ON DISCRETIZATION OF C*-ALGEBRAS

CHRIS HEUNEN AND MANUEL L. REYES

ABSTRACT. The C*-algebra of bounded operators on the separable Hilbert space cannot be mapped to a W*-algebra in such a way that each unital commutative C*-subalgebra C(X) factors normally through $\ell^{\infty}(X)$. Consequently, there is no faithful functor discretizing C*-algebras to W*-algebras this way.

1. INTRODUCTION

In operator algebra it is common practice to think of a C*-algebra as a noncommutative analogue of a topological space, and to think of a W*-algebra as a noncommutative analogue of a measure space. In particular, just like any topological space embeds into a discrete one, atomic W*-algebras are often viewed as 'noncommutative sets' that can carry the 'noncommutative topology' of a C*-subalgebra, see *e.g.* [7, 1]. To make this precise, one needs a way to embed a C*-algebra into a W*-algebra. A standard way is the universal enveloping W*-algebra given by the adjunction

between the category of unital C*-algebras with unital *-homomorphisms and the subcategory of W*-algebras with normal *-homomorphisms, see [6, 3.2]. This construction has the drawback that the resulting W*-algebra is very large. It does not restrict to the commutative case as the embedding $\eta: C(X) \to \ell^{\infty}(X)$. This leads to the following notion, in keeping with the recent programme of taking commutative subalgebras seriously [18, 4, 19, 3] that has recently been successful [11, 9, 12, 10].

Definition. A discretization of a unital C*-algebra A is a unital *-homomorphism $\phi: A \to M$ to a W*-algebra M whose restriction to each commutative unital C*-subalgebra $C \cong C(X)$ factors normally through $\ell^{\infty}(X)$, so that the following diagram commutes.

$$\begin{array}{ccc} A & & \stackrel{\phi}{\longrightarrow} & M \\ \uparrow & & \uparrow \text{normal } *\text{-homomorphism} \\ C(X) & & \stackrel{\eta}{\longrightarrow} & \ell^{\infty}(X) \end{array}$$

This short note proves that this construction degenerates in prototypical cases.

Date: February 26, 2015.

²⁰¹⁰ Mathematics Subject Classification. 46L30, 46L85, 46M15.

Key words and phrases. noncommutative topology, discrete space, atomic measure.

C. Heunen was supported by EPSRC Fellowship EP/L002388/1.

M. L. Reyes was supported by NSF grant DMS-1407152.

Theorem. If $\phi: B(H) \to M$ is a discretization for a separable infinite-dimensional Hilbert space H, then M = 0.

Stated more concretely, this obstruction means that A = B(H) has no representation on a Hilbert space $K \neq 0$ such that every (maximal) commutative *-subalgebra of A has a basis of simultaneous eigenvectors in K.

Consequently, discretization cannot be made into a faithful functor.

Corollary. Let $F: \mathbf{Cstar} \to \mathbf{Wstar}$ be a functor, and $\eta_A: A \to F(A)$ natural unital *-homomorphisms. Suppose there are isomorphisms $F(C(X)) \cong \ell^{\infty}(X)$ for each compact Hausdorff space X that turn $\eta_{C(X)}$ into the inclusion $C(X) \to \ell^{\infty}(X)$. If a unital C*-algebra A has a unital *-homomorphism $f: B(H) \to A$ for an infinitedimensional Hilbert space H, then F(A) = 0.

The proof of the Theorem relies on the existence of normal states in W*algebras. Intriguingly, this means that it does not rule out faithful functors Fas above from **Cstar** to the category of AW*-algebras (see [12, Section 2] for the appropriate morphisms). A rather different approach to the problem of extending the embeddings $C(X) \rightarrow \ell^{\infty}(X)$ to noncommutative C*-algebras has recently appeared in [16]. We also remark that since the identity functor discretizes all finite-dimensional C*-algebras, this truly infinite-dimensional obstruction is independent of the Kochen-Specker theorem, a key ingredient in some previous spectral obstruction results [18, 4].

