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Abstract The basic subiteration method for solving fluid-structure-interaction prob-

lems consists of an iterative process in which the fluid and structure subsystems are

alternatingly solved, subject to complementary partitions of the interface conditions.

The main advantages of the subiteration method are its conceptual simplicity and its

modularity. The method has several deficiencies, however, including a lack of robust-

ness and efficiency. To bypass these deficiencies while retaining the main advantages of

the method, we recently proposed the Interface-GMRES(R) solution method, which is

based on the combination of subiteration with a Newton-Krylov approach, in which the

Krylov space is restricted to the interface degrees-of-freedom. In the present work, we

investigate the properties of the Interface-GMRES(R) method for two distinct fluid-

structure-interaction problems with parameter-dependent stability behaviour, viz., the

beam problem and the string problem. The results demonstrate the efficiency and

robustness of the Interface-GMRES(R) method.

Keywords fluid-structure interaction · subiteration · Newton-Krylov method ·

GMRES · Interface-GMRES · reuse of Krylov vectors

1 Introduction

Fluid-structure interactions (FSI) are of great relevance in aerospace, civil and offshore

engineering and in biomechanics; see, e.g., Refs. [1,2,22,28–30]. Numerical methods for

the aggregated fluid-structure system typically employ a partitioned solution process

based on alternating solution of the fluid and structure subsystems, subject to comple-

mentary partitions of the interface conditions; see, e.g., Ref. [21]. This process, which is
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often referred to as subiteration, is then repeated until a preset convergence criterium

is satisfied. Subiteration is a good solver for many problems, but it lacks robustness

for FSI problems with large added-mass effects; cf. Refs. [7,10,31,32,35]. Moreover, in

time-integration processes, subiteration is generally assigned to solve a large sequence

of similar problems. Since the method has no mechanism to reuse previously generated

information, it is to be considered inefficient.

To overcome these deficiencies, we proposed in [34] a novel solution method that

employs subiteration as a preconditioner to GMRES; see also the proceedings arti-

cle [18] for a condensed presentation of the method and [19] for an error-amplification

analysis. The combination of subiteration and GMRES requires only negligible compu-

tational resources, because the GMRES acceleration can be confined to the interface

degrees-of-freedom, which is considerably cheaper than applying GMRES to the ag-

gregated equations or to the Schur complement; see, e.g., Refs. [11,16]. Thus, we refer

to our method as Interface-GMRES(R), where the parenthesized R indicates the pos-

sibility of reusing Krylov vectors in subsequent invocations of GMRES. Such reuse

can yield substantial computational savings. Since Interface-GMRES(R) preserves the

modularity of the underlying subiteration method, it can easily be implemented in

codes which use subiteration as a solver.

To place the Interface-GMRES(R) method into context, we note that investigations

into efficient partitioned solution methods for fluid-structure interaction have also been

presented in Refs. [17,4]. Alternatively, subiteration can for instance be applied as a

smoother in a (space/time) multigrid procedure [35]. Further, it is to be remarked that

the Interface-GMRES(R) process can in principle also be combined with subiteration

methods based on a Robin-Robin partition of the interface conditions [3]. For a detailed

analysis of the relation between the added mass effects and the stability and conver-

gence of the subiteration solution method, we refer to [31]. The Interface-GMRES(R)

method can also be qualified as a Schur-Newton-Krylov approach; see [5] for an ad-

vanced application of this method to aeroelastic and design-sensitivity analysis.

The Interface-GMRES method admits a re-interpretation as a Krylov-based vector

extrapolation scheme; see [15] and also [24,25] for earlier work on the equivalence of

Krylov methods and vector extrapolation. Conversely, the Aitken extrapolation pro-

cedure (see, e.g., [15,10]) can be conceived of as an Interface-GMRES method with a

one-dimensional Krylov subspace. Depending on the interpretation, the methodologies

can differ in certain details, such as intermediate orthonormalization of search vectors

and combination with underrelaxation to gauge nonlinear effects and, accordingly, fa-

cilitate the solution of the fluid and structure subsystems. In our experience, however,

orthonormalization of the search vectors is indispensable to retain a well-conditioned

least squares problem in the GMRES procedure, while the combination with underre-

laxation significantly reduces the cost of solving the fluid and structure subsystems. It

is to be remarked that the minimal-residual property of GMRES ensures that the con-

vergence of the Interface-GMRES method is monotonous, which is pertinent in view

of the nonnormality of the subiteration process; cf. [32].

The objective of the present contribution is to examine the robustness and ef-

ficiency of the Interface-GMRES(R) method in the setting of more discriminating

higher-dimensional problems than the piston problem considered in [34,18]. In par-

ticular, we consider the interaction of an inviscid-fluid flow with a beam and a string,

respectively. The essential difference between these problems and the piston problem in

the aforementioned publications is two-fold. Firstly, the interface extends in both space

and time, rather than only time. Consequently, the dimension of the discrete represen-
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Fig. 1: Illustration of the beam FSI problem (interface region expanded for clarity).

tation of the interface space is significantly higher. Secondly, the problems considered in

this paper can exhibit parameter-dependent stability behaviour, e.g., stable behaviour

can occur for certain parameter settings while unstable behaviour such as flutter or

divergence can occur for other settings; see [9] for further elaboration of these effects.

