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Abstract. We describe the application of a Perfectly Matched Layer (PML) combined with a
self-adaptive goal-oriented hp Finite Element (FE) method to the simulation of resistivity measure-
ments. The adaptive refinements and fast convergence of the self-adaptive hp FE method enhance the
performance of the PML and, thus, enable the accurate and efficient truncation of the computational
domain in open domain problems. We apply this methodology to the simulation of axisymmetric
through-casing resistivity measurements in a borehole environment that are typically used for the
assessment of rock formation properties. Our numerical results confirm the accuracy and efficiency
of our method and provide evidence of highly accurate and reliable simulations of borehole logging
measurements in the presence of a conductive steel casing and material contrast of fourteen orders
of magnitude in conductivity. Moreover, the combination of adaptivity and PML enables us to
significantly reduce the size of the computational domain.
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1. INTRODUCTION. In 1994, Berenger [3] introduced the concept of a Per-
fectly Matched Layer (PML) for exterior electromagnetic problems to reduce reflec-
tions from the boundary of a truncated computational domain. During the same year,
the concept of PML was recognized as complex-coordinate stretching of Maxwell’s
equations by Chew et al. [5], which essentially means that the PML constitutes an
analytic continuation of the governing equations into the complex plane; see also [22].
More recent contributions summarizing the mathematical developments and insight
into PMLs can be found in [21, 25].

Let us briefly review the main idea of the PML and the difficulties pertaining
to its implementation. Within the PML, both propagating and evanescent waves
are transformed into evanescent waves with fast exponential decay. Thus, on the
outer boundary of the PML, waves are highly attenuated in magnitude such that
reflections due to an ad-hoc boundary condition (BC) (for example, a homogeneous
Dirichlet boundary condition) become negligible. Since the exponential decay of the
waves within the PML can be made arbitrarily large, reflections from the PML can
be made arbitrarily small. However, the rapid decay of the solution in the PML
produces a “boundary layer”. Note that the resolution of such PML-induced boundary
layers is crucial for the accuracy of the solution. Failing to ensure a sufficiently fine
discretization in the PML typically results in spurious reflections that contaminate
the solution in the entire computational domain.

Conventional discretization methods face a trade-off between using a highly at-
tenuating PML that minimizes reflections and a PML with low attenuation that is
typically easier to resolve. The more a wave is attenuated within the PML, the smaller
are the reflections from the truncated domain boundary provided that the discretiza-
tion can accurately resolve the rapidly changing solution in the PML. On the other
hand, the more the solution is attenuated in the PML, the stronger are the resulting
gradients and, hence, the more difficult it is for conventional discretization methods
to provide adequate resolution.

We improve the performance of the PML by combining it with a numerical method
that is capable of accurately resolving strong boundary layers; see [10] for some fun-
damental work on this subject in the context of acoustics, elasticity and electromag-
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netics. This numerical approach is based on a self-adaptive goal-oriented hp Finite
Element (FE) method that automatically, i.e. without any user interaction, constructs
an accurate approximation of boundary layers with relatively few unknowns. The use
of this methodology renders the design of sophisticated PMLs unnecessary. We sim-
ply select any PML that provides sufficiently high attenuation to eliminate reflections
from the boundary; then, the self-adaptive algorithm automatically produces a grid
that accurately resolves the PML-induced boundary layer. Thus, no tuning of the
PML is required.

Here, we apply the PML technique combined with the self-adaptive goal-oriented
hp-FEM to problems arising in electromagnetic logging; see [15, 16] for details and val-
idation of the adaptive method. To this end, we investigate different PMLs (including
discontinuous PMLs) to simulate challenging axisymmetric through-casing resistivity
measurements in a borehole environment. In this problem, currents propagate long
distances through steel casing. To avoid the use of large computational domains, we
employ the Maxwellian anisotropic PML formulation in cylindrical coordinates de-
scribed in [23]. Thus, we significantly reduce the size of the computational domain,
thereby eliminating unnecessarily elongated elements. It is important to note that
the discretization in the PML needs to be highly accurate to avoid reflections from
materials with a conductivity contrast of up to fourteen orders of magnitude.

The main challenges in the simulation of through-casing resistivity measurements
pertain to high contrasts in the material properties, strong singularities, and large
dynamic ranges (of up to twelve orders of magnitude for the case considered). Our
main objective in these simulations is to determine the first vertical difference of
electric current at two closely placed receiving coils, as we move the logging instrument
in the vertical direction along the axis of the borehole. This objective function,
also referred to as quantity of interest, can be used to determine the conductivity
of the rock formation behind casing and, thus, characterize the rock formation; see
[9, 14, 18, 24, 26] for details on through-casing resistivity measurements.

