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Abstract

Accurate numerical simulation of borehole acoustic measurements is of great rele-
vance to improving the efficacy of acoustic logging techniques and to computation-
ally estimating elastic formation properties. Such simulations require sound physical
modeling combined with accurate and efficient numerical discretization and solu-
tion techniques. The objective of this paper is to concomitantly model acoustic
wave propagation in a fluid-filled borehole coupled with elastic wave propagation
both in the probed rock formation and in the elastic logging tool. To ensure the
accuracy and efficiency of our simulations, we use a self-adaptive finite-element dis-
cretization method enhanced with Perfectly-Matched-Layer spatial-domain trunca-
tion. This work constitutes the first application of automatic hp-adaptivity to a cou-
pled multi-physics problem, which requires the non-trivial capability of propagating
refinements between acoustics and elasticity subdomains through their common in-
terface. Computations are carried out in the frequency domain. Subsequently, using
an inverse Fourier transform, frequency-domain solutions are transformed into the
time domain to obtain waveforms at the receiver positions. Numerical results are
presented for monopole and dipole sources with and without the presence of the
logging tool, and for a layered formation. To validate our method, we compare our
results to published reference data and to results obtained using an in-house finite-
difference code. Convergence to a user-specified tolerance for the discretization error
confirms the accuracy delivered by our method in the presence of complex geometri-
cal and physical conditions and indicates its potential for the simulation of borehole
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acoustic measurements.

Key words: acoustic logging, borehole acoustics, wave propagation, linear
elasticity, coupled problems, hp-adaptive finite elements

1 Introduction

Acoustic logging is a central component of the non-invasive, in-situ assess-
ment of rock-formation properties in borehole geophysical applications, see
e.g. Refs. [17,23,20]. The numerical simulation of problems arising in borehole
acoustic logging is of great importance for advancing fundamental knowledge
of borehole acoustics and for the improvement of acoustic logging techniques
used by oil- and oil-service companies to detect and quantify hydrocarbon-
bearing rocks. Moreover, the capability of numerically simulating acoustic log-
ging is a prerequisite for improving data inversion techniques (see e.g. [2,3]),
such as the computational estimation of the spatial distribution of elastic for-
mation properties from given borehole acoustic measurements. However, the
simulation of borehole acoustic problems poses numerous challenges. First, in
general, the computational model needs to be sufficiently sophisticated to cap-
ture the essential physics while remaining computationally tractable. Second,
the truncation of the unbounded physical domain to a bounded computational
domain requires a special treatment of the truncated boundary to avoid non-
physical reflections of outward traveling waves. For this purpose the Perfectly
Matched Layer (PML) technique is commonly employed, see [4]. Third, the
accurate resolution of propagating waves requires a sufficiently fine discretiza-
tion, ideally equipped with some form of estimate of the discretization error.

A review on elastic wave propagation in a fluid-filled borehole has recently been
presented in Ref. [6]. Currently available simulation techniques for acoustic
logging, such as those presented in [5,12,13,15], are typically based on finite-
difference discretizations which are simple and easy to implement. However,
finite-difference methods cannot readily provide a measure of the discretization
error, and refinements that are locally confined are difficult to implement with
finite differences. Moreover, finite-difference methods cannot handle cases of
large contrasts of elastic/acoustic properties or of localized wideband diffrac-
tion, and they are typically restricted to simple geometries.

To accurately and efficiently simulate borehole acoustic measurements, we use
an hp-adaptive finite-element method that optimally adapts the discretization
in terms of mesh size, h, and polynomial approximation order, p, to the local
resolution requirements of the solution and delivers a reliable estimate of the
discretization error. Starting with a user-specified error tolerance, the adaptiv-
ity is carried out automatically, i.e. no interaction with the user is necessary,
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see [7,8,9]. Such self-adaptive finite-element discretization is ideally suited to
meet the above-mentioned challenges in borehole acoustic simulations. In par-
ticular, automatic adaptivity in combination with the PML technique is capa-
ble of reducing non-physical reflections from spatial domain truncation to an
arbitrary level of accuracy, see [14]. However, extending the algorithm for au-
tomatic adaptivity to a coupled multi-physics problem requires the capability
of propagating refinements between acoustic and elastic subdomains through
their common interface which entails a non-trivial challenge.

Our simulations consider a problem setting that is axisymmetric in terms of
geometry and media, but allows for sources that are not necessarily axisym-
metric. All computations are carried out in the frequency domain. Solving the
problem in the frequency domain offers a number of advantages over direct so-
lution in the time domain. In particular, it obviates the stability restriction on
the time-step size that is incurred by explicit time-integration methods. More-
over, it allows for the explicit consideration of frequency-dependent material
properties such as those due to drilling-induced stress around the borehole.
Finally, it enables one to reuse the converged mesh at a given frequency as the
initial mesh for the computation at subsequent frequencies, which expedites
the adaptivity and provides significant computational savings. We investigate
how many frequencies need to be sampled for a sufficiently accurate represen-
tation of the time-domain signal. Numerical results are presented for monopole
and dipole sources with and without the presence of the logging tool, and for
a layered formation. Very good agreement of our results with reference data
published in [6] and with results obtained using an in-house finite-difference
code confirms the reliability of our method.

The remainder of this paper is organized as follows: In Section 2, we present
some preliminaries and techniques that we use to formulate the considered
problem, such as the transformation between frequency and time domains,
a Fourier series expansion in azimuthal direction and the Perfectly Matched
Layer technique. In Section 3, we state the physical problem under consid-
eration and specify the mathematical model used to describe the problem.
In Section 4, we concisely review the automatic hp-adaptive discretization
strategy and briefly elaborate on its extension to multi-physics problems. In
Section 5, we conduct numerical simulations of borehole acoustic logging for
a monopole and a dipole source, with and without the presence of the tool,
and benchmark our results against the data in [6]. In Section 6, we compute
acoustic logging for a finite-thickness hard formation shouldered by two soft
formations extending to infinity. Finally, in Section 7, we summarize the most
important conclusions.
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2 Mathematical preliminaries to formulate the problem statement

Before presenting the problem statement and governing equations in the next
section, we introduce some preliminaries and techniques that provide the
framework in which we shall consider the governing equations.

Section 2.1 specifies the transformation between time and frequency domains.
Section 2.2 describes a generic formulation of a multipole source exciting the
coupled acoustics-elasticity wave propagation. Section 2.3 briefly summarizes
the Perfectly Matched Layer technique for reflectionless domain truncation.

2.1 Transformation between time and frequency domains

We shall treat the problem in the frequency domain and, thus, assume that
the solution can be decomposed into a sum of time-harmonic variations. Let
us first formulate the problem for a single frequency and make the following
ansatz in time for acoustic pressure p and elastic displacement u:

p(x, t) = p̂(x, ω)eiωt , (1a)

u(x, t) = û(x, ω)eiωt , (1b)

where x and t denote the vector of space dimensions and time, respectively,
ω = 2πf is the angular frequency with f denoting the linear frequency, and
i denotes the imaginary unit. The ansatz (1) transforms the time-dependent
governing equations into the frequency domain, resulting in an equation sys-
tem for the complex-valued phasors p̂(x, ω) and û(x, ω). Computing the so-
lution for “sufficiently many” frequencies, the frequency-domain solutions are
then transformed into the time-domain as follows: Considering the inverse
Fourier transform for the acoustic pressure

p(x, t) =
1

2π

∫ +∞

−∞
p̂(x, ω)eiωtdω (2)

for integrands that decay sufficiently fast for |ω| large, the integral in (2) can
be truncated to a suitable finite interval [−b̂, +b̂] and thus approximated as

p(x, t) ≈ 1

2π

∫ +b̂

−b̂
p̂(x, ω)eiωtdω . (3)

The integral in (3) is then evaluated using a numerical integration technique
such as the composite trapezoid rule and sampled at discrete, uniformly spaced
angular frequencies ωj, i.e. with j = 0, . . . , N , a constant frequency spac-

ing ∆ω = 2b̂/N and

ωj = −b̂ + j∆ω , j = 0, . . . , N , (4)
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we approximate (3) as

p(x, t) ≈ 1

2π

 p̂(x, ω0)e
iω0t + p̂(x, ωN)eiωN t

2
+

N−1∑
j=1

p̂(x, ωj)e
iωjt

∆ω . (5)

The frequency-domain elastic displacement vector can be transformed into its
time-domain counterpart in analogy to Eqs. (2)-(5).

Note that relation (5) can alternatively be derived based on the interpretation
of the Fourier transform as a limit of the Fourier series; see Ref. [11]. Antici-
pating a maximum time interval of interest [−T, T ] and replacing the solution
in the infinite time domain (−∞,∞) with a periodic extension of the solution
in [−T, T ], we have the Fourier series expansion

p(x, t) =
1

2π

∞∑
k=−∞

p̂(x, ωk)e
iωkt∆ω , (6)

where ∆ω = π/T and ωk = k∆ω. Note that the frequency spacing ∆ω depends
on the anticipated maximum time interval T . If, for instance, the value of T
doubles, then ∆ω is halved. If the spectrum of the excitation decays with
increasing |ω|, frequencies that are sufficiently high can be neglected and (6)
reduces to (5). In the sequel, we consider the solution in the frequency domain,
but shall drop the hat symbol for succinctness.