The rest of this note proves the Theorem and its Corollary.

2. Proof

We begin with a lemma that characterizes atomic measures. Let (X, Σ) be measurable space with a finite measure μ . Recall that an *atom* for μ is a measurable set $V \in \Sigma$ such that $\mu(V) > 0$ and for every measurable $U \subseteq V$, either $\mu(U) = 0$ or $\mu(U) = \mu(V)$. It follows that for every decomposition of V into a finite (or countably infinite) disjoint union of measurable sets $V = \bigsqcup V_i$, one of the V_i has measure $\mu(V)$ and the rest have measure zero.

The measure μ is said to be *diffuse* if it has no atoms, and *atomic* if every nonnegligible measurable set contains an atom. Define an *interval* for a finite measure μ on (X, Σ) to be a one-parameter family of measurable sets $U_t \in \Sigma$ with $t \in [0, M]$ for a positive real number M such that $s \leq t$ implies $U_s \subseteq U_t$ and $\mu(U_t) = t$ for all $s, t \in [0, M]$.

Lemma 1. Let (X, Σ, μ) be a finite measure space. Then (X, Σ, μ) has an interval if and only if μ is not atomic.

Proof. First suppose that μ is not atomic. Any finite measure μ decomposes uniquely as $\mu = \mu_a + \mu_d$ into an atomic measure μ_a and a diffuse measure μ_d [14, 2.6]. Moreover, μ_a and μ_d are singular [13, 3.3]. This means [8, p126] that (X, Σ, μ) is a disjoint union of an atomic measure space and a diffuse one. The latter is nonempty by assumption and we may restrict to it without loss of generality. But nonempty finite diffuse measure spaces always have an interval, see [2, Lemma 2.5] or [5, Lemma 4.1].

Now suppose that $\{U_t \mid t \in [0, M]\}$ is an interval in (X, Σ, μ) . Scaling μ by 1/M and restricting to S_M , we may assume M = 1 and $U_1 = X$. For any positive integer n, the sets $K_1 = U_{1/n}$ and $K_i = (U_{i/n}) \setminus (U_{(i-1)/n})$ for $i = 2, \ldots, n$ partition

X into n disjoint subsets of measure 1/n each. If V were an atom of μ , because $V = \bigsqcup_n V \cap K_n$ it must be the case that $\mu(V) = \mu(V \cap K_i) \le \mu(K_i) \le 1/n$ for some *i*. As *n* was arbitrary, this means $\mu(V) = 0$. Thus μ is not atomic. \Box

Now let X be a compact Hausdorff space, and let ψ be a state on C(X). We say that ψ is *atomic* if $\psi = \sum \lambda_{\rho}\rho$ for pure states ρ of C(X) and nonnegative scalars λ_{ρ} with $\sum \lambda_{\rho} = 1$. The Riesz-Markov theorem shows that $\psi(f) = \int_X f d\mu$ for a unique regular Borel probability measure μ on X. Any atoms of such a measure μ must be singleton sets $\{x\}$ for $x \in X$ [15, 2.IV]. Note that the pure states ρ on C(X) precisely correspond to Dirac measures δ_x for $x \in X$. Thus the state ψ is atomic if and only if the corresponding probability measure μ is atomic, in which case it has the form $\mu = \sum_{x \in X} \lambda_x \delta_x$ for scalars $\lambda_x \ge 0$ with $\sum \lambda_x = 1$.

For the separable Hilbert space $H = L^2[0, 1]$, write A = B(H) for the algebra of bounded operators on H, write $C = L^{\infty}[0, 1]$ for the corresponding continuous maximal abelian subalgebra of A, and write D for the discrete maximal abelian subalgebra of A generated as a W*-algebra by the projections q_n onto the Fourier basis vectors $e_n = \exp(2\pi i n)$ for $n \in \mathbb{Z}$.

Lemma 2. Let $\psi: A \to \mathbb{C}$ be a state. If its restriction to D is pure, then its restriction to C cannot be atomic.

