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Categories of relations over a regular category form a family of models of quantum theory. Using
regular logic, many properties of relations over sets lift to these models, including the correspon-
dence between Frobenius structures and internal groupoids. Over compact Hausdorff spaces, this
lifting gives continuous symmetric encryption. Over a regular Mal’cev category, this correspondence
gives a characterization of categories of completely positive maps, enabling the formulation of quan-
tum features. These models are closer to Hilbert spaces than relations over sets in several respects:
Heisenberg uncertainty, impossibility of broadcasting, and behavedness of rank one morphisms.

1 Introduction

Many features of quantum theory can be abstracted to arbitrary compact dagger categories [1]. Thus
we can compare models of quantum theory in a unified setting, and look for features that distinguish the
category FHilb of finite-dimensional Hilbert spaces that forms the traditional model. The category Rel
of sets and relations is an alternative model. It exhibits many features considered typical of quantum
theory [2], but also refutes presumed correspondences between them [15, 21]. However, apart from Rel
and its subcategory corresponding to Spekkens’ toy model [14], few alternative models have been studied
in detail.

We consider a new family of models by generalizing to categories Rel(C) of relations over an arbi-
trary regular category C, including any algebraic category like that of groups, any abelian category like
that of vector spaces, and any topos like that of sets. Despite this generality, internal logic allows us
to state and prove results as if working in Rel, as reviewed in Section 2. Just as Rel is of independent
interest, also Rel(C) is not just a toy model: we shortly discuss continuous symmetric encryption by
letting C consist of compact Hausdorff spaces. For another example see [7].

Section 5 shows that Rel(C) often has the unusual feature of lacking discernible measurement out-
comes, but when C is a regular Mal’cev category it behaves more like FHilb than Rel in three ways:
the Heisenberg uncertainty principle, the ability to broadcast, and behavedness of rank one morphisms.
Thus this family of models is genuinely different, and leads to the following scale.

“least quantum” ↔ “most quantum”
Rel Rel(C) FHilb

These properties are stated using the CP construction [16, 22], that makes the Frobenius structures in a
category into the objects of a new one. The objects of CP(Rel) are groupoids [20], and Section 3 proves
that this holds for Rel(C) too, for any regular C. Our main result, discussed in Section 4, is that

CP(Rel(C))' Rel(Cat(C)) (1)

for regular Mal’cev categories C, whose internal categories Cat(C) and groupoids are understood. Thus
we link the CP passage, from state spaces to algebras of observables, to categorification.
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2 Categories of relations as models of quantum theory

Notation We briefly recall the graphical calculus for monoidal dagger categories; for more detail,
see [26]. Morphisms f are drawn as f ; composition, tensor product, and dagger, as:

g◦ f

A

C

=
g

f

A

B

C

f ⊗g

A⊗C

B⊗D

= f g

A

B

C

D

f †

B

A

= f

B

A

Distinguished morphisms are depicted with special diagrams: the identity A→ A is just the line, ; the
(identity on) the monoidal unit object I is the empty picture, and the swap map of symmetric monoidal
categories becomes . In particular, we will draw : A⊗A→ A and : I→ A for the multiplication
and unit of Frobenius structures, made precise in Definition 3.1 below.

Continuous symmetric encryption We now illustrate the utility of Rel(C) in its own right, not as
a toy model. The case C = Set can model symmetric encryption [29], and the same techniques apply
to any regular C. A symmetric encryption protocol in Rel(C) is specified by an encryption morphism
E : M×K→ E relating plaintext P and key K to ciphertext C, satisfying:

E

E

KP

P

C

key generation

Alice encrypts

Bob decrypts

=

P

P

K

The Frobenius structure here is the canonical copying and deleting that is available in Rel(C) [11].
Equivalently, (∀p : P, k : K)(∃c : C)E(p,k,c) and E(p,k,c)∧E(p′,k,c)⇒ p = p′. The protocol is secure
when no information about plaintext can be deduced from ciphertext without the key:

E

P

C

=

P

C

For example, one-time pad encryption is the following secure encryption protocol in Rel: take P, K
and C to be the set { f : [1, . . . ,n]→ G} of messages in a given group G of length n, and take E to be the
function E(p,k)(t) = p(t)k(t) [29]. A continuous version can be described in the category Rel(KHaus)
of relations over compact Hausdorff spaces. An analogue signal is a continuous function from an interval
[0,T ]⊆ R to the unit circle S1 ⊆ C. Take P, K and C to be the space of such signals (under the product
topology) and set E(p,k)(t) = p(t)k(t). The latter protocol is useful when encrypting e.g. (continuous)
speech rather than (discrete) strings of text, and was proven secure by Shannon himself [28]. 1

1Caveat: the latter protocol requires arbitrary key signals. Practically, Alice could sample her signal at some points, and then
transmit using (discrete) one-time pad encryption; Bob can then reconstruct an approximation of the signal. Shannon describes
how to generate noise that, when sampled at a given frequency, provides a secure key. Thus the former protocol approximates
the latter to any resolution.
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Future work This work is in its early stages, and opens many directions of investigation.

