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Abstract. We give a new quantifier elimination procedure for Pres-
burger arithmetic extended with a unary counting quantifier ∃=xyΦ that
binds to the variable x the number of different y satisfying Φ. While our
procedure runs in non-elementary time in general, we show that it yields
nearly optimal elementary complexity results for expressive counting ex-
tensions of Presburger arithmetic, such as the threshold counting quanti-
fier ∃≥cyΦ that requires that the number of different y satisfying Φ be at
least c ∈ N, where c can succinctly be defined by a Presburger formula.
Our results are cast in terms of what we call the monadically-guarded
fragment of Presburger arithmetic with unary counting quantifiers, for
which we develop a 2ExpSpace decision procedure.

1 Introduction

Counting the number of solutions to an equation, or the number of elements in
a set subject to constraints, is a fundamental and often computationally chal-
lenging problem studied in logic, mathematics and computer science. In discrete
geometry, counting the number of integral points in a polyhedron is a canonical
#P-complete problem. Barvinok’s celebrated algorithm solves this problem in
polynomial time when the dimension is fixed [2]. In this paper, we investigate
a generalization of this problem and study algorithmic aspects of counting the
number of models of formulae of Presburger arithmetic, the first-order theory of
the integers with addition and order, and more generally, extensions of this logic
with counting quantifiers.

Counting quantifiers such as the Härtig quantifier, which allows to assert
equal-cardinality constraints on the sets of satisfying assignments of two given
first-order formulae, have long been studied in first-order logic [6]. In first-order
theories of integer arithmetic, it is compelling to consider variants of counting
quantifiers that bind the number of satisfying assignments of a formula to a
first-order variable. Apelt [1] and Schweikardt [10] studied the decidability of
Presburger arithmetic enriched with the unary counting quantifier ∃=xy with
the following semantics: given an assignment of integers to the first-order vari-
ables x, z1, . . . , zn, a formula ∃=xyΦ(x, y, z1, . . . , zn) evaluates to true whenever
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the number of different y satisfying Φ(x, y, z1, . . . , zn) is exactly x. In both [1]
and [10], decidability is shown by developing a quantifier elimination procedure
for this extension of Presburger arithmetic which eliminates a counting quantifier
by translating it into an equivalent quantified formula of Presburger arithmetic,
i.e., one that only uses standard first-order quantifiers. This immediately gives
decidability of Presburger arithmetic extended with the unary counting quanti-
fier ∃=xy since Presburger arithmetic is decidable in 2ExpSpace [9,3,12]. Un-
fortunately, the quantifier elimination procedures in [1,10] do not yield a similar
elementary upper bound for the extended theory, as the elimination of a single
quantifier ∃=xy results in an exponential blow-up of the formula size and intro-
duces nested first-order quantifiers. It is a widely open problem whether there
is a decision procedure for Presburger arithmetic extended with the counting
quantifier ∃=xy with elementary running time, or whether this theory admits a
significantly stronger lower bound than standard Presburger arithmetic.

To shed more light on the complexity of Presburger arithmetic extended
with the aforementioned unary counting quantifier, Habermehl and Kuske gave
a quantifier elimination procedure for Presburger arithmetic extended with a
unary modulo counting quantifier ∃(r,q)y, where r and q are positive natural
numbers [4]. Here, ∃(r,q)yΨ(y, z1, . . . , zn) holds whenever the number of different
y satisfying Ψ(y, z1, . . . , zn) is congruent to r modulo q. An analysis of the growth
of the constants and coefficients occurring in their procedure then enables them
to derive a 2ExpSpace upper bound for the logic, matching the complexity of
Presburger arithmetic on deterministic machines. This noteworthy result shows
that there is still room to extend Presburger arithmetic with non-trivial counting
quantifiers without increasing the computational cost of deciding the logic.

Note that in order to keep the logic decidable, the counting quantifiers con-
sidered in the literature must be unary. Indeed, consider a binary counting quan-
tifier ∃=x(y1, y2) counting the number of different y1 and y2 satisfying a formula.
Then, Φ(x, z) = ∃=x(y1, y2)(0 ≤ y1, y2 < z) holds for x = z2, which in turn al-
lows defining multiplication, leading to undecidability of the resulting theory.

Our contribution. Following the lines of [4] while trying to avoid the limitations
of the procedures in [1,10], our goal is to study decision procedures for Presburger
arithmetic enriched with variants of counting quantifiers that do not increase
the complexity of the Presburger arithmetic. To begin with, we develop a new
quantifier elimination procedure for Presburger arithmetic with unary counting
quantifiers ∃=xy that, in contrast to [1,10], does not require the introduction
of first-order quantifiers. While the procedure still runs in non-elementary time,
avoiding first-order quantification allows us not only to derive exponentially
better bounds on the size of the formula obtained after eliminating a single ∃=xy,
but also to identify the sources of non-elementary growth. We exploit those
observations to extend the range of counting quantifiers that can be added to
Presburger arithmetic without increasing the complexity of the resulting logic.

The first type of counting quantifiers we consider is a threshold counting quan-
tifier ∃≥cy for some integer c. A formula ∃≥cyΨ(y, z1, . . . , zn) evaluates to true
whenever there are at least c different values of y satisfying Ψ(y, z1, . . . , zn). We
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show that Presburger arithmetic enriched with threshold counting quantifiers can
be decided in 2ExpSpace, even when the threshold c itself is succinctly given as
the unique solution of a Presburger arithmetic formula. This is surprising since in
Presburger arithmetic one can define numbers that are triply exponential in the
size of the formula used to encode them [7, pp. 151–152]. Furthermore, we show
that if we restrict c to be at most doubly exponential in the size of its encod-
ing then Presburger arithmetic with threshold counting quantifiers is decidable

in STA(∗, 22nO(1)

,O(n)), matching the complexity of Presburger arithmetic [3].
Here, STA(s(n), t(n), a(n)) is the class of all decision problems in which inputs
of length n can be decided by an alternating Turing machine in space s(n) and
time t(n) using a(n) alternations, where “∗” stands for unbounded availability
of a certain resource.

Our results on the quantifier ∃≥cx arise from studying a more general exten-
sion of Presburger arithmetic that relies on the notion of monadic decomposition
put forward by Veanes et al. in [11] and studied by Hague et al. [5] in the con-
text of integer linear arithmetic. Briefly, a formula Φ(x, y1, . . . , yn) is said to
be monadically decomposable on the variable x whenever it is equivalent to a
formula of the form

∨
i∈I ∆i(x) ∧Ψi(y1, . . . , yn), i.e., a formula where the satis-

faction of constraints on x does not depend on the values of y1, . . . , yn. Based on
this definition, we extend Presburger arithmetic by allowing the general unary
counting quantifiers ∃=xy to appear with guards of the form ∃x(Ψ ∧ ∃=xyΦ),
where Ψ is monadically decomposable on the variable x. The resulting logic
is very powerful, as it not only generalizes the quantifiers ∃≥cx but also the
modulo counting quantifiers ∃(r,q)y from [4]. We establish two further results
for this monadically-guarded fragment of Presburger arithmetic with counting
quantifiers. First, we develop a 3ExpTime quantifier elimination procedure for
the logic, matching the complexity of the best possible quantifier elimination
procedures for Presburger arithmetic. Second, we exploit this procedure to ob-
tain a quantifier relativization argument showing that the logic is decidable
in 2ExpSpace.

