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thank my promotor René de Borst for his unconditional support, trust and en-
couragement during this work. I am also very much indebted to my supervisor
Harald van Brummelen for his careful guidance and great support. I really enjoyed
our pleasant collaboration and the many fruitful discussions.

Moreover, I wish to express my sincere gratitude to Steven Hulshoff for his ad-
vice, and for his support in code development. I also would like to acknowledge
numerous helpful discussions and support from Edwin Munts, Erik Jan Lingen
and Martijn Stroeven regarding implementation and coding. Furthermore, I am
grateful to Sergio Turteltaub and Hester Bijl for many valuable discussions.

Our secretary Carla Roovers deserves special credits for her kind support and in-
valuable help. I also would like to thank Harold Thung for his system-administrative
support.

I enjoyed the pleasant working atmosphere and company of my former office mates
Doobo Chung, Alexei Kononov, Alberto Bordallo, Otto Heeres and Marcela Cid.
I also would like to acknowledge the many interesting conversations with Michiel
Hagenbeek which significantly helped me in learning Dutch. Moreover, I am grate-
ful to Kris van der Zee for numerous stimulating discussions. The supervision of
Rob in ’t Groen and the interaction with Clemens Verhoosel and Ido Akkerman
provided complementary insights for my research which I thankfully acknowledge.

I really appreciated the inspiring working environment and the good atmosphere
in the Engineering Mechanics group, and for this I thank all present and former
colleagues, in particular Joris Remmers, Akke Suiker, Ellen Kuhl and Akihiro
Matsuda.

ix



x Preface

I am also grateful to the many friends I have made here during my stay in Delft,
especially to my former housemate Weihong He and to Yadira Cordero, Anna
Dall’Acqua, Carmen Lai, Pavel Paclik, Jun Chen and Alex and Huihua van der
Klij.

I also would like to thank my parents and my brother for their strong support
during this work. Finally, I wish to deeply thank Ana for her understanding,
encouragement and continuous support.

Christian Michler
Delft, April 2005



Chapter 1

Introduction

1.1 Motivation
The interaction between a fluid and a structure occurs in a wide variety of physical
systems and engineering applications. In aerospace engineering, for instance, the
interaction between the airflow and the aircraft structure can cause structural os-
cillations of increasing amplitude, known as flutter. Buffet of control surfaces and
fins due to (self-induced) turbulence is another relevant example. These aeroelas-
tic phenomena can ultimately result in failure of the structure; see Fig. 1.1 on the
following page for an illustration. In civil engineering, wind-induced vibrations of
high-rise buildings and bridges can cause the collapse of the construction. The
most prominent example is the failure of the Tacoma Narrows Bridge in 1940;
see Fig. 1.2. These examples drastically highlight the impact of fluid-structure-
interaction phenomena on the safety and reliability of constructions. Other rele-
vant application areas in which fluid-structure interaction plays a crucial role are,
for instance, inflatable structures such as airbags and parachutes, and artificial
heart valves; see, e.g., Refs. [63, 67].

To determine the effects of fluid-structure interaction for a given system,
engineering design often involves extensive experimental testing. However, ex-
periments may be costly, time consuming, especially for large design-parameter
spaces, and in some cases even infeasible, e.g., in case of hazards. As numerical
models and techniques have matured over the last decades to deliver more accu-
rate predictions, and with the advent of increasing computing power for affordable
prices, numerical simulation has become more and more established in the design
process to support or even replace experimental testing. Consequently, there is a
growing demand for the accurate and efficient numerical solution of fluid-structure
interaction problems arising in the various engineering disciplines.

To solve a fluid-structure-interaction problem on a computer requires first

1



2 Chapter 1. Introduction

Figure 1.1: F-16 ventral fin damage due to buffet; reproduced from [11] with
permission.

Figure 1.2: The collapse of the Tacoma Narrows Bridge due to wind-induced
vibrations.

of all a mathematical model, which is generally expressed in terms of partial dif-
ferential equations. To make these equations amenable to numerical treatment,
discretization techniques such as the finite-element or the finite-volume method
are applied. Such discretization methods translate the continuum equations into
a system of discrete algebraic equations. From these algebraic equations, discrete
approximations to the solution can then be extracted by means of a numerical solu-
tion algorithm; see Fig. 1.3 for an illustration. Depending on the application area,
this procedure is commonly referred to as Computational Fluid Dynamics (CFD)
or Computational Structure Dynamics (CSD). The computation of fluid-structure
interactions involves both disciplines, CFD and CSD.

The computational challenges in the numerical solution of fluid-structure
interaction problems are closely linked to the generic features of fluid-structure-
interaction phenomena. Fluid-structure interaction constitutes a multi-physics
problem on account of the interaction between subsystems with very different
physics. These subsystems are interconnected through kinematic and dynamic
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Physical formulation of the problem

Discrete numerical solution

Numerical solution method
Newton’s method, Krylov subspace acceleration, subiteration

(Chapters 4-7)

Discretization of the equations

in time: finite elements, trapezoidal rule

in space: finite elements

(Chapter 3)

Mathematical formulation of the problem
fluid: Navier-Stokes equations, Euler equations

structure: geometrically nonlinear elastodynamics

interface conditions: kinematic and dynamic conditions
(Chapter 2)

Figure 1.3: Steps in the numerical solution of a fluid-structure-interaction
problem (and reference to the corresponding chapters in this thesis).

conditions at their common interface. The position of the fluid-structure interface
is not known a priori, but it forms part of the solution. Therefore, fluid-structure
interaction can also be classified as a free-boundary problem. The inherent inter-
connection requires, in principle, the simultaneous solution of fluid and structure.
However, such simultaneous treatment results in the loss of software modularity.
In the scientific community, different solution methods are controversially advo-
cated to tackle this problem; see the special journal issue [51] for an overview.
However, the computation of fluid-structure interactions remains challenging.

Many of the difficulties in the computation of fluid-structure-interaction
problems can be traced to the inherently different length and time scales of the
fluid and structure subsystems. These disparate scales in fluid and structure trans-
late into different resolution requirements in the discrete numerical model. This
typically results in non-matching meshes and different orders of approximation at
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the fluid-structure interface. Under such an incompatible discretization of the fluid
and structure it is difficult to maintain the conservation properties of the contin-
uum system at the fluid-structure interface. However, the correct representation of
the energy transfer at the interface is crucial for the correct prediction of physical
instabilities such as flutter.

Moreover, the inherently different length and time scales of the fluid and
structure subsystems typically render the discretized fluid-structure system severely
ill-conditioned. This considerably slows down the convergence of iterative methods
for the simultaneous solution of the fluid and structure.

The above elaboration supports the truism that the computation of fluid-
structure interaction is profoundly more difficult than the computation of the
fluid and the structure separately. Most state-of-the-art techniques obscure if not
violate energy conservation at the interface. Moreover, the customary solution
techniques often suffer from a lack of robustness and are computationally ineffi-
cient. These flaws of conventional numerical techniques provide the motivation
for the research presented in this thesis, which is concerned with conservative dis-
cretization methods and robust and efficient solution techniques for fluid-structure
interaction.

1.2 Outline
The contents of this thesis are organized as follows.

Chapter 2 presents the mathematical formulation of fluid-structure interac-
tion. We elaborate the different reference frames that can be used for the kinematic
description of a continuum fluid and structure. We then introduce the governing
equations for the fluid and the structure, and the kinematic and dynamic interface
conditions which describe the interaction of the fluid and the structure at their
common interface. To identify the generic features of fluid-structure-interaction
problems, we rephrase the governing equations into a variational formulation in
space/time. As this formulation does not make any stipulations on the particu-
lar model for the fluid, the structure or the interface conditions, it comprises any
fluid-structure-interaction problem. Finally, we elaborate the discretization of the
aggregated variational statement by the space/time finite-element method, and we
discuss the particularities for fluid-structure-interaction problems.

In Chapter 3, we investigate the conservation properties of the discrete nu-
merical model at the fluid-structure interface. To this end, we establish the con-
servation properties of the continuum system and of its discretization by the finite-
element method. The conservation properties of the continuum system can be lost
under discretization. It appears that energy conservation at the interface is only
trivially maintained under restrictive compatibility conditions on the approxima-
tion spaces of fluid and structure, i.e., matching meshes and identical orders of
interpolation at the interface. These conditions are prohibitive for practical use.
We then consider an approach based on coincidence and orthogonality conditions
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which enables conservation also for incompatible discretizations. To assess the im-
plications that particular pairings of fluid and structure discretizations can have
on the conservation properties at the interface, we consider an alternative pairing
of discretization methods, viz., the trapezoidal method for the structure with a
time-discontinuous Galerkin method for the fluid. We show that the trapezoidal
method is generally not conservative for forced structures and, hence, it does not
admit a conservative fluid-structure coupling. In our numerical experiments, we
demonstrate that a method which maintains conservation at the interface yields a
much more accurate solution than a non-conservative method, at the same com-
putational expense. Conversely, violating the conservation properties can induce
numerical instability. The presented results clearly warrant a preference for con-
servative discretizations.

In Chapter 4, we assess the efficiency of conventional solution methods for
fluid-structure-interaction problems. Numerical solution methods for fluid-struc-
ture interaction typically employ partitioning, i.e., fluid and structure equations
are separately integrated in time subject to complementary partitions of the inter-
face conditions. Thus, a simultaneous solution of the fluid and structure equations
is circumvented. This process is also referred to as subiteration, as it operates
within a time step. If multiple subiterations are carried out per time step, the
solution method is referred to as a strongly-coupled partitioned method. If, on the
other hand, only a single subiteration is carried out per time step, the solution
method is called a loosely-coupled partitioned method. This implies that the com-
putational cost per time step is higher for strongly-coupled methods. On the other
hand, only strongly-coupled methods can resolve the aggregated fluid-structure
equations, whereas loosely-coupled methods induce a numerical evaluation error,
which impedes conservation and restricts the admissible time-step size for reasons
of stability and accuracy. An immediate question is then whether for a given ac-
curacy the higher computational cost of strongly-coupled methods is compensated
for by the larger time steps they can afford in comparison with loosely-coupled
methods. In our numerical experiments, we compare loosely-coupled and strongly-
coupled methods in terms of stability, accuracy and efficiency, where we conceive
efficiency as the ratio of accuracy to computational cost. We show that the nu-
merical evaluation error incurred by loosely-coupled methods can compromise the
stability, accuracy and efficiency of the method. Strongly-coupled methods are
superior to loosely-coupled methods provided that the underlying discretization
maintains the conservation properties. Indeed, our results indicate that the higher
computational cost of strongly-coupled methods is only justified by a greater accu-
racy if the underlying discretization is conservative. Our results therefore refute a
common belief that for the same accuracy strongly-coupled methods are generally
more expensive than loosely-coupled methods with a reduced time-step size.

In Chapter 5, we devise a novel solution method for fluid-structure interac-
tion. Although subiteration is an apt solver for many problems, it suffers from
three essential drawbacks. Firstly, subiteration is only conditionally stable. Sec-
ondly, transient divergence can precede asymptotic convergence due to nonnormal-
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ity. Thirdly, subiteration is in general inefficient because of its inability to reuse
information. Indeed, subiteration operates in a sequential time-integration pro-
cess and, thus, solves a sequence of similar problems. However, it cannot exploit
this property by reusing information from previously solved similar problems, for
instance, for preconditioning purposes. To overcome the aforementioned disadvan-
tages, we propose to combine subiteration with GMRES acceleration. We establish
the theoretical background and the algorithmic aspects of the combined subiter-
ation/GMRES method on the basis of the generic formulation of fluid-structure-
interaction problems from Chapter 2, which implies that the proposed method is in
principle generic and, thus, applicable to any fluid-structure system. The combined
method is based on the observation that subiteration can be conceived as a fixed-
point iteration for the interface position. Therefore, the GMRES acceleration can
be confined to the interface position. We refer to this process as Interface-GMRES.
Because the Krylov vectors need only contain the discrete representation associ-
ated with the interface position, the GMRES acceleration requires only negligible
computational resources. Another asset is that the acceleration of subiteration
allows for optional reuse of Krylov vectors in subsequent invocations of GMRES,
which we refer to as GMRESR. Such reuse can considerably enhance the efficiency
of the method. The implementation of the Interface-GMRES(R) method in codes
which use subiteration as a solver is straightforward, because the method retains
the modularity of the underlying subiteration method. We illustrate the effective-
ness of the proposed method through numerical experiments on the prototypical
piston model problem. Detailed convergence studies and a comparison to standard
subiteration show that the Interface-GMRES(R) method is much more robust, and
that it converges even if subiteration itself diverges. Our results also demonstrate
that the accelerated method is much more efficient than subiteration, and that the
reuse of Krylov vectors can yield considerable computational savings.

Chapter 6 analyses the linear-algebra aspects of the Interface-GMRES(R)
method on the basis of properties of the error-amplification matrix of the aggre-
gated system. This complements the exposition from Chapter 5. By virtue of
the linear-algebra setting, it is possible to derive precise expressions for the error-
amplification properties of subiteration separately, and of subiteration combined
with GMRES, with and without the reuse option. We show that subiteration con-
denses errors into a low-dimensional subspace which can be associated with the
interface degrees-of-freedom. The rank of the error-amplification matrix associated
with subiteration is at most equal to the dimension N of the approximation space
of the interface variables. This implies that a Krylov method terminates in at
most N steps, independent of the choice of the acceleration space, e.g., aggregated
variables, structure variables, or interface variables. However, the acceleration on
the interface variables is the most efficient, because the computational cost and
the storage required by the Krylov acceleration itself increase with the dimension
of the acceleration space. The linear-algebra setting enables a clear explanation of
the relation between the local GMRES acceleration (i.e., on the interface degrees-
of-freedom), and the global error-amplification properties (i.e., for the aggregated
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system). Moreover, the nonnormality of subiteration, and its implications for the
combined subiteration/GMRES method, can be traced immediately to properties
of the error-amplification matrix. Such nonnormality can degrade the sharpness of
GMRES convergence bounds. Next, we show that the subiteration iterates span a
Krylov space corresponding to a preconditioned aggregated system. The proper-
ties of the subiteration-preconditioned GMRES method are then considered and,
in particular, the relation between GMRES convergence and nonnormality of the
subiteration preconditioner is addressed. Numerical experiments on a model prob-
lem illustrate the developed theory. We analyse the convergence of the respective
methods in terms of spectral radius, matrix norms and sharp convergence upper
bounds. Moreover, we investigate the effect of the reuse of Krylov vectors on the
error-amplification properties of the subiteration-preconditioned GMRES method
to assess the limitations on the reuse option.

In Chapter 7, we assess the Interface-GMRES(R) method on an alterna-
tive model problem, viz., the panel problem, to demonstrate the versatility of the
solution method. The panel problem is distinctly different from the piston prob-
lem considered in Chapter 5. In contrast to the one-dimensional piston problem,
for the two-dimensional panel problem the interface degrees-of-freedom pertain
to both space and time. This distinction is relevant for further testing of the
Interface-GMRES(R) method, as the method operates on the interface degrees-of-
freedom. Another relevant feature that distinguishes the panel problem from the
piston problem relates to the aspect of parameter-dependent stability behaviour.
Many fluid-structure-interaction problems can display instabilities such as flutter
and divergence for certain parameter settings, whereas other parameter settings
yield stable behaviour. The piston problem does not have this property, as it is
(marginally) stable for all parameter settings. The panel problem, on the other
hand, can exhibit physical instability such as flutter and divergence. An investiga-
tion of the convergence behaviour of the Interface-GMRES(R) method for different
stability regimes is therefore relevant. In our numerical experiments on the panel
problem, we examine the convergence behaviour of Interface-GMRES(R), assess its
robustness and efficiency, and compare its performance to standard subiteration.
We investigate the effect of changes in the solution behaviour due to flutter on the
convergence of the Interface-GMRES(R) method and on the effectiveness of reuse
of the Krylov space. Moreover, we study the influence of the initial conditions on
the system behaviour and on the convergence of Interface-GMRES(R). Finally, we
consider loosely-coupled and strongly-coupled partitioned solution methods for a
stable system and a system undergoing instability in the form of flutter.

Chapters 8 and 9 contain concluding remarks and suggestions for future
research, respectively.

Parts of the Chapters 2 to 6 have been published before. Their content is
based on the following journal publications:



8 Chapter 1. Introduction

• C. Michler, E.H. van Brummelen, S.J. Hulshoff, and R. de Borst,
The relevance of conservation for stability and accuracy of numerical methods
for fluid-structure interaction, Comput. Methods Appl. Mech. Engrg. 192
(2003), nos. 37–38, 4195–4215,

• C. Michler, S.J. Hulshoff, E.H. van Brummelen, and R. de Borst,
A monolithic approach to fluid-structure interaction, Computers and Fluids
33 (2004), nos. 5–6, 839–848,

• C. Michler, E.H. van Brummelen, and R. de Borst, An interface
Newton-Krylov solver for fluid-structure interaction, Int. J. Num. Meth. Flu-
ids 47 (2005), nos. 10–11, 1189–1195, Special issue containing the Pro-
ceedings of the Eighth ICFD Conference on Numerical Methods for Fluid
Dynamics (Oxford, U.K., March 29 - April 1, 2004),

• C. Michler, E.H. van Brummelen, and R. de Borst, Error-amplifica-
tion analysis of subiteration-preconditioned GMRES for fluid-structure in-
teraction, Comput. Methods Appl. Mech. Engrg. - (2005), -, (Accepted for
publication),
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Chapter 2

Mathematical description of fluid-structure
interaction

2.1 Introduction
In this chapter, we present the mathematical model for fluid-structure interaction.
This model comprises the governing equations for the fluid and the structure,
augmented by interface conditions. These interface conditions describe the inter-
action of the fluid and the structure at their common interface, and they can be
separated into kinematic, dynamic and thermal interface conditions. As for most
applications the thermal interaction can be neglected, we shall not consider it in
our work.

The descriptions of a continuum fluid and a continuum structure customarily
employ different reference frames, viz., the Eulerian and the Lagrangian reference
frame, respectively. When fluid and structure interact, the induced movement of
the fluid domain conflicts with the Eulerian fluid description. To describe a fluid
on a moving domain, two methodologies can be distinguished, viz., the arbitrary
Lagrangian-Eulerian formulation and the space/time formulation. Moreover, the
difference in fluid and structure reference frames necessitates a transformation of
interface quantities from one reference frame into the other.

To identify the generic features of fluid-structure-interaction problems, we
rephrase the governing equations into a variational statement in space/time in
conformity with Ref. [71]. This formulation is generic, i.e., it does not make any
stipulations on the particular model for the fluid or the structure. Therefore, it
comprises any fluid-structure-interaction problem. As generic features of fluid-
structure-interaction problems we identify the interconnection of a fluid and a
structure subsystem by kinematic and dynamic interface conditions and, moreover,
the free-boundary character of the interface.

Since in this thesis we are concerned with the numerical solution of fluid-
structure-interaction problems, we consider the discretization of the aggregated

9
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variational statement and, in particular, the relation between the generic features
of fluid-structure interaction and the discretization. We discuss the advantages of
the space/time finite-element method over conventional methods that discretize
space and time separately, i.e., by different discretization methods. In contrast
to conventional methods, the space/time finite-element method can easily handle
moving meshes, and it inherently satisfies the so-called Discrete Geometric Con-
servation Law (DGCL). The DGCL expresses the requirement for a numerical
scheme on a moving mesh that the change in a control volume is equal to the
area swept by the moving boundaries. Compliance with the DGCL is relevant for
the stability and accuracy of a numerical method on a moving mesh; see, e.g.,
Refs. [17, 35] and also the review article [16].

The contents of this chapter are organized as follows: Section 2.2 briefly
recalls the concepts of Eulerian, Lagrangian and arbitrary Lagrangian-Eulerian
description of a continuum and, moreover, compares the latter to the space/time
description. In Sections 2.3–2.5, we present the governing equations for the fluid,
the structure and the interface conditions, both in strong form and in variational
form. In Section 2.6, we present the aggregated variational statement, and in
Section 2.7, we discuss its discretization by the space/time finite-element method.
Section 2.8 contains concluding remarks.

2.2 Kinematic description of a continuum
To set the reference frames for the ensuing description of the fluid, the structure
and the interface conditions, we briefly recall the classical Eulerian and Lagrangian
description of a continuum; a detailed exposition can be found in any standard
textbook on continuum mechanics, for instance, in [60, 64]. We elaborate that, if
the fluid domain moves, for instance due to fluid-structure interaction, the move-
ment of the domain renders the Eulerian fluid description involved. We consider
two approaches for conveniently describing a fluid on a moving domain, viz., the
customary arbitrary Lagrangian-Eulerian formulation and the space/time formu-
lation.

2.2.1 Eulerian description

In the Eulerian description, the reference frame is fixed with respect to a specific
location in space. Any property of the continuum is then described as a function
of a so-called spatial coordinate, i.e., a specific location in space through which
different material points pass in subsequent instances. Accordingly, the Eulerian
description is commonly also referred to as the spatial description. Because the
spatial description dissociates the reference frame from the material point, the con-
tinuum moves relative to the reference frame, which gives rise to convective terms
in the formulation. By virtue of the fixed reference frame, the Eulerian description
is suitable for large deformations and distortions of the continuum such as arise in,
for instance, fluid flow. The fluid equations are therefore customarily formulated
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in an Eulerian reference frame. However, if the domain of the continuum moves
or deforms, a fixed reference frame becomes inconvenient, because it requires the
explicit tracking of the domain boundary.

To illustrate this concept, we shall consider the simple example of the ad-
vection of a continuum. Let x and t denote spatial and temporal coordinates,
respectively, φ(x, t) a scalar material property and a(x, t) the advection velocity.
The homogeneous advection of φ is then described by

∂φ

∂t
+ a

∂φ

∂x
= 0, c0t ≤ x ≤ 1 + c1t, 0 ≤ t ≤ T . (2.1a)

Specifically, in (2.1a), we consider the case in which the domain is moving and de-
forming in time, with c0 ∈ R+\{0}, c1 ∈ R−\{0} denoting the constant velocity of
the left and right boundary, respectively; see Fig. 2.1 for an illustration. We shall
assume that Eq. (2.1a) is complemented with suitable initial and boundary con-
ditions. For convenience and later use, we postulate that the advection velocity a
conforms to the Burger’s equation

∂a

∂t
+ a

∂a

∂x
= 0, c0t ≤ x ≤ 1 + c1t, 0 ≤ t ≤ T (2.1b)

and satisfies on the domain boundaries

a(c0t, t) = c0, a(1 + c1t, t) = c1, 0 ≤ t ≤ T , (2.1c)

which translates into the impermeability of the boundaries. The length of the
time interval, T , is chosen such that shocks in the Burger’s equation (2.1b) do not
occur.

The presented example serves to illustrate certain distinguishing features of
the Eulerian description which pertain to the presence of convective terms in the
formulation and, moreover, to the need for an explicit tracking of the moving
domain boundary; see Eq. (2.1a) and also Fig. 2.1.

T

1

t

x0
0

Figure 2.1: Illustration of the Eulerian description: spatial domain of the
continuum (grey), Eulerian coordinate isolines denoted by (−−).
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2.2.2 Lagrangian description

In the Lagrangian description, the reference frame is connected to the material
point, and any property of the continuum is described as a function of a so-called
material coordinate. Accordingly, the Lagrangian description is commonly also
referred to as the material description.

We reconsider the example of the advection equation. To express Eq. (2.1a)
in Lagrangian form, we need to establish the relation between the spatial coordi-
nate x and the material coordinate denoted by y. By definition of the material
description, the material coordinate y is constant along the path of a material
point. For the considered example, this particle path is determined by the advec-
tion velocity a. Let us therefore assume that spatial and material coordinates are
interrelated by x = y + at. Stipulating that time is invariant under a change of
reference frame, we use the same symbol to denote time in either reference frame.
The transformation from the material to the spatial domain is then given by

(y, t) �−→ (x, t) = (ϕ(y, t), t) . (2.2a)

To transform the advection equation (2.1a) from the spatial domain into the ma-
terial domain, we require the derivative ∂(y, t)/∂(x, t), which for the considered
example can be expressed as

∂(y, t)
∂(x, t)

=
(
1− t ∂a

∂x −a− t∂a
∂t

0 1

)
. (2.2b)

The advection equation (2.1a) then translates into

dφ
dt
− t

∂φ

∂y
(
∂a

∂t
+ a

∂a

∂x
) = 0 , 0 ≤ y ≤ 1 , 0 ≤ t ≤ T , (2.3a)

where we have invoked Eq. (2.1c). Subject to the postulation on a stated by
Eq. (2.1b), Eq. (2.3a) can be simplified to

dφ
dt
= 0 , 0 ≤ y ≤ 1 , 0 ≤ t ≤ T . (2.3b)

In Eq. (2.3), d/dt := ∂/∂t|y = ∂/∂t|x + a∂/∂x denotes the material time deriva-
tive, i.e., the time derivative at a fixed coordinate y. Note that there are no
convective terms in Eq. (2.3b), because the reference frame is connected to the
material point. Moreover, by virtue of the transformation (2.2), Eq. (2.3b) is ex-
pressed on a fixed reference domain (y, t); see also Fig. 2.2 for an illustration. This
renders the Lagrangian description attractive for problems with moving bound-
aries and interfaces. However, to prevent ill-conditioning of the transformation ϕ,
it is essential that the continuum undergoes only relatively small deformations.
For most problems involving structures, this is indeed the case. Therefore, the
Lagrangian description has become customary in structural mechanics. If, on the
other hand, the continuum undergoes very large deformations or distortions, the
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transformation becomes ill-conditioned. This downside of the Lagrangian descrip-
tion is also indicated in Fig. 2.2 by the focusing of the coordinate isolines. It is
easily conceivable that for multiple space dimensions this can lead to entanglement
and, hence, to singularity of the mapping ϕ.

T

x

ϕ

0 y0

t

0 1

t

0 1

T

Figure 2.2: Illustration of the Lagrangian description: mapping from spatial
to material domain, Lagrangian coordinate isolines denoted by (−−).

2.2.3 Arbitrary Lagrangian-Eulerian formulation

To overcome the respective restrictions of the Eulerian and the Lagrangian descrip-
tion, the arbitrary Lagrangian-Eulerian (ALE) formulation has been developed in,
among others, Refs. [13, 49] in the finite-element and finite-difference context, re-
spectively. In the ALE description, the reference frame can be moved arbitrarily.
Any material property is then described with respect to a so-called referential co-
ordinate. To express the advection equation (2.1a) in ALE form, we introduce the
referential coordinate, ξ, and the velocity of the reference frame, β(x, t). Stipulat-
ing the invariance of the temporal coordinate, we interrelate spatial and referential
coordinates by x = ξ + βt. The transformation from the referential to the spatial
domain is then given by

(ξ, t) �−→ (x, t) = (ψ(ξ, t), t) . (2.4a)

To transform the advection equation (2.1a) from the spatial domain into the ref-
erential domain, we require the derivative

∂(ξ, t)
∂(x, t)

=
(
1− t∂β

∂x −β − t∂β
∂t

0 1

)
. (2.4b)
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The advection equation (2.1a) then translates into

∂φ

∂t

∣∣∣∣
ξ

+ (a− β)
∂φ

∂ξ
− t

∂φ

∂ξ
(
∂β

∂t
+ a

∂β

∂x
) = 0,

(c0 − β)t ≤ ξ ≤ 1 + (c1 − β)t, 0 ≤ t ≤ T , (2.5)

where the time derivative is taken at a fixed referential coordinate. Two special
instances of the ALE formulation can be distinguished: Upon setting β = 0 in
Eqs. (2.4) and (2.5), the derivative ∂(ξ, t)/∂(x, t) assumes the form of the identity,
and Eq. (2.5) reverts to Eq. (2.1a). Thus, the Eulerian description is recovered.
If, on the other hand, we set β = a, Eqs. (2.4) and (2.5) revert to Eqs. (2.2)
and (2.3), respectively, and we recover the Lagrangian description. To combine
the merits of both Eulerian and Lagrangian description, a suitable choice for β
is to set β identical to a on the moving domain boundary, and to set β in the
domain interior such that an even distribution of coordinate isolines is obtained.
This allows for a convenient description of the moving domain on a fixed reference
domain and, at the same time, prevents the entanglement of coordinate isolines;
see Fig. 2.3. Therefore, the ALE description has become standard for problems
on moving domains in which the continuum undergoes large deformations and
distortions, such as fluid flows with a moving boundary or free-surface flows; see,
e.g., Ref. [8] and also the review article [14].

ψ

0
1 1

t

0 x0 0

TT

t

ξ

Figure 2.3: Illustration of the arbitrary Lagrangian-Eulerian description:
mapping from spatial to referential domain, ALE coordinate isolines denoted
by (−−).

2.2.4 Space/time formulation

In the space/time formulation, any property of the material is expressed as a
function of a space/time coordinate; see, e.g., Refs. [37, 62, 65]. To formulate
the space/time description of a problem, both the Eulerian and the Lagrangian
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description can be adopted as a starting point. For exemplification, we consider the
Eulerian form of the advection equation (2.1a) which is expressed in a space/time
reference frame by

∂φ

∂t
+ a

∂φ

∂x
= 0 on Ω , (2.6)

where Ω := {(x, t) ∈ R2 : c0t ≤ x ≤ 1 + c1t, 0 ≤ t ≤ T} denotes the (Eulerian)
space/time domain of the continuum. Eq. (2.6) is virtually identical to Eq. (2.1a).
To elucidate the difference between the space/time and the standard Eulerian
description, we cast Eq. (2.6) in variational form by multiplication with a suitable
test function and integration over the space/time domain∫

Ω

λ

(
∂φ

∂t
+ a

∂φ

∂x

)
= 0 , (2.7)

where λ denotes a suitable test function. In contrast, in the classical Eulerian, La-
grangian and ALE description, the variational statement is commonly expressed
only over the spatial domain. The difference between the space/time and the clas-
sical descriptions is, admittedly, subtle. In fact, the descriptions can be shown to
be identical under the appropriate mapping. More precisely, an equation expressed
in the Eulerian space/time domain yields the classical ALE form when mapped
on to the referential space/time domain; see Ref. [37].

By virtue of expressing the variational statement over the space/time do-
main, a movement of the domain in time is inherently accounted for in the formu-
lation. The space/time formulation is thus suitable for the Eulerian description
of problems on moving domains such as a fluid flow with a moving boundary or
a free surface; see, e.g., Ref. [66]. This renders the space/time description an at-
tractive alternative to the classical ALE description. Therefore, we shall use the
space/time formulation in the sequel for the specification of the governing equa-
tions of the fluid, the structure and the interface conditions, which allows us to
treat the subsystems and their interaction in a unified framework.

2.3 Governing equations for fluid flows

2.3.1 Classical formulation

The motion of fluids (liquids and gases) is governed by conservation laws which
state that mass, momentum and energy of a fluid are conserved during its mo-
tion. To describe a fluid flow, the state of the flow is expressed by so-called state
variables. These state variables are characteristic fluid properties such as density,
velocity, pressure, etc. The mathematical description of the conservation laws with
the conserved quantities expressed in terms of the state variables yields a system
of partial differential equations. A derivation of these equations can be found in
many textbooks, for instance, in the one by Batchelor [3].
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To introduce the governing equations for fluid flow on a domain which de-
forms in time, we adopt the space/time formulation of the fluid equations in Eu-
lerian form. Denoting by x ∈ Rd (d = 1, 2, 3) and t ∈ R+ spatial and temporal
coordinates, respectively, we consider a fluid in an open bounded space/time do-
main Ωα ⊂ Rd × R+. Its boundary consists of the moving boundary, Γα, and
the fixed boundary, ∂Ωα\Γα, where α connotes a representation function of the
moving boundary, which will be elaborated in the sequel.

Appropriate state variables for the description of a viscous, compressible
fluid are the density ρ(x, t), the velocity v(x, t), the pressure p(x, t), the absolute
temperature θ(x, t) and the specific internal energy of the fluid e(x, t). The total
energy is defined by E := ρ(e + v2/2). Conservation of mass, momentum and
energy are then expressed by, respectively,

∂

∂t
ρ+∇ · (ρv) = 0, (x, t) ∈ Ωα, (2.8a)

∂

∂t
ρv +∇ · (ρvv + pI − τ)− ρg = 0, (x, t) ∈ Ωα, (2.8b)

∂

∂t
E +∇ · ((E + p)v − v · τ − k∇θ)− ρv · g = 0, (x, t) ∈ Ωα, (2.8c)

with all quantities and operations evaluated in the Eulerian space/time configu-
ration. Specifically, ∇ and ∇· denote the gradient operator and the divergence
operator, respectively; k is the thermal conductivity of the fluid, τ the viscous
stress tensor, g the gravitational acceleration and I the identity. With k = 0 and
τ = 0, the equations (2.8) are called the Euler equations.

Closure of the system of equations (2.8) requires complementary relations,
viz., two additional thermodynamic relations and a constitutive relation. The
thermodynamic relations give a relation between the state variables; see, e.g.,
Ref. [2]. The constitutive relation relates the viscous stress tensor to the state
variables. Whereas the conservation statements of mass, momentum and energy
are independent of the considered fluid, the thermodynamic relations and the
constitutive relation are fluid specific. For instance, in the case of a (calorically)
perfect gas, such thermodynamic relations are given by

p = ρRθ, e = e(θ), (2.8d)

where the first relation is also referred to as the equation of state, and R denotes
the specific gas constant. The constitutive relation for the viscous stress tensor in
the case of a Newtonian fluid is

τ := µ

(
[∇v] + [∇v]T − 2

3
[∇ · v]I

)
, (2.8e)

with µ the dynamic viscosity of the fluid; see, e.g., Ref. [3]. The momentum
equations (2.8b) with the viscous stress tensor defined according to relation (2.8e)
are referred to as the Navier–Stokes equations.
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To complete the description of the initial-boundary-value problem for the
fluid, Eqs. (2.8) must be supplemented with suitable initial and boundary condi-
tions. In particular, at the moving boundary Γα, the boundary velocity reappears
in the boundary condition. For viscous flows, the identification of the fluid velocity
at the moving boundary with the boundary velocity forms an appropriate bound-
ary condition, and corresponds to the so-called ‘no-slip’ condition. For inviscid
flows, a specification of the boundary velocity in the normal direction suffices. In
either case, this condition translates into the impermeability of the boundary Γα;
cf. Section 2.5. Moreover, at material boundaries, the specification of the temper-
ature or the heat flux is required. However, we shall not consider thermal effects
in this work.

2.3.2 Variational space/time formulation

To phrase the classical problem statement into a space/time variational form, we
multiply the equations by appropriate test functions and integrate the resulting
expression over the space/time domain; see, e.g., Refs. [37, 62, 65].

To formulate the variational statement for the fluid problem, we represent
the moving boundary Γα by a representation function α which we accommodate
in a space of admissible moving-boundary representations A. Thus, to each α ∈ A

corresponds a specific Γ(α) := Γα and, accordingly, an Ω(α) := Ωα. Note that the
specifics of the mapping α �→ Γα depend on whether the fluid is viscous or inviscid.
In the viscous case, the mapping bears the form α : Ξ×R+ �→ Rd(Ξ ⊆ Rd−1) and
specifies the location of each point on the moving boundary explicitly by

Γα = {(x, t) : x = α(χ, t), t ∈ R+, χ ∈ Ξ ⊆ Rd−1}. (2.9)

The corresponding velocity of the moving boundary, ∂α/∂t, enters the initial-
boundary-value problem for the fluid in the form of a boundary condition. Whereas
viscous flows require a specification of the boundary velocity in all directional
components, for inviscid flows only the normal component of the boundary velocity
is required. Therefore, for inviscid flows, a weaker description than (2.9) suffices.
In the inviscid case, we therefore redefine α : Ξ × R+ �→ R. This mapping can
describe, for instance, the displacement of a reference surface Γ0 in the direction of
its outward unit normal vector n(x, t) according to Γα := {(x, t) + α(x, t)n(x, t) :
(x, t) ∈ Γ0}. We remark that alternative descriptions of Γα in compliance with
α : Ξ× R+ �→ R are possible.

To each admissible boundary representation Γα corresponds an initial-bound-
ary-value problem for the fluid. We phrase this initial-boundary-value problem into
the concise abstract variational statement: Find

u ∈ Uα : Fα(v,u) = fα(v) ∀v ∈ Vα, (2.10)

with the semi-linear functional Fα : Vα ×Uα �→ R associated with the space/time
differential operator and the linear functional fα : Vα �→ R associated with the
prescribed data.
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The initial and boundary conditions can be enforced strongly by incorpo-
rating them in the trial function space Uα and restricting the test space Vα

accordingly. Alternatively, the auxiliary conditions can be imposed weakly and
incorporated into the functionals by replacing the boundary integrals by their def-
initions conforming to the initial and boundary conditions. In either case, the
function spaces depend on the function α through the domain on which they are
defined, i.e., Hα := H(Ωα) (H = U,V). Note that in fluid-structure interaction
the function α actually constitutes an unknown: On account of the free-boundary
character of the interface, α forms part of the solution. The dependence of the
function spaces on α prevents us from casting the fluid problem and, thus, also the
fluid-structure-interaction problem into a canonical variational form. To recover
the canonical form, Ref. [71] proposes methodologies to remove the dependence on
α from the function spaces. If the auxiliary conditions are enforced weakly, this
dependence can be disposed of by embedding the union of all admissible domains
in a so-called security set in combination with an extension mapping; see also
Ref. [57]. If the auxiliary conditions are enforced strongly, then the dependence of
the function spaces Uα, Vα on Ωα can be removed by means of an α-dependent
homeomorphic transformation, i.e., a one-to-one mapping between a moving and
a fixed reference domain; see Ref. [71] for details. With the dependence on α re-
moved from the function spaces, the fluid variational problem can be reformulated
as

u ∈ U : F(v,u, α) = f(v) ∀v ∈ V. (2.11)

Note that both the Euler and the Navier-Stokes equations on a domain with a
moving boundary can be condensed into the variational form (2.11).

2.4 Governing equations for structures

2.4.1 Classical formulation

The motion of a structure is governed by the balance of momentum, and it is
customarily described in a Lagrangian reference frame; cf. Section 2.2.2. The
governing equations comprise the momentum balance laws, constitutive equations
and kinematic relations. To introduce a model of the structure that is sufficiently
general for most fluid-structure-interaction problems, we require a model that
admits large structural deformations and, thus, a geometrically nonlinear descrip-
tion of the kinematics. However, we shall assume that the material behaviour is
linear-elastic and, therefore, limit our considerations to stretches close to one. A
structural model that complies with these requirements and assumptions is given
by geometrically nonlinear elastodynamics in combination with the linear Saint-
Venant Kirchhoff material law; see, e.g., Ref. [50].