• The proof technique of internal (regular) logic is very useful. We intend to develop a graphi-
cal version, where wires in string diagrams can be annotated with ‘elements’, and investigate its
expressiveness [27].

• The correspondence (1) between groupoids and operator algebra remains to be understood, perhaps
through so-called groupoidification [24]. If C is exact Mal’cev, so is Cat(C) [18, 3.2]. Hence
CP(Rel(Catn(C)))' Rel(Catn+1(C)), leading to higher categories.

• Internal categories in the category of groups are crossed modules [8]. Tools from categorical
quantum mechanics might shed light on crossed modules, or vice versa. In general, standard
notions from categorical quantum mechanics should be investigated in Rel(C), such as (strong)
complementarity of Frobenius structures [12].

• Relation-like categories have been axiomatized: as allegories by Freyd and Scedrov [17], and as
bicategories of relations by Carboni and Walters [11]. We hope to extend our study to these more
general settings.

2 Categories of relations and regular logic

This section describes regular categories, and their internal regular logic, by way of example; for more
information, see [9]. We will be led by the construction of Rel from the category Set of sets and func-
tions. Of course, both categories have the same objects. The issue is how to describe relations and their
composition in terms of functions.

Observe that a relation R ⊆ A×B induces a pair of functions R1 : R→ A and R2 : R→ B, namely
(a,b) 7→ a and (a,b) 7→ b. Moreover, the inclusion R ↪→ A×B is monic. Equivalently, the two functions
R1,R2 are jointly monic, and conversely, any two jointly monic functions A R1← R R2→ B determine a relation
R ⊆ A×B. Thus we can describe relations in terms of functions. Composition of relations is given in
these terms by pullback:

A B C

R S

R×B S

R1 R2 S1 S2

S◦R (2)

The pullback itself is not good enough, as R×B S→ A×C might not be monic. To ensure this, we have
to factor that function as a surjection followed by an injection, and consider its image S ◦R. Because
pullbacks of surjections are surjections, the subobject S◦R is unique, giving a well-defined category Rel.

All in all, we have used the following properties of Set: it has products, pullbacks, a way to factorize
morphisms as injections after surjections via their images, and stability of surjections under pullback.
Generalizing surjections to regular epimorphisms leads to regular categories.

Definition 2.1. An epimorphism is regular when it is a coequalizer. The kernel pair of a morphism
f : A→ B is a pullback cone of A

f→B
f←A. A category is regular when it has finite limits, coequalizers of

kernel pairs, and regular epimorphisms are stable under pullback.



4 Categories of relations as models of quantum theory

Example 2.2. Examples of regular categories abound: any topos, such as Set; any algebraic variety, such
as the categories Gp of groups, Rng of rings, or Vectk of vector spaces; any category monadic over Set,
such as KHaus; any abelian category, such as the category ModR of modules over a ring; any bounded
meet-semilattice, considered as a category; any functor category [C,D] to regular D.

There is another way to consider the construction (2), namely by regular logic. This is the fragment
of first order logic whose formulae use only the connectives ∃ and ∧ and equality. In Set, we can
describe (2) using a regular formula as

S◦R = {(a,c) ∈ A×C | (∃b ∈ B) R(a,b)∧S(b,c)}. (3)

This makes sense in any regular category C: any regular formula φ whose function symbols are mor-
phisms in C and whose relation symbols are subobjects in C inductively defines a subobject J(a1, . . . ,an)∈
A1× . . .×An | φK�A1×·· ·×An as follows. Equality Ja∈A | f (a) = g(a)K is interpreted as the equalizer
of f ,g : A→ B. Conjunction Ja ∈ A | R(a)∧S(a)K is interpreted as the pullback of R,S � A. Existential
quantification Ja ∈ A | (∃b ∈ B)R(a,b)K is interpreted as the image of R � A×B π1→A. This gives two
equivalent ways to define our main object of study.

Definition 2.3. Let C be a regular category. Its category Rel(C) of relations has the same objects as
C, and subobjects R � A×B as morphisms A→ B, with diagonal maps A→ A×A as identities, under
composition (2), or equivalently S◦R = J(a,c) ∈ A×C | (∃b ∈ B)R(a,b)∧S(b,c)K.

We denote morphisms in Rel(C) as R : A B, and the corresponding subobject in C as R � A×B.
The category Rel(C) is a compact dagger category with the product× of C inducing⊗ in Rel(C) (where
it is no longer a cartesian product), and R†(b,a)⇔ R(a,b). Every object A is self-dual with canonical
cup J(a,b) ∈ A×A | a = bK, and swap maps defined similarly.

Example 2.4. Rel(Set) is Rel, so this is a genuine generalization; Rel(Gp) has subgroups R≤G×H as
morphisms G→ H; Rel(Vectk) has subspaces K ≤V ⊕W as morphisms V →W (cf. [7]).