To study the convergence behaviour of Interface-GMRES(R) in a systematic way,

we explore first the physical parameter space of the respective fluid-structure systems

and we determine for which parameter settings the system is unstable, and which

type of instability it exhibits. Next, we assess the convergence behaviour of Interface-

GMRES(R) for representative settings of the physical and discretization parameters.

We investigate the relation between the convergence behaviour of Interface-GMRES(R)

and the stability of the problem. Numerical results are provided that demonstrate the

performance and versatility of the Interface-GMRES(R) solution method.

This paper is organized as follows. Section 2 contains a statement of the beam and

the string FSI problem. Section 3 concisely reviews the Interface-GMRES(R) solution

method. In Section 4 we present numerical results for the beam and the string problem.

Section 5 contains concluding remarks.

2 Problem statement

2.1 The beam FSI problem

Below, we present a concise description of the beam problem, for an elaboration we

refer to Ref. [23]. The upper side of the beam is exposed to an airstream, and its lower

side to a cavity with still air; see Fig. 1 for an illustration. The motion of the structure

is described by the beam equation. Let x, y and t be spatial and temporal coordinates,

respectively, α(x, t) the y-coordinate position of the fluid-structure interface and L

the length of the beam. The mathematical formulation of the fluid-structure system

comprises the Euler equations on Ωα := {(x, y, t) : −∞ < x <∞; α(x, t) < y <∞; 0 <

t < T} in connection with the beam equation at the interface Γα := {(x, y, t) : 0 < x <

L; y = α(x, t); 0 < t < T}. We consider the Euler equations in conservative form:

∂u

∂t
+

∂f(u)

∂x
+

∂g(u)

∂y
= 0 , (x, y, t) ∈ Ωα , (1a)
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and γ = 1.4. In Eq. (1b), ρ, u, v, E and p denote the density, the x- and y-component

of the velocity, the total energy and the pressure of the fluid, respectively.

Eq. (1) must be supplemented with appropriate initial and boundary conditions.

On ∂Ωα\Γα these are prescribed by

u(x, y, 0) = u0(x, y) , −∞ < x <∞ , α(x, 0) < y <∞ , (2a)

(ρv)(x, 0, t) = 0 , x < 0 , x > L , 0 < t < T , (2b)

with u0(x, y) the given initial conditions. Condition (2b) translates into the imperme-

ability condition of the rigid wall. Moreover, ‘farfield boundary conditions’ are imposed

for x → ±∞ and for y → ∞. The interface conditions, i.e., the conditions on Γα, are

specified below.

The governing equation for the beam is:

M
∂2z

∂t2
+ D

∂4z

∂x4
= −π + β , 0 < x < L , 0 < t < T , (3)

where z designates the beam displacement from its equilibrium position, and the con-

stants M, D ∈ R+ denote the mass and the bending stiffness of the beam, respectively.

The right-hand member of Eq. (3) is the forcing term which is composed of the traction

π exerted by the fluid on the structure through the interface, and the constant pressure

β in the cavity underneath the beam. The cavity pressure is equal to the freestream

pressure. Eq. (3) is subject to the initial and boundary conditions

z(x, 0) = z0(x) ,
∂z

∂t
(x, 0) = ż0(x) , 0 < x < L , (4a)

z(0, t) = z(L, t) = 0 ,
∂z

∂x
(0, t) =

∂z

∂x
(L, t) = 0 , 0 < t < T , (4b)

with z0(x), ż0(x) the given initial conditions. The boundary conditions (4b) state that

the beam is clamped on both sides.

The Euler equations and the beam equation are connected at the interface Γα by

the kinematic conditions

(ρv)|Γα
= ρ|Γα

∂α

∂t
(x, t) + (ρu)|Γα

∂α

∂x
(x, t) , 0 < x < L , 0 < t < T , (5a)

α(x, t) = z(x, t) , 0 < x < L , 0 < t < T , (5b)

and the dynamic condition

p(u|Γα
) = π(x, t) , 0 < x < L , 0 < t < T . (5c)

The condition (5a) constitutes a ‘slip’ boundary condition, which translates into the

tangency of the flow to the moving beam and renders the interface impermeable.
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The condition (5b) identifies the interface position and the beam position. The condi-

tion (5c) implies equilibrium of the forces exerted on the interface by the fluid and the

structure. Note that the interface conditions are imposed on the moving boundary Γα.

Upon suitable non-dimensionalization, we can identify the following dimensionless

parameters that govern the behaviour of the beam fluid-structure system:

λ =
LC−1

0

M1/2L2D−1/2
, µ =

ρ0L

M
, Ma =

V0

C0

, (6)

where C0 denotes the speed of sound, ρ0 is the reference density and V0 is the freestream

velocity. The parameter λ can be identified as the ratio of characteristic time scales of

the fluid and the structure, the parameter µ constitutes the ratio of characteristic fluid

mass to characteristic structure mass, and the parameter Ma is the Mach number.