To introduce the governing equations for the structure, let x, y ∈ Rd (d =
1, 2, 3) and t ∈ R+ denote spatial, material and temporal coordinates, respectively.
We consider the structure on an open bounded material space/time domain, Ωy.
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The displacement field z(y, t) is then expressed as the difference in coordinates of
a material point between the spatial configuration and the material configuration

z(y, t) := x(y, t)− y = ϕ(y, t)− y , (2.12)

where the mapping ϕ relates the material configuration to the spatial configura-
tion; see Eq. (2.2a). The displacement field z complies with the balance of linear
momentum, which states the equilibrium of surface, volume and inertia forces

ρ
d2z

dt2
= ∇ · P + ρb, (y, t) ∈ Ωy, (2.13)

where ρ is the density, ρb designates the volume forces, and P is the first Piola-
Kirchhoff stress tensor. In (2.13), all quantities and operations are evaluated in
the material configuration Ωy. For a convenient specification of the constitutive
equation, we introduce the second Piola-Kirchhoff stress tensor S that is related
to the first Piola-Kirchhoff stress tensor by

S = F−1P . (2.14)

In (2.14), F denotes the material deformation gradient which maps a line element
dy in the material domain onto a line element dx in the spatial domain:

dx = Fdy ⇔ F := ∇x = I +∇z , (2.15)

where the last equality is obtained upon invoking Eq. (2.12).
Assuming a homogeneous isotropic linear-elastic medium of Saint-Venant

Kirchhoff type, the constitutive equation

S = λ(trE)I + 2µE (2.16)

with tr denoting the trace operator, relates the second Piola-Kirchhoff stress tensor
to the energetically conjugate Green-Lagrange strain tensor E by means of the
Lamé constants λ and µ. The Green-Lagrange strain tensor is defined as

E :=
1
2
(FTF − I) . (2.17)

Noting that the deformation gradient can alternatively be expressed as F = RU ,
where R and U denote the rotation and the stretch tensor, respectively, we can
rewrite Eq. (2.17) as

E :=
1
2
(UTRTRU − I) =

1
2
(U2 − I) , (2.18)

where the second identity follows from the fact that R is orthogonal and U is
symmetric. For the assumption of a linear-elastic medium to be valid, the Green-
Lagrange strain E has to be sufficiently small. In view of Eq. (2.18), this pertains to
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the requirement that the stretch tensor U has to be sufficiently close to the identity.
However, arbitrary large rotations and, moreover, translations of the structure are
permitted. A system of partial differential equations for the displacement field z
can be obtained by combining Eqs. (2.12)–(2.17).

To complete the description of the initial-boundary-value problem for the
structure, the system must be supplemented with appropriate initial and boundary
conditions. For the specification of these conditions, we subdivide the boundary
of the space/time domain into complementary subsets ∂Ωy = Υ0 ∪ΥT ∪ Γd ∪ Γn,
where Υ0 and ΥT denote the temporal boundary at the bottom and the top of the
space/time domain, respectively, and Γd and Γn denote Dirichlet and Neumann
subsets of the spatial boundary. The initial conditions prescribe the displacement
and the velocity on Υ0, i.e., at time is equal zero

z(y, 0) = z0(y) ,
dz
dt
(y, 0) = ż0(y) , on Υ0 (2.19)

with z0(y) and ż0(y) given. The boundary conditions prescribe surface displace-
ments on Dirichlet boundaries

z(y, t) = ẑ(y, t) , on Γd (2.20)

with ẑ(y, t) given, and surface tractions on Neumann boundaries

P ·N = t̂(y, t) , on Γn (2.21)

with t̂(y, t) given and N the outward unit normal vector of the structure. The
surface tractions t̂(y, t) can either be given explicitly, or they can derive from the
inner product of a given stress tensor P̂ on Γn with the outward unit normal vector
of the structure, i.e., t̂(y, t) = P̂ ·N .

In advance of Section 2.5, we shall identify a subset of the Neumann boundary
Θ ⊆ Γn as the interface to the fluid. The stress tensor on Θ is supplied by the fluid
via the dynamic interface condition; cf. Section 2.5. We note that the dynamic
condition provides the Cauchy stress tensor which is defined in the spatial domain,
in conformity with the Eulerian description of the fluid. Since the structure is
generally described in the material domain, the Cauchy stress tensor obtained
from the dynamic condition needs to be transformed into a corresponding stress
tensor defined in the material domain. The transformation between the Cauchy
stress tensor π and the first Piola-Kirchhoff stress tensor P is given by

P = (detF )πF−T ⇔ π =
1

detF
PFT (2.22)

with detF the determinant of the material deformation gradient F .
Note that in many cases the description of a structure admits simplified

models, for instance, in the case of beams and shells; cf., e.g., Refs. [5, Ch.3]
and [4, Ch.5]. In this thesis, we shall restrict ourselves to a geometrically linear
description of the kinematics and consider the Euler-Bernoulli beam equation,
Mz,tt + Dz,yyyy = q, with M , D and q denoting the mass, the bending stiffness
and the distributed loading of the beam, respectively.
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2.4.2 Variational space/time formulation

We consider the initial-boundary-value problem for the structure subject to pre-
scribed initial and boundary conditions. The latter comprise prescribed displace-
ments and a given stress tensor σ on subsets of the structure boundary. The
structure problem can be written concisely in variational form: Find

z ∈ Z : Sσ(λ, z) = s(λ) ∀λ ∈ L (2.23)

with Z := Z(Ωy) and L := L(Ωy). Dirichlet boundary conditions, i.e., prescribed
displacements, are incorporated in Z, and L is constrained accordingly, i.e., the
test functions vanish on Dirichlet boundaries.

The stress tensor on the boundary Θ derives from the fluid solution and,
thus, it is unknown a priori; cf. Section 2.5. To make this dependence apparent in
the equation, we introduce the notation S(λ, z, π) := Sσ(λ, z), where π represents
the stress tensor on Θ. Note that we have incorporated π into the functional
S instead of the functional s, which contains the prescribed data, because the
transformation from the Cauchy stress tensor π to the first Piola-Kirchhoff stress
tensor P depends on z; see Eq. (2.22). The dependence on the stress tensor at
Γn\Θ is tacitly incorporated into the functional S. Upon these modifications,
Eq. (2.23) can be rewritten in the following form

z ∈ Z : S(λ, z, π) = s(λ) ∀λ ∈ L . (2.24)

We assume that the variational problem (2.24) admits a unique solution for all π
in a space of admissible stress-tensor functions P.

Note that the equations governing geometrically nonlinear elastodynamics as
well as the Euler-Bernoulli beam equation can be condensed into the variational
form (2.24). In the latter case, the functionals are specified as S = 〈λ,Mz,tt +
Dz,yyyy − q〉Z and s = 0.

2.5 Interface conditions
The fluid and the structure problem are connected at their common interface by
kinematic and dynamic conditions, which we specify below.

2.5.1 Kinematic interface conditions

The kinematic interface conditions specify that the fluid boundary and the struc-
ture boundary coincide at the interface and, moreover, that the fluid velocity at
the interface equals the velocity of the interface. The latter condition actually
constitutes a boundary condition for the initial-boundary-value problem of the
fluid and, as such, it is incorporated in the variational statement (2.11), see Sec-
tion 2.3. The former condition interrelates the displacement of the structure at the
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interface z|Θ and the representation of the fluid boundary α through the identity
Γα = z|Θ(Θ). We phrase this identity in the variational statement: Find

α ∈ A : K(η, α, z) = k(η) ∀η ∈ H. (2.25)

We stipulate that the functional K can be separated into K(η, α, z) = K0(η, α) +
K1(η, z), which holds, if K is linear. For instance, if α is specified as α = α0 +
z|Θ with α0, z|Θ residing in A, then the functionals take on the following form :
K(η, α, z) = 〈η, α − z|Θ〉A = 〈η, α〉A − 〈η, z|Θ〉A and k(η) = 〈η, α0〉A. Moreover, A

and H can then be identified. In this work, we shall generally assume K and k to
be of this form.

2.5.2 Dynamic interface condition

The dynamic interface condition identifies the surface tractions exerted on the
interface by the fluid and the structure. Since these surface tractions derive from
the inner product of the stress tensor with the outward unit normal vector, and
this normal vector depends on the structure solution, we formulate the dynamic
interface condition in terms of the stress tensor rather than in terms of the surface
traction.

To specify the dynamic interface condition, let T ∈ T(Ω) denote the fluid
stress tensor which constitutes an operator according to T : U(Ω) �→ T(Ω), induced
by a constitutive relation. For instance, for an inviscid compressible fluid, the
stress tensor reduces to the pressure according to T : u �→ p(u)I with p a given
equation of state and I the identity in Rd×d. Another relevant example is the stress
tensor for an incompressible Newtonian fluid T : (v, p) �→ pI−Re−1([∇v]+[∇v]T ),
where (v, p) =: u connotes a velocity/pressure pair and Re represents the Reynolds
number. The dynamic condition identifies the stress tensor π at the structure
boundary α0 + z|Θ and the stress tensor in the fluid T (u) at the boundary Γα

through π = T (u)|Γα
. We phrase this identity in the variational statement

π ∈ P : D(φ,u, α, π) = 0 ∀φ ∈ F, (2.26)

e.g., if T (u)|Γα
∈ P, then D(φ,u, α, π) = 〈φ, π − T (u)|Γα

〉P.
Note that, in conformity with the Eulerian description of the fluid, the iden-

tification π = T (u)|Γα
conceives both stress tensors as Cauchy stress tensors which

are defined in the spatial domain. Since the structure is generally described in the
material domain, the stress tensor π obtained from the dynamic condition needs to
be transformed into a corresponding stress tensor defined in the material domain.
The transformation is given by Eq. (2.22).

2.6 Aggregated variational problem
With the above definitions, the fluid-structure-interaction problem in space/time
can be condensed into the canonical form: Find

q ∈ Q : P(w, q) = p(w) ∀w ∈W. (2.27a)
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Herein, q is the quadruple q := (u, α, z, π) in the product space Q := U×A×Z×P,
w is the quadruple w := (v, η, λ, φ) in the product space W := V×H×L×F, and
the aggregated functionals P : W×Q �→ R and p : W �→ R are defined respectively
as

P((v, η, λ, φ), (u, α, z, π)) := F(v,u, α) + K(η, α, z) + S(λ, z, π) + D(φ,u, α, π),
(2.27b)

p(v, η, λ, φ) := f(v) + k(η) + s(λ). (2.27c)

Note that any fluid-structure-interaction problem can be cast in the variational
form (2.27). Hence, the variational formulation (2.27) is generic. For instances of a
variational statement of a fluid-structure-interaction problem conforming to (2.27)
we refer to Section 3.2 and also to Ref. [70].

On account of the canonical variational form, sufficient conditions for the
existence of a unique solution to the variational problem (2.27) in principle follow
from the generalized nonlinear Lax-Milgram theorem; cf., e.g., Ref. [69]. However,
to establish the existence of a unique solution in specific instances of (2.27) is
generally intractable. Only for a few specific cases and based on restrictive as-
sumptions such results are available; see, for instance, Ref. [23] for the interaction
of a fluid with a moving rigid structure.

2.7 Discretization of the variational problem
In this section, we briefly elaborate the discretization of the aggregated variational
fluid-structure equations from an abstract viewpoint. This serves as a basis to
discuss some relevant implications for the numerical treatment of fluid-structure
interactions, such as the computation on moving meshes, the discrete represen-
tation of the fluid-structure interface and certain conservation properties of the
continuum fluid-structure system.

2.7.1 Space/time finite-element discretization

To translate the continuum variational statement (2.27) into a computable alge-
braic expression, the infinite-dimensional function spaces Q and W are replaced
by finite-dimensional spaces Q̃ and W̃. Typically, the approximation spaces Q̃ and
W̃ form subspaces of the original function spaces Q and W. In that case, the dis-
cretization is called conforming. If the test space W̃ and the trial space Q̃ are iden-
tified, the discretization is commonly referred to as a (Bubnov-)Galerkin method.
Upon covering the computational domain with a tessellation of elements and
defining the approximation spaces piecewise, i.e., per element, a Galerkin finite-
element discretization is obtained. In this thesis, we restrict ourselves to Galerkin
space/time finite-element methods, which yield a discretization in both space and
time. In particular, we shall use the time-discontinuous Galerkin method , which
admits discontinuities at time-slab interfaces; see, e.g., Refs. [37, 62].
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A basic requirement for any finite-element discretization is convergence. Nec-
essary conditions for convergence of the discrete solution to the continuum solu-
tion are consistency and stability of the discrete problem, and convergence of the
discrete approximation space. To elaborate these conditions, let us consider a se-
quence of nested, increasingly fine approximations ({Q̃i}, {W̃i}) and corresponding
discrete problems: Find

q ∈ Q̃i : P̂(w, q) = p̂(w) ∀w ∈ W̃i (2.28)

for given functionals P̂ and p̂ that can be different from P and p for non-conforming
discretizations. Stability requires that the discrete problems are well-posed, i.e.,
that small perturbations in the data cause only correspondingly small perturba-
tions in the discrete solution. Thus, stability implies that the discrete problems
are solvable. We say that the discretization (2.28) is consistent, if the continuum
solution satisfies the discrete variational statement. In addition to stability and
consistency, convergence of the discrete solution to the continuum solution requires
convergence of the sequence {H̃i} (H := Q ,W). For conforming discretizations,
we require that the sequence {H̃i} is asymptotically dense, i.e., H̃i → H as i→∞.
For non-conforming discretizations such as discontinuous Galerkin methods, we
require that the sequence {H̃i} encompasses the continuum function space H in
the asymptotic limit, i.e., H̃i → H̄ ⊃ H as i → ∞. For further elaboration, and
for definitions and basic properties of the finite-element method, we refer to the
textbooks [9, 61], for instance.

2.7.2 Implications of the discretization

For free-boundary problems in general, and fluid-structure-interaction problems
in particular, space/time finite-element discretizations offer distinct advantages
over conventional methods that discretize space and time separately, i.e., by dif-
ferent discretization methods. An important asset of space/time finite-element
discretizations is that they can easily handle moving meshes, because the varia-
tional statement is expressed over the space/time domain and, thus, a movement of
the domain in time is inherently accounted for in the formulation. In contrast, con-
ventional methods typically use an arbitrary Lagrangian-Eulerian formulation for
flow computations on moving meshes; see also Section 2.2. Moreover, conventional
methods are typically required to comply with the so-called Discrete Geometric
Conservation Law (DGCL) which imposes conditions on the evaluation of the po-
sition and velocity of the moving mesh; see, e.g., Refs. [17, 35] and also the review
article [16]. The DGCL derives from the requirement that, for a numerical scheme
on a moving mesh, the change in control volume is equal to the area swept by the
moving boundaries. An equivalent formulation of this requirement is that the nu-
merical scheme preserves the trivial solution of a uniform flow on a moving mesh.
Compliance with the DGCL appears to be relevant for the stability and accuracy
of a numerical method on moving meshes, but this connection still lacks a proper
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general theoretical foundation; see Refs. [14, 16]. We shall not further pursue the
implications of the DGCL here, because space/time finite-element methods satisfy
the DGCL inherently; see, e.g., Ref. [35].

Since in this thesis we adopt a time-discontinuous Galerkin discretization, let
us briefly mention its advantages and complications for the numerical treatment
of fluid-structure interaction. Time-discontinuous Galerkin methods facilitate an
adaptive discretization in that the discrete approximation on either side of the
time slab interface can in principle be arbitrary and, thus, completely unrelated.
However, a discontinuous discretization of the structure induces a discontinuous
displacement of the fluid boundary. This requires special care in the treatment
of the fluid initial conditions associated with each time slab. For instance, an
extrapolation of the fluid solution can be necessary to extend the solution to a
subset of the time boundary that was not occupied by the fluid in the previous
time slab. On the other hand, a time-discontinuous discretization of the fluid
does not pose any difficulties for the structure discretization. Since there are no
continuity requirements on the dynamic forcing, a discontinuous fluid pressure
constitutes an apt boundary condition for the structure subproblem.

Another relevant aspect of the discretization is its ability to maintain certain
conservation properties of the continuum fluid-structure system. In advance of
Chapter 3, we note that the continuum problem conserves mass, momentum and
energy at the fluid-structure interface. Under discretization, these conservation
properties can be lost, i.e., the discrete problem does not necessarily inherit the
conservation properties of the continuum problem. Therefore, the conservation
properties of the discrete problem need to be re-established. It appears that the
commonly used discretizations often lack conservation at the fluid-structure in-
terface. More precisely, these discretizations typically satisfy conservation only
in an asymptotic sense, i.e., for vanishing mesh width. This is, however, a ba-
sic consistency requirement. We defer a further elaboration of these aspects to
Chapter 3.

Clearly, the discretization has implications also for the resulting algebraic
system and, thus, for the solution methods. A particularity of fluid-structure-
interaction discretizations is the fact that the dimensions of the approximation
spaces associated with the interface variables are generally negligible in compari-
son to the dimensions of the approximation spaces of the fluid and the structure,
because the former refer to boundary functions. This observation plays an im-
portant role in the analysis of the discretized fluid-structure system, and in the
development of improved solution techniques; see Chapters 5 and 6.

2.8 Concluding remarks
In this chapter, we presented the equations governing fluid-structure interaction
which comprise the equations for the fluid and the structure, augmented by kine-
matic and dynamic interface conditions. We elaborated the different reference
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frames that can be adopted for the kinematic description of a continuum. Since
fluid and structure are customarily described in an Eulerian and a Lagrangian ref-
erence frame, respectively, this difference in reference frames necessitates a trans-
formation of interface quantities from one reference frame into the other. More-
over, we discussed the difficulties pertaining to an Eulerian fluid description on a
moving domain, and we compared two methodologies to conveniently incorporate
a movement of the domain in the description.

To identify the generic features of fluid-structure-interaction problems, we
phrased the governing equations into a generic space/time variational form, i.e., a
form that does not make any stipulations on the specifics of the underlying mod-
els. As generic features we identify the interconnection of a fluid and a structure
subsystem at an interface by kinematic and dynamic conditions and, moreover,
the free-boundary character of the interface. The free-boundary character is man-
ifest through the interdependence of the fluid and structure solutions and their
domains of definition. The generic variational statement allows us to formulate
solution methods independent of the specifics of the underlying fluid-structure-
interaction problem. Hence, it enables us to establish solution methods that are,
in principle, applicable to any fluid-structure-interaction problem.

We considered the discretization of the aggregated variational statement by
the space/time finite-element method. Such space/time finite-element discretiza-
tions have distinct advantages over conventional methods that discretize space and
time separately by different discretization methods. Whereas conventional meth-
ods commonly use an arbitrary Lagrangian-Eulerian formulation to enable the
description of fluid flow on a moving domain, the space/time formulation inher-
ently accounts for a movement of the domain in time. Consequently, space/time
finite-element discretizations automatically satisfy the Discrete Geometric Conser-
vation Law in contrast to conventional methods with a separate space and time
discretization.

In this thesis, we shall restrict ourselves to prototypical model problems that
conform to the presented generic variational statement. This allows us to analyse
the characteristic features of fluid-structure-interaction problems with a minimum
of complexity.



Chapter 3

Conservation under discretization

3.1 Introduction
The interaction of a fluid with a structure is driven by the exchange of momen-
tum and energy at their common interface. The correct representation of this
momentum and energy exchange in the numerical model is therefore crucial in the
numerical solution of fluid-structure-interaction problems. However, maintaining
the conservation properties at the interface in the numerical model is generally
non-trivial.

In this chapter, we investigate the conservation properties in the discrete nu-
merical model, following the elaborations in Refs. [44, 70]. To this end, we establish
the conservation properties at the fluid-structure interface for the continuum sys-
tem and for its discretization by the finite-element method. The conservation
properties of the continuum system can be lost under discretization. Indeed, it is
shown that energy conservation in the discrete model is only trivially maintained
under restrictive compatibility conditions on the approximation spaces in the fluid
and the structure, i.e., matching meshes and identical orders of interpolation at the
interface. Clearly, this is prohibitive for practical use, as it impedes tailoring fluid
and structure discretizations to their inherently different length and time scales;
cf. Ref. [19]. To bypass these restrictions, a new discretization from Ref. [70] is
considered, which enables conservation also for incompatible discretizations.

The ability to maintain the conservation properties at the interface is more-
over subject to the choice of the discretization methods for the fluid and structure,
and their pairing at the interface; see also Ref. [44]. To investigate the implica-
tions of specific discretizations for the conservation properties, we consider the
trapezoidal method for the structure coupled to a finite-element discretization of
the fluid equations. We show that trapezoidal time integration for the structure
does in general not allow for conservative fluid-structure coupling, although the

27
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trapezoidal method for the structure separately is conservative.
To assess the relevance of maintaining the conservation properties under dis-

cretization, we conduct numerical experiments on a prototypical fluid-structure-
interaction problem, viz., the piston problem from Ref. [56]. This model problem
facilitates the separation of distinct sources of error. In particular, it admits an
analytic solution of the structure equation and, thus, exact time integration of the
structure. Fluid discretization errors can be reduced using fluid subcycling. This
combination allows us to study the effect of maintaining conservation at the inter-
face separately from fluid and structure discretization errors. To demonstrate the
effectiveness of the new discretization considered in this chapter, we compare con-
servative and non-conservative discretizations. Our numerical results demonstrate
that discretizations which ensure the conservation properties are superior to non-
conservative discretizations. In particular, the conservative discretization yields
a solution which is by several orders of magnitude more accurate than the solu-
tions obtained from the non-conservative discretizations. Moreover, we show that
a violation of the conservation properties can result in instability of the numerical
solution; see also Refs. [44, 53, 55].

To illustrate the implications of specific pairings of fluid and structure dis-
cretizations, we compare the numerical solution obtained with, respectively, the
trapezoidal and the time-discontinuous Galerkin time integration for the structure
coupled to a time-discontinuous Galerkin fluid discretization. Our results indicate
that the non-conservative coupling of a trapezoidal method for the structure with
a time-discontinuous Galerkin discretization for the fluid induces an error which
can dominate other discretization errors. In contrast, the conservative coupling of
a time-discontinuous Galerkin discretization for both the fluid and the structure
induces an error which is typically much smaller than other discretization errors.

The contents of this chapter are organized as follows: Section 3.2 presents
a statement of the piston problem, both in strong form and in variational form.
Section 3.3 establishes the conservation properties at the fluid-structure interface
of the continuum system and, moreover, investigates the behaviour of the lin-
earized system. Section 3.4 assesses the conservation properties at the interface
for compatible and incompatible discretizations. Moreover, this section analyses
the implications of specific pairings of fluid and structure discretization methods
for the conservation properties. In Section 3.5, we present numerical experiments
and results. Section 3.6 contains concluding remarks.

3.2 Problem statement
In Section 3.2.1, we present a prototypical fluid-structure interaction problem, viz.,
the one-dimensional piston problem from Ref. [56]. In Section 3.2.2, we rephrase
the piston problem into a concise space/time variational statement, in conformity
with Chapter 2.
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3.2.1 The piston problem

To formulate the piston problem, let x and t denote spatial and temporal coor-
dinates, respectively, and α(t) the position of the fluid-structure interface. We
consider an open bounded space/time domain Ωα := {(x, t) : 0 < t < T ; 0 < x <
α(t)}. Its boundary consists of the interface between the fluid and the structure
Γα := {(x, t) : x = α(t); 0 < t < T} and the fixed boundary ∂Ωα\Γα; see the
illustration in Fig. 3.1 on the next page. The mathematical formulation of the
piston system comprises the Euler equations in Ωα in connection with a harmonic
oscillator at the interface Γα. We consider the Euler equations in conservative
form:

∂u
∂t
+
∂f(u)
∂x

= 0, (x, t) ∈ Ωα, (3.1a)

with

u :=

 ρ
ρv
E

 , f(u) :=

 u2

u2
2/u1 + p(u)

(p(u) + u3)u2/u1

 , p(u) := (γ− 1)
(
u3 − u2

2

2u1

)
,

(3.1b)
and γ a constant, typically 1.4. In Eq. (3.1b), ρ, v, E and p denote the density,
velocity, total energy and pressure of the fluid, respectively.

Eq. (3.1) must be supplemented with appropriate initial and boundary con-
ditions. On the fixed space/time boundary, these are prescribed by

u(x, 0) = u0(x), 0 < x < α(0), (3.2a)
u2(0, t) = 0, 0 < t < T, (3.2b)

with u0(x) the given initial conditions. Condition (3.2b) translates into the im-
permeability condition v(0, t) = 0. The interface conditions, i.e., the conditions
on Γα, are specified below.

The governing equation for the harmonic oscillator is:

Mz̈(t) +Kz(t) = θ(t)− β, 0 < t < T, (3.3)

subject to the initial conditions

z(0) = z0, (3.4a)

ż(0) = ż0 (3.4b)

for certain given constantsM,K ∈ R+ and z0, ż0 ∈ R. In Eq. (3.3), z(t) designates
the piston displacement from its equilibrium position and a superimposed dot
denotes differentiation with respect to time. The right-hand member of Eq. (3.3)
is the forcing term which is composed of the traction θ(t) exerted by the fluid on
the structure through the interface, and the constant external pressure β. The
forcing term acts on a surface of unit area.
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The Euler equations and the harmonic oscillator are connected by interface
conditions. The interface conditions for the fluid-structure system can be separated
into kinematic conditions

(ρv)|Γα
= ρ|Γα

α̇(t), 0 < t < T, (3.5a)

α(t) = α0 + z(t), 0 < t < T, (3.5b)

with α0 ∈ R+ a given constant, and the dynamic condition

p(u|Γα
) = θ(t), 0 < t < T. (3.5c)

The conditions (3.5a) and (3.5b) express the impermeability of the interface
and identify the interface position and the piston position, respectively. Con-
dition (3.5c) implies equilibrium of the forces exerted on the interface by the fluid
and the structure. Note that the conditions (3.5) are imposed on the moving
boundary Γα.
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α0 x

βp(u|Γα)

Figure 3.1: The piston problem in space/time (interface region expanded for
clarity).

It is noteworthy that the piston problem exhibits the distinguishing features
of a free-boundary problem: Firstly, the state variables u and their domain of
definition Ωα are interdependent on account of the kinematic condition (3.5b).
Secondly, the number of interface conditions exceeds by one the number of auxil-
iary conditions required by the initial-boundary-value problems for the fluid and
the structure separately. To elucidate this statement, we note that Eqs. (3.1)–
(3.2) subject to (3.5a) with α given, and Eqs. (3.3)–(3.4) subject to (3.5c) with
p given are valid problems independently. Therefore, the piston problem can also
be classified as a free-boundary problem.
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3.2.2 Variational formulation

We rephrase the piston problem into a concise variational statement in space/time
by taking L2 inner products of the equations in Section 3.2.1 with appropriate
test functions. To this end, we formally introduce the trial function spaces U(:=
U1 × U2 × U3), A, Z and P to accommodate u, α, z and θ, respectively, and the
corresponding spaces V(:= V1 × V2 × V3), H, L and F to accommodate the test
functions v, η, λ and φ, respectively. The dependence of the function spaces U

and V on the boundary-representation function α can be removed by means of an
α-dependent homeomorphic transformation, i.e., a one-to-one mapping between
a moving and a fixed reference domain, or, alternatively, by means of a so-called
security set in combination with an extension mapping; cf. Section 2.3 and Ref. [71]
for details. Moreover, we define the functionals

F :V× U× A �→ R, f :V �→ R, K :H× A× Z �→ R, k :H �→ R, (3.6)
S :L× Z× P �→ R, s :L �→ R, D :F× P× U× A �→ R, (3.7)

where F, f, K, k, S, s and D are associated with the fluid equations, the kinematic
conditions, the structure equations and the dynamic conditions, respectively. For
instance, the kinematic and dynamic interface condition, (3.5b) and (3.5c), trans-
late into

K(η, α, z) :=
∫ T

0

η(α− z)dt and k(η) :=
∫ T

0

ηα0dt, (3.8)

and

D(φ, θ,u, α) :=
∫ T

0

φ(p(u|Γα
)− θ)dt, (3.9)

respectively. For brevity, we refer to Ref. [70] for a definition of the other func-
tionals.

With the above definitions, the piston problem can be condensed into the
concise variational problem: Find q ∈ Q such that

P(w, q) = p(w) ∀w ∈W. (3.10a)

Herein, q is the quadruple q := (u, α, z, θ) in the product space Q := U×A×Z×P,
w is the quadruple w := (v, η, λ, φ) in the product space W := V×H×L×F, and
the aggregated functionals P : W×Q �→ R and p : W �→ R are defined respectively
as

P((v, η, λ, φ), (u, α, z, θ)) := F(v,u, α) + K(η, α, z) + S(λ, z, θ) + D(φ, θ,u, α),
(3.10b)

p(v, η, λ, φ) := f(v) + k(η) + s(λ). (3.10c)

Note that the variational problem (3.10) conforms to the generic variational state-
ment (2.27).
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3.3 System behaviour
This section describes the behaviour of the piston problem. Section 3.3.1 assesses
the conservation properties at the fluid-structure interface of the continuum sys-
tem. Section 3.3.2 briefly reviews an analysis of the linearized system. Moreover,
we present a non-dimensionalization which serves to establish the characteristic
parameters of the piston system.

3.3.1 Conservation at the fluid-structure interface

The conditions for conservation of mass, momentum and energy at the interface
of the continuum fluid-structure system can be derived from the requirement that
the corresponding fluxes on either side of the interface are equal. We integrate
these fluxes over the interface to express conservation in an integral sense rather
than in a pointwise sense. For the considered model problem, an integral over
the fluid-structure interface can be transformed into an integral over time. The
conservation statements of mass, momentum and energy can then be expressed as
the balance of the respective fluxes∫ T

0

(ρv)|Γα
dt−

∫ T

0

ρ|Γα
α̇dt = 0, (3.11a)∫ T

0

(
(ρv2)|Γα

+ p(u|Γα
)
)
dt−

∫ T

0

(ρv)|Γα
α̇dt =

∫ T

0

θdt, (3.11b)∫ T

0

(
E|Γα

+ p(u|Γα
)
)
v|Γα

dt−
∫ T

0

E|Γα
α̇dt =

∫ T

0

θżdt. (3.11c)

In Eqs. (3.11), the left-hand-side constitutes the flux on the fluid side of the
interface which is composed of the inviscid flux (first integral) and the flux induced
by the movement of the fluid boundary (second integral), and the right-hand-side is
the flux on the structure side of the interface. To facilitate the ensuing exposition,
let us rewrite Eqs. (3.11) in the form of residuals that vanish identically provided
that mass, momentum and energy conservation hold:

R1(u, α) :=
∫ T

0

ρ|Γα
(v|Γα

− α̇)dt, (3.12a)

R2(u, α, θ) :=
∫ T

0

(ρv)|Γα
(v|Γα

− α̇)dt+
∫ T

0

(p(u|Γα
)− θ)dt, (3.12b)

R3(u, α, θ, z) :=
∫ T

0

(E|Γα
+ p(u|Γα

)(v|Γα
− α̇)dt+

∫ T

0

(p(u|Γα
)− θ)α̇dt

+
∫ T

0

θ(α̇− ż)dt, (3.12c)
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where Rj(·) denotes the residual pertaining to the respective conservation state-
ment. For convenience, we have added suitable partitions of zero in Eq. (3.12c).
A vanishing of the residuals is implied by the variational statement (3.10) on ac-
count of the interface conditions. This results in conservation at the fluid-structure
interface. Provided that fluid and structure systems separately are conservative,
conservation at the interface implies the conservation properties of the aggregated
fluid-structure system.

3.3.2 Linearized-system behaviour

An analysis of the linearized piston system has also been presented in Refs. [6,
52, 56, 70]. For completeness, we provide a concise investigation of the linearized-
system behaviour, but in view of the available literature we refer the reader to
the above references for a further elaboration. Moreover, this section introduces a
non-dimensionalization in order to establish the characteristic system parameters
and the essential features of the piston problem.

In the sequel, we shall denote first-order perturbations by a prime. We
assume the perturbations in the fluid to be isentropic. Under this assumption, the
energy equation becomes redundant and can be discarded.

After linearization, and provided with suitable initial conditions (see Ref. [70]
for the derivation), the linearized problem consistent with (3.10) admits a funda-
mental periodic solution:(

u′1
u′2

)
= − ρ0α0ω

c sin(ωα0/c)

(
cos(ωx/c) cos(ωt)
c sin(ωx/c) sin(ωt)

)
, z′ = α0 cos(ωt),

α′ = z′ and θ′ = c2u′1, (3.13)

with c denoting the speed of sound and the system frequency ω subject to the
condition

(1−K/(Mω2))(ωα0/c) tan(ωα0/c) = ρ0α0/M. (3.14)

Note that Eq. (3.14) has infinitely many roots. The solution to the linearized prob-
lem is then composed of a linear combination of the fundamental solutions (3.13).

To establish the characteristic system parameters, we translate the funda-
mental solutions (3.13) in dimensionless form. To this end, we define characteristic
time scales for the fluid, the structure and the fluid-structure system by

τf := 2α0/c, τs := 2π
√
M/K and τ := 2π/ω, (3.15)

respectively. Moreover, we introduce the following time-scale ratios:

a := τf/τ, b := τf/τs, (3.16)

and the fluid-to-structure mass ratio :

µ := ρ0α0/M. (3.17)
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With these definitions, and introducing the following dimensionless variables,

x∗ := x/α0, z∗ := z/α0, t∗ := t/τ, v∗ := vτ/α0, c∗ := cτ/α0 and

ρ∗ := ρ/ρ0, (3.18)

Eq. (3.13) can be cast in dimensionless form:(
u′∗1
u′∗2

)
= − 2πa

sin(2πa)

(
cos(2πax∗) cos(2πt∗)
c∗ sin(2πax∗) sin(2πt∗)

)
, z′∗ = cos(2πt∗),

α′
∗ = z′∗ and θ′∗ = c2∗u

′
∗1, (3.19)

subject to the condition

(1− b2/a2)2πa tan(2πa) = µ. (3.20)

Eq. (3.20) interrelates three dimensionless parameters, viz., the characteris-
tic time-scale ratios a and b and the characteristic mass ratio µ. Thus, only two
parameters can be selected independently, the third is then implied by Eq. (3.20).
Two parameters are therefore required to characterize the behaviour of the lin-
earized system.

It is noteworthy that the parameter sets {(a, b)|µ > 0} can be conceived as
different modes of the fluid-structure system; see Ref. [70] for details. Moreover, we
remark that the mass ratio µ determines which subsystem dominates the dynamics
of the fluid-structure system. In particular, for µ � 1 (µ � 1) the dynamics of
the system is dominated by the inertia of the fluid (structure).

3.4 Conservation properties under discretization
In this section, we assess the conservation properties of the discrete approxima-
tion to the variational form of the continuum fluid-structure system. To this end,
in Section 3.4.1, we formally introduce discrete approximations to the original
function spaces corresponding to a Galerkin discretization of the variational prob-
lem. Because conservation in the original function spaces does not necessarily
imply conservation in the approximation spaces, the conservation properties of
the original variational form can be lost under discretization. Although our pri-
mary interest concerns the conservation properties at the interface, we first briefly
consider the conservation properties of the isolated fluid and structure separately
in Section 3.4.2. In Sections 3.4.3 and 3.4.4, we assess conservation at the fluid-
structure interface for compatible and incompatible approximations, respectively;
the presented theory is based on Ref. [70]. Finally, in Section 3.4.5, we investigate
the implications of different pairings of fluid and structure discretization methods
for the conservation properties at the interface.
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3.4.1 Discrete approximations

The discrete approximation to a variational statement generally restricts the orig-
inal infinite-dimensional function spaces to finite-dimensional subspaces. Here, we
consider finite-dimensional approximations in the form of (piecewise) polynomials
of order n or, correspondingly, degree n− 1:

Pn := {f : R �→ R|f(x) ∈ span(1, x, . . . , xn−1)}. (3.21)

Discretization in the space and time dimension is based on the tensor product

Pn := {f : R2 �→ R|f(x1, x2) = f(x1)f(x2), f(x1) ∈Pn1 , f(x2) ∈Pn2} (3.22)

with index pair n := (n1, n2) ∈ N2. We denote by Ũ := (PnU)3 the approximation
space associated with the product space U := U1 ×U2 ×U3 and by nU its degree.
Correspondingly, we introduce Ã and nA, etc. With the above definitions, the
Galerkin discretization of the variational problem (3.10) is then: Find q ∈ Q̃ :=
Ũ× Ã× Z̃× P̃ such that

P(w, q) = p(w) ∀w ∈ Q̃. (3.23)

We refer to Eq. (3.23) as the set of aggregated (discrete) equations.
We remark that the polynomials that span Q̃ have support on the domains

associated with fluid, structure and interface, respectively. However, (3.23) also
holds for approximations based on piecewise polynomials such as finite-element
discretizations. In that case, a variational statement of the form (3.23) is associated
with each element at the interface.

3.4.2 Conservation in the discretized subsystems

The conservation properties of the Galerkin finite-element discretization of the
fluid and structure subsystems are implied by specific choices of the test functions.
For the discretization of the fluid equations in conservation form, global conserva-
tion of mass, momentum and energy emanates from setting the test function equal
to unity on the entire domain. This is straightforward for discontinuous Galerkin
methods, but generally not for continuous Galerkin methods in the presence of
Dirichlet boundary conditions. Because for Dirichlet boundary conditions the test
function has to vanish on the boundary, Dirichlet conditions generally conflict with
global conservation. However, it was recently shown for the advection-diffusion
and the incompressible Navier-Stokes equations that global conservation can be
attained also for the continuous Galerkin method; see Refs. [29, 30]. It is antici-
pated that for the continuous-in-space time-discontinuous Galerkin discretization
of the fluid equations conservation can be established along similar lines.

For the isolated structure discretized with the time-discontinuous Galerkin
method, conservation of momentum and energy within each time slab are im-
plied by Eq. (3.23), because the test space associated with the structure equation
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contains unity and velocity. However, the weak enforcement of initial conditions
causes the loss of momentum and energy conservation between two time slabs; see
Ref. [70].

3.4.3 Conservation for compatible discretizations

In the sequel, we investigate the conservation properties at the fluid-structure
interface, following the exposition in Ref. [70]. We recall from Section 3.3.1 that
the conservation properties at the interface of the continuum fluid-structure system
are implied by a vanishing of the residuals (3.12). Correspondingly, conservation
at the interface under discretization (3.23) requires a vanishing of the residuals.
From the conditions for mass, momentum and energy conservation, Eqs. (3.12),
we deduce that a basic requirement for conservation is that v|Γα

= α̇. Under the
provision that this identity holds, the residuals assume the form

R1(u, α) = 0, (3.24a)

R2(u, α, θ) =
∫ T

0

(p(u|Γα
)− θ)dt, (3.24b)

R3(u, α, θ, z) =
∫ T

0

(p(u|Γα
)− θ)α̇dt+

∫ T

0

θ(α̇− ż)dt. (3.24c)

Eqs. (3.24) imply that conservation at the interface is immediate if the corre-
sponding fluid and structure variables are identified pointwise, i.e., if θ = p(u|Γα

)
and α = α0 + z. We remark, however, that p(u|Γα

) is in general not polynomial
which precludes strong coupling of θ and p(u|Γα

) at the interface. The identifica-
tion of α and α0 + z has implications for the associated approximation spaces. In
particular, it requires that Ã ⊃ Z̃ or, typically, Ã = Z̃. We refer to the condition
Ã = Z̃ as the compatibility condition, in conformity with Ref. [70]. Compliance
with the compatibility condition requires that in a finite-element discretization the
approximation spaces for the fluid and the structure have coincident meshes and
identical orders of approximation at the interface. This, however, impedes tai-
loring fluid and structure discretizations to their specific resolution requirements
according to their inherently different length and time scales. Therefore, the com-
patibility condition is prohibitively restrictive.