Whenever one can derive an implication φ ⇒ ψ in regular logic, it follows that JφK ≤ JψK as sub-
objects. This allows us to state and prove (regular) theorems in Rel(C) as if reasoning in Rel. The
following lemma works out an example of this technique; the rest of this paper will not be so painstak-
ingly precise. As in Set, a relation R : A A is called symmetric when R(a,b) ⇐⇒ R(b,a), reflexive
when Ja ∈ A | R(a,a)K = A, and transitive when R(a,b)∧R(b,c)⇒ R(a,c), equivalently R ◦R ≤ R. A
symmetric, reflexive and transitive relation is called an equivalence relation. As in any dagger category,
a relation is called positive when it is of the form S† ◦S for some relation S.

Lemma 2.5. Any positive relation R : A A in C regular is symmetric and satisfies R(a,b)⇒ R(a,a).

Proof. Since R is positive we have that R = S† ◦ S, for some relation S : A B. Then R is symmetric
since R = S† ◦S = (S† ◦S)† = R†. Further,

R = S† ◦S = J(a,b) ∈ A×A | (∃c ∈ B) S(a,c)∧S(b,c)K (definition of ◦ and †)

≤ J(a,b) ∈ A×A | (∃c ∈ B) S(a,c)K (∃ preserves the order of subobjects)

= J(a,b) ∈ A×A | R(a,a)K

demonstrating that R(a,b)⇒ R(a,a).
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3 Groupoids and completely positive maps

Frobenius structures play a central role in categorical quantum mechanics, representing C*-algebras in
FHilb [30]. In Rel, they represent groupoids [20]. Theorem 3.4 below generalizes this to Rel(C) for any
regular C, by noting that the proof can be stated in regular logic.

Definition 3.1. A special dagger Frobenius structure in a dagger monoidal category is an object A with
morphisms : A⊗A→ A and : I→ A satisfying unitality, associativity, speciality, and the Frobenius
law:

= = = = =

It is commutative when ◦ = .

Definition 3.2. An internal category in a finitely complete category consists of objects C0 (objects) and
C1 (morphisms), and morphisms s (source), t (target), u (identity), and m (composition):

C0 C1 C1×C0 C1mu
s

t

Here C1×C0 C1 is the pullback of s and t. These morphisms must satisfy familiar equations representing
associativity of composition and usual behaviour of identities. An internal functor between internal
categories is a pair of morphisms ( f0, f1) commuting with the above structure. An internal groupoid
additionally has an inversion morphism i : C1 → C1 satisfying usual axioms. We write Cat(C) and
Gpd(C) for the categories of internal categories and groupoids in C.

Example 3.3. Internal categories or groupoids in Set are just (small) categories or groupoids. In Vectk,
internal categories are the same as internal groupoids (see Section 4), and are also called 2-vector
spaces [3, Section 3]. Internal categories in Gp are studied under the names strict 2-groups [4] and
crossed modules [25, Section 3.3].

Theorem 3.4. For any regular category C, special dagger Frobenius structures in Rel(C) are the same
as internal groupoids in C. More precisely, a special dagger Frobenius structure (A, , ) in Rel(C)
defines an internal groupoid in C with composition and identities given by . Conversely, an internal
groupoid (C0,C1,m,s, t,u, i) in C defines a special dagger Frobenius structure (A, , ) in Rel(C) with
A =C1, = (u : C0 � A) and = (m : A×A A).

Proof. Observe that the proof for the case C = Set (see [20, Theorems 7 and 12]) can be carried out
entirely in regular logic. For details, see Appendix A.

Example 3.5. For any object A of Rel(C), there is a canonical special dagger Frobenius structure
(A×A, , ) which corresponds to the indiscrete groupoid

A A×A A×A×A
π1,3∆

π1

π2 σ

on A, having a unique morphism from a to b for each pair (a,b) ∈ A×A. The identities are given by the
diagonal ∆ = 〈idA, idA〉 : A→ A×A, while the inversion is the swap σ = 〈π2,π1〉 : A×A→ A×A.



6 Categories of relations as models of quantum theory

Dagger Frobenius structures in C form the objects of a new category CP(C) [16, 22]. The key
example is that CP(FHilb) is the category of finite-dimensional C*-algebras and completely positive
maps. We briefly recall the relevant form of this CP construction; see Appendix B for a proof that this is
indeed a well-defined category. Recall that positive (endo)morphisms in a dagger category are those the
form g† ◦g for some morphism g.
Definition 3.6. Let C be a compact dagger category. Then CP(C) is the category whose objects are
special dagger Frobenius structures (A, ) in C, and where morphisms (A, )

f
(B, ) are morphisms

A f B in C whose Choi matrix is positive:

f =
g

g

for some g : A⊗B→ X in C. Such morphisms f are called completely positive.
To classify completely positive morphisms in Rel(C), we need to identify when a relation is positive,

i.e. of the form R = J(a,c) ∈ A×A | (∃b ∈ B)S(a,b)∧S(c,b)K for some relation S : A B. Lemma 2.5
showed that positive relations in any regular category satisfy

R(a,b)⇒ R(a,a)∧R(b,a). (4)

It follows that completely positive morphisms R : (A, , )→ (B, , ) respect inverses [16, 7.2]:

R(a,b)⇒ R(a−1,b−1)∧R(iddom(a), iddom(b)), (5)

where (A, , ) and (B, , ) are regarded as internal groupoids in C. However, the converse of either
statement need not hold.
Proposition 3.7. The following are equivalent for a regular category:
(a) every reflexive symmetric relation is positive;
(b) a relation is positive if and only if it satisfies (4);
(c) a relation between dagger Frobenius structures is completely positive iff it respects inverses.

