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Abstract

Numerical simulation of fluid-structure interactions has typically been done using parti-
tioned solution methods. However, partitioned methods are inherently non-conservative
and generally numerically unstable. The deficiencies of partitioned methods have motivated
the investigation of monolithic solution methods. Conservation is possible for monolithic
methods, the conditions have recently been presented in Ref. [1]. In the present paper we
investigate the relevance of maintaining conservation for a model fluid-structure interaction
problem, viz., the piston problem. To distinguish the effect of the error induced by the in-
terface coupling from the fluid and structure discretization errors, we use fluid subcycling
and an exact time-integration method for the structure. A comparison between conserva-
tive and non-conservative monolithic methods as well as partitioned methods is made. We
show that maintaining conservation has considerable impact on the stability and accuracy
of the numerical method. These results also indicate that only for a conservative monolithic
scheme the improvement in accuracy over partitioned methods warrants the computational
cost associated with a monolithic solution. Moreover, we illustrate the implications that
particular combinations of fluid and structure discretizations can have on the conservation
properties of the fluid-structure interaction problem.
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1 Introduction

There is an increasing demand for the accurate numerical solution of fluid-structure
interaction problems arising in many engineering disciplines, such as aerospace
engineering [2,3], civil engineering [4,5] and bio-mechanics [6]. Numerical solu-
tion methods for fluid-structure interaction typically employ partitioning. In a par-
titioned method, the fluid and the structure equations are alternatingly integrated
in time and the kinematic and dynamic interface conditions are enforced asyn-
chronously; see, e.g., Refs. [7,8,9]. The benefits and deficiencies of partitioned
methods are discussed in Ref. [7]. The essential disadvantage of partitioning is
the inherent loss of the conservation properties of the continuum fluid-structure
system. Partitioned methods only satisfy conservation in an asymptotic sense, i.e.,
for vanishing mesh width. Although the order of the error incurred by a partitioned
solution can be improved by predictors (see Refs. [9,10,11]), partitioned methods
are never exactly conservative. In general, they are energy increasing and, hence,
numerically unstable; see, e.g., Refs. [8,10].

The deficiencies of partitioned methods have motivated the investigation of mono-
lithic methods, which treat the interaction of the fluid and the structure at the inter-
face synchronously. The discretized equations are then typically solved by multiple
fluid-structure iterations, also referred to as subiterations; see, e.g., Refs. [12,13,14].
This approach enables software modularity also for monolithic solution methods,
i.e., the use of separate fluid and structure solvers. The computational cost per time
step of a monolithic scheme is higher than the one associated with a partitioned
scheme. On the other hand, only monolithic schemes can maintain the conservation
properties. However, conservation is not immediate. Conservation is only trivially
satisfied under restrictive compatibility conditions, see Ref. [1]. Recently, a new
discretization based on coincidence conditions has been derived in Ref. [1], which
ensures conservation also under incompatibility.

In the present work, we investigate the effect of maintaining conservation on the
stability and accuracy of numerical methods for fluid-structure interaction. For this
purpose, we compare conservative and non-conservative monolithic methods by
numerical experiments with a prototypical fluid-structure interaction problem, viz.,
the piston problem from Ref. [15]. This model problem allows for an analytical
solution of the structural equation, which enables us to perform the structural time
integration exactly. Fluid discretization errors can be reduced using fluid subcy-
cling. This combination allows us to study the effect of maintaining conservation
at the interface separately.

Next, we investigate the effect of the numerical evaluation error in the solution
of the coupled fluid-structure system. Partitioned as well as monolithic solution
methods can employ subiteration. Partitioned schemes perform only a single subit-
eration, i.e., one fluid and structure solution per time step. Partitioned schemes
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therefore do not solve the coupled fluid-structure system exactly and, hence, in-
cur a numerical evaluation error. Monolithic schemes repeat subiterations until a
certain tolerance criterion is satisfied, which ensures that the numerical evaluation
error is smaller than fluid and structure discretization errors. In our numerical ex-
periments, we show that in case of a partitioned solution method the numerical
evaluation error can compromise stability and accuracy.

Finally, we investigate the implications that particular combinations of fluid and
structure discretizations can have on the conservation properties. We consider dif-
ferent discretization methods for the structure, viz., the trapezoidal method and
a time-discontinuous Galerkin method, coupled to a time-discontinuous Galerkin
discretization of the fluid equations.

The contents of this paper are organized as follows : Section 2 describes the govern-
ing equations of the piston problem. Section 3 presents the discretization methods
employed for fluid and structure as well as the conditions for maintaining con-
servation at the interface. In Section 4 we analyse the trapezoidal and the time-
discontinuous Galerkin method for the structural time integration. In Section 5 we
present numerical experiments and results. Section 6 contains concluding remarks.

2 Governing equations

This section presents the formulation of the piston problem from Ref. [15]. The
governing equations of the continuum system for the fluid and the structure are
introduced. Section 2.3 establishes the kinematic and dynamic conditions at the
fluid-structure interface.