2.2 The string FSI problem

Below, we present a concise description of the string FSI problem, for an elaboration

we refer to Ref. [12]. The upper side of the string is exposed to an airstream, and its

lower side to a cavity with still air. The problem setup corresponds to the one of the

beam problem depicted in Fig. 1 with the beam replaced by a string and boundary

conditions that are appropriate for a string which will be discussed below. The motion

of the structure is described by the one-dimensional string equation. The mathematical

formulation of the fluid-structure system comprises the Euler equations in connection

with the string equation at the interface. Since the statement of the fluid subproblem

and interface conditions is identical to the one for the beam problem (cf. Section 2.1),

they will be omitted for brevity. The structure subproblem is specified below.

The equation governing the motion of the string is

M
∂2z

∂t2
− S

∂2z

∂x2
= −π + β , 0 < x < L , 0 < t < T , (7)

where z is the string displacement from its equilibrium position, and the constants

M, S, L ∈ R+ denote the mass per unit length, the tension and the length of the

string, respectively.

The right-hand member of Eq. (7) is the forcing term which is composed of the

traction π exerted by the fluid on the structure through the interface, and the constant

pressure β in the cavity underneath the string. The cavity pressure is equal to the

freestream pressure.

Eq. (7) is subject to the initial and boundary conditions

z(x, 0) = z0(x) ,
∂z

∂t
(x, 0) = ż0(x) , 0 < x < L , (8a)

z(0, t) = z(L, t) = 0 , 0 < t < T , (8b)

with z0(x), ż0(x) the given initial conditions.

In contrast to the beam, the string does not provide any resistance to bending and,

hence, its interaction with the fluid can be expected to be significantly different from

that of the beam. Note also the different boundary conditions for the string and the

beam, Eq. (8b) and Eq. (4b), respectively.
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Upon suitable non-dimensionalization, we can identify the following dimensionless

parameters that govern the behaviour of the string fluid-structure system:

η =
LC−1

0

M1/2LS−1/2
, µ =

ρ0L

M
, Ma =

V0

C0

. (9)

The parameter η can be identified as the ratio of characteristic time scales of the fluid

and the structure, the parameter µ constitutes the ratio of characteristic fluid mass to

characteristic structure mass, and the parameter Ma is the Mach number. Note that

the characteristic system parameters of the string and the beam problem are defined

in essentially the same way; compare Eqs. (9) and (6).

A characteristic property of the string and the beam FSI problem is their ability to

exhibit parameter-dependent stability behaviour. That is, the fluid-structure system

can display instabilities such as flutter and divergence for certain parameter settings,

whereas other parameter settings yield stable behaviour; cf. Ref. [9]. Instability of the

fluid-structure system is a property that is shared by many FSI problems and that is

of significant practical importance. Since flutter and divergence can induce the failure

of the structure, the analysis and prediction of such instabilities plays a crucial role

in engineering design. For instance, in aerospace engineering, flutter and divergence

impose constraints on the allowable operating conditions of aircraft. Hence, they need

to be controlled by an adequate design; see, e.g., Ref. [8].

3 The Interface-GMRES(R) solution method

For self-containedness, we review in this section the Interface-GMRES(R) method that

was recently proposed in [34] and analysed in [19]. Since the Interface-GMRES(R)

method builds on the customary subiteration method, we first recall the subiteration

method.

3.1 The subiteration method

The interconnection between the state variables and their domain of definition com-

plicates the numerical treatment of fluid-structure interaction problems. This com-

plication can be bypassed through an iterative solution procedure often referred to

as subiteration: Given an initial approximation z0(x, t), for j = 1, 2, . . . repeat until

convergence

(S1) Solve the kinematic condition: find αj such that αj(x, t) = zj−1(x, t).

(S2) Solve the fluid on Ωαj subject to u3(x, αj , t) = u1(x, αj , t)
∂αj

∂t (x, t)+u2(x, αj , t)
∂αj

∂x (x, t)

on Γαj to obtain uj .

(S3) Solve the dynamic condition: find πj such that πj(x, t) = p(uj(x, αj(x, t), t)).

(S4) Solve the structure problem with right member −πj(x, t) + β to obtain zj(x, t).

This procedure obviates the simultaneous treatment of fluid and structure. Each itera-

tion in the subiteration procedure can be conceived of as a mapping zj 7→ zj+1 = C zj .

Accordingly, subiteration essentially constitutes a fixed-point iteration method. Mo-

mentarily assuming C to be linear in order to facilitate the exposition, the subiteration

process is formally stable if the spectral radius of C is smaller than unity. However,

despite formal stability, transient divergence can occur for large fluid-to-structure mass
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ratios or large time steps. This non-monotonous convergence behaviour is caused by

nonnormality of the operator (cf. [32]) and it can lead to failure of the iterative method

even if the spectral radius of the operator is less than 1. Such transient divergence com-

promises the robustness of the subiteration method.