Proof. For (a⇒ b), let R : A A be any relation satisfying (4), and define U = Ja ∈ A | R(a,a)K. Then R
restricted to U is reflexive and symmetric, hence equal to S† ◦S for some relation S. Then R is equal to
S′†S′ where S′ = J(a,u) ∈ A×U | (a =U(u))∧S(a)K.
For (b ⇒ c): the Choi matrix S of a relation R is given by S((a,b),(a′,b′)) ⇐⇒ R(a′−1 ◦ a,b′ ◦ b−1),
which can be seen to satsify (4) iff R itself respects inverses.
To see (c⇒ a), observe that a reflexive symmetric relation R � A×A defines a state R′ in CP(Rel(C))
of the special dagger Frobenius structure given by the indiscrete groupoid on A (Example 3.5). Positivity
of the Choi matrix of R′ in this case means that R is itself positive.

A category satisfying the properties of the previous proposition is called positively regular. We can
now generalize the known description of CP(Rel) of [16, Proposition 7.3].
Corollary 3.8. Let C be a positively regular category. Then CP(Rel(C)) is equivalent to the category of
groupoids and relations in C that respect inverses.
Example 3.9. Set is positively regular, since any relation R satisfying (4) is equal to S† ◦ S with S =
{(a,a,b),(a,b,a) | R(a,b)}. More generally, any coherent category, such as KHaus, is positively regular
and hence so is any topos. Section 4 will show that Gp and Vectk are positively regular.

The category of semigroups satisfying (∀x,y)xyx = yxy is regular but not positively regular; positive
relations satisfy R(a,b)∧R(c,d)⇒ R(acb,dbc), but relations satisfying (4) need not.
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4 Mal’cev categories

This section studies a broad class of regular categories for which the CP construction takes a very natural
form, allowing us to bypass the unusual notion of a relation respecting inverses.

Definition 4.1. A category C with finite limits is a Mal’cev category if every reflexive relation R�A×A
in C is an equivalence relation.

Proposition 4.2. The following are equivalent for a regular category:

(a) inverse-respecting subobjects R � A1 of internal groupoids are closed under composition;
(b) every relation R � A×A is difunctional: (∀a,b,c,d ∈ A)R(a,b)∧R(c,b)∧R(c,d)⇒ R(a,d);
(c) the category is Mal’cev.

Proof. For (a⇒ b), let R�A×A be a relation. Define a new relation S�R×R by setting S((a,b),(c,d))
⇔ R(a,d)∧R(c,b). Then S is reflexive, because it is defined on R, and symmetric. Thus S defines an
inverse-respecting subobject of the indiscrete groupoid on R, and hence is closed under composition in
R×R. That is, S is transitive. Now suppose R(a,b), R(c,b), and R(c,d). Then S((a,b),(c,b)) and
S((c,b),(c,d)), hence S((a,b),(c,d)), and so R(a,d).

To see (b ⇒ a), consider an inverse-respecting subobject R � A1, and set S = J(a,b) ∈ A1×A1 |
(dom(a) = cod(b))∧R(a,b)K. For composable a and b in A1, let x = dom(a) = cod(b). Since R is closed
under iddom(−) and idcod(−), we have S(idx,b), S(a, idx), and S(idx, idx). Now S(a,b) by difunctionality,
that is, R(a◦b), so R is closed under composition.

Finally, (b⇔ c) is well-known [10, Proposition 1.2].

Example 4.3. Mal’cev categories were first studied in the context of universal algebra. An algebraic
variety is Mal’cev precisely when it contains an operation p(x,y,z) with p(x,y,y) = p(y,y,x) = x. Hence
the categories Gp and Vectk are regular Mal’cev, as are the categories of Lie algebras, abelian groups,
rings, commutative rings, associative algebras, quasi-groups and Heyting algebras. Any abelian category
such as ModR is Mal’cev. The opposite category of any topos is regular Mal’cev.

In a Mal’cev category C, the forgetful functor Gpd(C)→ Cat(C) is an isomorphism, that is, every
internal category in C uniquely defines an internal groupoid [10, Theorem 2.2]. Moreover, Gpd(C) is
regular when C is Mal’cev [18, Proposition 3.1 and Theorem 3.2]. In this case Rel(Gpd(C)), which we
now describe, makes sense. By contrast, Rel(Gpd(Set)) is ill-defined.