2.1 Fluid

The fluid is described by the one-dimensional Euler equations for compressible
flow :

∂U

∂t
+
∂F

∂x
= 0, (1)

where U = (ρ, ρu, ρe) is the state vector of conservative variables, and F =
(ρu, ρu2 + pf , ρue + pfu) is the flux vector. ρ denotes the density, u is the ve-
locity, pf is the fluid pressure and e is the total energy density, respectively. The
equation system is closed by the state equation for a perfect gas :

pf = (γ − 1)
(
ρe− 1

2
ρu2

)
, (2)

where γ denotes the ratio of specific heats (assumed to be 1.4 for the numerical
experiments).
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2.2 Structure

The structure is represented by a one-degree-of-freedom model (Fig. 1), which is
described by the following differential equation :

mz̈ + kz = ps − p0 =: θ, (3)

with the initial conditions :
z(t = 0) = z0, (4a)
ż(t = 0) = v0, (4b)

where z denotes the structural displacement,m the mass and k the spring-stiffness
of the piston model, ps is the pressure received by the structure from the fluid and
p0 is the atmospheric pressure. For the forcing term, ps − p0, we have introduced
the notation θ. A superimposed dot denotes differentiation with respect to time. The
surface of the piston is assumed to have a unit area.

2.3 Interface conditions

The interface conditions for the fluid-structure system can be expressed as a dy-
namic condition and two kinematic conditions. Dynamic equilibrium at the inter-
face requires the pressure to be equal at either side of the interface:

ps = pf . (5)

The first kinematic condition requires that the position of the fluid boundary is equal
to its reference position, l0, plus the structural displacement. The second kinematic
condition requires that the fluid velocity at the boundary is equal to the velocity of
the moving boundary. This can be expressed as follows :

l = l0 + z, (6a)

u = l̇. (6b)

The conditions for conservation of mass, momentum and energy at the fluid-structure
interface can be expressed as the requirement that the corresponding fluxes on ei-
ther side of the interface are equal. In particular,

ρ(u− l̇) = 0, (7)

ρu(u− l̇) + pf = ps, (8)

ρe(u− l̇) + pfu = psv, (9)

with v denoting the structural velocity. Notice that the above conditions hold if the
interface conditions, Eqs. (5)–(6), are satisfied.
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3 Discretization

This section presents the discrete approximations to the continuum equations given
in the previous section. Section 3.1 briefly describes the fluid discretization. For
details of the method we refer to Refs. [16,17]. The considered structural rep-
resentation consists of a one-degree-of-freedom model, and therefore only time
discretization is required. Section 3.2 deals with the different structural time in-
tegration methods considered: Section 3.2.1 introduces the analytical solution to
the structure equation. In the absence of discretization errors in the structure, this
method is used to investigate the effect of maintaining conservation at the fluid-
structure interface and to compare monolithic and partitioned schemes. In practice,
however, an analytical solution for the structure is not available. To illustrate the
implications that the choice of the structural discretization can have on the con-
servation properties of the fluid-structure interaction problem, we also consider the
trapezoidal method and the time-discontinuous Galerkin method, presented in Sec-
tions 3.2.2 and 3.2.3, respectively. Section 3.3 outlines the conditions for maintain-
ing conservation at the fluid-structure interface.

3.1 Fluid discretization

Problems of fluid-structure interaction involve moving boundaries and interfaces,
which results in a deformation of the fluid domain in time. It then becomes neces-
sary to perform the integration of the fluid equations on a moving mesh, which re-
quires the incorporation of a Lagrangian description into the typically Eulerian fluid
formulation. Conventional discretization techniques which are based on a separate
space and time discretization of the fluid equations commonly use the Arbitrary
Lagrangian-Eulerian (ALE) technique; see, e.g., Ref. [18]. Another, more elegant
way of treating deforming domains is the space-time formulation of the fluid equa-
tions, as was already recognized in Ref. [19] and illustrated with various examples
in, e.g., Refs. [19,20].

In the space-time formulation the variational statement is written over the space-
time domain and, hence, a deformation of the spatial domain in time is accounted
for automatically. The space-time formulation is in fact analogous to the ALE
formulation; see Ref. [21]. As the ALE formulation is based on a separate space
and time discretization, maintaining the accuracy on a moving mesh requires com-
pliance with an additional constraint, the so-called Geometric Conservation Law,
whereas the space-time formulation satisfies the Geometric Conservation Law in-
herently; see, e.g., Ref. [22].

We employ in our work the space-time formulation, which treats spatial and tempo-
ral derivatives uniformly, i.e., by the same discretization method. We use a standard
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time-discontinuous Galerkin method with piecewise-linear trial and test functions,
which are continuous in space but discontinuous in time at the space-time slab in-
terfaces. This separates the computational task into the sequential solution of mul-
tiple space-time slabs and is attractive for adaptation, in that it offers the possibility
of changing the spatial discretization from one space-time slab to the next. Infor-
mation is propagated across space-time slab interfaces by weakly enforced initial
conditions.

The conservation form of the fluid equations is discretized in primitive variables,
(pf , u, T ) with T denoting the absolute temperature, which simplifies the imple-
mentation of boundary conditions and, in particular, the coupling to the structure.
For the discretization in primitive variables we refer to Ref. [17]. The formulation
can be augmented with a least-squares term to improve the stability of the Galerkin
formulation.

