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ABSTRACT

The customary subiteration method for solving fluid-structure-interaction problems exhibits several deficiencies,

viz., only conditional stability, potential convergence difficulties due to nonnormality-induced divergence, and

the inability to reuse information from previously solved similar problems. To overcome these deficiencies, a

novel solution method is considered, in which subiteration is used as a preconditioner to GMRES. This paper

treats the linear-algebra aspects of the subiteration method, and of the subiteration-preconditioned GMRES

method, on the basis of properties of the error-amplification matrix for the aggregated fluid-structure system. An

analysis of the error-amplification matrix of subiteration establishes that subiteration condenses errors into a low-

dimensional subspace which can be associated with the interface degrees-of-freedom. Therefore, the GMRES

acceleration of subiteration can be confined to the interface degrees-of-freedom. The error-amplification analysis

provides a clear explanation of the relation between the local GMRES acceleration (i.e., on the interface degrees-

of-freedom), and the global error-amplification properties (i.e., for the aggregated system). Moreover, we show

that the subiteration iterates span a Krylov space corresponding to a preconditioned aggregated system. We then

address the implications of the nonnormality of the subiteration preconditioner for the convergence of GMRES.

The subiteration-preconditioned GMRES method enables the optional reuse of Krylov vectors in subsequent

invocations of GMRES, which can substantially enhance the efficiency of the method. To assess the potential

and the limitations of the reuse option, we analyse the error-amplification matrix of the GMRES method with

reuse. Furthermore, we establish that the GMRES acceleration on the interface degrees-of-freedom generates

an approximation to the Schur complement for the aggregated system. The GMRES acceleration and the reuse

of Krylov vectors are then assessed in terms of the approximation properties for the Schur complement, and in

terms of the properties of the corresponding error-amplification matrices. Numerical experiments on a model

fluid-structure-interaction problem illustrate the developed theory. In particular, we analyse the convergence of

the respective methods in terms of spectral radii, matrix norms and sharp convergence upper bounds.

Keywords and Phrases: fluid-structure interaction, subiteration, GMRES, preconditioning, reuse of Krylov

vectors, error-amplification analysis, convergence bounds.

1. Introduction
Fluid-structure interactions are of great relevance in many engineering disciplines such as aerospace
engineering [1, 2], civil engineering [3, 4] and bio-mechanics [5]. The numerical solution of fluid-
structure-interaction problems commonly employs subiteration, i.e., fluid and structure equations are
solved alternately subject to complementary partitions of the interface conditions; see, e.g., Refs. [6,
7, 8]. This process essentially constitutes a block Gauss-Seidel method. Although subiteration is a
good solver for many problems, it converges only slowly or even diverges for problems with large
computational time steps or large fluid-to-structure mass ratios. Subiteration is only conditionally
stable, but even despite formal stability, transient divergence can precede asymptotic convergence.
These convergence difficulties can be attributed to the nonnormality of the subiteration operator; see
Ref. [9]. Such non-monotonous convergence behaviour can even lead to failure of the solution method
despite formal stability. Moreover, subiteration is generally employed in a sequential time-integration
process and, hence, it solves a sequence of similar problems. However, the method cannot exploit
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this property by reusing generated information, for instance, for preconditioning purposes. Therefore,
subiteration is to be considered inefficient.

In Ref. [10], we proposed to overcome the deficiencies of subiteration by combining it with GMRES
acceleration [11]. As the latter can be confined to the interface degrees-of-freedom, we refer to the
method also as Interface-GMRES. Restriction of the GMRES acceleration to the interface renders
storage requirements for the Krylov space and computational cost of the least-squares problem low
in contrast to approaches which apply GMRES to the aggregated equations [12, 13], or to the Schur
complement associated with the structure [14]. In Ref. [10], we established the Interface-GMRES
method in a continuum setting of a generic fluid-structure-interaction problem, which implies that
the method is generic, and that its performance is asymptotically independent of the discretization
of the underlying problem. Moreover, the proposed method enables optional reuse of Krylov vectors
in subsequent invocations of GMRES, which can considerably enhance the efficiency of the method.
The proposed method is easily implemented in existing codes which use subiteration as a solver, as it
fully maintains the software modularity of segregated approaches; see, e.g., Ref. [15].

The present paper treats the linear-algebra aspects of the Interface-GMRES method on the basis
of properties of the error-amplification matrix for the aggregated system. The linear-algebra set-
ting enables a clear explanation of the relation between the local GMRES acceleration (i.e., on the
interface degrees-of-freedom), and the global error-amplification properties (i.e., for the aggregated
system). Moreover, the error-amplification matrix of the GMRES method with reuse serves to assess
the potential of and the limitations on the reuse option.

To establish the error-amplification matrix, we consider a system of nonlinear-algebraic equations
in conformity with discretizations of fluid-structure-interaction problems. We then investigate the
iterative solution of a corresponding linear system by means of standard subiteration, and by means
of the novel combined subiteration/GMRES method. By virtue of the linear-algebra setting, it is
possible to derive precise expressions for the error-amplification properties of subiteration separately,
and of subiteration combined with GMRES, with and without the reuse option. On the basis of
the error-amplification matrix of subiteration, we can show that subiteration condenses errors into
a low-dimensional subspace which can be associated with the interface degrees-of-freedom, and that
the GMRES acceleration can be confined to the interface. Moreover, the nonnormality of the subit-
eration operator, and its implications for the combined subiteration/GMRES method, can be traced
immediately to properties of the error-amplification matrix. Next, we show that the subiteration
iterates span a Krylov space corresponding to a preconditioned aggregated system. The properties of
the subiteration-preconditioned GMRES method are then considered and, in particular, the relation
between GMRES convergence and nonnormality of the subiteration preconditioner is addressed. Fur-
thermore, we establish that the GMRES acceleration on the interface degrees-of-freedom generates an
approximation to the Schur complement for the aggregated system. The GMRES acceleration and
the reuse of Krylov vectors in subsequent invocations of GMRES are then assessed in terms of the ap-
proximation properties for the Schur complement, and in terms of the properties of the corresponding
error-amplification matrices.

The theory is illustrated by numerical experiments on a model fluid-structure-interaction problem
with a van-der-Pol oscillator. As this model problem exhibits qualitative changes in its solution
behaviour in time, it is particularly suitable to investigate the effect of the reuse of Krylov vectors on
the error-amplification properties of the subiteration-preconditioned GMRES method. Moreover, we
provide worst-case convergence bounds for the methods in terms of matrix norms.

The contents of this paper are organized as follows: Section 2 establishes the linear-algebra setting
of the problem. Section 3 derives the error-amplification matrix of the subiteration method, and elab-
orates on the preconditioning perspective and on the nonnormality of subiteration. Section 4 analyses
the error-amplification properties of the subiteration-preconditioned GMRES method with and with-
out reuse in terms of the Schur-complement approximation and in terms of the error-amplification
matrices. Section 5 provides numerical experiments and results. Section 6 contains concluding re-
marks.
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2. Algebraic problem statement
In this section, we introduce the system of algebraic equations that emanates from a discretization of
a generic fluid-structure-interaction problem; for a description of the latter we refer to Ref. [10]. We
consider the system of linear-algebraic equations that arises from the application of Newton’s method.
This linear-algebraic system forms the basis of the error-amplification analysis for an inexact Newton
method in Section 2.2. The subiteration method and the subiteration-preconditioned GMRES method
can be construed as special instances of such an inexact Newton method.

2.1 The system of linear-algebraic fluid-structure-interaction equations

The system of fluid-structure-interaction equations comprises the initial-boundary-value problems
of the fluid and the structure, complemented by kinematic and dynamic conditions at the fluid-
structure interface. We consider the generic space-time variational formulation of such fluid-structure-
interaction problems as presented in Ref. [10] and refer for a particular instance, viz., the piston
problem, to Ref. [16]. The space-time finite-element discretization of this generic variational statement
yields a system of aggregated algebraic equations for the fluid-structure system, which we condense
into the abstract form

R(q) = 0, (1a)

and, more specifically,

R1(q1, q5) = 0, (1b)

R2(q1, q2) = 0, (1c)

R3(q1, q2, q3) = 0, (1d)

R4(q3, q4) = 0, (1e)

R5(q4, q5) = 0. (1f)

We denote aggregated quantities by bold symbols. In particular, in (1), R := [R1, R2, R3, R4, R5]
T

and q := [q1, q2, q3, q4, q5]
T denote the residual operators and variables associated with kinematic

interface condition, fluid equations, dynamic interface condition, structure equation and the restriction
of the structure variables to the interface, respectively. Note that the fluid and structure variables, q2

and q4, are connected by the kinematic and dynamic interface conditions, R1 and R3, via the fluid-
interface displacement and the interface traction exerted on the structure, q1 and q3, respectively. For
transparency of the ensuing presentation, we have introduced an additional equation, Eq. (1f), given
by

R5(q4, q5) := T (q4) − q5 = 0, (2)

where T represents the trace operator, which defines the structural displacement at the interface, q5,
in terms of the structural variables, q4.