Lemma 4.4. Let C be a regular category. Subobjects of (A0,A1) in Gpd(C) are subobjects R � A1 in
C that are closed under iddom(−), inverses, and composition.

Proof. Morphisms f = ( f0, f1) : (C0,C1)→ (D0,D1) in Gpd(C) are determined by morphisms f1 : C1→
D1 respecting the groupoid structure, since f0 can be reconstructed as c 7→ dom( f1(idc)) for c ∈C0. Now
K1 = J(x,y)∈C1×C1 | f1(x)= f1(y)K determines a subgroupoid K≤C×C, with f ◦π1 = f ◦π2 : K→D.
If f is monic in Gpd(C), then π1 = π2 and so f1 is monic in C.

Theorem 4.5. Regular Mal’cev categories are positively regular. Conversely, a positively regular cate-
gory C is Mal’cev if and only if Corollary 3.8 provides equivalences

CP(Rel(C))' Rel(Gpd(C))' Rel(Cat(C)).

Note that Rel(Gpd(C)) and Rel(Cat(C)) are ill-defined for general positively regular C.
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Proof. For the first statement, let R be any reflexive symmetric relation in a regular Mal’cev category.
Then R is an equivalence relation and hence satisfies R = R† ◦R, making it positive.

Now let C be a positively regular category. By Corollary 3.8, CP(Rel(C)) is equivalent to the cate-
gory of groupoids and relations that respect inverses. By Lemma 4.4 and Proposition 4.2, the forgetful
functor from Rel(Gpd(C)) to this category is (well-defined and) an isomorphism if and only if C is
Mal’cev, in which case Gpd(C) is isomorphic to Cat(C).

Example 4.6. We may read the previous theorem as saying that the CP construction, usually taken to add
mixed states and processes to pure quantum theory, can be regarded as a process of categorification in a
broad class of categories of relations. The category Cat(Gp) of strict 2-groups is equivalent to the cate-
gory CrMod of crossed modules, whence CP(Rel(Gp))' Rel(CrMod). Similarly, CP(Rel(Vectk)) is
equivalent to the category of relations in 2-vector spaces.

Next we observe that, in any Mal’cev regular category, just as every internal category is in fact a
groupoid, there is also redundancy in the definition of a dagger Frobenius structure.
Theorem 4.7. If C is a regular Mal’cev category, any pair of morphisms : A⊗ A → A , : I →
A in Rel(C) satisfying unitality form the composition and identities of an internal category in C, or
equivalently a dagger special Frobenius structure in Rel(C).

= = =⇒ = = =

Proof. Since any internal category in C is a groupoid, the second statement follows from Theorem 3.4.
Let = (M : A×A A) and = (U : I A). Then unitality corresponds to the formulae

(∃x ∈U) M(x,a,a′) ⇐⇒ a = a′ (U1)

(∃x ∈U) M(a,x,a′) ⇐⇒ a = a′ (U2)

We will first show that M is single-valued as a relation. Suppose that both M(a,b,c) and M(a,b,d),
then by (U1) (∃x ∈U) M(c,x,c), and applying difunctionality we have M(c,x,d) and so c = d. In any
regular category, such a relation is represented by a subobject of the form (A×A � B m A) in C, where
B = J(a,b) ∈ (A×A) | (∃c ∈ A) M(a,b,c)K; see [9, Lemma 2.8]. Write (a,b)↓ for B(a,b). Define the
following relations in C:

S = J(a,x) ∈ A×U | (a,x)↓K : A U (6)

T = J(a,y) ∈ A×U | (y,a)↓K : A U (7)

just as in [20, Definition 2]. Now S is total, by (U2), and single-valued since if M(a,x,a) and M(a,y,a)
for x, y in U , then since unitality gives M(x,x,x) we have M(x,y,x) by difunctionality, and so x = y. The
same holds for T , and so S, T correspond to morphisms s, t in C defining the data of an internal category

U A A×U A = Bm
s

t

where it remains to show that B is in fact a pullback of s and t, i.e. (a,b)↓ if and only if s(a) = t(b).
Suppose that (a,b)↓ and s(a) = x. Then we have (a,b)↓, (a,x)↓, (x,x)↓ and hence (x,b)↓ by difunc-
tionality. Conversely, (x,b)↓, (a,x)↓, and (x,x)↓ implies that (a,b) ↓. Finally, in [10, Theorem 2.2]
it is shown that, in any Mal’cev category, all of the equations required of an internal category follow
automatically whenever m(a,s(a)) = a, m(t(a),a) = a, and s(x) = x = t(x) for all a ∈ A and x ∈U .



C. Heunen & S. Tull 9

Note that unitality is a property of alone, since we must have = Ja ∈ A | (a,a,a)K .

Example 4.8. Crossed modules are known to have numerous equivalent descriptions, as groups in Cat or
Gpd, and as categories or groupoids in Gp [25, 3.1] [4]. We can now add that a crossed module is just a
unital morphism in Rel(Gp). Similarly, a 2-vector space is simply a unital morphism in Rel(VectK).