2.2 Modeling of multipole sources

In this subsection, we consider the excitation of the wave propagation by
means of a generic multipole source placed in the borehole acoustic fluid.
Multipole sources include non-axisymmetric sources, such as the dipole and
quadrupole sources for instance, which are typically used to measure the shear-
wave velocity of the formation. A dipole source is constructed with a positive
displacement of the borehole fluid in one direction and an equal but negative
displacement 180o away in azimuth (see Refs. [17, Ch. 6] and [23, Ch. 2]). The
resulting radiation pattern of the pressure generated in the borehole exhibits
a cos θ dependence, where θ is the azimuthal angle. On the other hand, a
quadrupole source is constructed with two positive displacements 180o from
each other and 90o from the negative displacements. The resulting radiation
pattern of the quadrupole source pressure field exhibits a cos 2θ dependence.
Thus, a generic multipole source can be described as

gn := pex cos(nθ) , (7)

with pex the amplitude of the excitation, n the azimuthal order number, and
the setting n = 0, 1, 2 corresponding to monopole, dipole and quadrupole
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sources, respectively 1 . We then rewrite Eq. (7) as

gn = pex
e+inθ + e−inθ

2
= pex

e+inθ

2︸ ︷︷ ︸
g+

n

+ pex
e−inθ

2︸ ︷︷ ︸
g−n

. (8)

Writing Eq. (8) in terms of complex exponentials rather than sine and co-
sine functions enables us to invoke orthogonality arguments that lead to a
simplification of the variational statements to be discussed in Section 3.

Due to linearity of the coupled problem, the single-mode multipole source ex-
cites only a single solution mode. The acoustics-elasticity solution of azimuthal
order n, (pn; un), corresponding to the multipole source excitation gn exhibits
the very same dependence on the angle nθ as gn and, thus, can be computed
by superposing the solutions (p+

n ; u+
n ) and (p−n ; u−

n ) of the individual problems
excited by g+

n and g−n , respectively. Assuming an excitation of the form

g+
n = pex

e+inθ

2
, (9)

we make the following ansatz for trial solutions un, pn and corresponding test
functions vm, qm:

u+
n = ũn(r, z)e+inθ , p+

n = p̃n(r, z)e+inθ ,

v+
m = ṽm(r, z)e+imθ , q+

m = q̃m(r, z)e+imθ ,

(10)

i.e. trial and test functions with superscript tilde are solely functions of the
radial coordinate r and the axial coordinate z. Due to orthogonality in both
L2 and H1 of the exponential ansatz functions in (10), it follows that, upon
multiplication of test and trial function in a variational statement, the only
non-vanishing contributions are obtained with the setting m = −n. Note
that the negative counterparts of Eqs. (9)-(10) pertaining to g−n are defined
accordingly. For succinctness, we shall omit the superscript tilde in the sequel.

For a generic multipole source excitation of the form (9) and corresponding
ansatz (10) for test and trial functions, any problem can be treated in a “trace
domain” Ω̂ in the (r, z)-plane (see also Ref. [9, Ch. 1]) which, for a given
azimuthal angle θ∗, can be defined implicitly by

Ω = {(r, θ∗, z) : (r, z) ∈ Ω̂ , θ∗ ∈ [0, 2π)} , (11)

with similar assumptions holding for the boundaries ΓD and ΓN . As we shall
see in Section 3, the variational statements then depend only on the azimuthal

1 Note that a monopole source (n = 0) does not exhibit dependence on the angle
of azimuth.
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order number n, with any dependence on the azimuthal angle θ being null.

2.3 PML formulation in a cylindrical coordinate setting

For problems in borehole acoustic logging the cylindrical coordinate system is
the natural choice. The Perfectly Matched Layer formulation of the variational
statements that we shall consider in this work can be derived straightforwardly
by introducing into the variational statement complex-coordinate stretching
in the radial and axial directions according to

r → R(r, ω) ,
∂

∂r
→ 1

R′
∂

∂r
with R′ =

∂R

∂r
,

z → Z(z, ω) ,
∂

∂z
→ 1

Z ′
∂

∂z
with Z ′ =

∂Z

∂z
,

(12)

respectively, stretching of the Jacobian as follows

dΩ = rdrdθdz → RR′Z ′drdθdz =
RR′Z ′

r
dΩ , (13)

and stretching of the line Jacobian dS accordingly. In Eqs. (12)-(13), for a
given angular frequency ω, R(r, ω) and Z(z, ω) are suitable analytic contin-
uations into the complex plane that are chosen such that the solution in the
PML region decays exponentially; see Ref. [14] for details. Denoting by r′ the
radial coordinate where the “domain of interest” ends and the PML begins,
we have that for a certain r∗ > r′ the solution in the PML has decayed to an
extent that the PML can be truncated by a homogeneous Dirichlet bound-
ary condition without causing any significant reflections. For a given angular
frequency ω we specify the analytic continuation of R(r, ω) as follows

R(r, ω) =

 r 0 ≤ r < r′

r + a(r, ω)− ib(r, ω) r ≥ r′
. (14)

Note that, in the domain of interest, such complex-coordinate stretching yields
the original real coordinate r and, accordingly, R′ is equal to unity. By contrast,
in the PML the functions a(r, ω) and b(r, ω) are defined such that the redefined
coordinate has additional real and imaginary parts that accelerate the decay of
evanescent and propagating waves, respectively. Functions a(r, ω) and b(r, ω)
are typically set to increase steadily from zero as one moves away from the
interface r′ into the PML region. We specify the functions a(r, ω) and b(r, ω)
that we use for our numerical experiments in Section 5 and refer for details to
Ref. [14]. Note that Z(z, ω) can be defined analogously to Eq. (14).
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3 Problem statement and governing equations

In this section, we specify the mathematical models used to describe acoustic
wave propagation in the borehole fluid coupled with elastic wave propagation
in the formation and the logging tool. Specifying the governing variational
equations based on the preliminaries and techniques presented in Section 2,
the problem is treated in the frequency domain and excited with a multi-
pole source. The latter strategy allows us to treat the equations in a generic
form, encompassing monopole, dipole and quadrupole sources. As a special
case of this generic form we then consider more closely the excitation with
a monopole source that yields a two-dimensional axisymmetric solution. By
contrast, dipole and quadrupole sources yield a solution that is not axisym-
metric. However, the geometry of the problem and, therefore, the domain and
its boundaries are assumed to be axisymmetric throughout. Finally, we will
present the PML formulation of the governing variational equations which
extends the equations from the physical domain into the PML region.

Sections 3.1, 3.2 and 3.3 specify the governing equations for linear acoustics,
linear elasticity and the interface conditions, respectively. Based thereon, Sec-
tion 3.4 summarizes the system of coupled acoustics-elasticity equations.

3.1 Linear acoustics equation

Acoustic wave propagation in the borehole fluid is described by the Helmholtz
equation for the acoustic pressure

−∆p− k2p = 0 , (15)

where ∆ denotes the Laplacian operator and k := ω/c is the wavenumber
with c the sound speed in the fluid. Eq. (15) originates from a system of
first-order equations and, for deriving the variational formulation, it is more
illuminating to start from this first-order system than from Eq. (15), as we
shall see in the sequel. The classical linear acoustics equations are obtained
by linearizing the isentropic form of the compressible Euler equations around
the hydrostatic equilibrium state (see for instance Ref. [10]), which yields the
linearized continuity and momentum equations

iωp + ρf,0c
2∇ · v = 0

iωρf,0v + ∇p = 0 ,

(16)

respectively, where v denotes the perturbation in velocity of a uniform sta-
tionary fluid, and ρf,0 is the fluid density associated with this uniform state.
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Upon eliminating the velocity from the first-order system (16), the Helmholtz
equation (15) is obtained.

The variational formulation in terms of pressure is obtained by multiplying
Eq. (16)1 with a test function q, integrating it over the acoustics subdomain ΩA

and integrating the second term by parts which yields

p ∈ pD +Q∫
ΩA

(
iωpq − ρf,0c

2v ·∇q
)
dΩ = −ρf,0c

2
∫
ΓN,A

v · nqdS

∀q ∈ Q ,

(17)

where pD denotes a finite-energy lift of the Dirichlet data and Q is the space
of test functions defined as

Q := {q ∈ X : q = 0 on ΓD,A} , (18)

and the “energy space” X associated with the variational problem (17) is
defined as

X :=
{
q : q, (∇q)l ∈ L2(ΩA)

}
l = 1, . . . , d . (19)

Multiplying Eq. (17) with iω and eliminating velocity through substitution of
Eq. (16)2 yields the variational formulation

p ∈ pD +Q∫
ΩA

(
∇p ·∇q − k2pq

)
dΩ =

∫
ΓN,A

∇p · nqdS

∀q ∈ Q .