3.2 The Interface-GMRES(R) method

The Interface-GMRES(R) method essentially constitutes a (Jacobian-free) Newton-

Krylov method [6,14] applied to the interface degrees-of-freedom. To cast the nonlinear

fixed-point problem in a form that is suitable for Newton-Krylov methods, we refor-

mulate it as Rz = 0 with R := C − I the residual operator. Correspondingly, the

residual of an iterate zi is ri := Rzi = (C −I )zi = zi+1− zi. For a given initial guess

z0, Newton’s method generates a sequence of approximate solutions according to

z0 ← z0 + z′0 = z0 −R
′−1

Rz0 , (10)

with R
′ = ∂R/∂z and z′0 a perturbation around the linearization state z0. Each Newton

step requires the solution of a linear problem of the form

Rz0 + R
′z′0 = 0 . (11)

Substituting into (11) the ansatz z′0 ∈ K
m := span{zj − z0}

j=m
j=1

with Km the Krylov

space associated with (11) and using a finite-difference approximation, we obtain

Rz0+R
′

 

j=m
X

j=1

αj(zj−z0)

!

= r0+

j=m
X

j=1

αj(rj−r0)+O

„‚

‚

‚

‚

j=m
X

j=1

αj(zj−z0)

‚

‚

‚

‚

2
!

= 0 .

(12)

The coefficients αj for the redefinition z0 ← z0 +
Pj=m

j=1
αj(zj − z0) are determined

by solving (12) in a least-squares sense:

ᾱ = arg min

‚

‚

‚

‚

r0 +

j=m
X

j=1

αj(rj − r0)

‚

‚

‚

‚

2

, ξ :=

‚

‚

‚

‚

r0 +

j=m
X

j=1

ᾱj(rj − r0)

‚

‚

‚

‚

2

, (13)

with ξ the norm of the residual of the linear problem. The latter represents an estimate

for the norm of the residual of the nonlinear problem.

The minimal-residual property of GMRES implies that the subiteration residuals

form an upper bound for the GMRES residuals and that, in contrast to the subitera-

tion iterates, the GMRES iterates must form a non-increasing sequence. However, this

implies faster Newton-Krylov convergence only for problems which are sufficiently lin-

ear. For strongly nonlinear problems, the inherent linearization in the Newton-Krylov

method can hamper convergence.

Provided with an initial approximation z0(x, t), Algorithm 1 summarizes the Interface-

GMRES method, endowed with Gram-Schmidt orthonormalization (lines 6a–f) and

underrelaxation with an appropriate constant ν (line 6e). The former improves the

robustness by avoiding ill-conditioning of the least-squares problem, while the latter

facilitates the solution of the (nonlinear) fluid and structure subsystems in the subit-

eration process and enables the combination of GMRES with subiteration, even if
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subiteration itself is unstable. The fluid solution can be extracted from the subiter-

ation process on line 1 or 13. The convergence tolerances for the nonlinear and the

linear problem are denoted by ǫ0 and ǫ1, respectively. To improve the computational

efficiency, we apply a relative tolerance ǫ1 = κ‖ri‖ with ri the residual in the current

Newton step i and κ < 1 an appropriate scalar. This choice is motivated by the fact

that it is not meaningful to pursue a very precise solution of the linear problem if

the nonlinear problem is still far from its solution. In contrast to methods which apply

GMRES to the aggregated equations or to the Schur complement, see Refs. [11,16], the

method presented here is confined to the interface degrees-of-freedom and, therefore,

the storage requirements for the Krylov space and the computational expense for the

solution of the least-squares problem (13) are much lower. Accordingly, we refer to this

solution method as Interface-GMRES.

1: i = 0; z1 = C z0; r0 = z1 − z0

2: while ‖ri‖ > ǫ0 do

3: j = 0; ξ = ‖ri‖
4: while ξ > ǫ1 do

5: j = j + 1
6: z′j = zj − z0

7: zj+1 = C zj

8: r′j = (zj+1 − zj) − ri

9: ᾱ = arg min‖ri +
Pk=j

k=1
αkr′

k
‖

10: ξ = ‖ri +
Pk=j

k=1
ᾱkr′

k
‖

11: end while

12: z0 = z0 +
Pk=j

k=1
ᾱkz′

k
13: i = i + 1; z1 = C z0; ri = z1 − z0

14: end while

6a: z′j = zj − z0

6b: for k = 1, . . . , j − 1 do

6c: z′j = z′j − z′
k
(z′j · z′

k
)/‖z′

k
‖2

6d: end for

6e: z′j = νz′j/‖z′j‖

6f: zj = z0 + z′j

1: i = 0; j = 0; z1 = C z0; r0 = z1−z0

3a: ᾱ = arg min‖ri +
Pk=j

k=1
αkr′

k
‖

3b: ξ = ‖ri +
Pk=j

k=1
ᾱkr′

k
‖

3c: zj+1 = z1

Algorithm 1: The Interface-GMRES(R) method for solving C z = z; the basic algorithm
(left), modifications to enable Gram-Schmidt orthonormalization and underrelaxation (right
top) and modifications to enable reuse of Krylov vectors within a time step (right bottom).

Reuse of Krylov vectors only requires minor modifications; see Algorithm 1. The

inner loop then augments instead of overwrites the available spaces Km and Rm.

Depending on the reduction of the updated nonlinear residual in Rm, Km is further

augmented or another Newton update is carried out.