5 Quantum properties of Rel(C)

The category Rel of sets and relations is compact dagger, like FHilb, but fails to satisfy many properties
that are seen as typical to quantum theory. This section presents three such properties of FHilb that fail
in Rel but hold in Rel(C) whenever C is a regular Mal’cev category. In this sense Rel(C) is a ‘more
quantum’ model than Rel for regular Mal’cev categories C. We conclude by countering this with some
non-quantum features of our main Rel(C) examples not shared by Rel.

Heisenberg uncertainty The Heisenberg uncertainty principle states that no information can be ob-
tained from a quantum system without disturbing its state [19, Section 5.2]. To model it categorically,
we need an appropriate notion of quantum system. Following [16], we will take quantum structures to
be special dagger Frobenius structure of the form B = (A∗⊗A,d ,d−1 ), where the scalar d : I→ I
is invertible. In FHilb, these correspond to the C*-algebras Mn of n-by-n matrices. In Rel(C) for regular
C, these correspond to indiscrete groupoids on A (see Example 3.5). We model the principle contrapos-
itively as follows, abstracting the fact that POVMs on a Hilbert space A with n outcomes are precisely
morphisms B→ B⊗C in CP∗[C], where C is a commutative special dagger Frobenius structure on Cn.

Definition 5.1. A compact dagger category satisfies the Heisenberg uncertainty principle when the fol-
lowing holds for any quantum structure (B, , ), any commutative special dagger Frobenius structure
(C, , ), and any completely positive morphism M : B→ B⊗C:

M

B

B

=

B

B

=⇒ (∃ψ : I→C) M

C

B

=
ψ

C

B

(8)

The category FHilb satisfies the Heisenberg uncertainty principle [23, Section 6.3].

Lemma 5.2. The category Rel does not satisfy the Heisenberg uncertainty principle.

Proof. Let A be the indiscrete groupoid on the two-element set {x,y}, and let B be the group Z2 = {0,1},
regarded as a groupoid. The inverse-respecting relation

M = {(a,a,0)) | a ∈ A}∪{((x,x),(x,x),1))} ⊆ A× (A×B).

satisfies M((x,x),(x,x),1) but not M((y,y),(y,y),1).

Proposition 5.3. Let C be a regular Mal’cev category. Then Rel(C) satisfies the Heisenberg uncertainty
principle for any quantum structure (B, , ) and any special dagger Frobenius structure (C, , ).
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Proof. Regard M as a relation M � (A×A)× (A×A)×C, where B is the indiscrete groupoid on A.
Suppose M satisfies the left-hand side of (8), so that

(∃x ∈C) M((a,a′),(b,b′), iddom(x)) ⇐⇒ (a,a′) = (b,b′). (9)

We wish to show (∃b ∈ A) M((a,a′),(b,b),x) ⇐⇒ a = a′ ∧ψ(x) for some ψ � C. Define the new
relation T = J(a,x) ∈ A×C |M((a,a),(a,a),x)K. Then by (9) and closure of M under iddom and idcod,
we have (∃b ∈ A) M((a,a′),(b,b),x) if and only if (a = a′)∧ T (a,x). It suffices to show that T (a,x)
holds precisely when (∃a′ ∈ A) T (a′,x), because we may then take ψ = Jx ∈C | (∃a ∈ A) T (a,x)K.

Once more using (9) and closure of M under iddom and idcod, observe that (∀a,a′ ∈ A) (∃x ∈ C)
such that T (a,x)∧T (a′,x). Hence if T (a′,x) holds then (∃y ∈C) T (a,y)∧T (a′,y)∧T (a′,x) and so by
difunctionality T (a,x) holds, as desired.

Broadcasting While statistical mechanics includes its own version of the no-cloning theorem, it has
instead been argued that one of the unique features of classical systems is in their capacity to be broad-
cast [5]. We now capture this property categorically, following [16].

Definition 5.4. Let C be a compact dagger category. A broadcasting map for an object (A, ) of CP(C)
is a morphism A B A⊗A in CP(C) satisfying:

B

A

A

=

A

A

= B

A

A

Any commutative dagger Frobenius structure in C has a broadcasting map , which can be shown to be
completely positive. We say C satisfies the no-broadcasting principle if the converse holds.

The category FHilb satisfies the no-broadcasting principle [6].

Lemma 5.5. [21] The category Rel does not satisfy the no-broadcasting principle.

Proof. Let G be a nonabelian group, and regard it as a groupoid (G0,G1). Define a morphism B : G1×
G1 → G1 in Rel by B =

{
(g, iddom(g),g) | g ∈ G1

}
∪
{
(g,g, iddom(g)) | g ∈ G1

}
. This relation respects

inverses, so is a morphism of CP(Rel). It is also a broadcasting map since (∃x ∈ G0) B(g, idx,h) ⇐⇒
(∃x ∈ G0) B(g,h, idx) ⇐⇒ g = h for g,h ∈ G1.

Proposition 5.6. For C regular Mal’cev, Rel(C) satisfies the no-broadcasting principle.