Conservation can also be established for specific polynomial approximations,
invoking orthogonality arguments. In particular, we consider P̃ := PnP , nP =
nZ − 1 and Ã ⊇ Z̃: Invoking definition (3.9) of the functional associated with the
dynamic interface condition, Eq. (3.24) can be rewritten as

R2(u, α, θ) = D(1, θ,u, α), (3.25a)

R3(u, α, θ, z) = D(α̇, θ,u, α) +
∫ T

0

θ(α̇− ż)dt. (3.25b)
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Clearly, 1 ∈ P̃ and, hence, R2 vanishes under discretization (3.23). Thus, conser-
vation of momentum is trivially satisfied. That R3 also disappears can be shown
in the following steps: First, we recall that on account of the definition of K and
k in (3.8), Eq. (3.23) identifies α and α0+ z. Obviously, this also holds for Ã ⊃ Z̃,
in which case (3.23) reduces the degree of α such that α ∈ Z̃. Hence, α̇ = ż

identically, and the second integral in (3.25b) vanishes. Next, from α ∈ Z̃ := PnZ

it follows that α̇ ∈PnZ−1 = PnP =: P̃, i.e., α̇ is in the test space associated with
D and, therefore, the first integral in (3.25b) also vanishes. Hence, R3 = 0 which
implies conservation of energy. We point out, however, that energy conservation
again relies on the compatibility condition.

In conclusion, conservation of mass and momentum at the interface is in
general trivially maintained under discretization. However, conservation of energy
at the interface is only trivially satisfied under restrictive compatibility conditions
on the approximation spaces Ã and Z̃.

3.4.4 Conservation for incompatible discretizations

Following Ref. [70], the variational statement can be modified such that the dis-
cretization maintains the energy conservation property without compatibility con-
ditions on Ã and Z̃. The idea is to replace certain orthogonality conditions on
Ã by coincidence conditions. To this end, additional constraints are introduced
into the variational statement by replacing the variational form of the kinematic
condition (3.8) by

K(η, ν, α, z) := k(η, ν), ∀η ∈ A, ν := (ν1, ν2) ∈ R2, (3.26a)

with

K(η, ν, α, z) := K(η, α, z)− ν2(α(T )− z(T )) + ν1(α(0)− z(0)), (3.26b)

k(η, ν) := k(η)− ν2α
0 + ν1α

0. (3.26c)

The additional constraints enforce α(0) = z(0) + α0 and α(T ) = z(T ) + α0.
We remark that with a proper definition of A and Z, this is already implied by
the variational problem (3.10) and, therefore, the additional constraints do not
essentially alter the continuum problem. However, the additional constraints do
favourably change the discretization, as will be shown in the sequel. We refer to
the added constraints as coincidence conditions and to the modified variational
problem as the augmented problem, in conformity with Ref. [70].

To demonstrate the role of (3.26) for energy conservation, let us consider the
discretization of the augmented problem with P̃ := PnP = PnA−1. Essentially,
the coincidence conditions at t = 0 and t = T replace the orthogonality conditions
corresponding to nA − 1 and nA. This necessitates a redefinition of the test space
associated with η by restricting η to PnA−2 instead of PnA =: Ã.
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To demonstrate that the discretization of the augmented problem is energy
conservative, we consider the energy-conservation residual according to (3.25b),
invoke integration by parts for the second integral∫ T

0

θ(α̇− ż)dt = θ(α− (z + α0))
∣∣∣∣T
0

−
∫ T

0

θ̇(α− (z + α0))dt, (3.27)

and obtain

R3(u, α, θ, z) = D(α̇, θ,u, α)− K(θ̇, (θ(0), θ(T )), α, z) + k(θ̇, (θ(0), θ(T ))). (3.28)

D in (3.28) vanishes, because with α ∈ PnA and P̃ := PnP = PnA−1, α̇
is in the test space associated with D, i.e., α̇ ∈ PnA−1 =: P̃. Moreover, θ̇ ∈
PnP−1 = PnA−2 and, obviously, (θ(0), θ(T )) ∈ R2. Hence, θ̇ and (θ(0), θ(T ))
reside in the test spaces associated with K and k, which implies that K− k = 0 in
(3.28). This corroborates that the energy-conservation residual R3 vanishes, and
proves that the discretization of the augmented problem is energy conservative,
effectively bypassing the compatibility conditions.

We remark that compliance with (3.28) does not require z or p(u|Γα
) to be

polynomial. Since this result extends to non-coincident grids, the interface mesh
associated with α and θ can be chosen arbitrarily and, in particular, independent
of the meshes for u and z. The error in the transferred energy then cancels within
each element of the interface mesh.

3.4.5 Coupling of trapezoidal with time-discontinuous Galerkin
time integration

To investigate the implications that particular combinations of fluid and structure
discretizations can have on the conservation properties at the fluid-structure inter-
face, we consider an alternative discretization method for the structure, viz., the
trapezoidal method, coupled to a time-discontinuous Galerkin discretization of the
fluid equations. Before we assess conservation at the interface, we briefly consider
conservation in the isolated structure subject to a forcing term. Conservation in
the isolated fluid system has been considered in Section 3.4.2.

Conservation in the isolated structure

We assess the conservation properties of the isolated structure discretized with the
trapezoidal method. Trapezoidal time integration is a popular method because of
its simplicity. The trapezoidal method constitutes a specific instance of a Newmark
method, and it is energy conservative for an unforced structure; see, e.g., Ref. [28].
To investigate energy conservation in the presence of a forcing term, we multiply
the continuum equation (3.3) by ż, integrate over the generic time interval [tn, tn+1]
and invoke integration-by-parts on the left-hand side, which yields the following
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energy-conservation statement:[
1
2
Mż2 +

1
2
Kz2

]tn+1

tn

=
∫ tn+1

tn

żθdt. (3.29)

Denoting by E := 1
2Mż2 + 1

2Kz
2 the sum of kinetic and strain energy, we can

rewrite Eq. (3.29) as

En+1 − En =
∫ tn+1

tn

żθdt. (3.30)

Manipulation of the expressions for the trapezoidal method yields a relation for
(żn+1, zn+1) in terms of (żn, zn), from which the change in energy between time
levels can be determined as

En+1 − En = ∆t
(
żn+1 + żn

2

)(
θn+1 + θn

2

)
. (3.31)

For conciseness, the derivation of Eq. (3.31) is deferred to Appendix A.1. From a
comparison of Eqs. (3.30) and (3.31) it follows that the right member of Eq. (3.30)
is approximated as∫ tn+1

tn

żθdt ≈ ∆t
(
żn+1 + żn

2

)(
θn+1 + θn

2

)
, (3.32)

i.e., in the trapezoidal method the integral is approximated by the midpoint rule.
Only in the specific case that θ is constant and ż is linear, or vice versa, is the
integral evaluated exactly by the midpoint rule. We thus infer that trapezoidal
time integration does generally not conserve energy in the presence of a forcing
term. Moreover, the trapezoidal method can be shown generally not to conserve
momentum for forced structures; the elaboration is presented in Appendix A.2.

Conservation at the interface

More specifically, we are interested in the conservation properties of the trapezoidal
time-integration method for the structure when coupled to the time-discontinuous
Galerkin fluid discretization. This combination naturally generates an incompat-
ibility between fluid and structure representations at the interface, because the
trapezoidal method lacks a proper functional representation in between time lev-
els as, in fact, does any finite-difference scheme. Indeed, the representation of a
function by the trapezoidal method is restricted to the discrete time levels. This
motivates us to identify the pressures p(u|Γα

), θ and the velocities v|Γα
= α̇, ż

on both sides of the interface at discrete time levels. The coupling to the time-
discontinuous Galerkin fluid discretization implies that the average acceleration in
the trapezoidal method is computed from a discontinuous forcing term, θ. Dis-
placement and velocity in the trapezoidal method, however, are continuous from
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one time-slab to the next and, consequently, kinetic and strain energy of the struc-
ture are conserved from one time-slab to the next.

Let us now consider the conservation properties at the fluid-structure inter-
face. Provided that v|Γα

= α̇ holds, mass conservation of the fluid at the interface
is immediate. To assess energy conservation at the interface, the change in energy
within a time-slab is compared on either side of the interface. For the structure
integrated by trapezoidal time integration we refer to Eq. (3.31). For the fluid we
assume a discretization in primitive variables with linear-in-time shape functions
for velocity v and pressure p. The change in energy within a time-slab [tn, tn+1]
on the fluid side of the interface can then be computed as

En+1 − En =
∫ tn+1

tn

pvdt

=
1
6
∆t (2pn+1vn+1 + pn+1vn + pnvn+1 + 2pnvn) ,

(3.33)

with v := v|Γα
and p := p(u|Γα

) for brevity. Upon identification of corresponding
quantities on either side of the interface, i.e., ż = v and θ = p, we can deduce
from a comparison of Eqs. (3.31) and (3.33) that the calculated change in en-
ergy across a time-slab on the structure side is different from that on the fluid
side. Therefore, the coupling of trapezoidal time integration for the structure to a
time-discontinuous Galerkin discretization for the fluid does not generally conserve
energy at the interface. Moreover, this pairing of discretization methods does not
conserve momentum at the interface either, since the trapezoidal method does
generally not conserve momentum for forced structures; cf. Appendix A.2.

3.5 Numerical experiments
To assess the relevance of maintaining the conservation properties at the fluid-
structure interface, we conduct numerical experiments on the piston problem.
Section 3.5.1 specifies the setup of the numerical experiments. In Section 3.5.2, we
compare conservative and non-conservative discretizations. In Section 3.5.3, we in-
vestigate the implications of different pairings of fluid and structure discretizations
for the conservation properties at the interface.

3.5.1 Experimental setup

Time-discontinuous Galerkin discretization of the fluid equations

For the fluid discretization we use throughout a standard time-discontinuous Galer-
kin method with piecewise-linear trial and test functions, which are continuous in
space but discontinuous in time at the space/time slab interfaces. This separates
the computational task into the sequential solution of multiple space/time slabs.
Information is propagated across space/time slab interfaces by weakly enforced
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initial conditions. On account of the linear-in-time basis functions, the fluid dis-
cretization is formally second-order time accurate.

The conservation form of the fluid equations is discretized in primitive vari-
ables, (p, v, T ) with T denoting the absolute temperature, which simplifies the
implementation of boundary conditions and, in particular, the coupling to the
structure; see Ref. [44] for details. For the discretization in primitive variables we
refer to Ref. [25]. The formulation can be augmented with a least-squares term to
improve the stability of the Galerkin formulation. For the variational formulation
and discretization of the fluid equations, and for the definition of the least-squares
operator we refer to Refs. [25, 62, 65].

Velocity-based time-discontinuous Galerkin structural time integration

To treat fluid and structure in a unified framework and simplify fluid-structure
coupling, we use a velocity-based time-discontinuous Galerkin discretization of
the structure. The discretization employs piecewise-linear test and trial functions,
which are discontinuous in time at the time-slab interfaces. We shall use plus and
minus signs to indicate from which side the time-slab interface is approached.

A velocity-based formulation of the structure equation (3.3) is used

Mv̇ +K

(
zt=0 +

∫ t

t=0

v(ξ)dξ
)
= θ − β, (3.34)

with v denoting the velocity of the structure. To phrase Eq. (3.34) into variational
form, we multiply Eq. (3.34) by a test function, integrate the resulting expression
over the time domain, and carry out integration by parts. The variational form
of the initial-value problem for the structure for a single time-slab [t+n , t

−
n+1] can

then be stated as: Find a linear function v such that

Mλ(t−n+1)v(t
−
n+1)−M

∫ t−n+1

t+n

λ̇v dt+K

∫ t−n+1

t+n

λ

(∫ t

t+n

v(ξ)dξ
)
dt

=Mλ(t+n )v(t
−
n )−Kz(t−n )

∫ t−n+1

t+n

λ dt+
∫ t−n+1

t+n

λ(θ − β) dt

(3.35)

for all linear test functions λ. Note that Eq. (3.35) incorporates the jump term,
λ(t+n )(v(t

+
n )− v(t−n )) = 0, which enforces the initial condition for velocity weakly.

In contrast, the initial condition for displacement, z(t+n ) = z(t−n ), is enforced
strongly. Hence, velocity is discontinuous at the time-slab interfaces, whereas
displacement is continuous. By virtue of the coincidence conditions from Sec-
tion 3.4.4, a continuous structure displacement implies a continuous displacement
of the fluid boundary, which facilitates the treatment of the moving fluid boundary.

Analytic structural time integration

Below, we derive the analytic solution of the structure equation, which we use in
Section 3.5.2 for the time integration of the structure. This allows us to exclude
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discretization errors in the structure.
The motion of the piston is described by the initial-value problem, Eqs. (3.3)–

(3.4). As specified above, we use for the approximation of the fluid pressure shape
functions which are piecewise linear in time. Accordingly, we approximate the
forcing term of the structure, θ(t)−β =: π(t), by a piecewise-linear function. The
variation of the forcing term within the generic time interval t ∈ [0, T ] is then of
the form

π = π0 +
t

T
(π1 − π0), (3.36)

where the subscripts zero and one refer to the values at the beginning and end of
the time interval, respectively. For the simple right-hand-side expression (3.36),
the second-order ordinary differential equation can be solved analytically. The
solution of the initial-value problem, Eqs. (3.3)–(3.4), subject to Eq. (3.36), is
then

z(t) =
(
z0 − π0

K

)
cos

(√
K

M
t

)
+

(
ż0 − π1−π0

TK

)√
K
M

sin

(√
K

M
t

)
+
π0 + t

T (π1 − π0)
K

.

(3.37)
Given the values of the forcing term at either time level, π0 and π1, and the initial
conditions z0 and ż0, the structural displacement can be extracted from Eq. (3.37).

Parameters of the discretization

To investigate the effect of the discretization error induced by the fluid-structure
coupling, we have to ensure that the discretization errors in fluid and structure are
sufficiently small. To this end, we use analytic structural time integration and fluid
subcycling, i.e., the fluid discretization uses time steps ∆tf , which are smaller than
the time steps of the structural discretization, ∆ts. The ratio κ = ∆ts/∆tf , κ ∈ N

is called the subcycling factor. In the numerical experiments we use a subcycling
factor of κ = 8. We note that fluid subcycling induces non-matching meshes at
the fluid-structure interface and, hence, directly translates into an incompatibility
between fluid and structure. However, conservation can still be maintained under
the conditions stated in Section 3.4.4.

To render the numerical evaluation error smaller than the errors due to dis-
cretization and (non-)conservative coupling at the interface, we set strict con-
vergence tolerances for the iterative solution of the fluid subsystem and for the
aggregated fluid-structure system. The discretized fluid-structure system is solved
by subiteration, i.e., by solving fluid and structure alternately subject to comple-
mentary partitions of the interface conditions; cf. Section 4.2.2 for details. This
process is repeated until convergence.

Parameters of the piston problem

The physical parameters of the piston problem are specified in terms of dimen-
sionless parameters according to Section 3.3.2 and listed in Table 3.1.
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Table 3.1: Physical parameters of the piston problem.

z0 ż0 µ a b
10−2 0 1.63 0.34 10−1

The dimensionless quantities are chosen such that an oscillation period is
equal to unit time. The fluid-to-structure time-scale ratio b indicates that the
characteristic time-scale for the fluid is by an order of magnitude smaller than the
one for the structure. This implies that the fluid behaviour can be considered as
quasi-steady. Moreover, the fluid-to-structure mass ratio is of order one, which
implies that fluid and structure contribute equally to the dynamics of the system.
The computation is started from initial conditions which are derived from the
solution of the linearized problem (3.19) with an initial structural displacement of
z0 = 10−2.

3.5.2 Conservative versus non-conservative discretization

To investigate the effect of maintaining conservation at the interface on the numer-
ical solution, we compare results for conservative and non-conservative discretiza-
tions, following our exposition in Ref. [44]. To distinguish the error incurred by
the interface coupling from fluid and structure discretization errors, we render the
latter sufficiently small by means of analytic structural time integration (cf. Sec-
tion 3.5.1) and subcycling in the fluid.

Coupling methods

We consider three coupling methods, which all conserve mass at the interface, but
differ in their conservation properties for energy and momentum. Nevertheless,
all three discretizations are consistent and second-order time accurate, as will be
shown in the sequel. Therefore, preference of one method over another can only
be motivated on the basis of conservation properties.

• method A :
This method discretizes the augmented variational problem based on the
coincidence conditions (3.26). Therefore, the fluid-structure coupling is fully
conservative.

• method B :
This method is distinguished by the following form of the dynamic condi-
tion: θ(t) within a time interval t ∈ [0, T ] is calculated in an ad-hoc but
consistent way by using a linear interpolation that coincides with p(u|Γα

) at
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the beginning and end of the time interval, i.e.,

θ(t) = p(u|Γα,t=0) +
t

T

(
p(u|Γα,t=T )− p(u|Γα,t=0)

)
. (3.38)

This finite-difference discretization is typically used in combination with
subiteration methods; see, e.g., Ref. [1]. However, this discretization does
neither conserve energy nor momentum at the fluid-structure interface.

• method C :
This method is distinguished by replacing the kinematic condition (3.5b)
with a modification that is consistent with the original condition. For the
discrete fluid boundary displacement, α, a quadratic function is assumed,
which is determined from the requirement that α is continuous from one
fluid time-slab to the next, in combination with the following orthogonality
condition:∫ T

0

η ((α− α0)− (z − z0)) dt = 0 ∀η ∈ span{1, t}, (3.39)

where the subscript zero refers to the values at the beginning of a time
interval. Fluid boundary and structure only coincide initially at time t = 0,
but can deviate henceforth. This discretization does not conserve energy.
However, it conserves mass and momentum at the interface, because this
discretization satisfies the interface conditions (3.5a) and (3.5c) pointwise.

As we employ fluid subcycling, interpolation of the kinematic boundary conditions
for the fluid, i.e., the structural displacement and velocity, is necessary at all time
levels of the fluid which do not coincide with the time levels of the structure,
i.e., at ∆tf , . . . , (κ − 1)∆tf . The interpolation of the structural solution is done
according to the discretized form of Eq. (3.26) for methods A and B; for method
C, Eq. (3.39) is employed.

Numerical results

Fig. 3.2 compares the numerical solution for the structural displacement obtained
with the coupling methods A, B and C. An oscillation period is resolved by 10
structural time steps or, equivalently, by 80 time steps in the fluid. The fig-
ure clearly shows that the amplitude of the non-conservative method B decays
rapidly, whereas the amplitude of the conservative method A remains apparently
unchanged. The modulation of the solution computed with method B can be
attributed to interfering waves : The initial conditions correspond to a periodic
solution of the continuum problem, but do not generally yield a periodic discrete
solution. Moreover, we notice a considerable phase error in the solution computed
with method B. The amplitude computed with method C grows in time, which
indicates instability of the numerical solution.
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Figure 3.2: Structural displacement versus time: conservative discretization
method A (−−−) and non-conservative methods B (−−) and C (···).

The results of a mesh refinement study are shown in Fig. 3.3. The L2 norm
of the error in the computed structural displacement is plotted versus the size of
the structural time step for ∆ts = 2−3, 2−4, . . . , 2−7. The reference solution was
obtained with the conservative method A for a structural time step ∆ts = 2−8.
Fig. 3.3 confirms that the methods are second-order time accurate. Moreover, it is
apparent that the conservative method A is by more than two orders of magnitude
more accurate than the non-conservative methods B and C. Hence, for a given level
of accuracy, the conservative method can afford much larger time steps than the
non-conservative methods. We infer that maintaining conservation at the interface
yields an improvement in the accuracy of the numerical solution. Note that an
additional computational cost is not incurred.

3.5.3 Coupling of trapezoidal with time-discontinuous Galerkin
time integration

This section illustrates the implications of specific pairings of fluid and structure
discretizations for the conservation properties at the interface. We consider the
coupling of the time-discontinuous Galerkin discretization of the fluid equations
with the time-discontinuous Galerkin and the trapezoidal method for the structural
time integration, and investigate the effect on the solution accuracy.

We recall from Section 3.4 that with the time-discontinuous Galerkin method
for the structural time integration, momentum and energy at the fluid-structure
interface can be conserved. However, this method loses energy in between time-
slabs due to the discontinuity in velocity. With the trapezoidal discretization for
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Figure 3.3: Error in the structure displacement versus structural time-step
size: conservative discretization method A (−−−) and non-conservative methods
B (−−) and C (···).

the structure, neither momentum nor energy is conserved at the interface.

Grid refinement study

To assess the temporal accuracy of the different pairings of fluid and structure
discretizations, we determine the observed order of temporal accuracy, ζ, by

ζ = ln
( ||z4τ − z2τ ||
||z2τ − z1τ ||

)
/ ln(2), (3.40)

where z denotes the computed structural displacement on meshes of different struc-
tural time-step sizes (denoted by subscript τ , 2τ and 4τ , respectively). The time-
step size in the fluid is set eight times smaller than the one in the structure, i.e.,
κ = 8. The differences are measured in the L2 norm.

As the fluid equations are formulated and discretized in space/time, refine-
ment of the temporal mesh width requires a corresponding refinement of the spatial
mesh width to obtain second-order convergence. If this is not done, the truncation
error retains a mixed term, ∆tf∆x, which will produce only first-order conver-
gence. For the current computations, the non-dimensional spatial mesh width in
the fluid was taken equal to the temporal mesh width.

The computations were performed on a sequence of meshes of different time-
step sizes. The observed order of temporal accuracy for trapezoidal and time-
discontinuous Galerkin time integration is shown in Table 3.2. The table indi-
cates that the trapezoidal time integration gives second-order time-accurate re-
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sults. This was to be expected, as both the trapezoidal method and the fluid dis-
cretization are second-order time accurate, see Ref. [28]. The time-discontinuous
Galerkin discretization for the structure uses linear-in-time shape functions for
the velocity. The structural displacement is obtained by integration. Therefore,
this method is third-order time accurate in displacement. Indeed, we can observe
third-order convergence for the Galerkin time integration, because the discretiza-
tion errors in the fluid and at the interface are smaller than the discretization error
in the structure due to fluid subcycling and conservative fluid-structure coupling,
respectively. However, on even finer mesh sequences second-order time-accuracy is
recovered, manifesting the second-order time-accuracy of the fluid discretization.

Table 3.2: Observed order of temporal accuracy ζ according to (3.40): trape-
zoidal versus time-discontinuous Galerkin structural time integration coupled
to a time-discontinuous Galerkin discretization of the fluid.

mesh sequences trapezoidal method time-discont. Galerkin method
with time-step sizes
2−3, 2−4, 2−5 1.9541 3.0150
2−4, 2−5, 2−6 2.0088 2.9925
2−5, 2−6, 2−7 2.0019 3.0035

The different orders of the structural time integration methods also become
apparent in Fig. 3.4 on the following page, in which the error is plotted versus
the size of the structural time step for τ = 2−3, 2−4, . . . , 2−7. We use the same
reference solution as in Section 3.5.2. The errors corresponding to the Galerkin
method and to the trapezoidal method are markedly different. This difference
emanates partly from the different structure discretization and partly from the
different interface treatment. As the interface coupling is formally only second-
order accurate, the observed third-order convergence behaviour of the Galerkin
method indicates that conservative interface coupling introduces an error that
is typically much smaller than the structural discretization error. Moreover, a
comparison of Fig. 3.3 and Fig. 3.4 shows that the error in the fluid-structure
coupling with the trapezoidal structural discretization is comparable to the error
in the non-conservative methods. Fig. 3.4 indicates that the error incurred by
non-conservative coupling at the interface can dominate the discretization errors
in fluid and structure.

3.6 Concluding remarks
We established the conservation properties at the fluid-structure interface of the
continuum system and of its discretization by the finite-element method on the
basis of a prototypical fluid-structure system. Energy conservation in the discrete
model is only trivially maintained under restrictive compatibility conditions on
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Figure 3.4: Error in the structure displacement versus structural time-
step size: time-discontinuous Galerkin time integration (−−−) and trapezoidal
method (−−).

the approximation spaces of fluid and structure, viz., matching meshes and iden-
tical orders of approximation at the interface. Such conditions are prohibitively
restrictive in practice, since they impede tailoring fluid and structure discretiza-
tions to their specific resolution requirements. To circumvent the compatibility
conditions, we considered a modified discretization which is based on orthogonal-
ity and coincidence conditions. This modified discretization enables conservation
also for incompatible approximations. Moreover, we investigated the implications
of specific pairings of fluid and structure discretization methods for the conser-
vation properties at the interface. We showed that trapezoidal time integration
does generally not conserve momentum and energy for forced structures. Hence,
the trapezoidal method does not admit a conservative fluid-structure coupling.
In contrast, with a time-discontinuous Galerkin discretization for both the fluid
and the structure, the conservation properties at the interface can be maintained.
However, the structure discretization by the time-discontinuous Galerkin method
does not conserve momentum and energy between time slabs due to the weak
enforcement of the initial conditions.

To assess the relevance of maintaining the conservation properties under dis-
cretization, we conducted numerical experiments on the one-dimensional piston
model problem. A comparison of conservative and non-conservative discretizations
shows that the solution delivered by a conservative discretization is by several or-
ders of magnitude more accurate. Moreover, we demonstrated that a discretization
that violates energy conservation can induce instability of the numerical solution.
Our experiments with different pairings of fluid and structure discretization meth-



3.6. Concluding remarks 49

ods indicated that the non-conservative coupling of the trapezoidal method for the
structure with a time-discontinuous Galerkin fluid discretization induces an error
that can dominate the discretization errors. In contrast, conservative coupling of
a time-discontinuous Galerkin method for both the fluid and the structure intro-
duces an error that is typically much smaller than other discretization errors. We
infer that maintaining the conservation properties at the interface improves the
accuracy and stability of the numerical solution; an additional computational cost
is not incurred.

As a prospect, let us briefly give an indication how the considered energy-
conservation concept extends to the multi-dimensional case. Generally, maintain-
ing energy conservation for incompatible approximations in multiple dimensions is
much more involved. However, it is anticipated that energy conservation in multi-
ple dimensions can be ensured under appropriate orthogonality conditions on the
interface spaces. In particular, the orthogonality of the pressure difference to the
interface velocity, and the orthogonality of the velocity difference to the interface
pressure are sufficient conditions for warranting energy conservation in multiple
dimensions. We expect that maintaining conservation in the multi-dimensional
case is similarly beneficial for the stability and accuracy of the numerical solution
as demonstrated in our numerical experiments for the one-dimensional case.
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Chapter 4

Efficiency of conventional solution methods

4.1 Introduction
Numerical solution methods for fluid-structure interaction typically employ parti-
tioning. In a partitioned method, the fluid and structure equations are separately
integrated in time subject to complementary partitions of the interface conditions,
i.e., kinematic and dynamic interface conditions are enforced asynchronously; see,
e.g., Refs. [1, 20, 56, 73]. If only a single fluid and structure solution per time step
are carried out, such partitioned methods are commonly referred to as loosely-
coupled partitioned methods; see, e.g., Refs. [18, 55]. The benefits and deficiencies
of loosely-coupled methods have been discussed in the review article by Felippa
et al. [20]. Their essential disadvantage pertains to the inherent loss of the con-
servation properties of the continuum fluid-structure system. In particular, they
only satisfy conservation in an asymptotic sense, i.e., for vanishing mesh width;
this is a basic consistency requirement. Although the order of the incurred error
can be improved by predictors (see Refs. [53–55]), loosely-coupled methods can
never be exactly conservative. In general, they are energy increasing and, hence,
numerically unstable; see, e.g., Refs. [53, 55, 56].

The deficiencies of loosely-coupled methods have motivated the investigation
of methods that treat the interaction between the fluid and the structure syn-
chronously. This can be achieved by monolithic methods which solve fluid and
structure equations simultaneously [6, 27, 34] and, more commonly, by partitioned
methods which solve the fluid-structure system by repeating within a time step al-
ternate fluid and structure solutions until convergence [1, 36, 47]. Such partitioned
methods are commonly referred to as strongly-coupled partitioned methods.

In contrast to monolithic methods, partitioned methods in general allow the
use of separate fluid and structure solvers and, hence, enable software modularity.
This constitutes an important practical asset of partitioned methods.

51
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Moreover, the solution methods can be distinguished according to their abil-
ity to maintain the conservation properties at the fluid-structure interface. A
conservative discretization is necessarily fully implicit (cf. Section 3.4). Hence,
maintaining conservation requires to resolve fluid and structure equations syn-
chronously. This implies that loosely-coupled partitioned methods are inherently
non-conservative. In contrast, monolithic and strongly-coupled partitioned meth-
ods can in principle maintain the conservation properties. The relevance of con-
servation for the stability and accuracy of the numerical method has been demon-
strated in Chapter 3.

Monolithic, loosely-coupled and strongly-coupled partitioned methods are
controversially advocated in literature. The stability of monolithic and partitioned
methods is compared in Refs. [6, 34], for instance. However, preference of one
method over another cannot be based on stability considerations only, but must
also consider arguments of accuracy, computational cost, efficiency and practical-
ity. We address these issues in this chapter and contrast the merits and drawbacks
of the respective solution methods, following our elaboration in Refs. [39, 41, 44].
Moreover, we discuss techniques to further increase the efficiency of the solution
methods.

We assess the properties of the respective solution methods by means of
numerical experiments on the piston model problem from Section 3.2. Fluid sub-
cycling and analytic structural time integration allow us to separate the effect of
the numerical solution error from the discretization errors.

This chapter is organized as follows: In Section 4.2, we review monolithic
and partitioned solution methods and discuss their advantages and disadvantages.
Moreover, we discuss concepts to further reduce the computational cost of parti-
tioned solution methods. In Section 4.3, we present numerical experiments and
results. Section 4.4 contains concluding remarks.

4.2 Monolithic versus partitioned solution methods
In this section, we review and discuss the merits and drawbacks of the different so-
lution methods. Numerical methods for fluid-structure interaction are commonly
classified into monolithic and partitioned methods. Unfortunately, in literature,
this nomenclature is not used in a consistent way. This gives rise to misunder-
standing and confusion. Therefore, we shall specify our nomenclature first.

The discretization of the aggregated equations of fluid, structure and inter-
face conditions, Eq. (2.27), results in a fully-implicit system of algebraic equations.
Such an algebraic system can be solved with a monolithic or with a partitioned
solution procedure. We refer to solution procedures that treat the coupling be-
tween fluid and structure simultaneously by operating directly on the system of
aggregated equations as monolithic methods. Alternatively, the algebraic system
can be solved by invoking partitioning, i.e., by solving fluid and structure equa-
tions separately, subject to complementary partitions of the interface conditions.



4.2. Monolithic versus partitioned solution methods 53

Thus, partitioned solution procedures treat the coupling between fluid and struc-
ture asynchronously, which induces a lag between fluid and structure solution.
From this perspective, partitioned procedures can be conceived as solving a sys-
tem of segregated equations, which differs from the aggregated equations by the
induced lag. However, by repeating within a time step alternate fluid and struc-
ture solutions until convergence, the lag can be eliminated, fluid and structure
solution can be synchronized and the solution of the aggregated equations can be
recovered. This iterative process is commonly referred to as subiteration and such
partitioned procedures are generally called strongly-coupled partitioned procedures.
Here, we shall adhere to this nomenclature.

In contrast to strongly-coupled procedures, loosely-coupled partitioned proce-
dures carry out a single fluid and structure solution per time step only and, thus,
do not eliminate the lag between the fluid and the structure solution. Therefore,
loosely-coupled methods do not resolve the aggregated equations. The lag can be
conceived as a numerical evaluation error, but it also admits a reinterpretation as
a discretization error associated with the set of segregated equations. The order of
the incurred error can be improved by means of predictors; see, e.g., Refs. [53–55].

In this section, we examine the advantages and drawbacks of the differ-
ent solution methods specified above. To this end, Sections 4.2.1–4.2.3 introduce
monolithic methods and strongly-coupled and loosely-coupled partitioned meth-
ods, respectively. Section 4.2.4 discusses prediction techniques. Section 4.2.5 con-
trasts strongly-coupled and loosely-coupled partitioned methods. Section 4.2.6
elaborates techniques to improve the computational efficiency of strongly-coupled
methods.

4.2.1 Monolithic methods

Monolithic solution methods treat the coupled fluid and structure equations si-
multaneously, i.e., they directly operate on the aggregated fluid and structure
equations. As this system is in general nonlinear, the solution procedure typically
involves a Newton process. Below, we discuss the implications which arise from
the simultaneous treatment of the coupled fluid and structure equations.

The application of Newton’s method to the nonlinear variational problem
of the generic form (2.27a) requires the specification of the Fréchet derivative of
the functional P : W × Q �→ R with respect to its nonlinear argument. For any
fixed w0 ∈ W, P(w0, ·) is a nonlinear functional on Q. The functional P(w0, ·)
is Fréchet differentiable at q0 ∈ Q if there exists a bounded linear functional
P′(w0, q0, ·) : Q �→ R such that

lim
q′→0

|P(w0, q0 + q′)− P(w0, q0)− P′(w0, q0, q
′)|

‖q′‖Q

= 0. (4.1)

The functional P′(w0, q0, ·) is then called the Fréchet derivative of P to q at (w0, q0).
Assuming that the functional P′(w0, q0, ·) exists for all w0 ∈ W, q0 ∈ Q, we
identify P′ with a functional on W × Q × Q. With this definition of the Fréchet
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derivative P′, and provided with an initial approximation q0 ∈ Q, Newton’s method
for the variational problem (2.27a) is defined as the following iterative process: for
j = 1, 2, . . . , find

qj ∈ Q : P′(w, qj−1, qj − qj−1) = p(w)− P(w, qj−1) ∀w ∈W. (4.2)

If the initial estimate q0 is sufficiently close to the actual solution, then qj converges
to the solution of the variational problem as j →∞.

Ref. [69] points out three essential problems that arise from the synchronous
treatment of fluid and structure equations. These complications derive from the
free-boundary character of the problem and from the inherent interdependence
between the fluid and structure state variables. To specify these problems, we
expand the derivative P′ according to the definition of P in (2.27b):

P′(w, q, q′) := F′
u(v,u, α,u

′) + F′
α(v,u, α, α

′) + S′z(λ, z, π, z
′) + S′π(λ, z, π, π

′)
+ K(η, α′, z′) + D′

u(φ,u, α,u
′) + D′

α(φ,u, α, α
′)− 〈φ, π′〉 (4.3)

with 〈·, ·〉 the standard L2 inner product. Moreover, F′
u and F′

α denote the Fréchet
derivatives of the functional F with respect to its nonlinear arguments u and α,
respectively. Likewise, S′z and S′π are the Fréchet derivatives of S with respect to
z and π. Eq. (4.3) also involves the L2 inner products associated with the linear
functional K. The semi-linear functional D yields the derivatives D′

u and D′
α and

the L2 inner product 〈φ, π′〉. The functionals K and D are separable in accordance
with our stipulation in Section 2.5.

The first problem pertains to the derivative F′
α, which is commonly referred

to as the shape derivative. This derivative is induced by the interdependence of the
fluid state variables and the domain Ωα on which these are defined. Discretization
methods such as the finite-element method typically use boundary-fitted meshes.
This implies that a perturbation of the interface position induces, in principle, a
deformation of the mesh throughout the entire computational domain. This would
render the computational cost incurred in the evaluation of the shape derivative F′

α

prohibitive in practical applications. Although there exist approaches to facilitate
the evaluation of the shape derivative, such as the method of spines [26], their
applicability is typically restricted.

The second problem is rooted in the inherent interdependence between the
fluid and the structure solution. This interconnection is illustrated in the connec-
tivity Table 4.1 associated with the variational statement (2.27) and is manifest
through the derivatives of the interface conditions in (4.3). This renders the Ja-
cobian matrix P associated with the discrete approximation of the operator P′

in (4.2) inseparable, which necessitates a simultaneous solution of fluid, structure
and interface conditions. This impedes software modularity, see also Ref. [20], and
constitutes a severe practical disadvantage.

The third problem emanates from the disparate time and length scales in-
herent in the fluid and structure subsystems, which generally results in severe
ill-conditioning of the Jacobian matrix P.
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Table 4.1: Illustration of the connectivity in fluid-structure interaction.

α u π z

K × 0 0 ×
F × × 0 0
D × × × 0
S 0 0 × ×

In conclusion, the simultaneous (or monolithic) solution of the aggregated
equations by Newton’s method encounters several severe disadvantages. These
disadvantages render a monolithic solution by Newton’s method prohibitive for
actual fluid-structure-interaction problems.

4.2.2 Strongly-coupled partitioned methods

The complications in Newton’s method can be effectively circumvented by means
of partitioning, i.e., by solving fluid and structure equations separately subject to
complementary partitions of the interface conditions. Strongly-coupled partitioned
methods repeat within a time step alternate fluid and structure solution. This
iterative process is commonly called subiteration. Convergence of the subiteration
process is contingent on the spectral radius; see the analysis in Section 6.3.3. In
this chapter, we shall restrict ourselves to cases in which subiteration converges.

Provided with an initial approximation z0 ∈ Z of the structure solution, or,
in particular, of the structure displacement at the interface (z|Θ)0, the following
steps define the subiteration process for the nonlinear variational problem (2.27):
for j = 1, 2, . . .

(S1) Solve the kinematic condition: αj ∈ A : K(η, αj , zj−1) = k(η) ∀η ∈ H

(S2) Solve the fluid: uj ∈ U : F(v,uj , αj) = f(v) ∀v ∈ V

(S3) Solve the dynamic condition: πj ∈ P : D(φ, πj ,uj , αj) = 0 ∀φ ∈ F

(S4) Solve the structure: zj ∈ Z : S(λ, zj , πj) = s(λ) ∀λ ∈ L

Note that this procedure bypasses the computation of the shape derivative. More-
over, it obviates the simultaneous treatment of the fluid and the structure. In
particular, subiteration reduces the complexity of solving the aggregated fluid-
structure equations to a sequence of ‘standard’ problems. For instance, (S2) with
αj given, and (S4) with πj given represent valid fluid and structure problems sepa-
rately. Hence, subiteration enables software modularity. Upon convergence of the
subiteration process, the solution of the aggregated equations (2.27) is obtained.
We note that the subiteration algorithm admits a description in terms of a generic
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fluid-structure-interaction problem in conformity with Eq. (2.27), which implies
that the method is, in principle, applicable to any fluid-structure-interaction prob-
lem. Moreover, since the algorithm can be described in a continuum variational
setting, the convergence behaviour of the subiteration method is asymptotically
independent of the underlying discretization, i.e., for all sufficiently fine discretiza-
tions the convergence behaviour will be identical; see also Ref. [71]. For applica-
tions of the subiteration method to fluid-structure-interaction problems see, e.g.,
Refs. [1, 36, 47]. We remark that subiteration is often alternatively referred to as
inner-iteration, Picard iteration or successive approximation.