For the variational formulation and the definition of the least-squares operator we
refer to Refs. [16,17,19]. A Fourier stability and accuracy analysis of the space-
time Galerkin least-squares method is presented in Ref. [23]. The resulting system
of non-linear equations is solved by a predictor multi-corrector method, similar to
the one described in Ref. [16].

3.2 Structural time integration

3.2.1 Exact structural time integration

The motion of the piston is described by the initial value problem, Eqs. (3)–(4). For
the approximation of the fluid pressure we use shape functions which are piecewise
linear in time. We approximate the forcing term of the structure also by a piecewise-
linear function. The variation of the forcing term within the generic time interval
[0,∆t] is then of the form

θ = θ0 +
θ1 − θ0

∆t
t, (10)

where the subscripts 0 and 1 refer to the values at the beginning and end of the
time interval, respectively. Because θ is a linear function in our discretization, the
second-order ordinary differential equation can be solved analytically. The solution
of the initial value problem, Eqs. (3)–(4), subject to Eq. (10), is then

z(t) =

(
z0 −

θ0

k

)
cos



√
k

m
t


+

(
v0 − θ1−θ0

∆tk

)

√
k
m

sin



√
k

m
t


+

θ0 + θ1−θ0
∆t

t

k
. (11)

Given the values of the forcing term at either time level, θ0 and θ1, the structural
displacement can be calculated from Eq. (11).
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3.2.2 Trapezoidal method

The trapezoidal method is a common discretization method for ordinary-differential
equations. It is attractive because of its simplicity and its conservation of energy in
the absence of exterior forces; see Ref. [24]. Trapezoidal time integration corre-
sponds to a Newmark method (see Ref. [24]) with the parameter choice β = 1

4
and

γ = 1
2
. This method is also referred to as the average acceleration method.

3.2.3 Time-discontinuous Galerkin method

Below, we consider a velocity-based, time-discontinuous Galerkin discretization
for the structural time integration. Using the same discretization method for the
structure as for the fluid allows us to treat structure and fluid in a unified framework
and simplifies fluid-structure coupling. The time-discontinuous Galerkin method
employs trial and test functions which are discontinuous in time at the time-slab
interfaces. In particular, we use a piecewise-linear approximation of the velocity. In
the following, + and− signs are used to indicate from which side the discontinuity
is approached. To formulate the structural equation in terms of velocity, v, as a
primary unknown, we rewrite Eq. (3) as

mv̇ + k
(
zt=0 +

∫ t

t=0
v(ξ)dξ

)
= θ. (12)

The variational statement for a single time-slab [t+n , t
−
n+1] is then defined as follows:

Find a linear function vh such that

ωh(t−n+1)mvh(t−n+1)− ωh(t+n )mvh(t+n )−
∫ t−n+1

t+n
ω̇hmvh dt

+k
∫ t−n+1

t+n

ωhzh(t+n ) dt+ k
∫ t−n+1

t+n

ωh
(∫ t

t+n

vh(ξ)dξ
)
dt =

∫ t−n+1

t+n

ωhθh dt

(13)

for all linear test functions ωh. Eq. (13) has been obtained through integration-by-
parts. The initial condition for displacement,

zh(t+n ) = zh(t−n ), (14)

is enforced strongly, and therefore displacement is continuous at the time-slab in-
terfaces. The initial condition for velocity is only weakly enforced by the jump
condition,

ωh(t+n )(vh(t+n )− vh(t−n )) = 0, (15)

allowing for discontinuous velocity at the time-slab interfaces. Introducing Eqs. (14)–
(15) in Eq. (13), the variational statement for a single time-slab, including the initial
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conditions, is reformulated as : Find a linear function vh such that

ωh(t−n+1)mvh(t−n+1)−
∫ t−n+1

t+n
ω̇hmvh dt+ k

∫ t−n+1

t+n
ωh
(∫ t

t+n
vh(ξ)dξ

)
dt

= ωh(t+n )mvh(t−n )− k
∫ t−n+1

t+n
ωhzh(t−n ) dt+

∫ t−n+1

t+n
ωhθh dt

(16)

for all linear test functions ωh.

3.3 Discrete interface conditions

In this section we describe the conditions which ensure conservation at the interface
for a monolithic scheme, see also Ref. [1]. In Section 5.2 we exemplify conserva-
tive and non-conservative schemes and investigate the relevance of maintaining
conservation at the interface.

Eqs. (5)–(6) constitute the conditions for the continuum system, which imply con-
servation of mass, momentum and energy at the fluid-structure interface. Their dis-
crete counterparts can be written correspondingly. It then follows that conservation
is only trivially maintained under restrictive compatibility conditions on the ap-
proximation spaces of fluid and structure variables, such as identical approximation
spaces of the pressure at either side of the interface and a discrete fluid and structure
boundary which matches exactly. These requirements are prohibitively restrictive
for practical use.

