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Abstract. The C*-algebra of bounded operators on the separable Hilbert

space cannot be mapped to a W*-algebra in such a way that each unital com-

mutative C*-subalgebra C(X) factors normally through `∞(X). Consequently,
there is no faithful functor discretizing C*-algebras to W*-algebras this way.

1. Introduction

In operator algebra it is common practice to think of a C*-algebra as a noncom-
mutative analogue of a topological space, and to think of a W*-algebra as a non-
commutative analogue of a measure space. In particular, just like any topological
space embeds into a discrete one, atomic W*-algebras are often viewed as ‘noncom-
mutative sets’ that can carry the ‘noncommutative topology’ of a C*-subalgebra,
see e.g. [7, 1]. To make this precise, one needs a way to embed a C*-algebra into a
W*-algebra. A standard way is the universal enveloping W*-algebra given by the
adjunction

Cstar Wstar⊥
(−)∗∗

between the category of unital C*-algebras with unital ∗-homomorphisms and the
subcategory of W*-algebras with normal ∗-homomorphisms, see [6, 3.2]. This con-
struction has the drawback that the resulting W*-algebra is very large. It does not
restrict to the commutative case as the embedding η : C(X)→ `∞(X). This leads to
the following notion, in keeping with the recent programme of taking commutative
subalgebras seriously [18, 4, 19, 3] that has recently been successful [11, 9, 12, 10].

Definition. A discretization of a unital C*-algebra A is a unital ∗-homomorphism
φ : A → M to a W*-algebra M whose restriction to each commutative unital C*-
subalgebra C ∼= C(X) factors normally through `∞(X), so that the following dia-
gram commutes.

A M

C(X) `∞(X)

φ

η

normal ∗-homomorphism

This short note proves that this construction degenerates in prototypical cases.
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Theorem. If φ : B(H)→M is a discretization for a separable infinite-dimensional
Hilbert space H, then M = 0.

Stated more concretely, this obstruction means that A = B(H) has no rep-
resentation on a Hilbert space K 6= 0 such that every (maximal) commutative
∗-subalgebra of A has a basis of simultaneous eigenvectors in K.

Consequently, discretization cannot be made into a faithful functor.

Corollary. Let F : Cstar → Wstar be a functor, and ηA : A → F (A) natural
unital ∗-homomorphisms. Suppose there are isomorphisms F (C(X)) ∼= `∞(X) for
each compact Hausdorff space X that turn ηC(X) into the inclusion C(X)→ `∞(X).
If a unital C*-algebra A has a unital ∗-homomorphism f : B(H)→ A for an infinite-
dimensional Hilbert space H, then F (A) = 0.

The proof of the Theorem relies on the existence of normal states in W*-
algebras. Intriguingly, this means that it does not rule out faithful functors F
as above from Cstar to the category of AW*-algebras (see [12, Section 2] for the
appropriate morphisms). A rather different approach to the problem of extend-
ing the embeddings C(X) → `∞(X) to noncommutative C*-algebras has recently
appeared in [16]. We also remark that since the identity functor discretizes all
finite-dimensional C*-algebras, this truly infinite-dimensional obstruction is inde-
pendent of the Kochen-Specker theorem, a key ingredient in some previous spectral
obstruction results [18, 4].

The rest of this note proves the Theorem and its Corollary.

2. Proof

We begin with a lemma that characterizes atomic measures. Let (X,Σ) be
measurable space with a finite measure µ. Recall that an atom for µ is a measurable
set V ∈ Σ such that µ(V ) > 0 and for every measurable U ⊆ V , either µ(U) = 0
or µ(U) = µ(V ). It follows that for every decomposition of V into a finite (or
countably infinite) disjoint union of measurable sets V =

⊔
Vi, one of the Vi has

measure µ(V ) and the rest have measure zero.
The measure µ is said to be diffuse if it has no atoms, and atomic if every

nonnegligible measurable set contains an atom. Define an interval for a finite
measure µ on (X,Σ) to be a one-parameter family of measurable sets Ut ∈ Σ with
t ∈ [0,M ] for a positive real number M such that s ≤ t implies Us ⊆ Ut and
µ(Ut) = t for all s, t ∈ [0,M ].

Lemma 1. Let (X,Σ, µ) be a finite measure space. Then (X,Σ, µ) has an interval
if and only if µ is not atomic.

Proof. First suppose that µ is not atomic. Any finite measure µ decomposes
uniquely as µ = µa + µd into an atomic measure µa and a diffuse measure µd [14,
2.6]. Moreover, µa and µd are singular [13, 3.3]. This means [8, p126] that (X,Σ, µ)
is a disjoint union of an atomic measure space and a diffuse one. The latter is
nonempty by assumption and we may restrict to it without loss of generality. But
nonempty finite diffuse measure spaces always have an interval, see [2, Lemma 2.5]
or [5, Lemma 4.1].