The remaining sections of this paper are organized as follows. In Section 2, we
describe the variational formulation for axisymmetric problems and we construct the
PML. In Section 3, we present the self-adaptive goal-oriented hp-FE method. In
Section 4, we describe the through-casing resistivity problem, and we present numer-
ical results that demonstrate that the PML combined with the self-adaptive hp-FE
method enables a considerable reduction of the size of the computational domain
without compromising the accuracy of the solution. We also demonstrate that, in
combination with the PML, adaptivity in both element size h and polynomial ap-
proximation order p is necessary to ensure accuracy and efficiency of the simulations,
since h-adaptivity alone turns out to be insufficient to do so. Finally, in Section 5, we
provide concluding remarks.

2. Maxwell’s Equations and PML Formulation. Using cylindrical coor-
dinates (ρ, φ, z), the variational formulation of Maxwell’s equations in terms of the
azimuthal component of the magnetic field Hφ for axisymmetric problems is given by
(see [12] for a detailed derivation):
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Find Hφ ∈ Hφ,Γ + H̃1
Γ(Ω) such that:∫

Ω

[
(¯̄σρ,z + jω¯̄ερ,z)−1∇×Hφ

]
· (∇×F̄φ) dV + jω

∫
Ω

(¯̄µφHφ) · F̄φ dV

= −
∫

Ω

M imp
φ F̄φ dV ∀ Fφ ∈ H̃1

Γ(Ω) ,

(2.1)

where Hφ,Γ is a lift (in our case, Hφ,Γ = 0) of the essential boundary condition data,

H̃1
Γ(Ω) = {Fφ : Fφ = (0, Fφ, 0) ∈ HΓ(curl; Ω)} = {Fφ ∈ L2(Ω) :

1
ρ
Fφ +

∂Fφ

∂ρ
∈

L2(Ω) ,
∂Fφ

∂z
∈ L2(Ω), Fφ|Γ = 0}, Fφ ∈ H̃1

Γ(Ω) is an arbitrary test function, F̄φ is the

complex conjugate of Fφ, Γ = ∂Ω is the boundary of domain Ω, ¯̄σρ,z, ¯̄ερ,z, are the
meridian components of the electrical conductivity and dielectric permittivity of the
medium, respectively, ¯̄µφ is the azimuthal component of the magnetic permeability
of the medium, and M imp

φ is the azimuthal component of a prescribed impressed
magnetic current density.

We model source toroid antennas by prescribing an impressed volume magnetic
current M imp

φ on a toroidal coil equal to that induced by an electric excitation with a
Vertical Electric Dipole (VED) — also known as Hertzian dipole — of current equal
to (σ + jωε) Amperes. Thus, the magnetic moment of the toroid is independent of
its geometrical dimensions and, in addition, curves at different frequencies may be
compared.

A variety of BC’s can be imposed to truncate the computational domain. For
example, it is possible to use an infinite element technique [4], a PML, a boundary
element technique [8] or an absorbing BC. For a comparison of all these truncations
methods, see [7]. In this paper, we impose a homogeneous Dirichlet boundary condi-
tion (Hφ = 0) on the outer boundary of the computational domain, and we compare
it against results obtained using a PML.

REMARK: The axis of symmetry is not a boundary of the original 3D problem,
and therefore, no boundary condition on this axis is needed to solve this problem.
Nevertheless, since the formulation of problem (2.1) requires the use of space H̃1

Γ(Ω)
and since this space involves the weight 1

ρ that becomes singular for ρ→ 0, a homo-
geneous Dirichlet condition at the axis of symmetry (Hφ|ρ=0 = 0) must be specified
for the discrete solution. That is, we utilize the artificial condition Hφ = 0 at the
axis of symmetry to ensure the proper integrability for variational formulation (2.1).
Therefore, the condition imposed at the axis of symmetry should be called integrabil-
ity condition rather than boundary condition. Note that different proper integrability
conditions may be selected in this context, Hφ|ρ=0 = 0 being the most natural one.