In addition to reuse within a single time step, reuse is also possible within sub-

sequent time steps. In the latter case, the available spaces K and R are transferred

from one time interval to the next. Such reuse can substantially increase the efficiency

of the method; however, it comes at the expense of robustness and therefore has to

be exercised with some caution. We refer to the Interface-GMRES method with reuse

as Interface-GMRESR. Finally, let us remark that the Interface-GMRES(R) solution

method is generic and that it is easily implemented in existing codes which use subit-

eration as a solver.

4 Numerical experiments

To demonstrate the versatility of the Interface-GMRES(R) method, we assess its con-

vergence behaviour on the beam and the string FSI problem in Section 4.2 and 4.4,
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respectively. In particular, we investigate the effect of physical instability due to flutter

and divergence on Interface-GMRES(R) convergence and on the effectiveness of reuse

of the Krylov space. For reference purposes, we include comparisons with standard

subiteration.

4.1 Experimental setup of the beam FSI problem

We consider the beam problem stated in Section 2.1. The infinite-dimensional domain

with x → ±∞ and y → ∞ is truncated. In the x-direction inflow and outflow fluid

boundary conditions are prescribed with the flow going from left to the right, and in

the y-direction the domain is bounded by a solid wall at a distance of one from the

beam. The distance of the solid wall to the beam is sufficiently large to ensure that the

wall does not significantly influence the solution and the convergence behaviour of the

solution methods.

We use initial conditions for the beam according to its first mode shape. The initial

conditions for the fluid are determined as the steady-state solution of the flow over

a beam that is deflected according to its first mode shape. The system parameters

are given in Table 1, where τ denotes the length of the solution time interval. With

Ma = 1.5, the flow is supersonic.

Case λ µ Ma τ
I 0.25 ∗ 1.5 0.05
II ∗ 10 1.5 0.05

Table 1: System parameters for the beam FSI problem (∗ indicates a variable parameter).

The fluid-structure system is discretized by the space/time finite-element method

with piecewise-polynomial basis functions that are discontinuous in time and continu-

ous in space; see also Refs. [26,27] for the space/time finite-element method for prob-

lems with moving boundaries. As basis functions for the structure discretization we use

Legendre polynomials, and enforce C1-continuity in space by means of Lagrange mul-

tipliers. The basis functions for the fluid are of modal type in conformity with Ref. [13,

ch.3].

The time-discontinuous Galerkin discretization implies that displacement and ve-

locity of the structure are discontinuous from one time slab to the next. However, since

the fluid-boundary representation assumes a continuous displacement, the discontinu-

ity in the structure displacement needs to be controlled. To render the discontinuity in

the structure displacement and velocity negligible, we use polynomials of sufficiently

high order for the approximation of the structure. It is to be remarked that the consid-

ered discretization does not maintain the conservation properties at the fluid-structure

interface; cf. Refs. [33,20]. To render the error pertaining to the lack of conservation

negligible, we choose a discretization for fluid and structure that is sufficiently fine.

The discretization parameters are given in Table 2, where the polynomial degree of

the approximation spaces associated with u, α, z and π are, respectively, (Px
U , P y

U
, P t

U),

(Px
A , P t

A), (Px
Z , P t

Z) and (Px
P , P t

P), and the number of elements, N , is denoted accord-

ingly. The number of elements in the x-direction is specified over the length of the

beam. The discretization time step is equal to the length of the solution time interval.

The discretization is sufficiently fine to ensure that the results are essentially mesh

independent.
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NU NA NZ NP PU PA PZ PP

(16, 24, 1) (16, 1) (16, 1) (16, 1) (2, 2, 2) (1, 1) (6, 6) (2, 2)

Table 2: Discretization parameters for the beam and the string FSI problems.

In each time slab, we provide an initial approximation of the structure displacement

based on a linear extrapolation of the initial conditions according to

z0(x, t) = z0(x) + ż0(x)t , 0 ≤ x ≤ L , 0 ≤ t ≤ τ . (14)

We set the convergence tolerance to ǫ0 = 10−4‖r0‖, i.e., we require a reduction of

the initial residual by four orders of magnitude. In addition, we specify for the Newton-

Krylov method the tolerance for the GMRES iteration according to ǫ1 = 10−1‖ri‖,

i.e., we use a relative tolerance for the convergence in the inner loop of the acceleration;

cf. Section 3.2. Moreover, the underrelaxation parameter is set to ν = 10−2‖r0‖ for

the Interface-GMRES method with reuse and to ν = 10−2‖ri‖ for the method without

reuse.

4.2 Numerical results for the beam FSI problem

In the first test case, we study the convergence of the Interface-GMRES(R) method

and subiteration for three distinct settings of the problem with parameters as given in

Table 1, case I and µ = 1, 50, 100. We remark that the added mass and the spectral

radius of the subiteration-operator derivative scale with µ; see also Ref. [32].