2 Presburger arithmetic with counting quantifiers

General notation. The symbols Z, N and N+ denote the set of integers, natural
numbers including zero, and natural numbers without zero, respectively. We
usually use a, b, c, . . . for integers, which we assume being encoded in binary.
Given n ∈ N, we write [n] def= {0, . . . , n − 1}, and #A for the cardinality of a
set A. If A is infinite, then #A =∞, and we postulate n ≤ ∞ for all n ∈ Z.

Structure. We consider the structure Z = 〈Z, (c)c∈Z,+, <, (≡q)q∈N+〉 of Pres-
burger arithmetic, where (c)c∈Z are constant symbols that shall be interpreted
as their homographic integer numbers, the binary function symbol + is inter-
preted as addition on Z, the binary relation < is interpreted as “less than”, and
≡q is interpreted as the modulo relation, i.e., a ≡q b if and only if q divides a−b.
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Basic syntax. Let X = {x, y, z, . . . } be a countable set of first-order variables.
Linear terms, usually denoted by t, t1, t2, etc., are expressions of the form
a1x1 + · · · + adxd + c where x1, . . . , xd ∈ X, a1, . . . , ad, c ∈ Z. The integer ai
is the coefficient of the variable xi. Variables not appearing in the linear term
are tacitly assumed to have a 0 coefficient. A term t is said to be x-free if the
coefficient of the variable x in t is 0. The integer c is the constant of the linear
term. Linear terms with constant 0 are said to be homogeneous.

Given a term t, the lexeme t < 0 is understood as a linear inequality, and
t ≡q 0 is a modulo constraint. Syntactically, Presburger arithmetic (PA) is the
closure of linear inequalities and modulo constraints under the Boolean connec-
tives ∧ and ¬ (i.e., conjunction and negation, respectively) and the first-order
quantifier ∃y. Presburger arithmetic with counting quantifiers (PAC) extends PA
with the (unary) counting quantifier ∃=xy, where x and y are two syntactically
distinct variables from X. Formulae of PAC are denoted by Φ, Ψ, Γ, etc.

We write vars(Φ) and fv(Φ) for the set of variables and free variables of Φ, re-
spectively, with fv(∃=xyΦ) def= {x}∪(fv(Φ)\{y}). A sentence is a formula Φ with
fv(Φ) = ∅. We sometimes write Φ(x1, . . . , xk) or Φ(x), with x = (x1, . . . , xk) a
tuple of variables, for a formula Φ with fv(Φ) = {x1, . . . , xk}. We say that Φ is
z-free if z ∈ X does not occur in Φ. Given terms t and t′, Φ[t′/t] stands for the for-
mula obtained from Φ by syntactically replacing every occurrence of t by t′. Given
Φ(x1, . . . , xk) and terms t1, . . . , tk, Φ(t1, . . . , tk) stands for Φ[t1/x1] . . . [tk/xk].

Semantics. An assignment is a function ν : X → Z assigning an integer value to
every variable. As usual, we extend ν in the standard way to a function that maps
every term to an element of Z. For instance, ν(x+3x+2) = ν(x)+3ν(y)+2. Given
a variable x and an integer n, we write ν[n/x] for the assignment obtained form ν
by updating the value of x to n, i.e. ν[n/x](x) = n, and for all variables y distinct
from x, ν[n/x](y) = ν(y). Given a formula Φ of PAC and an assignment ν, the
satisfaction relation ν |= Φ is defined as usual for linear inequalities, modulo
constraints, Boolean connectives and the existential quantifier ranging over Z.
For the counting quantifier, we define

ν |= ∃=xyΦ if and only if #{n ∈ Z | ν[n/y] |= Φ} = ν(x).

Informally, ∃=xyΦ is satisfied by ν if there are exactly ν(x) distinct values for
the variable y that make Φ true. A formula Φ of PAC is satisfiable (resp. valid)
if ν |= Φ holds for an assignment (resp. every assignment) ν. A formula Φ
entails a formula Ψ, written Φ |= Ψ, whenever every assignment satisfying Φ also
satisfies Ψ. We write Φ⇔ Ψ to denote that Φ and Ψ are equivalent, i.e. Φ |= Ψ
and Ψ |= Φ.

Syntactic abbreviations. We define ⊥ def= 0 < 0 and > def= ¬⊥. The Boolean con-
nectives ∨, → and ↔ and the universal first-order quantifier ∀ are derived as
usual, and so are the (in)equalities <, ≤, =, ≥, and >, between terms. For in-
stance, t1 < t2 corresponds to t1 − t2 < 0, where we tacitly manipulate t1 − t2
with standard operations of linear arithmetic to obtain an equivalent term. Sim-
ilarly, t1 ≡q t2 is short for t1 − t2 ≡q 0, whereas |t1| + t2 < 0 is short for
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(t1 < 0→ t2− t1 < 0)∧ (t1 ≥ 0→ t1 + t2 < 0). For a variable x ∈ X and r ∈ [q],
we call x ≡q r a simple modulo constraint. All modulo constraints introduced
by our quantifier elimination procedure given in Section 3 are simple.

The counting quantifier ∃≥xy. Historically [1,10], the quantifier ∃=xy has been
the unary counting quantifier of choice when it comes to PAC. However, a priori
one could define PAC as the extension of PA featuring counting quantifiers ∃≥xy,
where ν |= ∃≥xyΦ holds for an assignment ν whenever there are at least ν(x)
values n ∈ Z for y such that ν[n/y] |= Φ. Notice that the counting quantifier ∃=y

can be expressed using ∃≥y, and vice versa:

– ∃=xyΦ ⇔ ∃≥xyΦ ∧ ∃x′ : x′ = x+ 1 ∧ ¬∃≥x′yΦ; and
– ∃≥xyΦ ⇔ (∀z ∃y : |z| ≤ |y| ∧ Φ) ∨ ∃x′ : x′ ≥ x ∧ ∃=x′yΦ.

Two comments are in order: first, translating a PAC formula by swapping the
type of counting quantifiers using the equivalences above has the unpleasant ef-
fect of increasing the size of the formula, exponentially if the nesting depth of
quantifiers is unbounded. Second, the subformula ∀z ∃y : |z| ≤ |y| ∧ Φ used in
the last equivalence states that there are infinitely many values for y that make
the formula Φ true. This formula highlights the main difference between ∃=xy
and ∃≥xy quantifiers: the latter is true in the presence of infinitely many val-
ues for y, whereas the former is false. Throughout the paper, we focus on the
quantifier ∃=xy, as done in [1,10], but use this observation to argue that our
results can be readily adapted to the counting quantifier ∃≥xy. Full details of
this adaptation are given in the full version of the paper.