It is elucidating to construe this method as a defect correction method [7],
following Ref. [69]. The defect correction method for a variational problem of
the form (2.27a) first determines an initial estimate q0 ∈ Q such that P̃(w, q0) =
p(w) for all w ∈ W, where the functional P̃ : W × Q �→ R denotes a suitable
approximation to P. The defect correction method then determines a sequence of
iterates {qj} ∈ Q such that

P̃(w, qj) = p(w) + P̃(w, qj−1)− P(w, qj−1) ∀w ∈W, (4.4)

for j = 1, 2, . . .. If P̃ is sufficiently close to P, then {qj} converges to the actual
solution of the variational problem as j → ∞. To identify the approximate func-
tional P̃ associated with the subiteration method, we note that the approximations
generated by (S1)–(S4) comply with

K(η, αj , zj−1) + F(v,uj , αj) + D(φ, πj ,uj , αj) + S(λ, zj , πj) = k(η) + f(v) + s(λ),
(4.5)

for all admissible (v, η, λ, φ). Expanding the functional K according to its def-
inition below (2.25) and adding suitable partitions of zero yields (4.4) with the
approximate functional

P̃((v, η, λ, φ), (u, α, z, π)) := F(v,u, α) + D(φ, π,u, α) + S(λ, z, π) + 〈η, α〉. (4.6)
The defect can then be identified from Eqs. (2.27b) and (4.6) as

P(w, q)− P̃(w, q) = −〈η, z〉. (4.7)

Note that the approximation only involves the functional K corresponding to the
kinematic interface condition. The connectivity table corresponding to the approx-
imate operator is identical to Table 4.1, but void of the right-upper entry (K, z).
This renders the connectivity table lower-triangular, which enables one to perform
the inversion of the approximate operator P̃ conveniently by forward substitution.
The subiteration process therefore essentially corresponds to a block Gauss-Seidel
iteration.

4.2.3 Loosely-coupled partitioned methods

The essential difference between strongly-coupled and loosely-coupled partitioned
methods is that the latter do not repeat subiterations, but only perform a sin-
gle fluid and structure solution per time step. The asynchronous enforcement of
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the interface conditions then implies a lag between the fluid and the structure
solution. In the context of strong coupling, this lag can be conceived as a numeri-
cal evaluation error. Solving the exact (i.e., aggregated) equations approximately
can be reinterpreted as solving a set of approximate (i.e., segregated) equations
exactly. Thus, we can construe loosely-coupled methods as solving a set of segre-
gated equations given by Eq. (4.5) as opposed to the aggregated equations (2.27).
Accordingly, the incurred numerical evaluation error can be reinterpreted as a
discretization error. Loosely-coupled methods therefore satisfy conservation only
in an asymptotic sense, i.e., for vanishing mesh width; this is a basic consistency
requirement. Loosely-coupled methods are typically energy-increasing and, hence,
numerically unstable; see, e.g., Refs. [53, 55, 56]. To control the imbalance of en-
ergy and for reasons of accuracy, the time-step size has to be restricted.

4.2.4 Prediction techniques

To improve the order of the numerical evaluation error incurred by loosely-coupled
partitioned methods, prediction techniques are proposed in, e.g., Refs. [53, 55]. In-
stead of integrating the fluid equations based on the position of the structure
boundary in the previous time slab, a prediction can be used for the position of
the structure boundary in the current time slab. Such predictions are generally
based on an extrapolation of the solution from the previous time slab. Prediction
techniques improve the solution accuracy and stability of loosely-coupled meth-
ods; see Refs. [53, 55]. We demonstrate this effect by numerical experiments in
Section 4.3.

Alternatively, prediction techniques can be used to initialize the subiteration
process in strongly-coupled partitioned methods. This can substantially reduce
the number of subiterations required for convergence to sufficient accuracy, i.e.,
to render the numerical evaluation error in the approximation smaller than the
interpolation error (discretization error). To elucidate the connection between
the order of the extrapolation and the number of required subiterations, let us
recall a result from Ref. [69]. To this end, we associate with the subiteration
process as specified by steps (S1)–(S4) an operator C that maps one structure
interface displacement onto the next according to (z|Θ)j �→ (z|Θ)j+1 = C(z|Θ)j ; an
elaboration is deferred to Section 5.2.1. On the basis of a linearized model problem,
the subiteration-operator derivative is shown to be bounded as ‖C′‖ ≤ 2τ (in the
appropriate norm), where τ denotes the computational time-step size. This implies
that the numerical evaluation error in the approximation is reduced by at least a
factor of 2τ per subiteration. The number of required subiterations then depends
on the error in the initial approximation obtained by extrapolation. For sufficiently
smooth solutions, and using an extrapolation of equal order as the interpolation,
the error in the extrapolation is of the same order as the interpolation error.
In that case, two subiterations are required for convergence. To elaborate this
assertion, we note that with a single subiteration the numerical evaluation error in
the approximation is reduced below the interpolation error only for the structure,
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but not for the fluid and the interface. To reduce the global evaluation error
below the interpolation error for a solution over multiple time intervals, sufficiently
accurate initial conditions need to be provided. This requires a reduction of the
evaluation error below the interpolation error also for the fluid and the interface.
Hence, a second subiteration must be carried out. We remark that this result is
based on asymptotic considerations of sufficiently small time steps.

To generalize this result to extrapolations of arbitrary order, suppose that
the interpolation error is of orderN , and that the solution is initialized by means of
an n-order extrapolation with n ≤ N . Then 2 +N − n subiterations are required
to reduce the numerical evaluation error below the interpolation error.

4.2.5 Strongly-coupled versus loosely-coupled methods

Strongly-coupled and loosely-coupled partitioned methods are controversially ad-
vocated in literature; see, e.g., Refs. [1, 18, 20, 47]. Although an a-priori preference
of one method over the other is not justified, a choice can be motivated by aspects
of the underlying physics and by efficiency arguments. In this section, we discuss
the implications of the underlying physics and, moreover, compare the efficiency
of strongly-coupled and loosely-coupled partitioned methods.

To elucidate the implications of the underlying physics for the choice of a
solution method, we consider, for exemplification, two problems with ‘strong’ and
‘weak’ interaction, respectively. A problem with ‘strong’ interaction arises, for
instance, in hemodynamics, where blood flow interacts with the heart ventricles
and arteries; see, e.g., Ref. [48, 63]. As fluid and structure mass are of compara-
ble orders of magnitude, they contribute equally to the dynamics of the system.
Moreover, because the fluid can be considered as incompressible, the sound speed
is infinite. This implies that perturbations induced at the interface are ‘felt’ instan-
taneously throughout the fluid domain and, hence, trigger an immediate ‘response’
to the structure. The above characterizes hemodynamics as a problem with strong
interactions between fluid and structure. For such problems, loosely-coupled par-
titioned methods generally do not work. Strongly-coupled partitioned methods or
monolithic methods are then the only viable option; see, e.g., Refs. [26, 36, 46].

An example of ‘weak’ interaction is given by problems with wind-induced
loads on buildings and bridges. As the structure mass is typically much larger
than the fluid mass, the dynamics of the structure is hardly influenced by the
fluid. The structure then dominates the dynamics of the fluid-structure system. If
the fluid exercises only a minor effect on the structure, loosely-coupled partitioned
methods constitute an adequate option. In the limit of vanishing forcing exerted
by the fluid on the structure, the interaction reduces to a quasi one-way influence,
and the structure can be solved separately. The converse, however, is generally
not true. That is, if the structure mass is much smaller than the fluid mass,
the effect of the structure on the fluid cannot be neglected, because the structure
solution determines the domain on which the fluid is defined. An example of such
a problem constitutes a flag which is flapping in the wind.
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For problems for which both strongly-coupled and loosely-coupled parti-
tioned methods constitute a viable option, preference of one method over the other
can be motivated by a comparison of their stability and computational efficiency.
Computational efficiency can be defined as the ratio of accuracy to computational
work. Strongly-coupled solution methods have a higher computational cost per
time step, but they can maintain energy conservation which renders them uncon-
ditionally stable. The computational time-step size is therefore restricted by the
desired accuracy only, but not by the stability of the numerical method. In con-
trast, for loosely-coupled methods, the computational work per time step is com-
paratively small, but the inherent numerical evaluation error impedes conservation
and restricts the time-step size for reasons of stability and accuracy. In particu-
lar, the stability of modes with time scales much smaller than one actually wants
to resolve can impose a severe restriction on the admissible time-step size. This
discussion is similar to the one on the time-step restriction of explicit and implicit
time-integration methods. Typically, for loosely-coupled methods, the time step
must be much smaller than for strongly-coupled methods. This raises the question
whether the larger time-step size of a strongly-coupled method justifies its higher
computational cost, i.e., whether multiple subiterations are computationally effi-
cient. Ref. [20] claims that “interfield iteration [subiteration] generally costs more
than cutting the time step to attain the same accuracy level”. For this reason,
loosely-coupled partitioned methods are strongly advocated in literature; see also
Refs. [18, 55]. However, we cannot agree to the above statement, because to the
best of our knowledge no evidence is provided in literature to support this claim.
In fact, our numerical experiments in Section 4.3 refute this claim. Moreover, the
computational cost of strongly-coupled methods can be significantly reduced, for
instance, by means of the Krylov acceleration presented in Chapter 5.

4.2.6 Improving the efficiency of strongly-coupled methods

In this section, we discuss concepts to improve the computational efficiency of
strongly-coupled methods by taking advantage of the fact that the subiteration
process is repeated multiple times within a time step. To this end, we note that
the solution of the fluid subsystem generally dominates the cost of the subiteration
process, because typically the number of unknowns in the fluid exceeds by far
those in the structure. This is due to the fact that the length and time scales in
the fluid are typically by several orders of magnitude smaller than those in the
structure and, hence, the fluid discretization requires a much finer resolution. The
efficiency of the subiteration process can be significantly improved by reducing the
computational expense for the fluid solution. Below, we elaborate three options.

A first, obvious option is to employ prediction techniques, in order to ob-
tain an improved initial approximation for the iterative solution of both the fluid
subsystem and the aggregated fluid-structure system; see Section 4.2.4.

A second option is based on a reduced number of iterations for the fluid so-
lution within a subiteration cycle. We remark that generally good initial guesses
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for the fluid solution are available. These can be obtained either from the previous
subiteration or by extrapolation from the previous time slab. With a good initial
guess for the fluid iterative process, quadratic Newton convergence can in principle
be obtained. Subiteration, on the other hand, corresponds to a block Gauss-Seidel
process which has only a linear convergence rate. Hence, fluid convergence is
asymptotically faster than subiteration convergence. Therefore, in principle, a
single Newton iteration in the fluid is sufficient for the convergence of the subit-
eration process. Thus, instead of repeating Newton iterations in the fluid until
convergence, only an approximate fluid solution is required. Upon subiteration
convergence, it is however important to verify that also the fluid residual sepa-
rately satisfies a given convergence criterion. The above suggests that the number
of required subiterations is not significantly influenced by solving the fluid only ap-
proximately. Each subiteration, however, becomes computationally much cheaper,
as fewer Newton iterations on the fluid solution are expended. Obviously, this can
considerably increase the computational efficiency of subiteration-based strongly-
coupled solution methods. Finally, we remark that for loosely-coupled solution
methods, which by definition take only one subiteration per time step, a single
Newton iteration does generally not yield a sufficiently accurate fluid solution.

A third option to reduce the computational expense of the fluid solution is
based on the observation that for finite wave-propagation speeds the perturbation
induced by an update of the interface position can be confined to a fluid region
in the vicinity of the interface. If the perturbation decays sufficiently fast in
the direction perpendicular to the interface, the fluid solution in the subiteration
process can in principle be confined to a truncated fluid domain. The solution of
the fluid on the entire domain is then required only once to verify convergence.
This technique can potentially deliver significant computational savings, but its
implementation can be involved. We shall therefore not pursue it any further.

4.3 Numerical experiments
To illustrate the different properties of strongly-coupled and loosely-coupled par-
titioned solution methods, we conduct numerical experiments on a prototypical
fluid-structure interaction problem. In particular, we assess the stability and ac-
curacy of the methods, and we compare their computational efficiency. Finally,
we investigate prediction techniques to further improve the efficiency of strongly-
coupled methods.

4.3.1 Experimental setup

The numerical experiments consider the piston problem introduced in Section 3.2.
To enable a comparison with the results obtained in Chapter 3, we use the same
physical parameter settings as specified in Table 3.1 on page 43.

The fluid discretization employs the time-discontinuous Galerkin method
with linear-in-time shape functions and is therefore formally second-order time
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accurate. For the structural time integration we use the analytic solution from
Section 3.5.1.

To investigate the effect of the numerical evaluation error of loosely-coupled
and strongly-coupled solution methods separately from the fluid and structure
discretization errors, we must ensure that the latter are sufficiently small. Dis-
cretization errors in the structure are excluded by means of the analytic solution.
Unless stated otherwise, we use for the fluid discretization subcycling with a subcy-
cling factor κ = 8, i.e., the fluid discretization uses a time step which is eight times
smaller than the time step of the structural discretization. Although the difference
between the methods becomes apparent also without fluid subcycling for coarse
time steps, we require fluid subcycling when investigating the accuracy of the so-
lution methods in order to reduce the effect of fluid dissipation. In general, fluid
dissipation damps the solution and, hence, counteracts the amplification caused
by loosely-coupled solution methods; cf. Ref. [70]. In our numerical experiments,
we use second-order structural prediction in conformity with Ref. [55].

4.3.2 Investigation of stability properties

For the numerical experiments presented in this section, the same time-step size
is used for the fluid and structure discretizations. The size of the time step is
indicated below the figures. Figs. 4.1–4.3 on the following pages plot the struc-
tural displacement versus time in five oscillation periods for a strongly-coupled
and a loosely-coupled partitioned method with and without structural prediction.
Fig. 4.1 shows that the amplitude computed with the loosely-coupled method
grows in time, whereas the amplitude computed with the strongly-coupled method
remains constant. This calculation uses a time step of τ = 0.01. Next, we use
a structural prediction according to Eq. (3.37), with values of the forcing term
at the previous time level. When using a structural predictor for the loosely-
coupled method, the growth in amplitude is substantially reduced so that the
results for the loosely-coupled method and the strongly-coupled method virtually
coincide (Fig. 4.2, with the same time-step size as Fig. 4.1). This illustrates that
structural prediction reduces the numerical evaluation error incurred by a loosely-
coupled method. However, if the time-step size is increased, e.g., by a factor of ten
(Fig. 4.3), the error in the amplitude computed with the loosely-coupled method
emerges again, in spite of the structural prediction. The amplification of the so-
lution obtained with the loosely-coupled method can be attributed to artificial
energy production at the interface, which can induce numerical instability of the
combined fluid-structure system. In practice, this imposes a restriction on the
admissible time-step size. The strongly-coupled method does not become numer-
ically unstable. Indeed, as it maintains exactly the conservation properties at the
interface, it is unconditionally stable. In this case, there is no restriction on the
admissible time-step size, other than the required accuracy.

We remark that for a single-mode problem such as the one considered, sta-
bility and accuracy are closely related. Only for multiple-mode problems stability
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and accuracy can be distinguished clearly. For loosely-coupled methods, the sta-
bility of modes with time scales smaller than one actually wants to resolve can
impose a severe restriction on the admissible time-step size. On the other hand,
for strongly-coupled methods there is no such stability restriction, but the time-
step size is restricted by accuracy considerations only.
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Figure 4.1: Structural displacement versus time: strongly-coupled method
(−−−) and loosely-coupled method without structural prediction (−−), τ = 0.01.
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Figure 4.2: Structural displacement versus time: strongly-coupled method
(−−−) and loosely-coupled method with structural prediction (−−), τ = 0.01.
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Figure 4.3: Structural displacement versus time: strongly-coupled method
(−−−) and loosely-coupled method with structural prediction (−−), τ = 0.1.

4.3.3 Investigation of accuracy properties

This subsection investigates the temporal accuracy of strongly-coupled and loosely-
coupled methods by a grid refinement study. We use the same settings as in
Section 4.3.2. However, the subcycling ratio is set to 8.

Table 4.2 shows the observed order of temporal accuracy (determined as in
Section 3.5.3) for the strongly-coupled method as well as for the loosely-coupled
method with and without structural prediction. The observed order of temporal
accuracy displays the expected asymptotic behaviour, i.e., second-order accuracy
for the strongly-coupled method and for the loosely-coupled method with predic-
tion, and first-order accuracy for the loosely-coupled method without prediction.

Table 4.2: Observed order of temporal accuracy according to Eq. (3.40):
loosely-coupled and strongly-coupled partitioned methods.

mesh sequence loose coupling loose coupling strong coupling
with time-step sizes without prediction with prediction
2−3, 2−4, 2−5 1.4667 1.9848 5.0188
2−4, 2−5, 2−6 1.4565 1.9891 2.6159
2−5, 2−6, 2−7 1.1958 2.0018 2.0457

The strongly-coupled method and the loosely-coupled method with predic-
tion have formally the same order of accuracy; the nature and magnitude of the
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dominant errors, however, are inherently different. To illustrate this difference,
we plot in Fig. 4.4 the L2 norm of the error in the computed structural displace-
ment versus the size of the structural time step for τ = 2−3, 2−4, . . . , 2−7, using
the same reference solution as in Section 3.5.2. As the strongly-coupled method
and the loosely-coupled method differ only in the number of subiterations, we
can infer from Fig. 4.4 that the numerical evaluation error in the solution of the
loosely-coupled method is by several orders of magnitude larger than the fluid and
structure discretization errors. That is, for a loosely-coupled method the numerical
evaluation error can dominate other sources of error. From Fig. 4.4 it is clear that
the loosely-coupled method requires smaller time steps than the strongly-coupled
method for a specified error tolerance. Conversely, given a certain level of accuracy,
a strongly-coupled method can allow for larger time steps than a loosely-coupled
method.

As the grid refinement study uses the same settings and reference solution
as in Section 3.5.2, the accuracy of the loosely-coupled method can be compared
also to the accuracy of the non-conservative strongly-coupled methods B and C;
see Fig. 3.3 on page 46. Although the non-conservative methods B and C are more
accurate than the loosely-coupled method with prediction, the gain in accuracy
does not seem to justify the computational cost associated with a strongly-coupled
method. However, comparing the accuracy of a loosely-coupled and a conserva-
tive strongly-coupled method, it is clear from Fig. 4.4 that the latter is much
more accurate. In fact, the conservative strongly-coupled method is by more than
three orders of magnitude more accurate than the loosely-coupled method. Hence,
strongly-coupled methods are much more accurate than loosely-coupled methods,
provided that they maintain conservation at the interface.

4.3.4 Comparison of efficiency

In the following, we compare loosely-coupled and conservative strongly-coupled
methods in terms of efficiency, which we define as the ratio of accuracy to compu-
tational work. Let us employ as a measure of accuracy the reciprocal of the error
in the numerical solution and as a measure of computational work the number
of fluid-structure iterations. In Fig. 4.5, the error is plotted versus the num-
ber of fluid-structure iterations on a log-log scale for the conservative strongly-
coupled method and for the loosely-coupled method with structural prediction.
The smaller the time step, the more iterations are required for one cycle and,
correspondingly, the computational work increases. The error in a loosely-coupled
method is generally larger than in a strongly-coupled method. For a given number
of fluid-structure iterations the strongly-coupled method is at least two orders of
magnitude more accurate than the loosely-coupled method. The strongly-coupled
method is therefore computationally more efficient.
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Figure 4.4: Error in the structure displacement versus structural time-step
size: strongly-coupled method (−−−) and loosely-coupled method with structural
prediction (−−).
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Figure 4.5: Error in the structure displacement versus number of fluid-
structure iterations: strongly-coupled method (−−−) and loosely-coupled method
with structural prediction (−−).

4.3.5 Improving the efficiency of strongly-coupled methods

In this section, we investigate prediction techniques to reduce the required number
of subiterations in strongly-coupled solution methods. The subiteration process
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requires an initial estimate of the structure solution which, for instance, can be ob-
tained by prediction techniques. Here, the structural prediction is done according
to Eq. (3.37), with values of the forcing term at the previous time level. The effect
of such structural prediction on the number of required subiterations is displayed
in Fig. 4.6, which plots the number of subiterations per time step versus time. In
particular, we compare the number of subiterations for a strongly-coupled method
with and without structural prediction. As the area under the curves in Fig. 4.6
corresponds to the computational work, it is clear that prediction techniques can
reduce the computational cost of strongly-coupled solution methods. When in-
creasing the time-step size, the required number of subiterations per time step
increases moderately. However, the positive effect of prediction techniques on the
computational cost can still be observed.

Moreover, Fig. 4.6 indicates that the computational cost of the strongly-
coupled method is still three times the cost of a loosely-coupled method, which
requires only a single subiteration per time step. On the other hand, the strongly-
coupled method is by more than a factor of 1000 as accurate, see Fig. 4.4 on the
preceding page. Preference of one method over the other depends on whether the
increased accuracy also justifies the greater computational cost. For the loosely-
coupled method to attain the same accuracy as the considered strongly-coupled
method, we need to reduce the time-step size by a factor of approximately 30 in
the second-order accurate loosely-coupled method. However, the computational
cost of the loosely-coupled method then increases correspondingly by a factor of
30, and it becomes 10 times as expensive as the strongly-coupled method for a
comparable level of accuracy. This refutes a common belief that multiple fluid-
structure iterations generally cost more than reducing the time step of a loosely-
coupled method to attain the same level of accuracy; see, e.g., Ref. [20]. We expect
the superior efficiency of a strongly-coupled method to be even more pronounced
for multiple-mode problems, as discussed in Section 4.3.2.

4.4 Concluding remarks
In this chapter, we considered monolithic methods, and strongly-coupled and
loosely-coupled partitioned methods for the solution of the fluid-structure sys-
tem. We elaborated that the monolithic solution by Newton’s method incurs
several severe disadvantages, viz., the prohibitively expensive evaluation of shape
derivatives, ill-conditioning of the system Jacobian matrix and the loss of software
modularity due to the simultaneous solution of fluid and structure. We explained
that the complications in Newton’s method can be effectively circumvented by par-
titioning, and we distinguished strongly-coupled and loosely-coupled partitioned
methods. Strongly-coupled methods incur a greater computational cost per time
step than loosely-coupled methods. However, strongly-coupled methods can main-
tain conservation at the fluid-structure interface, which renders them uncondition-
ally stable. In contrast, loosely-coupled methods are typically energy increasing
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Figure 4.6: Number of subiterations per time step versus time for one oscilla-
tion period: strongly-coupled method without structural prediction (−−) and
with structural prediction (−−−), τ = 2−6.

and, hence, numerically unstable. To control the numerical instability and for rea-
sons of accuracy, the time-step size has to be restricted. However, this restriction
can be alleviated by means of prediction techniques which mitigate the numerical
instability and improve the accuracy. For strongly-coupled methods, on the other
hand, the admissible time-step size is determined by accuracy considerations only.

To compare strongly-coupled and loosely-coupled methods in terms of sta-
bility, accuracy, computational cost and efficiency, we conducted numerical exper-
iments on the piston problem. Our results illustrated the restrictions on the time
step of loosely-coupled methods and the positive effect of prediction techniques.
Moreover, we found that conservative strongly-coupled methods are much more
accurate than loosely-coupled methods and, hence, they can afford much larger
time steps for the same level of accuracy. We demonstrated that conservative
strongly-coupled methods achieve a greater accuracy with fewer iterations than
loosely-coupled methods and are therefore more efficient. Our numerical results
also indicate that for strongly-coupled methods which are not conservative the
improvement in accuracy over loosely-coupled methods does not seem to justify
the additional computational cost associated with multiple subiterations. Indeed,
void of the conservation properties, strongly-coupled methods appear to lose their
essential advantage over loosely-coupled methods. Our results therefore warrant
a clear preference for conservative strongly-coupled methods.

To improve the efficiency of strongly-coupled methods, we investigated pre-
diction techniques which were shown to reduce the number of required subiter-
ations. Moreover, we proposed two concepts to reduce the computational cost
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associated with the fluid solution in the subiteration process. The first concept
propounds an approximate fluid solution within a subiteration, the second concept
restricts the fluid solution to the vicinity of the fluid-structure interface. In either
case, upon convergence of the subiteration process, fluid convergence needs to be
verified separately.

Finally, let us briefly discuss to which extent our findings generalize. For a
single-mode problem such as the one considered, stability and accuracy cannot be
distinguished clearly. This is only possible for multiple-mode problems. However,
we expect that for multiple-mode problems the superiority of conservative strongly-
coupled methods over loosely-coupled methods is even more pronounced. This
conjecture is based on the fact that for loosely-coupled methods the stability of
modes with time scales smaller than one actually wants to resolve can impose a
severe restriction on the admissible time-step size. For strongly-coupled methods,
on the other hand, there is no such stability restriction, but the time-step size is
restricted by accuracy considerations only.



Chapter 5

Interface-GMRES(R) acceleration of
subiteration

5.1 Introduction
The numerical solution of fluid-structure interaction problems commonly employs
subiteration, i.e., fluid and structure equations are solved alternately subject to
complementary partitions of the interface conditions; see Section 4.2.2 and also
Refs. [1, 36, 47], for example. This process essentially constitutes a block Gauss-
Seidel iteration, which is repeated until convergence. Subiteration sidesteps a
simultaneous treatment of the coupled fluid-structure equations and the concomi-
tant difficulties. Although subiteration is a good solver for many problems, it
suffers from two essential drawbacks: Firstly, subiteration converges only slowly
or even diverges for problems with large computational time steps or large fluid-to-
structure mass ratios. Subiteration is only conditionally stable, but even despite
formal stability transient divergence can precede asymptotic convergence. These
convergence difficulties can be attributed to the nonnormality of the subiteration
operator; see Ref. [69]. Such non-monotonous convergence behaviour can even
lead to failure of the solution method despite formal stability. Secondly, subiter-
ation is generally employed in a sequential time-integration process and, hence,
solves a sequence of similar problems. However, the method cannot exploit this
property and reuse generated information, for instance, for preconditioning pur-
poses. Therefore, subiteration is to be considered inefficient. Our objective is to
overcome these drawbacks by combining subiteration with GMRES acceleration.

In this chapter, we show that subiteration can be conceived as a mapping
of one interface displacement onto the next. Accordingly, the method can be
characterized by recursion of a nonlinear operator on the interface displacement.
The subiteration solution method therefore constitutes a fixed-point iteration.
The method that we propose instead solves this nonlinear fixed-point problem
by means of a Newton-Krylov method [10]. Such Newton-Krylov methods solve

69
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the nonlinear problem by means of an (inexact) Newton method, in which the lin-
ear systems arising in each Newton step are solved by means of a Krylov subspace
method such as GMRES [59]. Newton-Krylov methods have become popular for
many problems, for example in fluid dynamics, combustion and plasma physics;
see the review article [33]. However, their potential for fluid-structure-interaction
problems has received only sparse attention; see, e.g., Refs. [26, 38, 58]. More-
over, these approaches apply GMRES to the aggregated variables or to the Schur
complement associated with the structure variables. Instead, we propose to com-
bine the Newton-Krylov method with subiteration, which allows us to confine the
Newton-Krylov method to the interface degrees-of-freedom. Accordingly, we refer
to the method as Interface-Newton-Krylov method, or simply as Interface-GMRES
[43, 71]. It is precisely the restriction of the GMRES acceleration to the interface
degrees-of-freedom which renders the storage requirements for the Krylov space
and the computational cost incurred by the acceleration itself negligible.

The Newton-Krylov method consists of nested iterations and involves fre-
quent solution of the linear system by means of the Krylov method. This offers the
possibility of reusing the Krylov space in subsequent Newton iterations and time
steps, which we refer to as Interface-GMRESR. Such reuse can yield substantial
computational savings. Moreover, the GMRES acceleration enables underrelax-
ation without hampering convergence. Such underrelaxation can be mandatory if
the subiteration method is unstable, or to mitigate nonnormality-induced diver-
gence.

In this chapter, we treat the algorithmic description and theoretical back-
ground of the proposed numerical method in a continuum setting. We will com-
plement this description by an analysis of the linear-algebra aspects and error-
amplification properties of the method in Chapter 6.

We conduct numerical experiments on a prototypical fluid-structure-interac-
tion problem, viz., the one-dimensional piston problem from Chapter 3, to assess
the viability and potential of the Interface-GMRES method with and without
the reuse option. In particular, we investigate the convergence behaviour of the
method, test its robustness and assess its computational cost. A comparison to
standard subiteration reveals that the Interface-GMRES(R) method is much more
robust than subiteration and that it converges even if subiteration itself diverges.
Moreover, the Interface-GMRES(R) method is also much more efficient than subit-
eration. Reuse of Krylov vectors typically yields considerable computational sav-
ings and makes the difference to subiteration even more pronounced.

Finally, we remark that the Interface-GMRES(R) acceleration preserves the
modularity of the underlying subiteration method, i.e., it maintains the segregated
treatment of fluid and structure; see, e.g., Ref. [20]. This renders the implementa-
tion of the acceleration method in codes that already use subiteration as a solver
straightforward.

The contents of this chapter are organized as follows : Section 5.2 identifies
subiteration as a fixed-point iteration. Next, this section presents the Interface-
GMRES acceleration of subiteration and the optional reuse of Krylov vectors.



5.2. Interface-GMRES(R) acceleration 71

Section 5.3 provides numerical experiments and results. Section 5.4 contains con-
cluding remarks.

5.2 Interface-GMRES(R) acceleration
In Section 5.2.1, we identify the subiteration process as a fixed-point iteration on
the interface degrees-of-freedom. Section 5.2.2 presents the GMRES acceleration
for the interface fixed-point problem. Section 5.2.3 addresses the reuse of Krylov
vectors.

5.2.1 Subiteration: Interface fixed-point iteration

In this section, we reconsider the subiteration process introduced in Section 4.2.2.
To facilitate the ensuing exposition of the Interface-GMRES acceleration, we con-
strue subiteration as an operator on the structure displacement at the interface,
z|Θ. For conciseness in notation, we shall denote the interface displacement sim-
ply by z. The subiteration process can then be conceived as a mapping from one
structural interface displacement to the next, i.e.,

C : zj �→ zj+1 = Czj , (5.1)

where C denotes the nonlinear operator induced by subiteration; see also Refs. [69,
71]. The subiteration operator C is not explicitly available; however, its action on
zj can be evaluated by sweeping through the subiteration steps (S1)–(S4) speci-
fied in Section 4.2.2. In accordance with the mapping defined by Eq. (5.1), the
subiteration process can be characterized by recursion of the nonlinear operator C
on the interface displacement z and can be conceived as a fixed-point iteration.
The fixed point

z̄ : Cz̄ = z̄ (5.2)

corresponds to the interface component of the structure solution of the aggregated
equations (2.27). Upon providing the subiteration process with the solution z̄,
the subiteration steps (S1)–(S4) yield the solution of the aggregated equations in
a single iteration under the condition that the equations in each step are solved
exactly.

Convergence of the subiteration process is contingent on the spectral radius
of the subiteration-operator derivative. We defer a detailed analysis of the conver-
gence behaviour of the subiteration method to Section 6.3.3. Here, we shall rather
use subiteration as a building-block for the Interface-GMRES method.

5.2.2 Interface-GMRES acceleration of subiteration

Instead of solving the problem (5.2) by fixed-point iteration, we propose to solve
it by a hybrid Newton-Krylov method [10]. Each Newton step requires then the
solution of a linear problem for which we employ a Krylov subspace method,
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here GMRES [59]. Because the problem (5.2) involves only the interface degrees-
of-freedom, we refer to the method also as Interface-Newton-Krylov method, or
simply as Interface-GMRES .

The nonlinear problem can be formulated as

Rz = 0, (5.3)

with R := C− I the residual operator defined in conformity with Eq. (5.2). Clearly,
z being a solution of Eq. (5.3) is identical to z being a fixed point of Eq. (5.2).
Correspondingly, the residual of an iterate zi is

ri := Rzi = (C− I)zi = zi+1 − zi. (5.4)

For a given initial guess z0, Newton’s method generates a sequence of approximate
solutions, zi, according to

zi+1 = zi + z′i = zi − [R′(zi)]−1Rzi, (5.5)

where R′(zi) = ∂R/∂z(zi) denotes the derivative of R at zi and z′i a perturbation
around the linearization state zi. If the initial estimate is sufficiently close to the
actual solution z of Eq. (5.3), then zi converges to z as i→∞. Each Newton step
requires the solution of a linear problem of the form 1

Rz0 + R′(z0)z′0 = 0, (5.6)

in which the derivative R′ is not known explicitly. However, if a Krylov method
is used for the solution of problem (5.6), R′ is only required in the form of a
matrix-vector product. We seek approximations to z′0 by making the following
ansatz

z′0 ∈ Km := span{zj − z0}j=m
j=1 , (5.7)

where Km is the Krylov space of dimension m associated with the linear prob-
lem (5.6). Substituting Eq. (5.7) into Eq. (5.6) and approximating the resulting
matrix-vector product by finite-differences we obtain

R(z0) + R′(z0)
j=m∑
j=1

αj(zj − z0) = R(z0) +
j=m∑
j=1

αjR
′(z0)(zj − z0)

= r0 +
j=m∑
j=1

αj(rj − r0) +O(‖
j=m∑
j=1

αj(zj − z0)‖2) = 0 (5.8)

with the coefficients αj still to be determined, and span{rj−r0}j=m
j=1 is the residual-

sensitivity space corresponding to span{zj−z0}j=m
j=1 . The finite-difference approx-

imation which underlies the second identity in Eq. (5.8) requires an additional
1For transparency, in Eq. (5.6) the linearization state is redefined at each Newton step, i.e.,

z0 ← z0 + z′0.
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residual evaluation, i.e., one subiteration for each search direction. Because the
subiteration operator is nonlinear, this finite-difference approximation introduces
another linearization error in addition to the one incurred by Newton’s method.

To determine the coefficients αj required for the redefinition of the lineariza-
tion state z0 ← z0 +

∑j=m
j=1 αj(zj − z0), we solve Eq. (5.8) in a least-squares sense

by minimization in the L2 norm:

ᾱ = arg min
α
‖r0 +

j=m∑
j=1

αj(rj − r0)‖, ξ := ‖r0 +
j=m∑
j=1

ᾱj(rj − r0)‖, (5.9)

where ξ denotes the norm of the residual of the linear problem (5.6). The lat-
ter constitutes an estimate for the norm of the residual of the nonlinear prob-
lem (5.3). Upon convergence of the Newton process, this estimate becomes in-
creasingly sharp, because the linearization errors vanish. As the least-squares
problem (5.9) is confined to the interface degrees-of-freedom, the computational
cost involved is small in comparison to the cost incurred by a Newton or a GMRES
step, which both require one subiteration; cf. Eqs. (5.5) and (5.8), respectively.

The Krylov space Km coincides with the span of {ζj−z0}j=m
j=1 , where ζj is the

j-th subiteration iterate. As subiteration uses only the last iterate of the sequence,
ζm, and on account of the minimal-residual property of GMRES, it follows that
the residuals generated by subiteration form an upper bound for the GMRES
residuals. In addition, the minimal-residual property implies that, in contrast to
the norm of the subiteration residuals, the norm of the residuals of the GMRES
iterates necessarily form a non-increasing sequence. However, this implies faster
Newton-Krylov convergence only for problems which are sufficiently linear; for
nonlinear problems this does no longer hold due to the linearization error.

Provided with an initial approximation of the structure position z0(t), Al-
gorithm 5.2.1 on the next page summarizes the Newton-Krylov method for the
solution of the nonlinear problem (5.3). To improve the robustness of the method,
we generate an orthonormal basis of the Krylov space by employing Gram-Schmidt
orthonormalization; see, e.g., Ref. [22]. The Gram-Schmidt orthonormalization is
implemented on lines 7–10 of Algorithm 5.2.1. Moreover, we scale the Krylov
vectors by an appropriate constant ν (line 10) which facilitates the subiteration
process (line 12) required for the residual evaluation. This scaling can be conceived
as a form of underrelaxation, because it determines the norm of the update, and
it allows to combine GMRES with subiteration even if subiteration is formally
unstable. In contrast, using underrelaxation in connection with subiteration sep-
arately typically renders convergence excessively slow. We remark that, on linear
approximation, the Krylov space is not changed by orthonormalization and un-
derrelaxation. A subiteration is required by each GMRES step (cf. Eq. (5.8) and
line 12) and each Newton step (cf. Eq. (5.5) and line 18). The fluid solution can
be extracted from the subiteration process on line 1 or 18.

The convergence tolerances for the nonlinear problem (5.3) and the linear
problem (5.6) are denoted by ε0 and ε1, respectively. Clearly, the nonlinear prob-
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lem cannot be solved more accurately than the linear problem. On the other hand,
if the linearization error is large, then a strict reduction of the linear residual does
not yield a corresponding reduction of the nonlinear residual. We therefore con-
sider a relative tolerance for the linear problem with respect to the norm of the
nonlinear residual in the current Newton step i, in particular

ε1 = κ‖ri‖, (5.10)

where κ < 1 is a scalar that determines how accurately the linear problem is to
be solved. The relative tolerance serves to prevent a waste of computational work
incurred by solving the linear problem excessively accurately.

1: i = 0; z1 = Cz0; r0 = z1 − z0
2: while ‖ri‖ > ε0 do
3: j = 0; ξ = ‖ri‖
4: while ξ > ε1 do
5: j = j + 1
6: z′j = zj − z0
7: for k = 1, . . . , j − 1 do
8: z′j = z′j − z′k(z

′
j · z′k)/‖z′k‖2

9: end for
10: z′j = νz′j/‖z′j‖
11: zj = z0 + z′j
12: zj+1 = Czj

13: r′j = (zj+1 − zj)− ri

14: ᾱ = arg min‖ri +
∑k=j

k=1 αkr
′
k‖

15: ξ = ‖ri +
∑k=j

k=1 ᾱkr
′
k‖

16: end while
17: z0 = z0 +

∑k=j
k=1 ᾱkz

′
k

18: i = i+ 1; z1 = Cz0; ri = z1 − z0
19: end while

Algorithm 5.2.1: The Interface-Newton-Krylov method.

The above presentation introduces the Interface-GMRES method as an ac-
celeration of the interface fixed-point iteration that is induced by subiteration.
Alternatively, the subiteration method can be construed as a preconditioner for
the aggregated system; cf. Section 6.3.4. The Interface-GMRES method then
solves this preconditioned aggregated system by means of a Krylov method. As
the subiteration preconditioner condenses errors into a subspace which can be as-
sociated with the interface variables (cf. Section 6.3.2), the Krylov vectors can be
represented in the interface approximation space.

In contrast to approaches which apply GMRES to the aggregated variables
or to the structure variables, see Refs. [26, 38, 58], the proposed Interface-GMRES



5.2. Interface-GMRES(R) acceleration 75

method is confined to the interface variables. Therefore, the storage requirements
for the Krylov space and the computational expense for the solution of the least-
squares problem are much lower. Moreover, we remark that the acceleration space
for the Interface-GMRES method need not necessarily be the approximation space
associated with the structure interface displacement, but the approximation space
associated with any interface quantity can serve as an acceleration space. Different
choices for the acceleration space are investigated in Ref. [71].

We note that, because the Interface-GMRES method allows for a description
in a continuum setting, its convergence behaviour can be inferred to be asymp-
totically independent of the underlying discretization; see also Ref. [71]. This
implies that for all sufficiently fine discretizations, the convergence behaviour of
the Interface-GMRES method is identical.

Finally, to place the proposed method into context, let us briefly address its
relation to so-called iterative substructuring schemes [36], which accelerate conver-
gence by relaxed updates of the interface position. The relaxation parameter can
be determined, for instance, by means of the steepest-descent method or Aitken’s
method; see Refs. [45, 46]. Such iterative substructuring schemes essentially can
be viewed as a special instance of the Interface-GMRES method, in which the
update of the interface position is computed based on a single search vector only.