Now suppose that {Ut | t ∈ [0,M ]} is an interval in (X,Σ, µ). Scaling µ by
1/M and restricting to SM , we may assume M = 1 and U1 = X. For any positive
integer n, the sets K1 = U1/n and Ki = (Ui/n)\(U(i−1)/n) for i = 2, . . . , n partition
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X into n disjoint subsets of measure 1/n each. If V were an atom of µ, because
V =

⊔
n V ∩ Kn it must be the case that µ(V ) = µ(V ∩ Ki) ≤ µ(Ki) ≤ 1/n for

some i. As n was arbitrary, this means µ(V ) = 0. Thus µ is not atomic. �

Now let X be a compact Hausdorff space, and let ψ be a state on C(X). We say
that ψ is atomic if ψ =

∑
λρρ for pure states ρ of C(X) and nonnegative scalars

λρ with
∑
λρ = 1. The Riesz–Markov theorem shows that ψ(f) =

∫
X
f dµ for a

unique regular Borel probability measure µ on X. Any atoms of such a measure
µ must be singleton sets {x} for x ∈ X [15, 2.IV]. Note that the pure states ρ on
C(X) precisely correspond to Dirac measures δx for x ∈ X. Thus the state ψ is
atomic if and only if the corresponding probability measure µ is atomic, in which
case it has the form µ =

∑
x∈X λxδx for scalars λx ≥ 0 with

∑
λx = 1.

For the separable Hilbert space H = L2[0, 1], write A = B(H) for the algebra
of bounded operators on H, write C = L∞[0, 1] for the corresponding continuous
maximal abelian subalgebra of A, and write D for the discrete maximal abelian
subalgebra of A generated as a W*-algebra by the projections qn onto the Fourier
basis vectors en = exp(2πin−) for n ∈ Z.

Lemma 2. Let ψ : A → C be a state. If its restriction to D is pure, then its
restriction to C cannot be atomic.

Proof. By Kadison–Singer [17], a pure state on D extends uniquely to a state on A
via the canonical conditional expectation E : A → D that sends an operator a to
its diagonal part

∑
qnaqn with respect to the Fourier basis en. So ψ = ψ ◦E, as we

assumed ψ to be pure on D. Letting pt be the projection χ[0,t] in C for t ∈ [0, 1]:

〈pten, en〉 = 〈χ[0,t] · exp(2πin−), exp(2πin−)〉

=

∫ 1

0

χ[0,t](x) · e2πinx · e2πinx dx

=

∫ 1

0

χ[0,t](x)|e2πinx|2 dx

=

∫ t

0

1 dx

= t.

Thus E(pt) =
∑
qnptqn =

∑
〈pten, en〉qn =

∑
tqn = t · 1A. It now follows that

ψ(pt) = ψ(E(pt)) = ψ(t · 1A) = t.
Under an isomorphism C ∼= C(X) for a compact Hausdorff space X, the pro-

jections in the chain {pt} correspond to characteristic functions for clopen subsets
{Ut} of X and the state ψ corresponds to a state f 7→

∫
X
f dµ for some regular

Borel measure µ on X. The condition ψ(pt) = t means µ(Ut) =
∫
χUt

dµ = t,
making {Ut | t ∈ [0, 1]} an interval of clopen sets in X. Lemma 1 implies that µ is
not atomic, so ψ cannot be atomic. �

The first two lemmas suffice to establish the Theorem.

Proof of Theorem. Let M be a W*-subalgebra of B(K) for a Hilbert space K.
Write C ∼= C(X) and D ∼= C(Y ) for compact Hausdorff spaces X and Y . The
discretization φ : A → M ⊆ B(K) is accompanied by the following commutative
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diagram.

C = L∞[0, 1] ∼=

D = `∞(Z) ∼=

B(H) =

C(X)

A

C(Y )

`∞(X)

M ⊆ B(K)

`∞(Y )

φ h

g

Given y ∈ Y , the atomic projection χ{y} ∈ `∞(Y ) has image qy = g(χ{y}) ∈ M .
Suppose for a contradiction that qy 6= 0. Choose a unit vector vy ∈ K in its
range. This induces a state ψy(a) = 〈avy, vy〉 on A. For d ∈ D, considering
d ∈ C(Y ) ⊆ `∞(Y ) we have dχ{y} = d(y)χ{y}, and thus:

ψy(d) = 〈dvy, vy〉
= 〈dqyvy, vy〉
= 〈d(y)qyvy, vy〉
= 〈d(y)vy, vy〉
= d(y)‖vy‖2

= d(y).