Fig. 2 plots the displacement of the beam in space/time. For all considered settings,

the oscillation of the structure attenuates with time, indicating that the fluid-structure

system is stable. Moreover, it is apparent that the beam deflection is downwind ac-

cording to the direction of the flow. The convergence behaviour of the Newton-Krylov

method with and without reuse and of the subiteration method is displayed in Fig. 3

for time steps 1 and 50 for exemplification. In addition, we plot in Figs. 4 and 5 the

dimension of the Krylov space and the cumulative number of iterations versus the

time-step counter, respectively. The cumulative number of iterations specifies the total

number of iterations required for convergence up to and including the time step under

consideration. Fig. 3 illustrates that if reuse is applied, initially most iterations of the

Newton-Krylov method are spent on generating the Krylov space. However, in subse-

quent time steps, increasingly fewer Krylov vectors need to be added to the space due

to reuse; see also Fig. 4. This results in a decreasing number of iterations per time step

and manifests in the gradually changing slope of the cumulative-iteration-count curve;

see Fig. 5. In contrast, the number of iterations required by subiteration hardly changes

in subsequent time steps. We infer from these results that reuse can render the Newton-

Krylov method computationally cheaper than subiteration even under conditions that

are favorable for the convergence of subiteration; see Figs. 3 (left) and 5 (left) with

µ = 1. Subiteration convergence deteriorates significantly with increasing µ, in contrast

to Newton-Krylov convergence. Hence, a discrepancy in computational cost for larger

µ emanates. For µ = 100, subiteration diverges. Note that the Newton-Krylov method

attains convergence despite the instability of the underlying subiteration method.

For reference, we have included in Figs. 3 and 5 the results for the Newton-Krylov

method without reuse of the Krylov space. A comparison to the method with reuse

clearly demonstrates the significant savings in computational cost that can be obtained

by reusing the Krylov space.
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Fig. 2: Beam FSI problem, test case I: Space/time displacement of the beam (colour bars)
for system parameters according to Table 1 and µ = 1 (left), µ = 50 (center) and µ = 100
(right).

To put our results into context, we remark that for an initial amplitude of the beam

deflection of approximately 10−4 the system behaviour is close to linear. Preliminary

studies indicate that for nonlinear system behaviour corresponding to larger initial

amplitudes the performance of the Newton-Krylov method degrades only moderately.

Moreover, we remark that our results are in good agreement with the results obtained

on the piston model problem; cf. [18,34].

In the second test case, we investigate the effect of physical instability on conver-

gence and on the effectiveness of reusing the Krylov space. To this end, we consider

the fluid-structure system with parameters according to Table 1, case II and two rep-

resentative settings of λ, viz., λ = 0.1 and λ = 0.25. The discretization parameters are

specified in Table 2.

Fig. 6 plots the numerical solution of the beam displacement in space/time for the

unstable system (left figure) and the stable system (right). Whereas for λ = 0.1 the

oscillation amplifies which indicates flutter, for λ = 0.25 the oscillation attenuates,

indicating stability of the fluid-structure system. Fig. 7 (left) plots the cumulative

number of iterations versus the time-step counter for the Newton-Krylov method and

for subiteration as a reference. In addition, Fig. 7 (right) plots the dimension of the

Krylov space versus the time-step counter. We remark that these figures plot up to a

time step of n = 200 corresponding to computational time t = 10, whereas Fig. 6 plots

only up to n = 100 (t = 5). Note that the instability becomes increasingly pronounced

with time. Fig. 7 (left) displays a slight change in slope of the cumulative-iteration-

count curve of the Newton-Krylov method with reuse for the unstable system setting.

To explain this change in slope, we consider the evolution of the Krylov-space dimension

plotted in Fig. 7 (right). The figure exhibits that, after the initial construction of a

sufficiently large Krylov space, the dimension of the space remains essentially constant

up to a time step of approximately 100. Henceforth, the dimension of the Krylov

space further increases in the case of the unstable system, which means that additional

Krylov vectors need to be added to the space to attain convergence. This indicates a

mild degradation in the effectiveness of the reused Krylov space which can be attributed
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Fig. 3: Beam FSI problem, test case I: Residual reduction in the L2 norm versus iteration
number in time steps 1 (top) and 50 (bottom) for the Newton-Krylov method with reuse (−−−)
and without reuse (−−) and for subiteration (···); residual estimates and true residuals of the
Newton-Krylov method are indicated by ◦ and �, respectively, and residuals of subiteration
by △; µ = 1 (left), µ = 50 (center) and µ = 100 (right). y-axis in log10-scale.
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Fig. 4: Beam FSI problem, test case I: Dimension of the Krylov space versus the time-step
counter for the Newton-Krylov method with reuse in subsequent time steps; µ = 1 (left),
µ = 50 (center) and µ = 100 (right).

to the significant change in the solution induced by flutter. However, this effect appears

to be minor in that reuse remains beneficial and renders Newton-Krylov convergence

faster than subiteration convergence; see Fig. 7 (left).

Summarizing, the test cases show that the Interface-GMRES method is much more

efficient than subiteration separately. Settings corresponding to a relatively weak cou-

pling in the FSI problem, e.g. due to small µ, are favorable for the subiteration method.
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Fig. 5: Beam FSI problem, test case I: Cumulative number of iterations versus the time-step
counter for the Newton-Krylov method with reuse (−−−) and without reuse (−−) and for
subiteration (···); µ = 1 (left), µ = 50 (center) and µ = 100 (right).