2.1. PML Formulation. Following [23], we construct an anisotropic Maxwellian
PML by considering material properties within the PML of the form

¯̄σ = ¯̄Λσ ; ¯̄ε = ¯̄Λε ; ¯̄µ = ¯̄Λµ ,(2.2)
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where σ, ε, and µ are the conductivity, dielectric permittivity, and magnetic perme-
ability of the media (assuming isotropic materials), respectively,

¯̄Λ =


ρ̃

ρ

sz

sρ
0 0

0
ρ

ρ̃
szsρ 0

0 0
ρ̃

ρ

sρ

sz

 ,(2.3)

where ρ̃ =
∫ ρ

0

sρ(ρ′)dρ′, and, sρ, sφ, and sz are the so-called stretching coordinate

functions. We shall define these functions as

sρ = sφ = sz = 1 + ψi − jψi ,(2.4)

where ψi = ψi(x, x0, x1) is given by

ψi(x, x0, x1) =
{

0 x < x0 or x > x1 ,
gi(x) x ∈ (x0, x1) ,

(2.5)

and the interval (x0, x1) specifies the location of the PML. We consider three different
PMLs by defining three different functions gi(x) according to

g1(x) =
[
2

(
x− x0

x1 − x0

)]17

PML 1,

g2(x) = 20000
(
x− x0

x1 − x0

)
PML 2,

g3(x) = 10000 PML 3.

(2.6)

The main difference between the three PMLs described in equation (2.6) pertains to
the desired degree of smoothness. While ψ1(x) ∈ C16 (sixteen continuous derivatives)
is a smooth function, ψ2(x) ∈ C0 (continuous function) and ψ3(x) (discontinuous
function) are non-smooth functions. The use of smooth functions ψi(x) is commonly
advocated; see, for instance, [21]. In Section 5, we show that this smoothness property
does not provide any additional advantages when the PML is enhanced with the self-
adaptive goal-oriented hp-FE Method. In general, the solution within the PML decays
(asymptotically) as an exponential function of the integral of gi(x). The higher the
value of

∫
gi(x) the more pronounced is the decay of the solution. We shall assume a

PML thickness of x1 − x0 = 0.5m throughout this paper.
We note that in order to work in a large range of frequencies, it may be more

adequate to consider a frequency dependent PML such that the corresponding solution
has an asymptotically frequency independent decay. For simplicity and clarity of the
results, in here we avoid dealing with a frequency dependent PML.

REMARK: It is well-known that the use of the PML typically results in a
high condition number of the associated stiffness matrix, and thus, iterative solvers
may face convergence difficulties; see e.g. [20] and references therein. However, such
convergence problems can be overcome by designing adequate preconditioners that
effectively improve the condition number of the preconditioned stiffness matrix and
thereby accelerate the rate of convergence of the iterative solver. Design of such
preconditioners constitutes an active research area.
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3. The Self-Adaptive Goal-Oriented hp-FE Method. Our numerical method
is designed to have the following capabilities:

• to resolve PML-induced boundary layers sufficiently accurately to avoid spu-
rious reflections,

• to resolve the strong variation in conductivity that occurs between the casing
and the rock formation (of up to fourteen orders of magnitude),

• to accurately compute the quantity of interest L(H) — the first vertical differ-
ence of the azimuthal component of the magnetic field —, which is expected
to be several orders of magnitude smaller than the magnetic field itself. The
total dynamic range (the ratio between the largest value of the solution and
L(H)) is expected to be of the order of 108 − 1013.

In the sequel, we present the self-adaptive goal-oriented hp FEM that possesses
all of the above capabilities.

We utilize a numerical technique that is based on an hp FE discretization (see [6]
for details), where h denotes the element size, and p is the polynomial element order
(degree) of approximation. Both h and p can vary locally throughout the grid. The
main advantage of the hp-FEM over conventional discretization methods is that it
provides exponential convergence rates of the solution with respect to the number of
unknowns (as well as the CPU time), independent of the number, intensity, and/or
distribution of singularities in the solution. For a proof of this result we refer to
[1, 2, 19].

In order to ensure an optimal distribution of element size h and polynomial order
of approximation p, we utilize a self-adaptive goal-oriented hp-adaptive strategy that
minimizes the error in a user-prescribed “quantity of interest” which, for the problem
under consideration, is the first vertical difference of the azimuthal component of
the magnetic field, L(H). An adaptive algorithm based on minimizing a quantity
of interest of the error rather than the energy-norm is referred to as a goal-oriented
adaptive algorithm [17]. Goal-oriented adaptivity utilizes the solutions of two related
problems: the original “direct” problem, and an additional “dual” or adjoint problem
that is composed of the stiffness matrix used for solving the direct problem and a right-
hand-side term given by the user-prescribed quantity of interest. The corresponding
solution of this dual problem is called the influence function, which can be interpreted
as a generalization of Green’s function. This influence function is utilized to guide
optimal refinements. The above mentioned convergence result also extends to goal-
oriented adaptivity, i.e. our algorithm delivers exponential convergence rates also for
the user-prescribed quantity of interest. In particular, discretization within the PML
is such that it provides optimal accuracy in terms of the user-prescribed quantity of
interest. We note that even if the energy-norm within the PML is small, intensive
refinements within the PML may be required in order to accurately reproduce the
quantity of interest.