Proof. By Kadison–Singer [17], a pure state on D extends uniquely to a state on A via the canonical conditional expectation $E: A \to D$ that sends an operator a to its diagonal part $\sum q_n aq_n$ with respect to the Fourier basis e_n . So $\psi = \psi \circ E$, as we assumed ψ to be pure on D. Letting p_t be the projection $\chi_{[0,t]}$ in C for $t \in [0,1]$:

$$\begin{aligned} \langle p_t e_n, e_n \rangle &= \langle \chi_{[0,t]} \cdot \exp(2\pi i n -), \exp(2\pi i n -) \rangle \\ &= \int_0^1 \chi_{[0,t]}(x) \cdot e^{2\pi i n x} \cdot \overline{e^{2\pi i n x}} \, dx \\ &= \int_0^1 \chi_{[0,t]}(x) |e^{2\pi i n x}|^2 \, dx \\ &= \int_0^t 1 \, dx \\ &= t. \end{aligned}$$

Thus $E(p_t) = \sum q_n p_t q_n = \sum \langle p_t e_n, e_n \rangle q_n = \sum t q_n = t \cdot 1_A$. It now follows that $\psi(p_t) = \psi(E(p_t)) = \psi(t \cdot 1_A) = t$.

Under an isomorphism $C \cong C(X)$ for a compact Hausdorff space X, the projections in the chain $\{p_t\}$ correspond to characteristic functions for clopen subsets $\{U_t\}$ of X and the state ψ corresponds to a state $f \mapsto \int_X f d\mu$ for some regular Borel measure μ on X. The condition $\psi(p_t) = t$ means $\mu(U_t) = \int \chi_{U_t} d\mu = t$, making $\{U_t \mid t \in [0, 1]\}$ an interval of clopen sets in X. Lemma 1 implies that μ is not atomic, so ψ cannot be atomic.

The first two lemmas suffice to establish the Theorem.

Proof of Theorem. Let M be a W*-subalgebra of B(K) for a Hilbert space K. Write $C \cong C(X)$ and $D \cong C(Y)$ for compact Hausdorff spaces X and Y. The discretization $\phi: A \to M \subseteq B(K)$ is accompanied by the following commutative diagram.

$$C = L^{\infty}[0,1] \cong C(X) \longrightarrow \ell^{\infty}(X)$$

$$B(H) = A \xrightarrow{\phi} M \subseteq B(K)$$

$$\uparrow g$$

$$D = \ell^{\infty}(\mathbb{Z}) \cong C(Y) \longrightarrow \ell^{\infty}(Y)$$

Given $y \in Y$, the atomic projection $\chi_{\{y\}} \in \ell^{\infty}(Y)$ has image $q_y = g(\chi_{\{y\}}) \in M$. Suppose for a contradiction that $q_y \neq 0$. Choose a unit vector $v_y \in K$ in its range. This induces a state $\psi_y(a) = \langle av_y, v_y \rangle$ on A. For $d \in D$, considering $d \in C(Y) \subseteq \ell^{\infty}(Y)$ we have $d\chi_{\{y\}} = d(y)\chi_{\{y\}}$, and thus:

$$\begin{split} \psi_y(d) &= \langle dv_y, v_y \rangle \\ &= \langle dq_y v_y, v_y \rangle \\ &= \langle d(y)q_y v_y, v_y \rangle \\ &= \langle d(y)v_y, v_y \rangle \\ &= d(y) \|v_y\|^2 \\ &= d(y). \end{split}$$

That is, ψ_y restricts to the pure state $d \mapsto d(y)$ on D. It follows from Lemma 2 that ψ_y is not atomic on C.