Fig. 6: Beam FSI problem, test case II: Space/time displacement of the beam (colour bars):
Solution computed with system parameters according to Table 1 with λ = 0.1 (left) and
λ = 0.25 (right).

For such settings, the convergence behaviour of subiteration and Interface-GMRES is

comparable. For larger µ and, accordingly, a stronger coupling, Interface-GMRES con-

verges much faster than subiteration. Even if the coupling is so strong that the subiter-

ation method separately diverges, the Interface-GMRES method still displays adequate

convergence behaviour. Moreover, if the reuse option is exercised, then the Interface-

GMRESR method converges in just a few iterations, independent of the strength of

the coupling.

4.3 Experimental setup of the string FSI problem

To further validate the Interface-GMRES method, we consider the string problem from

Section 2.2. The infinite-dimensional domain is truncated in the same manner as for

the beam FSI problem; cf. Section 4.1.

We use initial conditions for the string corresponding to its first mode shape and

an amplitude of 10−4. The initial conditions for the fluid are determined as the steady-

state solution of the flow for this initial configuration. It is to be noted that, in contrast
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Fig. 7: Beam FSI problem, test case II: Cumulative number of iterations versus the time-step
counter for the Newton-Krylov method with reuse in subsequent time steps (�) and without
reuse (◦) and for subiteration (△) (left), and dimension of the Krylov space versus the time-
step counter for the Newton-Krylov method with reuse (right); system parameters according
to Table 1 with λ = 0.1 (−−−) and λ = 0.25 (−−).

to the beam problem, for the string problem we shall apply a geometric linearization.

This implies that the fluid domain remains undeformed. The fluid velocity at the

interface, however, is determined by the velocity of the structure in accordance with

the kinematic interface condition (5a). The reason for this geometric linearization is

that we employ a discontinuous Galerkin method for the string, which would otherwise

impose a discontinuous deformation of the fluid domain. Let us remark, however, that

the effect of such a geometric linearization is in general small.

The system parameters for three representative types of behaviour of the string

fluid-structure system are given in Table 3. We remark that these settings are conser-

vative in the sense that they are favorable for the subiteration method on account of

the small fluid-to-structure mass ratio µ.

Case η µ Ma τ
I 1.0 0.01 1.2 0.05
II 1.0 1.0 0.5 0.05
III 0.53 1.0 1.1 0.05

Table 3: System parameters for the string FSI problem.

The fluid-structure system is discretized by the space/time finite-element method

with piecewise-polynomial basis functions. The discretization method for the fluid equa-

tions is identical to the one used for the beam problem; cf. Section 4.1. For the dis-

cretization of the one-dimensional string we use a space/time discontinuous Galerkin

method. This choice is motivated by the fact that the string is represented by the

second-order wave equation (7), which is of hyperbolic type. To obtain the discontin-

uous Galerkin formulation, we recast equation (7) into a first-order hyperbolic system

in terms of us = ∂z/∂t and vs = ∂z/∂x. The displacement of the string z can then

be obtained by integration of us. The aggregated system for (us, vs, z) is discretized in

space/time by means of the discontinuous Galerkin method with Legendre polynomials

as basis functions. Neighbouring elements are connected by inter-element fluxes that

are determined from the solution of the Riemann problem on inter-element boundaries.

For details of the structure discretization we refer to Ref. [12]. The discretization pa-
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Fig. 8: String FSI problem: Space/time displacement of the string; test case I exhibiting
a stable solution (left), case II exhibiting divergence (center) and case III exhibiting flutter
(right).

rameters for the string problem for test cases I-III are taken to be identical to the ones

for the beam problem given in Table 2.

To provide an initial approximation for the iterative solution procedure, in each

time slab, the structure displacement is initialized with the solution of the previous

time slab. We set the convergence tolerance to ǫ0 = 10−4‖r0‖. In addition, we specify

for the Newton-Krylov method the tolerance for the GMRES iteration according to

ǫ1 = 10−1‖ri‖. Moreover, the underrelaxation parameter is set to ν = ‖r0‖ for the

Newton-Krylov method with reuse and to ν = ‖ri‖ for the method without reuse.

4.4 Numerical results for the string FSI problem

We consider three parameter settings for the string problem; see Table 3. The dis-

placement of the string in space/time is displayed in Fig. 8 for the three cases under

consideration. Whereas Fig. 8 (left) shows a displacement that decays with time, in-

dicating stability of the fluid-structure system, Figs. 8 (center and right) display a

solution whose amplitude grows with time, indicating instability of the fluid-structure

system. Fig. 8 (center) displays a diverging solution. Let us remark that for a specific

range of subsonic Mach numbers, the occurrence of divergence can be explained by

Bernoulli’s theorem, as the pressure force can be larger than the retraction force by

the longitudinal tension in the string. Fig. 8 (right) shows an oscillatory solution with

growing amplitude, indicating flutter. In anticipation of subsequent plots, we remark

that for the flutter case the computation fails in time step 34 (t = 1.7) in the solution of

the fluid subsystem. This failure can be attributed to the amplifying oscillatory flutter

solution that induces large velocities at the fluid boundary, which eventually leads to

failure of the fluid solver.