(20)

Note that in deriving the variational formulation (20), we have treated the
continuity equation in a weak, i.e. variational, sense, whereas the momentum
equations have been treated in the strong sense which implies that they are
satisfied pointwise. Obviously, Eq. (20) is the variational formulation of the
second-order Helmholtz equation (15), but it has been derived without actually
invoking (15).

Eq. (20) is then supplemented with additional boundary conditions. To this
end, let us subdivide the Neumann boundary ΓN,A into two disjoint subsets
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on which boundary conditions are imposed as follows:

∇p · n = g
A,ex

on ΓN,A,ex ,

∇p · n = g
AE

on ΓI .
(21)

In the equations above, ΓN,A,ex denotes the part of the Neumann boundary on
which a prescribed excitation g

A,ex
is applied 2 , whereas ΓI denotes the inter-

face between acoustics and elasticity subdomains, and g
AE

is then specified by
interface conditions which we describe in Section 3.3. Inserting the boundary
conditions given by (21) into Eq. (20), we obtain

p ∈ pD +Q∫
ΩA

(
∇p ·∇q − k2pq

)
dΩ =

∫
ΓN,A,ex

g
A,ex

qdS +
∫
ΓI

g
AE

qdS

∀q ∈ Q .

(22)

The acoustics subproblem is specified on a subdomain ΩA that, in radial direc-
tion r, is bounded by the interface ΓI with the elasticity subdomain (see also
the sketch of the problem setting in Fig. 1), which requires the specification of
interface conditions; see Section 3.3. In vertical direction z, the acoustics sub-
domain ΩA is unbounded, which requires the specification of the Sommerfeld
radiation condition at infinity

∂p

∂ζ
+ ikp ∈ L2(ΩA) , (23)

where ζ denotes the radius in a spherical coordinate system. Eq. (23) allows for
outgoing waves only while eliminating unphysical solutions that correspond
to waves coming in from infinity. We remark that this particular form of
Sommerfeld’s radiation condition has the advantage of being independent of
the number of space dimensions.

The Sommerfeld radiation condition is effectively implemented by reflection-
less truncation of the acoustics domain by a Perfectly Matched Layer which
allows for outgoing waves only. Under PML complex-coordinate stretching

2 According to (16)2, such boundary condition is equivalent to a prescribed normal
velocity and can be realized, e.g., by the action of a movable cylinder; see [17, Ch. 6].
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according to Eqs. (12)-(13), the variational statement (22) translates into

p ∈ pD + Q̃∫
ΩA

RR′Z ′

r

(
∇̃p · ∇̃q − k2pq

)
dΩ =

∫
ΓN,A,ex

RR′Z ′

r
g

A,ex
qdS

+
∫
ΓI

RR′Z ′

r
g

AE
qdS ∀q ∈ Q̃ ,

(24)

where the stretched gradient operator in cylindrical coordinates is defined as
follows

∇̃p =
1

R′
∂p

∂r
er +

1

R

∂p

∂θ
eθ +

1

Z ′
∂p

∂z
ez , (25)

where ei denotes the unit vector in the respective directions. Note that we
shall drop the superscript tilde pertaining to the stretched counterparts from
the gradient operator and the space of test functions in the sequel. Upon in-
troducing the ansatz (10) for expanding the solution in terms of the azimuthal
angle with n denoting the azimuthal order number, we rewrite Eq. (25) as

∇p =

(
1

R′
∂pn

∂r
er +

1

R
inpneθ +

1

Z ′
∂pn

∂z
ez

)
einθ . (26)

Given that the corresponding expression for ∇q is similar to the equation
above but with azimuthal order m instead of n for the test function according
to Eq. (10), non-zero contributions in Eq. (24) are obtained only for m = −n.
In the sequel, we suppress the subscripts n and m pertaining to the azimuthal
order. In accordance with the complex-coordinate stretching carried out above,
the space of test functions Q needs to be redefined as follows

Q := {q ∈ X : q = 0 on Γ̂D,A} , (27)

and the “energy space” X associated with the variational problem (24) is
defined as

X :=

q :

∣∣∣∣∣RR′Z ′

r

∣∣∣∣∣
1
2

q,

∣∣∣∣∣RZ ′

r

∣∣∣∣∣
1
2 ∂q

∂r
,

∣∣∣∣∣R′Z ′

r
in

∣∣∣∣∣
1
2

q,

∣∣∣∣∣RR′

r

∣∣∣∣∣
1
2 ∂q

∂z
∈ L2(Ω̂A)

 .

(28)
In Eqs. (27) and (28), Γ̂D,A and Ω̂A refer to the boundary trace and trace
domain corresponding to ΓD,A and ΩA, respectively, as specified in Eq. (11).

For latter use, we identify the bilinear and linear forms pertaining to the
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variational statement (24) as

b(q, p) =
∫
Ω̂A

RR′Z ′

r

(
∇p ·∇q − k2pq

)
dΩ , (29a)

l(q) =
∫
Γ̂N,A,ex

RR′Z ′

r
g

A,ex
qdS +

∫
Γ̂I

RR′Z ′

r
g

AE
qdS . (29b)

3.2 Linear elasticity equations

Elastic wave propagation in the formation surrounding the borehole and in
the measurement tool is described by the equations of linear elasticity. Let us
recall the equations of linear elasticity in Rd and time-harmonic form, which
are given by the balance of linear momentum, the constitutive law and the
Cauchy displacement-strain relation, respectively, viz.

−σij,j − ρsω
2ui = 0 i = 1, . . . , d

σij = Eijklεkl i, j = 1, . . . , d

εkl =
1

2
(uk,l + ul,k) k, l = 1, . . . , d ,

(30)

where in the equation above and throughout this section we make use of the
Einstein summation convention; ui denotes the i-th component of the dis-
placement vector, σij and εkl are the components of the stress tensor and of
the strain tensor, respectively, ρs is the density of the solid under considera-
tion (formation or tool) and Eijkl are the components of the elasticity tensor
satisfying the usual symmetry properties

Eijkl = Ejikl, Eijkl = Eijlk, and Eijkl = Eklij . (31)

The second symmetry property in (31) implies for Eqs. (30)2 and (30)3 that

σij = Eijkl εkl = Eijkl
1

2
(uk,l + ul,k) = Eijkluk,l . (32)

For an isotropic homogeneous material, the elasticity tensor depends on two
constants only, viz.

Eijkl = µ(δikδjl + δilδjk) + λδijδkl , (33)

in which case the constitutive law (30)2 reduces to

σij = 2µεij + λεkkδij , (34)
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where µ and λ are the Lamé constants and δij is the Kronecker delta.

The system of equations (30) can be complemented by various boundary con-
ditions of which we shall restrict ourselves to the simplest ones:

ui = 0, i = 1, . . . , d on ΓD,E , (35a)

ti := σijnj = g
EA,i

, i = 1, . . . , d on ΓN,E , (35b)

where nj are the components of the outward normal unit vector, and ti =
g

EA,i
are prescribed tractions. Eq. (35a) prescribes zero displacements and

corresponds to homogeneous Dirichlet boundary conditions (as applied at the
PML boundary), whereas Eq. (35b) prescribes given tractions and corresponds
to Neumann boundary conditions (as applied at the fluid-solid interface ΓI

which, here, is identical to ΓN,E; see Section 3.3).

To derive the standard variational formulation in terms of the displacement
vector, we multiply the momentum equations (30)1 with a test function v :=
vi ∈ V , integrate over the elasticity subdomain ΩE and, upon integration-by-
parts, we obtain

u ∈ V∫
ΩE

σijvi,j dΩ−
∫
ΓN,E

σijnjvi dS − ω2
∫
ΩE

ρsuivi dΩ = 0 ,

∀v ∈ V ,

(36)

where V is the space of test functions

V := {v ∈ X : v = 0 on ΓD,E} , (37)

which constitutes a subspace of the energy space X := H1(ΩE) := (H1(ΩE))
d
.

Substitution of the Neumann boundary condition (35b) into Eq. (36), and
noting that in (36) the stress tensor σij(u) = Eijkl εkl(u) is symmetric and,
thus, “sees” only the symmetric part of the tensor vi,j, that is 1

2
(vi,j + vj,i) =

εij(v), the variational statement (36) can also be written as

u ∈ V∫
ΩE

Eijkl εkl(u) εij(v) dΩ− ω2
∫
ΩE

ρsuivi dΩ =
∫
ΓI

g
EA,i

vi dS ,

∀v ∈ V .