The automatic adaptivity is based on the following two-grid paradigm: A given
(coarse) conforming hp mesh is first refined globally in both h and p to yield a cor-
responding fine mesh, i.e. each element is broken into four element sons in 2D (eight
element sons in 3D), and the discretization order of approximation p is raised uni-
formly by one. Subsequently, the problem of interest is solved on the fine mesh. The
next optimal coarse mesh is then determined as the one that maximizes the decrease
of the projection-based interpolation error divided by the number of added unknowns.
Since the mesh optimization process is based on the minimization of the interpolation
error of the solution rather than the residual, the algorithm is, in principle, problem
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independent. A detailed description of the hp self-adaptive goal-oriented algorithm
can be found in [12, 13]. For a validation of this numerical methodology, see [14–16].

4. Numerical Applications.

4.1. Through-Casing Resistivity Applications. In this subsection, we de-
scribe the problem setup for the numerical experiments in subsection 4.2. We consider
a through-casing resistivity problem that is commonly utilized to probe subsurface
rock formations with electromagnetic waves.

Using cylindrical coordinates (ρ, φ, z), we specify the following geometry, sources,
receivers, and materials (see also the illustration in Fig. 4.1):

• One 9 cm radius toroidal coil with a 1 cm x 1 cm cross-section located on the
axis of symmetry and moving along the z-axis, and two receiving coils of the
same dimensions located 150 cm and 175 cm, respectively, above the source
antenna.

• Borehole: a cylinder ΩI of radius 10 cm surrounding the axis of symmetry
(ΩI = {(ρ, φ, z) : ρ ≤ 10 cm}), with resistivity R=0.1 Ω· m.

• Casing: a steel casing ΩII of width 1.27 cm surrounding the borehole (ΩII =
{(ρ, φ, z) : 10 cm ≤ ρ ≤ 11.27 cm}), with resistivity R=0.000001 Ω· m
= 10−6 Ω· m .

• Formation material I: a subdomain ΩIII defined by ΩIII = {(ρ, φ, z) : ρ >
11.27cm, 0 cm ≤ z ≤ 100 cm}, with resistivity R=10000 Ω· m.

• Formation material II: a subdomain ΩIV defined by ΩIV = {(ρ, φ, z) : ρ >
11.27 cm,−50 cm ≤ z < 0 cm}, with resistivity R=0.01 Ω· m.

• Formation material III: a subdomain ΩV defined by ΩV = {(ρ, φ, z) : ρ >
11.27 cm, z < −50 cm or z > 100 cm}, with resistivity R=5 Ω· m.

The quantity of interest L(H) for these simulations is the first difference of electric
current I at the two receiving coils (l1 and l2) of radius a = 9 cm divided by the
(vertical) distance ∆z between the two receiving coils, i.e.,

L(H) =
I1 − I2

∆z
=

∮
l1

H(l) dl −
∮
l2

H(l) dl

∆z
.(4.1)

In this paper, we consider an operating frequency of 1 Hz, and a variation of
resistivity of the casing from 10−10Ω ·m to 10−6Ω ·m.

4.2. Numerical Results. Below, we present the numerical simulations of the
resistivity logging problem in a cased well described in subsection 4.1. We place our
transmitter coil at z = −1.65m.

First, we study the importance of the size of the computational domain when we
consider ad hoc boundary conditions — homogeneous Neumann boundary conditions
at the top and bottom of the domain, and homogeneous Dirichlet boundary conditions
at the side — without a PML. In this context, we shall refer to the error due to
the truncation of the computational domain as modeling error and use the solution
obtained with PML 1 (10 m x 5 m domain) as reference solution. This choice of
reference solution is justified, since the selected PML strongly attenuates the solution,
thereby minimizing reflections. Thus, the modeling error of the reference solution,
which is due to the replacement of the almost-zero solution on the outer-part of the
PML by a homogeneous Dirichlet BC (Hφ = 0) is negligible. Our numerical results
further support this choice of reference solution. Figures 4.2 and 4.3 display the
relative error of the real and imaginary parts of the quantity of interest given by Eq.
(4.1) as a function of the vertical length of the computational domain. The horizontal
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Fig. 4.1. 2D cross-section of the geometry of a through-casing resistivity problem. Measurement
instruments consist of one transmitter and two receiver coils. The model includes a conductive
borehole, a metallic casing, and four layers in the formation material with varying resistivities.

length of the domain is taken to be one fourth of the vertical length, since casing is
present only in the vertical direction.