That is, ψy restricts to the pure state d 7→ d(y) on D. It follows from Lemma 2
that ψy is not atomic on C.

On the other hand, for x ∈ X consider the atomic projection χ{x} ∈ `∞(X) and
its image px = h(χ{x}) ∈ M . Since

∑
px = 1, we can decompose K =

⊕
xKx

along the ranges Kx of px. Write vy =
∑
λxwx for unit vectors wx ∈ Kx and

λx ∈ C satisfying
∑
x |λx|2 = 1. For c ∈ C, we have cpx = c(x)px (considering

c ∈ C(X) ⊆ `∞(X) as before) and cwx = cpxwx = c(x)wx, so that:

ψy(c) = 〈cvy, vy〉

=
∑
x,x′

λxλx′〈cwx, wx′〉

=
∑
x,x′

λxλx′c(x)〈wx, wx′〉

=
∑
x

|λx|2c(x).

Thus the restriction of ψy to C is an atomic state.
This is a contradiction, so every atomic projection χ{y} ∈ `∞(Y ) must have

image g(χ{y}) = qy = 0 in M . Hence the normal ∗-homomorphism g : `∞(Y )→M
is the zero map. But then 1M = φ(1A) = g(η(1A)) = g(1Y ) = 0, so M = 0. �

We thank an anonymous referee for informing us that the Theorem can be proved
without the full force of Kadison–Singer, as follows. Identifying the algebra C(T)
of continuous functions on the unit circle T with the subalgebra of C[0, 1] satisfying
f(0) = f(1), it is known that C(T) supports unique extensions of pure states of the
discrete masa D ⊆ B(H). (Indeed, the algebra of Fourier polynomials—or more
generally, the Wiener algebra A(T)—is a dense subalgebra of C(T) and lies in the
algebra M0 ⊆ B(H) of operators that are l1-bounded in the sense of Tanbay [20]
with respect to the Fourier basis {en | n ∈ Z}. Thus C(T) lies in the norm closure
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M of M0, and the results of [20] imply that pure states on D extend uniquely to
M .) A computation as in Lemma 2 shows that this extended state corresponds to
the Lebesgue measure on T, hence is not atomic on C(T). The Theorem may now
be proved in essentially the same manner, replacing the algebra C with C(T).

The proof of the Corollary uses the following ‘stability’ of discretizations.

Lemma 3. Discretizations are stable under precomposition with ∗-homomorphisms
and postcomposition with normal ∗-homomorphisms: if φ : B → M discretizes B,
f : A→ B is a morphism in Cstar, and g : M → N is a morphism in Wstar, then
g ◦ φ ◦ f discretizes A.

Proof. If C(X) ∼= C ⊆ A is a commutative C*-subalgebra, then so is C(Y ) ∼=
f [C] ⊆ B, making the top squares of the following diagram commute (where
f ′ : Y → X is a continuous function between compact Hausdorff spaces derived
from f : C → f [C] via Gelfand duality).

A B M N

C(X) C(Y ) `∞(Y )

`∞(X)

f φ g

C(f ′) ηC(Y )

h

ηC(X) `∞(f ′)

The bottom triangle commutes by naturality of η. As all dashed arrows are normal,
so is their composite. �

Proof of Corollary. We first prove that φ = η◦f : B(H)→ F (A) is a discretization.
If C(X) is a commutative C*-subalgebra of B(H), its image under f is a commu-
tative C*-subalgebra of A and hence of the form C(Y ). Consider the following
diagram.

B(H) A F (A)

C(X) C(Y ) F (C(Y ))

`∞(X) `∞(Y )

φ

f ηA

f ηC(Y )

The top-left square commutes by definition, and the top-right square commutes by
naturality of η. The bottom-left square commutes by naturality of the inclusion
C(X) ↪→ `∞(X), and the bottom-right triangle commutes by assumption. Finally,
the dashed arrows are normal: the horizontal one because it is in the image of the
functor `∞, the vertical one because it is in the image of the functor F , and the
diagonal one because it is an isomorphism. Thus φ is a discretization.

Since H is infinite-dimensional, it is unitarily isomorphic to L2[0, 1] ⊗H. This
gives rise to a unital ∗-homomorphism i : B(L2[0, 1])→ B(L2[0, 1])⊗B(H) ∼= B(H)
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given by i(a) = a ⊗ 1. Precomposing φ with this map induces a discretization
φ ◦ i : B(L2[0, 1])→ F (A) according to Lemma 3, so the Theorem guarantees that
F (A) = 0. �

We leave open whether there exists any state on B(H) that restricts to an atomic
state on each (maximal) abelian ∗-subalgebra.
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