Parameters of formulae. To analyze quantifier-elimination procedures, follow-
ing [8,12], we introduce a number of parameters for formulae of PAC:

– |Φ| denotes the length of the formula Φ, i.e., the number of symbols to write
down ϕ, with numbers encoded in binary. We always assume |Φ| ≥ 2;

– qr(Φ) (resp. nr(Φ)) denotes the quantifier (resp. negation) rank of the for-
mula Φ, i.e., the depth of nesting of the quantifiers (resp. negations) of Φ;

– fd(Φ) denotes the overall depth of Φ, i.e., the depth of nesting of all con-
structors (i.e. ∧, ¬, ∃x and ∃=xy) in the formula Φ;

– lin(Φ) is the set containing the term 0 plus all the terms t that appear in
linear inequalities t < 0 of Φ (recall that t1 < t2 is short for t1 − t2 < 0);

– hom(Φ) is the set of homogeneous linear terms obtained from all terms in
lin(Φ) by setting their constants to 0;

– const(Φ) is the set of all constants appearing in linear terms of lin(Φ); and
– mod(Φ) is the set of all moduli q ∈ N appearing in modulo constraints
t1 ≡q t2 of Φ. We postulate 1 ∈ mod(Φ), even if Φ has no modulo constraints.

Given a vector v = (v1, . . . , vd) ∈ Zd, we write ||v|| = max{|vi| : 1 ≤ i ≤ d}
for the infinity norm of v. Similarly, for a linear term t, we write ||t|| for the
maximum absolute value of a coefficient or constant appearing in t. Given a
finite set of vectors or a finite set of terms A, we define ||A|| = max{||a|| : a ∈ A}.
Given a matrix A ∈ Zn×d, its infinity norm is the maximal infinity norm of its
column vectors. Notice that ||lin(Φ)|| = ||hom(Φ) ∪ const(Φ)||. For a formula Φ,
we define ||Φ|| def= ||lin(Φ) ∪mod(Φ)||.
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Complexity remarks. The proposition below characterizes the complexity of PA.

Proposition 1 ([3]). Presburger arithmetic is STA(∗, 22nO(1)

,O(n))-complete.

To be more precise, the number of alternations required to decide the validity
or satisfiability of a formula Φ from Presburger arithmetic is linear in nr(Φ).

Notice that 2NExpTime ⊆ STA(∗, 22nO(1)

,O(n)) ⊆ 2ExpSpace.

3 A quantifier elimination procedure for PAC

In this section, we develop a new quantifier elimination procedure (QE proce-
dure) for the counting quantifier ∃=xy:

Proposition 2. Let Φ be quantifier-free. Then ∃=xyΦ is equivalent to a Boolean
combination of linear inequalities and simple modulo constraints.

We quantify the growth of parameters in the formula in Section 4. Upper
bounds on this growth are at the core of our results. Without any bounds (as
stated), Proposition 2 is known and can be obtained by chaining the quantifier
elimination procedure developed by Schweikardt [10] together with the standard
quantifier elimination procedure for Presburger arithmetic. An advantage of our
QE procedure for the quantifier ∃=xy is that it avoids the introduction of ad-
ditional ∃- and ∀-quantifiers when eliminating a counting quantifier on which
Schweikardt’s procedure relies. More precisely, given a formula ∃=xyΦ where Φ
is quantifier-free (q.f. in short), the QE procedure in [10] requires a full transfor-
mation of Φ into disjunctive normal form, and eliminates the quantifier ∃=xy by
introducing first-order quantifiers, producing an equivalent formula Ψ of Pres-
burger arithmetic. This strategy comes at a cost: the size of the q.f. formula
obtained after removing the quantifiers from Ψ is doubly exponential in the
size of ∃=xyΦ. By avoiding the introduction of first-order quantifiers, our QE
procedure already exponentially improves upon Schweikardt’s procedure.

Our QE procedure performs a series of formula manipulations, divided into
five steps. At the end of the i-th step, the procedure produces a formula Φi equiv-
alent to the original formula ∃=xyΦ. Ultimately, Φ5 is a Boolean combination
of inequalities and simple modulo constraints allowing us to establish Proposi-
tion 2. In this section, we present the procedure and briefly discuss its correctness,
leaving the computational analysis of parameters lin(Φ5), hom(Φ5), const(Φ5)
and mod(Φ5) to subsequent sections.

Step I: Normalise the coefficients of y. Given the input formula Φ0 = ∃=xyΦ,
with Φ q.f., the first step of the procedure is a standard step for QE procedures
for Presburger arithmetic. It produces an equivalent formula Φ1 in which all non-
zero coefficients of y appearing in a linear term are normalized to 1 or −1. For
simplicity, we first translate every modulo constraint in Φ into simple modulo
constraints, by relying on the lemma below.
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Lemma 1. Every constraint t ≡q 0 is equivalent to a Boolean combination Ψ of
simple modulo constraints such that vars(Ψ) ⊆ vars(t ≡q 0) and mod(Ψ) = {q}.

The first step of our QE procedure is as follows:

1 Translate every modulo constraint in Φ into simple modulo constraints (Lemma 1).

2 Let k be the lcm of the absolute values of all coefficients of y appearing in hom(Φ).

3 Let Φ′ be the formula obtained from Φ by applying the following three rewrite rules

to each linear inequality and simple modulo constraint in which y appears:

• ay + t < 0 −→ ky + (k/a) · t < 0, if a > 0,

• ay + t < 0 −→ −ky − (k/a) · t < 0, if a < 0, and

• y ≡q r −→ ky ≡kq kr,
where t is a term, q ≥ 1 and r ∈ [q]:

4 Define Φ1
def= ∃=xy (y ≡k 0 ∧ Φ′[y/ky]).

Claim 1. Φ0 ⇔ Φ1, and in Φ1, all non-zero coefficients of y are either 1 or −1.

Step II: Subdivide the formula according to term orderings and residue classes.
We define an ordering for a set of linear terms T to be a formula of the form

(t1 C1 t2) ∧ (t2 C2 t3) ∧ · · · ∧ (tn−1 Cn−1 tn), (1)

where {t1, . . . , tn} = T and {C1, . . . ,Cn−1} ⊆ {<,=}.
Lemma 2. There is an algorithm that, given a set T of n linear terms over d vari-

ables, computes in time nO(d) log ||T ||O(1)
a set {O1, . . . , Oo} of orderings for T

s.t. (1) o = O(n2d), (2) > ⇔
∨o
i=1Oi, (3) ⊥ ⇔ Oi ∧Oj whenever i 6= j.

Lemma 2 is proven analogously to [13, Proposition 5.1].
The second step of our QE procedure is as follows:

5 Let T be the set of all y-free terms t such that t, y − t or −y + t belongs to lin(Φ1).

6 Using Lemma 2, build a set {O1, . . . , Oo} of orderings for the terms T .

7 Let Z def= vars(Φ) and m def= lcm(mod(Φ1)).

8 For every i ∈ [1, o] and every r : Z → [m], let Γi,r
def= Oi ∧ (

∧
z∈Z z ≡m r(z)).

9 Define Φ2
def=
∨o
i=1

∨
r : Z→[m] (Γi,r ∧ Φ1).

Claim 2. Φ1 ⇔ Φ2.

In Steps III to V of the procedure, we focus on each disjunct of Φ2 sepa-
rately, iterating over all i ∈ [1, o], hence over all orderings, and all r : Z → [m],
i.e., functions assigning residue classes modulo m to the variables in Z.

Step III: Split the range of y into segments. Recall that Φ1 = ∃=xyΨ, where
Ψ is some Boolean combination of inequalities and modulo constraints with
variables from vars(Φ) in which the non-zero coefficients of y are either 1 or −1.
Let T |Oi

def= (t′1, · · · , t′`) be the tuple of all the terms in T that the formula Oi
asserts pairwise non-equal, taken in the ascending order. In other words, we
obtain t′1, . . . , t

′
` by removing from the sequence t1, . . . , tn in Equation (1) all

terms tj+1 for which Cj is =. Let seg(y,Oi) be the set of formulae
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y < t′1, y = t′1, (t′i−1 < y ∧ y < t′i), y = t′i, t′` < y : i ∈ [2, `]

}
.

