of an enveloping AW*-algebra should correspond to certain ideals in a
C*-algebra, without needing measure-theoretic intricacies [44, 5].

Much of the theory of W*-algebra finds its natural home in AW*-algebras at any
rate. As a case in point, consider Gleason’s theorem. It states that any probability
measure on Proj(Mn(C)) extends to a positive linear function Mn(C) → C when
n > 2. Roughly speaking: any quantum probability measure µ is of the form µ(p) =
Tr(ρp) for some density matrix ρ. In the algebraic formulation: any probability
measure Proj(A) → C extends to a state A → C [86]. One can even replace C
by an arbitrary operator algebra B [15, 48]. Thanks to Proposition 5.4, Gleason’s
theorem generalizes to all typical AW*-algebras. A map between AW*-algebras is
normal when it preserves least upper bounds of projections.

Corollary 5.6. [50] Any normal piecewise Jordan homomorphism between typical
AW*-algebras is a Jordan homomorphism.

This fact, that piecewise linear functions between AW*-algebras are actually
linear functions, drove many results in Sections 2 and 3.

6. Characterization

Now that we have seen that most of the algebraic quantum theory of A can
be phrased in terms of C(A) only, let us try to axiomatize C(A) itself. Given any
partially ordered set, when is it of the form C(A) for some quantum system A? An
answer to this question would for example make Theorem 5.5 into an equivalence
of categories, bringing configuration spaces for quantum systems on a par with
Gelfand duality for classical systems. An axiomatization would also open up the
possibility of generalizations, that might go beyond algebraic quantum theory.
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We start with the classical case, of commutative C*-algebras C(X). By Gelfand
duality, any C ∈ C(C(X)) corresponds to a quotient X/∼. In turn, the equiva-
lence relation corresponds to a partition of X into equivalence classes. Partitions
are partially ordered by refinement: if C ⊆ D, then any equivalence class in the
partition corresponding to D is contained in an equivalence class of the partition
corresponding to C. Hence axiomatizing C(C(X)) comes down to axiomatizing
partition lattices, and this has been well-studied, both in the finite-dimensional
case [13, 98], and in the general case [41]. The list of axioms is too long to re-
produce here, but let us remark that it is based on a definition of points of the
partition lattice. In the case of a finite partition lattice, the points are simply the
atoms, that is, the minimal nonzero elements. The other axioms are geometric in
nature.

Lemma 6.1. [56] A partially ordered set is isomorphic to C(C(X)) for a compact
Hausdorff space X if and only if it is opposite to a partition lattice whose points
are in bijection with X.

Thanks to (a variation of) Lemma 5.3, the same strategy applies to piecewise
Boolean algebras B. Write C(B) for the partially ordered set of Boolean subalgebras
of B. The downset of an element D of a partially ordered set consists of all elements
C ≤ D. In fact, the idea that any quantum logic (piecewise Boolean algebra) should
be seen as many classical sublogics (Boolean algebras) pasted together, is not new,
and drives much of the research in that area [45, 40, 11].

Theorem 6.2. [57] A partially ordered set is isomorphic to C(B) for a piecewise
Boolean algebra B if and only if:

• it is an algebraic domain;
• any nonempty subset has a greatest lower bound;
• a set of atoms has an upper bound whenever each pair of its elements does;
• the downset of each compact element is isomorphic to the opposite of a

finite partition lattice.

Just like in Section 3, if we consider C(B) as a diagram rather than a mere
partially ordered set, we can reconstruct B. Starting from just the partially ordered
set C(B), the same issues surface as in Sections 2 and 5, about Jordan structure
verses full algebra structure. In the current piecewise Boolean setting, it can be
solved neatly by adding an orientation to C(B) [57]. This comes down to making a
consistent choice of atom in the Boolean subalgebras with two atoms, corresponding
to the atypical cases for AW*-algebras before.

Returning to C*-algebras, Lemma 6.1 reduces the question of characterizing C(A)
for a C*-algebra A to finding relationships between C(A) and C(C) for C ∈ C(A).
One prototypical case where we know such a relationship is for A = Mn(C). Namely,
inspired by the previous section, there is an action of the unitary group U(n) on
C(A): if u ∈ U(n) is some rotation, and C ∈ C(A) is diagonal in some basis, then
also the rotation uCu∗ is diagonal in some basis and therefore is in C(A) again. In
fact, any C ∈ C(A) will be a rotation of an element of C(A) that is diagonal in
the standard basis. Therefore, we can recognize C(Mn(C)) as a semidirect product
of C(Cn) and U(n). Such semidirect products can be axiomatized; for details, we
refer to [56]. This can be generalized to C*-algebras A that have a weakly terminal
commutative C*-subalgebra D, in the sense that any C ∈ C(A) allows an injection
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C → D. This includes all finite-dimensional C*-algebras, as well as algebras of all
bounded operators on a Hilbert space.

However, the mere partially ordered set C(A) cannot detect this unitary action.
For this we need injections rather than inclusions. Therefore we now switch to a
category C�(A) of commutative C*-subalgebras, with injective ∗-homomorphisms
between them. The following theorem characterizes this category C�(A) up to
equivalence. This is the same as characterizing C(A) up to Morita equivalence,
meaning that it determines the topos of contextual sets on C(A) discussed in Sec-
tion 3 up to categorical equivalence, rather than determining C(A) itself up to
equivalence. To phrase the following theorem, we introduce the monoid S(X) of
continuous surjections X → X on a compact Hausdorff space X. In the finite-
dimensional case, this is just the symmetric group S(n). Because of our switch
from C(A) to C�(A), it plays the role of the unitary group we need.