From Figures 4.2 and 4.3, we can deduce that in order to guarantee a modeling
error below 1% we need to consider large computational domains with several kilo-
meters in size. In particular, for a casing resistivity equal to 10−6Ω · m, a domain
with vertical length equal to 10000 m still delivers relative errors in the imaginary
part greater than 1%. This error can be attributed to the truncation of the compu-
tational domain1. Moreover, Figures 4.2 and 4.3 indicate a non-monotonic behavior
of the error as a function of the size of the computational domain. Although we do
not have a rigorous explanation for this observation, such non-monotonic behavior
prompts a word of caution in that it renders the selection of an optimal domain size
difficult. In particular, assuming a monotonic behavior based on an extrapolation of
a small set of numerical results may be misleading, since it does not reflect the actual
dependence of the error on the domain length and, thus, may lead to the selection of
an inappropriate size of the computational domain.

Table 4.1 complements the results shown in Figures 4.2 and 4.3 by displaying
the quantity of interest given by Eq. (4.1) corresponding to the three different PMLs
considered in this paper. We observe that with any of the three different PMLs (and

1The discretization error is several orders of magnitude smaller than the modeling error. We
verified this claim by using an error estimator based on the solution of the problem on a globally
refined (in both h and p) grid. See [11] for additional details on the error estimator.
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Fig. 4.2. Through-casing resistivity problem. Relative error of the real part of the quantity
of interest according to Eq. (4.1) as a function of the vertical length of the computational domain.
Different curves indicate different resistivities of the casing, ranging from 10−10Ω ·m to 10−6Ω ·m.
Results obtained by goal-oriented hp-adaptivity.

a computational domain of 5m × 2.5m) we obtain more accurate results than those
obtained by considering a computational domain of 12800m×3200m without a PML.
This confirms the high accuracy obtained by the use of PMLs enhanced with the
self-adaptive goal-oriented hp-FE method.

Next, we analyze the computational cost for PMLs combined with our adaptive
algorithm. For each computational domain we study the behavior of the discretiza-
tion error (disregarding the modeling error due to the truncation of the computational
domain) as a function of the problem size (number of unknowns). In Table 4.2 we dis-
play the discretization error and the corresponding number of unknowns for different
computational domains. Note that these results depend on the initial grid, which is
different for each computational domain (although all of them are based on geomet-
rically graded grids). Nevertheless, the results of Table 4.2 provide an indication of
the performance associated with each computational domain and PML. These results
show a considerable reduction (about 50%) in terms of the number of unknowns when
introducing PML 2 as opposed to all other cases displayed in Table 4.2. It is notewor-
thy that even with the poorly designed discontinuous PML 3 we obtain results that
are competitive with those of the other cases, since the corresponding solution is also
piecewise smooth.

Figures 4.4 and 4.5 display the logs2 corresponding to a casing resistivity equal
to 10−6Ω ·m and 10−10Ω ·m, respectively. We have computed these logs by utilizing

2A log is a plot displaying the response of the logging instrument as we move it in the vertical
direction along the axis of the borehole.
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Fig. 4.3. Through-casing resistivity problem. Relative error of the imaginary part of the quan-
tity of interest according to Eq. (4.1) as a function of the vertical length of the computational domain.
Different curves indicate different resistivities of the casing, ranging from 10−10Ω ·m to 10−6Ω ·m.
Results obtained by goal-oriented hp-adaptivity.

two different computational domains, viz. a 10m × 5m domain with PML 2, and a
3200m×800m domain without a PML. Fig. 4.4 shows that the computed amplitude is
similar for both computational domains, whereas the phase significantly differs. This
illustrates that a large computational domain of 3200m × 800m without a PML can
induce considerable phase error. In Fig. 4.5, we obtain similar results when considering
either of the two computational domains described above.

We observe a large frequency shift of approximately 160 degrees in Fig. 4.5 due
to the presence of a highly conductive casing in a highly resistive formation, as can be
physically expected. In addition, a “horn” in the amplitude appears when compared
to Figure 4.4.