On the other hand, for $x \in X$ consider the atomic projection $\chi_{\{x\}} \in \ell^{\infty}(X)$ and its image $p_x = h(\chi_{\{x\}}) \in M$. Since $\sum p_x = 1$, we can decompose $K = \bigoplus_x K_x$ along the ranges K_x of p_x . Write $v_y = \sum \lambda_x w_x$ for unit vectors $w_x \in K_x$ and $\lambda_x \in \mathbb{C}$ satisfying $\sum_x |\lambda_x|^2 = 1$. For $c \in C$, we have $cp_x = c(x)p_x$ (considering $c \in C(X) \subseteq \ell^{\infty}(X)$ as before) and $cw_x = cp_x w_x = c(x)w_x$, so that:

$$\begin{aligned} (c) &= \langle cv_y, v_y \rangle \\ &= \sum_{x,x'} \overline{\lambda_x} \lambda_{x'} \langle cw_x, w_{x'} \rangle \\ &= \sum_{x,x'} \overline{\lambda_x} \lambda_{x'} c(x) \langle w_x, w_{x'} \rangle \\ &= \sum_x |\lambda_x|^2 c(x). \end{aligned}$$

Thus the restriction of ψ_y to C is an atomic state.

 ψ_y

This is a contradiction, so every atomic projection $\chi_{\{y\}} \in \ell^{\infty}(Y)$ must have image $g(\chi_{\{y\}}) = q_y = 0$ in M. Hence the normal *-homomorphism $g: \ell^{\infty}(Y) \to M$ is the zero map. But then $1_M = \phi(1_A) = g(\eta(1_A)) = g(1_Y) = 0$, so M = 0. \Box

We thank an anonymous referee for informing us that the Theorem can be proved without the full force of Kadison–Singer, as follows. Identifying the algebra $C(\mathbb{T})$ of continuous functions on the unit circle \mathbb{T} with the subalgebra of C[0, 1] satisfying f(0) = f(1), it is known that $C(\mathbb{T})$ supports unique extensions of pure states of the discrete masa $D \subseteq B(H)$. (Indeed, the algebra of Fourier polynomials—or more generally, the Wiener algebra $A(\mathbb{T})$ —is a dense subalgebra of $C(\mathbb{T})$ and lies in the algebra $M_0 \subseteq B(H)$ of operators that are l_1 -bounded in the sense of Tanbay [20] with respect to the Fourier basis $\{e_n \mid n \in \mathbb{Z}\}$. Thus $C(\mathbb{T})$ lies in the norm closure

4

M of M_0 , and the results of [20] imply that pure states on D extend uniquely to M.) A computation as in Lemma 2 shows that this extended state corresponds to the Lebesgue measure on \mathbb{T} , hence is not atomic on $C(\mathbb{T})$. The Theorem may now be proved in essentially the same manner, replacing the algebra C with $C(\mathbb{T})$.

The proof of the Corollary uses the following 'stability' of discretizations.

Lemma 3. Discretizations are stable under precomposition with *-homomorphisms and postcomposition with normal *-homomorphisms: if $\phi: B \to M$ discretizes B, $f: A \to B$ is a morphism in **Cstar**, and $g: M \to N$ is a morphism in **Wstar**, then $g \circ \phi \circ f$ discretizes A.

Proof. If $C(X) \cong C \subseteq A$ is a commutative C*-subalgebra, then so is $C(Y) \cong f[C] \subseteq B$, making the top squares of the following diagram commute (where $f': Y \to X$ is a continuous function between compact Hausdorff spaces derived from $f: C \to f[C]$ via Gelfand duality).

The bottom triangle commutes by naturality of η . As all dashed arrows are normal, so is their composite.

Proof of Corollary. We first prove that $\phi = \eta \circ f \colon B(H) \to F(A)$ is a discretization. If C(X) is a commutative C*-subalgebra of B(H), its image under f is a commutative C*-subalgebra of A and hence of the form C(Y). Consider the following diagram.

The top-left square commutes by definition, and the top-right square commutes by naturality of η . The bottom-left square commutes by naturality of the inclusion $C(X) \hookrightarrow \ell^{\infty}(X)$, and the bottom-right triangle commutes by assumption. Finally, the dashed arrows are normal: the horizontal one because it is in the image of the functor ℓ^{∞} , the vertical one because it is in the image of the functor F, and the diagonal one because it is an isomorphism. Thus ϕ is a discretization.