Given an initial estimate q0, the application of Newton’s method to the nonlinear system (1) gives
rise to a sequence of linear problems

A(qn+1 − qn) = −R(qn), (3a)

for n = 0, 1, 2, . . ., which bear the particular form
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In (3b), Aij denotes the Jacobian matrix corresponding to the residual-operator derivative ∂Ri/∂qj

and Ri(q
n) the residuals at the current linearization state qn. We remark that, in conformity with

Eq. (2), A55 = −I with I the identity matrix. If the initial estimate q0 is sufficiently close to the
actual solution q̄ of Eq. (1a), then qn converges to q̄ as n → ∞.

The consideration of Newton’s method is useful mainly for conceptual reasons, as it provides the
framework for the ensuing error-amplification analysis in Section 2.2. For the solution of fluid-structure
interaction problems, however, the application of Newton’s method is actually prohibitive: The inher-
ent interdependence between fluid and structure solutions induced by the interface conditions renders
the matrix A in (3) inseparable. This interconnection requires, in principle, a simultaneous solution
of fluid and structure equations and, hence, causes the loss of software modularity; cf. Ref. [15].
Moreover, the disparate properties and scales inherent in the fluid and structure problems generally
render the matrix A severely ill-conditioned. Finally, Eq. (3b) necessitates the evaluation of so-called
shape derivatives, i.e., the derivative of the fluid equations with respect to a perturbation in the in-
terface position, represented by the entry A21. The difficulty in the evaluation of A21 pertains to the
fact that a perturbation in the interface position in principle generates a perturbation throughout the
entire fluid domain and, hence, A21 acts as a non-local operator. Although there exist approaches to
facilitate the evaluation of the shape derivatives, such as the method of spines [13], their applicability
is typically restricted.

2.2 Error-amplification analysis of inexact Newton methods

In order to bypass the aforementioned disadvantages of Newton’s method, one generally reverts to al-
ternative solution methods such as subiteration. For the error-amplification analysis of these methods,
it is convenient to construe them, on linear approximation, as particular instances of an inexact New-
ton method. At variance with Eq. (3a), such inexact Newton methods determine an approximation
q̃n+1 from the solution of

Ã(q̃n+1 − qn) = −R(qn), (4)

where Ã denotes an approximate Jacobian that is ‘in some sense’ similar to A, but easier to invert.
The error induced by this approximation can be assessed as follows. The exact Newton method solves
Eq. (3a) and, hence, on linear approximation, eliminates the error in a single step. Thus, on linear
approximation, qn+1 corresponds to the solution q̄ of (1a), and Eq. (3a) translates into

−Aε
n = −R(qn), (5)

where ε
n := qn − q̄ denotes the error in the approximation qn. Likewise, we denote by ε

n+1 :=
q̃n+1 − q̄. Substituting Eq. (5) into Eq. (4) and adding suitable partitions of zero, we obtain

Ã(εn+1 − ε
n) = −Aε

n, (6)

which yields the error-amplification relation

ε
n+1 = Eε

n (7a)

with
E := I − Ã−1A (7b)

the error-amplification matrix of the inexact Newton method with approximate Jacobian Ã. The
inexact Newton method is formally convergent, if the spectral radius of the error-amplification matrix
is smaller than unity, i.e., spr(E) < 1. With the setting Ã = A, we recover the exact Newton method,
which yields E = 0. We elaborate in Sections 3 and 4 that the customary subiteration method and
the novel subiteration-preconditioned GMRES method with and without reuse can be associated with
specific choices of Ã. This enables a comparison of their respective error-amplification properties from
a unified viewpoint.
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3. Error-amplification analysis of the subiteration method
This section presents a detailed analysis of the error-amplification properties of the subiteration
method. To this end, we recall the basic subiteration algorithm in Section 3.1. In Section 3.2, we
establish the error-amplification matrix, and we derive the precise form of its entries, which enables
us to relate the error-amplification behaviour to specific entries. We show that the error-amplification
matrix is rank-deficient, which provides the theoretical basis for the restriction of the GMRES ac-
celeration to the interface degrees-of-freedom. Moreover, we consider the norm, spectral radius, and
the nonnormality of the error-amplification matrix in Section 3.3. Nonnormality has important im-
plications for the convergence of the subiteration method, and for the GMRES convergence bounds
discussed in Section 4.5. Finally, in Section 3.4, we elaborate on the preconditioning perspective of
subiteration, which provides the motivation of using it as a preconditioner to GMRES.

3.1 The subiteration method

The subiteration method is defined by the following iterative procedure: Provided with an initial
approximation of the structure displacement at the interface, q0

5(t), for n = 1, 2, . . .

(S1) Solve the kinematic condition: find qn
1 such that R1(q

n
1 , qn−1

5 ) = 0

(S2) Solve the fluid equations: find qn
2 such that R2(q

n
1 , qn

2 ) = 0

(S3) Solve the dynamic condition: find qn
3 such that R3(q

n
1 , qn

2 , qn
3 ) = 0

(S4) Solve the structure equations: find qn
4 such that R4(q

n
3 , qn

4 ) = 0

(S5) Determine the structure displacement at the interface: find qn
5 such that R5(q

n
4 , qn

5 ) = 0

We remark that in an actual computation, the subiteration process solves the nonlinear equations.
However, for our analysis we shall apply it to the linearized equations.

Note that the subiteration procedure obviates the simultaneous treatment of the fluid and the
structure and, thus, enables software modularity. For applications of the subiteration method to fluid-
structure-interaction problems see, e.g., Refs. [6, 7, 8]. We remark that the customary partitioned and
staggered time-integration methods for fluid-structure-interaction problems (see, e.g., Refs. [15, 17,
18, 19]) are essentially identical to the above subiteration method; however, they do not repeat the
iterative process.

For convenience of the ensuing presentation, let us introduce the notation z := q5. To facilitate the
subsequent analysis of the subiteration method separately, and of the combined subiteration/GMRES
method, we construe the subiteration process as a mapping from one structure interface displacement
to the next, i.e.,

C : zn 7→ zn+1 = Czn, (8)

where C denotes the operator induced by the subiteration process as defined by (S1)–(S5); see Refs. [9,
10] for further elaboration. Accordingly, the subiteration process can be characterized by recursion of
the nonlinear operator C on the interface displacement z. Thus, subiteration can be conceived as a
fixed-point iteration. The fixed point

z̄ : z̄ = Cz̄ (9)

corresponds to the solution of (1). The nonlinear fixed-point problem (9) can be reformulated as

RSubz̄ = 0 (10)

with RSub := C − I the residual operator defined in conformity with (9) and I the identity. Clearly, z̄
being a solution of Eq. (10) is equivalent to z̄ being a fixed point of Eq. (9). The residual of an iterate
is

rn := RSubz
n = (C − I)zn = Czn − zn = zn+1 − zn. (11)

Note that, upon providing the subiteration process with the solution q̄5 = z̄, the steps (S1)–(S5)
yield the solution q̄ = (q̄1, q̄2, q̄3, q̄4, q̄5) of the aggregated nonlinear equations (1) in a single iteration,
provided that the equations in each step are solved exactly.
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3.2 Error-amplification analysis

This section analyses the error-amplification properties of the subiteration method. To this end, we
recall from Section 3.1 that the subiteration method solves the nonlinear equations. For the error-
amplification analysis we consider the linearization of these equations in conformity with Eq. (3). The
subiteration algorithm then translates into the solution of the following equations:
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0 0 0 A54 A55
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, (12a)

which can be condensed into the form

ÃSub(q̃n+1 − qn) = −R(qn). (12b)

From Eq. (12) it is apparent that we can associate a Jacobian matrix ÃSub with the subiteration
process, that corresponds to the lower-triangular part of A, i.e., it is identical to matrix A in Eq. (3),
but with the A15 block set to zero. Because ÃSub is lower block-triangular, the subproblems involving
the inversion of the Jacobian ÃSub can be solved conveniently by forward substitution. Hence, the
subiteration process essentially corresponds to a block Gauss-Seidel method.