An hp-grid produced by the self-adaptive goal-oriented hp-FE method with PML 2
and a casing resistivity equal to 10−6Ω·m is displayed in Figure 4.6 for exemplification.
The grid contains 7421 unknowns (of which 80 % are used in the PML), and it delivers
a discretization error in the quantity of interest below 0.2%. Large elements of high-
order approximation are effective in approximating the smooth part of the solution,
while small elements of low order are more suitable for approximating abrupt spatial
variations due to singularities. On the outer part of the casing, we observe more
refinements than on the inner part of the casing, since it is physically known that the
quantity of interest exhibits little sensitivity to the conductivity inside the borehole.

To assess the importance of refinements in both h and p, let us consider below
an adaptive goal-oriented FE method with fixed polynomial order of approximation p
but variable mesh size h. To guide optimal refinements for a given coarse h-grid, we
utilize the globally h-refined grid, that is, the h/2-grid, where, in two dimensions, all
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Table 4.1
Through-casing resistivity problem. Real and Imaginary parts of the quantity of interest —

given by Eq. (4.1) — as a function of the size of the computational domain and presence of a PML.
Results obtained by goal-oriented hp-adaptivity.

Resistivity Domain Size Real Part Imag Part
Casing (m) (A/m) (A/m)
10−6 Ω ·m PML 1 (5 x 2.5) 1.2320E-6 -8.5928E-9
10−6 Ω ·m PML 2 (5 x 2.5) 1.2320E-6 -8.5960E-9
10−6 Ω ·m PML 3 (5 x 2.5) 1.2320E-6 -8.6016E-9
10−6 Ω ·m 400 x 100 1.3382E-6 -2.0264E-8
10−6 Ω ·m 1600 x 400 1.2169E-6 -1.2622E-8
10−6 Ω ·m 6400 x 1600 1.2295E-6 -8.1076E-9
10−6 Ω ·m 12800 x 3200 1.2320E-6 -8.3840E-9
10−6 Ω ·m 25600 x 6400 1.2320E-6 -8.5968E-9
10−8 Ω ·m PML 1 (5 x 2.5) 1.7188E-10 -2.0959E-11
10−8 Ω ·m PML 2 (5 x 2.5) 1.7188E-10 -2.0959E-11
10−8 Ω ·m PML 3 (5 x 2.5) 1.7188E-10 -2.0957E-11
10−8 Ω ·m 400 x 100 1.8772E-10 -1.4463E-11
10−8 Ω ·m 1600 x 400 1.7077E-10 -2.3905E-11
10−8 Ω ·m 6400 x 1600 1.7124E-10 -1.9548E-11
10−8 Ω ·m 12800 x 3200 1.7120E-10 -2.0900E-11
10−8 Ω ·m 25600 x 6400 1.7188E-10 -2.0960E-11
10−10 Ω ·m PML 1 (5 x 2.5) 1.4255E-13 2.2710E-15
10−10 Ω ·m PML 2 (5 x 2.5) 1.4255E-13 2.2710E-15
10−10 Ω ·m PML 3 (5 x 2.5) 1.4255E-13 2.2709E-15
10−10 Ω ·m 400 x 100 1.4198E-13 2.1780E-15
10−10 Ω ·m 1600 x 400 1.4256E-13 2.3695E-15
10−10 Ω ·m 6400 x 1600 1.4256E-13 2.2188E-15
10−10 Ω ·m 12800 x 3200 1.4255E-13 2.2703E-15
10−10 Ω ·m 25600 x 6400 1.4255E-13 2.2710E-15

elements are divided into four element sons. We denote the globally h-refined grid as
the fine grid. Then, we employ an adaptive strategy that is analogous to the one for
hp-adaptivity with the only provision that the polynomial order of approximation p
remains unchanged.

The convergence behavior of the h-adaptive method restricted to polynomial-
approximation order p = 2 (quadratic basis functions) and combined with a PML is
displayed in Figure 4.7, where the discretization error is measured with reference to
the solution that is provided by the hp-adaptive method. The results displayed in
Figure 4.7 and their comparison to the results given in Table 4.2 illustrate that the h-
adaptive method combined with a PML is less accurate for solving the through-casing
resistivity problem under consideration. This observation indicates that in the present
case, a restriction of the approximation order to p = 2 significantly limits the efficiency
of the method when compared to the hp-adaptive method. In particular, we observe
that the sequence of coarse h-grids delivers for 50, 000 unknowns an error that is still
larger than 10%. Furthermore, for any coarse grid with fewer than 15, 000 unknowns,
the fine grid delivers large errors (above 30 %), and therefore, is unable to guide
optimal refinements. To further support this observation, we display in Figure 4.8 two
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Table 4.2
Through-casing resistivity problem. Number of unknowns employed by the self-adaptive goal-

oriented hp-FE method as a function of the size of the computational domain and presence of a
PML.