Proof. Suppose B � A×A×A in CP(Rel(C)) is broadcasting. Then:

(∃x ∈ A) B(a, iddom(x),a
′) ⇐⇒ a = a′ ⇐⇒ (∃x ∈ A) B(a,a′, iddom(x)) (10)

Use closure of B under identities and inverses to show that, in any regular category C, (10) implies
(∀a ∈ A) dom(a) = cod(a). Now, arguing in the internal logic of C, let a,a′ ∈ A be such that dom(a) =
dom(a′), so that B(a, iddom(a),a) and B(a′,a′, iddom(a)). Since C is Mal’cev, B is closed under composition
in A by Proposition 4.2, and so B(a◦a′ ◦a−1,a′, iddom(a)). Hence a◦a′ = a′ ◦a by (10).
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Rank The third property we discuss concerns the linear structure of quantum theory. Due to this
structure, morphisms in FHilb come with a notion of rank. Rays, morphisms of rank at most one, are
reflected in the graphical calculus by disconnectedness.

Definition 5.7. We say a monoidal dagger category satisfies the bottleneck principle if morphisms R
factor through I whenever R† ◦R does so:

(∃ψ,φ : I→ A)
R

R

A

A

=
φ

ψ

A

A

=⇒ (∃φ : I→ A,ψ : I→ B) R

B

A

=
φ

ψ

A

B

The category FHilb clearly satisfies the bottleneck principle, because rank( f † ◦ f ) = rank( f ).

Lemma 5.8. The category Rel does not satisfy the bottleneck principle.

Proof. Let B= {0,1}, and consider the relation R : B B given by R= {(0,0),(0,1),(1,1)}. Now R†◦R
splits as the product relation B×B, but R cannot be written as a product of subsets of B.

The previous lemma leads to unusual behaviour from a quantum perspective in Rel. For example,
taking the partial trace of an entangled state Ψ can result in a pure state:

Ψ Ψ
= ψ ψ

which cannot occur for entangled states in FHilb.

Lemma 5.9. The category Rel(C) satisfies the bottleneck principle for regular Mal’cev categories C.

Proof. A relation R : A B disconnecting in the above sense means R(a,b)∧R(a′,b′)⇒ R(a,b′), in
which case R(a,b) ⇐⇒ (∃a′ ∈ A)R(a′,b)∧ (∃b′ ∈ B)R(a,b′). Suppose R† ◦R splits as in the left-hand
side of Definition 5.7, and assume R(a,b) and R(a′,b′); we will show that R(a,b′). It follows from
(R† ◦R)(a,a) and (R† ◦R)(a′,a′) that (R† ◦R)(a,a′), that is, (∃e ∈ A) R(a,e)∧R(a′,e). But then R(a,e),
R(a′,e) and R(a′,b′), and so R(a,b′) holds by difunctionality.

Projections To finish, we show that the models Rel(C) for regular Mal’cev C, despite the above results,
have some non-quantum features distinguishing them from FHilb. For example, by Proposition 4.2, any
state ψ : I→ (A, ) in CP(Rel(C)) is a projection [15, Definition 3.1]:

ψ ψ

A

=

ψ

A

=
ψ

A

This is not the case in FHilb, where, up to scalar factors, the projections of a quantum structure are
precisely projections in the usual sense, while states are arbitrary density matrices.
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Unique measurement outcomes Another more striking difference from FHilb is that many of the
categories Rel(C) lack distinct classical outcomes of experiments. These outcomes are represented
categorically by states copied by the map of a commutative Frobenius structure [13].

We call an object A of a regular category C inhabited if J∃a ∈ AK = id1 : 1 � 1, and C entirely
inhabited when this holds for all objects. Equivalently, any subobject of a terminal object 1 is isomorphic
to 1.

Proposition 5.10. Let C be an entirely inhabited regular category. Then any two copyable states H, T
of a special dagger Frobenius structure (A, ) in Rel(C) are equal.

H
=

H H T
=

T T
=⇒

H
=

T

Proof. Arguing just as in Rel(Set), any copyable state H of an internal groupoid (A, ) is easily seen
to satisfy dom(a) = cod(a′) for all its members a,a′, and (dom(a) = dom(b))∧H(b) =⇒ H(a) for any
a, b in A. Now by assumption H ∧T is inhabited, meaning (∃b ∈ A) H(b)∧T (b). Hence T (a) implies
that dom(a) = dom(b) with b in H, and so H(a) holds also.