We have #seg(y,Oi) = 2`+ 1. Given κ ∈ seg(y,Oi), the formula Oi ∧ κ imparts
a linear ordering on the terms T ∪ {y}. This enables us to “almost evaluate” Ψ:

Lemma 3. For every κ ∈ seg(y,Oi), there is a Boolean combination Ψi,r
κ of

simple modulo constraints such that vars(Ψi,r
κ ) = {y}, mod(Ψi,r

κ ) ⊆ mod(Ψ) and

Γi,r ∧ κ ∧Ψ ⇔ Γi,r ∧ κ ∧Ψi,r
κ .

Our QE procedure manipulates Φ2 as follows:

10 For every i ∈ [1, o] and every r : Z → [m] :

11 Let seg(y,Oi) = {κ0, . . . , κ2`}.
12 For every j ∈ [0, 2`], consider the formula Ψi,r

κj
from Lemma 3.

13 Let Φi,r3 = ∃x0 . . .∃x2`
(
x =

∑2`
j=0 xj ∧

∧2`
j=0 ∃

=xjy(κj ∧Ψi,r
κj

)
)
.

14 Define Φ3
def=
∨o
i=1

∨
r : Z→[m](Γi,r ∧ Φi,r3 ).

Claim 3. Φ2 ⇔ Φ3.

Step IV: Compute the number of solutions for each segment. We next aim at
eliminating the counting quantifiers introduced in Step III in the sub-formulae
∃=xjy(κj∧Ψi,r

κj
). We go over each κ ∈ seg(y,Oi), and consider three cases depend-

ing on whether it specifies (syntactically) an infinite interval, a finite segment,
or a single value for y.

Notice that r is in fact an assignment to variables, so r(t) ∈ Z is well-defined
for every term t with free variables Z. For all i ∈ [1, o] and r : Z → [m], given
T |Oi

= (t′1, . . . , t
′
`) the procedure computes the following numbers c1, . . . , c`,

p2, . . . , p` and r2, . . . , r`.

15 For every j ∈ [1, `] :

16 If Ψi,r
κ [r(t′j)/y] is true, where κ = (y = t′j), then let cj

def= 1, else let cj
def= 0.

17 For every j ∈ [2, `] :

18 Let pj ∈ [0,m] be the number of y ∈ [m] satisfying Ψi,r
κ (y).

19 Let uj = (r(t′j−1) mod m).

20 Let uj be the smallest integer congruent to r(t′j) modulo m and greater than uj .

21 Let r′j ∈ [0,m] be the number of y ∈ [uj + 1, uj − 1] satisfying Ψi,r
κ (y).

22 Let rj ∈ [−m2,m2] be such that rj = −pj · (uj − uj) +m · r′j .

Lemma 4. Given a formula Ψi,r
κ and m,uj , uj, the numbers pj and r′j can be

computed in #P, or by a deterministic algorithm with running time O(m·|Ψi,r
κ |).

The numbers cj , pj , rj determine, for each κ ∈ seg(y,Oi), how many assign-
ments to the variable y satisfy the formula Ψi,r

κ in the conjunction Γi,r∧κ∧Ψi,r
κ .

Intuitively, this is cj for κ of the form y = t′j , and (pj(t
′
j − t′j−1) + rj)/m for κ of

the form t′j−1 < y ∧ y < t′j . We say “intuitively” here, because in the latter case
the expression above depends on other variables so is not, strictly speaking, a
number. The following claims formalize this intuition:
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Claim 4. Let κ ∈ {y < t′1, t
′
` < y}. If Ψi,r

κ (y) is satisfiable, then Φi,r3 ⇔ ⊥.

Claim 5. Let j ∈ [1, `], κ = (y = t′j), z ∈ X. Then, ∃=zy (κ ∧Ψi,r
κ ) ⇔ z = cj .

Claim 6. Let κ = (t′j−1 < y ∧ y < t′j) for some j ∈ [2, `] and let z be a fresh

variable. Then, Γi,r ∧ ∃=zy (κ ∧Ψi,r
κ ) ⇔ Γi,r ∧mz = pj(t

′
j − t′j−1) + rj .

The procedure manipulates the formula Φ3 as follows:

23 For every i ∈ [1, o] and every r : Z → [m] :

24 If Ψi,r
κ (y) is satisfiable for some κ ∈ {y < t′1, t

′
` < y}, then let Φi,r4

def= ⊥,

25 else Φi,r4
def= ∃x2 . . .∃x`

(
x =

∑`
j=2 xj +

∑`
j=1 cj ∧

∧`
j=2mxj = pj(t

′
j − t′j−1) + rj

)
.

26 Define Φ4
def=
∨o
i=1

∨
r : Z→[m](Γi,r ∧ Φi,r4 ).

Claim 7. Φ3 ⇔ Φ4.

Step V: Sum up the solutions. It remains to get rid of the variables xi introduced
earlier. For each disjunct Γi,r ∧ Φi,r4 of Φ4, we use the notation from Step IV.

27 For every i ∈ [1, o] and every r : Z → [m] :

28 If Φi,r4 = ⊥, then let Φi,r5
def= ⊥,

29 else let Φi,r5
def= mx =

∑`
j=2(pj(t

′
j − t′j−1) + rj) +m ·

∑`
j=1 cj .

30 Let Φ5
def=
∨o
i=1

∨
r : Z→[m](Γi,r ∧ Φi,r5 ).

The procedure outputs Φ5. The following claim implies Proposition 2.

Claim 8. Φ4 ⇔ Φ5. The formula Φ5 is quantifier-free.

4 Discussion, summary of results and roadmap

The QE procedure for a single counting quantifier ∃=xy from Section 3 forms the
basis of our results. In this section we discuss its use and lay out its applications.

Analysis of the procedure. The next lemma establishes the growth of the formulae
and their parameters in our quantifier elimination procedure.

Lemma 5. Let Φ5 be obtained from applying the QE procedure of Section 3 to
a formula ∃=yxΦ, where Φ is quantifier-free and #vars(Φ) = d. Then:

mod(Φ5) = {m} with m = k · lcm(mod(Φ)) and k ≤ ||hom(Φ)||#hom(Φ)
,

#lin(Φ5) ≤ NO(d), ||lin(Φ5)|| ≤ O(N) · ||lin(Φ)||,
#hom(Φ5) ≤ NO(d), ||hom(Φ5)|| ≤ O(N) · ||hom(Φ)||, with N = m2 ·#lin(Φ).