The convergence behaviour of the Newton-Krylov method with and without reuse

and of subiteration is displayed in Fig. 9 for time steps 1 and 50 for exemplification. In

addition, we plot in Figs. 10 and 11, respectively, the dimension of the Krylov space for

the Newton-Krylov method with reuse and the cumulative number of iterations versus

the time-step counter.
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Fig. 9: String FSI problem, test cases I-III: Residual reduction in the L2 norm versus iteration
number for the Newton-Krylov method with reuse (−−−) and without reuse (−−) and for
subiteration (· · ·); residual estimates and true residuals of the Newton-Krylov method are
indicated by ◦ and �, respectively, and residuals of subiteration by △; time steps 1 (top) and
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case III (right).
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Fig. 10: String FSI problem, test cases I-III: Dimension of the Krylov space versus the time-
step counter for the Newton-Krylov method with reuse in subsequent time steps; test case I
(left), case II (center) and case III (right).

Figs. 9 and 11 demonstrate that the improvement in efficiency that can be gained

by reuse is not restricted to stable fluid-structure systems only but also applies to

systems undergoing divergence or flutter. In the case of flutter, the Newton-Krylov

method with reuse exhibits ‘jumps’ between the residual estimate and the actual non-

linear residual; see Fig. 9 (bottom right). This disparity between estimate and actual

residual indicates a mild degradation in the effectiveness of the reused Krylov space

that can be attributed to the significant change in the solution induced by flutter. Nev-

ertheless, reuse remains beneficial and renders Newton-Krylov convergence faster than
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Fig. 11: String FSI problem, test cases I-III: Cumulative number of iterations versus the
time-step counter for the Newton-Krylov method with reuse (−−−) and without reuse (−−)
and for subiteration (···); test case I (left), case II (center) and case III (right).

subiteration convergence; see Figs. 9 (bottom right) and 11 (right). This observation

is consistent with the results obtained for the beam problem. In the case of diver-

gence, and at variance with flutter, the Newton-Krylov method with reuse does not

exhibit a significant discrepancy between the residual estimates and the true residuals;

see Fig. 9 (center). Moreover, Fig. 11 shows that the reduction in cost obtained by

reusing the Krylov space is more pronounced in the case of divergence than for flut-

ter. This indicates that a monotonically diverging solution is more amenable to reuse

than an oscillatory flutter solution. Presumably this is connected with the number of

modes that participate in the unstable behaviour, as all such modes must eventually

be incorporated in the Krylov space.

Fig. 11 shows that for the considered cases subiteration is computationally cheaper

than the Newton-Krylov method without reuse. However, with reuse, the Newton-

Krylov method is computationally more efficient than subiteration. We remark that for

a system behaviour that is close to linear on account of the small initial string-deflection

amplitude of 10−4, savings in the number of Newton iterations are possible by using

a more stringent value for the relative tolerance ǫ1. Moreover, let us emphasize that

the chosen system parameters are favorable for subiteration, on account of the small

mass ratio and small time step. For larger mass ratios and time steps, the convergence

behaviour of the subiteration method deteriorates and the effectiveness of the Newton-

Krylov method becomes more pronounced; see Ref. [34] and also Section 4.2.

A comparison of the results for the beam and the string FSI problem conveys that

the required dimension for the Krylov space is in general higher for the string problem

than for the beam problem; compare Figs. 10 and 4. This phenomenon can be explained

by the fact that the eigenvalues of the structural operator increase more rapidly for

the beam than for the string. Accordingly, to achieve a certain prescribed residual

reduction, the Krylov space for the beam needs to contain fewer vectors than for the

string. Nevertheless, the Interface-GMRESR method provides adequate convergence

behaviour also for the string problem.

5 Conclusions

In this paper we assessed the convergence behaviour of the Interface-GMRES(R) solu-

tion method for FSI problems on two prototypical model problems, viz., the beam and

the string FSI problem. These model problems exhibit parameter-dependent stability

behaviour, admitting instabilities such as flutter and divergence.
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Our numerical experiments demonstrate that the Interface-GMRES method is

much more robust than the subiteration method separately. Moreover, Interface-GMRES(R)

generally converges faster, especially for the (R) version with reuse of the Krylov space.

If the fluid-structure coupling is weak, e.g. for small fluid-to-structure mass ratios,

the Interface-GMRES method without reuse can be slightly less efficient than the

subiteration method, on account of the inherent linearization in the Interface-GMRES

method which is absent in the subiteration method. For strongly-coupled problems, the

Interface-GMRES method clearly outperforms the subiteration method. Moreover, the

Interface-GMRES method even converges in cases where the underlying subiteration

method diverges, e.g. for large fluid-to-structure mass ratios.

Our results indicate that physical instability in the form of flutter can induce a mild

degradation of the effectiveness of reuse of the Krylov space. However, this degradation

appears to be minor and we observed a beneficial effect of reuse in all considered

cases. Moreover, the degradation appears to be less pronounced for divergence-type

instabilities than for flutter-type instabilities.
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