5.2.3 Reuse of Krylov vectors: Interface-GMRESR

As each Newton step invokes the solution of a linear system by a Krylov method,
the Newton-Krylov method lends itself naturally to reuse of Krylov vectors in
subsequent Newton steps. In the context of the GMRES acceleration on the inter-
face displacement, we shall refer to such reuse also as Interface-GMRESR. Reuse
of Krylov vectors requires only minor modifications to Algorithm 5.2.1. These
modifications are implemented by replacing the corresponding lines by those in
Algorithm 5.2.2 on the following page. Essentially, reuse requires that the counter
j is not reset in each Newton step. The inner loop then augments instead of
overwrites the available search and residual-sensitivity space. Moreover, an addi-
tional residual estimate ξ corresponding to the reduction of the updated nonlinear
residual in the available space can be added. Depending on this initial resid-
ual estimate, the search and residual-sensitivity space are further augmented or a
Newton update is carried out. We remark that, once a single vector is reused, the
search space does formally no longer constitute a Krylov space, which implies that
the search directions do not necessarily constitute ‘preferential’ search directions.
Nevertheless, typically, much fewer Krylov vectors need to be added to the reused
space than are generated for a reconstructed Krylov space, which can result in
considerable computational savings.

In addition to the reuse option within a single time step considered above,
reuse is also possible over subsequent time steps. In the latter case, the available
search and residual-sensitivity space are carried over from one time interval to
the next. There is, however, a difference between the two reuse options. Within
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1: i = 0; j = 0; z1 = Cz0; r0 = z1 − z0
3a: ᾱ = arg min‖ri +

∑k=j
k=1 αkr

′
k‖

3b: ξ = ‖ri +
∑k=j

k=1 ᾱkr
′
k‖

3c: zj+1 = z1

Algorithm 5.2.2: Modification of Algorithm 5.2.1 to enable reuse of Krylov
vectors.

a single time step the nonlinear subiteration operator does not change, but only
its linearization state does. In contrast, the subiteration operator does change
between time steps on account of differences in initial conditions. As long as the
operators in subsequent time steps are sufficiently similar, reuse will be beneficial.

Reuse can substantially enhance the efficiency of the method; however, it
comes at the expense of robustness and therefore has to be exercised with some
caution. The benefit and the viability of the reuse option are contingent on the
similarity between the reused space and the reconstructed space. Failure of the
reuse option is in principle possible, however, it appears to be rare; see Ref. [42, 71].
We will assess the potential and limitations of the reuse option based on numeri-
cal experiments in Section 5.3 and, moreover, by means of an error-amplification
analysis in Chapter 6.

To place the reuse option into context, let us mention two alternative ap-
proaches for reusing computational information, viz., so-called search space injec-
tion [72] and nested preconditioning [12]. In Section 6.4.2, we establish common-
alities and differences between these approaches and our methodology of reusing
Krylov vectors.

5.3 Numerical experiments
To assess the properties and the potential of the proposed Interface-Newton-Krylov
method, we conduct numerical experiments on the piston model problem from Sec-
tion 3.2. In Section 5.3.1, we investigate the convergence behaviour of the Newton-
Krylov method and compare it to the convergence behaviour of the subiteration
method. In particular, we examine the effects of nonlinearity and computational
time-step size on convergence. For these investigations, consideration of a single
time step suffices. In Section 5.3.2, we investigate the reuse of Krylov vectors in
subsequent time steps and demonstrate its potential for enhancing the efficiency
of the method. We compare the Newton-Krylov method and subiteration in terms
of computational expense and robustness. We consider multiple time steps and
various fluid-to-structure mass ratios.
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5.3.1 Convergence of Interface-GMRES(R)

First, we investigate the convergence of the basic Newton-Krylov method (Algo-
rithm 5.2.1 on page 74) by examining the convergence of the linear and nonlinear
residuals and the use of a relative tolerance for the linear residual. Moreover, we
investigate the Newton-Krylov method with reuse of Krylov vectors in subsequent
Newton iterations (Algorithm 5.2.2). In addition, we examine the effect of non-
linearity on the convergence of the method. Finally, we compare the convergence
behaviour of the Newton-Krylov method to standard subiteration for different
computational time steps and fluid-to-structure mass ratios.

Experimental setup

We consider the piston problem and note that if the initial conditions are specified
as z(0) = ż(0) = 0 and u(x, 0) := (ρ, ρv,E)(x, 0) = (ρ0, 0, E0) =: u0 with ρ0

and E0 appropriate constants and p0 = p(u0), then the obvious solution to the
aggregated variational statement (3.10) is

q := (u, α, z, π) = (u0, α0, 0, p0) =: q0. (5.11)

To examine the convergence behaviour of the considered solution methods we
instead provide an initial approximation of the structure displacement conforming
to

z0(t) = z0 + χ(exp (−100t2)− 1) = χ(exp (−100t2)− 1), t ∈ [0, τ ], (5.12)

where τ denotes the time-step size and the parameter χ determines the error in
the initial approximation. The initial approximation of the structure displace-
ment (5.12) constitutes a curve in space/time, in accordance with the space/time
finite-element discretization of the piston problem. We consider χ = 10−2 and
χ = 10−6. For χ = 10−2 the system is pronouncedly nonlinear, whereas for
χ = 10−6 the system is only weakly nonlinear. Starting from the initial ap-
proximation (5.12), the solution methods generate a sequence of residuals and, in
principle, upon convergence retrieve the uniform solution (5.11). We monitor this
sequence of residuals within a single time step.

The fluid-structure system is discretized by means of space/time finite el-
ements. The adopted discretization is essentially identical to that in Ref. [70].
For completeness, we briefly summarize its setup. The space/time fluid domain
is covered with a tessellation of quadrilateral elements. The number of elements
in spatial direction is denoted by Nx

U , the number of elements in temporal direc-
tion per unit time by N t

U. The structure mesh consists of N
t
Z elements per unit

time. The fluid equations are discretized by means of a discontinuous Galerkin
method with the approximation space consisting of piecewise tensor products of
polynomials of order PU (space,time) in conformity with Section 3.4.1. The ap-
proximation spaces admit discontinuities across element boundaries. The elements
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in the fluid are connected by the modified Osher scheme and weakly enforced ini-
tial conditions. The structure equation is discretized by means of a continuous
Galerkin method. The approximation space of the structure consists of piecewise
polynomials of order PZ. The connection between the elements in the structure
is provided by strongly enforced initial conditions through Lagrange multipliers.
The interface approximation spaces associated with kinematic and dynamic condi-
tions comprise NA,P elements per unit time, and consist of piecewise polynomials
of order PA and PP, respectively.

The system and discretization parameters are given in Table 5.1 and 5.2,
respectively, where c0 :=

√
γ(γ − 1)E0/ρ0 denotes the speed of sound. Through-

out, we shall set NA,P = N t
Z. In the following investigation, we use τ = 1 and

N t
U = N t

Z = 24. We set the convergence tolerance to ε0 = 10−6‖r0‖, i.e., we
require a reduction of the initial residual by six orders of magnitude. In addition,
we specify for the Newton-Krylov method the tolerance for the GMRES itera-
tion according to ε1 = 10−7‖r0‖, unless stated otherwise, and an underrelaxation
parameter of ν = 0.1 throughout.

Table 5.1: System parameters (∗ indicates a variable parameter).

z0 ż0 α0 ρ0 c0 K M τ
0 0 1 6 0.5 1 1 ∗

Table 5.2: Discretization parameters (∗ indicates a variable parameter).

Nx
U N t

U NA N t
Z NP PU PA PZ PP

24 ∗ ∗ ∗ ∗ (3, 3) 5 5 4

Numerical results

To investigate the convergence behaviour of the Newton-Krylov method, we plot
in Fig. 5.1 the residual reduction versus the iteration counter for the different vari-
ants of the Newton-Krylov method considered in the sequel and for subiteration
as a reference. We begin by investigating the convergence properties of the ba-
sic Newton-Krylov method (Algorithm 5.2.1 on page 74). The solution process
alternates between GMRES and Newton steps. This is reflected in Fig. 5.1 by a
sequence of residual estimates followed by the true residual. Initially, there is a
considerable discrepancy between the estimate and the true residual. This discrep-
ancy is induced by the linearization errors incurred by the Newton process and the
finite-difference approximation. If the linearization errors dominate the solution
error in the linear problem, the difference between these errors manifests itself as
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a jump in the convergence curve. As the linearization error is initially larger for
χ = 10−2 than for χ = 10−6, the residual reduction in the first Newton step is
much smaller for χ = 10−2 than for χ = 10−6, although the linear systems are
solved to the same accuracy. Hence, for χ = 10−2 the convergence curve exhibits
larger jumps and requires more iterations for convergence; see Fig. 5.1. As upon
convergence the linearization error vanishes, the estimate becomes increasingly
sharp and the jumps decrease.

0 5 10 15 20 25
−8

−7

−6

−5

−4

−3

−2

−1

0

1

number of iterations ( n )

1
0
lo

g
( 

r n
 /
 r

1
 )

0 5 10 15 20 25
−8

−7

−6

−5

−4

−3

−2

−1

0

1

number of iterations ( n )

1
0
lo

g
( 

r n
 /
 r

1
 )

Figure 5.1: Residual reduction in the L2 norm versus the iteration counter
for the basic Newton-Krylov method (−−−), with a relative tolerance on the
linear residual (−−), with reuse (···), with a relative tolerance and reuse (−·)
and subiteration (−−−) for χ = 10−6 (left) and χ = 10−2 (right) with τ = 1
and N t

U = N t
Z = 24. The linear and nonlinear residuals of the Newton-Krylov

method are indicated by ◦ and ∗, respectively, and the residuals of subiteration
by �.

Fig. 5.1 also displays the residual reduction obtained by subiteration. The
difference between the subiteration convergence curves for χ = 10−6 and χ = 10−2

is minute. We infer that subiteration is not significantly influenced by the non-
linearity of the problem. According to Section 5.2.2, the sequence of residuals
generated by subiteration constitutes an upper bound for the residuals obtained
by GMRES. However, faster Newton-Krylov convergence is implied only for suffi-
ciently linear problems; for nonlinear problems this does no longer hold due to the
linearization error. Indeed, Fig. 5.1 shows that for χ = 10−6 the Newton-Krylov
method converges faster than the subiteration method, whereas for χ = 10−2 the
Newton-Krylov method requires more iterations. In the following, we investigate
modifications of the basic Newton-Krylov method which enable faster convergence
also for nonlinear problems.

As an improvement of the basic Newton-Krylov method, we consider a
relative tolerance for the solution accuracy of the linear problem with respect to
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the current nonlinear residual (cf. Eq. (5.10)) instead of solving the linear problem
to the same absolute tolerance at each Newton step. The relative tolerance serves
to prevent a waste in computational work incurred by overly accurate solution of
the linear problems: if the linearization error is large, then a strict reduction of
the linear residual does not yield an according reduction of the nonlinear residual
anyway. Here, we use a relative tolerance of ε1 = 10−2‖ri‖, i.e., the linear problem
in Newton step i is considered to be solved sufficiently accurately if the estimate
is reduced by two orders of magnitude with respect to the nonlinear residual ri.
This implies that, typically, much fewer GMRES iterations are carried out than
with the basic Newton-Krylov method. Fig. 5.1 exhibits that for χ = 10−2 still the
same residual reduction is obtained after the first Newton update. This indicates
that the nonlinear residual stagnates at some point. Such stagnation occurs if the
linearization error dominates the solution error in the linear problem. In contrast,
for χ = 10−6 the residual reduction after the first Newton update is less than with
the basic Newton-Krylov method, because the solution error in the linear system
still dominates the linearization error. As a result, for χ = 10−6 the Newton-
Krylov method with relative tolerance requires more iterations than the basic
Newton-Krylov method. We conclude that a stringent relative tolerance is suitable
for weakly nonlinear problems, whereas a less stringent relative tolerance is more
appropriate for nonlinear problems. The appropriateness of the specified relative
tolerance can be deduced from the magnitude of the jumps. If the discrepancy
between residual and estimate is minute, the linearization error is small and the
update of the linearization state by Newton’s method was not required; additional
GMRES steps could have further reduced the solution error in the linear system.
Conversely, if the jumps are large, the linear system was solved more accurately
than what could be accomplished by the Newton update. The choice of the relative
tolerance therefore has implications for the computational cost, as a Newton step
and a GMRES step are both at the expense of one subiteration.

To investigate the reuse of Krylov vectors for the solution of the linear sys-
tems in subsequent Newton iterations (Algorithm 5.2.2 on page 76), we employ
reuse in combination with the aforespecified relative tolerance and examine the
convergence for the linear and nonlinear setting of the problem. From Fig. 5.1
right it can be seen that, especially for the nonlinear setting (χ = 10−2), the
Newton-Krylov method with reuse converges considerably faster than the method
without reuse. Fig. 5.1 right also conveys that, in particular for nonlinear prob-
lems, the setting of the linear-system tolerance ε1 can have implications for the
effectiveness of the reuse option. Comparing the curves with a relative tolerance
(ε1 = 10−2‖ri‖) and with an absolute tolerance (ε1 = 10−7‖r0‖), it appears that
combination of the reuse option with a suitable relative tolerance is required for
the reuse option to be effective. Moreover, Fig. 5.1 shows that the reuse of Krylov
vectors renders the Newton-Krylov method computationally cheaper than subit-
eration even for the nonlinear setting of the problem. Such a nonlinear setting is
adverse for Newton-Krylov convergence, but not for subiteration convergence. On
the other hand, for problems which are sufficiently linear, Newton-Krylov conver-
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gence is in general much faster than subiteration convergence. Finally, comparing
the linear setting to the nonlinear one, Fig. 5.1 conveys that the differences in
the convergence behaviour and cost are less pronounced for the Newton-Krylov
method with a relative tolerance and reuse than for the basic method. We infer
that this combination can conceal the adverse effects of nonlinearity on Newton-
Krylov convergence and considerably improve the efficiency.

Finally, we compare the convergence behaviour of the Newton-Krylov method
to subiteration for different computational time-step sizes. For this purpose we
employ the Newton-Krylov method with reuse of Krylov vectors in subsequent
Newton iterations and a relative tolerance for the linear residual of ε1 = 10−2‖ri‖.
In order to compare the convergence behaviour also for larger time steps, we re-
strict ourselves to small perturbations and set χ = 10−6, as for large initial pertur-
bations the subiteration method can fail due to transient error growth. System and
discretization parameters remain unchanged, see Tables 5.1 and 5.2 on page 78,
except that, in addition to varying the time-step size, we adjust the number of
elements in time such that the discretization per unit time remains the same. In
particular, for τ = 1 we use N t

U = N t
Z = 24, which is identical to the settings

used for Fig. 5.1. Fig. 5.2 on the next page compares the convergence behaviour
of the Newton-Krylov method and of the subiteration method for different time-
step sizes. Whereas for small time steps subiteration converges properly, for large
time steps subiteration converges non-monotonously. The transient divergence is
caused by the nonnormality of subiteration; see Section 6.3.3 and Ref. [69] for
a detailed analysis of the convergence behaviour of subiteration. Fig. 5.2 also
shows that, in contrast to the norm of the subiteration residuals, the norm of the
residuals of the GMRES iterates form a non-increasing sequence, which is due
to the GMRES minimal-residual property. Moreover, the Newton-Krylov method
does not exhibit a significant degradation of the convergence behaviour with in-
creasing time-step size. The Newton-Krylov method therefore appears to be more
robust and efficient than subiteration, in particular for large computational time
steps. It is noteworthy that the Newton-Krylov method can attain convergence
even for problems for which standard subiteration fails. For exemplification, we
have included the convergence curve for τ = 16 computed with the Newton-Krylov
method. According to Ref. [69], the spectral radius of the subiteration operator
is larger than one for this setting and, hence, subiteration is unstable; the curve
is therefore not shown. Note that the Newton-Krylov method attains convergence
despite the instability of the underlying subiteration operator. This is enabled by
means of orthonormalization and underrelaxation; cf. Section 5.2.2.

Ref. [69] establishes that the convergence behaviour of the subiteration method
changes similarly for an increasing fluid-to-structure mass ratio as for an increasing
time-step size. We have found that the Newton-Krylov method displays a similar
improvement over subiteration; the convergence curves for representative settings
of the fluid-to-structure mass ratio, ρα0/M , are shown in Fig. 5.3 on page 83.
In particular, we varied the fluid density which translates into a variation of the
fluid-to-structure mass ratio.
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Figure 5.2: Residual reduction in the L2 norm versus the iteration counter for
the Newton-Krylov method with a relative tolerance and reuse and subiteration
for τ = 20 (−−−), τ = 21 (−−), τ = 22 (· · ·) and τ = 24 (−·)(only for the
Newton-Krylov method) with N t

U = N t
Z = 24, 48, 96 and 384, respectively.

The linear and nonlinear residuals of the Newton-Krylov method are indicated
by ◦ and ∗, respectively, and the residuals of subiteration by �.

5.3.2 Reuse of Krylov vectors in subsequent time steps

In this section, we investigate the Newton-Krylov method with reuse of Krylov
vectors in subsequent time steps and assess the viability of the reuse option for
nonlinear problems. Moreover, we compare the Newton-Krylov method in terms
of robustness and computational cost to subiteration.

We consider the piston problem, provided with initial conditions that corre-
spond to a periodic solution of the linearized system; see Section 3.3.2 and Ref. [70].
The initial conditions for the piston are set according to z0 = 10−1 and ż0 = 0,
unless stated otherwise. The system and discretization parameters are given in
Table 5.3 and 5.4 on page 85, respectively. As the periodic solution is very smooth,
few elements already suffice to accurately represent the solution. We remark that
the ratio of time-step size over system oscillation period is such that, in combi-
nation with a sufficiently large amplitude, there is a substantial change in initial
conditions between time steps, which ensures that the effect of the latter on the
reuse of Krylov vectors can be assessed properly. The oscillation period of the
fluid-structure system can be obtained from Ref. [70].

The iterative process is initialized each time step with an approximation
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Figure 5.3: Residual reduction in the L2 norm versus the iteration counter for
the Newton-Krylov method with a relative tolerance and reuse and subiteration
for ρα0/M = 6 (−−−), 12 (−−) and 24 (· · ·) with τ = 1 and N t

U = N t
Z = 24.

The linear and nonlinear residuals of the Newton-Krylov method are indicated
by ◦ and ∗, respectively, and the residuals of subiteration by �.

conforming to

z0(t) = z0 + ż0 t exp (−(t/τ)2) , t ∈ [0, τ ] . (5.13)

This initial approximation is sufficiently differentiable to ensure that the initial
conditions are satisfied. We remark, however, that other initial approximations
are possible. We set the convergence tolerance to ε0 = 10−3‖r0‖, i.e., in each time
step we require the reduction of the initial residual by three orders of magnitude.
In addition, we specify for the Newton-Krylov method the tolerance for the inner
loop of the acceleration according to ε1 = 10−1‖ri‖, i.e., relative to the current
nonlinear residual, and an underrelaxation parameter of ν = 10−3.

To contrast the performance of the Newton-Krylov and the subiteration
method, we employ three distinct settings of the model problem, which differ
in the fluid density, ρ0, and in the initial piston deflection, z0. A variation in
the fluid density translates into a variation in the fluid-to-structure mass ratio,
ρ0α0/M . It is important to note that, according to Ref. [69], the spectral radius
of the subiteration operator scales with the mass ratio. For the periodic setting of
the model problem, we have chosen to vary the mass ratio rather than the time-
step size in order to exclude a possible effect of reflections in the fluid; see Ref. [69].
By specifying z0 = 10−1 we select a nonlinear setting in order to investigate the
viability of the Newton-Krylov method and the effectiveness of the reuse option
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under adverse conditions. In test case I, we select a setting which is favorable for
fast convergence of the subiteration method, which is warranted by a sufficiently
small spectral radius. Accordingly, we require a sufficiently small fluid density.
Here, we set ρ0 = 2 and z0 = 10−1. In test case II, we set ρ0 = 20 and consider
two different settings for z0, in particular, z0 = 10−1 and z0 = 10−3. Although
subiteration is formally stable, with z0 = 10−1 it fails due to nonnormality-induced
transient divergence. On the other hand, with a lower initial piston deflection of
z0 = 10−3, failure of the subiteration method is avoided and a comparison with
the Newton-Krylov method is possible. However, we remark that the latter setting
is less nonlinear than the one for z0 = 10−1. In test case III, we set ρ0 = 200 and
z0 = 10−1. The subiteration method is unstable for this setting.

Fig. 5.4 plots the residual reduction versus the iteration counter for the
subiteration and the Newton-Krylov method in time steps 1 and 10. Fig. 5.5 on
page 86 plots the cumulative number of iterations versus the time-step counter,
and Fig. 5.6 on page 86 plots the dimension of the Krylov space versus the time-
step counter. Note that the slope of the cumulative-iteration-count curve is a
measure of the computational cost per time step. For test case I, subiteration
and the Newton-Krylov method converge comparatively fast in the first time step.
Initially, most iterations of the Newton-Krylov method are spent on generating
the Krylov space, see Fig. 5.6. However, in subsequent time steps, increasingly
few Krylov vectors need to be added to the space due to reuse. This results in
a decreasing number of iterations per time step and manifests in the gradually
changing slope of the cumulative-iteration-count curve; see Fig. 5.5 left. More-
over, Fig. 5.6 indicates that the generation of a complete Krylov space (dimension
N t

ZPZ = 60 for the considered discretization; cf. Table 5.4) is typically not required.
The results for test case I demonstrate that reuse can render the Newton-Krylov
method computationally cheaper than subiteration even under conditions that are
favorable for the convergence of the subiteration method. For test case IIa with
z0 = 10−1, the subiteration method fails due to nonnormality-induced transient
divergence (curve not shown), whereas the Newton-Krylov method converges prop-
erly. For test case IIb with z0 = 10−3, subiteration converges after a period of ini-
tial divergence. In contrast, the Newton-Krylov method converges monotonously.
The markedly different convergence behaviour translates into a significant discrep-
ancy in computational cost; see Fig. 5.5 center. The convergence curves for the
Newton-Krylov method for test cases IIa and IIb can hardly be distinguished; a
slight difference is only apparent in the cumulative-iteration-count curves. For test
case III, subiteration is unstable (curve not shown). Note that the Newton-Krylov
method attains convergence despite the instability of the underlying subiteration
method.
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Table 5.3: System parameters for test cases I–III (∗ indicates a variable pa-
rameter).

z0 ż0 α0 ρ0 c0 K M τ
∗ 0 1 ∗ 0.5 1 1 1

Table 5.4: Discretization parameters for test cases I–III.

Nx
U N t

U NA N t
Z NP PU PA PZ PP

12 12 12 12 12 (3, 3) 5 5 4
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Figure 5.4: Residual reduction in the L2 norm versus the iteration counter for
subiteration (−−−) and the Newton-Krylov method with reuse in subsequent
time steps (−−); the linear and nonlinear residuals of the Newton-Krylov
method are indicated by ◦ and ∗, respectively, and the residuals of subiteration
by �; time step 1 (top) and time step 10 (bottom); test case I (left), IIb
(center) and III (right). In addition, for test case IIa (center) the Newton-
Krylov method with reuse for z0 = 10−1 (· · ·) is included.
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Figure 5.5: Cumulative number of iterations versus the time-step counter for
subiteration (−−−) and the Newton-Krylov method with reuse in subsequent
time steps (−−); test case I (left), IIb (center) and III (right). In addition,
for test case IIa (center) the Newton-Krylov method with reuse for z0 = 10−1

(· · ·) is included.
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Figure 5.6: Dimension of the Krylov space versus the time-step counter for
the Newton-Krylov method with reuse in subsequent time steps (−−); test
case I (left), IIb (center) and III (right). In addition, for test case IIa (center)
the Newton-Krylov method with reuse for z0 = 10−1 (· · ·) is included.

5.4 Concluding remarks
We have presented a novel solution method for fluid-structure-interaction prob-
lems, which overcomes the essential drawbacks of the customary subiteration
method, viz., only conditional stability, potential convergence difficulties due to
nonnormality and the inability to reuse information from previously solved sim-
ilar problems. The proposed method is based on the observation that subitera-
tion essentially constitutes a fixed-point iteration for the interface displacement.
Therefore the GMRES acceleration of subiteration can be confined to the interface
displacement. The GMRES acceleration operates within a Newton procedure, and
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accordingly, we refer to the method as Interface Newton-Krylov method, or sim-
ply as Interface-GMRES(R). Because the Krylov vectors involve only the interface
degrees-of-freedom, the storage requirements for the Krylov space and the compu-
tational cost associated with the acceleration itself are negligible. The Interface-
GMRES(R) acceleration of subiteration retains the segregated treatment of fluid
and structure equations. This facilitates its implementation in codes that already
use subiteration as a solver. Moreover, the Interface-GMRES acceleration allows
for the optional reuse of the Krylov space in subsequent invocations of the GMRES
method.

We assessed the convergence properties of the Interface-GMRES(R) method
by numerical experiments on a prototypical fluid-structure-interaction problem.
The results show that the efficiency of the Interface-GMRES(R) method depends
on the convergence behaviour of the underlying subiteration method and on the
nonlinearity of the problem. However, this effect can be concealed by means of
a suitable relative tolerance in the inner loop of the acceleration method in com-
bination with the reuse of the Krylov space. Our numerical results demonstrate
that the Interface-GMRES(R) method is superior to the customary subiteration
method in terms of robustness and efficiency. Under conditions that are favourable
for the subiteration method but adverse for the Interface-GMRES(R) method, the
latter still proves more efficient. Moreover, the accelerated method generally at-
tains convergence even if the subiteration method is unstable. The reuse of the
Krylov space can substantially enhance the efficiency of the method. However,
it has to be exercised with some caution, as the reuse option can affect the ro-
bustness of the method. Our numerical results indicate that the combination
of reuse with an appropriate relative tolerance render it a viable option also for
nonlinear problems. After the initial construction of a suitable Krylov space, in
general only occasional augmentations of the space are required. The reuse of
the Krylov space in successive time steps enables the solution of the aggregated
fluid-structure equations to sufficient accuracy in a few iterations per time step,
even if subiteration separately requires tenfolds more or fails due to instability or
nonnormality-induced divergence. It appears that the reuse of the Krylov space
can render the computational expense of the Interface-GMRESR method com-
parable to loosely-coupled partitioned methods which perform only a single fluid
and structure solution per time step; see Chapter 4. However, in contrast to such
loosely-coupled methods, the Interface-GMRESR method leads to the solution of
the aggregated equations, which enables conservation and improves stability and
accuracy.

The proposed method is in principle generic. However, the specifics depend
on the fluid-structure system under consideration. Further testing of this method
is undertaken on the panel problem in Chapter 7.
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Chapter 6

Error-amplification analysis of
Interface-GMRES(R)

6.1 Introduction
In Chapter 5, we treated the theoretical background, algorithmic aspects and con-
vergence studies of the Interface-GMRES method in a continuum setting of a
generic fluid-structure-interaction problem. In the present chapter, we investigate
the linear-algebra aspects of the Interface-GMRES method on the basis of prop-
erties of the error-amplification matrix for the aggregated system. To establish
the error-amplification matrix, we consider a system of nonlinear-algebraic equa-
tions in conformity with discretizations of fluid-structure-interaction problems. We
then investigate the iterative solution of a corresponding linear system by means of
standard subiteration, and by means of the novel combined subiteration/GMRES
method. By virtue of the linear-algebra setting, it is possible to derive precise
expressions for the error-amplification properties of subiteration separately, and of
subiteration combined with GMRES, with and without the reuse option. On the
basis of the error-amplification matrix of subiteration, we can show that subiter-
ation condenses errors into a low-dimensional subspace which can be associated
with the interface degrees-of-freedom. We establish that this error-amplification
matrix is highly rank-deficient. In particular, its rank is at most equal to the di-
mension N of the approximation space of the interface displacement. This implies
that a Krylov method terminates in at most N steps, independent of the choice
of the acceleration space, e.g., aggregated variables, structure variables, or inter-
face variables. However, because computational cost and storage required by the
Krylov acceleration itself increase with the dimension of the acceleration space, the
acceleration on the interface variables is the most efficient. This distinguishes the
considered Interface-GMRES method from approaches which apply the accelera-
tion to the aggregated variables or to the structure variables; see Refs. [26, 38, 58].
The linear-algebra setting enables a clear explanation of the relation between the

89
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local GMRES acceleration (i.e., on the interface degrees-of-freedom), and the global
error-amplification properties (i.e., for the aggregated system).

Moreover, the nonnormality of subiteration, which can induce non-monoto-
nous convergence [69], can be traced immediately to properties of the error-
amplification matrix. To elaborate the implications of nonnormality for the com-
bined subiteration/GMRES method, we establish that the subiteration iterates
span a Krylov-space corresponding to a preconditioned aggregated system. The
properties of the subiteration-preconditioned GMRES method are then considered
and, in particular, the relation between GMRES convergence and nonnormality
of the subiteration preconditioner is addressed. We show that nonnormality can
degrade the sharpness of GMRES convergence bounds.

Furthermore, we establish that the GMRES acceleration on the interface
degrees-of-freedom generates an approximation to the Schur complement for the
aggregated system. The GMRES acceleration and the reuse of Krylov vectors in
subsequent invocations of GMRES are then assessed in terms of the approxima-
tion properties for the Schur complement, and in terms of the properties of the
corresponding error-amplification matrices.

The theory is illustrated by numerical experiments on a model fluid-structure-
interaction problem with a van-der-Pol oscillator. As this model problem exhibits
qualitative changes in its solution behaviour in time, it is particularly suitable
to investigate the effect of the reuse of Krylov vectors on the error-amplification
properties of the subiteration-preconditioned GMRES method. In particular, we
assess the potential and the limitations of the reuse option. Moreover, we provide
convergence bounds for the methods in terms of matrix norms.

The contents of this chapter are organized as follows: Section 6.2 estab-
lishes the linear-algebra setting of the problem. Section 6.3 derives the error-
amplification matrix of the subiteration method, and elaborates on the precon-
ditioning perspective of subiteration. Section 6.4 analyses the error-amplification
properties of the subiteration-preconditioned GMRES method with and without
reuse in terms of the Schur-complement approximation and in terms of the error-
amplification matrices. Section 6.5 provides numerical experiments and results.
Section 6.6 contains concluding remarks.

6.2 Algebraic problem statement
In this section, we introduce the system of algebraic equations that emanates from
a discretization of a generic fluid-structure-interaction problem; for a description
of the latter we refer to Chapter 2 and Ref. [71]. We consider the system of
linear-algebraic equations that arises from the application of Newton’s method.
This linear-algebraic system forms the basis of the error-amplification analysis
for an inexact Newton method in Section 6.2.2. The subiteration method and the
subiteration-preconditioned GMRES method can be construed as special instances
of such an inexact Newton method.
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6.2.1 The system of fluid-structure-interaction equations

The system of fluid-structure-interaction equations comprises the initial-boundary-
value problems of the fluid and the structure, complemented by kinematic and dy-
namic conditions at the fluid-structure interface. We consider the generic space/
time variational formulation of such fluid-structure-interaction problems as pre-
sented in Chapter 2 and refer for a particular instance, viz., the piston problem, to
Section 3.2. The space/time finite-element discretization of this generic variational
statement yields a system of aggregated algebraic equations for the fluid-structure
system, which we condense into the abstract form

R(q) = 0, (6.1a)

and, more specifically,

R1(q1, q5) = 0, (6.1b)
R2(q1, q2) = 0, (6.1c)

R3(q1, q2, q3) = 0, (6.1d)
R4(q3, q4) = 0, (6.1e)
R5(q4, q5) = 0. (6.1f)

We denote aggregated quantities by bold symbols. In particular, in (6.1), R :=
[R1, R2, R3, R4, R5]T and q := [q1, q2, q3, q4, q5]T denote the residual operators and
variables associated with kinematic interface condition, fluid equations, dynamic
interface condition, structure equation and the restriction of the structure variables
to the interface, respectively. Note that the fluid and structure variables, q2 and
q4, are connected by the kinematic and dynamic interface conditions, R1 and
R3, via the fluid-interface displacement and the interface traction exerted on the
structure, q1 and q3, respectively. For transparency of the ensuing presentation,
we have introduced an additional equation, Eq. (6.1f), given by

R5(q4, q5) := T (q4)− q5 = 0, (6.2)

where T represents the trace operator, which defines the structural displacement
at the interface, q5, in terms of the structural variables, q4.

Given an initial estimate q0, the application of Newton’s method to the
nonlinear system (6.1a) gives rise to a sequence of linear problems

A(qn+1 − qn) = −R(qn), (6.3a)

for n = 0, 1, 2, . . ., which bear the particular form
A11 0 0 0 A15

A21 A22 0 0 0
A31 A32 A33 0 0
0 0 A43 A44 0
0 0 0 A54 A55



qn+1
1 − qn

1

qn+1
2 − qn

2

qn+1
3 − qn

3

qn+1
4 − qn

4

qn+1
5 − qn

5

 = −

R1(qn)
R2(qn)
R3(qn)
R4(qn)
R5(qn)

 . (6.3b)
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In (6.3b), Aij denotes the Jacobian matrix corresponding to the residual-operator
derivative ∂Ri/∂qj and Ri(qn) the residuals at the current linearization state qn.
We remark that, in conformity with Eq. (6.2), A55 = −I with I the identity
matrix. If the initial estimate q0 is sufficiently close to the actual solution q̄ of
Eq. (6.1a), then qn converges to q̄ as n→∞.

The consideration of Newton’s method is useful mainly for conceptual rea-
sons, as it provides the framework for the ensuing error-amplification analysis in
Section 6.2.2. For the solution of fluid-structure interaction problems, however,
the application of Newton’s method is actually prohibitive; see also Section 4.2.1.
The inherent interdependence between fluid and structure solutions induced by the
interface conditions renders the matrix A in (6.3) inseparable. This interconnec-
tion requires, in principle, a simultaneous solution of fluid and structure equations
and, hence, causes the loss of software modularity; cf. Ref. [20]. Moreover, the dis-
parate properties and scales inherent in the fluid and structure problems generally
render the matrix A severely ill-conditioned. Finally, Eq. (6.3b) necessitates the
evaluation of so-called shape derivatives, i.e., the derivative of the fluid equations
with respect to a perturbation in the interface position, represented by the entry
A21. The difficulty in the evaluation of A21 pertains to the fact that a perturba-
tion in the interface position in principle generates a perturbation throughout the
entire fluid domain and, hence, A21 acts as a non-local operator. Although there
exist approaches to facilitate the evaluation of the shape derivative, such as the
method of spines [26], their applicability is typically restricted.

6.2.2 Error-amplification of inexact Newton methods

In order to bypass the aforementioned disadvantages of Newton’s method, one
generally reverts to alternative solution methods such as subiteration. For the
error-amplification analysis of these methods, it is convenient to construe them,
on linear approximation, as particular instances of an inexact Newton method. At
variance with Eq. (6.3a), such inexact Newton methods determine an approxima-
tion q̃n+1 from the solution of

Ã(q̃n+1 − qn) = −R(qn), (6.4)

where Ã denotes an approximate Jacobian that is ‘in some sense’ similar to A,
but easier to invert. The error induced by this approximation can be assessed as
follows. The exact Newton method solves Eq. (6.3a) and, hence, on linear approx-
imation, eliminates the error in a single step. Thus, on linear approximation, qn+1

corresponds to the solution q̄ of (6.1a), and Eq. (6.3a) translates into

−Aεn = −R(qn), (6.5)

where εn := qn−q̄ denotes the error in the approximation qn. Likewise, we denote
by εn+1 := q̃n+1 − q̄. Substituting Eq. (6.5) into Eq. (6.4) and adding suitable
partitions of zero, we obtain

Ã(εn+1 − εn) = −Aεn, (6.6)
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which yields the error-amplification relation

εn+1 = Eεn , (6.7a)

with
E := I− Ã−1A (6.7b)

the error-amplification matrix of the inexact Newton method with approximate
Jacobian Ã. The inexact Newton method is formally convergent, if the spectral
radius of the error-amplification matrix is smaller than unity, i.e., spr(E) < 1.
With the setting Ã = A, we recover the exact Newton method, which yields E = 0.
We elaborate in Sections 6.3 and 6.4 that the customary subiteration method and
the novel subiteration-preconditioned GMRES method with and without reuse
can be associated with specific choices of Ã. This enables a comparison of their
respective error-amplification properties from a unified viewpoint.

6.3 Analysis of subiteration
This section presents a detailed analysis of the error-amplification properties of
the subiteration method. To this end, we recall the basic subiteration algorithm
in Section 6.3.1. In Section 6.3.2, we establish the error-amplification matrix, and
we derive the precise form of its entries, which enables us to relate the error-
amplification behaviour to specific entries. We show that the error-amplification
matrix is rank-deficient, which provides the theoretical basis for the restriction of
the GMRES acceleration to the interface degrees-of-freedom. Moreover, we con-
sider the norm, spectral radius, and the nonnormality of the error-amplification
matrix in Section 6.3.3. Nonnormality has important implications for the con-
vergence of the subiteration method, and for the GMRES convergence bounds
discussed in Section 6.4.5. Finally, in Section 6.3.4, we elaborate on the precondi-
tioning perspective of subiteration, which provides the motivation of using it as a
preconditioner to GMRES.

6.3.1 The subiteration method

For the error-amplification analysis of subiteration, we extend the definition of
the subiteration algorithm in Section 4.2.2 to the linear-algebraic system given by
Eq. (6.3). The subiteration method is then redefined as the following iterative
procedure: Provided with an initial approximation of the structure displacement
at the interface, q05(t), for n = 1, 2, . . .

(S1) Solve the kinematic condition: find qn
1 such that R1(qn

1 , q
n−1
5 ) = 0

(S2) Solve the fluid equations: find qn
2 such that R2(qn

1 , q
n
2 ) = 0

(S3) Solve the dynamic condition: find qn
3 such that R3(qn

1 , q
n
2 , q

n
3 ) = 0
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(S4) Solve the structure equations: find qn
4 such that R4(qn

3 , q
n
4 ) = 0

(S5) Determine the structure displacement at the interface: find qn
5 such that

R5(qn
4 , q

n
5 ) = 0

We remark that in an actual computation, the subiteration process solves the
nonlinear equations. However, for our analysis we shall apply it to the linearized
equations.

In accordance with Section 5.2.1, the subiteration process (S1)–(S5) can be
conceived as a fixed-point iteration. For this chapter to be self-contained, we
shall briefly recall from that section the relevant results pertaining to the ensuing
investigation. For convenience, let us introduce the notation z := q5. To facilitate
the subsequent analysis of the subiteration method separately, and of the combined
subiteration/GMRES method, we construe the subiteration process as a mapping
from one structure interface displacement to the next, i.e.,

C : zn �→ zn+1 = Czn, (6.8)

where C denotes the operator induced by the subiteration process as defined by
(S1)–(S5); see Refs. [69, 71] for further elaboration. Accordingly, the subiteration
process can be characterized by recursion of the nonlinear operator C on the in-
terface displacement z. Therefore subiteration constitutes a fixed-point iteration.
The fixed point

z̄ : z̄ = Cz̄ (6.9)

corresponds to the solution of (6.1). The nonlinear fixed-point problem (6.9) can
be reformulated as

RSubz̄ = 0 (6.10)

with RSub := C− I the residual operator defined in conformity with (6.9) and I the
identity. Clearly, z̄ being a solution of Eq. (6.10) is equivalent to z̄ being a fixed
point of Eq. (6.9). The residual of an iterate is

rn := RSubz
n = (C− I)zn = Czn − zn = zn+1 − zn. (6.11)

Note that, upon providing the subiteration process with the solution q̄5 = z̄,
the steps (S1)–(S5) yield the solution q̄ = (q̄1, q̄2, q̄3, q̄4, q̄5) of the aggregated
nonlinear equations (6.1) in a single iteration, provided that the equations in each
step are solved exactly.

