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Abstract. We investigate the decidability and complexity of variousdel checking problems over
one-counter automata. More specifically, we consétexcinctone-counter automata, in which additive
updates are encoded in binary, as welpasgmetricone-counter automata, in which additive updates
may be given as unspecified parameters. We fully determmedmplexity of model checking these
automata against CTL, LTL, and modaicalculus specifications.

1 Introduction

Counter automata, which comprise a finite-state contrtilgether with a number of counter variables, are
a fundamental and widely-studied computational model. @tiee earliest results about counter automata,
which appeared in a seminal paper of Minsky's five decadesiaghe fact that two counters suffice to
achieve Turing completeness [19].

Following Minsky’s work, much research has been directetiatds studying restricted classes of
counter automata and related formalisms. Among otherspteethe use of restrictions to a single counter,
on the kinds of allowable tests on the counters, on the uyidgrtopology of the finite controller (such as
flatness [8, 17]), and on the types of computations considsrech as reversal-boundedness [15]). Counter
automata are also closely related to Petri nets and pushdotemata.

In Minsky’s original formulation, counters were represghfs integer variables that could be incre-
mented, decremented, or tested for equality with zero bfjnite-state controller. More recently, driven by
complexity-theoretic considerations on the one hand, adntial applications on the other, researchers
have investigated additional primitive operations on ¢ets) such as additive updates encoded in binary [3,
17] or even inparametricform, i.e., whose precise values depend on parameters][A\drefer to such
counter automata asuccinctand parametricrespectively, the former being viewed as a subclass of the
latter. Natural applications of such counter machinesighelthe modeling of resource-bounded processes,
programs with lists, recursive or multi-threaded prograamsl XML query evaluation; see, e.g., [15, 3, 6].

In most cases, investigations have centered around thdatgiiy and complexity of theeachabil-
ity problem, i.e., whether a given control state can be reactating from the initial configuration of
the counter automaton. Various instances of the reachapiibblem for succinct and parametric counter
automata are examined, for example, in [9, 12, 14].

The aim of the present paper is to study the decidability amapdexity ofmodel checkindpr succinct
and parametric one-counter automata. In view of Minskyssilte we restrict our attention ®uccinct one-
counter automata (SOCAInd parametric one-counter automata (POCA)n the specification side, we
focus on the three most prominent formalisms in the litesgtoamely the temporal logics CTL and LTL,
as well as the modal-calculus. For a counter automatérand a specificatiop, we therefore consider the
question of deciding whethdr = ¢, in case of POCA for all values of the parameters, and ingatgiboth
thedatacomplexity (in which the formula is fixed) as well as theombinedcomplexity of this problem.
Our main results are summarized in Table 1.

One of the motivations for our work was the recent discovieay teachability is decidable and in fact
NP-complete for both SOCA and POCA [12]. We were also influernethe work of Demri and Gascon
on model checking extensions of LTL over non-succinct, parametric one-counter automata [9], as well
as the recent result of Goller and Lohrey establishingrtadel checking CTL on such counter automata
is PSPACE-complete [11].

We note some interesting differences between our results@mesponding questions regarding finite
automata. For the latter, the (combined) model checkinglpmos for CTL, theu-calculus, and LTL are
respectively known to bB-complete, ilNP N coNP, andPSPACE-complete. Somewhat surprisingly, for



SOCA POCA
data
CTL, u-calculus — | EXPSPACE-complete IT?-complete
combined
data coNP-complete

LTL

combined PSPACE-complete coNEXP-complete

Table 1. The complexity of CTL, the modat-calculus, and LTL on SOCA and POCA.

SOCA and POCA, the complexity ordering is reversed and LTdobges easier to model check than either
CTL or thep-calculus.

On a technical level, the most intricate result is EPSPACE-hardness of CTL model checking
for SOCA, which requires several steps. We first show B¥PSPACE is ‘exponentiallyLOGSPACE-
serializable’, adapting the known proof tHaSPACE is LOGSPACE-serializable. Unfortunately, and in
contrast to [11], this does not immediately provide EXPSPACE lower bound. In a subsequent deli-
cate stage of the proof, we show how to ‘split’ the counterritieo simultaneously to perforldSPACE
computations in the counter and manipulate numbers of exp@l size in a SOCA of polynomial size.

Our paper is organized as follows. In Section 2 we introdwE@egal notations. Section 3 deals with
CTL and the modaf-calculus. LTL model checking is content of Section 4. Hijah Section 5 we give
conclusions.