Remark 1. With minor changes to our procedure, one can obtain a QE pro-
cedure for the quantifier ∃≥xy. In particular, since ∃≥xyΦ is true if there are
infinitely many values for y that satisfy Φ, Claim 4 needs to be updated so that
Φi,r3 ⇔ > is deduced, instead of Φi,r3 ⇔ ⊥. Other minor adaptations are required,
e.g. equalities “x = . . . ” and counting quantifiers ∃=xjy appearing in Line 13
must be updated to “x ≤ . . . ” and ∃≥xjy. The resulting QE procedure for ∃≥xy
still adheres to the bounds in Lemma 5.
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A consequence of Lemma 5 is that our QE procedure gives an algorithm for
deciding a formula Φ from PAC featuring multiple counting quantifiers ∃=xy

in time 2.
. . 2

, where the height of the tower is linear in the quantifier rank
of Φ. Indeed, in view of the upper bounds and equations given by Lemma 5 for
#hom(Φ5), N , m, and k, we observe that the upper bound for #hom(Φ5) is ex-
ponential in #hom(Φ). This means that more fine-grained bounds are necessary
for decision procedures with elementary complexity, i.e., with a running time
bounded from above by a k-fold exponential in the size of the input formula.

Elementary decision procedures. In view of this growth of the parameters, it
is natural to ask ourselves whether our QE procedure is perhaps näıvely dis-
regarding important properties of the underlying arithmetic theory that could
lead to better bounds. A good test in this direction is to check whether improved
bounds can be achieved when the procedure runs on restricted forms of counting
quantifiers. In the remainder of the paper we show that this is the case, and ex-
plain how the growth of parameters can be countered for restricted quantifiers,
obtaining 3ExpTime quantifier elimination procedures as well as 2ExpSpace
decision procedures for extensions of PA with a variety of counting quantifiers.

As an example, let us consider Presburger arithmetic enriched with threshold
quantifiers ∃≥cyΦ, where c ∈ N is written in binary. These are satisfied whenever
there are at least c distinct values for the variable y that make the formula Φ true.
Notice that the threshold counting quantifiers ∃≥cy are a syntactic generalization
of the first-order quantifiers, as ∃≥1yΦ ⇔ ∃yΦ. Interestingly enough, one can
translate threshold quantifiers into standard Presburger arithmetic with just a
polynomial increase in the size of the formula. For simplicity, assume that the
threshold c is a power of 2. Then, the quantifier ∃≥cy can be internalized in PA
by relying on the equivalence

∃≥2gyΦ(y,z)⇔ ∃u∀v ∃≥gy : (v = 0↔ y < u) ∧ Φ(y,z)

as well as ∃≥1yΦ ⇔ ∃yΦ. However, in terms of decision procedures, this is
an inadequate solution, as it comes at the cost of introducing 2 log2 c many
quantifier alternations. Building upon the QE procedure from Section 3, we show
how to directly eliminate threshold quantifiers. This proves that the increase in
alternation depth that depends on the threshold c is unnecessary.

Theorem 1. The validity of a formula Φ from Presburger arithmetic with thresh-

old counting quantifiers can be decided in STA(∗, 22|Φ|
O(1)

,O(fd(Φ))).

This result matches the complexity of deciding standard PA in the case of un-
bounded alternation depth. Thus, PA can be enriched with threshold quantifiers
with almost no computational overhead. Note that a slight increase in number
of alternations is still required, and goes from O(nr(Φ)) for PA to O(fd(Φ)) for
PA with threshold counting quantifiers.

We further strengthen Theorem 1, extending it to the case where the thresh-
old c is encoded even more succinctly, as the unique solution of a PA formula
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Φ(x) as long as this solution is bounded doubly-exponentially in |Φ|. An example
of such a formula is Φ(x) = ∃z : z = 1 ∧Ψn(x, z), where

Ψ0(x, z) def= x = 2z,

Ψn+1(x, z) def= ∃y∀a∀b : (a = x ∧ b = y) ∨ (a = y ∧ b = z)→ Ψn(a, b),

and the only solution is given by x = 22n

[7, Lecture 23], whilst |Φ| = O(n). The
crux of our results lies in the identification of a fragment of PAC that we call
monadically-guarded, for which the following theorem can be established.

Theorem 2. Monadically-guarded PAC is decidable in 2ExpSpace.

In the next section, we introduce the monadically-guarded fragment of PAC
and discuss extensions of PA that can be captured by this fragment. In Section 6,
by adding post-processing to the procedure from Section 3, we show how to deal
with any monadically-guarded counting quantifiers in 3ExpTime. In Section 7
we establish Theorem 2 by designing a quantifier relativization argument, con-
tinuing the direction of research due to [12]. In Section 8 we prove Theorem 1.

5 The monadically-guarded fragment of PAC

Fix a logic L. A formula Φ(x, z) from L, where z is a tuple of variables not
including x, is said to be monadically decomposable on the variable x whenever

Φ⇔ Ψ, for some Ψ def=
∨
i∈I(∆i(x) ∧ Γi(z)),

where ∆i and Γi are formulae from L. In this case, Ψ is said to be a monadic
decomposition of Φ on the variable x.

The notion of monadic decomposition has been put forward by Veanes et
al. in [11], as a general simplification technique that improves the performance
of solvers. Here, our interest lies in studying whether the notion of monadic
decomposability can bring complexity advantages for Presburger arithmetic with
counting quantifiers. With this in mind, we consider formulae of PAC that we
call monadically-guarded : those in which the quantifiers ∃=xy only appear in
subformulae of the form ∃x (Ψ ∧ ∃=xyΦ), where Φ and Ψ are themselves from
the monadically-guarded fragment of PAC, x does not occur in Φ, and Ψ is
monadically decomposable on the variable x. The monadically-guarded fragment
of PAC is understood as the set of all formulae from PAC that are monadically-
guarded. This fragment captures several interesting extensions of PA:

– It can express that the number of different y satisfying Φ(y,z) lies in an
arithmetic progression b, b+ p, b+ 2 · p, b+ i · p, . . . , with b, p ∈ N. That is,

∃x(x ≥ b ∧ x ≡p b ∧ ∃=xyΦ(y,z)).

This type of monadically-guarded formulae extends the modulo counting
quantifiers studied by Habermehl and Kuske [4]. Modulo counting quantifiers
are written as ∃(r,q)yΦ and hold whenever the number of different y satisfy-
ing Φ is congruent to r modulo q. Hence, ∃(r,q)yΦ ⇔ ∃x (x ≡p r ∧ ∃=xyΦ).
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Moreover, in the monadically-guarded fragment, we can replace the integer r
with an arbitrary linear term t with variables from z, since the modulo con-
straint x ≡p t can be monadically decomposed into

∨
r∈[p](x ≡p r ∧ t ≡p r).

– As we recalled in the previous section with the formula Ψn(x, z), it is known
that PA allows one to succinctly encode numbers that are doubly or triply
exponentially large with respect to the size of the formula. For instance,
one can define a formula Ln(x), again of size polynomial in n, that is true
whenever x is the product of all primes in the interval [2, 22n

] (see [7, Lecture

24]). In this case, x ≥ 2c2
2n

for some fixed c > 0. The monadically-guarded
fragment of PAC allows one to use these succinct representations as guards of
counting quantifiers. For instance, ∃x(Ln(x)∧∃=xyΨ(y,z)) is true whenever
the number of y satisfying Ψ(y,z) is the product of all primes in [2, 22n

].