(38)
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The bilinear and linear forms in accordance with (38) are, respectively,

b(v, u) =
∫
ΩE

Eijkl εkl(u)εij(v) dΩ− ω2
∫
ΩE

ρsu · v dΩ (39a)

l(v) =
∫
ΓI

g
EA,i

vi dS . (39b)

To express the variational formulation (38) in cylindrical coordinates, we
make use of Eq. (39a) and, to this end, recall the formulas for the strain
tensor εkl(u) = 1

2
(uk,l + ul,k) in cylindrical coordinates:

εrr(u) =
∂ur

∂r
, (40a)

εθθ(u) =
1

r

(
∂uθ

∂θ
+ ur

)
, (40b)

εzz(u) =
∂uz

∂z
, (40c)

εrθ(u) =
1

2

(
∂uθ

∂r
+

1

r

(
∂ur

∂θ
− uθ

))
, (40d)

εrz(u) =
1

2

(
∂uz

∂r
+

∂ur

∂z

)
, (40e)

εθz(u) =
1

2

(
1

r

∂uz

∂θ
+

∂uθ

∂z

)
. (40f)

Upon introducing the ansatz (10) for expanding the solution in terms of
the azimuthal angle with n denoting the azimuthal order number and PML
complex-coordinate stretching according to (12), we rewrite Eq. (40) as

εrr(u) =
1

R′
∂ur,n

∂r
einθ , (41a)

εθθ(u) =
1

R
(inuθ,n + ur,n) einθ , (41b)

εzz(u) =
1

Z ′
∂uz,n

∂z
einθ , (41c)

εrθ(u) =
1

2

(
1

R′
∂uθ,n

∂r
+

1

R
(inur,n − uθ,n)

)
einθ , (41d)

εrz(u) =
1

2

(
1

R′
∂uz,n

∂r
+

1

Z ′
∂ur,n

∂z

)
einθ , (41e)

εθz(u) =
1

2

(
1

R
inuz,n +

1

Z ′
∂uθ,n

∂z

)
einθ . (41f)

Note that ε(v) is defined accordingly with the ansatz for test functions given

14



in (10). As mentioned under (10), due to orthogonality of the complex expo-
nential ansatz functions, the only non-vanishing contributions to the varia-
tional statement under consideration are obtained with the setting m = −n.

With the definitions in (41) and stretching of the Jacobian as given in (13), we
express the bilinear form (39a) in cylindrical coordinates, with PML complex-
coordinate stretching and for a generic azimuthal order n as

b(v, u) =
∫
ΩE

RR′Z ′

r

(
2µ

[
εrr(u)εrr(v) + εθθ(u)εθθ(v) + εzz(u)εzz(v)

+ 2εrθ(u)εrθ(v) + 2εrz(u)εrz(v) + 2εθz(u)εθz(v)

]

+ λ

[
εrr(u) + εθθ(u) + εzz(u)

][
εrr(v) + εθθ(v) + εzz(v)

])
rdrdθdz

− ω2
∫
ΩE

RR′Z ′

r
ρs

[
urvr + uθvθ + uzvz

]
rdrdθdz . (42a)

Accordingly, the linear form is expressed as

l(v) =
∫
ΓI

RR′Z ′

r

[
g

EA,r
vr + g

EA,θ
vθ + g

EA,z
vz

]
dS . (42b)

Under PML complex-coordinate stretching and for a generic azimuthal order,
the space of test and trial functions is the energy space corresponding to the
variational form (42), which is essentially a weighted H1 space with weights
incorporating the stretching functions and their derivatives; see Ref. [14] for
details.

Eq. (42) gives the variational formulation for a multipole source of azimuthal
order n, encompassing a monopole (n = 0), a dipole (n = 1) and a quadrupole
(n = 2) source. In the case of a monopole, the problem is axisymmetric and
can be fully described by considering it in a “trace domain” Ω̂ in the (r, z)-
plane as defined in Eq. (11). Since in the axisymmetric case all unknowns are
independent of θ, the bilinear form separates into two terms, viz. one that is
dependent on the r and z components, and the other one that depends on the
θ component only, namely,

b ((vr, vθ, vz), (ur, uθ, uz)) = b1 ((vr, vz), (ur, uz)) + b2 (vθ, uθ) , (43)

and a similar decomposition holds for the linear form l(v). Testing with vθ,
namely,

b ((0, vθ, 0), (ur, uθ, uz)) = b2 (vθ, uθ) = l (0, vθ, 0) ∀vθ (44)

yields a decoupled boundary-value problem for the uθ component. For a monopole
source, the loading assumptions imply that uθ = 0, in which case the solu-

15



tion reduces to determining the ur, uz components only. The formulas for the
bilinear and linear forms given in Eq. (42) then simplify to

b(v, u) =
∫
Ω̂E

RR′Z ′

r

(
2µ

[
εrr(u)εrr(v) + εθθ(u)εθθ(v) + εzz(u)εzz(v)

+ 2εrz(u)εrz(v)

]

+ λ

[
εrr(u) + εθθ(u) + εzz(u)

][
εrr(v) + εθθ(v) + εzz(v)

])
rdrdz

− ω2
∫
Ω̂E

RR′Z ′

r
ρs

[
urvr + uzvz

]
rdrdz , (45a)

l(v) =
∫
Γ̂I

RR′Z ′

r

[
g

EA,r
vr + g

EA,z
vz

]
rdrdz , (45b)

where

εrr(u) =
1

R′
∂ur

∂r
, (46a)

εθθ(u) =
1

R
ur , (46b)

εzz(u) =
1

Z ′
∂uz

∂z
, (46c)

εrz(u) =
1

2

(
1

R′
∂uz

∂r
+

1

Z ′
∂ur

∂z

)
. (46d)

Note that, since for the axisymmetric case there is no dependence of the
variational statement on the azimuthal angle θ, the integration over θ actually
yields a factor of 2π in front of each volume and boundary integral. Since this
factor arises consistently in each integral, we have cancelled it out from the
variational statement (45).

Let us point out that also for a generic multipole source the problem can be
treated in a trace domain in the (r, z)-plane although the solution is not axi-
symmetric but depends on the azimuthal angle according to ansatz (10). In this
case, the variational statement as given by the bilinear and linear forms in (42)
with the definition of the strain tensor in (41) depends on the azimuthal order
number n, but any dependence on the azimuthal angle θ is null. Therefore, in
the sequel, we shall drop the superscript hat from the domain and boundary
symbols with the understanding that the problem is considered in such a trace
domain.

Finally, we remark that, for an elasticity problem that is set in a cylindrical
coordinate system, finite-energy conditions need in principle to be imposed at
radius r = 0 to cope with the singularity arising from the 1/r-factor in the

16



definition of the strain tensor, Eq. (40). Such finite-energy conditions are con-
ceptually the same as the ones given in Ref. [18] for electromagnetics; however,
the precise form of these conditions depends on the underlying physics.

3.3 Conditions at the fluid-solid interface

The conditions at the fluid-solid interface state the compatibility of displace-
ments and tractions at the interface. To present these interface conditions in
their most convenient form, let us first carry out some straightforward manip-
ulations. The compatibility of displacements translates into the compatibility
of velocities at the interface and, for an inviscid fluid which does not support
shear, into the compatibility of normal velocity components, viz.

vf · nf = iωus · nf , (47)

where vf denotes the acoustic fluid velocity, iωus corresponds to the velocity
of the solid expressed in the frequency domain with us the displacement vec-
tor, and nf is the fluid unit outward normal. Using Eq. (16)2 to express the
acoustic velocity in (47) in terms of the pressure gradient, and recalling the
definition (35b) of the traction for elasticity, we can write the conditions at
the fluid-solid interface ΓI as

g
AE

= ∇p · nf = ρf,0ω
2us · nf ,

g
EA

= σ · ns = −pns ,

(48)

where ns is the unit outward normal of the solid subdomain. Eq. (48)1 relates
the acoustic pressure gradient in the normal direction to the normal displace-
ment of the solid, and Eq. (48)2 specifies that the normal traction of the solid
is in equilibrium with the fluid pressure and that the fluid does not support
any shear forces.