Having identified the approximate Jacobian matrix ÃSub induced by the subiteration process, we
determine the corresponding error-amplification matrix according to Eq. (7) as ESub := I− Ã−1

Sub
A =

Ã−1

Sub
(ÃSub −A) such that the error-amplification relation (7) translates into
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, (13a)

where the entries are defined as

E15 = −A−1
11 A15, (13b)

E25 = A−1
22 A21A

−1
11 A15, (13c)

E35 = −A−1
33 (A32A

−1
22 A21 − A31)A

−1
11 A15, (13d)

E45 = A−1
44 A43A

−1
33 (A32A

−1
22 A21 − A31)A

−1
11 A15, (13e)

E55 = −A−1
55 A54A

−1
44 A43A

−1
33 (A32A

−1
22 A21 − A31)A

−1
11 A15. (13f)

Eq. (13) conveys that the subiteration error-amplification matrix is highly rank-deficient and, more
specifically, its rank is equal to the minimum rank of the contributing block matrices in E55.

It is important to note that in general the dimensions of the block matrices A11, A33 and A55

associated with the interface variables are negligible compared to the dimensions of the fluid and
structure block matrices, A22 and A44, respectively, because the former refer to interface functions.
Hence, the rank of the error-amplification matrix will generally be determined by the dimension of
a block matrix associated with the interface. This rank-deficiency has important consequences. In
particular, it implies that the error components εn

1 , . . . , εn
4 are mapped onto zero and, hence, do not

contribute to ε
n+1. The only error component that propagates from ε

n to ε
n+1 is εn

5 . More precisely,
εn
5 contributes to all components in ε

n+1 due to the particular structure of the error-amplification
matrix in (13). Thus, if the subiteration process is provided with the exact structure displacement
q̄5 = z̄, and, accordingly, ε5 = 0, then the method yields the solution to the aggregated equations in a
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single iteration. Moreover, from Eqs. (7) and (13), it is possible to derive a bound on the aggregated
error, ε, in terms of the error in the structure interface displacement, ε5, as follows

‖εn+1‖ ≤ γ‖En
55‖‖ε

0
5‖, γ ∈ R+ , (14)

with γ a constant depending on ‖ESub‖, but independent of n. If the spectral radius spr(E55) < 1,
then ε

n → 0 and, hence, qn → q̄ as n → ∞. Moreover, from Eq. (14) it is apparent that the
precise convergence behaviour of subiteration is determined by the properties of E55; see Section 3.3
for further elaboration.

We can assign a particular meaning to the block matrix E55 in Eq. (13), which specifies the error
amplification in the structure interface displacement, viz.,

εn+1
5 = E55ε

n
5 . (15a)

To this end, we linearize Eq.(8) around the solution z̄ = q̄5, subtract the fixed-point equation and
obtain

εn+1
5 = C ′εn

5 . (15b)

From Eqs. (15a) and (15b), we can identify the block matrix E55 as the discrete representation of
the subiteration-operator derivative C ′.

Another observation that can be made from Eq. (13) is that the block matrices associated with the
fluid and the structure, A22 and A44, respectively, contribute to E55 only through projections onto
the interface; see Eq. (13f). This indicates that the interior complexity of fluid and structure models
yields only an indirect effect on the convergence of the subiteration method.

3.3 Nonnormality of subiteration

In this section, we briefly elaborate on the nonnormality of the subiteration operator, as such nonnor-
mality has severe implications for the convergence behaviour of the subiteration method; see Ref. [9]
for details. Moreover, nonnormality has implications also for the GMRES convergence bounds; see
Section 4.5.

On linear approximation, convergence of the subiteration process requires that the spectral radius
of the subiteration-operator derivative C ′ is strictly less than one, i.e., spr(C ′) < 1 or, equivalently,
spr(E55) < 1 in conformity with Eq. (15). Note, however, that the spectral radius only determines the
asymptotic convergence behaviour of the method. The transient convergence behaviour is determined
by the norm ‖C ′‖ or, equivalently, by ‖E55‖. Due to nonnormality of the subiteration-operator
derivative C ′, the spectral radius and norm can be disparate and, in particular, spr(E55) can be much
smaller than ‖E55‖. This disparity can give rise to non-monotonous convergence of the method, i.e.,
transient divergence can precede asymptotic convergence; see Ref. [20, ch. 2] for examples and, more
specifically, Ref. [9]. To elucidate the above elaboration, we note that the error in the n-th iterate can
be bounded in conformity with Eq. (15) as

(spr(E55))
n ≤ ‖εn

5‖/‖ε
0
5‖ ≤ ‖En

55‖ ≤ κ(X)(spr(E55))
n, (16)

where κ(X) := ‖X‖‖X−1‖ denotes the condition number of the matrix of eigenvectors, X , of E55. For
a normal matrix, the eigenvectors are orthonormal and, accordingly, κ(X) = 1, so that the upper and
lower bounds in (16) coincide. For a nonnormal matrix, however, the eigenvectors are non-orthogonal
and κ(X) can be very large. In combination with the upper bound ‖En

55‖ ≤ ‖E55‖
n, the bounds

in (16) imply that if spr(E55) < 1 < ‖E55‖ and κ(X) is large, then the initial error can be amplified
by many orders of magnitude before it eventually decreases at an asymptotic rate determined by
spr(E55). The transient error growth can cause failure of the iterative method despite formal stability.
In order to control nonnormality-induced divergence, the computational time step can be reduced; see
Ref. [9]. However, this generally renders the method inefficient.
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3.4 Subiteration preconditioning

For the ensuing presentation of the combined subiteration/GMRES method in Section 4, it is eluci-
dating to construe subiteration as a preconditioner for GMRES, following the concepts of Ref. [21].

The subiteration iterates computed according to the recursion (12) span a Krylov space corre-
sponding to a left-preconditioned aggregated system:

qn+1 − qn ∈ span{Ã−1r0, (Ã−1A)Ã−1r0, . . . , (Ã−1A)nÃ−1r0}

= K
n+1(Ã−1A, Ã−1r0), n = 0, 1, . . . , (17)

where for ease of notation we have dropped the subscript in ÃSub and the tilde in q̃n+1, and denoted
the Krylov space of dimension n + 1 by K

n+1. Moreover, in Eq. (17), we have implied that, on linear
approximation, the residual of the linear problem (3)

rn := Aqn −Aqn−1 + R(qn−1), n = 1, 2, . . . (18)

is identical to the residual of the nonlinear problem (1), i.e., rn = R(qn). With this identity and
provided with r0 = R(q0), the residual of the linear problem can be defined recursively as

rn := Aqn −Aqn−1 + rn−1, n = 1, 2, . . . , (19)

and Eq. (12) can be rewritten as

qn+1 − qn = −Ã−1rn, n = 0, 1, . . . . (20)

The proof of Eq. (17) follows straightforwardly by induction. Clearly, the assertion holds for n = 0:

q1 − q0 = −Ã−1r0 ∈ span{Ã−1r0} (21)

in conformity with Eq. (20). The induction makes use of the premise

qn − qn−1 ∈ span{Ã−1r0, . . . , (Ã−1A)n−1Ã−1r0}. (22)

Starting from the left-hand-side of Eq. (17) and invoking Eqs. (19), (20) and (22), it holds that

qn+1−qn = −Ã−1rn = −Ã−1(Aqn−Aqn−1+rn−1) = −Ã−1(A[qn−1−Ã−1rn−1]−Aqn−1+rn−1)

= −Ã−1rn−1 + (Ã−1A)Ã−1rn−1

∈ span{Ã−1r0, . . . , (Ã−1A)n−1Ã−1r0} + (Ã−1A)span{Ã−1r0, . . . , (Ã−1A)n−1Ã−1r0}

= span{Ã−1r0, . . . , (Ã−1A)n−1Ã−1r0, (Ã−1A)nÃ−1r0}

= K
n+1(Ã−1A, Ã−1r0). (23)

This completes the proof of Eq. (17).
Our error-amplification analysis in Section 3.2 conveys that the eigenvalues of Ã−1A exhibit a much

more favourable distribution than those of A. In particular, Eq. (13) imparts that most eigenvalues
of Ã−1A are 1. This makes subiteration a good preconditioner for the aggregated equations. Thus,
instead of using subiteration as a solver, we will employ it as a preconditioner for GMRES; see
Section 4.

The rank-deficiency of Ã−1A and, moreover, the fact that the error-amplification behaviour is
essentially determined by the properties of E55 (see Eq. (14)), have important implications for the
Krylov method. In particular, it follows that a Krylov method solves the linear system (3) in at most
N steps, where N := rank(Ã−1A) = rank(E55). Moreover, on account of the rank-deficiency and the
particular structure of Ã−1A, the Krylov vectors need not contain all degrees-of-freedom, but only
those associated with the interface degrees-of-freedom. This enables an efficient storage of the Krylov
space and, moreover, renders the computational cost of the least-squares problem low in contrast to
approaches which apply GMRES to the aggregated equations [12, 13], or to the Schur complement
pertaining to the structure [14].
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4. Error-amplification analysis of subiteration-preconditioned GMRES
In this section, we present a detailed error-amplification analysis of the combined subiteration/GMRES
method. To this end, we introduce in Section 4.1 the GMRES method with subiteration precondi-
tioning. Moreover, we establish the Schur complement associated with the interface displacement.
The Schur complement plays a central role in our investigation in that it enables us to analyse the
considered solution methods in terms of their approximation properties for the Schur complement.
The subiteration-preconditioned GMRES method allows for optional reuse of Krylov vectors in sub-
sequent invocations of GMRES. This reuse option is considered in Section 4.2. Next, we analyse the
error-amplification properties of the subiteration-preconditioned GMRES method, first without the
reuse option (Section 4.3), and subsequently with reuse (Section 4.4). Finally, in Section 4.5, we con-
sider the convergence behaviour of subiteration-preconditioned GMRES, and we derive sharp upper
bounds for the GMRES residual.