6.3.2 Error-amplification analysis

This section analyses the error-amplification properties of the subiteration method.
To this end, we recall from Section 6.3.1 that the subiteration method solves the
nonlinear equations. For the error-amplification analysis we consider the lineariza-
tion of these equations in conformity with Eq. (6.3). The subiteration algorithm
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then translates into the solution of the following equations:
A11 0 0 0 0
A21 A22 0 0 0
A31 A32 A33 0 0
0 0 A43 A44 0
0 0 0 A54 A55



q̃n+1
1 − qn

1

q̃n+1
2 − qn

2

q̃n+1
3 − qn

3

q̃n+1
4 − qn

4

q̃n+1
5 − qn

5

 = −

R1(qn)
R2(qn)
R3(qn)
R4(qn)
R5(qn)

 , (6.12a)

which can be condensed into the form

ÃSub(q̃n+1 − qn) = −R(qn). (6.12b)

From Eq. (6.12) it is apparent that we can associate a Jacobian matrix ÃSub

with the subiteration process that corresponds to the lower-triangular part of A,
i.e., it is identical to matrix A in Eq. (6.3), but with the A15 block set to zero.
Because ÃSub is lower block-triangular, the subproblems involving the inversion
of the Jacobian ÃSub can be solved conveniently by forward substitution. Hence,
the subiteration process essentially corresponds to a block Gauss-Seidel method.

Having identified the approximate Jacobian matrix ÃSub induced by the
subiteration process, we determine the corresponding error-amplification matrix
according to Eq. (6.7) as ESub := I − Ã−1

SubA = Ã−1
Sub(ÃSub − A) such that the

error-amplification relation (6.7) translates into
εn+1
1

εn+1
2

εn+1
3

εn+1
4

εn+1
5

 =

0 0 0 0 E15

0 0 0 0 E25

0 0 0 0 E35

0 0 0 0 E45

0 0 0 0 E55



εn1
εn2
εn3
εn4
εn5

 , (6.13a)

where the entries are defined as

E15 = −A−1
11 A15, (6.13b)

E25 = A−1
22 A21A

−1
11 A15, (6.13c)

E35 = −A−1
33 (A32A

−1
22 A21 −A31)A−1

11 A15, (6.13d)
E45 = A−1

44 A43A
−1
33 (A32A

−1
22 A21 −A31)A−1

11 A15, (6.13e)
E55 = −A−1

55 A54A
−1
44 A43A

−1
33 (A32A

−1
22 A21 −A31)A−1

11 A15. (6.13f)

Eq. (6.13) conveys that the subiteration error-amplification matrix is highly rank-
deficient and, more specifically, its rank is equal to the minimum rank of the
contributing block matrices in E55.

It is important to note that in general the dimensions of the block matrices
A11, A33 and A55 associated with the interface variables are negligible compared
to the dimensions of the fluid and structure block matrices, A22 and A44, re-
spectively, because the former refer to interface functions. Hence, the rank of the
error-amplification matrix will generally be determined by the dimension of a block



96 Chapter 6. Error-amplification analysis of Interface-GMRES(R)

matrix associated with the interface. This rank-deficiency has important conse-
quences. In particular, it implies that the error components εn1 , . . . , ε

n
4 are mapped

onto zero and, hence, do not contribute to εn+1. The only error component that
propagates from εn to εn+1 is εn5 . More precisely, ε

n
5 contributes to all components

in εn+1 due to the particular structure of the error-amplification matrix in (6.13).
Thus, if the subiteration process is provided with the exact structure displacement
q̄5 = z̄, and, accordingly, ε5 = 0, then the method yields the solution to the ag-
gregated equations in a single iteration. Moreover, from Eqs. (6.7) and (6.13), it
is possible to derive a bound on the aggregated error, ε, in terms of the error in
the structure interface displacement, ε5, as follows

‖εn+1‖ ≤ γ‖En
55‖‖ε05‖, γ ∈ R+, (6.14)

with γ a constant depending on ‖ESub‖, but independent of n. If the spectral
radius spr(E55) < 1, then εn → 0 and, hence, qn → q̄ as n→∞. Moreover, from
Eq. (6.14) it is apparent that the precise convergence behaviour of subiteration is
determined by the properties of E55; see Section 6.3.3 for further elaboration.

We can assign a particular meaning to the block matrix E55 in Eq. (6.13),
which specifies the error amplification in the structure interface displacement, viz.,

εn+1
5 = E55ε

n
5 . (6.15a)

To this end, we linearize Eq.(6.8) around the solution z̄ = q̄5, subtract the fixed-
point equation and obtain

εn+1
5 = C′εn5 . (6.15b)

From Eqs. (6.15a) and (6.15b), we can identify the block matrix E55 as the discrete
representation of the subiteration-operator derivative C′.

Another observation that can be made from Eq. (6.13) is that the block
matrices associated with the fluid and the structure, A22 and A44, respectively,
contribute to E55 only through projections onto the interface; see Eq. (6.13f). This
indicates that the interior complexity of fluid and structure models yields only an
indirect effect on the convergence of the subiteration method.

6.3.3 Nonnormality of subiteration

In this section, we briefly elaborate on the nonnormality of the subiteration oper-
ator, as such nonnormality has severe implications for the convergence behaviour
of the subiteration method; see Ref. [69] for details. Moreover, nonnormality has
implications also for the GMRES convergence bounds; see Section 6.4.5.

On linear approximation, convergence of the subiteration process requires
that the spectral radius of the subiteration-operator derivative C′ is strictly less
than one, i.e., spr(C′) < 1 or, equivalently, spr(E55) < 1 in conformity with
Eq. (6.15). Note, however, that the spectral radius only determines the asymp-
totic convergence behaviour of the method. The transient convergence behaviour
is determined by the norm ‖C′‖ or, equivalently, by ‖E55‖. Due to nonnormality
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of the subiteration-operator derivative C′, the spectral radius and the norm can be
disparate and, in particular, spr(E55) can be much smaller than ‖E55‖. This dis-
parity can give rise to non-monotonous convergence of the method, i.e., transient
divergence can precede asymptotic convergence; cf. Ref. [24, ch. 2] for examples
and, more specifically, Ref. [69]. This non-monotonous convergence behaviour was
also observed in Section 5.3.1; see Fig. 5.2 on page 82 and Fig. 5.3 on page 83.

To explain such non-monotonous convergence behaviour, we note that the
error in the n-th iterate can be bounded in conformity with Eq. (6.15) as

(spr(E55))n ≤ ‖εn5‖/‖ε05‖ ≤ ‖En
55‖ ≤ κ(X)(spr(E55))n, (6.16)

where κ(X) := ‖X‖‖X−1‖ denotes the condition number of the matrix of eigen-
vectors, X, of E55. For a normal matrix, the eigenvectors are orthonormal and,
accordingly, κ(X) = 1, so that the upper and lower bounds in (6.16) coincide. For
a nonnormal matrix, however, the eigenvectors are non-orthogonal and κ(X) can
be very large. In combination with the upper bound ‖En

55‖ ≤ ‖E55‖n, the bounds
in (6.16) imply that if spr(E55) < 1 < ‖E55‖ and κ(X) is large, then the initial
error can be amplified by many orders of magnitude before it eventually decreases
at an asymptotic rate determined by spr(E55); see Fig. 6.1 on the following page
for an illustration. Clearly, this induces a severe degradation in the robustness and
efficiency of the subiteration method. Moreover, the transient error growth can
even cause failure of the iterative method despite formal stability. We remark that,
if the spectral radius is sufficiently small, then the detrimental effect of nonnormal-
ity is concealed, i.e., the subiteration process converges monotonously. Ref. [69]
establishes for a linear model problem that the spectral radius of the subiteration-
operator derivative scales in the asymptotic limit with the time-step size. Hence,
in order to control nonnormality-induced divergence, the computational time step
can be reduced. Alternatively, the spectral radius can also be decreased by means
of underrelaxation; see, for instance, Ref. [40]. However, either option generally
renders the method inefficient.

6.3.4 Subiteration preconditioning

For the ensuing presentation of the combined subiteration/GMRES method in Sec-
tion 6.4, it is elucidating to construe subiteration as a preconditioner for GMRES,
following the concepts of Ref. [74].

The subiteration iterates computed according to the recursion (6.12) span a
Krylov space corresponding to a left-preconditioned aggregated system:

qn+1 − qn ∈ span{Ã−1r0, (Ã−1A)Ã−1r0, . . . , (Ã−1A)nÃ−1r0}
= Kn+1(Ã−1A, Ã−1r0), n = 0, 1, . . . , (6.17)

where for ease of notation we have dropped the subscript in ÃSub and the tilde
in q̃n+1, and denoted the Krylov space of dimension n + 1 by Kn+1. Moreover,
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n

κ(spr(E55))n

‖E55‖n

‖En
55‖

(spr(E55))n

κ

Figure 6.1: Illustration of the convergence behaviour of subiteration, exhibit-
ing nonnormality-induced transient divergence: error reduction plotted versus
iteration counter n; convergence of ‖En

55‖ and convergence bounds.

in Eq. (6.17), we have invoked that, on linear approximation, the residual of the
linear problem (6.3)

rn := Aqn −Aqn−1 +R(qn−1), n = 1, 2, . . . (6.18)

is identical to the residual of the nonlinear problem (6.1), i.e., rn = R(qn). With
this identity and provided with r0 = R(q0), the residual of the linear problem can
be defined recursively as

rn := Aqn −Aqn−1 + rn−1, n = 1, 2, . . . , (6.19)

and Eq. (6.12) can be rewritten as

qn+1 − qn = −Ã−1rn, n = 0, 1, . . . . (6.20)

The assertion that the subiteration iterates span a Krylov space in conformity
with (6.17) follows straightforwardly by induction. Clearly, this assertion holds for
n = 0:

q1 − q0 = −Ã−1r0 ∈ span{Ã−1r0} (6.21)

in conformity with Eq. (6.20). The induction makes use of the premise

qn − qn−1 ∈ span{Ã−1r0, . . . , (Ã−1A)n−1Ã−1r0}. (6.22)
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Starting from the left-hand-side of Eq. (6.17) and invoking Eqs. (6.19), (6.20) and
(6.22), it holds that

qn+1 − qn = −Ã−1rn = −Ã−1(Aqn −Aqn−1 + rn−1)

= −Ã−1(A[qn−1 − Ã−1rn−1]−Aqn−1 + rn−1)

= −Ã−1rn−1 + (Ã−1A)Ã−1rn−1

∈ span{Ã−1r0, . . . , (Ã−1A)n−1Ã−1r0}
+ (Ã−1A)span{Ã−1r0, . . . , (Ã−1A)n−1Ã−1r0}

= span{Ã−1r0, . . . , (Ã−1A)n−1Ã−1r0, (Ã−1A)nÃ−1r0}
= Kn+1(Ã−1A, Ã−1r0). (6.23)

This completes the proof.
Our error-amplification analysis in Section 6.3.2 conveys that the eigenval-

ues of Ã−1A exhibit a much more favourable distribution than those of A. In
particular, Eq. (6.13) imparts that most eigenvalues of Ã−1A are 1. This makes
subiteration a good preconditioner for the aggregated equations. Thus, instead of
using subiteration as a solver, we will employ it as a preconditioner for GMRES;
see Section 6.4.

The rank-deficiency of Ã−1A and, moreover, the fact that the error-amplifica-
tion behaviour is essentially determined by the properties of E55 (see Eq. (6.14)),
have important implications for the Krylov method. In particular, it follows that
a Krylov method with subiteration preconditioning solves the linear system (6.3)
in at most N steps, where N := rank(Ã−1A) = rank(E55). Moreover, on account
of the rank-deficiency and the particular structure of Ã−1A, the Krylov vectors
need not contain all degrees-of-freedom, but only those associated with the in-
terface degrees-of-freedom. This enables an efficient storage of the Krylov space
and, moreover, renders the computational cost of the least-squares problem low in
contrast to approaches which apply GMRES to the aggregated equations [26, 58],
or to the Schur complement pertaining to the structure [38].

6.4 Analysis of Interface-GMRES(R)
In this section, we present a detailed error-amplification analysis of the combined
subiteration/GMRES method. To this end, we introduce in Section 6.4.1 the GM-
RES method with subiteration preconditioning. Moreover, we establish the Schur
complement associated with the interface displacement. The Schur complement
plays a central role in our investigation in that it enables us to analyse the con-
sidered solution methods in terms of their approximation properties for the Schur
complement. Thus, the linear-algebra setting enables a clear explanation of the
relation between the local GMRES acceleration (i.e., on the interface degrees-of-
freedom), and the global error-amplification properties (i.e., for the aggregated sys-
tem). The subiteration-preconditioned GMRES method allows for optional reuse
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of Krylov vectors in subsequent invocations of GMRES. This reuse option is con-
sidered in Section 6.4.2. Next, we analyse the error-amplification properties of the
subiteration-preconditioned GMRES method, first without the reuse option (Sec-
tion 6.4.3), and subsequently with reuse (Section 6.4.4). Finally, in Section 6.4.5,
we consider the convergence behaviour of subiteration-preconditioned GMRES,
and we derive sharp upper bounds for the GMRES residual.

6.4.1 Subiteration-preconditioned GMRES

On account of the fact that the subiteration iterates span a Krylov space, and that
subiteration exhibits favourable error-amplification properties, subiteration con-
stitutes an apt preconditioner for GMRES. The combined subiteration/GMRES
method comprises the following steps: firstly, one subiteration to condense the
errors into a low-dimensional subspace and, moreover, to obtain a particular form
of the Schur complement, and secondly, the application of GMRES to the Schur-
complement equation, which yields the solution of the structure interface dis-
placement. Finally, another subiteration is required to compute the remaining
components of the solution vector.

The Schur complement associated with the interface constitutes a key ele-
ment in the analysis of the subiteration-preconditioned GMRES method. There-
fore, let us first introduce the notion of the Schur complement associated with the
structure interface displacement q5 and the linear-algebraic system (6.3b). To this
end, we translate the system (6.3b) into Schur form

A11 0 0 0 A15

A21 A22 0 0 0
A31 A32 A33 0 0
0 0 A43 A44 0
0 0 0 0 S



qn+1
1 − qn

1

qn+1
2 − qn

2

qn+1
3 − qn

3

qn+1
4 − qn

4

qn+1
5 − qn

5

 = −

R1(qn)
R2(qn)
R3(qn)
R4(qn)
RS(qn)

 (6.24a)

with the Schur-complement matrix S and the corresponding right-hand-side vector
RS(qn) defined respectively as

S := −A−1
55 A54A

−1
44 A43A

−1
33 (A32A

−1
22 A21 −A31)A−1

11 A15 − I (6.24b)

and

RS(qn) := A−1
55

(−R5(qn) +A54A
−1
44

(
R4(qn) +A43A

−1
33 (−R3(qn)

+A32A
−1
22

(
R2(qn)−A21A

−1
11 R1(qn)

)
+A31A

−1
11 R1(qn)

)))
. (6.24c)

Note that the fifth equation in (6.24a) decouples. This equation constitutes the
Schur-complement equation, viz.,

S(qn+1
5 − qn

5 ) = −RS(qn). (6.25)
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The expression of the right-hand-side vector RS(qn) in (6.24c) can be significantly
simplified when provided with residuals R1(qn), . . . , R5(qn) based on a qn that
has been generated by subiteration. To substantiate this assertion, we recall from
Section 6.3.1 that, provided with an initial approximation of the structure interface
displacement qn−1

5 , the subiteration steps (S1)–(S5) can be conceived as a sequence
of mappings, viz., qn−1

5 �→ qn
1 �→ qn

2 �→ qn
3 �→ qn

4 �→ qn
5 . For convenience, and

without loss of generality, let us shift the indices according to qn
5 �→ qn

1 �→ qn
2 �→

qn
3 �→ qn

4 �→ q̂n+1
5 . The ‘hat’ symbol serves to indicate that q̂n+1

5 constitutes only an
intermediate value which will be replaced by the subsequent invocation of GMRES.
Note that, in conformity with the mapping above and Eq. (6.1), the residuals
R1(qn), . . . , R4(qn) are identically zero, and R5(qn) = RSub(qn

5 ) = q̂n+1
5 − qn

5 in
accordance with Eqs. (6.2) and (6.11). In summary, one subiteration generates
a vector qn = [qn

1 , q
n
2 , q

n
3 , q

n
4 , q

n
5 ] such that the corresponding residual vector is

R(qn) = [0, 0, 0, 0, q̂n+1
5 −qn

5 ]. Provided with the residual vector R(qn) and noting
that A55 = −I, Eq. (6.24c) simplifies considerably. Using the notation z := q5
introduced in Section 6.3.1, the Schur-complement equation (6.25) can then be
written as

S(zn+1 − zn) = −(ẑn+1 − zn) . (6.26a)

With the definition (6.13f), the expression for the Schur complement (6.24b) can
be specified as

S = E55 − I. (6.26b)

Recall from Section 6.3.2 that the matrix E55 constitutes the discrete representa-
tion of the subiteration-operator derivative C′. Hence, Eq. (6.26a) can be identified
as a Newton iteration for the fixed-point residual equation (6.10), viz.,

R′
Sub(z

n+1 − zn) = −RSub(zn), (6.27)

and S = R′
Sub. Note that one subiteration is required to provide the residual

RSub(zn) that forms the right-hand-side of the Schur-complement equation (6.26a).
The Schur-complement matrix S in (6.26a) is generally not known explicitly.

However, if a Krylov method is used to solve the linear system (6.26a), then S is
only required in the form of matrix-vector products, which can be approximated
by finite differences. To this end, we note that on linear approximation

S(zn+1
j − zn) = rn+1

j − rn, (6.28)

where j indicates the counter for the GMRES iterations. In Eq. (6.28), the action
of the Schur-complement matrix S on the increment vector (zn+1

j − zn) yields the
corresponding residual sensitivity (rn+1

j − rn). For a Krylov method that makes
use of the finite-difference approximation (6.28), we thus require a space of search
directions in the form of updates around the current linearization state zn, and
the corresponding space of residual sensitivities in the form of increments around
rn. We then seek an approximation to the solution of Eq. (6.26a) from the search
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space Km, according to

(zn+1 − zn) ∈ Km := span{zn+1
j − zn}j=m

j=1 , (6.29)

where the zn+1
j are generated by successive subiterations. For a formal proof that

Km constitutes a Krylov space we refer to Ref. [71]. Denoting the vectors of
search directions by uj = zn+1

j −zn with j = 1, . . . ,m, we collect them in a matrix
Um := [u1, . . . , um]. Moreover, we require the space of residual sensitivities, Rm,
that corresponds to the space of search vectors, viz.,

(rn+1 − rn) ∈ Rm := span{rn+1
j − rn}j=m

j=1 . (6.30)

Denoting the residual-sensitivity vectors by vj = rn+1
j − rn with j = 1, . . . ,m, we

collect them in a matrix Vm := [v1, . . . , vm]. In conformity with Eq. (6.28), V is
the image of U under S, i.e.,

SU = V. (6.31)

We remark that the generation of the search and residual-sensitivity space implic-
itly builds an approximation to the Schur-complement matrix. If the spaces U
and V are complete and have full rank, then S can be obtained from Eq. (6.31)
by S = V U−1.

Provided with the linearization state zn and the corresponding residual rn,
the generation of one pair of search direction and corresponding residual sensitivity,
(uj , vj) = (zn+1

j − zn, rn+1
j − rn), is at the expense of one subiteration. The

subiteration is required for the evaluation of the residual rn+1
j := RSub(zn+1

j ) =
zn+1
j+1 − zn+1

j . At the same time, it also generates a new search direction uj+1 =
zn+1
j+1 − zn. In practice, though, the search direction must be orthogonalized with
respect to the previously generated search directions to avoid ill-conditioning of
the search space.

To construct an approximation to the solution of the linear problem (6.26a),
we make the following ansatz

zn+1 − zn =
j=m∑
j=1

αjuj , (6.32)

with coefficients αj that are determined from the requirement that the update (6.32)
minimizes the residual of the Schur-complement equation (6.26a), viz.,

ᾱ = arg min
α
‖rn + S

j=m∑
j=1

αjuj‖ = arg min
α
‖rn +

j=m∑
j=1

αjvj‖, (6.33)

in conformity with the finite-difference approximation (6.28) and Eq. (6.31). Hence,
the considered Krylov method is a minimal-residual method. As the spaces Km

and Rm are generally not complete, Eq. (6.33) is solved in a least-squares sense
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(see, e.g., Ref. [22, ch. 5.3]), i.e., the coefficients ᾱ are obtained from the solution
of the normal equation

V TV ᾱ = −V T rn. (6.34)

The computational cost involved in solving Eq. (6.34) is small in comparison to
that of a subiteration, because the least-squares problem (6.33) is confined to the
interface degrees-of-freedom. With coefficients ᾱ determined from the solution of
Eq. (6.34), the norm of the residual of the Schur-complement equation (6.26a) is
given by

ξm := ‖rn +
j=m∑
j=1

ᾱjvj‖. (6.35)

If the residual norm ξm in (6.35) satisfies a given tolerance, the coefficients ᾱ are
used to determine the corresponding approximate solution zn+1 from Eq. (6.32).
Note that in the actual nonlinear process, the residual norm given by Eq. (6.35)
constitutes an estimate for the norm of the nonlinear residual; cf. Ref. [71].

Having established the equations solved by subiteration and GMRES, we
can now establish the aggregated system that is solved by the combined subitera-
tion/GMRES method. To this end, we recall that the subiteration process acting
on the aggregated system (6.12) and the GMRES method acting on the Schur-
complement equation (6.26a) correspond to the mappings qn

5 �→ q̃n+1
1 �→ . . . �→

q̃n+1
4 �→ q̂n+1

5 and q̂n+1
5 �→ qn+1

5 , respectively. The combined subiteration/GMRES
method then corresponds to the combined mapping qn

5 �→ qn+1
5 . Upon combining

the Schur-complement equation (6.26a) with the system (6.12a) associated with
subiteration, we obtain

A11 0 0 0 0
A21 A22 0 0 0
A31 A32 A33 0 0
0 0 A43 A44 0
0 0 0 A54 −A55S



q̃n+1
1 − qn

1

q̃n+1
2 − qn

2

q̃n+1
3 − qn

3

q̃n+1
4 − qn

4

qn+1
5 − qn

5

 = −


R1(qn)
R2(qn)
R3(qn)
R4(qn)
q̂n+1
5 − qn

5

 .
(6.36)

Clearly, the system (6.36) retains the lower block-triangular structure in-
duced by the subiteration method. As subiteration discards the A15 entry in
(6.3b), two iterations are required to compute the aggregated solution vector:
Upon solution of Eq. (6.36) only the component qn+1

5 , obtained from the Schur-
complement equation, corresponds to the solution of (6.3b). To determine the
remaining components of the solution vector, one additional subiteration needs to
be carried out; see also Section 6.3.1.

As we already mentioned in the beginning of this section with respect to
the combined subiteration/GMRES method, prior to an invocation of GMRES,
a subiteration needs to be carried out, which serves two purposes. Firstly, it
condenses all error components into a low-dimensional subspace associated with
the interface; cf. Section 6.3.2. Secondly, the subiteration process provides the
right-hand-side residual for the Schur-complement equation.
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So far we have exclusively considered the solution of the linear-algebraic sys-
tem (6.3b). However, in practice, the system of equations (6.1) is nonlinear. The
application of Newton’s method to the nonlinear system gives rise to a sequence
of linear systems. We solve these linear systems by subiteration-preconditioned
GMRES. Hence, we can alternatively classify the considered solution technique as
a Newton-Krylov method [10], in which subiteration acts as a preconditioner.

Having established the subiteration-preconditioned GMRES method, let us
briefly address some algorithmic aspects of the method; for details see Chapter 5
and also Ref. [71]. For computational efficiency, it is customary to set the con-
vergence tolerance of the linear problem (6.3) relative to the norm of the actual
residual of the nonlinear problem (6.1). Moreover, it is important to endow the
method with Gram-Schmidt orthonormalization and underrelaxation. The former
improves the robustness, the latter facilitates the subiteration process and allows
the combination of GMRES with subiteration even if subiteration is formally un-
stable.

6.4.2 Reuse of Krylov vectors

We presented the optional reuse of Krylov vectors in Section 5.2.3. Next, let
us briefly discuss the effect of reuse on the Schur complement. We recall from
Section 6.4.1 that search and residual-sensitivity space implicitly approximate the
exact Schur-complement matrix S; cf. Eq. (6.31). Likewise, reusing the search and
residual-sensitivity space implies an approximation S̃ to the exact S. With such
an approximation S̃, the exact Schur-complement equation (6.26a) translates into

S̃(q̃n+1
5 − qn

5 ) = −R(qn
5 ), (6.37)

which yields an approximation q̃n+1
5 to qn+1

5 . The system solved by the subiteration-
preconditioned GMRES method with reuse can still be cast in the form of Eq. (6.36),
but with the Schur-complement matrix S replaced by S̃. The effect of reuse and
augmentation of the spaces on the error-amplification behaviour can thus be in-
vestigated in terms of the approximation properties for the Schur complement.

To place the reuse option into context, we briefly consider two alternative
approaches for reusing computational information, viz., so-called search space in-
jection [72] and nested preconditioning [12]. In particular, we establish common-
alities and differences between these approaches and our methodology of reusing
Krylov vectors. We consider first the search space injection from Ref. [72]. A
commonality with our approach consists in storing a search space and its image
under the operator, which allows for straightforward reuse and augmentation of
these spaces. An important difference to Ref. [72] is that in our problem the op-
erator is not known explicitly, but its action on a vector has to be evaluated by
subiteration. Moreover, in contrast to [72], we consider the reuse of Krylov vec-
tors in subsequent invocations of GMRES for which the left-hand-side matrix as
well as the right-hand-side vector have changed. Finally, at variance with [72], in
our approach the Krylov space need only contain the interface degrees-of-freedom
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and, hence, storage is not an issue. Next, we consider nested preconditioning from
Ref. [12]. Likewise, this approach solves the linear problems by a Krylov method.
Upon solution of the linear system, the generated Krylov space is condensed into
a preconditioning matrix. However, an incomplete Krylov space would translate
into a rank-deficient preconditioning matrix. To ensure that the preconditioner
is invertable, some ‘ad hoc’ terms are added to this matrix in [12]. The precon-
ditioning matrix is then applied to the subsequent linear system, which is again
solved by a Krylov method. Successive solution of the linear systems thus gen-
erates a sequence of preconditioners, which are applied in a ‘nested’ way to the
subsequent linear problems. The disadvantages of this approach pertain to the
‘ad hoc’ terms, which can interfere with the performance of subsequent precon-
ditioners. Moreover, due to storage requirements, the number of preconditioners
must be limited by restarts. These disadvantages can be avoided by methods in
conformity with search space injection and reuse of Krylov vectors. Finally, we
remark that Ref. [12] restricts reuse to subsequent Newton iterations, but does not
consider reuse in subsequent time steps. However, it is in particular the reuse in
subsequent time steps which can substantially reduce the computational cost in
transient fluid-structure-interaction problems.

6.4.3 Error-amplification analysis

In this section, we derive the error-amplification matrix for the combined subiter-
ation/GMRES method. In our analysis, the Schur complement from Section 6.4.1
plays a central role: the solution methods under consideration can all be con-
ceived as instances of an inexact Newton method with a specific approximation to
the Schur-complement matrix. Thus, an error-amplification analysis based on the
Schur complement allows for a direct comparison of the subiteration process sep-
arately, the subiteration method with GMRES acceleration, and the subiteration
method with GMRES acceleration and reuse, from a unified viewpoint.

As the subiteration-preconditioned GMRES method can be conceived as an
instance of an inexact Newton method in conformity with Section 6.2.2, its error-
amplification matrix is given in a general form by Eq. (6.7). The implied approx-
imation Ã to the exact Jacobian A of the Newton process is given by Eq. (6.36).
However, to analyse the general case with an approximation to the Schur com-
plement, for instance due to reuse of Krylov vectors, we consider the Jacobian
matrix from Eq. (6.36) with the Schur complement S replaced by a complete and
full-rank approximation S̃. Substituting the expressions for A and Ã in Eq. (6.7)
yields, after some straightforward manipulations, the error-amplification relation
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for the subiteration-preconditioned GMRES method:
εn+1
1

εn+1
2

εn+1
3

εn+1
4

εn+1
5

 =

0 0 0 0 E15

0 0 0 0 E25

0 0 0 0 E35

0 0 0 0 E45

0 0 0 0 I − S̃−1S



εn1
εn2
εn3
εn4
εn5

 . (6.38)

Eq. (6.38) expresses the error-amplification under a combined subiteration / GM-
RES step with an approximation S̃ to the Schur complement matrix S. In analogy
to our observations in Section 6.3.2, we find that the error-amplification matrix in
(6.38) is highly rank-deficient. In particular, the only non-zero eigenvalues are the
ones of the lower block-diagonal matrix I − S̃−1S, which expresses the mapping
of one error in the structure interface displacement onto the next.

In fact, Eq. (6.38) is of a general form and encompasses the following three
special cases: Firstly, upon setting S̃ = −I, Eq. (6.38) reverts to Eq. (6.13a), and
we recover the error-amplification matrix of the subiteration method. By virtue
of the result from Section 6.4.1 that S constitutes the discrete approximation to
R′

Sub := C′ − I, the identity S̃ = S̃Sub := −I conveys that S̃Sub implies the most
trivial approximation to R′

Sub. Secondly, upon setting S̃ = S, the lower block-
diagonal entry is zero, and we obtain the error-amplification matrix of subiteration
combined with ‘exact’ GMRES, i.e., no approximations are made to search and
residual-sensitivity space. This is not to be confused with the error-amplification
matrix of the exact Newton method which is identically zero; cf. Section 6.2.2.
In the case of subiteration combined with GMRES, the matrix in Eq. (6.38) is
nilpotent of index 2, i.e., En ≡ 0, n ≥ 2; see, e.g., Ref. [32, ch. 1]. This implies
that, to eliminate all error components and, hence, to obtain the complete vector
of solution components, two applications of Eq. (6.38) are required. This is in
agreement with the elaboration in Section 6.4.1, according to which one step of
subiteration-preconditioned GMRES eliminates the error in q5, and a second step
eliminates the error in the remaining components of the solution vector. Thirdly,
Eq. (6.38) specifies the error-amplification matrix of subiteration combined with
GMRES for the case that an approximation S̃ to the exact Schur-complement ma-
trix S is used. Such an approximation can be obtained, for instance, by reusing the
search and residual-sensitivity spaces generated for the solution of the linear sys-
tem (6.26a) in a previous Newton or time step. The error-amplification behaviour
for the combined subiteration/GMRES method with reuse will be discussed in
more detail in Section 6.4.4.

The above elaboration assumes that the Schur-complement approximation
S̃ is complete and has full rank and is thus invertible. In practice, the generation
of a complete space V (N ×N) with N := rank(Ã−1A) = rank(E55) is generally
too expensive. However, it is usually also not required. An incomplete space Ṽ
(N × k) with k < N , however, implies rank-deficiency of the Schur-complement
approximation S̃. In that case, S̃ can be determined as follows: With the solution
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ᾱ from the normal equation (6.34), we consider the Newton update z̃n+1 = zn +
ᾱU . With rn = Sεn5 and upon subtracting the solution z̄, we can identify the
Schur-complement approximation in analogy with Eq. (6.38) as

S̃−1 = (Ũ(Ṽ T Ṽ )−1Ṽ T ). (6.39)

We remark, however, that incompleteness of Ũ and Ṽ implies that S̃ has N − k
eigenvalues equal to zero and, hence, I − S̃−1S has N − k eigenvalues equal to 1.
This entails that the corresponding error components cannot be reduced in the
available space. The precise error-amplification behaviour then depends specifi-
cally on the error in the initial approximation

6.4.4 Analysis of the reuse of Krylov vectors

Reuse of Krylov spaces enhances the efficiency of the method at the expense of
robustness. In this section, we discuss the limitations of the reuse option based on
the effect of reuse on the error-amplification behaviour of GMRES. We restrict our
considerations to the case that search and residual-sensitivity space are complete
and have full rank. For rank-deficient spaces the elaboration in Section 6.4.3
applies likewise.

With reuse, the residual-sensitivity space Ṽ is no longer equal to the image
of the search space Ũ under the current Schur complement S, i.e., Ṽ #= SŨ .
This is due to the fact that Ṽ := S̃Ũ may have been generated with, possibly
multiple, different Schur-complement matrices, here collectively denoted by S̃.
The benefit and limitations of the reuse option therefore depend pivotally on the
similarity between S and S̃. If the Schur complement changes significantly in
subsequent Newton iterations and time steps, the disparity between S and S̃ can
be substantial. Clearly, this is detrimental for the effectiveness of the reuse option.
Reuse fails, if the spectral radius of the error-amplification matrix exceeds 1, i.e.,
if spr(I − S̃−1S) > 1, in conformity with Eq. (6.38). The reused space is then
simply too inaccurate. In Section 6.5.4, we consider the properties of I − S̃−1S
for a fluid-structure-interaction model problem.

For completeness let us briefly mention another ‘failure mechanism’ of the
reuse option. If the reused space Ṽ is rank-deficient, then certain error components
cannot be eliminated in Ṽ . If these error components are contained in the initial
approximation, then the residual estimate stalls at some point, i.e., ξm � 0 for
m→ N with N := rank(Ã−1A) = rank(E55). In that case, the algorithm breaks
down; cf. Ref. [71] for further elaboration.

6.4.5 GMRES convergence bounds

To elaborate the implications of the nonnormality of the subiteration operator for
GMRES convergence, we recall from Section 6.3.3 that nonnormality of E55 is
associated with non-orthogonality of its eigenvectors. By virtue of the fact that
E55 and the Schur complement S = E55 − I have the same eigenvectors, S is
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also nonnormal. This has consequences for the solution of the Schur-complement
equation (6.26a) by GMRES. Nonnormality typically implies a severe degradation
in the sharpness of the usual GMRES convergence bounds, which renders such
bounds unreliable; cf. Ref. [24, ch.3]. To substantiate this statement, let us recall
from Ref. [24] the following sequence of GMRES convergence bounds:

‖rk‖ = min
p∈Pk

‖p(S)r0‖ = min
p∈Pk

‖Xp(Λ)X−1r0‖ ≤ κ(X)min
p∈Pk

‖p(Λ)‖‖r0‖, (6.40a)

which implies
‖rk‖/‖r0‖ ≤ κ(X)min

p∈Pk

max
λ∈L

|p(λ)|, (6.40b)

where ‖·‖ denotes the standard 2-norm, Pk is the set of k-th-order polynomials, de-
fined by Pk(z) := 1−

∑i=k
i=1 αkz

k, L is the spectrum of S and Λ := diag(λ1, . . . , λn)
is the diagonal matrix of eigenvalues of S, X is the matrix of right eigenvectors
of S, and κ(X) := ‖X‖‖X−1‖ is the eigenvector-matrix condition number. Non-
normality of S implies that the eigenvectors of S are non-orthogonal. Hence, the
corresponding eigenvector matrix X can be severely ill-conditioned, in which case
κ(X) can be very large. It is then not clear whether GMRES indeed converges
slowly, or whether the bound is simply a large overestimate of the actual residual
norm. This renders the bounds (6.40) virtually useless. For nonnormal matrices,
a sharp convergence upper bound follows from

‖rk‖/‖r0‖ ≤ max
‖u‖=1

min
p∈Pk

‖p(S)u‖. (6.41)

This bound is sharp in the sense that there exists an r0 for which the right-hand
side value is actually attained. Eq. (6.41) delineates the worst-case convergence,
independent of the specifics of the initial residual.

6.5 Numerical experiments
To illustrate the theoretical results from Sections 6.3 and 6.4, we conduct numerical
experiments on a model fluid-structure-interaction problem. A concise setup of the
model problem is provided in Section 6.5.1. Section 6.5.2 presents results for the
subiteration method separately. In Section 6.5.3, we assess the convergence of the
subiteration-preconditioned GMRES method and determine convergence upper
bounds. In Section 6.5.4, we investigate the viability of reusing Krylov spaces by
examining the properties of the corresponding error-amplification matrix.

6.5.1 Experimental setup

We conduct numerical experiments on a fluid-structure system consisting of the
Euler equations of gas dynamics in one spatial dimension, in connection with a
nonlinear structure, viz., the van-der-Pol oscillator, at the interface. For com-
pleteness, we shall briefly recall the Euler equations from Section 3.2.1. The Euler
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equations in conservative form are given by

∂u
∂t
+
∂f(u)
∂x

= 0, t ∈ (0, T ), x ∈ (0, α(t)), (6.42a)

with α(t) the position of the fluid-structure interface and

u :=

 ρ
ρv
E

 , f(u) :=

 u2

u2
2/u1 + p(u)

(p(u) + u3)u2/u1

 , p(u) := (γ− 1)
(
u3 − u2

2

2u1

)
,

(6.42b)
and γ a constant, typically γ = 1.4. In Eq. (6.42b), ρ, v, E and p denote the
density, velocity, total energy and pressure of the fluid, respectively.

Eq. (6.42) is subject to initial and boundary conditions u2(0, t) = 0, u2(α(t)) =
u1(α(t))α̇(t) and u(x, 0) = u0(x), where u0(x) denotes prescribed initial condi-
tions. The initial conditions are determined from the linearized model problem in
Ref. [70]. However, we remark that for the considered small initial deflections of
the oscillator, the influence of the initial conditions is small.

The structure model consists of the van-der-Pol oscillator, viz.,

Mz̈ +Kz + ηβ−2(z2 − β2)ż = π − p0, (6.43)

with z := z(t) the structure displacement from its equilibrium position and M ,
K, β and η suitable constants. The right member of Eq. (6.43) is composed of
the stress π := π(t) exerted by the fluid on the structure through the interface
and the constant external pressure p0. The ordinary differential equation (6.43) is
supplemented with the initial conditions z(0) = z0 and ż(0) = ż0. The fluid and
the structure are connected by the dynamic interface condition p(u(α(t), t)) = π(t)
and the kinematic interface condition α(t) = α0 + z(t), where α0 denotes the
reference length of the fluid domain.

With η = 0, Eq. (6.43) simplifies to the equation of a harmonic oscillator
considered in Ref. [71]. The associated fluid-structure system admits periodic solu-
tions; cf. the linearized-system analysis in Section 3.3.2 and Ref. [70]. In contrast,
for η > 0, the fluid-structure system given by Eqs. (6.42)–(6.43) behaves distinctly
different: For non-vanishing initial conditions, the amplitude of z(t) in the van-
der-Pol equation increases to approximately 2β. As a consequence, the behaviour
of the system at later times is in general distinctly different from its initial be-
haviour and, correspondingly, the subiteration operator changes. Therefore this
model problem is particularly suitable to test the reuse of Krylov spaces under
adverse conditions.

The fluid-structure system is discretized by means of space/time finite ele-
ments. The adopted discretization is essentially identical to that in Section 5.3.
We consider the fluid-structure system for representative settings of the system
parameters. The system and discretization parameters are listed in Table 6.1
and 6.2 on the next page, respectively. The discretization is sufficiently fine to
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ensure that the results are essentially mesh independent. The computational time
step τ is chosen of the order of the period of the linearized system. We consider
three representative settings of the parameter η which determines the nonlinearity
of the structure model. In particular, we choose η = 2, 0.5 and 0, corresponding
to strong, medium and vanishing structural nonlinearity, respectively. We remark
that the parameter η moreover determines the initial-growth rate of the displace-
ment, i.e., for larger η the initial growth of z(t) is more pronounced.