Example 5.11. Any regular category with a zero object is entirely inhabited. This includes any abelian
category, along with our main examples of Mal’cev categories Gp and Vectk. Hence these categories
will be unable to model protocols which require distinct copyable states to represent classical bits. An
‘ideal’ choice of C for a toy model would be Mal’cev regular, while not being entirely inhabited: the
category of quasi-groups provides such an example.
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A Proof of Theorem 3.4 for regular categories

Proof. Let C be regular and let (A, , ) be a special dagger Frobenius structure in Rel(C), with =
(M : A×A A), and = (U � A). We already saw how unitality is interpreted as the two regular
formulae (U1), and (U2), while the other equations of Definition (3.1) translate into:

(∃e ∈ A) M(a,b,e)∧M(e,c,d) ⇐⇒ (∃e ∈ A) M(a,e,d)∧M(b,c,e) (A)

(∃b ∈ A)(∃c ∈ A) M(b,c,a)∧M(b,c,a′) ⇐⇒ a = a′ (S)

(∃e ∈ A) M(a,e,c)∧M(e,d,b) ⇐⇒ (∃e ∈ A) M(c,e,a)∧M(e,b,d) (F)

We follow the same proof strategy as in Theorem 4.7. It follows from (S) that M is single-valued as
a relation and hence corresponds to a subobject of the form (A×A � B m A) in C. Again, we write
(a,b)↓ for B(a,b), so that M(a,b,c) means that (a,b)↓ and m(a,b) = c, and define relations S : A U ,
T : A U by (6) and (7), as well as

I = J(a,b) ∈ A×A | (∃x ∈U)(∃y ∈U) M(a,b,x)∧M(b,a,y)K : A A

It suffices to show these relations are total and single-valued, as they then correspond uniquely to mor-
phisms s, t and i in C defining the data of an internal groupoid

U A A×U A = Bm
s

t i

where we must also show that B is in fact a pullback of s and t.
From the unit laws (U1), (U2) and associativity (A), deduce that elements of U only compose when

they are equal, and then that if (a,x)↓ and (a,y)↓ we have (x,y)↓ by associativity, and so x = y. Hence S
is total and single-valued, as is T similarly. The special case of (F) in which b = s(a), c = t(a) and d = a
shows that I is total:

(∃e ∈ A) M(a,e,s(a))∧M(e,a, t(a)),

that is, ‘every morphism has an inverse’. Uniqueness of inverses then follows as for any category, once
we have shown that the composition m is associative. Writing a−1 for any inverse of a, associativity (A)
gives m(a−1,a) = s(a), and it follows that a and b are composable whenever s(a) = t(b). Conversely,
when a and b are composable, m(a,b) = m(m(a,s(a)),b) = m(a,m(s(a),b)) by (A) and so s(a) = t(b).
Hence B is indeed the pullback of s and t.

It remains to verify that these morphisms satisfy the equations defining an internal groupoid. Asso-
ciativity of m only requires further that (a,b)↓ and (b,c)↓ imply (m(a,b),c)↓. From (A) we find that
(m(a,b),s(b))↓whenever a and b compose, and hence s(m(a,b)) = s(b) as desired. Finally, that inverses
behave as expected follows from the definition of I.

Thus any dagger special Frobenius structure in Rel(C) defines an internal groupoid in C. Note also
that this is the only possible choice of s, t and i compatible with M and U since any groupoid operations
must satisfy the formulae defining S, T and I.

Conversely, given any internal groupoid (C0,C1,m,s, t,u, i) in C, we must show that M = =
(m : C1×C1 C1) and U = = (u : C0 �C1) satisfy the formulae (S), (A), (U1), (U2), and (F). Special-
ity (S) simply states that the relation is single-valued and surjective, which holds since m(a,s(a)) = a
for any a in C1. Equation (A) follows from associativity of composition m. Unitality (U1) and (U2)
follows from the equations satisfied by u, s and t. Finally, the Frobenius law (F) simply amounts to the
statement that m(a−1,c) = m(b,d−1) if and only if m(c−1,a) = m(d,b−1).
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B The category CP(C)

Proposition B.1. The category CP(C) is well-defined.

Proof. It inherits identities and composition from C. What we have to show is that composition is
well-defined. Suppose that the Choi matrices of both morphisms (A, , )

f
(B, , )

g
(C, , ) are

positive, say with square roots
√

f and
√

g. Then g◦ f also has a positive Choi matrix:

g◦ f

C

A C

A

=
f

g

A

CA

C

=

√
f

√
f

√
g

√
g

A

A

C

C

A monoidal dagger category is positively monoidal when endomorphisms f : A→ A are positive
as soon as f ⊗ idA is positive. For such categories, one can prove Stinespring’s theorem [16, Proposi-
tion 3.4], showing that the morphisms f : A→ B are precisely those such that f ⊗ idE sends completely
positive maps I→ A⊗E to completely positive maps I→ B⊗E for all special dagger Frobenius struc-
tures E. It follows that CP(C) is equivalent to CP∗(C) [16]. In particular, CP(FHilb) is the category of
finite-dimensional C*-algebras and completely positive maps. However, this is irrelevant to this paper;
for more details, see the forthcoming [22].

Proposition B.2. The category Rel(C) is positively monoidal for any regular category C.

Proof. If a relation R : A A satisfies R⊗ idA = S† ◦ S for some relation S : A×A X , then R is equal
to T † ◦T where T = J(a,x) ∈ A×X | (∃c ∈ A) S(a,c,e)K and hence is positive.
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