4.1 Subiteration-preconditioned GMRES

On account of the fact that the subiteration iterates span a Krylov space, and that subiteration exhibits
favourable error-amplification properties, subiteration constitutes an apt preconditioner for GMRES.
The combined subiteration/GMRES method comprises the following steps: firstly, one subiteration to
condense the errors into a low-dimensional subspace and, moreover, to obtain a particular form of the
Schur complement, and secondly, the application of GMRES to the Schur-complement equation, which
yields the solution of the structure interface displacement. Finally, another subiteration is required to
compute the remaining components of the solution vector.

The Schur complement associated with the interface constitutes a key element in the analysis of
the subiteration-preconditioned GMRES method. Therefore, let us first introduce the notion of the
Schur complement associated with the structure interface displacement q5 and the linear-algebraic
system (3b). To this end, we translate the system (3b) into Schur form
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(24a)

with the Schur-complement matrix S and the corresponding right-hand-side vector RS(qn) defined
respectively as

S := −A−1
55 A54A

−1
44 A43A

−1
33 (A32A

−1
22 A21 − A31)A

−1
11 A15 − I (24b)

and

RS(qn) := A−1
55

(

−R5(q
n) + A54A

−1
44

(

R4(q
n) + A43A

−1
33 (−R3(q

n)

+A32A
−1
22

(

R2(q
n) − A21A

−1
11 R1(q

n)
)

+ A31A
−1
11 R1(q

n)
)))

. (24c)

Note that the fifth equation in (24a) decouples. This equation constitutes the Schur-complement
equation, viz.,

S(qn+1
5 − qn

5 ) = −RS(qn). (25)

The expression of the right-hand-side vector RS(qn) in (24c) can be significantly simplified when
provided with residuals R1(q

n), . . . , R5(q
n) based on a qn that has been generated by subiteration.

To substantiate this assertion, we recall from Section 3.1 that, provided with an initial approximation
of the structure interface displacement qn−1

5 , the subiteration steps (S1)–(S5) can be conceived as a
sequence of mappings, viz., qn−1

5 7→ qn
1 7→ qn

2 7→ qn
3 7→ qn

4 7→ qn
5 . For convenience, and without loss of

generality, let us shift the indices according to qn
5 7→ qn

1 7→ qn
2 7→ qn

3 7→ qn
4 7→ q̂n+1

5 . The ‘hat’ symbol
serves to indicate that q̂n+1

5 constitutes only an intermediate value which will be replaced by the
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subsequent invocation of GMRES. Note that, in conformity with the mapping above and Eq. (1), the
residuals R1(q

n), . . . , R4(q
n) are identically zero, and R5(q

n) = RSub(qn
5 ) = q̂n+1

5 − qn
5 in accordance

with Eqs. (2) and (11). In summary, one subiteration generates a vector qn = [qn
1 , qn

2 , qn
3 , qn

4 , qn
5 ] such

that the corresponding residual vector is R(qn) = [0, 0, 0, 0, q̂n+1
5 − qn

5 ]. Provided with the residual
vector R(qn) and noting that A55 = −I , Eq. (24c) simplifies considerably. Using the notation z := q5

introduced in Section 3.1, the Schur-complement equation (25) can then be written as

S(zn+1 − zn) = −(ẑn+1 − zn) . (26a)

With the definition (13f), the expression for the Schur complement (24b) can be specified as

S = E55 − I. (26b)

Recall from Section 3.2 that the matrix E55 constitutes the discrete representation of the subiteration-
operator derivative C ′. Hence, Eq. (26a) can be identified as a Newton iteration for the fixed-point
residual equation (10), viz.,

R′
Sub(z

n+1 − zn) = −RSub(z
n), (27)

and S = R′
Sub

. Note that one subiteration is required to provide the residual RSub(z
n) that forms the

right-hand-side of the Schur-complement equation (26a).
The Schur-complement matrix S in (26a) is generally not known explicitly. However, if a Krylov

method is used to solve the linear system (26a), then S is only required in the form of matrix-
vector products, which can be approximated by finite differences. To this end, we note that on linear
approximation

S(zn+1
j − zn) = rn+1

j − rn, (28)

where j indicates the counter for the GMRES iterations. In Eq. (28), the action of the Schur-
complement matrix S on the increment vector (zn+1

j −zn) yields the corresponding residual sensitivity

(rn+1
j − rn). For a Krylov method that makes use of the finite-difference approximation (28), we thus

require a space of search directions in the form of updates around the current linearization state zn,
and the corresponding space of residual sensitivities in the form of increments around rn. We then
seek an approximation to the solution of Eq. (26a) from the search space Km, according to

(zn+1 − zn) ∈ Km := span{zn+1
j − zn}j=m

j=1
, (29)

where the zn+1
j are generated by successive subiterations. For a formal proof that Km constitutes a

Krylov space we refer to Ref. [10]. Denoting the vectors of search directions by uj = zn+1
j − zn with

j = 1, . . . , m, we collect them in a matrix Um := [u1, . . . , um]. Moreover, we require the space of
residual sensitivities, Rm, that corresponds to the space of search vectors, viz.,

(rn+1 − rn) ∈ Rm := span{rn+1
j − rn}j=m

j=1 . (30)

Denoting the residual-sensitivity vectors by vj = rn+1
j − rn with j = 1, . . . , m, we collect them in a

matrix Vm := [v1, . . . , vm]. In conformity with Eq. (28), V is the image of U under S, i.e.,

SU = V. (31)

We remark that the generation of the search and residual-sensitivity space implicitly builds an ap-
proximation to the Schur-complement matrix. If the spaces U and V are complete and have full rank,
then S can be obtained from Eq. (31) by S = V U−1.

Provided with the linearization state zn and the corresponding residual rn, the generation of one
pair of search direction and corresponding residual sensitivity, (uj , vj) = (zn+1

j − zn, rn+1
j − rn), is

at the expense of one subiteration. The subiteration is required for the evaluation of the residual
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rn+1
j := RSub(z

n+1
j ) = zn+1

j+1
− zn+1

j . At the same time, it also generates a new search direction

uj+1 = zn+1
j+1 − zn. In practice, though, the search direction must be orthogonalized with respect to

the previously generated search directions to avoid ill-conditioning of the search space.
To construct an approximation to the solution of the linear problem (26a), we make the following

ansatz

zn+1 − zn =

j=m
∑

j=1

αjuj (32)

with coefficients αj that are determined from the requirement that the update (32) minimizes the
residual of the Schur-complement equation (26a), viz.,

ᾱ = arg min
α

‖rn + S

j=m
∑

j=1

αjuj‖ = arg min
α

‖rn +

j=m
∑

j=1

αjvj‖ (33)

in conformity with the finite-difference approximation (28). Hence, the considered Krylov method is a
minimal-residual method. As the spaces Km and Rm are generally not complete, Eq. (33) is solved in
a least-squares sense (see, e.g., Ref. [22, ch. 5.3]), i.e., the coefficients ᾱ are obtained from the solution
of the normal equation

V T V ᾱ = −V T rn. (34)

The computational cost involved in solving Eq. (34) is small in comparison to that of a subiteration,
because the least-squares problem (33) is confined to the interface degrees-of-freedom. With coeffi-
cients ᾱ determined from the solution of Eq. (34), the norm of the residual of the Schur-complement
equation (26a) is given by

ξm := ‖rn +

j=m
∑

j=1

ᾱjvj‖. (35)

If the residual norm ξm in (35) satisfies a given tolerance, the coefficients ᾱ are used to determine the
corresponding approximate solution zn+1 from Eq. (32). Note that in the actual nonlinear process,
the residual norm given by Eq. (35) constitutes an estimate for the norm of the nonlinear residual;
cf. Ref. [10].