2 Preliminaries

By Z we denote thintegersand byN = {0, 1,2, ...} the denote theaturals For each, j € Z we define
li,j]={k€Z|i<k<j}and[j] = [1,7]. For each,n € N, let bit;(n) denote the"" least significant

bit of the binary representation ef Hencen = ), 2 - bit;(n). By bin,, (n) = bity(n) - - - bit,,_1(n)

we denote the first least significant bits written froreft to right Whenm is not important we just write
bin(n). Let p; denote the™ prime number for each > 1, i.e.p; = 2, p, = 3 and so on. We define
log(n) = min{i > 1 | 2° > n}, in other worddog(n) denotes the number of bits that are needed to
represent. in binary. All polynomialsy : N — N that occur in this paper are assumed to safigfy) > n

for eachn € N. For each word) = a; - - - a,, € X" over some finite alphabet and each, j € [n] define
v[i, j] = a; - - - a; andw(i) = v[i, ).

Turing machines and complexity theory:In the following, we introducg (n) space-bounded determin-
istic Turing machines (DTMs) in a suitable way for provingvier bounds. These contain precisely one
input tape and one working tape. In our setting, the workipbabet is assumed to H6, 1,>, <}, where
> is theleft markerand« is theright marker. The working tape of the initial configuration of such a DTM
on an inputw € X" is assumed to bed’ ("), whereas its input tape iav<. Before we define DTMs, let
Y = {-1,0,+1} denote a set of directions.

Formally, af (n)-space bounded deterministic Turing machine (DT84 tupleM = (S, X, so, F, 1),
whereS is a finite set obtates ' is afinite input alphabewith >, <« ¢ X, so € S is aninitial state, F' C S
is a set ofiinal statesand withX'y, = X' & {», <} we have that

poor Sx Xy x{0,1,5,9} — SxT*x{0,1,>,4}

is thetransition functionwherepu(s, b1, b2) = (s', 01, d2, b) means that\ is currently in state, its input
head reads;, its working tape reads,, and M changes to stat€, moves its input head in direction,
moves its working head in directian, and writes the bib. Moreover, we require thatt writes a marker
precisely when it reads a marker, more formably:= m if and only if b = m for eachm € {>,<}. As
expected, onfiguration ofM is a tuple(s, >w<, >w'<, i, j), wheres € S is the current statay € X"



is an inputaw’ € {0,1}/( s the content of the working tape @#, i € [0,n + 1] is the current input
head position, and € [0, f(n) + 1] is the current working head position. We define ldweguagel (M)
of M to consist of all wordsu € X* such that thénitial configuration(so, >w<, >0 (1*D< 0, 0) reaches a
configuration(sg, bw<, >w'<, 7, §) satisfyings € F.

By LOGSPACE, PSPACE, andEXPSPACE we denote the class of all problems that can be decided
by DTM that is logarithmically, polynomially, exponentialspace bounded, respectively. Recall tht
(resp.IIY) is the class of all languages that are (resp. whose complsraee) recursively enumerable.

Transition systems: In the following, we fix a countable set of atomic proposigh A transition system
is a tupleT’ = (S,{S, | p € P},—), whereS is a set ofstates S, C S for eachp € P andS, is
non-empty for finitely many € P, and finally—C S x S'is a set otransitions We prefer to use the infix
notations; — s, to abbreviatés;, s;) €—. An infinite pathis an infinite sequence = sp — s; - - -. For
each infinite pathr = sy — s; — --- andi € N, we denote by’ the paths; — s;41 - -- and byr (i) the
states,. Define thetrace ofr as7(7) : N — 27 wherer (i) = {p € P | s; € S, } for eachi € N.

Succinct and parametric one-counter automata: A succinct one-counter automaton (SOG#\a tuple
S=(Q,{Q, | p € P}, E, ), whereQ is a finite set otontrol statesQ, C @ for eachp € P and@, is
non-empty for finitely many € P, E C Q x Q is a finite set ofransitions and\ : E — ZU{zero} labels

the edges with decrements, increments, and zero tegtaraimetric one-counter automaton (POGAR
tupleP(X) = (Q,{Q, | p € P}, E, \), where the first three components are same as for a SOCA, where
X is afinite set oparameters over the natural numbeend where\ : E — (Z U {zero} U {ozx | o €
{+,—},z € X}). For each assignment : X — N theinduced SOCAs defined a®’ = (Q,{Q, |

p € P} E,N)where)(e) = oo(x) wheneveri(e) = oz for someo € {+,—} and X (e) = A(e)
otherwise. IfX = {z} is a singleton, then we also wril§z) for P(X). Thesizeof a POCA is defined as

IP| = |Q|+|X|+|E|-max{log(|a]) | a« € A(E)NZ}. Hence, we represent each appearing integer in binary.
The size of a SOCA is defined analogously. A SOEA: (Q,{Q, | p € P}, E, \) describes a transition
systeml'(S) = (@ x N, {Q, x N| p € P}, —), where for eacly;, ¢» € Q and eacm,,n, € N we have
q1(n1) — g2(ng) if and only if eitherA(q1, ¢2) = na — ny, or (n; = no = 0 @andX(q1, ¢2) = zero).