3.4 System of coupled acoustics-elasticity equations

Below, we establish the system of coupled acoustics-elasticity equations. Upon
substituting the interface conditions (48)1 and (48)2 into Eqs. (29b) and (42b),
respectively, the boundary terms (29b) and (42b) translate into the bilinear
forms (49b) and (49c) below that express the coupling between acoustics and
elasticity subsystems. Mind that the transition from the linear forms (29b)
and (42b) to the bilinear forms (49b) and (49c) involves a sign change, since
the bilinear forms are associated with the left-hand-side of the equations. Note
that the linear form (29b) actually comprises two parts; the integral over the
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acoustics Neumann boundary, ΓN,A,ex, provides the excitation that drives the
coupled system (Eq. (49e) below), whereas the integral over the interface, ΓI ,
translates into the coupling term (49b). In addition to the coupling terms,
we also recall the bilinear forms associated with the acoustics and elasticity
interior domains, Eqs. (29a) and (42a), respectively, so that we can write the
coupled acoustics-elasticity system collectively as

bAA(q, p) =
∫
ΩA

RR′Z ′

r

(
∇p ·∇q − k2pq

)
rdrdz , (49a)

bAE(q, u) = −
∫
ΓI

RR′Z ′

r

(
ρf,0ω

2us · nf

)
q dS , (49b)

bEA(v, p) =
∫
ΓI

RR′Z ′

r
(pv · ns) dS , (49c)

bEE(v, u) =
∫
ΩE

RR′Z ′

r

(
2µ

[
εrr(u)εrr(v) + εθθ(u)εθθ(v) + εzz(u)εzz(v)

+ 2εrθ(u)εrθ(v) + 2εrz(u)εrz(v) + 2εθz(u)εθz(v)

]

+ λ

[
εrr(u) + εθθ(u) + εzz(u)

][
εrr(v) + εθθ(v) + εzz(v)

])
rdrdz

− ω2
∫
ΩE

RR′Z ′

r
ρs

[
urvr + uθvθ + uzvz

]
rdrdz , (49d)

l(q) =
∫
ΓN,A,ex

RR′Z ′

r
g

A,ex
qdS , (49e)

where the line Jacobian dS equals rdr or rdz depending on the orientation
of the boundary. Invoking ns = −nf and a suitable rescaling of the coupling
terms bAE(q, u) and bEA(v, p) leads to a coupled acoustics-elasticity system
that is symmetric. Moreover, note that the system (49) is in fact specified
for a generic azimuthal order n; however, to avoid proliferation of super- and
subscripts, we have suppressed the subscript n from test and trial functions.

Regarding the coupling terms (49b) and (49c), note that the primary variable
of one subsystem constitutes the flux for the other subsystem. In particular,
the pressure as the primary variable of the acoustic subsystem constitutes the
flux for the elastic subsystem, viz. the tractions. Conversely, the displacement
vector as the primary variable of the elastic subsystem provides the flux for the
acoustic subsystem, viz. the normal velocity of the solid which is related to the
normal gradient of the acoustic pressure. Such form of coupling is commonly
referred to as weak coupling; see also [9, Ch. 1].
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4 Extension of the automatic hp-adaptive discretization to coupled
acoustics-elasticity problems

To obtain an accurate solution often requires a discretization that is locally
refined to resolve particular features of the solution. However, such local re-
finements are often not supported by conventional discretization methods,
such as finite differences for instance, and global refinements are generally
uneconomical and expensive. To overcome this problem while retaining com-
putational efficiency, we utilize our hp-adaptive finite-element discretization;
for details see [7,8,9]. Our method is capable of adapting the discretization in
terms of mesh size, h, and polynomial approximation order, p, according to
the local resolution requirements of the solution. In regions where the solution
varies smoothly, p-refinement is more effective than h-refinement to increase
the accuracy of the approximation. Conversely, if the solution is non-smooth,
h-refinement is more effective than p-refinement. To decide where and how to
refine (in h or p), we construct an approximation to the discretization-error
function as follows: Given an initial grid (the “coarse grid”), we construct a
corresponding fine grid that we obtain by refining the coarse grid uniformly in
h and p. The solution on the fine grid serves as reference solution to estimate
the discretization error in the coarse-grid solution and to construct the next
adaptively-refined coarse grid, and so forth. Note that, upon convergence, it
is the fine-grid solution rather than the coarse-grid solution that is delivered
as final solution. This two-grid paradigm forms a central component of our
mesh-adaptation strategy. In particular, it renders the adaptivity automatic,
i.e. no interaction with the user is required.

Automatic adaptivity releases the user from the burden of designing a mesh
that warrants a sufficiently accurate solution. Our algorithm automatically de-
tects changes in the solution behavior induced by material discontinuities and
sources, and adapts the discretization to the local resolution requirements. Au-
tomatic adaptivity is particularly useful for enhancing the performance of the
PML that is commonly used for the truncation of the computational domain,
see [4]. To avoid non-physical reflections, an accurate solution within the PML
is indispensable. This is corroborated by the fact that the PML is reflectionless
only on the continuum level, i.e. as the discrete solution converges to the con-
tinuum solution. An accurate solution in the PML is commonly sought after
by adjusting the PML damping profile to the specific problem and discretiza-
tion, typically resulting in non-trivial parameter tuning. By contrast, our au-
tomatic adaptivity adapts the discretization to an arbitrary damping profile
to any user-specified discretization-error tolerance. This practically eliminates
reflections from the truncation of the computational domain without param-
eter tuning and, hence, renders the application of the PML straightforward;
see Section 5 and, in particular, Figs. 3-5, and also Ref. [14].
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The work reported on in this paper constitutes the first application of auto-
matic hp-adaptivity to coupled multi-physics problems. That is, scalar-valued
acoustics and vector-valued elasticity subdomains as well as their interface are
treated within the same adaptive framework. To this end, we have enhanced
our algorithm for automatic hp-adaptivity with the capabilities of propagat-
ing refinements through the fluid-solid interface as well as supporting hanging
nodes on the interface. Moreover, to achieve refinements that are well balanced
between acoustics and elasticity subdomains requires a suitable rescaling of
the energy norms in acoustic fluid, elastic formation and elastic tool.

Finally, note that it is actually the solution at the receivers recording the
waveforms that we are interested in rather than the solution over the entire
domain. Accordingly, accuracy in the domain other than the receiver loca-
tions is important only to the extent that it is relevant for the accuracy of
our goal functional, i.e. the solution at the receivers. From this viewpoint, a
goal-oriented adaptive strategy would be more suited for this type of objec-
tive than one that minimizes the energy error over the entire domain; see,
e.g., Refs. [16,19] for details on goal-oriented adaptivity. However, prelimi-
nary investigations have indicated that for the problem under consideration
both adaptive strategies deliver very similar results and, therefore, we base
our adaptive strategy on minimizing the energy error over the entire domain.

5 Numerical results: benchmarks

5.1 Computational setup of the test cases

To validate our computational framework, we consider various problem set-
tings that have been documented in Ref. [6] and compare our results to the
reference. In particular, we investigate a setting without the presence of the
logging tool (a so-called “open borehole”) and a borehole with logging tool; see
Fig. 1 for geometry and dimensions. In either setting, the borehole radius is
0.108 m. The radius of the logging tool, if present, is 0.045 m. The source ex-
citation is applied over an area of 0.004 m × 0.004 m centered at the location
(r,z) = (0.102 m, 0.0 m), and the receivers lie on the same radial coordinate
as the source. The positions of and the spacing between receivers have been
inferred from Ref. [6]. The first receiver has an offset of 3 m from the source.
With a receiver spacing of 0.15 m and eight receivers in total, the eighth re-
ceiver has an offset of 4.05 m from the source. Note that for comparison with
Ref. [6], we shall likewise assume the receivers to be below the source, con-
trary to what is commonly done. We excite wave propagation with monopole
and dipole sources, respectively. The source is a pressure source in the fluid
column of the borehole in conformity with Ref. [6], and the receivers record
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pressure. Regarding the modeling of the pressure source, we remark that the
acoustics Neumann boundary condition (21)1 applied on a circle with radius ε
reduces to a point source as ε → 0. In our computations, we model such a
point source as a source with a finite but sufficiently small area as specified
above. Note that while the geometry of the problem setting is assumed to be
axisymmetric with respect to the borehole axis, the load data may exhibit
a specific dependence on the angle of azimuth, as is the case for the dipole
source excitation (see Section 2.2 for details).

The domains of borehole fluid, formation and tool are assumed to extend to
infinity. To model such an infinite domain, we encompass the computational
domain by a Perfectly Matched Layer with a thickness of δ = 0.5 m. For
both acoustics and elasticity subsystems the analytic continuations R(r, ω)
and Z(z, ω) used for complex-coordinate stretching according to Eq. (12) are
of the following form:

R(r, ω) =

 r 0 ≤ r < r′

r + |η|b(r)r − iηb(r)r r ≥ r′
, (50)

Z(z, ω) =


z + |η1|b1(z)z − iη1b1(z)z z ≤ z′1

z z′1 < z < z′2

z + |η2|b2(z)z − iη2b2(z)z z ≥ z′2

, (51)

where

b(r) =

(
r − r′

0.5δ

)6

, b1(z) =

(
z′1 − z

0.5δ

)6

, b2(z) =

(
z − z′2
0.5δ

)6

, (52a)

η =
1

k(r′ + δ)
, η1 =

1

k|z′1 − δ|
, η2 =

1

k(z′2 + δ)
, (52b)

for a given k = ω/Vp with Vp the compressional wave speed in the fluid or
solid under consideration (for the compressional wave speed in the solid see
Eq. (55) below). In the equations above, r′ > 0, z′1 < 0 and z′2 > 0 denote the
coordinates where the “domain of interest” ends and the PML begins. For the
cases under consideration, we set r′ = 1.5 m, z′1 = -4.5 m and z′2 = 0.6 m. Note
that it is the scaling of the stretching formulas by the frequency-dependent
terms η, η1 and η2 that renders the decay rate of the numerical solution in the
PML essentially independent of the particular frequency under consideration.
The complex-coordinate stretching given by Eqs. (50)-(52) ensures that the
solution in the PML decays so fast that the PML can be truncated by a
homogeneous Dirichlet boundary condition without causing any significant
reflections (see Section 2.3 and Ref. [14] for details on the PML).