Recently, it was pointed out in Ref. [1] that conservation can be ensured even un-
der incompatibility; the requirements are based on coincidence conditions and will
be presented in the following. From Eq. (7) it follows that a basic condition for
conservation at the interface is :

uh = l̇h, (17)
i.e., the fluid velocity at the boundary equals the fluid-boundary velocity. The re-
quirements for energy conservation under incompatibility are derived from the in-
tegral form of Eq. (9), expressing conservation in an integral sense, i.e., per time
interval. Subject to Eq. (17) and using integration-by-parts, they are expressed for
a generic time interval [0,∆t] as follows :

∫ ∆t

0
φh(phf − phs)dt = 0 ∀φh ∈ span{1, t}, (18a)

lh(0) = l0 + zh(0), (18b)
lh(∆t) = l0 + zh(∆t), (18c)

∫ ∆t

0
λh
(
lh − (l0 + zh)

)
dt = 0 ∀λh ∈ span{1}. (18d)

Notice that the fluid boundary and the structure are required to coincide only at
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the beginning and end of a time interval, as expressed by the coincidence condi-
tions, Eqs. (18b) and (18c). The fluid-boundary displacement is continuous from
one space-time slab to the next, which enables matching meshes at space-time slab
interfaces and, hence, avoids interpolation of the jump-term. If Eqs. (17)–(18) are
simultaneously satisfied, mass, momentum and energy are conserved at the fluid-
structure interface.

The discussion of conservative coupling at the fluid-structure interface also involves
the issue of the variables used for the fluid discretization. Variables with a non-
polynomial representation of the fluid pressure and velocity, such as entropy vari-
ables [16] for example, directly lead to an incompatibility with the approximation
spaces used in the structure. Conservation at the interface still can be maintained
provided that Eqs. (17)–(18) hold. However, the evaluation of the integrals involves
non-linear transformations and therefore is more complicated in that case. We use
primitive variables, (pf , u, T ), for the fluid discretization instead, which simplifies
the fluid-structure coupling.

In the context of our investigation of conservative fluid-structure coupling, consid-
eration of the conservation properties of the fluid and structure discretization sepa-
rately is also relevant. The Galerkin discretization of the fluid equations in conser-
vation form is globally conservative for any choice of variables, see Refs. [17,25].
The conservation properties of the structure discretization will be investigated in
the following section.

4 Analysis of the structural time-integration methods

To illustrate the implications that the choice of the structural discretization can
have on the conservation properties of the fluid-structure interaction problem, we
consider the trapezoidal method and the time-discontinuous Galerkin method, pre-
sented in Sections 3.2.2 and 3.2.3, respectively. In this section, we examine the
phase and amplitude characteristics of the discretization error of the respective
methods. Moreover, we assess whether the coupling of the structural time-integration
methods to the fluid discretization conserves momentum and energy at the inter-
face.

4.1 Analysis of the trapezoidal method

4.1.1 Amplitude and phase error

The amplitude and phase characteristics of the time-integration methods are de-
termined for the unforced structure by means of the techniques described in, e.g.,
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Refs. [24,26]. The errors are plotted in Figs. 2 and 3 versus the size of the time step.
Here, an oscillation period is equal to a unit time. Fig. 2 shows that trapezoidal time
integration is void of amplitude error, and consequently, preserves the amplitude of
the structural oscillation exactly. Fig. 3, however, shows that the trapezoidal time
integration method has a considerable phase error.

4.1.2 Energy conservation

The trapezoidal method can be shown to be energy conservative for an unforced
structure, see Ref. [24]. To assess energy conservation in the presence of a forc-
ing term, we start from the continuum equation, Eq. (3). Multiplying Eq. (3) by ż
and invoking integration-by-parts on the left-hand side gives the following energy
statement: [

1

2
mż2 +

1

2
kz2

]tn+1

tn

=
∫ tn+1

tn
żθdt. (19)

DefiningE as the sum of kinetic and strain energy, according toE := 1
2
mż2+ 1

2
kz2,

we can rewrite Eq. (19) as

En+1 − En =
∫ tn+1

tn
żθdt. (20)

To determine the conservation properties of the trapezoidal method, we note that
the energy E at time level n + 1 can be written in the following form :

En+1 =



vn+1

dn+1




T

·



m
2

0

0 k
2


 ·



vn+1

dn+1


 . (21)

Manipulation of the expressions for the trapezoidal method yields a relation for
(vn+1, dn+1) in terms of (vn, dn). Eq. (21) can then be rewritten as

En+1 − En = ∆t
(
vn+1 + vn

2

)(
θn+1 + θn

2

)
. (22)

From a comparison of Eqs. (20) and (22) it follows that

∫ tn+1

tn
żθdt = ∆t

(
vn+1 + vn

2

)(
θn+1 + θn

2

)
, (23)

i.e., in the trapezoidal method the integral is approximated by the midpoint rule.
Only in the specific case that θ is constant and v is linear, or vice versa, is the
integral evaluated exactly by the midpoint rule. We infer that trapezoidal time inte-
gration does not generally conserve energy in the presence of a forcing term.