Having established the equations solved by subiteration and GMRES, we can now establish the
aggregated system that is solved by the combined subiteration/GMRES method. To this end, we recall
that the subiteration process acting on the aggregated system (12) and the GMRES method acting on
the Schur-complement equation (26a) correspond to the mappings qn

5 7→ q̃n+1
1 7→ . . . 7→ q̃n+1

4 7→ q̂n+1
5

and q̂n+1
5 7→ qn+1

5 , respectively. The combined subiteration/GMRES method then corresponds to
the combined mapping qn

5 7→ qn+1
5 . Upon combining the Schur-complement equation (26a) with the

system (12a) associated with subiteration, we obtain
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. (36)

Clearly, the system (36) retains the lower block-triangular structure induced by the subiteration
method. As subiteration discards the A15 entry in (3b), two iterations are required to compute the
aggregated solution vector: Upon solution of Eq. (36) only the component qn+1

5 , obtained from the
Schur-complement equation, corresponds to the solution of (3b). To determine the remaining compo-
nents of the solution vector, one additional subiteration needs to be carried out; see also Section 3.1.

As we already mentioned in the beginning of this section with respect to the combined subiter-
ation/GMRES method, prior to an invocation of GMRES, a subiteration needs to be carried out,
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which serves two purposes. Firstly, it condenses all error components into a low-dimensional sub-
space associated with the interface; cf. Section 3.2. Secondly, the subiteration process provides the
right-hand-side residual for the Schur-complement equation.

So far we have exclusively considered the solution of the linear-algebraic system (3). However, in
practice, the system of equations (1) is nonlinear. The application of Newton’s method to the nonlinear
system gives rise to a sequence of linear systems. We solve these linear systems by subiteration-
preconditioned GMRES. Hence, we can alternatively classify the considered solution technique as a
Newton-Krylov method [23], in which subiteration acts as a preconditioner.

Having established the subiteration-preconditioned GMRES method, let us briefly address some
algorithmic aspects of the method; for details see Ref. [10]. For computational efficiency, it is custom-
ary to set the convergence tolerance of the linear problem (3) relative to the norm of the actual residual
of the nonlinear problem (1). Moreover, it is important to endow the method with Gram-Schmidt
orthonormalization and underrelaxation. The former improves the robustness, the latter facilitates
the subiteration process and allows the combination of GMRES with subiteration even if subiteration
is formally unstable.

4.2 Reuse of Krylov vectors

As each Newton step involves the solution of a Schur-complement system by a Krylov method, the
Newton-Krylov method lends itself naturally to reuse of Krylov vectors in subsequent Newton steps.
Reuse of Krylov vectors only requires minor modifications. Essentially, it requires that the counter j
in Eqs. (29)–(30) is not reset in each Newton step. The available search and residual-sensitivity spaces
are then augmented instead of overwritten. Moreover, an additional residual estimate corresponding
to the reduction of the updated nonlinear residual in the available space must be determined; see [10].
Depending on this initial residual estimate, the search and residual-sensitivity spaces are further
augmented, or a Newton update is carried out. We remark that, once a single vector is reused,
the search space does formally no longer constitute a Krylov space, which implies that the search
directions do not necessarily constitute ‘preferential’ search directions. Nevertheless, typically much
fewer Krylov vectors need to be added to the reused space than are generated for a reconstructed
Krylov space, which can result in considerable computational savings. However, the viability and
benefit of the reuse option is contingent on the similarity between the reused and the reconstructed
space.

In addition to the reuse option within a single time step, reuse is also possible within subsequent
time steps. In the latter case, the available search and residual-sensitivity spaces are carried over from
one time interval to the next. There is, however, a difference between the two reuse options. Within
a single time step, the nonlinear subiteration operator does not change, but only its linearization
state does. In contrast, the subiteration operator does change between time steps on account of
differences in initial conditions. As long as the operators in subsequent time steps are sufficiently
similar, reuse will be beneficial. We will assess the potential and limitations of the reuse option based
on an error-amplification analysis in Section 4.4.

Next, let us briefly discuss the effect of reuse on the Schur complement. We recall from Sec-
tion 4.1 that search and residual-sensitivity space implicitly approximate the exact Schur-complement
matrix S; cf. Eq. (31). Likewise, reusing the search and residual-sensitivity space implies an approxi-
mation S̃ to the exact S. With such an approximation S̃, the exact Schur-complement equation (26a)
translates into

S̃(q̃n+1
5 − qn

5 ) = −R(qn
5 ), (37)

which yields an approximation q̃n+1
5 to qn+1

5 . The system solved by the subiteration-preconditioned
GMRES method with reuse can still be cast in the form of Eq. (36), but with the Schur-complement
matrix S replaced by S̃. The effect of reuse and augmentation of the spaces on the error-amplification
behaviour can thus be investigated in terms of the approximation properties for the Schur complement.

To place the reuse option into context, we briefly consider two alternative approaches for reusing
computational information, viz., so-called search space injection [24] and nested preconditioning [25].
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In particular, we establish commonalities and differences between these approaches and our method-
ology of reusing Krylov vectors. We consider first the search space injection from Ref. [24]. A
commonality with our approach consists in storing a search space and its image under the operator,
which allows for straightforward reuse and augmentation of these spaces. An important difference to
Ref. [24] is that in our problem the operator is not known explicitly, but its action on a vector has to
be evaluated by subiteration. Moreover, in contrast to [24], we consider the reuse of Krylov vectors
in subsequent invocations of GMRES for which the left-hand-side matrix as well as the right-hand-
side vector have changed. Finally, at variance with [24], in our approach the Krylov space need only
contain the interface degrees-of-freedom and, hence, storage is not an issue. Next, we consider nested

preconditioning from Ref. [25]. Likewise, this approach solves the linear problems by a Krylov method.
Upon solution of the linear system, the generated Krylov space is condensed into a preconditioning
matrix. However, an incomplete Krylov space would translate into a rank-deficient preconditioning
matrix. To ensure invertability of the preconditioner, some ‘adhoc’ terms are added to this matrix
in [25]. The preconditioning matrix is then applied to the subsequent linear system, which is again
solved by a Krylov method. Successive solution of the linear systems thus generates a sequence of
preconditioners, which are applied in a ‘nested’ way to the subsequent linear problems. The disad-
vantages of this approach pertain to the ‘adhoc’ terms, which can interfere with the performance of
subsequent preconditioners. Moreover, due to storage requirements, the number of preconditioners
must be limited by restarts. These disadvantages can be avoided by methods in conformity with
search space injection and reuse of Krylov vectors. Finally, we remark that Ref. [25] restricts reuse to
subsequent Newton iterations, but does not consider reuse in subsequent time steps. However, it is in
particular the reuse in subsequent time steps which can substantially reduce the computational cost
in transient fluid-structure-interaction problems.

4.3 Error-amplification analysis

In this section, we derive the error-amplification matrix for the combined subiteration/GMRES
method. In our analysis, the Schur complement from Section 4.1 plays a central role: the solu-
tion methods under consideration can all be conceived as instances of an inexact Newton method
with a specific approximation to the Schur-complement matrix. Thus, an error-amplification analysis
based on the Schur complement allows for a direct comparison of the subiteration process separately,
the subiteration method with GMRES acceleration, and the subiteration method with GMRES ac-
celeration and reuse, from a unified viewpoint.

As the subiteration-preconditioned GMRES method can be conceived as an instance of an inexact
Newton method in conformity with Section 2.2, its error-amplification matrix is given in a general
form by Eq. (7). The implied approximation Ã to the exact Jacobian A of the Newton process is given
by Eq. (36). However, to analyse the general case with an approximation to the Schur complement, for
instance due to reuse of Krylov vectors, we consider the Jacobian matrix from Eq. (36) with the Schur
complement S replaced by a complete and full-rank approximation S̃. Substituting the expressions for
A and Ã in Eq. (7) yields, after some straightforward manipulations, the error-amplification relation
for the subiteration-preconditioned GMRES method:
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. (38)

Eq. (38) expresses the error-amplification under a combined subiteration / GMRES step with an
approximation S̃ to the Schur complement matrix S. In analogy to our observations in Section 3.2,
we find that the error-amplification matrix in (38) is highly rank-deficient. In particular, the only
non-zero eigenvalues are the ones of the lower block-diagonal matrix I − S̃−1S, which expresses the
mapping of one error in the structure interface displacement onto the next.
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In fact, Eq. (38) is of a general form and encompasses the following three special cases: Firstly,
upon setting S̃ = −I , Eq. (38) reverts to Eq. (13a), and we recover the error-amplification matrix
of the subiteration method. By virtue of the result from Section 4.1 that S constitutes the discrete
approximation to R′

Sub
:= C ′ − I , the identity S̃ = S̃Sub := −I conveys that S̃Sub implies the most

trivial approximation to R′
Sub. Secondly, upon setting S̃ = S, the lower block-diagonal entry is zero,

and we obtain the error-amplification matrix of subiteration combined with ‘exact’ GMRES, i.e., no
approximations are made to search and residual-sensitivity space. This is not to be confused with
the error-amplification matrix of the exact Newton method which is identically zero; cf. Section 2.2.
In the case of subiteration combined with GMRES, the matrix in Eq. (38) is nilpotent of index 2,
i.e., En ≡ 0, n ≥ 2; see, e.g., [26, ch. 1]. This implies that, to eliminate all error components and,
hence, to obtain the complete vector of solution components, two applications of Eq. (38) are re-
quired. This is in agreement with the elaboration in Section 4.1, according to which one step of
subiteration-preconditioned GMRES eliminates the error in q5, and a second step eliminates the error
in the remaining components of the solution vector. Thirdly, Eq. (38) specifies the error-amplification
matrix of subiteration combined with GMRES for the case that an approximation S̃ to the exact
Schur-complement matrix S is used. Such an approximation can be obtained, for instance, by reusing
the search and residual-sensitivity spaces generated for the solution of the linear system (26a) in a pre-
vious Newton or time step. The error-amplification behaviour for the combined subiteration/GMRES
method with reuse will be discussed in more detail in Section 4.4.

