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An interface Newton-Krylov solver for fluid-structure interaction
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SUMMARY

The numerical solution of fluid-structure interactions with the customary subiteration method incurs
numerous deficiencies. We propose a novel solution method based on the conjugation of subiteration
with a Newton-Krylov method, and demonstrate its superiority and beneficial characteristics.
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1. INTRODUCTION

Fluid-structure interaction problems are of great relevance in many engineering disciplines;
see, e.g., [1, 2]. Their numerical solution commonly employs subiteration, i.e., fluid and
structure equations are solved alternately subject to complementary partitions of the interface
conditions; see, e.g., [3, 4]. Although subiteration is a good solver for many problems, it
lacks robustness and stability for problems with large time steps or large fluid-to-structure
mass ratios (cf. [5]). Moreover, subiteration generally operates in a sequential time-integration
process and, hence, solves a sequence of similar problems. However, the method cannot exploit
this property and reuse generated information. Therefore subiteration is inefficient.

Our objective is to overcome these drawbacks by employing subiteration as preconditioner
in a Newton-Krylov method [6]. This enables us to confine the GMRES acceleration to the
interface degrees-of-freedom, which is considerably cheaper than applying GMRES to the
aggregated equations or to the Schur complement; see, e.g.,[2, 7]. Moreover, the possibility
of reusing Krylov vectors in subsequent Newton iterations and time steps can yield substantial
computational savings. Our numerical experiments on a prototypical fluid-structure interaction
problem demonstrate that the proposed method is much more robust and efficient than
customary subiteration. The proposed approach is generic and easily implemented in existing
codes which use subiteration as a solver, as it fully maintains the software modularity of
segregated approaches [1].
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2. PROBLEM STATEMENT

Below we present a concise classical formulation of the one-dimensional piston problem; for
an elaboration and a variational formulation see [8]. Let x and t be spatial and temporal
coordinates, respectively, and α(t) the position of the fluid-structure interface. The piston
problem comprises the Euler equations on Ωα := {(x, t) : 0 < t < T ; 0 < x < α(t)} in
connection with a harmonic oscillator at the interface Γα := {(x, t) : x = α(t); 0 < t < T}:

∂q

∂t
+
∂f(q)

∂x
= 0, (x, t) ∈ Ωα, Mz̈(t) +Kz(t) = π(t)− p0, 0 < t < T, (1)

with q := (ρ, ρv, E)T , f(q) := (q2, q
2
2/q1 + p, [p+ q3]q2/q1)T and p := (γ − 1)(q3 − q2

2/[2q1])
with γ = 1.4. In (1), ρ, v, E and p denote the density, velocity, total internal energy and pressure
of the fluid, respectively, and z(t) designates the piston displacement from its equilibrium
position. The constants M and K denote mass and stiffness of the oscillator, respectively. The
forcing term is composed of the stress π(t) exerted by the fluid on the structure through Γα,
and the constant external pressure p0. The Euler equations and the harmonic oscillator are
connected by kinematic and dynamic interface conditions at the moving boundary Γα:

q2(α(t)) = q1(α(t))α̇(t), α(t) = α0 + z(t), p(q(α(t), t)) = π(t), (2)

with α0 a given positive constant. The first two conditions express impermeability of
the interface and identify interface position and piston position, respectively. The third
condition implies equilibrium of forces exerted on the interface by fluid and structure. The
complementary initial and boundary conditions for the fluid-structure system are:

q(x, 0) = q0(x), q2(0, t) = 0, z(0) = z0, ż(0) = ż0, (3)

with q0(x), z0 and ż0 the prescribed initial conditions of fluid and structure, respectively.

3. THE SUBITERATION METHOD

The interconnection between the state variables and their domain of definition complicates
the numerical treatment of fluid-structure interaction problems. This complication can be
bypassed through an iterative solution procedure often referred to as subiteration: Given an
initial approximation z0(t), for j = 1, 2, . . . repeat until convergence

(S1) Solve the kinematic condition: find αj such that αj(t) = α0 + zj−1(t).
(S2) Solve the fluid on Ωαj subject to q2(αj(t)) = q1(αj(t))α̇j(t) on Γαj to obtain qj .
(S3) Solve the dynamic condition: find πj such that πj(t) = p(qj(αj(t), t)).
(S4) Solve the structure problem with right member πj(t)− p0 to obtain zj(t).