More specifically, we are interested in the conservation properties of the trapezoidal
time integration method when coupled to the fluid discretization. Strong coupling
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for the pressures pf , ps and the velocities u, v at either side of the interface im-
plies that these quantities have the same value at each time level. The coupling to
the time-discontinuous fluid discretization implies that the average acceleration is
computed from a discontinuous forcing term, θ. Structural displacement and ve-
locity, however, are continuous from one time-slab to the next and, consequently,
kinetic and strain energy of the structure are conserved from one time-slab to the
next. Provided that Eq. (17) holds, mass conservation of the fluid at the interface
is immediate and the equilibrium of forces at the interface implies conservation of
momentum.

To assess energy conservation at the interface, the change in energy within a time-
slab is compared at either side of the interface: For the structure integrated by trape-
zoidal time integration we refer to Eq. (22). For the fluid we obtain :

En+1 − En =
∫ t−n+1

t+n
pf u dt

=
1

6
∆t (2pf,n+1un+1 + pf,n+1un + pf,nun+1 + 2pf,nun) ,

(24)

where for velocity u and pressure pf linear-in-time shape functions have been as-
sumed. The calculated change of energy across a time-slab on the structure side
(Eq. (22)) is different from the fluid side (Eq. (24)). Therefore we infer that trape-
zoidal time integration does not conserve energy at the interface.

4.2 Analysis of the time-discontinuous Galerkin method

4.2.1 Amplitude and phase error

The amplitude and phase error of the discontinuous Galerkin time integration method
are determined in a similar manner as in Section 4.1.1. The errors are plotted in
Figs. 4 and 5. Fig. 4 shows that the time-discontinuous Galerkin method has an
amplitude error and, hence, does not preserve exactly the amplitude. Its phase er-
ror, however, is much smaller than for the trapezoidal method, as can be seen by
comparing Fig. 5 to Fig. 3.

4.2.2 Energy conservation

As velocity is contained in the test-space, energy conservation within each time-
slab is implied by Eq. (16). However, due to the weak enforcement of the initial
condition for velocity, Eq. (15), this discretization loses energy between two time-
slabs.

If the time-discontinuous Galerkin method is used for both the fluid and the struc-
ture, the polynomial representation of velocity and pressure can be made identical
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on either side of the interface. In this case the compatibility conditions are satisfied,
and therefore both momentum and energy are conserved at the fluid-structure inter-
face. Alternatively, the coincidence and orthogonality conditions, Eq. (18), can be
imposed to maintain conservation under incompatibility, e.g., due to subcycling.

5 Numerical experiments

In this section we present numerical experiments and results for a prototypical fluid-
structure interaction problem, viz., the piston problem. However, it is anticipated
that the main conclusions extend in abstracto to more complicated fluid-structure
interaction problems.

5.1 Settings of the numerical experiments

5.1.1 Parameters of the piston problem

The parameters of the piston problem are given in Table 1, where ωfs denotes the
frequency of the fluid-structure system. They are similar to the settings used in
Ref. [15].

We denote the characteristic time-scales of fluid, structure and fluid-structure sys-
tem by

Tf =
2l0
c
, Ts = 2π

√
m

k
, Tfs =

2π

ωfs
, (25)

respectively, where c is the speed of sound. Introducing the following non-dimensional
time-scale ratios:

Tf
Tfs

= 0.34,
Ts
Tfs

= 3.44 (26)

and the non-dimensional mass ratio of fluid and structure :

µ =
ρl0
m

= 1.63 (27)

we can describe the problem in terms of non-dimensional quantities. For the current
parameters, the characteristic time-scale for the structure is much greater than the
fluid time-scale, which implies that the fluid behaviour can be considered as quasi-
steady. Moreover, the mass ratio of fluid and structure is of order one, which implies
that fluid and structure contribute equally to the dynamics of the system.

The computation is started from initial conditions which are derived from the solu-
tion of the linearized problem with an initial structural displacement of z0 = 0.01.
The non-dimensional quantities are chosen such that one oscillation period is equal
to a unit time.
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5.1.2 Parameters of the discretization

The initial structural displacement is sufficiently small for the fluid to behave quasi-
linearly, in which case the least-squares stabilization is not necessary. It is deacti-
vated to reduce the dissipation in the fluid.

The fluid discretization is done by the time-discontinuous Galerkin method, which
employs linear-in-time shape functions and is therefore formally second-order time
accurate. When investigating the effect of the discretization error due to the cou-
pling we have to ensure that the fluid discretization error is sufficiently small. We
achieve this by fluid subcycling, i.e., the fluid discretization uses time steps ∆tf ,
which are smaller than the time steps of the structural discretization, ∆ts. The ratio
η = ∆ts

∆tf
, η ∈ N is called the subcycling factor. In the numerical experiments we

use a subcycling factor of η = 8, unless stated otherwise.

5.2 Conservative vs. non-conservative monolithic methods

This section investigates the effect of maintaining conservation at the fluid-structure
interface for monolithic methods by comparing numerical results for conservative
and non-conservative methods. The monolithic solution methods repeat subitera-
tions until the numerical evaluation error is smaller than fluid and structure dis-
cretization errors. Moreover, in order to ensure that the error incurred by non-
conservative interface coupling is dominant, we use the exact structural solution
from Section 3.2.1 and subcycling in the fluid.