Hague et al. [5] proved that constructing the monadic decomposition of a
quantifier-free formula can be done in exponential time. More precisely, given a
q.f. formula Φ(x,y) from PA that is monadically decomposable on x, in [5] it is
shown that there is a natural number B of magnitude exponential in |Φ| that
makes the following formula ΨB(x,y) a monadic decomposition of Φ on x:

ΨB
def=
∨m−1
c=0

((
x ≥ B ∧ x ≡m c ∧ Φ(B + c,y)

)
∨
(
x ≤ −B ∧ x ≡m c ∧ Φ(−B − c,y)

))
∨
∨B−1
c=−B+1(x = c ∧ Φ(c,y)),

where m = lcm(mod(Φ)). We study the arguments presented in [5] and refine
the bound B, tracking dependencies on several formula parameters separately.
We find that B is polynomial in ||Φ||; it is only exponential in #mod(Φ) and in
the number of variables of the tuple y.

Proposition 3. Let Φ(x,y) be a q.f. formula from PA, where y = (y1, . . . , yd).

Let m = lcm(mod(Φ)) and B = 248d2

(m · ||lin(Φ)||)6d + 1. If Φ is monadically
decomposable on x, then the formula ΨB is such a decomposition.

Together with our QE procedure, Proposition 3 shows that it is decidable
to check whether a formula of PAC is monadically decomposable (on a certain
variable). Due to Theorem 2, this problem is in 2ExpSpace for formulae of the
monadically-guarded fragment of PAC. Besides, notice that all formulae having
one free variable are monadic decompositions of themselves.

Our QE procedure for the monadically-guarded fragment of PAC, outlined
below, makes use of the sharper bound obtained in Proposition 3.

6 Eliminating monadically-guarded counting quantifiers

Consider a formula Φ0 = ∃x(Ψ ∧ ∃=xyΦ), where Φ and Ψ are quantifier-free
formulae, x does not occur in Φ, and Ψ is monadically decomposable on x. By
relying on the QE procedure introduced in Section 3, we show how to obtain a
quantifier-free formula equivalent to Φ0. W.l.o.g., we assume that all free vari-
ables distinct from x and y and occurring in Φ and Ψ come from the tuple of
variables z.
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Below, let Ψ′ =
∨
k∈K ∆k(x)∧Ψk(z) be the monadic decomposition of Ψ on

the variable x computed according to Proposition 3. Recall that this means that
each ∆k is a formula having one among the following three forms:

x ≥ B ∧ x ≡q c; x ≤ −B ∧ x ≡q c; or x = r,

where q def= lcm(mod(Ψ)), c ∈ [q], r ∈ [−B + 1, B − 1] and B is a fixed natural
number. Let us also consider the formula Φ5 obtained from performing the QE
procedure for the ∃=xy counting quantifier on ∃=xyΦ, so that Φ0 ⇔ ∃x(Ψ′ ∧ Φ5).
In particular, recall that Φ5

def=
∨o
i=1

∨
r : Z→[m](Γi,r ∧Φi,r5 ), where Z is the set of

variables appearing in z, m = lcm(mod(Φ)) and Γi,r = Oi ∧ (
∧
w∈Z w ≡m r(w))

is a conjunction of an ordering Oi and simple modulo constraints with variables
from Z. Hence, Γi,r is x-free. Moreover, Φi,r5 is either ⊥ or a formula of the form

mx =
∑`
j=2(pj(t

′
j − t′j−1) + rj) +m ·

∑`
j=1 cj . (2)

where the terms t′1, . . . , t
′
` are from T (where T is defined as in Step II of Sec-

tion 3), and hence x-free. Therefore, the following property holds.

Claim 9. In Φ5, x only appears on the left-hand side of equalities of the form (2).

This inconspicuous claim, together with the shape of ∆k, is at the heart of
our QE procedure eliminating x from the formula ∃x(Ψ′ ∧ Φ5). Indeed, after
distributing the existential quantifier ∃x and all conjunctions over disjunctions
of Ψ′ ∧ Φ5, we end up with a disjunction of formulae of the form ∃x : ∆k(x) ∧
Ψk(z) ∧ Γi,r ∧ Φi,r5 , and let us consider one such disjunct with ∆k(x) = (x ≥
B∧x ≡q c) and Φi,r5 as in Equation (2). The variable x can be eliminated with a

simple substitution, rewriting ∆k(x)∧Φi,r5 as the new formula t̃ ≥ m ·B∧ t̃ ≡m·q
m · c, where t̃ is the right-hand side of Equation (2). The correctness of this
rewrite step follows simply from the equivalences x ≥ B ⇔ m · x ≥ m ·B and
x ≡q c⇔ m ·x ≡m·q m ·c, with m ≥ 1. In a similar way, we can treat all possible

cases for the different forms of ∆k(x) and Φi,r5 . We obtain a formula

Ψk(z) ∧ Γi,r ∧ t̃ ≥ m ·B ∧ t̃ ≡m·q m · c. (3)

The number of homogeneous terms across all such disjuncts is still prohibitive as
it was in Φ5. Now comes the key simplification step; we deal with the inequality
t̃ ≥ m ·B and with the modulo constraint t̃ ≡m·q m · c.

Consider the former first. By definition, all the coefficients pj of Equation (2)
are non-negative, and thanks to the ordering Oi appearing in Γi,r, in every
valuation ν satisfying the formula in Equation (3) we have ν(t′j − t′j−1) ≥ 0.

Therefore, the inequality t̃ ≥ m · B can be translated into a formula of the
form

∨
g∈G

∧`
j=2 t

′
j − t′j−1 ≥ dg,j , where each dg,j is non-negative and, for every

g ∈ G, the sum
∑`
j=2 pjdg,j is at least e def= m(B −

∑`
j=1 cj) −

∑`
j=2 rj . To

compute this formula efficiently, we appeal to Lemma 2, with respect to the set
of terms {t′j − t′j−1 | j ∈ [2, `]} ∪ [0, e].
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Lemma 6. Let d = |fv(Oi∧t̃ ≥ m·B)|. In time (e+ `)O(d) log(B · ||Oi||)O(1) one

can compute a formula Θ =
∨
g∈G

∧`
j=2 t

′
j − t′j−1 ≥ dg,j s.t. (1) dg,j ∈ [0, e+ 1],

(2) #G ≤ O((e+ `)2d), and (3) Oi ∧ t̃ ≥ m ·B ⇔ Oi ∧Θ.

A similar simplification can be done for the modulo constraint t̃ ≡m·q m · c:
we guess residue classes of variables in t̃ modulo m · q, rewriting t̃ ≡m·q m · c into∨
s : Z→[m·q](t̃ ≡m·q m · c∧

∧
z∈Z z ≡m·q s(z)) and then replace, in each disjunct,

t̃ ≡m·q m · c by > or ⊥, according to the satisfaction of s(t̃) ≡m·q m · c.
The steps just discussed forms the post-processing phase of our QE procedure

for the monadically-guarded fragment of PAC. Thanks to Lemma 6, we can show
that the set of homogeneous terms of the resulting quantifier free formula Φ′,
equivalent to Φ0, is the set of homogeneous terms in the monadic decomposi-
tion Ψ′, together with terms of the form t− t′ with t and t′ belong to the set T
defined in Line 5. But #hom(Ψ′) = O(#hom(Φ0)), and thus:

Lemma 7. #hom(Φ′) ≤ O(#hom(Φ0)
2
).

Running time. Lemma 7 is the key to obtaining an elementary QE procedure.
In particular, this improvement over the exponential dependence of #hom(Φ5)
on #hom(Φ) from our “baseline” Lemma 5 leads to the following bounds on the
elimination of an arbitrary number of monadically-guarded quantifiers.