The above elaboration assumes that the Schur-complement approximation S̃ is complete and has
full rank and is thus invertible. In practice, the generation of a complete space V (N × N) with
N := rank(Ã−1A) = rank(E55) is generally too expensive. However, it is usually also not required.
An incomplete space Ṽ (N×k) with k < N , however, implies rank-deficiency of the Schur-complement
approximation S̃. In that case, S̃ can be determined as follows: With the solution ᾱ from the normal
equation (34), we consider the Newton update z̃n+1 = zn +Uᾱ. With rn = Sεn

5 and upon subtracting
the solution z̄, we can identify the Schur-complement approximation in analogy with Eq. (38) as

S̃−1 = (Ũ(Ṽ T Ṽ )−1Ṽ T ). (39)

We remark, however, that incompleteness of Ũ and Ṽ implies that S̃ has N − k eigenvalues equal to
zero and, hence, I − S̃−1S has N − k eigenvalues equal to 1. This entails that the corresponding error
components cannot be reduced in the available space. The precise error-amplification behaviour then
depends specifically on the error in the initial approximation

4.4 Analysis of the reuse option

Reuse of Krylov spaces enhances the efficiency of the method at the expense of robustness. In this sec-
tion, we discuss the limitations of the reuse option based on the effect of reuse on the error-amplification
behaviour of GMRES. We restrict our considerations to the case that search and residual-sensitivity
space are complete and have full rank. For rank-deficient spaces the elaboration in Section 4.3 applies
likewise.

With reuse, the residual-sensitivity space Ṽ is no longer equal to the image of the search space Ũ
under the current Schur complement S, i.e., Ṽ 6= SŨ . This is due to the fact that Ṽ := S̃Ũ may have
been generated with, possibly multiple, different Schur-complement matrices, here collectively denoted
by S̃. The benefit and limitations of the reuse option therefore depend pivotally on the similarity
between S and S̃. If the Schur complement changes significantly in subsequent Newton iterations
and time steps, the disparity between S and S̃ can be substantial. Clearly, this is detrimental for the
effectiveness of the reuse option. Reuse fails, if the spectral radius of the error-amplification matrix
exceeds 1, i.e., if spr(I − S̃−1S) > 1, in conformity with Eq. (38). The reused space is then simply
too inaccurate. In Section 5.4, we consider the properties of I − S̃−1S for a fluid-structure-interaction
model problem.

For completeness let us briefly mention another ‘failure mechanism’ of the reuse option. If the
reused space Ṽ is rank-deficient, then certain error components cannot be eliminated in Ṽ . If these
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error components are contained in the initial approximation, then the residual estimate stalls at some
point, i.e., ξm 9 0 for m → N with N := rank(Ã−1A) = rank(E55). In that case, the algorithm
breaks down; cf. Ref. [10] for further elaboration.

4.5 GMRES convergence bounds

To elaborate the implications of the nonnormality of the subiteration operator for GMRES con-
vergence, we recall from Section 3.3 that nonnormality of E55 is due to non-orthogonality of its
eigenvectors. By virtue of the fact that E55 and the Schur complement S = E55 − I have the same
eigenvectors, S is also nonnormal. This has consequences for the solution of the Schur-complement
equation (26a) by GMRES. Nonnormality typically implies a severe degradation in the sharpness of
the usual GMRES convergence bounds, which renders such bounds unreliable; cf. Ref. [20, ch.3]. To
substantiate this statement, let us recall from Ref. [20] the following sequence of GMRES convergence
bounds:

‖rk‖ = min
p∈Pk

‖p(S)r0‖ = min
p∈Pk

‖Xp(Λ)X−1r0‖ ≤ κ(X)min
p∈Pk

‖p(Λ)‖‖r0‖, (40a)

which implies
‖rk‖/‖r0‖ ≤ κ(X)min

p∈Pk

max
λ∈L

|p(λ)|, (40b)

where ‖ · ‖ denotes the standard 2-norm, Pk is the set of k-th-order polynomials, defined by Pk(z) :=

1−
∑i=k

i=1
αkzk, L is the spectrum of S and Λ := diag(λ1, . . . , λn) is the diagonal matrix of eigenvalues

of S, X is the matrix of right eigenvectors of S, and κ(X) := ‖X‖‖X−1‖ is the eigenvector-matrix
condition number. Nonnormality of S implies that the eigenvectors of S are non-orthogonal. Hence,
the corresponding eigenvector matrix X can be severely ill-conditioned, in which case κ(X) can be
very large. It is then not clear whether GMRES indeed converges slowly, or whether the bound is
simply a large overestimate of the actual residual norm. This renders the bounds (40) virtually useless.
For nonnormal matrices, a sharp convergence upper bound follows from

‖rk‖/‖r0‖ ≤ max
‖u‖=1

min
p∈Pk

‖p(S)u‖. (41)

This bound is sharp in the sense that there exists an r0 for which the right-hand side value is actually
attained. Eq. (41) delineates the worst-case convergence, independent of the specifics of the initial
residual.

5. Numerical experiments
To illustrate the theoretical results from Sections 3 and 4, we conduct numerical experiments on
a model fluid-structure-interaction problem. A concise setup of the model problem is provided in
Section 5.1. Section 5.2 presents results for the subiteration method separately. In Section 5.3, we
assess the convergence of the subiteration-preconditioned GMRES method and determine convergence
upper bounds. In Section 5.4, we investigate the viability of reusing Krylov spaces by examining the
properties of the corresponding error-amplification matrix.

5.1 Experimental setup

We conduct numerical experiments on a fluid-structure system consisting of the Euler equations of
gas dynamics in one spatial dimension, in connection with a nonlinear structure, viz., the Van-der-Pol
oscillator, at the interface. The Euler equations in conservative form are given by

∂w

∂t
+

∂f

∂x
= 0, t ∈ (0, T ), x ∈ (0, l + α(t)) (42a)

with α(t) the displacement of the fluid-structure interface and

w :=





ρ
ρv
E



 , f(w) :=





w2

w2
2/w1 + p(w)

(p(w) + w3)w2/w1



 , p(w) := (γ − 1)

(

w3 −
w2

2

2w1

)

(42b)
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and γ a constant, typically, γ = 1.4. In Eq. (42b), ρ, v, E and p denote the density, velocity, total
energy and pressure of the fluid, respectively.

Eq. (42) is subject to initial and boundary conditions w2(0, t) = 0, w2(l + α(t)) = w1(l +α(t))α̇(t)
and w(x, 0) = w0(x), where w0(x) denotes prescribed initial conditions. The initial conditions are
determined from the linearized model problem in Ref. [16]. However, we remark that for the considered
small initial deflections of the oscillator, the influence of the initial conditions is small.

The structure model consists of the Van-der-Pol oscillator, viz.,

Mz̈ + Kz + µβ−2(z2 − β2)ż = π − p0 (43)

with z := z(t) the structure displacement from its equilibrium position and M , K, µ and β suitable
constants. The right member of Eq. (43) is composed of the stress π := π(t) exerted by the fluid on
the structure through the interface and the constant external pressure p0. The ordinary differential
equation (43) is supplemented with the initial conditions z(0) = z0 and ż(0) = ż0. The fluid and the
structure are connected by the dynamic interface condition p(w(l + α(t), t)) = π(t) and the kinematic
interface condition α(t) = z(t).