Table 6.1: System parameters (∗ indicates a variable parameter).

z0 ż0 α0 ρ0 c0 K M η β τ
10−4 0 1 20 0.5 1 1 ∗ 0.025 8

Table 6.2: Discretization parameters.

Nx
U N t

U NA NZ NP PU PA PZ PP

12 4 4 4 4 (2, 2) 4 4 3

6.5.2 Convergence of subiteration

In this section, we consider the convergence of the standard subiteration method.
To this end, we investigate the properties of the corresponding error-amplification
matrix and, in particular, of the lower diagonal block matrix E55 which yields the
only non-zero eigenvalues of the error-amplification matrix; cf. Section 6.3.2.

For reference, Fig. 6.2 plots the structure displacement versus time for η =
0, 0.5, 2. The figure illustrates the significant change in the solution behaviour
of the system over time. For η > 0, the amplitude of the structure oscillation
increases by a factor of 500, viz., from an initial deflection z0 = 10−4 to approx-
imately 5 · 10−2 when the oscillation has settled into a (quasi-)periodic regime.
For the larger value of η, the amplitude increases more rapidly on account of the
stronger nonlinearity of Eq. (6.43) and, accordingly, the oscillation settles into its
periodic regime faster. In contrast, for η = 0, the amplitude remains constant
and equal to the initial deflection z0 = 10−4. For η = 2, a slight drift in the
oscillation mean is visible in Fig. 6.2. Mesh refinement indicates that this drift
is caused by discretization error and, moreover, that this discretization error does
not significantly change the results presented in the sequel.

Fig. 6.3 on page 112 plots the spectral radius of the error-amplification matrix
of subiteration versus time, viz., (E55)j := Sj+ I in accordance with (6.26b), with
Sj the Schur-complement matrix pertaining to time step j. The Schur complement
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Figure 6.2: Structure displacement versus time for η = 0.0 (−−),
η = 0.5 (−−−) and η = 2.0 (···).

is computed as S = V U−1 with, in particular,

V T := ν−1


RSub

(
u0 + ν(u1 − u0)

)
...

RSub

(
u0 + ν(un − u0)

)
−

RSub(u0)
...

RSub(u0)


 , (6.44)

i.e., the image space V is determined by finite differencing of the nonlinear residual
operator of the subiteration process, RSub, as defined below (6.10). Throughout,
we used ν = 10−8.

For η = 2 there is an initial growth in the spectral radius, before it de-
creases to an essentially constant value of approximately 2. This initial growth is
apparently related to the strong initial growth of the solution; see Fig. 6.2. For
η = 0.5, the initial growth of the spectral radius is absent, and the spectral radius
decreases to approximately 3 in the periodic regime. In either case, however, the
spectral radius is larger than one and, hence, the subiteration process diverges.
For reference, we also computed the spectral radius for η = 0. This spectral radius
is approximately 4. Clearly, for η = 0 the spectral radius remains essentially con-
stant in time. For a detailed analysis of the convergence behaviour of subiteration
for η = 0, we refer to Refs. [69, 71].
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Figure 6.3: Spectral radius of the error-amplification matrix of subiteration,
spr(E55), versus time for η = 0.0 (◦), η = 0.5 (�) and η = 2 (�).

6.5.3 GMRES convergence bounds

To assess the convergence of the subiteration-preconditioned GMRES method, we
compute

σk := sup
u∈Rn

J(u) with J(u) := inf
α∈Rk

J(u, α), J(u, α) :=
∥∥u∥∥−1∥∥(I−i=k∑

i=1

αiS
i
)
u
∥∥ .

(6.45)
Let us note that the convergence behaviour of the GMRES method pertaining to
a particular initial residual r0 is given by

‖rk‖ = min
α
‖(I −

i=k∑
i=1

αiS
i)r0‖. (6.46)

For an illustration of the convergence behaviour of the method for the piston
problem (η = 0) in specific instances we refer to Ref. [71]. One easily infers that
Eq. (6.45) provides an upper bound to the residual reduction, i.e., ‖rk‖/‖r0‖ ≤ σk

for all r0 ∈ Rn. Moreover, the bound in (6.45) is sharp in the sense that there
exists an initial residual for which the bound is actually attained, in contrast to
the usual GMRES convergence bounds; see Section 6.4.5 and also Ref. [24, ch.3].

To determine the supremum over all u, we employ a steepest-ascent method
(or hill-climbing algorithm), in combination with a line-search technique. Essen-
tially, the steepest-ascent method determines the gradient Ju of J(u) with respect
to u, and updates u according to u + θJu, with θ a small number determined by
the line-search strategy. This process is repeated until Ju = 0 and, accordingly,
u corresponds to a supremum of J(u). As the functional J(u) is nonconvex, the
process is started from multiple initial guesses, and the maximum over all local
extrema is determined, to ensure that the global supremum is computed.
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Instead of computing the functional J(u) according to its definition in (6.45),
we first orthonormalize the Krylov space [u, Su, S2u, . . . , Sku] to avoid ill-condition-
ing. Although the orthonormalization changes the coefficients of the GMRES
polynomial, it does not change σk. Such a change of basis can be straightfor-
wardly incorporated in the functional, but the expression for the corresponding
gradient is prohibitively complicated. Therefore, in the numerical procedure we
apply the gradient for the non-orthonormalized functional. Consequently, the ac-
curacy of the gradient deteriorates with increasing dimension of the Krylov space
on account of the loss of digits, and the supremum is typically not attained. As a
result, for large dimensions of the Krylov space, the steepest-ascent process yields
a reasonably sharp lower estimate of the upper bound σk.

Fig. 6.4 on the next page displays the upper bound σk versus the dimension
of the Krylov space k for η = 0, 0.5, 2 in the first time step (left), i.e., in the time
interval 0 ≤ t ≤ τ , and in the final time step (right), viz., (j − 1)τ ≤ t ≤ jτ
with j = 50. For reference and validation purposes, the figure also plots the
supremum of the functional J(u) over 106 random vectors u, versus the Krylov-
space dimension k. Let us first note that the computed value of σk in all cases
exceeds the supremum over the 106 random vectors. Hence, although the accuracy
of the gradient deteriorates with increasing k and, accordingly, it cannot be ensured
that the steepest-ascent algorithm converges to the supremum, it appears that the
algorithm nonetheless yields a sharp estimate. Fig. 6.4 conveys that there is a lower
bound to the dimension of the Krylov space in which a reduction of the residual
can be ascertained. In particular, for dimensions k less than approximately 10 it
holds that σk ≈ 1. Furthermore, the figure shows that the convergence behaviour
in the first time step deteriorates with increasing η. Conjecturally, this can be
attributed to the growth of the solution in the first time step. For η = 0, the
convergence behaviour is essentially identical for all time steps. For η = 0.5, 2
the convergence behaviour in the final time step is better than in the initial time
step. In contrast to the growth regime, it appears that in the periodic regime the
convergence behaviour improves with increasing η.

6.5.4 Analysis of the reuse of Krylov vectors

In this section, we investigate the viability of reuse of the Krylov space in subse-
quent invocations of GMRES. To this end, we consider the corresponding error-
amplification matrix and, in particular, the lower diagonal block matrix I − S̃−1S
which yields the only non-zero eigenvalues. We then examine its properties in
terms of spectral radius, norm and pseudospectra.

We consider the reuse of the Krylov space generated in the first time step in
the subsequent time steps. Fig. 6.5 on page 116 plots the spectral radius of the
error-amplification matrix versus time. The spectral radius expresses the quality
of the Krylov space of the first time step as an approximation to the Krylov spaces
of the subsequent time steps. In particular, if the spectral radius is large, then the
first Krylov space constitutes a poor approximation and reuse is ineffective. In
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Figure 6.4: Convergence of the subiteration-preconditioned GMRES method:
σk according to (6.45) (+) and the supremum of J(u) over 106 random vec-
tors u (◦) versus k for η = 0 (· · ·), 0.5 (−−), 2 (−−−), in the initial time step
(left) and the final time step (right). y-axis in log10-scale.

fact, if the spectral radius exceeds 1, then reuse leads to divergence of the method.
The figure indicates that the quality of the reused space degrades in the growth
regime of the solution, reflecting the change in the solution behaviour and the
corresponding change in the subiteration operator. As the solution settles into its
periodic regime, the spectral radius becomes essentially constant, modulo minor
erratic variations. Moreover, Fig. 6.5 indicates that for large η the deterioration
of the approximation properties of the reused space is more severe. This can be
attributed to the stronger nonlinearity of the structure associated with a larger
value of η. Even for η = 2, however, the spectral radius remains smaller than one
and, hence, the reuse option is formally convergent. Conjecturally, the spectral
radius of the error-amplification matrix with reuse can exceed one, thus causing
the reuse option to fail. However, for the considered test case such failure appears
to be rare, and we have not observed failure of the reuse option despite testing it
under various extreme conditions.

Next, we consider error bounds for the GMRES method with reuse in con-
formity with

(spr(I− S̃−1S))n ≤ ‖εn5‖/‖ε05‖ ≤ ‖(I− S̃−1S)n‖ ≤ κ(X)(spr(I− S̃−1S))n, (6.47)

where εn5 denotes the error in the interface displacement after n iterations, and
κ(X) := ‖X‖‖X−1‖ is the condition number of the matrix of eigenvectors, X, of
I − S̃−1S. To this end, we plot in Fig. 6.6 on page 116 the norm of powers of
the error-amplification matrix along with the bounds given by Eq. (6.47). The
figure considers reuse of the Krylov space generated in the first time step in time
step 50 for η = 0 (left), η = 0.5 (center) and η = 2 (right). In either case, the
spectral radius is less than one, and the method with reuse is formally convergent.
However, the condition numbers of the eigenvector matrices are very large, viz.,
κ(X) = 3.1 · 105 for η = 0, κ(X) = 6.9 · 107 for η = 0.5 and κ(X) = 1.2 · 108
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for η = 2. Moreover, the norm of the error-amplification matrix is smaller than
one for η = 0, but it exceeds one for both η = 0.5 and η = 2. In combination with
the upper bound ‖(I − S̃−1S)n‖ ≤ ‖I − S̃−1S‖n, the bounds in (6.47) then imply
that for η = 0 convergence is monotonous, whereas for η = 0.5, 2 the initial error
can be amplified by several orders of magnitude before it eventually decreases at
an asymptotic rate determined by spr(I−S̃−1S). For η = 2, the phase of transient
divergence is much more pronounced, and the initial error can be amplified by more
than five orders of magnitude before asymptotic convergence sets in. The transient
divergence is indicative of the nonnormality of the GMRES method with reuse
which is induced by the nonnormality of the underlying subiteration operator;
cf. the discussion in Sections 6.3.3 and 6.4.5. We remark that the GMRES method
without reuse converges monotonously; see Ref. [24] for the general theory, and
Fig. 6.4 for an illustration.

Nonnormality also manifests itself in sensitivity of the spectrum to pertur-
bations in the error-amplification matrix, e.g., due to discretization, linearization
and round-off errors. To illustrate this effect, we plot in Fig. 6.7 on page 117
the ε-pseudospectra1 of the error-amplification matrices considered in Fig. 6.6. A
perturbation of the error-amplification matrix according to (I − S̃−1S) +E′ with
‖E′‖ ≤ ε can shift the eigenvalues anywhere within the corresponding ε-contour
line; see [68]. For normal matrices the ε-pseudospectrum consists of all points
in the complex plane at distance at most ε from the spectrum. For nonnormal
matrices, however, the ε-pseudospectrum can be much larger. Although Fig. 6.7
indicates that as a result of nonnormality the spectrum of the error-amplification
matrix is sensitive to perturbations, the presented results do not change signifi-
cantly with mesh refinement or variations of the finite-differencing parameter ν
involved in the evaluation of the image space according to Eq. (6.44).

6.6 Concluding remarks
We presented an error-amplification analysis of the subiteration-preconditioned
GMRES method for fluid-structure-interaction problems. We considered the linear-
algebra aspects of the subiteration method separately, and of the subiteration-
preconditioned GMRES method, on the basis of properties of the error-amplifica-
tion matrix for the aggregated fluid-structure system. We showed that the subit-
eration iterates span a Krylov space corresponding to a preconditioned aggregated
system. The analysis of the error-amplification matrix of subiteration establishes
that subiteration condenses errors into a low-dimensional subspace which can be
associated with the interface degrees-of-freedom. Therefore, the GMRES accel-
eration of subiteration can be confined to the interface degrees-of-freedom and,
accordingly, the method is also referred to as Interface-GMRES. The restriction
of the acceleration to the interface degrees-of-freedom renders the storage require-

1The pseudospectra plots in Fig. 6.7 were computed using the EigTool package by
T.G. Wright, M. Embree and L.N. Trefethen; see [75] for further information.
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Figure 6.5: Reuse of the Krylov space generated in the first time step 0 ≤
t ≤ τ in subsequent time steps (j − 1)τ ≤ t ≤ jτ with 1 ≤ j ≤ 50 : Spectral
radius of the error-amplification matrix versus time for η = 0.0 (◦), η = 0.5 (�)
and η = 2 (�).
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Figure 6.6: Reuse of the Krylov space generated in the first time step in
time step 50 for η = 0.0 (left), η = 0.5 (center) and η = 2 (right): ‖(I −
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ments for the Krylov space and the computational cost of the acceleration itself
low. The error-amplification analysis elucidates the connection between the lo-
cal GMRES acceleration (i.e., on the interface degrees-of-freedom), and the global
error-amplification properties (i.e., for the aggregated system).

An attractive feature of the subiteration-preconditioned GMRES method
is that it enables the optional reuse of Krylov vectors in subsequent invoca-
tions of GMRES. This can substantially enhance the efficiency of the method,
at the expense of robustness. We analysed the implications of reuse for the error-
amplification behaviour. A pivotal element in the analysis is the observation that
the GMRES acceleration on the interface degrees-of-freedom generates an approx-
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Figure 6.7: Spectra (•) and L2 ε-pseudospectra of (I−S−1
1 S50) in the complex

plane for η = 0.0 (left), η = 0.5 (center) and η = 2 (right) and ε = 10−9 (−−−),
ε = 10−8 (−−), ε = 10−7 (···), ε = 10−6 (−·), ε = 10−5 (−−−), ε = 10−4 (−−)
and ε = 10−3 (···).

imation to the Schur complement for the aggregated system. The Schur com-
plement allows for a concise expression of the error-amplification matrices, and
enables the assessment of the GMRES acceleration and of the reuse of Krylov
vectors in terms of the approximation properties for the Schur complement.

We illustrated the developed theory by numerical experiments on a model
fluid-structure-interaction problem. In particular, we assessed convergence of the
GMRES method with and without reuse in terms of spectral radius, norm and
sharp convergence upper bounds. These bounds indicate that a minimum Krylov-
space dimension is required to ensure a reduction of the residual. Moreover, the
results show that significant changes in the solution due to nonlinearity can result
in a degradation of the convergence behaviour.

Next, we investigated the viability of reusing Krylov vectors in subsequent
invocations of GMRES. For the considered numerical experiments, the method
with reuse is convergent, despite significant changes in the solution behaviour
in time. Conjecturally, the spectral radius of the error-amplification matrix can
exceed one, thus causing the reuse option to fail. However, such failure appears to
be rare, and we have not observed it in the numerical investigations. This indicates
that reuse constitutes a viable option, which renders it attractive for reducing the
computational cost. However, the method with reuse appears to be affected by
the nonnormality of the underlying subiteration operator. Thus, the method can
exhibit transient divergence, whereas without reuse convergence is monotonous.

The presented error-amplification analysis of the subiteration-preconditioned
GMRES methods is in principle generic. However, the specifics depend on the
fluid-structure system under consideration.
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Chapter 7

Assessment of Interface-GMRES(R) on the
panel problem

7.1 Introduction
To demonstrate the versatility of the Interface-GMRES(R) method proposed in
Chapter 5, in the present chapter we assess the solution method on an alternative
model problem, viz., the panel problem; see, e.g., Ref. [55]. The panel problem is
distinctly different from the piston problem considered in Chapter 5. In contrast
to the one-dimensional piston problem, for the two-dimensional panel problem the
interface degrees-of-freedom pertain to both space and time. This distinction is
relevant for further testing of the Interface-GMRES(R) method, as the method
operates on the interface degrees-of-freedom. Another relevant feature that dis-
tinguishes the panel problem from the piston problem relates to the aspect of
parameter-dependent stability behaviour. Many fluid-structure-interaction prob-
lems can display instabilities such as flutter and divergence for certain parameter
settings, whereas other parameter settings yield a stable behaviour. The piston
problem does not have this feature, as it is (marginally) stable for all parameter
settings. The panel problem, on the other hand, can exhibit instabilities such as
flutter and divergence; see, e.g., Refs. [15, 21] and [5, ch.9]. An investigation of the
convergence behaviour of the Interface-GMRES(R) method for different stability
regimes is therefore relevant.

In our numerical experiments on the panel problem, we investigate the con-
vergence behaviour of the Interface-GMRES(R) method, test its robustness and
assess its computational cost. We consider the method with and without reuse of
the Krylov space, and compare its performance to standard subiteration. We also
investigate the effect of changes in the solution behaviour due to flutter on the
convergence of the Interface-GMRES(R) method and on the effectiveness of the
reuse option. Moreover, we assess the effect of the initial conditions on the sys-
tem behaviour and on the convergence of Interface-GMRES(R). Besides strongly-
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coupled solution methods such as subiteration and Interface-GMRES(R), we also
consider loosely-coupled partitioned methods for the computation of a stable and
an unstable fluid-structure system. Strongly-coupled methods can maintain the
conservation properties at the fluid-structure interface, which renders them un-
conditionally stable. In contrast, loosely-coupled methods are typically energy
increasing and, hence, numerically unstable; cf. Section 4.2.3.

The contents of this chapter are organized as follows: Section 7.2 presents
a statement of the panel problem. Moreover, we introduce the characteristic sys-
tem parameters and describe some distinct properties of the system. Section 7.3
presents numerical experiments and results. Section 7.4 contains concluding re-
marks.

7.2 Problem statement
Section 7.2.1 presents a statement of the panel problem. Section 7.2.2 establishes
the characteristic system parameters and identifies some particular features of the
system.

7.2.1 The panel problem

Below, we present a concise description of the panel problem, for an elaboration we
refer to Ref. [55]. The upper side of the panel is exposed to an airstream, and its
lower side to a cavity with still air; see Fig. 7.1 on page 122 for an illustration. We
consider a panel with an infinite aspect ratio, which renders the problem essentially
two-dimensional. The motion of the structure can then be described by the beam
equation. Let x, y and t be spatial and temporal coordinates, respectively, α(x, t)
the y-coordinate position of the fluid-structure interface and L the length of the
beam. The mathematical formulation of the fluid-structure system comprises the
Euler equations on Ωα := {(x, y, t) : −∞ < x < ∞;α(x, t) < y < ∞; 0 < t < T}
in connection with the beam equation at the interface Γα := {(x, y, t) : 0 < x < L;
y = α(x, t); 0 < t < T}. We consider the Euler equations in conservative form:

∂u
∂t
+
∂f(u)
∂x

+
∂g(u)
∂y

= 0 , (x, y, t) ∈ Ωα , (7.1a)

with

u :=


ρ
ρu
ρv
E

 , f(u) :=


ρu

ρu2 + p(u)
ρuv

(p(u) + E)u

 , g(u) :=


ρv
ρuv

ρv2 + p(u)
(p(u) + E)v

 ,

p(u) := (γ − 1)
(
E − 1

2
ρ(u2 + v2)

)
, (7.1b)
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and γ = 1.4. In Eq. (7.1b), ρ, u, v, E and p denote the density, the x- and
y-component of the velocity, the total energy and the pressure of the fluid, respec-
tively.

Eq. (7.1) must be supplemented with appropriate initial and boundary con-
ditions. On ∂Ωα\Γα these are prescribed by

u(x, y, 0) = u0(x, y) , −∞ < x <∞ , α(x, 0) < y <∞ , (7.2a)
(ρv)(x, 0, t) = 0 , x < 0 , x > L , 0 < t < T , (7.2b)

with u0(x, y) the given initial conditions. Condition (7.2b) translates into the
impermeability condition. Moreover, ‘farfield boundary conditions’ are imposed
for x→ ±∞ and for y →∞. The interface conditions, i.e., the conditions on Γα,
are specified below.

The governing equation for the beam is:

M
∂2z

∂t2
+D

∂4z

∂x4
= −π + β , 0 < x < L , 0 < t < T , (7.3)

where z designates the beam displacement from its equilibrium position, and the
constants M,D ∈ R+ denote the mass and the bending stiffness of the beam,
respectively. The right-hand member of Eq. (7.3) is the forcing term which is
composed of the traction π exerted by the fluid on the structure through the
interface, and the constant pressure β in the cavity underneath the panel. The
cavity pressure is equal to the freestream pressure. Eq. (7.3) is subject to the
initial and boundary conditions

z(x, 0) = z0(x) ,
∂z

∂t
(x, 0) = ż0(x) , 0 < x < L , (7.4a)

z(0, t) = z(L, t) = 0 ,
∂z

∂x
(0, t) =

∂z

∂x
(L, t) = 0 , 0 < t < T , (7.4b)

with z0(x), ż0(x) the given initial conditions. The boundary conditions (7.4b)
state that the beam is clamped on both sides.

The Euler equations and the beam equation are connected at the interface Γα

by the kinematic conditions

(ρv)|Γα
= ρ|Γα

∂α

∂t
(x, t) + (ρu)|Γα

∂α

∂x
(x, t) , 0 < x < L , 0 < t < T , (7.5a)

α(x, t) = z(x, t) , 0 < x < L , 0 < t < T , (7.5b)

and the dynamic condition

p(u|Γα
) = π(x, t) , 0 < x < L , 0 < t < T . (7.5c)

The condition (7.5a) constitutes a ‘slip’ boundary condition, which translates into
the tangency of the flow to the moving beam and renders the interface imperme-
able. The condition (7.5b) identifies the interface position and the beam position.
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The condition (7.5c) implies equilibrium of the forces exerted on the interface by
the fluid and the structure. Note that the interface conditions are imposed on the
moving boundary Γα.

clamped flat panel rigid wall
cavity with still air

inviscid fluid flow

farfield fluid boundary

x

y

Figure 7.1: Illustration of the panel problem with infinite aspect ratio.

7.2.2 System behaviour

In this section, we establish the characteristic parameters of the panel problem
and identify some distinct properties of the system.

To derive the characteristic parameters of the fluid-structure system, we cast
the governing equations from Section 7.2.1 in dimensionless form. To this end, we
introduce the nondimensional coordinates x̂ = x/L, ŷ = y/L and t̂ = t/(L/C0), the
nondimensional velocity (û, v̂) = C−1

0 (u, v), the nondimensional density ρ̂ = ρ/ρ0,
the nondimensional pressure p̂ = p/(ρ0C

2
0 ) and the nondimensional total energy

Ê = E/(ρ0C
2
0 ), where C0 denotes the speed of sound and ρ0 is the reference den-

sity. The dimensionless form of the governing equations for the fluid is essentially
identical to the dimensional form (7.1) with the provision that the dimensional
state vector u is replaced by its nondimensional counterpart û := (ρ̂, ρ̂û, ρ̂v̂, Ê)T .
Likewise, the nondimensional form of the kinematic and dynamic interface condi-
tions is identical to the dimensional form with the dimensional quantities replaced
by their nondimensional counterparts. The structure equation can be written in
nondimensional form as

∂2ẑ

∂t̂2
+ λ2 ∂

4ẑ

∂x̂4
= µ(−π̂ + β̂) , 0 < x̂ < 1 , 0 < t̂ < T/(L/C0) , (7.6)

with

λ =
LC−1

0

M1/2L2D−1/2
, µ =

ρ0L

M
. (7.7a)

The parameter λ can be identified as the ratio of characteristic time scales of the
fluid and the structure, and the parameter µ constitutes the ratio of characteristic
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fluid mass to characteristic structure mass. In addition to the parameters specified
in Eq. (7.7a), a third nondimensional parameter is required to specify the state of
the fluid-structure system. This parameter is given by the Mach number

Ma =
V0

C0
, (7.7b)

which appears in the specification of the freestream velocity V0 in the farfield
boundary condition of the fluid.

Provided with the characteristic system parameters, let us briefly discuss
some particular properties of the fluid-structure system. A distinct property of the
panel problem is its ability to exhibit parameter-dependent stability behaviour.
That is, the fluid-structure system can display instabilities such as flutter and
divergence for certain parameter settings, whereas other parameter settings yield
stable behaviour. For an elaboration of these phenomena we refer to the textbooks
by Bisplinghoff [5, ch.9], Dowell [15] and Fung [21]. Instability of the fluid-structure
system is a property that is shared by many fluid-structure-interaction problems
and that is of significant practical importance. Since flutter and divergence can
induce the failure of the structure, the analysis and prediction of such instabilities
plays a crucial role in engineering design. For instance, in aerospace engineering,
flutter and divergence impose constraints on the allowable operating conditions
of aircraft. Hence, they need to be controlled by an adequate design; see, e.g.,
Ref. [11].

7.3 Numerical experiments
To assess the versatility of the Interface-GMRES(R) method and, in particular,
its convergence behaviour and performance for multi-dimensional problems, we
conduct numerical experiments on the panel problem. Section 7.3.1 specifies the
setup of the numerical experiments. The first test case in Section 7.3.2 investigates
the convergence behaviour of Interface-GMRES(R), with and without the reuse
option, for representative settings of the system parameters. For reference pur-
poses, we compare the results to the standard subiteration method. The second
test case in Section 7.3.3 compares strongly-coupled and loosely-coupled methods
for the computation of a stable and an unstable fluid-structure system. Moreover,
we investigate the effect of instability on the convergence behaviour of subiteration
and Interface-GMRES(R) and, in particular, on the reuse of the Krylov space. The
third test case in Section 7.3.4 examines the effect of the initial conditions on the
system behaviour and on the convergence of the Interface-GMRES(R) method.
Since the Interface-GMRES(R) method forms a special instance of a Newton-
Krylov method, we shall refer to it in the sequel also as Newton-Krylov method,
emphasizing the conjugation of Newton’s method with a Krylov subspace method;
cf. Section 5.2.
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7.3.1 Experimental setup

We consider the panel problem from Section 7.2. The infinite-dimensional domain
with x → ±∞ and y → ∞ is modeled by a truncated domain. In particular, in
the x-direction inflow and outflow fluid boundary conditions are prescribed, and
in the y-direction the domain is bounded by a solid wall at a distance of one from
the panel. The distance of the solid wall to the panel is sufficiently large to ensure
that the wall does not significantly influence the solution and the convergence
behaviour of the solution methods.

To specify the initial conditions for the fluid-structure system, we note that
the n-th mode shape of the beam assumes the generic form

gn(x) = A1,n sin(ϕnx) +A2,n cos(ϕnx) +A3,nsinh (ϕnx) +A4,ncosh (ϕnx) ,
0 < x < L . (7.8)

The ϕn are determined such that Eq. (7.8) admits a nontrivial solution for gn(x),
subject to the homogeneous boundary conditions (7.4b). The A1,n, . . . , A4,n are
then the coefficients that correspond to that nontrivial solution. In our exper-
iments, we use initial conditions for the beam according to its first mode shape
and, alternatively in Section 7.3.4, its second mode shape; see Table 7.1 for a speci-
fication of the parameters. That is, we set z0(x) = gn(x) (n = 1, 2) and, moreover,
ż0(x) = 0. The initial conditions for the fluid are determined as the steady-state
solution of the flow over a beam that is deflected according to the specified mode
shape. The system parameters are given in Table 7.2, where τ denotes the length
of the solution time interval. With Ma = 1.5, the flow is supersonic.

Table 7.1: Parameters for the first and second mode shape of the clamped
beam according to Eq. (7.8).

n A1,n A2,n A3,n A4,n ϕn

1 −0.4956 0.5044 0.4956 −0.5044 4.7300
2 −0.5002 0.4998 0.5002 −0.4998 7.8532

Table 7.2: System parameters (∗ indicates a variable parameter).

Case λ µ Ma τ
I 0.25 ∗ 1.5 0.05
II ∗ 10 1.5 ∗
III ∗ 10 1.5 0.05

The fluid-structure system is discretized by the space/time finite-element
method with piecewise-polynomial base functions that are discontinuous in time
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and continuous in space. For the approximation space of the structure, we require
in addition continuous differentiability in space. As base functions for the structure
discretization we use Legendre polynomials. C1-continuity is then enforced by
means of Lagrange multipliers. The base functions for the fluid are of modal type
in conformity with Ref. [31, ch.3].

The time-discontinuous Galerkin discretization implies that displacement
and velocity of the structure are discontinuous from one time slab to the next.
However, since the fluid-boundary representation assumes a continuous displace-
ment, the discontinuity in the structure displacement needs to be controlled. To
render the discontinuity in the structure displacement and velocity negligible, we
use polynomials of sufficiently high order for the approximation space of the struc-
ture.

Let us allude to the fact that the considered discretization does not maintain
the conservation properties at the fluid-structure interface. To render the error
pertaining to the conservation properties negligible, we choose a discretization for
fluid and structure that is sufficiently fine.

The discretization parameters are given in Table 7.3, where the polynomial
order of the approximation spaces associated with u, α, z and π are, respectively,
(P x

U , P
y
U , P

t
U), (P

x
A , P

t
A), (P

x
Z , P

t
Z) and (P

x
P , P

t
P), and the number of elements, N , is

denoted accordingly. The number of elements in the x-direction is specified over
the length of the panel. The discretization time step is equal to the length of the
solution time interval. The discretization is sufficiently fine to ensure that the
results are essentially mesh independent.

Table 7.3: Discretization parameters for test cases I-III.

NU NA NZ NP PU PA PZ PP

(16, 24, 1) (16, 1) (16, 1) (16, 1) (3, 3, 3) (2, 2) (7, 7) (3, 3)

In each time slab, we provide an initial approximation of the structure dis-
placement based on a linear extrapolation of the initial conditions conforming to

z0(x, t) = z0(x) + ż0(x)t , 0 ≤ x ≤ L , 0 ≤ t ≤ τ . (7.9)

The initial approximation of the structure displacement (7.9) constitutes a surface
in space/time, in accordance with the space/time finite-element discretization of
the problem.

We set the convergence tolerance to ε0 = 10−4‖r0‖, i.e., we require a reduc-
tion of the initial residual by four orders of magnitude. In addition, we specify for
the Newton-Krylov method the tolerance for the GMRES iteration according to
ε1 = 10−1‖ri‖, i.e., we use a relative tolerance for the convergence in the inner loop
of the acceleration; cf. Section 5.2.2. Moreover, the underrelaxation parameter is
set to ν = 10−2‖r0‖ for the Newton-Krylov method with reuse and to ν = ‖ri‖
for the method without reuse.
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7.3.2 Assessment of Interface-GMRES(R) convergence

The first test case serves to assess the convergence behaviour of the Newton-Krylov
method with reuse on the panel problem. For reference purposes, we compare the
method to standard subiteration and to the Newton-Krylov method without reuse
in terms of convergence behaviour and computational cost. We consider three
distinct settings of the problem with physical parameters as given in Table 7.2 on
page 124 and µ = 1, 50, 100. The nondimensionalization in Section 7.2.2 conveys
that the spectral radius of the subiteration-operator derivative scales with µ; see
also Ref. [69].

Fig. 7.2 plots the displacement of the beam in space/time. For all considered
settings, the oscillation of the structure attenuates with time, indicating that the
fluid-structure system is stable. Moreover, it is apparent that the beam deflection
is downwind according to the direction of the flow. The convergence behaviour
of the Newton-Krylov method with and without reuse and of the subiteration
method is displayed in Fig. 7.3 on page 128 for time steps 1 and 50, respectively.
In addition, we plot in Figs. 7.4 and 7.5, respectively, the dimension of the Krylov
space and the cumulative number of iterations versus the time-step counter. The
cumulative number of iterations specifies the total number of iterations required
for convergence upto and including the time step under consideration. Fig. 7.3
illustrates that, initially, most iterations of the Newton-Krylov method are spent
on generating the Krylov space. However, in subsequent time steps, increasingly
fewer Krylov vectors need to be added to the space due to reuse; see also Fig. 7.4.
This results in a decreasing number of iterations per time step and manifests in
the gradually changing slope of the cumulative-iteration-count curve; see Fig. 7.5.
In contrast, the number of iterations required by subiteration hardly changes in
subsequent time steps. We infer that reuse can render the Newton-Krylov method
computationally cheaper than subiteration even under conditions that are favor-
able for the convergence of subiteration; see Figs. 7.3 and 7.5 left with µ = 1.
Subiteration convergence deteriorates significantly with increasing µ, in contrast to
Newton-Krylov convergence. Hence, a discrepancy in computational cost for larger
µ emanates. For µ = 100, subiteration diverges. Note that the Newton-Krylov
method attains convergence despite the instability of the underlying subiteration
method.

For reference, we have included in Figs. 7.3 and 7.5 the results for the Newton-
Krylov method without reuse of the Krylov space. A comparison to the method
with reuse clearly demonstrates the significant savings in computational cost that
can be obtained by reusing the Krylov space.

To put our results into context, we remark that for an initial amplitude of
the beam deflection of approximately 10−4 the system behaviour is close to linear.
Preliminary studies indicate that for nonlinear system behaviour corresponding to
larger initial amplitudes the performance of the Newton-Krylov method degrades
only moderately. Moreover, we remark that our results are in good agreement
with the results obtained on the piston model problem; see Section 5.3.2.
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Figure 7.2: Test case I: Space/time displacement of the beam (colour bars)
for system parameters according to Table 7.2 and µ = 1 (left), µ = 50 (center)
and µ = 100 (right).

7.3.3 Loosely-coupled versus strongly-coupled methods

In the second test case, we compare loosely-coupled and strongly-coupled parti-
tioned methods for the computation of a stable and an unstable fluid-structure sys-
tem. Moreover, we investigate the effect of a change in the solution behaviour due
to flutter on the convergence of strongly-coupled solution methods. As instances
of a strongly-coupled method, we consider subiteration and the Newton-Krylov
method with and without reuse. The loosely-coupled method carries out only a
single fluid and structure solution per time step; cf. Section 4.2.3. Throughout we
obtain the initial approximation of the structure in the new time slab by linear
extrapolation of the initial conditions in conformity with Eq. (7.9). We consider
the fluid-structure system with parameters according to Table 7.2 on page 124 and
two representative settings of λ. For λ = 0.1 the system undergoes flutter, whereas
for λ = 0.25 the system is stable. The discretization parameters are specified in
Table 7.3 on page 125.

Fig. 7.6 on page 130 plots the numerical solution of the beam displacement in
space/time for the unstable system (left figure) and the stable system (right), each
computed with a strongly-coupled method (top) and a loosely-coupled method
(middle) for a time-step size τ = 0.05. In addition, Fig. 7.6 bottom plots the
solution obtained with a loosely-coupled method for τ = 0.01. The solution be-
haviour for λ = 0.1 and λ = 0.25 is distinctly different. For λ = 0.1, the oscillation
amplifies, which indicates flutter. For λ = 0.25, the oscillation attenuates, indicat-
ing stability of the fluid-structure system. Comparing for τ = 0.05 the numerical
solutions obtained with the loosely-coupled and the strongly-coupled method, we
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Figure 7.3: Test case I: Residual reduction in the L2 norm versus iteration
number in time steps 1 (top) and 50 (bottom) for the Newton-Krylov method
with reuse (−−−) and without reuse (−−) and for subiteration (···); residual
estimates and true residuals of the Newton-Krylov method are indicated by ◦
and �, respectively, and residuals of subiteration by �; µ = 1 (left), µ = 50
(center) and µ = 100 (right). y-axis in log10-scale.

notice that the numerical solution of the loosely-coupled method exhibits wiggles.
Since these wiggles are absent in the numerical solution of the strongly-coupled
method, one can infer that they are caused by loose coupling. The wiggles increase
with time and eventually cause the failure of the computation. Moreover, the figure
displays that the loosely-coupled method yields an amplification of the solution for
both the stable and the unstable system. Specifically, the loosely-coupled method
yields a numerically unstable solution of the physically stable fluid-structure sys-
tem; cf. also the discussion in Section 4.2.3. To control the numerical instability
of loosely-coupled methods, the time-step size can be reduced; see Fig. 7.6 bottom
with τ = 0.01. The figure indicates that a reduction in the time-step size mitigates
the numerical instability, but it does not remove it.

To investigate the effect of physical instability on the convergence behaviour
of the Newton-Krylov method and, in particular, on the reuse of the Krylov space,
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Figure 7.4: Test case I: Dimension of the Krylov space versus the time-step
counter for the Newton-Krylov method with reuse in subsequent time steps;
µ = 1 (left), µ = 50 (center) and µ = 100 (right).
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Figure 7.5: Test case I: Cumulative number of iterations versus the time-step
counter for the Newton-Krylov method with reuse (−−−) and without reuse
(−−) and for subiteration (· · ·); µ = 1 (left), µ = 50 (center) and µ = 100
(right).

we consider the stable and the unstable system setting and plot in Fig. 7.7 on
page 131 the cumulative number of iterations versus the time-step counter for the
Newton-Krylov method and for subiteration as a reference. In addition, Fig. 7.7
right plots the dimension of the Krylov space versus the time-step counter. We
remark that these figures plot upto a time step of n = 200 corresponding to com-
putational time t = 10, whereas Fig. 7.6 plots only upto n = 100 (t = 5). Fig. 7.7
left displays a slight change in slope of the cumulative-iteration-count curve of the
Newton-Krylov method with reuse for the unstable system setting. To explain this
change in slope, we consider the evolution of the Krylov-space dimension plotted
in Fig. 7.7 right. The figure exhibits that, after the initial construction of a suffi-
ciently large Krylov space, the dimension of the space remains essentially constant
upto a time step of approximately 100. Henceforth, the dimension of the Krylov
space further increases in the case of the unstable system, which indicates that
additional Krylov vectors need to be added to the space to attain convergence.
However, this effect appears to be minor and reuse remains beneficial, see Fig. 7.7.
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Figure 7.6: Test case II: Space/time displacement of the beam (colour bars):
Solution computed with a strongly-coupled method and time-step size τ = 0.05
(top), with a loosely-coupled method and time-step size τ = 0.05 (middle) and
with a loosely-coupled method and time-step size τ = 0.01 (bottom) for system
parameters according to Table 7.2 with λ = 0.1 (left) and λ = 0.25 (right).
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Figure 7.7: Test case II: Cumulative number of iterations versus the time-
step counter for the Newton-Krylov method with reuse in subsequent time steps
(�) and without reuse (◦) and for subiteration (�) (left) and dimension of the
Krylov space versus the time-step counter for the Newton-Krylov method with
reuse (right); system parameters according to Table 7.2 with λ = 0.1 (−−−)
and λ = 0.25 (−−).