Resistivity Domain Size (m) Nr. Unknowns Nr. Unknowns
Casing (≈ 1% error) (≈ 0.01% error)
10−6 Ω ·m PML 1 (5 x 2.5) 19541 (0.083%) 24886 (0.037%)
10−6 Ω ·m PML 2 (5 x 2.5) 7095 (0.29%) 13345 (0.006%)
10−6 Ω ·m PML 3 (5 x 2.5) 8679 (1.04%) 19640 (0.009%)
10−6 Ω ·m 6400 x 1600 12327 (0.43%) 18850 (0.014%)
10−6 Ω ·m 12800 x 3200 12327 (0.43%) 18850 (0.014%)
10−6 Ω ·m 25600 x 6400 12099 (1.22%) 19828 (0.037%)
10−8 Ω ·m PML 1 (5 x 2.5) 12702 (0.214%) 27291 (0.002%)
10−8 Ω ·m PML 2 (5 x 2.5) 7787 (0.832%) 18115 (0.003%)
10−8 Ω ·m PML 3 (5 x 2.5) 10857 (0.750%) 28954 (0.083%)
10−8 Ω ·m 6400 x 1600 11433 (0.262%) 20109 (0.013%)
10−8 Ω ·m 12800 x 3200 14305 (1.262%) 28834 (0.012%)
10−8 Ω ·m 25600 x 6400 21400 (0.384%) 32178 (0.011%)
10−10 Ω ·m PML 1 (5 x 2.5) 5957 (0.811%) 14497 (0.004%)
10−10 Ω ·m PML 2 (5 x 2.5) 4714 (1.056%) 12378 (0.004%)
10−10 Ω ·m PML 3 (5 x 2.5) 5942 (0.988%) 11812 (0.011%)
10−10 Ω ·m 6400 x 1600 8805(1.530%) 13786 (0.004%)
10−10 Ω ·m 12800 x 3200 8545 (0.872%) 17521 (0.019%)
10−10 Ω ·m 25600 x 6400 6597 (1.103%) 18245 (0.039%)

optimal coarse h-grids. The first one (left panel) contains an intermediate (optimal) h-
grid with 14,105 unknowns. The estimated relative error (computed as the difference
between the solutions obtained on the h- and h/2-grids, respectively) is below 1%.
However, the actual (exact) error is above 30%, since the fine grid fails to provide
an accurate reference solution. Indeed, we observe in Figure 4.8 (left panel) that the
PML in the upper part of the domain is under-resolved.

Let us briefly summarize our findings for h-adaptivity when restricting ourselves
to linear elements (p = 1) that are commonly used in engineering practice. Our
numerical experiments indicate that for linear elements an h-adapted grid with over
100,000 unknowns is still not sufficiently fine to reduce the relative error in the quantity
of interest below 50% for the problem under consideration. The final h-grid, displayed
in Figure 4.9, contains over 100,000 unknowns. However, it still exhibits a relative
error in the quantity of interest over 50%. As above, we observe in the final h-grid
that the upper-part of the domain, including the PML, is under-resolved.

Finally, we address another challenging problem. We reconsider our original
through-casing resistivity problem, and we replace the upper layer of the formation
(with resistivity equal to 5 Ω ·m) by an anisotropic material with horizontal resistivity
equal to 1 Ω ·m and vertical resistivity equal to 5 Ω ·m. We consider a casing resis-
tivity equal to 10−6Ω ·m. Utilizing the solution obtained with PML 1 as reference
solution, we plot in Fig. 4.10 the error due to truncation of the computational domain
versus the frequency. By employing either PML 2 or a large computational domain
of size equal to 25000m × 6400m, we obtain a total error below 0.01% which is the
discretization error tolerance that we selected for this problem. When considering
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Fig. 4.4. Through-casing resistivity problem with a resistivity of casing equal to 10−6Ω · m.
Amplitude (left) and phase (right) of the final log. The two curves were obtained on two different
computational domains: A 10m× 5m domain with PML 3, and a 3200m× 800m domain without a
PML. Results obtained by goal-oriented hp-adaptivity.