5.2.1 Coupling methods

We consider three coupling methods, which all naturally conserve mass at the in-
terface, but differ in their conservation properties for energy and momentum. Nev-
ertheless, all three discretizations are consistent and second-order time accurate, as
will be shown in Section 5.2.2. Therefore, the preference of one method over the
other can only be motivated by the intention of maintaining conservation.

• method A :
This method satisfies Eq. (18). Therefore, the fluid-structure coupling is fully
conservative.

• method B :
This method satisfies Eqs. (18b)–(18d), but not Eq. (18a). ps within a time in-
terval t ∈ [0, T ] is calculated in an ad-hoc but consistent way by using a linear
interpolation that coincides with pf at the beginning and end of the time interval,
i.e.,

ps(t) = pf (t = 0) +
t

T

(
pf(t = T )− pf(t = 0)

)
. (28)
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This finite-difference discretization is typically used in combination with subit-
eration methods; see, e.g., Ref. [13]. However, this discretization does neither
conserve energy nor momentum at the fluid-structure interface.

• method C :
This method satisfies Eq. (18a), but not Eqs. (18b)–(18d). For the discrete fluid
boundary displacement, zhf , a quadratic function is assumed, which is determined
from the requirement that zhf is continuous from one fluid time-slab to the next,
in combination with the following orthogonality condition:

∫ ∆t

0
λh
(
(zhf − zhf,0)− (zhs − zhs,0)

)
dt = 0 ∀λh ∈ span{1, t}. (29)

zhs denotes the approximation to the displacement of the structure, and the sub-
script 0 refers to the values at the beginning of a time interval. Fluid boundary
and structure only coincide initially at time t = 0, but can deviate henceforth.
This coupling method does not conserve energy at the interface, but it conserves
momentum, as it satisfies Eq. (18a).

As we employ fluid subcycling, interpolation of the kinematic boundary conditions
for the fluid, i.e., the structural displacement and velocity, is necessary at all time
levels of the fluid which do not coincide with the time levels of the structure, i.e., at
∆tf . . . (η − 1)∆tf . The interpolation of the structural solution is done according
to Eq. (18) for methods A and B; for method C Eq. (29) is employed.

5.2.2 Numerical results

Fig. 6 compares the numerical solution for the structural displacement obtained
with the coupling methods A, B and C. An oscillation period is resolved by 10
structural time steps or, equivalently, by 80 time steps in the fluid. The figure clearly
shows that the amplitude of the non-conservative method B decays rapidly, whereas
the amplitude of the conservative method A remains apparently unchanged. The
modulation of the solution computed with method B can be attributed to interfer-
ing waves : The initial conditions correspond to a periodic solution of the contin-
uum problem, but do not generally yield a periodic discrete solution. Moreover,
we notice a considerable phase error in the solution computed with method B. The
amplitude computed with method C grows in time, and the solution appears to be
numerically unstable, even though method C is a monolithic scheme. The latter is
noteworthy, because the fact that monolithic schemes can be numerically unstable
does not seem to be widely known.

The results of a mesh refinement study are shown in Fig. 7. The L2-norm of the error
in the computed structural displacement is plotted versus the size of the structural
time step for ∆ts = 2−3 . . . 2−7. The reference solution was obtained with the
conservative monolithic method A for a structural time step ∆ts = 2−8.
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Fig. 7 confirms that the methods are second-order time accurate. Moreover, it is
apparent that the conservative method A is by more than two orders of magnitude
more accurate than the non-conservative methods B and C. Hence, for a given level
of accuracy, the conservative method can afford much larger time steps than the
non-conservative methods. We infer that maintaining conservation at the interface
is an important requirement for the accuracy of the numerical solution. An addi-
tional computational cost is not incurred.

5.3 Monolithic vs. partitioned methods

In the previous section the importance of maintaining the conservation properties
has been demonstrated. This issue also involves a discussion of partitioned and
monolithic schemes, as the former are inherently non-conservative. In Section 5.3.1
we compare monolithic and partitioned schemes; similar investigations have been
presented in Refs. [27,28,29]. In Refs. [27,28] the average acceleration method is
used for the structural time integration, and Ref. [29] uses an Arbitrary Lagrangian
Eulerian approach. Here, we compare numerical results for monolithic and parti-
tioned schemes, using the exact structural time integration and a coupling strategy
based on Eq. (18). This ensures conservation at the interface for a monolithic solu-
tion. The monolithic method is identical to method A of Section 5.2.

Our approach has the advantage that it isolates the effect of fluid and structure
discretization errors from the numerical evaluation error. This allows us to study the
effect of the latter separately, and to show the relevance of structural prediction for
a partitioned scheme (Section 5.3.1). In Section 5.3.2 we investigate the temporal
accuracy of monolithic and partitioned solution methods. Whereas the difference
between the methods is also apparent without fluid subcycling for coarse time steps,
we need to employ fluid subcycling when investigating the accuracy of the methods
in order to reduce the effect of fluid dissipation. In general, fluid dissipation damps
the solution and, hence, counteracts the amplification caused by the partitioned
methods.