Theorem 6.3. [56] Suppose that a C*-algebra A has a weakly terminal commuta-
tive C*-subalgebra C(X). A category is equivalent to C�(A) if and only if it is a
semidirect product of C(C(X)) and S(X).

The unitary action can also be used to determine C(A) for small A such as
Mn(C). Combining Lemma 6.1 with Theorem 6.3, we see that k-dimensional C
in C(Mn(C)) are parametrized by a partition of n into k nonempty parts together
with an element of U(n). Two such parameters induce the same subalgebra when
the unitary permutes equal-sized parts of the partition. This can be handled neatly
in terms of Young tableaux and Grassmannians, see [63, 39].

To end this section, let us conclude that characterizing C(A) comes down to
characterizing the unitary group U(A). Surprisingly, this question is open, even in
the finite-dimensional case. All that seems to be known is that, up to isomorphism,
U(1) is the unique nondiscrete locally compact Hausdorff group all of whose proper
closed subgroups are finite [88]. This characterization does not generalize to finite
dimensions higher than one, although closed subgroups have received study in the
infinite-dimensional case [76]. Finally, the characterization of C(B(H)) for Hilbert
spaces H could give rise to a description of the category of Hilbert spaces in terms
of generators and relations [55].

7. Generalizations

As mentioned in the introduction, the idea to describe quantum structures in
terms of their classical substructures applies very generally. This final section dis-
cusses to what extent algebraic quantum theory is special, by considering a gener-
alization as an example of another framework.

Namely, we consider categorical quantum mechanics [70]. This approach formu-
lates quantum theory in terms of the category of Hilbert spaces, and then abstracts
away to more general categories with the same structures. Specifically, what is re-
tained is the notion of a tensor product to be able to build compound systems, the
notion of entanglement in the form of objects that form a duality under the tensor
product, and the notion of reversibility in the sense that every map between Hilbert
spaces has an adjoint in the reverse direction. It turns out that these primitives
suffice to derive a lot of quantum-mechanical features, like scalars, the Born rule,
no-cloning, quantum teleportation, and complementarity. As a case in point, one
can define so-called Frobenius algebras in any category with this structure, which
is important because of the following proposition.
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Theorem 7.1. [100, 2] Finite-dimensional C*-algebras correspond to Frobenius
algebras in the category of Hilbert spaces.

The point is that these notions make sense in any category with a tensor product,
entanglement, and reversibility. A different example of such a category is that of
sets with relations between them. That is, objects are sets X, and arrows X → Y
are relations R ⊆ X × Y . For the tensor product we take the Cartesian product
of sets, which makes every object dual to itself and thereby fulfulling the structure
of entanglement, and time reversibility is given by taking the opposite relation
R† ⊆ Y ×X. Two relations R ⊆ X×Y and S ⊆ Y ×Z compose to S ◦R = {(x, z) |
∃y : (x, y) ∈ R, (y, z) ∈ S}. We may regard this as a toy example of possibilistic
quantum theory : rather than complex matrices, we now care about entries ranging
over {0, 1}. A groupoid is a small category every arrow of which is an isomorphism;
they may be considered as a multi-object generalization of groups.

Theorem 7.2. [58] Frobenius algebras in the category of sets and relations corre-
spond to groupoids.

Algebraic quantum theory, as set out in the introduction, makes perfect sense
in categories like that of sets and relations, too [21]. However, in this generality it
is not true that all classical subsystems determine a quantum system at all. The
previous theorem provides a counterexample. In commutative groupoids there can
only be arrows X → X, for arrows g : X → Y between different objects cannot
commute with their inverse, as g ◦ g−1 = 1Y and g−1 ◦ g = 1X . Therefore, any
arrow between different objects in a groupoid can never be recovered from any
commutative subgroupoid.

Similarly, quantum logic, as discussed in Section 3, makes perfect sense in this
general categorical setting [59]. Moreover, it matches neatly with algebraic quantum
theory via taking projections [54]. However, it is no longer true that commutative
subalgebras correspond to Boolean sublattices. Again, a counterexample can be
found using Theorem 7.2 [20].

One could object that commutativity might be too narrow a notion of classical-
ity. But consider broadcastability instead: classical information can be broadcast,
but quantum information cannot. More precisely: a Frobenius algebra A is broad-
castable when there exists a completely positive map A → A ⊗ A such that both
partial traces are the identity A → A. Again, this makes perfect sense in general
categories. It turns out that the broadcastable objects in the category of sets and
relations are the groupoids that are totally disconnected, in the sense that there are
no arrows g : X → Y between different objects [70]. So even with this more liberal
operational notion of classicality, classical subsystems do not determine a quantum
system.

This breaks a well-known information-theoretic characterization of quantum the-
ory, that is phrased in terms of C*-algebras [19, 60]. Hence there is something about
(algebraic) quantum theory beyond the categorical properties of having tensor prod-
ucts, entanglement, and reversibility, that underwrites Bohr’s doctrine of classical
concepts. It relates to characterizing unitary groups, as discussed in Section 6. We
close this overview by raising the interesting interpretational question of just what
this defining property is.
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