7.3.4 Effect of the initial conditions

The third test case investigates the effect of the initial conditions on the system
behaviour and on the convergence of subiteration and the Newton-Krylov method.
To this end, we consider the fluid-structure system provided with initial conditions
corresponding to the first and second mode shape of the structure, respectively;
cf. Section 7.3.1. For comparison purposes, the system and discretization parame-
ters are chosen identical to those in Section 7.3.3; see also Tables 7.2 on page 124
and 7.3 on page 125 with τ = 0.05. In particular, we consider λ = 0.1, 0.25. For
λ = 0.1 the system undergoes flutter, whereas for λ = 0.25 the system is sta-
ble. The discretization is sufficiently fine to ensure that the results do not change
significantly under further refinement.

The space/time displacement of the beam is plotted in Fig. 7.8 on the next
page for initial conditions corresponding to the first and second mode shape and
for λ = 0.1 and λ = 0.25. The figure indicates that, for a given λ, the initial
behaviour of the solutions corresponding to different initial conditions is different,
but their long-term behaviour is similar. We thus infer that the initial conditions
determine only the initial behaviour of the system and that their effect on the
system behaviour diminishes with time. This can be attributed to the fact that the
long-term behaviour is determined by the least-stable modes of the system which
are, of course, independent of the initial conditions. The long-term behaviour of
the system essentially depends on the settings of the system parameters, which
completely characterize the system and, hence, its spectral decomposition.

The convergence behaviour of subiteration and of the Newton-Krylov method
for the system with initial conditions according to the second mode shape of the
structure does not differ significantly from the one for the first mode shape and,
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Figure 7.8: Test case III: Space/time displacement of the beam (colour bars)
for initial conditions corresponding to the first mode shape of the structure
(left) and the second mode shape (right); system parameters according to Ta-
ble 7.2 with λ = 0.1 (top) and λ = 0.25 (bottom).

thus, essentially corresponds to the curves given in Fig. 7.7 on the preceding page
for initial conditions according to the first mode shape. This is not unexpected,
since the solution of the respective fluid-structure systems, and in particular their
long-term behaviour, are very similar.

7.4 Concluding remarks
To assess the versatility of the Interface-GMRES(R) method, we investigated its
convergence behaviour on the panel problem. This model problem is distinctly
different from the piston problem considered in Chapter 5 on account of the fact
that the interface degrees-of-freedom pertain to both space and time. Moreover, in
case of the panel problem, the fluid-structure system exhibits parameter-dependent
stability behaviour. In particular, it admits instabilities such as flutter and diver-
gence.
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Our numerical results show that the Interface-GMRESR method is superior
to the customary subiteration method in terms of robustness and efficiency: The
Interface-GMRES(R) method converges even if the standard subiteration method
diverges; and the reuse of the Krylov space considerably enhances the efficiency of
the method and renders the Interface-GMRESR method computationally cheaper
than subiteration even for settings which are favorable for subiteration conver-
gence. These results are in good agreement with the ones obtained for the piston
problem in Chapter 5.

Next, we considered loosely-coupled and strongly-coupled partitioned solu-
tion methods for a stable fluid-structure system and a system undergoing insta-
bility in the form of flutter. The loosely-coupled method can yield a numerically
unstable solution for a physically stable system. To control the numerical instabil-
ity, loosely-coupled methods are generally confined to small time steps. Moreover,
our numerical results indicate that a change in the solution behaviour due to flut-
ter can affect the effectiveness of reuse of the Krylov space. However, this effect
appears to be minor and reuse remains beneficial.

Finally, we investigated the influence of the initial conditions on the system
behaviour and on the convergence of the solution methods. Our results indicate
that the initial conditions determine only the initial system behaviour and that
their effect on the system behaviour diminishes with time. The long-term be-
haviour is determined by the least-stable modes of the system, and it essentially
depends on the characteristic system parameters. Our results moreover convey
that the convergence behaviour of subiteration and Interface-GMRES(R) is es-
sentially determined by the characteristic system parameters rather than by the
precise form of the initial conditions.

Although our results give an indication of the performance of the Interface-
GMRES(R) method, we do not suggest that they provide final and conclusive
information on the method in all respects. Further investigations are required, in
particular with respect to the relation between the convergence behaviour of the
method and the stability and nonlinearity of the problem.
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Chapter 8

Conclusions

The concern of this thesis is to devise improved numerical methods for the compu-
tation of fluid-structure-interaction problems which are of great relevance in many
engineering disciplines. The need for improved numerical techniques derives from
the inadequacy of the customary numerical methods, viz., the inability of the usual
discretization methods to maintain conservation at the fluid-structure interface,
and the lack of robustness and efficiency of the standard solution methods.

For the development and analysis of novel numerical techniques we presented
a generic space/time variational formulation of fluid-structure-interaction prob-
lems. Since this form does not make any stipulations on the specifics of the un-
derlying models, it allows us to identify the generic features of fluid-structure
interaction. As such generic features we identified the interconnection of a fluid
and a structure subsystem by kinematic and dynamic interface conditions and,
moreover, the free-boundary character of the interface. Furthermore, this generic
variational statement enables us to formulate solution methods that are indepen-
dent of the specifics of the underlying problem and, hence, in principle applicable to
any fluid-structure-interaction problem. Free-boundary problems in general, and
fluid-structure-interaction problems in particular, exhibit a deformation of the do-
main. We elaborated that this conflicts with the Eulerian fluid description, but
that it can be treated straightforwardly by space/time methods. These space/time
methods inherently account for a deformation of the domain in time, because they
express the variational statement over the space/time domain. Therefore, we
adopted the space/time finite-element method in this work.

The continuum fluid-structure-interaction problem possesses conservation
properties, which can be lost under discretization. To assess conservation in the
discrete numerical model, we established on the basis of a prototypical model prob-
lem the conservation properties of the continuum variational problem and of its
discretization by the finite-element method. Conservation at the fluid-structure
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interface is only trivially maintained under restrictive compatibility conditions on
the approximation spaces of the fluid and the structure, such as matching meshes
and identical orders of interpolation at the interface. However, these conditions
are prohibitively restrictive for practical use. To enable conservation also for in-
compatible approximations, we considered an alternative discretization based on
coincidence and orthogonality conditions. The ability to maintain conservation at
the interface also pertains to the pairing of discretization methods employed for
the fluid and the structure. We showed that the trapezoidal method does gen-
erally not conserve momentum and energy for forced structures. Hence, it does
not maintain momentum and energy conservation at the interface. In contrast,
the conservation properties can be maintained by a space/time finite-element dis-
cretization that complies with the coincidence and orthogonality conditions; an
additional computational expense is not incurred. Our numerical results demon-
strate that maintaining conservation results in a much more accurate solution,
whereas a violation of the conservation properties can induce instability of the
numerical solution.

We considered monolithic methods, and strongly-coupled and loosely-coupled
partitioned methods for the solution of the fluid-structure system. The monolithic
(simultaneous) solution of fluid and structure by Newton’s method incurs several
severe disadvantages such as the loss of software modularity. The complications
in Newton’s method can be effectively circumvented by partitioning, i.e., by solv-
ing fluid and structure alternately subject to complementary partitions of the
interface conditions. This iterative process is commonly referred to as subiter-
ation. Whereas strongly-coupled partitioned methods repeat subiterations until
convergence, loosely-coupled partitioned methods carry out only a single fluid and
structure solution per time step. Therefore, strongly-coupled methods incur a
greater computational cost per time step than loosely-coupled methods. How-
ever, strongly-coupled methods can maintain conservation at the fluid-structure
interface, which renders them unconditionally stable. In contrast, loosely-coupled
methods are typically energy increasing and, hence, numerically unstable. To
control the numerical instability and for reasons of accuracy, the time-step size
has to be restricted. For strongly-coupled methods, on the other hand, the ad-
missible time step is determined by accuracy considerations only. Our numerical
results demonstrate that conservative strongly-coupled methods are much more
accurate than loosely-coupled methods and, hence, they can afford much larger
time steps for the same level of accuracy. Moreover, the results show that conser-
vative strongly-coupled methods achieve a greater accuracy with fewer iterations
than loosely-coupled methods and are therefore computationally more efficient.
Our results also indicate that for strongly-coupled methods which are not conser-
vative the improvement in accuracy over loosely-coupled methods does not seem
to justify the computational cost associated with multiple subiterations.

Although subiteration constitutes an apt solver for many problems, it suffers
from three essential drawbacks, viz., only conditional stability, potential conver-
gence difficulties due to nonnormality, and the inability to reuse information from
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previously solved similar problems. To overcome these deficiencies, we proposed
to combine subiteration with GMRES acceleration. Since the combined subiter-
ation/GMRES method allows for an algorithmic description in a generic, contin-
uum setting, it is essentially applicable to any fluid-structure-interaction problem
and, moreover, its convergence behaviour is asymptotically independent of the
underlying discretization. Because subiteration can be conceived as a fixed-point
iteration on the interface variables, the GMRES acceleration can be confined to
the interface degrees-of-freedom. Thus, the corresponding Interface-GMRES ac-
celeration requires only negligible computational resources. An additional asset of
the presented acceleration method is that it enables the optional reuse of Krylov
vectors in subsequent invocations of GMRES, which we refer to as GMRESR.
Such reuse can considerably enhance the efficiency of the method; however, it
comes at the expense of robustness and, therefore, it has to be exercised with
some caution. The implementation of the Interface-GMRES(R) method in codes
which use subiteration as a solver is straightforward, because the method retains
the modularity of the underlying subiteration method. Our numerical results on
the piston problem show that the Interface-GMRES(R) acceleration of subitera-
tion leads to a substantial improvement in robustness and efficiency. Even under
conditions that are favourable for the conventional subiteration method and ad-
verse for the Interface-GMRES(R) accelerated method, the accelerated method
still proves more efficient. The reuse of Krylov vectors usually results in signif-
icant computational savings in that, after the initial construction of a suitable
Krylov space, only occasional augmentations of the space are required. The ag-
gregated fluid-structure system is then typically resolved in a few iterations per
time step, even if the subiteration method separately requires tenfolds more or
fails due to instability or nonnormality-induced divergence.

We complemented the algorithmic description of the Interface-GMRES(R)
method by an analysis of its error-amplification properties. We showed that subit-
eration constitutes an apt preconditioner for the aggregated equations, since it con-
denses errors into a low-dimensional subspace that can be associated with the inter-
face degrees-of-freedom. Because the rank of the subiteration error-amplification
matrix is at most equal to the dimension N of the approximation space of the in-
terface variables, the GMRES acceleration of subiteration terminates in at most N
steps, independent of the acceleration space, e.g., aggregated variables, structure
variables, or interface variables. However, as the computational expense and stor-
age required by the Krylov acceleration itself increase with the dimension of the
acceleration space, the acceleration on the interface variables is the most efficient.
Thus, the linear-algebra setting elucidates the connection between the local GM-
RES acceleration (i.e., on the interface variables) and the global error-amplification
properties (i.e., for the aggregated system). Moreover, we showed that the nonnor-
mality of the subiteration preconditioner induces a degradation in the sharpness
of the usual GMRES convergence bounds. To assess the linear-algebra properties
of the Interface-GMRES method with and without reuse, we exploited the fact
that the acceleration on the interface degrees-of-freedom generates an implicit ap-
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proximation to the Schur complement of the aggregated equations. This Schur
complement allows for a concise expression of the error-amplification properties
and, moreover, enables us to analyse the convergence of the respective methods
in terms of norms, spectral radii and sharp convergence upper bounds. Conjec-
turally, the spectral radius of the error-amplification matrix associated with reuse
can exceed one, which implies failure of the reuse option. However, such failure
appears to be rare, and we have not observed it in our numerical investigations.
This indicates that reuse constitutes a viable option. However, the method with
reuse appears to be affected by the nonnormality of the underlying subiteration
operator. Thus, the method can exhibit transient divergence, whereas without
reuse convergence is monotonous.

We demonstrated the versatility of the Interface-GMRES(R) method through
numerical experiments on the panel problem. This model problem is distinctly dif-
ferent from the piston problem in that the interface degrees-of-freedom pertain to
both space and time. Moreover, in case of the panel problem, the fluid-structure
system exhibits parameter-dependent stability behaviour. In particular, it ad-
mits instabilities such as flutter and divergence for certain parameter settings.
Our numerical results show that the Interface-GMRESR method is superior to
the customary subiteration method in terms of robustness and efficiency: The
Interface-GMRES(R) method converges even if the standard subiteration method
diverges; and the reuse of the Krylov space considerably enhances the efficiency of
the method and renders Interface-GMRESR computationally much cheaper than
subiteration even for settings which are favorable for subiteration convergence.
These results are in good agreement with the ones obtained for the piston prob-
lem. Our numerical results indicate that a change in the solution behaviour due
to flutter can affect the effectiveness of reuse of the Krylov space in Interface-
GMRESR. However, this effect appears to be minor, and reuse remains benefi-
cial. The results also indicate that the convergence behaviour of subiteration and
Interface-GMRES(R) is essentially determined by the characteristic system pa-
rameters rather than by the specifics of the initial conditions. Finally, we demon-
strated that loosely-coupled partitioned methods can yield a numerically unstable
solution for a physically stable fluid-structure system. To control the numerical
instability, loosely-coupled methods are generally confined to small time steps.



Chapter 9

Recommendations

In this thesis, we investigated numerical methods for fluid-structure-interaction
problems. Based on the results of this investigation, we formulate below several
recommendations for future research and applications.

In Chapter 3, we considered a discretization that maintains conservation at
the fluid-structure interface under incompatible approximations, i.e., non-matching
meshes and/or different orders of approximation at the interface. This concept
was established on the basis of a one-dimensional fluid-structure-interaction model
problem. The relevance of conservation for the stability and accuracy of the numer-
ical solution was demonstrated by numerical experiments on the one-dimensional
piston problem. An important continuation of this research consists in the exten-
sion of this concept to multi-dimensional problems. It is anticipated that conser-
vation in multiple dimensions can be established under the appropriate orthog-
onality conditions on the approximation spaces of certain interface variables. In
particular, conservation requires the orthogonality of the pressure difference to
the interface velocity, and the orthogonality of the velocity difference to the in-
terface pressure. We expect that for multi-dimensional problems maintaining the
conservation properties is similarly beneficial.

In Chapter 4, we assessed the stability, accuracy and efficiency of strongly-
coupled and loosely-coupled partitioned methods. Since the piston problem con-
sidered in our numerical experiments exhibits only a single mode, stability and
accuracy cannot be distinguished clearly. This is only possible for multiple-mode
problems. Thus, we recommend complementing the investigation by a compari-
son of strongly-coupled and loosely-coupled methods on a multiple-mode problem
such as the panel problem from Ref. [55]. We expect that the superiority of conser-
vative strongly-coupled methods over loosely-coupled methods will be even more
pronounced, because for loosely-coupled methods the stability of modes with time
scales smaller than one actually wants to resolve can impose a severe restriction on
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the admissible time-step size. To further improve the efficiency of strongly-coupled
methods, we considered in Section 4.2.6 two concepts to reduce the computational
cost associated with the fluid solution. To this end, we proposed an approximate
fluid solution within the subiteration process and, moreover, the confinement of
the fluid solution to a truncated domain in the vicinity of the interface. Whereas
the former approach is straightforward in terms of implementation, the latter ap-
proach can be involved. In view of the considerable computational savings that
an approximate fluid solution can deliver, we recommend testing this approach on
different problems. Although principally an approximate fluid solution suffices for
the convergence of the subiteration process, the specifics of this approach depend
on the considered fluid-structure system.

In Chapter 5, we proposed to accelerate the subiteration process by means
of Interface-GMRES(R), and we demonstrated the performance of the acceler-
ated method by numerical experiments. To further enhance the efficiency of the
Interface-GMRES(R) method, we propose to combine it with an approximate fluid
solution, in conformity with the concept from Section 4.2.6. Provided that the ap-
proximate fluid solution is sufficiently accurate, it does not essentially hamper the
convergence of the Interface-GMRES(R) method. Upon convergence, the obtained
solution needs to be verified by evaluating its residual.

In Chapter 6, we presented an error-amplification analysis of the Interface-
GMRES(R) method. Although the analysis is in principle generic, the numerical
results are specific for the investigated model problem. Therefore, we recommend
conducting corresponding numerical experiments on a multi-dimensional problem
which likewise exhibits a significant change in the solution behaviour, for instance
due to physical instability.

In Chapter 7, we assessed the versatility of the Interface-GMRES(R) method
on the panel problem. Although our results give an indication of the performance
of the Interface-GMRES(R) method, we do not suggest that they provide final and
conclusive information on the method in all respects. Additional investigations are
required, in particular with respect to the parameter settings for which the panel
problem is stable and, if it is unstable, which type of instability it displays. Our
numerical results indicated that flutter can affect the effectiveness of reuse of the
Krylov space. However, to establish a relation between the convergence behaviour
of the method and the stability of the problem, further research is needed. Another
relevant topic for future research pertains to nonnormality. We conjecture that the
subiteration method can exhibit nonnormality also for the panel problem, although
we have not observed it in our numerical experiments. This conjecture remains to
be confirmed, and it is important to assess which role nonnormality plays for the
Interface-GMRES(R) acceleration of subiteration.
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[27] B. Hübner, E. Walhorn, and D. Dinkler, A monolithic approach to fluid-
structure interaction using space-time finite elements, Comput. Methods
Appl. Mech. Engrg. 193 (2004), 2087–2104.

[28] T.J.R. Hughes, The finite element method - linear static and dynamic finite
element analysis, Dover Publishers, New York, 2000.

[29] T.J.R. Hughes, G. Engel, L. Mazzei, and M.G. Larson, The continuous
Galerkin method is locally conservative, J. Comput. Phys. 163 (2000), 467–
488.

[30] T.J.R. Hughes and G.N. Wells, Conservation properties for the Galerkin and
stabilised forms of the advection-diffusion and incompressible Navier-Stokes
equations, Comput. Methods Appl. Mech. Engrg. 194 (2005), 1141–1159.

[31] G.E. Karniadakis and S.J. Sherwin, Spectral/hp element methods for CFD,
Oxford University Press, New York, 1999.

[32] T. Kato, Perturbation theory for linear operators, corr. pr. 2nd ed.,
Grundlehren der Mathematischen Wissenschaft, no. 132, Springer, Berlin,
1984.

[33] D.A. Knoll and D.E. Keyes, Jacobian-free Newton-Krylov methods: a survey
of approaches and applications, J. Comput. Phys. 193 (2004), 357–397.

[34] E. Kuhl, S. Hulshoff, and R. de Borst, An arbitrary Lagrangian Eulerian
finite-element approach for fluid-structure interaction phenomena, Int. J.
Num. Meth. Engrg. 57 (2003), 117–142.

[35] M. Lesoinne and C. Farhat, Geometric conservation laws for flow problems
with moving boundaries and deformable meshes, and their impact on aeroelas-
tic computations, Comput. Methods Appl. Mech. Engrg. 134 (1996), 71–90.

[36] P. LeTallec and J. Mouro, Fluid-structure interaction with large structural
displacements, Comput. Methods Appl. Mech. Engrg. 190 (2001), 3039–3067.

[37] A. Masud and T.J.R. Hughes, A space-time Galerkin/least-squares finite ele-
ment formulation of the Navier-Stokes equations for moving domain problems,
Comput. Methods Appl. Mech. Engrg. 146 (1997), 91–126.



144 Bibliography

[38] H.G. Matthies and J. Steindorf, Partitioned strong coupling algorithms for
fluid-structure interaction, Computers and Structures 81 (2003), 805–812.

[39] C. Michler, S.J. Hulshoff, E.H. van Brummelen, and R. de Borst, A monolithic
approach to fluid-structure interaction, Computers and Fluids 33 (2004), 839–
848.

[40] C. Michler and E.H. van Brummelen, GMRES acceleration of subiteration
for fluid-structure interactions, Moving Boundaries 2003: Proceedings of the
Seventh International Conference on Computational Modelling of Free and
Moving Boundary Problems (Santa Fe, New Mexico, USA, November 4-6
2003) (A.A. Mammoli and C.A. Brebbia, eds.), WIT Press, Wessex, 2003,
pp. 109–118.

[41] C. Michler, E.H. van Brummelen, S.J. Hulshoff, and R. de Borst, Efficiency of
monolithic and partitioned methods for fluid-structure interaction, Proceed-
ings of the International Forum on Aeroelasticity and Structural Dynamics
(IFASD) (Amsterdam, The Netherlands, 4-6 June 2003), National Aerospace
Laboratory (NLR), The Netherlands, 2003.

[42] C. Michler, E.H. van Brummelen, and R. de Borst, Error-amplification anal-
ysis of subiteration-preconditioned GMRES for fluid-structure interaction,
Comput. Methods Appl. Mech. Engrg., (Accepted for publication),(2005).

[43] , An interface Newton-Krylov solver for fluid-structure interaction,
Int. J. Num. Meth. Fluids 47 (2005), no. 10–11, 1189–1195, Special issue
containing the Proceedings of the Eighth ICFD Conference on Numerical
Methods for Fluid Dynamics (Oxford, U.K., March 29 - April 1, 2004).

[44] C. Michler, E.H. van Brummelen, S.J. Hulshoff, and R. de Borst, The rel-
evance of conservation for stability and accuracy of numerical methods for
fluid-structure interaction, Comput. Methods Appl. Mech. Engrg. 192 (2003),
4195–4215.

[45] D.P. Mok, Partitionierte Lösungsansätze in der Strukturdynamik und der
Fluid-Struktur-Interaktion, Ph.D. thesis, Universität Stuttgart, Germany,
2001, Available at: http://elib.uni-stuttgart.de/opus/volltexte/
2001/941/.

[46] D.P. Mok, W.A. Wall, and E. Ramm, Accelerated iterative substructuring
schemes for instationary fluid-structure interaction, Proceedings of the First
MIT Conference on Computational Fluid and Solid Mechanics (K.J. Bathe,
ed.), Elsevier, June 12–15 2001.

[47] S.A. Morton, R.B. Melville, and M.R. Visbal, Accuracy and coupling issues of
aeroelastic Navier-Stokes solutions on deforming meshes, AIAA 1085 (1997),
252–262.



Bibliography 145

[48] F. Nobile, Numerical approximation of fluid-structure interaction prob-
lems with application to haemodynamics, Ph.D. thesis, Ecole Polytechnique
Fédérale de Lausanne, Switzerland, 2001.

[49] W.F. Noh, CEL: A time-dependent two-space-dimensional coupled Eulerian-
Lagrangian code, Methods in Comput. Physics (B. Alder, S. Fernbach, and
M. Rotenberg, eds.), vol. 3, Academic Press, New York, 1964, pp. 117–179.

[50] R.W. Ogden, Non-linear elastic deformations, Ellis Horwood Limited, Chich-
ester, 1984.

[51] R. Ohayon and C. Felippa (eds.), Special issue on fluid-structure interaction,
Comput. Methods Appl. Mech. Engrg. 190 (2001), no. 24-25, 2977–3292.

[52] S. Piperno, Simulation numérique de phénomènes d’interaction fluide-
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Appendix A

Conservation properties of trapezoidal time
integration

A.1 Assessment of energy conservation
Considering the trapezoidal discretization of a structure which is subject to exter-
nal forces, the objective is to determine the change in energy between time levels
that is implied by the trapezoidal discretization.

Provided with displacement d, velocity v and acceleration a at time level
tn, the trapezoidal method determines the corresponding values at time level tn+1

from
dn+1 = dn +∆t

vn+1 + vn

2
, (A.1a)

vn+1 = vn +∆t
an+1 + an

2
, (A.1b)

Man+1 +Kdn+1 = θn+1 (A.1c)

for the harmonic oscillator given by Eq. (3.3). Upon replacing the average ac-
celeration in Eq. (A.1b) by Eq. (A.1c) and a corresponding expression for an,
Eq. (A.1b) can be rewritten as

vn+1 = vn − ∆tK
2M

(dn+1 + dn) +
∆t
2M

(θn+1 + θn). (A.2)

To assess the change in energy between time levels, it is convenient to rewrite
Eqs. (A.1a) and (A.2) concisely in the form

Aqn+1 = Bqn + p (A.3a)

149



150 Appendix A. Conservation properties of trapezoidal time integration

with

A :=
(

1 ∆tK
2M

−∆t
2 1

)
, B :=

(
1 −∆tK

2M
∆t
2 1

)
,

q :=
[
v
d

]
, p :=

[
θn+1+θn

2
∆t
M

0

]
. (A.3b)

The energy of the structure at time level tn+1 is given by

En+1 := qT
n+1Λqn+1 (A.4)

with Λ := diag(M/2,K/2). Upon substituting Eq. (A.3) into (A.4) and denoting
A−1B =: C, we obtain

En+1 = qT
nC

TΛCqn + qT
nC

TΛA−1p+ pTA−TΛqn+1. (A.5)

Since CTΛC = Λ, the first term in the right-hand-side of Eq. (A.5) simplifies to
qT
nΛqn =: En. By manipulating the expressions of the second and third term and
invoking Eq. (A.1a), Eq. (A.5) simplifies to

En+1 = En +∆t
(
vn+1 + vn

2

)(
θn+1 + θn

2

)
. (A.6)

The second term on the right-hand side in Eq. (A.6) expresses the change in energy
between time levels that is induced by the external forces. Based on Eq. (A.6), we
conclude in Section 3.4.5 that the trapezoidal method does generally not conserve
energy for forced structures.

A.2 Assessment of momentum conservation
To assess momentum conservation in the trapezoidal method, we determine the
change in momentum in the generic time interval [tn, tn+1] for the harmonic oscil-
lator given by Eq. (3.3). Integration of Eq. (3.3) over time yields

Mv
∣∣tn+1

tn
= −

∫ tn+1

tn

Kd dt+
∫ tn+1

tn

θ dt . (A.7)

The change in momentum that is implied by the trapezoidal discretization can be
derived from Eq. (A.3). Upon multiplication with A−1 and some straightforward
manipulations, we obtain for the change in velocity

vn+1 − vn =
1

M + K
4 ∆t

2

(
−∆tKdn − 1

2
∆t2Kvn +∆t

θn+1 + θn

2

)
. (A.8)

Let us consider Eq. (A.8) for ∆t→ 0 and invoke a Taylor series expansion for the
first factor in the right member. Subsequent multiplication by M then yields

M(vn+1 − vn) = (1 +O(∆t2))
(
−∆tKdn − 1

2
∆t2Kvn +∆t

θn+1 + θn

2

)
. (A.9)
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A comparison of Eqs. (A.7) and (A.9) conveys the approximation to the integrals
that is implied by the trapezoidal method. In particular, the integral pertaining to
the applied force is approximated by the midpoint rule modulo a higher-order term.
We infer that the trapezoidal method does not generally conserve momentum for
forced structures.
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aggregated variational problem, 22
approximation space, 23
arbitrary Lagrangian-Eulerian formu-
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augmented problem, 37
auxiliary conditions

strong enforcement of —, 18
weak enforcement of —, 18

balance of linear momentum, 19
boundary condition

farfield —, 121
no-slip —, 17
slip —, 121

coincidence condition, 37
compatibility condition, 36
conservation law, 16
consistency, 24
convergence behaviour

asymptotic —, 96
transient —, 96

convergence bounds
GMRES —, 107
subiteration —, 97

defect correction method, 56
Discrete Geometric Conservation Law,

24
discretization error, 57

equation of state, 16
error

discretization —, 42
linearization —, 73

numerical evaluation —, 57
error amplification
— of Interface-GMRES(R), 105
— of subiteration, 94
Euler equations, 16, 29, 109, 120
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existence, 23

finite-element discretization, 23
flutter, 1, 123
free-boundary problem, 3, 26, 30
Fréchet derivative, 53

Gauss-Seidel method, 56
Gram-Schmidt orthonormalization, 73

harmonic oscillator, 29
hemodynamics, 58
homeomorphic transformation, 18

impermeability, 17, 30, 121
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instability
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interface condition
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Interface-GMRES, 72
— algorithm, 73, 74
Interface-GMRESR, 75
interfield iteration, 59

Krylov space, 72, 97
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panel problem, 119, 120
partitioned methods
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Summary

Efficient Numerical Methods
for Fluid-Structure Interaction

The interaction between a fluid and a structure occurs in many physical systems
and engineering applications. The accurate prediction of the behaviour of such
fluid-structure interactions is therefore of great importance, for instance, in the
design of aircraft, bridges and artificial heart valves. Numerical methods play an
important role in the solution of fluid-structure-interaction problems. The compu-
tation of fluid-structure interactions is challenging on account of their multi-physics
and free-boundary character. In addition, maintaining the conservation properties
at the fluid-structure interface under discretization is in general non-trivial. More-
over, the customary solution methods often lack robustness and efficiency. This
motivates research into conservative discretization techniques and robust and effi-
cient iterative solution methods.

We present a formulation of fluid-structure-interaction problems in classical
and in generic variational form. The generic form serves to identify the characteris-
tic features of fluid-structure interaction and, moreover, to formulate solution algo-
rithms such that they are essentially applicable to any fluid-structure-interaction
problem.

On the basis of a prototypical model problem, we investigate the conservation
properties of the discrete numerical model at the fluid-structure interface. Energy
conservation at the interface is only trivially maintained under restrictive compat-
ibility conditions on the approximation spaces for the fluid and the structure, i.e.,
matching meshes and identical orders of approximation at the interface. These
conditions are prohibitive for practical use. We then consider an approach based
on coincidence and orthogonality conditions which enables conservation also for
incompatible discretizations. Our numerical results demonstrate that a method
which maintains conservation at the interface yields a much more accurate solution
than a non-conservative method, at the same computational expense. The results
also illustrate that violation of the conservation properties can induce numerical
instability.

Next, we compare loosely-coupled and strongly-coupled solution methods in
terms of stability, accuracy and efficiency. Our numerical results demonstrate that
the numerical evaluation error incurred by loose coupling can compromise the
aforementioned properties. The results moreover convey that strongly-coupled
methods are superior to loosely-coupled methods provided that the underlying
discretization maintains the conservation properties. In particular, our results
indicate that the higher computational cost of strongly-coupled methods is only
justified by a greater accuracy if the underlying discretization is conservative.
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To overcome the deficiencies of the customary subiteration solution method,
viz., only conditional stability, potential convergence difficulties due to nonnor-
mality and the inability to reuse information from previously solved similar prob-
lems, we propose to combine subiteration with GMRES acceleration. Because
the Krylov vectors need only contain the discrete representation associated with
the interface position, the corresponding Interface-GMRES acceleration requires
only negligible computational resources. Moreover, the method allows for op-
tional reuse of Krylov vectors in subsequent invocations of GMRES, which we
refer to as GMRESR. Such reuse can considerably enhance the efficiency of the
method. The Interface-GMRES(R) method retains the modularity of the under-
lying subiteration method. We illustrate the effectiveness of the proposed method
through numerical experiments on the prototypical piston model problem. De-
tailed convergence studies and a comparison to standard subiteration show that
the Interface-GMRES(R) method is much more robust and efficient, and that it
converges even if subiteration itself diverges.

We present an error-amplification analysis of subiteration and of the Interface-
GMRES(R) method. The adopted linear-algebra setting enables a clear explana-
tion of the relation between the local GMRES acceleration (i.e., on the interface
degrees-of-freedom), and the global error-amplification properties (i.e., for the ag-
gregated fluid-structure system). We show that subiteration condenses errors into
a low-dimensional subspace associated with the interface degrees-of-freedom. The
rank of the corresponding error-amplification matrix is at most equal to the di-
mension N of the approximation space of the interface variables. This implies
that any Krylov method converges in at most N steps, independent of the choice
of the acceleration space, e.g., aggregated variables, structure variables, or inter-
face variables. However, the acceleration on the interface variables is the most
efficient, because the computational cost and the storage required by the Krylov
acceleration itself increase with the dimension of the acceleration space. Numerical
experiments are conducted to investigate the effect of the reuse of Krylov vectors
on the error-amplification properties of the Interface-GMRESR method and to
assess the limitations on the reuse option.

To demonstrate the versatility of the Interface-GMRES(R) method, we assess
the solution method on an alternative model problem, viz., the panel problem.
The panel problem is distinctly different from the piston problem. In contrast
to the one-dimensional piston problem, for the two-dimensional panel problem
the interface degrees-of-freedom pertain to both space and time. Furthermore, the
panel problem can exhibit parameter-dependent stability behaviour. In particular,
it admits instabilities such as flutter and divergence. Our numerical results confirm
the findings on the piston problem. In addition, the results indicate that flutter
instability can affect the effectiveness of the reuse of Krylov vectors. However, this
effect appears to be minor and reuse remains beneficial.



Samenvatting

Efficiënte Numerieke Methoden
voor Vloeistof-Constructie Interactie

De interactie tussen een vloeistof en een constructie komt voor in vele fysische sys-
temen en praktische toepassingen. De nauwkeurige voorspelling van het gedrag
van dergelijke vloeistof-constructie interactie is dus van groot belang, bijvoorbeeld
in het ontwerp van vliegtuigen, bruggen en kunstmatige hartkleppen. Numerieke
methoden spelen een belangrijke rol in het oplossen van vloeistof-constructie in-
teractie problemen. De berekening van de interactie tussen een vloeistof en een
constructie is uitdagend op grond van het multifysica en vrije-rand karakter. Daar-
naast is het bewaren van de behoudseigenschappen aan de rand tussen de vloeistof
en de constructie (de ‘interface’) onder discretisatie in het algemeen niet triviaal.
Bovendien missen de conventionele oplosmethoden voor dit type problemen vaak
robuustheid en efficiëntie. Dit is de motivatie voor onderzoek naar behoudende
discretisatie-technieken en robuste en efficiënte iteratieve oplosmethoden.

We presenteren een formulering van vloeistof-constructie interactie proble-
men in een klassieke en in een generieke variationele vorm. De generieke vorm dient
om de karakteristieke eigenschappen van vloeistof-constructie interactie te identi-
ficeren en, daarnaast, om oplosalgorithmen te formuleren zodat deze in principe
toepasbaar zijn voor elk vloeistof-constructie interactie probleem.

Door middel van een prototypisch model-probleem onderzoeken we de be-
houdseigenschappen van het discrete numerieke model aan de interface. Aan en-
ergiebehoud aan de interface wordt slechts triviaal voldaan onder zeer beperkende
compatibiliteitsvoorwaarden met betrekking tot de benaderingsruimtes voor de
vloeistof en de constructie, d.w.z., aansluitende roosters en gelijke orde van be-
nadering aan de interface. Deze voorwaarden zijn te restrictief om het in de prak-
tijk toe te passen. Daarnaast beschouwen we een methodiek die op ‘coincidence’-
en orthogonaliteitsvoorwaarden gebaseerd is. Deze methodiek maakt het mogelijk
om ook voor incompatibele discretisaties aan de behoudseigenschappen te vol-
doen. Onze numerieke resultaten laten zien dat een methode die aan de behoud-
seigenschappen aan de interface voldoet een veel nauwkeurigere oplossing oplevert
dan een methode die niet behoudend is, bij gelijke rekenkosten. De resultaten
illustreren ook dat het niet voldoen aan de behoudseigenschappen kan leiden tot
numerieke instabiliteit.

Vervolgens vergelijken we zwak-gekoppelde en sterk-gekoppelde oplosmetho-
den qua stabiliteit, nauwkeurigheid en efficiëntie. Onze numerieke resultaten laten
zien dat de numerieke fout die door zwak-gekoppelde methoden gëıntroduceerd
wordt de stabiliteit, nauwkeurigheid en efficiëntie in gevaar kan brengen. De
resultaten tonen daarnaast aan dat sterk-gekoppelde methoden superieur zijn

157



158 Samenvatting

ten opzichte van zwak-gekoppelde methoden, onder de voorwaarde dat de on-
derliggende discretisatie aan de behoudseigenschappen voldoet. Onze resultaten
tonen aan dat de hogere rekenkosten van sterk-gekoppelde methoden alleen maar
gerechtvaardigd zijn door een hogere nauwkeurigheid als de onderliggende discreti-
satie behoudend is.

Om de nadelen van de gebruikelijke subiteratie oplosmethode, namelijk slechts
voorwaardelijke stabiliteit, potentiële convergentie moeilijkheden vanwege niet-
normaliteit en de onbekwaamheid om informatie van reeds opgeloste vergelijkbare
problemen te hergebruiken, te overwinnen stellen we voor subiteratie met GMRES
versnelling te combineren. Omdat de Krylov vektoren slechts de diskrete represen-
tatie van de interface positie hoeven te bevatten, heeft de bijbehorende Interface-
GMRES versnelling minimale computer capaciteit nodig. Bovendien staat de
methode het optionele hergebruik (‘reuse’) van Krylov vektoren in opvolgende
toepassingen van GMRES toe, hetgeen we GMRESR noemen. Dit hergebruik kan
de efficiëntie van de methode aanzienlijk verbeteren. De Interface-GMRES(R)
methode behoudt de modulariteit van de onderliggende subiteratie methode. We
illustreren de effectiviteit van de voorgestelde methode aan de hand van numerieke
experimenten met het prototypisch ‘piston model-probleem’. Gedetailleerde con-
vergentie studies en een vergelijking met de standaard subiteratie methode tonen
aan dat de Interface-GMRES(R) methode veel robuuster en efficiënter is, en dat
de methode convergeert zelfs als subiteratie divergeert.

We presenteren een analyse van de fout-versterking van subiteratie en Inter-
face-GMRES(R). De aangenomen lineaire algebra opzet maakt een duidelijke ver-
klaring mogelijk van de relatie tussen de locale GMRES versnelling (d.w.z., op
de interface vrijheidsgraden) en de globale fout-versterkingseigenschappen (d.w.z.,
voor het totale systeem van vloeistof- en constructie vergelijkingen). We laten zien
dat subiteratie fouten in een laag-dimensionale ruimte projecteert die met de inter-
face vrijheidsgraden geassocieerd kan worden. De rang van de bijbehorende fout-
versterkingsmatrix is hoogstens gelijk aan de dimensieN van de benaderingsruimte
van de interface variabelen. Dit impliceert dat iedere Krylov methode in hooguitN
stappen convergeert, onafhankelijk van de keuze van de versnellingsruimte, bijvoor-
beeld, alle variabelen van het systeem, de constructie variabelen, of de interface
variabelen. Echter, de versnelling op de interface variabelen is het meest efficiënt
omdat de voor de Krylov versnelling benodigde berekeningskosten en geheugen
toenemen met de dimensie van de versnellingsruimte. Numerieke experimenten
zijn uitgevoerd om het effect van het hergebruik van Krylov vektoren op de fout-
versterkingseigenschappen van de Interface-GMRESR methode te onderzoeken en
om de grenzen van hergebruik vast te stellen.

Om de ruime toepasbaarheid van de Interface-GMRES(R) methode aan te
tonen, testen we de oplosmethode op een ander model probleem, namelijk het
‘panel’ probleem. Het panel probleem is wezenlijk verschillend van het piston
probleem. In tegenstelling tot het een-dimensionale piston probleem, hebben de
interface vrijheidsgraden voor het twee-dimensionale panel probleem betrekking op
de ruimte en de tijd. Bovendien kan het panel probleem parameter-afhankelijke
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stabiliteits-eigenschappen vertonen. Het systeem laat bijvoorbeeld instabiliteiten
zoals ‘flutter’ en ‘divergence’ toe. Onze numerieke resultaten bevestigen de bevin-
dingen met betrekking tot het piston probleem. Daarnaast tonen de resultaten
aan dat flutter instabiliteit de effectiviteit van het hergebruik van Krylov vektoren
kan bëınvloeden. Echter, dit effect blijkt van weinig belang te zijn en hergebruik
blijft voordelig.
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