3 CTL Model Checking

In Section 3.1 we introduce the syntax and semantics of Ciicesthe upper bounds for the modal
calculus follow from known results and since the lower baifallow from CTL, we do not introduce
the modalyu-calculus formally. In Section 3.2 we state BXPSPACE upper bound for the combined
complexity of CTL and the modal-calculus on SOCA and &Y upper bound on POCA. In Section 3.3
we recall basic notions from complexity theory such as eahility and results on Chinese remainder
representation. In Section 3.4 we prove the main resultisfsaction, namely that the data complexity of
CTL on SOCA isEXPSPACE-hard. Finally, we prove @9 lower bound for the data complexity of CTL
on POCA in Section 3.5.

3.1 CTL: Syntax and Semantics

Formulasp of CTL are given by the following grammar, wheseanges oveP:

o = plop | pAe | EXe |E(pUp) | E(eWUyp)

We have the following abbreviationg; V o = =(—¢1 A —¢2), p1 — w2 = —p1 V @2, tt = p V —p for
some atomic proposition € P, andEFyp = E(ttUyp). Thesizeof a CTL formula is inductively defined
as follows:|p| = 1 foreachp € P, [-¢| = [EX¢| = [¢ + 1, [p1 A pa| = [E(p1Up2)| = [E(01 WUps)| =
le1] + |p2| + 1. Given a transition syste = (S,{S, | p € P},—), a states € S, and some CTL
formulayp, define(T, s) = ¢ by induction on the structure g¢f as follows:



(T,s)Ep <= seb8, foreachpeP
(Tos)EwrAps = (T,s) = prand(T,s) = @2
T5) ey = (T9) ko
(T,s) EEXy << (T,t) = ¢forsomet € Swiths —t
(T, s) E E(p1Up2) <= Fsg, -+ ,8,€5,n>0:50=s,(T,sn) E 2 such that
Vi e [0,n—1]: (T,s;) =1 ands; — s;41
(T, s) E E(eiWUgs) <= (Ts) = E(p1Up2) or

3s0,81,... €8 :Vi>0:(T,s;) E p1 ands; — s;41
Let us define th€TL model checking probleon SOCA and POCA respectively.

CTL MODEL CHECKING ONSOCA

INPUT: SOCAS = (Q,{Q, | p € P},E,\),q € Q,n € Ninbinary, and a CTL formula.
QUESTION: (T'(S),q(n)) E ©?

CTL MODEL CHECKING ONPOCA

INPUT: POCAP(X) = (Q,{Q, | p € P}, E,\),q € Q,n € Nin binary, and a CTL formula.
QUESTION: (T'(P?),q(n)) = ¢ foreveryo : X — N?

3.2 Upper bounds

Let us first state upper bounds on model checking CTL and ttaaiecalculus on SOCAOne-counter
automata (OCAare SOCA in which the numbers that occur in the transitiorlbre represented in unary
instead in binary. The following theorem gives an upper libon model checking theodal u-calculus
on OCA. Consult [1] for more details on the modatalculus.

Theorem 1 ([21]).The combined complexity of the mogatalculus on OCA is ilPSPACE.

Since every SOCA can be transformed into an exponentialigtaOCA and since each CTL formula can
be translated into an alternation-freecalculus formula with a linear blowup, the following cdianly is
immediate.

Corollary 2. The combined complexity of CTL and the mgaahalculus on SOCA is ieEXPSPACE.
The following upper bound for CTL on POCA is straightforward
Corollary 3. The combined complexity of CTL and the mgaalalculus on POCA is id1Y.

Proof. LetP(X) = (Q,{Q, | p € P}, E,\) be a POCAg € @, andn € N, andy be a formula. From
Corollary 2 it follows that for each givea : X — N the questionT(P?),¢(n)) = ¢ is a decidable
predicate. Hence, the question(#(P?), ¢(n)) | ¢ for eacho : X — N is all{-predicate since we can
encode the set of all such assignments into the naturalsadai@ncoding. a

3.3 Serializability and Chinese remainder representation

For a languagé C X* let x;, : X* — {0, 1} denote theharacteristic function of, i.e. x.(x) = 1 if
x € Landy(z) = 0 otherwise, for eack € X*. We define théexicographic order om-bit stringsas
=<nC {0,1}" x {0,1}", wherez < y if and only if bin, (z) < bin,(y), e.g.101 <3 011.