This procedure obviates the simultaneous treatment of fluid and structure. Subiteration can
be conceived as a mapping C : zj 7→ zj+1, and essentially constitutes a fixed-point iteration
z : Cz = z, with C the operator associated with subiteration. The subiteration process is
formally stable if the spectral radius of C is smaller than unity. However, despite formal
stability, transient divergence can occur for large fluid-to-structure mass ratios or large time
steps. This non-monotonous convergence is caused by nonnormality of C (cf. [5]) and can
even lead to failure of the iterative method. Hence, it constitutes an essential drawback of
subiteration.
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4. THE INTERFACE NEWTON-KRYLOV METHOD

To solve the nonlinear fixed-point problem by a Newton-Krylov method [6], we reformulate it
as z : Rz = 0 with R := C− I the residual operator. Correspondingly, the residual of an iterate
zi is ri := Rzi = (C− I)zi = zi+1 − zi. For a given initial guess z0, Newton’s method generates
a sequence of approximate solutions according to

z0 ← z0 + z′0 = z0 − R′−1Rz0, (4)

with R′ = ∂R/∂z and z′0 a perturbation around the linearization state z0. Each Newton step
requires the solution of a linear problem of the form

Rz0 + R′z′0 = 0. (5)

Substituting into (5) the ansatz z′0 ∈ Km := span{zj − z0}j=mj=1 with Km the Krylov space
associated with (5) and using finite-difference approximation, we obtain

Rz0 + R′
j=m∑

j=1

αj(zj − z0) = r0 +

j=m∑

j=1

αj(rj − r0) + O(‖
j=m∑

j=1

αj(zj − z0)‖2) = 0, (6)

with Rm := span{rj − r0}j=mj=1 the residual space corresponding to Km. The coefficients αj for

the redefinition z0 ← z0 +
∑j=m

j=1 αj(zj − z0) are determined by solving (6) in a least-squares
sense

ᾱ = arg min‖r0 +

j=m∑

j=1

αj(rj − r0)‖2, ξ := ‖r0 +

j=m∑

j=1

ᾱj(rj − r0)‖2, (7)

with ξ the norm of the residual of the linear problem. The latter constitutes an estimate for
the norm of the residual of the nonlinear problem.
Km coincides with span{ζj − z0}j=mj=1 with ζj the j-th subiteration iterate. The minimal-

residual property of GMRES implies that the subiteration residuals form an upper bound for
the GMRES residuals and that, in contrast to the subiteration iterates, the GMRES iterates
must form a non-increasing sequence. However, this implies faster Newton-Krylov convergence
only for problems which are sufficiently linear.

Provided with an initial approximation z0(t), Algorithm 1 summarizes the Newton-Krylov
method, endowed with Gram-Schmidt orthonormalization (lines 6a–f) and underrelaxation
with an appropriate constant ν (line 6e). The former improves the robustness, the latter
facilitates the subiteration process and allows the combination of GMRES with subiteration
even if subiteration is formally unstable. The fluid solution can be extracted from the
subiteration process on line 1 or 13. The convergence tolerances for the nonlinear and the linear
problem are denoted by ε0 and ε1, respectively. We set ε1 = κ‖ri‖ with ri the residual in the
current Newton step i and κ < 1 an appropriate scalar. In contrast to methods which apply
GMRES to the aggregated equations or to the Schur complement, see [2, 7], the proposed
Newton-Krylov method is confined to the interface degrees-of-freedom and, therefore, the
storage requirements for the Krylov space and the computational expense for the solution of
the least-squares problem (7) are much lower.

Reuse of Krylov vectors only requires minor modifications; see Algorithm 1. The inner
loop then augments instead of overwrites the available spaces Km and Rm. Depending on
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1: i = 0; z1 = Cz0; r0 = z1 − z0

2: while ‖ri‖ > ε0 do
3: j = 0; ξ = ‖ri‖
4: while ξ > ε1 do
5: j = j + 1
6: z′j = zj − z0

7: zj+1 = Czj
8: r′j = (zj+1 − zj)− ri
9: ᾱ = arg min‖ri +

∑k=j
k=1 αkr

′
k‖

10: ξ = ‖ri +
∑k=j

k=1 ᾱkr
′
k‖

11: end while
12: z0 = z0 +

∑k=j
k=1 ᾱkz

′
k

13: i = i+ 1; z1 = Cz0; ri = z1 − z0

14: end while

6a: z′j = zj − z0

6b: for k = 1, . . . , j − 1 do
6c: z′j = z′j − z′k(z′j · z′k)/‖z′k‖2
6d: end for
6e: z′j = νz′j/‖z′j‖
6f: zj = z0 + z′j

1: i = 0; j = 0; z1 = Cz0; r0 = z1−z0

3a: ᾱ = arg min‖ri +
∑k=j

k=1 αkr
′
k‖

3b: ξ = ‖ri +
∑k=j

k=1 ᾱkr
′
k‖

3c: zj+1 = z1

Algorithm 1: The Newton-Krylov method for solving z : Cz = z; the basic algorithm (left),
modifications to enable Gram-Schmidt orthonormalization and underrelaxation (right top) and
modifications to enable reuse of Krylov vectors within a time step (right bottom).

the reduction of the updated nonlinear residual in Rm, Km is further augmented or another
Newton update is carried out.

In addition to reuse within a single time step, reuse is also possible within subsequent time
steps. In the latter case, the available spaces K and R are transfered from one time interval to
the next. Such reuse can substantially increase the efficiency of the method; however, it comes
at the expense of robustness and therefore has to be exercised with some caution.