Fig. 4.5. Through-casing resistivity problem with a resistivity of casing equal to 10−10Ω · m.
Amplitude (left) and phase (right) of the final log. The two curves were obtained on two different
computational domains: A 10m× 5m domain with PML 3, and a 3200m× 800m domain without a
PML. Results obtained by goal-oriented hp-adaptivity.

smaller domains, we observe the effect of the domain truncation error which may be-
12
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Fig. 4.6. Through-casing resistivity problem. hp-grid with 7421 unknowns delivered by the
self-adaptive goal-oriented hp-FE method. Different colors indicate different polynomials orders of
approximation, from 1 (light) up to 9 (dark). Size of computational domain: 5m × 2.5m, including
a 0.5m thick PML.

Fig. 4.7. Through-casing resistivity problem with resistivity of casing equal to 10−6Ω · m.
Convergence history (number of degrees of freedom — unknowns — of the coarse grid vs. relative
error of the quantity of interest in percentage) delivered by the self-adaptive goal-oriented h-FE
method, with p = 2, combined with the PML 2 (5m × 2.5m).

13



P M L
P
M
L

t←− Transmitter

t←− Receiver I
t←− Receiver II P

M
L

P
M
LP M L

P M L
P
M
L

t←− Transmitter

t←− Receiver I
t←− Receiver II P

M
L

P
M
LP M L

Fig. 4.8. Through-casing resistivity problem. Two h-grids (with p = 2) delivered by the self-
adaptive goal-oriented h-FE method. Left panel: Intermediate h-grid with 14105 unknowns, deliv-
ering an error of over 30%. Right panel: Final h-grid with 76643 unknowns, delivering an error of
2%. Size of computational domain: 5m × 2.5m, including a 0.5m thick PML 2.

come as large as 5% for a domain of size 1600m×400m. As a general trend, Fig. 4.10
indicates a monotonic decrease of the error with increasing frequency (as physically
expected). Note, however, that there are exceptions to this monotonic behavior as
evidenced by Fig. 4.10.
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Fig. 4.9. Through casing resistivity problem. Final h-grid with p = 1, containing 104834
unknowns, and delivering an error over 50%. Size of computational domain: 5m× 2.5m, including
a 0.5m thick PML 2.

5. CONCLUSIONS. We have shown that numerical reflections from domain
truncation for a layered medium with high-material constrasts are minimized with
a self-adaptive goal-oriented hp-FE method in combination with a PML. Such an
adaptive method is capable of delivering optimal grid refinements and, thus, it can
substantially improve the performance of PMLs.

For problems with material coefficients varying by up to ten orders of magnitude
within the PML, the self-adaptive goal-oriented hp-FE method automatically con-
structs a grid that exhibits minimum reflections (below 0.001% relative error in the
quantity of interest for a moderate number of unknowns), even when considering dis-
continuous PMLs. Thus, for through-casing resistivity measurements, we can reduce
the size of the computational domain from, for instance, 25,000m to 5m by using a
PML in combination with our adaptive algorithm. We have demonstrated that this
neither compromises the accuracy of the magnitude nor of the phase of the computed
logging response. Moreover, the number of unknowns that are needed to solve the
problem to a prescribed accuracy can be significantly reduced by using a PML en-
hanced with adaptivity instead of a large domain without PML. Thus, we have shown
that PMLs can be successfully employed not only for pure wave propagation problems
with quasi-uniform materials, but also for engineering applications with high material
contrast within the PML region.

Furthermore, we have shown that a PML combined with a goal-oriented FE
method that is self-adaptive only in the element size h may be considerably less
accurate than the corresponding hp-method and require orders of magnitude more
unknowns to achieve the same level of accuracy. This indicates that adaptivity in
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Fig. 4.10. Anisotropic through-casing resistivity problem with resistivity of casing equal to
10−6Ω · m. Relative error of the absolute value of the quantity of interest as a function of the
frequency. Different curves indicate different domain sizes: 400m× 100m, 1600m× 400m, 6400m×
1600m, 25600m × 6400m, and 5m × 2.5m (with PML 2). Results obtained by goal-oriented hp-
adaptivity.

both element size h and polynomial approximation order p is essential for the accu-
racy of the solution.

Finally, we have demonstrated that PMLs combined with the self-adaptive goal-
oriented hp-FE method maintain good performance in the presence of anisotropic
materials, as well as at different frequencies.
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