5.3.1 Comparing the effect of monolithic and partitioned methods

For the numerical experiments presented in this section the same time-step size is
used for the fluid and structure discretizations. The size of the time step is indicated
below the figures. Figs. 8–10 plot the structural displacement versus time for five
cycles of oscillation. In Fig. 8 the amplitude computed with the partitioned scheme
grows in time, whereas the amplitude computed with the monolithic scheme re-
mains constant. This calculation uses 100 time steps per cycle. Next, we use a
structural prediction according to Eq. (11) with values of the forcing term at the
previous time level. When using a structural predictor for the partitioned scheme,
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the growth in amplitude is substantially reduced so that partitioned and monolithic
results visually coincide (Fig. 9, with the same number of time steps per cycle as in
Fig. 8). Obviously, structural prediction can reduce the numerical evaluation error
incurred in a partitioned solution. However, if the number of time steps per cycle is
reduced, e.g., by a factor of ten (Fig. 10), the error in the amplitude computed with
the partitioned scheme emerges again, in spite of the structural predictor. The am-
plification of the solution obtained with the partitioned method can be attributed to
artificial energy production at the interface, which can induce numerical instability
of the combined fluid-structure system; see, e.g., Refs. [8,10]. In practice, this im-
poses a restriction on the time-step size. The monolithic scheme does not become
numerically unstable. Indeed, as it maintains exactly the conservation properties
at the interface, it is unconditionally stable. In this case, there does not exist a re-
striction on the admissible time-step size for a monolithic scheme other than the
required accuracy.

We note, however, that for a single-mode problem such as the one considered sta-
bility and accuracy are closely related. Only for multiple-mode problems stability
and accuracy can be distinguished clearly. For partitioned schemes, the stability of
modes with time scales smaller than one actually wants to resolve can impose a se-
vere restriction on the admissible time-step size. On the other hand, for monolithic
schemes there is no such stability restriction, but the time-step size is restricted by
accuracy considerations only. This discussion is similar to the one about time-step
restriction for explicit vs. implicit time-integration methods.

5.3.2 Grid refinement study

This subsection investigates the temporal accuracy of monolithic and partitioned
schemes. We use the same settings as in Section 5.3.1. However, the subcycling
ratio is set to 8.

The observed order of temporal accuracy is determined by

p = ln

(
||z4τ − z2τ ||
||z2τ − z1τ ||

)
/ ln(2), (30)

where p denotes the observed order of temporal accuracy and z the computed struc-
tural displacement on meshes of different structural time-step sizes (denoted by τ ,
2τ and 4τ ). The differences are measured in the L2-norm.

As the fluid equations are formulated and discretized in space-time, refinement of
the temporal mesh width requires a corresponding refinement of the spatial mesh
width to obtain second-order convergence. If this is not done, the truncation error
retains a mixed term, ∆tf∆x, which will produce only first-order convergence. For
the current computations, the non-dimensional spatial mesh width in the fluid was
taken equal to the temporal mesh width.

16



The computations were performed on a sequence of meshes of different time-step
sizes. Table 2 shows the observed order of temporal accuracy for the monolithic
method as well as for the partitioned method with and without structural predic-
tion. The observed order of temporal accuracy shows the expected asymptotic be-
haviour, i.e., second-order accuracy for the monolithic method and for the parti-
tioned method with prediction, and first-order accuracy for the partitioned method
without prediction.

The monolithic method and the partitioned method with prediction have formally
the same order of accuracy; the nature and magnitude of the dominant errors,
however, is inherently different. Fig. 11 plots the error versus the time step for
τ = 2−3 . . . 2−7, using the same reference solution as in Section 5.2.2. As the mono-
lithic and the partitioned method differ only in the number of subiterations, we can
infer from Fig. 11 that the numerical evaluation error in the partitioned solution
is by several orders of magnitude larger than the fluid and structure discretization
errors. Consequently, in a partitioned solution the numerical evaluation error can
dominate other sources of error. From Fig. 11 it is clear that the partitioned method
requires smaller time steps than the monolithic method for a specified error toler-
ance. Conversely, given a certain level of accuracy, a monolithic method can afford
larger time steps than a partitioned method.

As the grid refinement study uses the same settings and reference solution as in
Section 5.2, the accuracy of the partitioned method can be compared also to the
accuracy of the non-conservative monolithic methods B and C; refer to Fig. 7. Al-
though the non-conservative methods B and C are more accurate than the parti-
tioned method with prediction, the gain in accuracy does not seem to justify the
computational effort associated with a monolithic method. However, comparing
the accuracy of a partitioned and a conservative monolithic discretization, it is clear
from Fig. 11 that the latter is by more than three orders of magnitude more accu-
rate. Hence, monolithic methods are much more accurate than partitioned methods,
provided that they maintain conservation at the interface. In that case they warrant
their higher computational cost and become computationally more efficient than
partitioned methods, cf. Ref. [30].

5.4 Trapezoidal vs. discontinuous Galerkin time integration for the structure

This section demonstrates the implications of the adopted structural discretization
methods. We consider the coupling of the time-discontinuous Galerkin discretiza-
tion of the fluid equations with the time-discontinuous Galerkin and the trapezoidal
time integration for the structure, respectively, and investigate the effect on accu-
racy for a monolithic solution.