5. NUMERICAL EXPERIMENTS

We investigate the Newton-Krylov method with reuse of Krylov vectors in subsequent time
steps, assess its viability under adverse conditions and compare it to subiteration.

We consider the piston problem with fluid initial conditions that correspond to a periodic
solution of the linearized system [8] and initial conditions for the oscillator specified below.
The problem is discretized by the finite-element method in conformity with [8]. The system
and discretization parameters are given in Table I, with c0 the speed of sound and τ the time-
step size; nq (space,time), nα, nz and nπ the polynomial order of the approximation space
of q, α, z and π, respectively; Nx

f and N t
f the number of fluid elements in space and time,

respectively, and N t
s the number of structure elements in time. Moreover, we set ε0 = 10−3‖r0‖,

ε1 = 10−1‖ri‖ and ν = 10−3.

We employ three distinct settings of the model problem which differ in the fluid density, ρ0,
and in the initial piston deflection, z0. A variation in ρ0 translates into a variation in the fluid-
to-structure mass ratio, ρ0α0/M . According to [5], the spectral radius of C scales with the mass
ratio. In test case I, we set ρ0

I = 2 and z0
I = 10−1. In test case II, we set ρ0

II = 20 and consider
z0

IIa = 10−1 and z0
IIb = 10−3. Although subiteration is formally stable, with z0

IIa = 10−1 it fails
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due to nonnormality-induced transient divergence. With z0
IIb = 10−3, failure of subiteration is

avoided and a comparison with the Newton-Krylov method is possible. In test case III, we set
ρ0

III = 200 and z0
III = 10−1. The subiteration method is unstable for this setting.

Fig. 1 illustrates that, initially, most iterations of the Newton-Krylov method are spent on
generating the Krylov space. However, in subsequent time steps, increasingly fewer Krylov
vectors need to be added to the space due to reuse. This results in a decreasing number of
iterations per time step and manifests in the gradually changing slope of the cumulative-
iteration-count curve; see Fig. 2. In contrast, the number of iterations required by subiteration
hardly changes in subsequent time steps. Reuse can render the Newton-Krylov method
computationally cheaper than subiteration even under conditions that are favorable for the
convergence of subiteration; see test case I, Figs. 1 and 2 left. For test case IIa with z0

IIa = 10−1,
the subiteration method fails due to nonnormality-induced transient divergence, whereas
the Newton-Krylov method converges properly (curves not shown). For test case IIb with
z0

IIb = 10−3, subiteration converges after a period of initial divergence, whereas the Newton-
Krylov method converges monotonously. This translates into a significant discrepancy in
computational cost; see Fig. 2 center. For test case III, the Newton-Krylov method attains
convergence despite of the instability of the underlying subiteration method. This is enabled
by orthonormalization and underrelaxation; cf. Section 4.

Table I: System and discretization parameters for test cases I–III (∗ indicates a variable parameter).

z0 ż0 α0 ρ0 c0 K M τ nq nα nz nπ Nx
f N t

f N t
s

∗ 0 1 ∗ 0.5 1 1 1 (3, 3) 5 5 4 12 12 12

6. CONCLUSIONS

We have presented a novel solution method for fluid-structure interaction problems which
overcomes the essential drawbacks of the customary subiteration method, viz., only conditional
stability, potential convergence difficulties due to nonnormality and the inability to reuse
information from previously solved similar problems. The conjugation of subiteration with
the Newton-Krylov method retains the segregated treatment of fluid and structure equations
and moreover confines the GMRES acceleration to the interface degrees-of-freedom. The
latter renders storage requirements for the Krylov space and computational cost of the
least-squares problem low. The nesting of Newton and GMRES iterations lends itself
naturally to reuse of Krylov vectors in subsequent solutions of the linear system. Numerical
experiments on a prototypical fluid-structure interaction problem have shown that the
proposed method is superior to customary subiteration in robustness and efficiency, and that it
can attain convergence even for problems for which standard subiteration is unstable. We have
demonstrated that the reuse of Krylov vectors results in considerable computational savings
and makes the difference in computational cost to subiteration even more pronounced. The
proposed solution method is generic and it is easily implemented in existing codes which use
subiteration as a solver.
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Figure 1: Residual reduction in the L2 norm versus iteration number in time steps 1 (—) and
10 (- - -) for subiteration and Newton-Krylov method; residual estimates and true residuals of the
Newton-Krylov method indicated by � and ◦, respectively, and residuals of subiteration by 4; test
case I (left), IIb (center) and III (right).

0 5 10
0

20

40

60

0 5 10
0

100

200

300

0 5 10
0

20

40

60

Figure 2: Cumulative number of iterations versus time-step counter for subiteration (4) and Newton-
Krylov method (◦); test case I (left), IIb (center) and III (right).
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