Throughout, the excitation pex in conformity with Eq. (7) is provided in the
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form of a Ricker wavelet which decays rapidly in the time and frequency do-
mains; see Fig. 2 and also Ref. [22]. This has the advantage of confining the
frequency spectrum and, thus, the number of frequencies for which computa-
tions need to be carried out. The time-dependent excitation is given by

p
R
(τ) = A(1− 2τ 2)e−τ2

, (53)

where A is the amplitude, τ := (t − ts)/t0 with ts the time at which the
maximum occurs and πt0 the characteristic period of the wavelet. Fourier
transform of (53) yields the frequency spectrum

p̂
R
(ω) = A

(
2
√

πt0e
−iωts

)
Ω2e−Ω2

, (54)

where Ω = ωt0/2. In our computations, we set A = 1, which essentially corre-
sponds to normalizing the pressure by some reference pressure, thus rendering
p

R
dimensionless. Moreover, a center frequency of approximately 8 kHz is ob-

tained by setting ts = 180 µs and t0 = 37 µs. At the center frequency of 8 kHz,
the wavelength of a compressional wave in the formation is 0.381 m. Unless
specified otherwise, the Ricker wavelet is applied as a pressure-source term
in the acoustics equations. In conformity with Ref. [6], this pressure source
enters the acoustics equation with a negative sign.

Table 1 specifies the material properties of borehole fluid, formation, and log-
ging tool. In subsurface exploration it is customary to specify the material
parameters in terms of compressional and shear wave speeds denoted by Vp

and Vs, respectively. Since the borehole fluid is assumed to be inviscid, it does
not support shear waves and, thus, V f

s = 0 m/s. The compressional wave speed
of the fluid, V f

p , equals the speed of sound c; see Section 3.1. For an elastic
solid, the relation between the wave speeds V s

p and V s
s and the Lamé constants

λ and µ as introduced in Eq. (33) is given by

V s
p =

(
λ + 2µ

ρs

)1/2

, V s
s =

(
µ

ρs

)1/2

. (55)

Vp [m/s] Vs [m/s] ρ [kg/m3]

fluid 1524 0 1100

formation 3048 1793 2200

tool 5860 3130 7800
Table 1
Material properties of borehole fluid, formation and logging tool. Fluid and forma-
tion parameters are chosen according to [6]. Since tool parameters are not explicitly
given in [6], they have been taken from [24].

The computations are carried out in the frequency domain and subsequently
transformed into the time domain as explained in Section 2.1. Choosing a
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frequency range of [−f̂ , f̂ ] = [-25000 Hz, 25000 Hz] and a frequency spacing
of ∆f = 50 Hz, we determine the frequency-domain solution for the following
frequencies:

fj = −f̂ + j∆f , j = 0, . . . , N , (56)

where N = 2f̂/∆f . Considering 1001 frequencies with a spacing of ∆f =
50 Hz, the time period covered by the inverse Fourier transform is 1/∆f ,
i.e. 0.02 s in our case. We have verified that the chosen frequency spacing is
sufficiently fine as is evidenced by the fact that our numerical results reported
below remain unchanged under a refinement of the frequency spacing from
50 Hz to 25 Hz. Noting that the following relation holds for the phasor of the
complex solution:

(û, p̂) (x,−f) =
(
¯̂u, ¯̂p

)
(x, f) , (57)

with the overbar denoting the complex conjugate, it suffices to compute the
solution for positive frequencies only. The solution for a negative frequency
can then be obtained straightforwardly from the one for the corresponding
positive frequency according to Eq. (57).

Starting from a coarse initial mesh and using automatic hp-adaptivity, we
generate hp-refined meshes with less than 3% relative error in the coarse-grid
solution measured with the fine-grid solution used as a reference; see Section 4
for details. We generate such meshes for frequencies of 2 kHz, 4 kHz, 6 kHz,
. . . , 26 kHz, where we “roll final meshes forward”, i.e. the final mesh obtained
for 2 kHz serves as the initial mesh for 4 kHz, the final mesh obtained for 4 kHz
serves as the initial mesh for 6 kHz, and so forth. These 13 meshes are then
used to compute the solution for frequencies up to the mesh-specific frequency
as follows: the mesh generated for 2000 Hz is used to compute the solution at
frequencies of 50 Hz, 100 Hz, 150 Hz, . . . , 2000 Hz; likewise the mesh generated
for 4000 Hz is used to compute the solution at frequencies of 2050 Hz, 2100
Hz, 2150 Hz, . . . , 4000 Hz; and so forth. Such a procedure guarantees a high
level of accuracy while at the same time maintaining computational efficiency.
All computations are carried out using the solver MUMPS [21].

5.2 Monopole source in an open borehole setting

Before investigating the waveforms in the time domain, let us take a brief
look at the convergence behavior of the adaptive algorithm and the solution
in the frequency domain from which the time-domain result is derived. Fig. 3
shows the convergence curves of the adaptive algorithm to generate optimal
hp-meshes for frequencies of 2 kHz, 4 kHz, . . . , 26 kHz, where in the adap-
tive process final meshes have been rolled forward as initial meshes at the
subsequent frequency as explained in the previous subsection. These curves
result from plotting the discretization error against the number of degrees-
of-freedom Ndof in the algebraic scale N

1/3
dof . The fact that the curves yield
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approximately straight lines indicates exponential convergence of the discrete
solution of the coupled acoustics-elasticity system. The tolerance for the dis-
cretization error has been set to 3% in the coarse-grid solution with respect
to the fine-grid solution used as a reference. Fig. 3 exhibits that, to meet this
error tolerance, for a frequency of 2 kHz it takes a (coarse) grid with about 13k
degrees-of-freedom, while for a frequency of 26 kHz a grid with 260k degrees-
of-freedom is necessary. However, upon convergence to the optimal hp-mesh
for a given frequency, it makes sense to use the finest mesh available for accu-
racy and efficiency purposes. Therefore, we compute the solution on the final
fine grid of the respective frequency rather than on the final coarse grid. In
general, the discretization error in the fine-grid solution can be expected to be
approximately an order of magnitude smaller than the one in the coarse-grid
solution. Thus, the final fine grid provides a highly accurate solution both in
the domain of interest and in the PML. Such accurate solution in the PML
essentially prevents reflections from the truncation of the domain, as is also
evidenced by the solution plots discussed in the sequel.

Figs. 4 and 5 show, for exemplification, meshes and solutions, respectively, for
the acoustic borehole fluid and the elastic formation in the absence of a tool
at the center frequency of the Ricker wavelet, f = 8 kHz. Fig. 4 shows that
the hp-meshes have been refined to optimally resolve the wave propagation,
and the mesh structure clearly reflects this. Refinements have been carried
out to capture the wave patterns in acoustic and elastic subdomains as well
as the rapid decay of the solution in the PML, thereby highlighting the ben-
efit of our automatic hp-adaptive refinement strategy. Compatibility of the
meshes on either side of the acoustics-elasticity interface has been achieved
by enabling the propagation of refinements through the interface although
our algorithm does allow for hanging nodes on the interface. The solution
in Fig. 5 shows the different character of the wave propagation in borehole
fluid, along the interface and in the formation. In the borehole fluid, waves
primarily propagate in the vertical direction, which suggests that the borehole
essentially acts as a waveguide in the low and medium frequency range, re-
sulting in quasi one-dimensional wave propagation, whereas in the formation
we observe both interface and body waves. Moreover, Fig. 5 shows how, at
the interface, the acoustic pressure gradient couples with the normal (here,
radial) elastic displacement in accordance with the interface condition given
by Eq. (48)1.