Since *H* is infinite-dimensional, it is unitarily isomorphic to $L^2[0,1] \otimes H$. This gives rise to a unital *-homomorphism $i: B(L^2[0,1]) \to B(L^2[0,1]) \otimes B(H) \cong B(H)$

given by $i(a) = a \otimes 1$. Precomposing ϕ with this map induces a discretization $\phi \circ i \colon B(L^2[0,1]) \to F(A)$ according to Lemma 3, so the Theorem guarantees that F(A) = 0.

We leave open whether there exists any state on B(H) that restricts to an atomic state on each (maximal) abelian *-subalgebra.

References

- C. A. Akemann. The general Stone-Weierstrass problem. Journal of Functional Analysis, 4:277–294, 1969.
- [2] C. Bennett and R. C. Sharpley. Interpolation of operators. Academic Press, 1988.
- [3] B. van den Berg and C. Heunen. Noncommutativity as a colimit. Applied Categorical Structures, 20(4):393–414, 2012.
- B. van den Berg and C. Heunen. Extending obstructions to noncommutative functorial spectra. *Theory Appl. Categ.*, 29:No. 17, 457–474, 2014.
- [5] J. C. Cortissoz. On the Skorokhod representation theorem. Proceedings of the American Mathematical Society, 135(12):3995–4007, 2007.
- [6] J. Dauns. Categorical W*-tensor product. Transactions of the American Mathematical Society, 166:439–456, 1972.
- [7] R. Giles and H. Kummer. A non-commutative generalization of topology. Indiana University Mathematics Journal, 21(1):91–102, 1971.
- [8] P. R. Halmos. *Measure theory*. Springer, 1950.
- [9] J. Hamhalter. Isomorphisms of ordered structures of abelian C*-algebras. Journal of Mathematical Analysis and Applications, 383:391–399, 2011.
- [10] J. Hamhalter. Dye's theorem and Gleason's theorem for AW*-algebras. Journal of Mathematical Analysis and Applications, 422(2):1103–1115, 2015.
- [11] C. Heunen, N. P. Landsman, and B. Spitters. A topos for algebraic quantum theory. Communications in Mathematical Physics, 291:63–110, 2009.
- [12] C. Heunen and M. L. Reyes. Active lattices determine AW*-algebras. Journal of Mathematical Analysis and Applications, 416:289–313, 2014.
- [13] R. A. Johnson. On the Lebesgue decomposition theorem. Proceedings of the American Mathematical Society, 18(4):628–632, 1967.
- [14] R. A. Johnson. Atomic and nonatomic measures. Proceedings of the American Mathematical Society, 25:650–655, 1970.
- [15] J. D. Knowles. On the existence of non-atomic measures. Mathematika, 14:62–67, 1967.
- [16] A. Kornell. V*-algebras. arXiv:1502.01516, 2015.
- [17] A. Marcus, D. A. Spielman, and N. Srivastava. Interlacing families II: mixed characteristic polynomials and the Kadison–Singer problem. arXiv:1306.3969, to appear in Annals of Mathematics, 2015.
- [18] M. L. Reyes. Obstructing extensions of the functor Spec to noncommutative rings. Israel J. Math., 192(2):667–698, 2012.
- [19] M. L. Reyes. Sheaves that fail to represent matrix rings. In *Ring theory and its applications*, volume 609 of *Contemp. Math.*, pages 285–297. American Mathematical Society, 2014.
- [20] B. Tanbay. Pure state extensions and compressibility of the l₁-algebra. Proceedings of the American Mathematical Society, 113(3):707–713, 1991.

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF OXFORD, WOLFSON BUILDING, PARKS ROAD, OX1 3QD, OXFORD, UK

E-mail address: heunen@cs.ox.ac.uk

Department of Mathematics, Bowdoin College, Brunswick, ME 04011–8486, USA E-mail address: reyes@bowdoin.edu