Definition 4. LetC be a complexity class. We say a langudggs C-serializable via some languageC
{0, 1}* if there is some polynomialn), and some languagd€ € C such that for allz € {0, 1}"
reL = XU (x,Op(")) e XU (1’, 1p(")) € R,

where with * - - " we refer to<

=p(n) In €ach of the second components.



The following theorem was proven in [10].

Theorem 5 (Theorem 22 in [10]).For everyL in PSPACE there is some regular languadesuch thatl
is logspace-uniformhAC-serializable viaR.

As an immediate consequence, we obtain the following campl|

Corollary 6. For every L in PSPACE there is some regular languag® such thatL is LOGSPACE-
serializable viaR.

We remark that our definition of serializability is adoptedrh [10] and differs slightly from the standard
notion as used in [5, 13,23]. We aim at lifting Corollary 6 \@a appropriate notion of serializability to
EXPSPACE.

Definition 7. LetC be some complexity class. A langudges exponentiallyC-serializable via some lan-
guageR C {0, 1}*if there is some polynomialn) and some languadé € C such that for all: € {0,1}"

reL — XU (ac, OQPW) XU (:L’, 127)(”)) € R,

where with * - - we refer to<,,) in each of the second components.

The following proposition is folklore and immediate.

Proposition 8. Let L C X* be in EXPSPACE. Then there is some polynomialsuch that the padded
language{z$>"""" | 2 € L} C (X w {$})* is in PSPACE.

Theorem 9. For every languagd. in EXPSPACE there is some regular language such thatl is expo-
nentially LOGSPACE-serializable viaR.

Proof. Let L C X* be some language IBXPSPACE. Then by Proposition 8 for some polynomigthe
languagel’ = {2$2"'"" | = € L} is in PSPACE. Due to LOGSPACE-serializability of PSPACE by
Corollary 6, there exists some polynomié) some regular languag®’ and someé/’ € LOGSPACE such
that for eachy € (X W {$})* we have

yel <«  yu (Q,Op/oy\)) o (y,lp'ay\)) €R, (1)

where “ - -’ refers to the lexicographic ordex,(|,|,. To prove the lemma we have to find some regular
languagerl, some polynomiab and somd/ € LOGSPACE such that for alk: € X* we have

cel YU (x,()”““”) o ($712p<\m\>) R,

where here-'- -’ refers to the lexicographic ordet,. ). For now, we choosg sufficiently fast growing,
let us postpone this to the end of the proof. Let us describéatiguagé’ and consider inputg, w) with

x € XY™ andw € {0, 1}2“"); moreover lety = 2$2°"" pe the padding of. Our languagé/ consists of
all such pairgz, w) such thatw can be factorized ag = bz0' for someb € {0,1} and somd > 0 such
thatb = 0 or (y, z) € U’. Roughly speaking, the goal 6f is to simulate/’ on the corresponding padded
word, however the length of the second componefhias to be a power of two, in other words the last
bits of w contain redundant information. We will be able to filter chistredundant information via the bit
b. Let us make this more precise. Let

~ Yo (y70p'<|y|>) o <y71p'<|y|>) and

N o= xu (1, 02p<\z\>) e w (x 12p<\z\>)_

Then by definition ofJ, the first2 - p’(]y|) bits of y arel+/(1)14/(2) - - - 1v'(p'(ly|)), where the remaining
bits of v are all0. Hence, when readingin pairs of bits precisely when the first of the two bits is setito
we read some relevant information.



We have to give some regular langua@euch thaty’ € R’ if and only if v € R. Recall that regular
languages are closed under shuffle produahd homomorphisms. We defide = ¢(R'|{a}*), where
¢ :{0,1,a} — {0, 1}* is the following homomorphismp(a) = 00, ©(0) = 10, andp(1) = 11.