Fig. 6 shows the time signal and the frequency spectrum for a single receiver
at a distance of 3.3 m from the source for a monopole and an open borehole
setting. Note that, despite the frequency spectrum of the source excitation
by means of a Ricker wavelet is very “smooth” (see Fig. 2), the real and
imaginary part of the frequency spectrum of the system response plotted in
Fig. 6 are highly oscillatory and, thus, sufficiently many frequency samples
are required for an accurate representation of the signal in the time domain.
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We verified that the employed frequency spacing of 50 Hz is sufficiently fine
for this test case to yield time-domain results that do not change under a
further refinement of frequency spacing. In analogy to Fig. 6 (top), Fig. 7
shows the time signals and frequency spectra for an array of receivers. Due
to the different propagation speeds of the respective waves, the compressional
wave arrives first at a given receiver, followed by the shear wave and finally
the interface guided waves, i.e. the Stoneley and pseudo-Rayleigh waves; see
Refs. [17] and [23] for a description of the different types of waves. As is
evidenced in these figures by the amplitude of the respective waves, most of
the energy is contained in the Stoneley wave, while only little energy is carried
in the shear wave, and the compressional wave contains so little energy that
it is hardly visible in that scale. Our results are in good agreement with those
obtained in Ref. [6] both in terms of arrival times and shape of the waveform.
A close look at Fig. 6 reveals that the difference in arrival times between our
results and the ones reported in Ref. [6] is in fact less than 0.1 ms and, for
all results reported below, it is consistently the same difference. We attribute
the presence of such a small, consistent difference to the fact that the location
of our source and receivers matches the ones in Ref. [6] only closely but not
exactly, because we inferred these locations from a sketch given in Ref. [6].

Upon comparing our numerical results for the frequency spectra to those pre-
sented in Ref. [6], we notice that our spectra are slightly smoother than the
ones in the reference, but this difference is really marginal. Note that we solve
the problem in the frequency domain and only subsequently transform the so-
lution into the time-domain signal, while Ref. [6] does the converse, i.e. carries
out the computations in the time domain and obtains the frequency spectrum
subsequently by Fourier transform. Although in theory these two approaches
should yield identical results, in practice there may be slight differences due
to the time-domain signal not being perfectly smooth and the number of fre-
quencies being finite.

Fig. 8 shows snapshots of the pressure in the borehole fluid and elastic forma-
tion at different instances in time 3 , with the elastic pressure being defined as
pelast = −σii/3 using Einstein summation convention. These snapshots show
that the compressional wave in the formation spreads the fastest and, hence,
the compressional wave is the first wave to be recorded at the receivers. As can
be seen from the plots, the compressional wave is followed by the shear wave
and then by the Stoneley wave; compare this figure also to the time signals
recorded at the receivers which are plotted in Figs. 6 and 7. The snapshots also
convey that the amplitude of the compressional wave is considerably smaller
than the one of the subsequent shear wave and Stoneley wave.

3 An animation corresponding to these snapshots can be found on the following
website: http://www.ices.utexas.edu/centers/aeg/
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5.3 Monopole source in the presence of a logging tool

In this subsection, we investigate the effect of the presence of the logging tool
on the waveforms recorded at the receiver locations. The tool is modeled as a
uniform steel body with material parameters given in Table 1. The tool has a
radius of 0.045 m and it is placed in the center of the borehole according to the
geometrical description of Fig. 1 (right). Note that, in contrast to Ref. [6], we
do not model the attenuation streaks of the tool. As pointed out in Section 3.2,
for an elasticity problem that is set in a cylindrical coordinate system, finite-
energy conditions need in principle to be imposed at radius r = 0 m to cope
with the singularity arising from the 1/r-factor in the definition of the strain
tensor, Eq. (40). This is the case when an elastic tool in the core of the borehole
is present. In practice, though, it turns out that we can get away here with a
simple “do-nothing” boundary condition at r = 0 m, the reason being that we
do not integrate at r = 0 m, but only at integration points that are close to the
vertical axis. The resulting 1/r-factor is then accordingly large and acts like
a penalty parameter in the formulation, effectively penalizing the deviation
from the finite-energy condition.

Fig. 9 shows the computed waveform for a single receiver at a distance of
3.3 m from the monopole source in the presence of the tool. Upon comparing
our waveform to the one given in Ref. [6], we observe that the arrival times of
the interface and body waves are in good agreement but that the shape of the
interface wave differs. This difference may arise from the fact that we do not
model the attenuation streaks of the tool and, thus, the interface wave of the
tool may be sufficiently pronounced to alter the time signal that is recorded
by the receivers.

Recomputing the same test case subject to the much stronger Dirichlet bound-
ary condition at the source location instead of the standard acoustic-pressure
source term, we obtain a waveform that agrees well with Ref. [6] also in terms
of the shape of the interface wave; see Fig. 10. We therefore conjecture that
the difference in the shape of the interface wave in Fig. 9 when compared
to Ref. [6] results from the particular modes of the formation interface wave
that the type of source implementation is able to excite in the presence of
a non-negligible interface wave of the tool. Regarding Fig. 10, we observe
that, similarly to the results without the tool, the Stoneley wave dominates
the waveform. However, as was also observed in Ref. [6], the presence of the
tool apparently causes a change in the polarity of the Stoneley wave when
compared to the open borehole case; compare Fig. 10 to Fig. 6.
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5.4 Dipole source in an open borehole setting

We consider the excitation by a dipole source in an open borehole setting,
i.e. without the presence of a tool. For a dipole source excitation accord-
ing to Eqs. (7)-(8), we require the solution components (p+

1 ; u+
r,1, u

+
θ,1, u

+
z,1)

and (p−1 ; u−r,1, u
−
θ,1, u

−
z,1) corresponding to the excitation components g+

1 and
g−1 , respectively, where the subscript 1 denotes the azimuthal order num-
ber n = 1 corresponding to the dipole source. A superposition of the so-
lution components analogous to the one in (8) then yields the solution to
the dipole excitation. It turns out that the individual solution components
are related as follows: (p−1 ; u−r,1, u

−
θ,1, u

−
z,1) = (p+

1 ; u+
r,1,−u+

θ,1, u
+
z,1), which can be

verified by substitution. Therefore, it suffices to compute the solution compo-
nent (p+

1 ; u+
r,1, u

+
θ,1, u

+
z,1) corresponding to the excitation g+

1 , and the solution
component (p−1 ; u−r,1, u

−
θ,1, u

−
z,1) corresponding to g−1 follows straightforwardly.

This effectively reduces the cost associated with the dipole computation by a
factor of two.

Figs. 11 and 12 show the time signal and frequency spectrum for a single
receiver at a distance of 3.3 m from the source and for an array of receivers,
respectively. Fig. 11 displays the flexural interface wave which carries most
of the energy and the shear wave; the compressional wave contains so little
energy that it is not visible in this scale. For a description of the wave modes
excited by a dipole source we refer the reader to Refs. [17,23]. In comparison to
the frequency spectrum of the corresponding monopole case (compare Fig. 11
to Fig. 6), we observe that in the dipole case low frequencies are practically
not excited. This is due to the low-frequency cutoff of the flexural interface
wave; see also Refs. [6] and [23, Ch. 2.5]. Our numerical results compare well in
terms of arrival times and shape of the waveform to the ones given in Ref. [6].

Fig. 13 shows snapshots of the pressure in the borehole fluid and elastic for-
mation at different instances in time 4 in the plane given by the azimuthal
angle θ = 0o. We observe the compressional wave that travels the fastest and
is followed by the shear wave and the flexural wave; see also the waveforms in
Figs. 11 and 12. From the snapshots it can also be seen that the flexural wave
has a much larger amplitude than the compressional wave and the shear wave.
Comparing Fig. 13 with Fig. 8 for the corresponding monopole case, we notice
that the wave patterns of the respective interface waves, i.e. the Stoneley wave
in the monopole case and the flexural wave in the dipole case, are markedly
different; compare in particular the respective plots at later instances in time,
such as at t=1.7 ms, t=2.2 ms and t=2.7 ms.

4 An animation corresponding to these snapshots can be found on the following
website: http://www.ices.utexas.edu/centers/aeg/
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5.5 Dipole source in the presence of a logging tool

In this subsection, we investigate the excitation in form of a dipole source in the
presence of a logging tool. Fig. 14 shows the computed waveform and frequency
spectrum at a receiver located 3.3 m from the source. A comparison with
Ref. [6] is not possible, since the simulation in the reference was unstable for
this case. The frequency spectrum displayed in Fig. 14 exhibits some wiggles
that persist under a refinement of the frequency spacing from 50 Hz to 25 Hz
as well as under further refinement in space. This indicates that both the
frequency spacing and the spatial mesh size are sufficiently fine and do not
cause the wiggles in the spectrum.

Fig. 14 conveys that the flexural wave of the formation carries most of the
energy. Moreover, when comparing Fig. 14 to the corresponding case without
the tool shown in Fig. 11, we notice that the presence of the tool changes the
waveform significantly also in the case of a dipole source. A similar observation
has been made in Section 5.3 for the monopole case.

6 Numerical results: layered formation

In this section, we study coupled acoustics-elasticity wave propagation in the
presence of alternating layers of hard and soft formation as depicted in Fig. 15.
Such setting is very common in borehole geophysics; see, for instance, Ref. [12].
This problem setting is challenging because of the presence of singularities that
arise at points where three different materials meet, as is the case where the
interface between hard and soft formation meets the borehole. The presence
of singularities renders this problem a challenging case to test our hp-adaptive
strategy.