With µ = 0, Eq. (43) simplifies to the equation of a harmonic oscillator considered in Ref. [10].
The associated fluid-structure system admits periodic solutions; cf. the linearized-system analysis in
Ref. [16]. In contrast, for µ > 0, the fluid-structure system given by Eqs. (42)–(43) behaves distinctly
different: For non-vanishing initial conditions, the amplitude of z(t) in the Van-der-Pol equation
increases to approximately 2β. As a consequence, the behaviour of the system at later times is in
general distinctly different from its initial behaviour and, correspondingly, the subiteration operator
changes. Therefore this model problem is particularly suitable to test the reuse of Krylov spaces under
adverse conditions.

The fluid-structure system is discretized by means of space/time finite elements. The adopted
discretization is essentially identical to that in Ref. [16]. For completeness, we briefly summarize
its setup. The space/time fluid domain is covered with a tesselation of quadrilateral elements. The
number of elements in spatial direction is denoted by Nx

W
, the number of elements in temporal direction

per unit time by N t
W

. The structure mesh consists of N t
Z

elements per unit time. The fluid equations
are discretized by means of a discontinuous Galerkin method with the approximation space consisting
of piecewise tensor products of polynomials of degree PW (space, time). The approximation spaces
admit discontinuities across element boundaries. The elements in the fluid are connected by the
modified Osher scheme and weakly enforced initial conditions. The structure equation is discretized
by means of a continuous Galerkin method. The approximation space of the structure consists of
piecewise polynomials of degree PZ. The connection between the elements in the structure is provided
by strongly enforced initial conditions through Lagrange multipliers. The interface approximation
spaces associated with kinematic and dynamic conditions comprise NA,P = N t

Z
elements per unit

time, and consist of piecewise polynomials of degree PA and PP, respectively.
We consider the fluid-structure system for representative settings of the system parameters. The

parameters are listed in Table 1. The discretization is sufficiently fine to ensure that the results are
essentially mesh independent. The computational time step τ is chosen of the order of the period of
the linearized system. We consider three representative settings of the parameter µ which determines
the nonlinearity of the structure model. In particular, we choose µ = 2, 0.5 and 0, corresponding to
strong, medium and vanishing structural nonlinearity, respectively. We remark that the parameter µ
moreover determines the initial-growth rate of the displacement, i.e., for larger µ the initial growth of
z(t) is more pronounced.

5.2 Convergence of subiteration

In this section, we consider the convergence of the standard subiteration method. To this end, we
investigate the properties of the corresponding error-amplification matrix and, in particular, of the
lower diagonal block matrix E55 which yields the only non-zero eigenvalues of the error-amplification
matrix; cf. Section 3.2.
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Table 1: System and discretization parameters (∗ indicates a variable parameter).
z0 ż0 l ρ0 c0 K M µ β τ PW PA PZ PP Nx

W
N t

W
N t

Z

10−4 0 1 20 0.5 1 1 ∗ 0.025 8 (2, 2) 4 4 3 12 4 4

For reference, Fig. 1 plots the structure displacement versus time for µ = 0, 0.5, 2. The figure
illustrates the significant change in the solution behaviour of the system over time. For µ > 0, the am-
plitude of the structure oscillation increases by a factor of 500, viz., from an initial deflection z0 = 10−4

to approximately 5 ·10−2 when the oscillation has settled into a (quasi-)periodic regime. For the larger
value of µ, the amplitude increases more rapidly on account of the stronger nonlinearity of Eq. (43)
and, accordingly, the oscillation settles into its periodic regime faster. In contrast, for µ = 0, the
amplitude remains constant and equal to the initial deflection z0 = 10−4. For µ = 2, a slight drift
in the oscillation mean is visible in Fig. 1. Mesh refinement indicates that this drift is caused by dis-
cretization error and, moreover, that this discretization error does not significantly change the results
presented in the sequel.

Fig. 2 plots the spectral radius of the error-amplification matrix of subiteration versus time, viz.,
(E55)j := Sj + I in accordance with (26b), with Sj the Schur-complement matrix pertaining to time
step j. The Schur complement is computed as S = V U−1 with, in particular,

V T := ν−1

















RSub

(

u0 + ν(u1 − u0)
)

...
RSub

(

u0 + ν(un − u0)
)






−







RSub(u0)
...

RSub(u0)

















, (44)

i.e., the image space V is determined by finite differencing of the nonlinear residual operator of the
(local) subiteration process, RSub, as defined below (10). Throughout, we used ν = 10−8.

For µ = 2, there is an initial growth in the spectral radius, before it decreases to an essentially
constant value of approximately 2. This initial growth is apparently related to the strong initial
growth of the solution; see Fig. 1. For µ = 0.5, the initial growth of the spectral radius is absent, and
the spectral radius decreases to approximately 3 in the periodic regime. In either case, however, the
spectral radius is larger than one and, hence, the subiteration process diverges. For reference, we also
computed the spectral radius for µ = 0. This spectral radius is approximately 4. Clearly, for µ = 0
the spectral radius remains essentially constant in time. For a detailed analysis of the convergence
behaviour of subiteration for µ = 0, we refer the reader to Refs. [9, 10].

5.3 GMRES convergence bounds

To assess the convergence of the subiteration-preconditioned GMRES method, we compute

σk := sup
u∈Rn

J(u) with J(u) := inf
α∈Rk

J(u, α), J(u, α) :=
∥

∥u
∥

∥

−1∥
∥

(

I −
i=k
∑

i=1

αiS
i
)

u
∥

∥ . (45)

Let us note that the convergence behaviour of the GMRES method pertaining to a particular initial
residual r0 is given by

‖rk‖ = min
α

‖(I −

i=k
∑

i=1

αiS
i)r0‖. (46)

For an illustration of the convergence behaviour of the method for the piston problem (µ = 0) in
specific instances we refer to Ref. [10]. One easily infers that Eq. (45) provides an upper bound to the
residual reduction, i.e., ‖rk‖/‖r0‖ ≤ σk for all r0 ∈ R

n. Moreover, the bound in (45) is sharp in the
sense that there exists an initial residual for which the bound is actually attained, in contrast to the
usual GMRES convergence bounds; see Section 4.5 and also Ref. [20].
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Figure 1: Structure displacement versus time for µ = 0.0 (−−), µ = 0.5 (−−−) and µ = 2.0 (···).
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Figure 2: Spectral radius of the error-amplification matrix of subiteration, spr(E55), versus time for
µ = 0.0 (◦), µ = 0.5 (4) and µ = 2 (�).
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Figure 3: Convergence of the subiteration-preconditioned GMRES method: σk according to (45) (+)
and the supremum of J(u) over 106 random vectors u (◦) versus k for µ = 0 (···), 0.5 (−−), 2 (−−−),
in the initial time step (left) and the final time step (right). y-axis in log10-scale.

To determine the supremum over all u, we employ a steepest-ascent method (or hill-climbing

algorithm), in combination with a line-search technique. Essentially, the steepest-ascent method
determines the gradient Ju of J(u) with respect to u, and updates u according to u + θJu, with θ
a small number determined by the line-search strategy. This process is repeated until Ju = 0 and,
accordingly, u corresponds to a supremum of J(u). As the functional J(u) is nonconvex, the process
is started from multiple initial guesses, and the maximum over all local extrema is determined, to
ensure that the global supremum is computed.

Instead of computing the functional J(u) according to its definition in (45), we first orthonormalize
the Krylov space [u, Su, S2u, . . . , Sku] to avoid ill-conditioning. Although the orthonormalization
changes the coefficients of the GMRES polynomial, it does not change σk. Such a change of basis can
be straightforwardly incorporated in the functional, but the expression for the corresponding gradient
is prohibitively complicated. Therefore, in the numerical procedure we apply the gradient for the non-
orthonormalized functional. Consequently, the accuracy of the gradient deteriorates with increasing
dimension of the Krylov space on account of the loss of digits, and the supremum is typically not
attained. As a result, for large dimensions of the Krylov space, the steepest-ascent process yields a
reasonably sharp lower estimate of the upper bound σk.

Fig. 3 displays the upper bound σk versus the dimension of the Krylov space k for µ = 0, 0.5, 2
in the first time step (left), i.e., in the time interval 0 ≤ t ≤ τ , and in the final time step (right),
viz., (j − 1)τ ≤ t ≤ jτ with j = 50. For reference and validation purposes, the figure also plots the
supremum of the functional J(u) over 106 random vectors u, versus the Krylov-space dimension k.
Let us first note that the computed value of σk in all cases exceeds the supremum over the 106 random
vectors. Hence, although the accuracy of the gradient deteriorates with increasing k and, accordingly,
it cannot be ensured that the steepest-ascent algorithm converges to the supremum, it appears that
the algorithm nonetheless yields a sharp estimate. Fig. 3 conveys that there is a lower bound to the
dimension of the Krylov space in which a reduction of the residual can be ascertained. In particular,
for dimensions k less than approximately 10 it holds that σk ≈ 1. Furthermore, the figure shows that
the convergence behaviour in the first time step deteriorates with increasing µ. Conjecturally, this
can be attributed to the growth of the solution in the first time step. For µ = 0, the convergence
behaviour is essentially identical for all time steps. For µ = 0.5, 2 the convergence behaviour in the
final time step is better than in the initial time step. In contrast to the growth regime, it appears
that in the periodic regime the convergence behaviour improves with increasing µ.
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5.4 Error-amplification analysis of the reuse option

In this section, we investigate the viability of reuse of the Krylov space in subsequent invocations of
GMRES. To this end, we consider the corresponding error-amplification matrix and, in particular, the
lower diagonal block matrix I − S̃−1S which yields the only non-zero eigenvalues. We then examine
its properties in terms of spectral radius, norm and pseudospectra.