The possibility of energy-conservative coupling has been investigated in Section 4.
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The time-discontinuous Galerkin discretization for the structural time integration
conserves momentum and energy at the fluid-structure interface. However, this
method loses energy in between time-slabs due to the discontinuity in velocity.
With the trapezoidal discretization for the structure, momentum is conserved at the
interface, but not energy.

5.4.1 Grid refinement study

In the following, we assess the temporal accuracy for the structural time integration
methods in a monolithic solution with fluid subcycling. Table 3 shows the observed
order of temporal accuracy (determined as in Section 5.3.2) for trapezoidal and
time-discontinuous Galerkin time integration.

Table 3 indicates that the trapezoidal time integration gives second-order time-
accurate results in a monolithic solution. This was to be expected, as both the
trapezoidal method and the fluid discretization are second-order time accurate,
see Ref. [24]. The time-discontinuous Galerkin discretization for the structure uses
linear-in-time shape functions for the velocity. The structural displacement is ob-
tained by integration. Therefore this method is third-order time accurate in dis-
placement. Indeed, we can observe third-order convergence for the Galerkin time
integration, because the discretization errors in the fluid and at the interface are
smaller than the discretization error in the structure due to fluid subcycling and
conservative fluid-structure coupling, respectively. However, on even finer mesh
sequences second-order time-accuracy is recovered, manifesting the second-order
time-accuracy of the fluid discretization.

The different orders of the structural time integration methods also become appar-
ent in Fig. 12, in which the error is plotted versus the size of the structural time
step for τ = 2−3 . . . 2−7. We use the same reference solution as in Sections 5.2.2
and 5.3.2. The errors corresponding to the Galerkin method and to the trapezoidal
method are markedly different. This difference emanates partly from the different
structure discretization and partly from the different interface treatment. As the in-
terface coupling is formally only second-order accurate, the observed third-order
convergence behaviour of the Galerkin method indicates that conservative inter-
face coupling introduces an error that is typically much smaller than the structural
discretization error. Moreover, a comparison of Figs. 7 and 12 shows that the error
in the fluid-structure coupling with the trapezoidal structural discretization is com-
parable to the error in the non-conservative monolithic methods. It appears that the
error incurred by non-conservative coupling at the interface generally dominates
the structural discretization error.
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6 Conclusions

This paper investigates the relevance of maintaining conservation at the interface
for the accuracy and stability of numerical methods for fluid-structure interaction.
We considered conservative and non-conservative monolithic methods. To distin-
guish the effect of the error incurred by non-conservative interface coupling from
the fluid and structure discretization errors, we used fluid subcycling and exact
structural time integration. We also investigated the effect of the numerical evalu-
ation error incurred by a partitioned solution method. Furthermore, we considered
the implications of specific choices of the structural discretization method. Numer-
ical results were presented for a one-dimensional model problem.

Comparing conservative and non-conservative monolithic methods, we showed that
maintaining conservation at the interface results in a more accurate solution, at the
same computational price. Moreover, we demonstrated that a violation of energy
conservation can lead to numerical instability, even for monolithic methods.

The ability of monolithic methods to maintain conservation at the interface con-
stitutes an essential advantage over partitioned methods. Conservative monolithic
methods are unconditionally stable, whereas partitioned methods are typically un-
stable. Moreover, we showed that a conservative monolithic method is much more
accurate than a partitioned method and, hence, can afford much larger time steps
for the same level of accuracy. Our results also indicate that for non-conservative
monolithic methods the improvement in accuracy over partitioned methods does
not seem to warrant the additional computational cost.

To illustrate the implications of particular combinations of fluid and structure dis-
cretizations, we considered different discretization methods for the structure, viz.,
the trapezoidal method and a time-discontinuous Galerkin method. We showed
that the trapezoidal time-integration method does not generally conserve energy
for forced structures. Hence, it is non-conservative at the fluid-structure interface.
In contrast, the time-discontinuous Galerkin discretization can maintain conserva-
tion at the interface. However, this method loses energy between time-slabs due to
the discontinuity in velocity. Our results indicate that the error incurred by non-
conservative interface coupling can dominate other sources of discretization error,
whereas conservative interface coupling introduces an error that is generally much
smaller than other error sources.
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Table 1
Parameters of the piston problem.

ρ0 p0 l0 ωfs m k

1.3 105 1.0 342 0.8 7911

kg
m3

N
m2 m 1

s kg N
m

Table 2
Observed order of temporal accuracy for partitioned and monolithic methods.

mesh sequences partitioned partitioned monolithic

with time-step sizes without prediction with prediction

2−3, 2−4, 2−5 1.4667 1.9848 5.0188

2−4, 2−5, 2−6 1.4565 1.9891 2.6159

2−5, 2−6, 2−7 1.1958 2.0018 2.0457

Table 3
Observed order of temporal accuracy for trapezoidal and time-discontinuous Galerkin
structural time integration in a monolithic solution.

mesh sequences trapezoidal method time-discontinuous Galerkin method

with time-step sizes

2−3, 2−4, 2−5 1.9541 3.0150

2−4, 2−5, 2−6 2.0088 2.9925

2−5, 2−6, 2−7 2.0019 3.0035
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Figure 1. The piston problem (Interface region expanded for clarity).
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