Lemma 8. Let Ω be a formula from the monadically-guarded fragment of PAC,
with quantifier rank d. There is an equivalent quantifier-free formula Υ such that

– #hom(Υ) ≤ |Ω|2
O(d)

and #mod(Υ) ≤ O(|Ω|);

– #lin(Υ), ||const(Υ)||, ||hom(Υ)|| and ||mod(Υ)|| are at most 2|Ω|
2O(d)

.

Proof idea. In a nutshell, the bounds of Lemma 8 are obtained by first iterat-
ing Lemma 7 across all quantifier elimination rounds. This results in the doubly

exponential bound |Ω|2
O(d)

on the cardinality of the set of homogeneous terms
throughout the entire procedure. With this bound in hand, exponentiation on
the right-hand side of the inequalities of Section 3 does not blow the parameters
above triple exponential.

Subsequent analysis leads to the following result.

Theorem 3. There is a 3ExpTime quantifier elimination procedure for the
monadically-guarded fragment of PAC.

Theorem 3 follows by combining Lemma 8 with upper bounds on the run-
ning time of a single quantifier elimination round. These upper bounds are all
subsumed by the size of the obtained formulae, except possibly for the subdivi-
sion procedure of Step II (Lemma 2), the model counting procedure of Step IV
(Lemma 4), and the further subdivision performed by Lemma 6. For Lemmas 2
and 6, the running time is only exponential in the size of the original formula,
and thus polynomial time in the size of the obtained formula, as long as the latter
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has at least exponential size. For Lemma 4, observe that m ≤ ||mod(Υ)||, where
Υ is the quantifier-free formula of Lemma 8. Therefore, the bounds of Lemma 8
suffice for a triply exponential time overall.

Remark 2. Only small updates are necessary to treat monadically-guarded for-
mulae of the form ∃x(Ψ(x, z) ∧ ∃≥xyΦ(y,z)). Again, these updates deal with
the fact that, contrary to ∃=xyΦ, the formula ∃≥xyΦ is true whenever there
are infinitely many y satisfying Φ, or alternatively when x corresponds to a
non-positive number. Then, Lemma 8 can be established for formulae of PAC
containing both monadically-guarded quantifiers ∃=x and ∃≥x.

7 The monadically-guarded fragment is in doubly
exponential space

In this section, we prove Theorem 2. Theorem 3 shows that our QE procedure
has the same asymptotic running time as the standard QE procedures for PA.
Historically, bounds obtained from the latter lead to computationally optimal
decision procedures based on quantifier relativisation [12,4]. More precisely, given
a formula Φ from PA, the QE procedures allow us to conclude that there is a
bound C, of bitsize at most doubly exponential in |Φ|, such that ∃xΦ ⇔ ∃x :
−C ≤ x ≤ C∧Φ holds (a small-model property). Then, a quantifier relativisation
procedure follows the semantics of the formula and näıvely tries all the possible
assignments to x in [−C,C] whenever a quantifier ∃x is encountered. With some
bookkeeping, this procedure runs in 2ExpSpace. In this section, we show that
this is also the case for our QE procedure, leading to a 2ExpSpace relativisation
procedure for the monadically-guarded fragment of PAC, proving Theorem 2.

First of all, we need to recall a folklore result regarding the existence of
infinitely many solutions of a quantifier-free Presburger formula.

Lemma 9. Let ν be an assignment and Φ(y,z) be a q.f. formula of PA, where

z has d variables. Let C def= ||Φ|| · d ·max{1, |ν(z)| : z is in z}+ ||Φ||#mod(Φ)
+ 1.

1. If there are finitely many n ∈ Z s.t. ν[n/y] |= Φ, then they all satisfy |n| ≤ C.
2. If there are infinitely many n ∈ Z such that ν[n/y] |= Φ, then for every

j ∈ N+ there is such an n satisfying j · C < |n| ≤ (j + 1) · C.

Together with Lemma 8, this result leads to the relativisation of first-order
quantifiers in the context of PAC.

Lemma 10. There is a constant c with the following property. Let ν be an
assignment, Φ(y,z) be a monadically-guarded formula of PAC, where z has d

variables, and let C def= 2|Ψ|
2c·d ·max{1, |ν(z)| : z is in z}. Then, ν |= ∃yΦ if and

only if ν[n/y] |= Φ holds for some n ∈ Z with |n| ≤ 3 · C.

We want to derive a similar lemma for monadically guarded counting quan-
tifiers. First of all, we consider a formula Φ = ∃=xyΨ(y,z) where Ψ is a monad-
ically guarded formula. Recall that Φ is satisfied by an assignment ν whenever
the number of distinct values n ∈ Z such that ν[n/y] |= Ψ is finite and equal
to ν(x). By relying on Lemmas 8 and 9, we show the following lemma.
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Lemma 11. There is a constant c with the following property. Let ν be an as-
signment, and consider a formula Φ = ∃=xyΨ(y,z) such that Ψ is a monadically

guarded formula of quantifier rank d. Let C def= 2|Ψ|
2c·d ·max{1, |ν(z)| : z is in z}.

Then, ν |= Φ iff (i) ν[n/y] 6|= Ψ, for every n ∈ Z with C < |n| ≤ 3 ·C; and
(ii) #{n ∈ Z : |n| ≤ C and ν[n/y] |= Ψ} = ν(x).

We now consider the outermost quantifier x of a monadically-guarded for-
mula Θ = ∃x (Ψ(x, z) ∧ ∃=xyΦ(y,z)), and aim at finding relativisation bounds
for the variable x. Notice that the subformula Ψ(x, z) ∧ ∃=xyΦ(y,z) is not,
strictly speaking, in the monadically-guarded fragment of PAC. However, we
can first apply Lemma 8 and obtain quantifier-free formulae Ψ̂ and Φ′ equiva-
lent to Ψ and Φ, respectively. Then, we apply the QE procedure of Section 3
on input ∃=xyΦ′, producing an equivalent quantifier-free formula Φ̂. We have
Θ⇔ ∃x (Ψ̂ ∧ Φ̂), where Ψ̂ ∧ Φ̂ is quantifier-free. Similarly to Lemma 10, we can

now obtain relativisation bounds from ∃x (Ψ̂ ∧ Φ̂) by relying on Lemma 9:

Lemma 12. There is a constant c with the following property. Let ν be an
assignment, and let Θ = ∃x (Ψ(x, z) ∧ ∃=xyΦ(y,z)) be a monadically-guarded

formula of quantifier rank d. Define C def= 2|Θ|
2c·d · max{1, |ν(z)| : z is in z}.

Then, ν |= Θ if and only if there is n ∈ N s.t. n ≤ C and ν[n/x] |= Ψ ∧ ∃=xyΦ.

Lemmas 10 to 12 allow to evaluate the truth of a sentence of the monadically-
guarded fragment of PAC by recursively evaluating the truth of its subformulae,
and iterating over a finite set of values when considering first-order and counting
quantifiers. As all the considered values admit a binary encoding that is doubly
exponential in the size of the input formula, this proves Theorem 2.