We consider the reuse of the Krylov space generated in the first time step in the subsequent time
steps. Fig. 4 plots the spectral radius of the error-amplification matrix versus time. The spectral
radius expresses the quality of the Krylov space of the first time step as an approximation to the
Krylov spaces of the subsequent time steps. In particular, if the spectral radius is large, then the
first Krylov space constitutes a poor approximation and reuse is ineffective. In fact, if the spectral
radius exceeds 1, then reuse leads to divergence of the method. The figure indicates that the quality
of the reused space degrades in the growth regime of the solution, reflecting the change in the solution
behaviour and the corresponding change in the subiteration operator. As the solution settles into its
periodic regime, the spectral radius becomes essentially constant, modulo minor erratic variations.
Moreover, Fig. 4 indicates that for large µ the deterioration of the approximation properties of the
reused space is more severe. This can be attributed to the stronger nonlinearity of the structure
associated with a larger value of µ. Even for µ = 2, however, the spectral radius remains smaller
than one and, hence, the reuse option is formally convergent. Conjecturally, the spectral radius of the
error-amplification matrix with reuse can exceed one, thus causing the reuse option to fail. However,
for the considered test case such failure appears to be rare, and we have not observed failure of the
reuse option despite testing it under various extreme conditions.

Next, we consider error bounds for the GMRES method with reuse in conformity with

(spr(I − S̃−1S))n ≤ ‖εn
5‖/‖ε

0
5‖ ≤ ‖(I − S̃−1S)n‖ ≤ κ(X)(spr(I − S̃−1S))n, (47)

where εn
5 denotes the error in the interface displacement after n iterations, and κ(X) := ‖X‖‖X−1‖ is

the condition number of the matrix of eigenvectors, X , of I − S̃−1S. To this end, we plot in Fig. 5 the
norm of powers of the error-amplification matrix along with the bounds given by Eq. (47). The figure
considers reuse of the Krylov space generated in the first time step in time step 50 for µ = 0 (left),
µ = 0.5 (center) and µ = 2 (right). In either case, the spectral radius is less than one, and the method
with reuse is formally convergent. However, the condition numbers of the eigenvector matrices are
very large, viz., κ(X) = 3.1 ·105 for µ = 0, κ(X) = 6.9 ·107 for µ = 0.5 and κ(X) = 1.2 ·108 for µ = 2.
Moreover, the norm of the error-amplification matrix is smaller than one for µ = 0, but it exceeds one
for both µ = 0.5 and µ = 2. In combination with the upper bound ‖(I − S̃−1S)n‖ ≤ ‖I − S̃−1S‖n,
the bounds in (47) then imply that for µ = 0 convergence is monotonous, whereas for µ = 0.5, 2
the initial error can be amplified by several orders of magnitude before it eventually decreases at
an asymptotic rate determined by spr(I − S̃−1S). For µ = 2, the phase of transient divergence is
much more pronounced, and the initial error can be amplified by more than five orders of magnitude
before asymptotic convergence sets in. The transient divergence is indicative of the nonnormality of
the GMRES method with reuse which is induced by the nonnormality of the underlying subiteration
operator; cf. the discussion in Sections 3.3 and 4.5. We remark that the GMRES method without
reuse converges monotonously; see Ref. [20] for the general theory, and Fig. 3 for an illustration.

Nonnormality also manifests itself in sensitivity of the spectrum to perturbations in the error-
amplification matrix, e.g., due to discretization, linearization and round-off errors. To illustrate this
effect, we plot in Fig. 6 the ε-pseudospectra1 of the error-amplification matrices considered in Fig. 5.
A perturbation of the error-amplification matrix according to (I − S̃−1S) + E′ with ‖E′‖ ≤ ε can
shift the eigenvalues anywhere within the corresponding ε-contour line; see [28]. For normal matrices
the ε-pseudospectrum consists of all points in the complex plane at distance at most ε from the
spectrum. For nonnormal matrices, however, the ε-pseudospectrum can be much larger. Although

1The pseudospectra plots in Fig. 6 were computed using the EigTool package by T.G. Wright, M. Embree and
L.N. Trefethen; see [27] for further information.
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Figure 4: Reuse of the Krylov space generated in the first time step 0 ≤ t ≤ τ in subsequent time
steps (j − 1)τ ≤ t ≤ jτ with 1 ≤ j ≤ 50 : Spectral radius of the error-amplification matrix versus
time for µ = 0.0 (◦), µ = 0.5 (4) and µ = 2 (�).

Fig. 6 indicates that as a result of nonnormality the spectrum of the error-amplification matrix is
sensitive to perturbations, the presented results do not change significantly with mesh refinement or
variations of the finite-differencing parameter ν involved in the evaluation of the image space according
to Eq. (44).

6. Conclusions
We presented an error-amplification analysis of the subiteration-preconditioned GMRES method for
fluid-structure-interaction problems. We considered the linear-algebra aspects of the subiteration
method separately, and of the subiteration-preconditioned GMRES method, on the basis of properties
of the error-amplification matrix for the aggregated fluid-structure system. We showed that the subit-
eration iterates span a Krylov space corresponding to a preconditioned aggregated system. The analy-
sis of the error-amplification matrix of subiteration establishes that subiteration condenses errors into
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Figure 5: Reuse of the Krylov space generated in the first time step in time step 50 for µ = 0.0 (left),
µ = 0.5 (center) and µ = 2 (right): ‖(I − S−1
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Figure 6: Spectra (•) and L2 ε-pseudospectra of (I −S−1
1 S50) in the complex plane for µ = 0.0 (left),

µ = 0.5 (center) and µ = 2 (right) and ε = 10−9 (−−−), ε = 10−8 (−−), ε = 10−7 (···), ε = 10−6 (−·),
ε = 10−5 (−−−), ε = 10−4 (−−) and ε = 10−3 (···).

a low-dimensional subspace which can be associated with the interface degrees-of-freedom. Therefore,
the GMRES acceleration of subiteration can be confined to the interface degrees-of-freedom, which
renders the storage requirements for the Krylov space and the computational cost of the least-squares
problems low. The error-amplification analysis elucidates the connection between the local GMRES
acceleration (i.e., on the interface degrees-of-freedom), and the global error-amplification properties
(i.e., for the aggregated system).

An attractive feature of the subiteration-preconditioned GMRES method is that it enables the
optional reuse of Krylov vectors in subsequent invocations of GMRES. This can substantially enhance
the efficiency of the method, at the expense of robustness. We analysed the implications of reuse
for the error-amplification behaviour. A pivotal element in the analysis is the observation that the
GMRES acceleration on the interface degrees-of-freedom generates an approximation to the Schur
complement for the aggregated system. The Schur complement allows for a concise expression of the
error-amplification matrices, and enables the assessment of the GMRES acceleration and of the reuse
of Krylov vectors in terms of the approximation properties for the Schur complement.

We illustrated the developed theory by numerical experiments on a model fluid-structure-interaction
problem. In particular, we assessed convergence of the GMRES method with and without reuse in
terms of spectral radius, norm and sharp convergence upper bounds. These bounds indicate that a
minimum Krylov-space dimension is required to ensure a reduction of the residual. Moreover, the
results show that significant changes in the solution due to nonlinearity can result in a degradation of
the convergence behaviour.

Next, we investigated the viability of reusing Krylov vectors in subsequent invocations of GMRES.
For the considered numerical experiments, the method with reuse is convergent, despite significant
changes in the solution behaviour in time. Conjecturally, the spectral radius of the error-amplification
matrix can exceed one, thus causing the reuse option to fail. However, such failure appears to be rare,
and we have not observed it in the numerical investigations. This indicates that reuse constitutes a
viable option, which renders it attractive for reducing the computational cost. However, the method
with reuse appears to be affected by the nonnormality of the underlying subiteration operator. Thus,
the method can exhibit transient divergence, whereas without reuse convergence is monotonous.

The presented error-amplification analysis of the subiteration-preconditioned GMRES methods is
in principle generic. However, the specifics depend on the fluid-structure system under consideration.
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