Geometry and dimensions of the problem are essentially the same as in Sec-
tion 5 except for the presence of a layer of hard formation that is located
between the vertical coordinates -1 m and -1.5 m and shouldered by two soft
formations extending to infinity; see the sketch in Fig. 15. We consider the
open borehole setting, i.e. without the tool, and the excitation is provided by
means of a monopole source using a pressure source term in form of the Ricker
wavelet as detailed in Section 5.1. The positions of source and receivers are
identical to the ones specified in Section 5.1.

Table 2 specifies the material properties of borehole fluid and of hard and soft
formation. We remark that, in the presence of material layers with interfaces
lying in a z = const plane, the PML formulation of the elasticity equations as
given in Section 3.2 remains valid. This is a consequence of the fact that the
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solution remains analytic in terms of the coordinate parallel to the interface;
see Ref. [14] for details.

Vp [m/s] Vs [m/s] ρ [kg/m3]

fluid 1524 0 1100

hard formation 3048 1793 2200

soft formation 2300 1000 2000
Table 2
Material properties of borehole fluid and of hard and soft formation for the test case
of a layered formation.

In our computations, we choose a frequency range of [−f̂ , f̂ ] = [-25000 Hz,
25000 Hz] with a frequency spacing of ∆f = 50 Hz and subsequently trans-
form the frequency-domain solutions into time-domain signals as described in
Section 2.1. While the discretization-error tolerance for the coarse grid has
been set to 3%, upon convergence we use the solution obtained on the fine
grid which can be expected to have a discretization error that is about one
order of magnitude smaller than the one in the coarse-grid solution.

Figs. 16 and 17 show the time signal and frequency spectrum for a single re-
ceiver at a distance of 3.3 m from the source and for an array of receivers,
respectively. The frequency spectra show pronounced oscillations for frequen-
cies between approximately 0 kHz and 5 kHz and between 10 kHz and 15 kHz.
These oscillations persist under refinement of the spatial mesh width and fre-
quency spacing, which suggests that these oscillations are actually physical.
This conjecture is further supported by the fact that a computation of this
test case using the in-house 2D time-domain finite-difference code from [1]
gives very similar results, see Fig. 18. Indeed, the agreement of the respective
time signals between our hp-adaptive finite-element code using a frequency-
to-time-domain transformation and the 2D time-domain finite-difference code
is very good both in terms of arrival times and shape of the waveforms.

Regarding the waveforms in Figs. 16 and 17, the time-domain signals exhibit
the arrivals of compressional and Stoneley wave only; there is no shear-wave
arrival and no pseudo-Rayleigh wave, because the shear-wave speed of the
soft formation is smaller than the wave speed of the borehole fluid. Such a
formation is also said to be a “slow” formation. Moreover, for a slow formation,
the wavetrain generated by the compressional wave is commonly referred to as
a “leaky compressional wave”, because it radiates energy into the formation
and, thus, attenuates along the borehole; see [23, Ch. 2] and [17, Ch. 5] for
details.
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7 Conclusions

We developed and successfully tested a new hp-adaptive finite-element dis-
cretization method for the simulation and study of acoustic wave propaga-
tion in a fluid-filled borehole coupled with elastic wave propagation in the
probed rock formation and in the logging tool. This development constitutes
the first application of automatic hp-adaptivity to a coupled multi-physics
problem, which requires the non-trivial capability of propagating refinements
between acoustics and elasticity subdomains through their common interface.
A distinct advantage of the combination of hp-adaptivity with the Perfectly
Matched Layer technique is that it practically eliminates non-physical reflec-
tions from the truncation of the computational domain. Computations were
carried out in the frequency domain. Using an inverse Fourier transform, the
frequency-domain solutions were subsequently transformed into the time do-
main to produce the waveforms at the receiver positions. To validate our com-
putational framework, we compared our results to published reference data
and to results from an in-house finite-difference code, and found very good
agreement. Convergence to a user-defined tolerance for the discretization er-
ror confirmed the accuracy delivered by our method in the presence of complex
geometrical and physical conditions and indicates its potential for the simula-
tion of borehole acoustic measurements.
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Figure 1. Geometry and dimensions of the computational domain with location of
source and receivers according to Ref. [6]. The spacing between receivers is 150 mm,
and each PML is 500 mm thick. Left : “Open borehole setting” (without logging
tool); right : setting with logging tool.

Figure 2. The Ricker wavelet with a center frequency of 8 kHz is used as the source
wavelet; time signal (top left), magnitude of frequency spectrum (top right), and
real part (bottom left) and imaginary part (bottom right) of frequency spectrum.
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Figure 3. Percent relative discretization error versus number of degrees-of-freedom
in the algebraic scale N

1/3
dof for the coarse-grid solution at frequencies of 2 kHz, 4 kHz,

. . . , 26 kHz (curves from left to right), where in the adaptive process final meshes
have been rolled forward, i.e. the final coarse mesh obtained for 2 kHz serves as the
initial mesh for 4 kHz, and so forth.

p = 8

p = 1

Figure 4. Monopole source in an open borehole setting: Meshes (final fine grids
generated by the adaptivity) for the center frequency of 8 kHz; from left to right:
Acoustics mesh, elasticity mesh and color bar indicating the polynomial approxi-
mation order p of element edges and interiors. Note that for enhanced visibility the
acoustics subdomain has been scaled by a factor of 10 in the radial direction.
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max

min

Figure 5. Monopole source in an open borehole setting: Frequency-domain solution
at the center frequency of 8 kHz; from left to right: Acoustic pressure p, radial
elastic displacement ur, vertical elastic displacement uz, elastic pressure pelast and
color bar indicating the range of the solution. Note that for enhanced visibility
the acoustics subdomain has been scaled by a factor of 10 in the radial direction.
Moreover, for enhanced visibility, the respective plotting ranges have been set to
[0.1 min, 0.1 max].
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Figure 6. Monopole source in an open borehole setting (no tool): time signal (top
left), magnitude of frequency spectrum (top right), and real part (bottom left) and
imaginary part (bottom right) of frequency spectrum at a receiver with an offset of
3.3 m from the source.

Figure 7. Monopole source in an open borehole setting: time signal (left) and fre-
quency spectrum (right) at various receiver locations.
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Figure 8. Monopole source in an open borehole setting: Snapshots of the pressure in
acoustic borehole fluid and elastic formation at t=0.2 ms (top left), t=0.7 ms (top
middle), t=1.2 ms (top right), t=1.7 ms (bottom left), t=2.2 ms (bottom middle) and
t=2.7 ms (bottom right). The interface between acoustic borehole fluid and elastic
formation is located at r = 0.108 m. The color scale measures pressure in the decibel
scale 20 log10(|p(x, t)|). 35



Figure 9. Monopole source in the presence of a logging tool (for a standard source
excitation in the form of an acoustic-pressure source term): time signal (left) and
frequency spectrum (right) at a receiver with an offset of 3.3 m from the source.

Figure 10. Monopole source in the presence of a logging tool (for a source excitation
in the form of a Dirichlet condition): time signal (left) and frequency spectrum
(right) at a receiver with an offset of 3.3 m from the source.

Figure 11. Dipole source in an open borehole setting (no tool): time signal (left) and
frequency spectrum (right) at a receiver with an offset of 3.3 m from the source.
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Figure 12. Dipole source in an open borehole setting: time signal (left) and frequency
spectrum (right) at various receiver locations.
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Figure 13. Dipole source in an open borehole setting: Snapshots of the pressure in
acoustic borehole fluid and elastic formation at t=0.2 ms (top left), t=0.7 ms (top
middle), t=1.2 ms (top right), t=1.7 ms (bottom left), t=2.2 ms (bottom middle) and
t=2.7 ms (bottom right). The interface between acoustic borehole fluid and elastic
formation is located at r = 0.108 m. The color scale measures pressure in the decibel
scale 20 log10(|p(x, t)|). 38



Figure 14. Dipole source in the presence of a logging tool: time signal (left) and
frequency spectrum (right) at a receiver with an offset of 3.3 m from the source.

Figure 15. Geometry and dimensions of the computational domain for the layered
formation problem. The thickness of the hard-formation layer is 500 mm; the spacing
between receivers is 150 mm, and each PML is 500 mm thick.
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Figure 16. Hard-formation finite-thickness layer shouldered by soft formations ex-
tending to infinity with a monopole source in an open borehole setting (no tool):
time signal (left) and frequency spectrum (right) at a receiver with an offset of 3.3
m from the source.

Figure 17. Hard-formation finite-thickness layer shouldered by soft formations ex-
tending to infinity with a monopole source in an open borehole setting (no tool):
time signal (left) and frequency spectrum (right) at various receiver locations.

Figure 18. Hard-formation finite-thickness layer shouldered by soft formations ex-
tending to infinity with a monopole source in an open borehole setting (no tool);
results obtained with a 2D finite-difference code: time signal at a receiver with an
offset of 3.3 m from the source (left) and at various receiver locations (right).
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