8 A complexity characterisation

By Theorem 2, for deterministic machines, the monadically-guarded fragment
of PAC is no harder than standard Presburger arithmetic, and the same is true
when considering monadically-guarded quantifiers ∃≥xy (Remark 2). However,
by Proposition 1, PA is not complete for 2ExpSpace, but rather for the complex-

ity class STA(∗, 22nO(1)

,O(n)). This leads to the natural question on whether
the monadically-guarded fragment of PAC is also complete for the same STA
class. While we leave this question open, in this section we show a completeness
result in the restricted case where all monadically-guarded quantifiers appear
in the form ∃x(Ψ(x) ∧ ∃≥xyΦ), where Ψ(x) is any formula from PAC having

all models bounded by 22|Ψ| , in absolute value. For brevity, let us denote this
fragment by F. As F extends PA, proving the following upper bound suffices.

Theorem 4. The validity of a sentence Φ in F can be decided by an alternating

Turing machine with runtime 22|Φ|
O(1)

and performing O(fd(Φ)) alternations.

Since the equivalence ∃≥cyΦ⇔ ∃x : x = c∧∃≥xyΦ, where c ∈ Z is written in
binary, shows that F contains PA enriched with threshold counting quantifiers,
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Function check(V : non-empty set of assignments, Φ : formula from F) → {>,⊥}
1 check(V , t < 0) = if ν |= t < 0 holds for all ν ∈ V then return > else return ⊥.

2 check(V , Φ1 ∨ Φ2) = if ∃V1, V2 : V = V1 ∪ V2 and check(V1,Φ1) = check(V2,Φ2) = >
3 then return > else return ⊥.

4 check(V , ¬Ψ) = if ∃ν ∈ V : check({ν}, Ψ) = > then return ⊥ else return >.

5 check(V , ∃x(Ψ(x) ∧ ∃≥xyΘ(y,z))) = if there is a family (Wν)ν∈V such that

6 • check(
⋃
ν∈V Wν , Ψ ∧Θ) = >, and

7 • each Wν is either {ν[k(ν)/x][n(ν)/y]} or {ν[k(ν)/x][n
(ν)
i /y] : i ∈ [1, k(ν)]}

8 where |k(ν)| ≤ 22|Ψ|

9 let C be defined as in Lemma 13, w.r.t . ν and Ψ;

10 n(ν) ∈ Z such that C < |n(ν)| ≤ 3 · C;

11 |n(ν)
i | ≤ C for every i ∈ [1, k(ν)]; and

12 n
(ν)
i 6= n

(ν)
j for every two distinct i, j ∈ [1, k(ν)]

13 then return > else return ⊥.

Fig. 1. Deciding whether a formula Φ from F is satisfied by all assignments in V .

this result implies Theorem 1. To establish Theorem 4, the first step is to rely
on Lemmas 8 and 9 and adapt the proof of Lemma 11 to obtain a quantifier
relativisation argument for the counting quantifier ∃≥xy.

Lemma 13. There is a constant c with the following property. Let ν be an as-
signment, and consider a formula Φ = ∃≥xyΨ(y,z) such that Ψ is a monadically

guarded formula of quantifier rank d. Let C def= 2|Ψ|
2c·d ·max{1, |ν(z)| : z is in z}.

Then, ν |= Φ iff (i) there is n ∈ Z s.t. ν[n/y] |= Ψ and C < |n| ≤ 3 ·C, or
(ii) #{n ∈ Z : |n| ≤ C and ν[n/y] |= Ψ} ≥ ν(x).

With Lemma 13 at hand, designing an algorithm that can be implemented as
an alternating Turing machine with resources bounded as in Theorem 4 is simple.
The function check(·, ·) given in Figure 1 provides such an algorithm.

Lemma 14. check(V , Φ) returns > if and only if for all ν ∈ V , ν |= Φ.

When Φ is a sentence, i.e. fv(Φ) = ∅, this lemma implies that Φ is valid if and
only if check({ν},Φ) = >, where ν is an arbitrary assignment. Then, Theorem 4
follows by establishing that check(·, ·) can be implemented with an alternating
Turing machine that, on input ({ν},Φ) where Φ is a sentence in F, runs in time

22|Φ|
O(1)

and performs O(fd(Φ)) many alternations. We see the existential quan-
tifications on V1, V2, ν and (Wν)ν∈V in Lines 2, 4 and 5 as guesses done by the
alternating Turing machine. The computation in Line 1 is done deterministically
in time polynomial in the encoding of V and t < 0. In Line 2, the alternating
Turing machine decides which branch among check(V1,Φ1) and check(V2,Φ2)
must be evaluated, at the cost of one alternation. In this way, alternations occur
only in the case of check(V ,Φ1 ∨Φ2) and check(V ,¬Ψ), as the latter returns the
negation of the assertion “∃ν ∈ V : check({ν}, Ψ) = >”. This leads to O(fd(Φ))
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many alternations overall. Let us now discuss the runtime of check(·, ·), again
on alternating Turing machines. Assume that, after a certain number of recur-
sive calls including at most r ≤ qr(Φ) calls to Line 5, the algorithm evaluates

the input (V ′,Ψ). Then, the number of assignments in V ′ is bounded by 2r·2
|Φ|

(this correspond to the case where each Wν in Line 7 contains the maximum
amount of assignments, according to k(ν)), and following the bounds on the num-

bers n(ν) and n
(ν)
i in Lines 10 and 11 and by Lemma 13, all these assignments

map each variable to an integer that is, in absolute value, bounded by 2r·|Φ|
2c·d

,
where c is the constant of Lemma 13 and d is the number of variables in Φ.
So, as the number of recursive calls to check(·, ·) is bounded by |Φ|, no more

than |Φ| · 2qr(Φ)·2|Φ| · log2(2qr(Φ)·|Φ|2
c·d

) ≤ 22(c+3)|Φ|
space is required to represent

all possible sets of assignments that are generated throughout the evaluation of
check(·, ·). All the assignments are guessed by the alternating Turing machine
and thus, when also accounting for the computation done in Line 1, we conclude

that check({ν},Φ) runs in time 22|Φ|
O(1)

.

9 Conclusion

We developed a new quantifier elimination procedure for Presburger arithmetic
extended with the unary counting quantifiers (PAC), and adapted it for its
monadically-guarded fragment. While the existence of an algorithm for PAC
running in elementary time is wide open, our procedure runs in 3ExpTime on
the monadically-guarded fragment and leads to the small-model property and
relativisation argument, which show that this logic is decidable in 2ExpSpace.
When it comes to deterministic algorithms, this matches the complexity of decid-
ing standard Presburger arithmetic. However, fully settling the complexity of the
monadically-guarded fragment of Presburger arithmetic seems to require a gen-
eralisation of the STA complexity framework to capture counting mechanisms,
which we leave as an avenue for further investigation. In this direction, we have

shown that Presburger arithmetic is still STA(∗, 22nO(1)

, O(n))-complete when
enriched with threshold quantifiers ∃≥cy, for the case of c written in binary but
also even for the case of c represented succinctly as a solution of a Presburger
formula Φ, characterising a number that may be doubly exponential in |Φ|.

With respect to our QE procedure for (general) unary counting quanti-
fiers ∃=x, we have pinpointed precisely where the non-elementary growth oc-
curs. It remains to be seen whether our procedure can be further improved, or
if, possibly based on insights obtained from it, a non-elementary lower bound for
Presburger arithmetic extended with the ∃=xy quantifier can be established.
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