As expected, we choogeto be an arbitrary polynomial satisfyirgd(™ > 1 + p/(2¢(") + n) for all
n > 0. Finally, let us show thal is in LOGSPACE. Let (z, w) be an input td/ and let agairy = z$2"'*"
be the padding of. Then it is straightforward to decide in logarithmic spatevican be factorized as
w = bzv such that € {0,1}, |z| = p/ (290D 4 |z|) andv € {0}*. The only thing that might remain
to be verified in logarithmic space is whetHer z) € U’, which in turn boils down to simulating some
logarithmic space bounded TM fof on input(y, z). But this is possible sincg| + |z| < 2- (|z| + |w|) as

Iyl + |2| = |=| + 94(|=|) +p/(2q(|z|)+\w\) <2 .p'(gq(\w\) +lz)) < 2- or(lzl) < 9. (|| + |w]).
O

Chinese remainder representation:For everym, M € N we denote by’RR,,, (M) the Chinese remain-
der representatiorof M as the Boolean tupl@i,c)ie[m],0§c<pin whereb; . = 1 if Mmodp; = ¢ and

b;,. = 0 otherwise. The following theorem tells us that in logaritbrspace we can compute the binary
representation of a natural number that is given in Chines@imder representation. It is a consequence of
the result that division is in logspace-unifo@’, proven in [7].

Theorem 10 ([7] Theorem 3.3).The following problem is ih OGSPACE:
INPUT: CRR,,,(M), j € [m], b € {0, 1}.
QUESTION: bif(M mod2™) = b?

3.4 EXPSPACE-hardness of the data complexity of CTL on SOCA

In the rest of this section, we give the proof ©XPSPACE-hardness of the data complexity of CTL on
SOCA. LetL C {0,1}* be an arbitrary language iIBEXPSPACE. Then by Theorem 9, there is some
regular languag® C {0, 1}* such thatL is exponentiall)L OGSPACE-serializable viaR. Hence there is
some languag¥& € LOGSPACE and some polynomial such that for alk: € {0, 1}" we have

zel <= o (x 02“”)) o xw (x 12“")) € R, @)

where * - -’ refers to the lexicographic ordet,, ., on the bit strings on the right-hand side.

For the rest of this section, let us fix an inpyte {0,1}". Let N = p(n) and letA = (@, {0, 1}, qo, 9, F)

be some deterministic finite automaton witA) = R. Let us briefly recall whatd consists ofQ is a
finite set ofstates {0, 1} is theinput alphabetgy € @ is theinitial state, § : @ x {0,1} — Q@ is the
transition functionand F' C @ is the set offinal states Let us describe equivalence (2) differently: We
haver, € L if and only if the program in Figure 1 returnsue.

q € Q;q:=qo;
deN;d:=0;
be {0,1};

while d # 22" loop
b:= XU(Jlo, bin2N (d)),

q:=0(q,b);
d:=d+1;
endloop

returngq € Fj

Fig. 1. A program that returnsrue if and only if zo € L

Our goal is to mimic the execution of the program in Figure Jabixed CTL formula and by a SOCA that
depends on our inputy. Before we start with the reduction, let us discuss the alesahat arise:



(A) We need some way of storingjon the counter. Of course there are a lot of ways to do thissibae
we want to access all bits @f in the assignmerti := (o, bing~ (d)), the most natural way is
probably to represent in binary. However, for thi® bits are required. More problematically, we
need to be able to checkdfis equal to22"". This cannot be achieved by a transition in a SOCA that
subtract22”, since the representation of this number requires expaigrhany bits inn.

(B) Asin[11], a solution to obstacl@) is to stored in Chinese remainder representation with the fifst
prime numbers. A polynomial number of bits (i) suffice to represent each of the occurring prime
numbers, but we need exponentially many of them. Thus, waataquip a polynomial size SOCA
with transitions for each prime number, simply becauseethee too many of them.

(C) The assignmerit:= xy (zo, biny~ (d)) implies that we need to simulate on the counter a logarithmi-
cally space bounded DTM for the langudg®n an exponentially large input (i). Speaking in terms
of the input sizen, this means that we need to provide polynomially many bitthercounter that can
be used to describe the working tape for this DTM. Howeverneed to provide some on-the-fly
mechanism for reading the input.

To achieve this, let us give a high-level description of hogvproceed. In a first step, we carefully design
a data structure on the counter and describe the intuitibmbet. In a second step, we give five queries
which we aim at implementing via fixed CTL formulas and by SOthat can be computed fromy in
logarithmic space.

The data structure and how to access itLet K = n+ 2%~ + 1 denote the number of bits that are required
to store an input fol/ plus one. Lein = log K denote the number of bits that we require for storing a
pointer to an input fol/ and let be the number of bits that suffice for storing thé" prime. Hence
a = O(N) and by the Prime Number Theorem, it follows thate O(log(K log(K))) = O(N). The
numbera and such a sufficiently large numbe@ican be computed fromy in logarithmic space.

Let us describe how we will interpret the counter in our raghuc Assume that the counter value is
v € N. Instead of treating as a natural number, we are interested only in/tleast significant bitd” of
the binary representation of wherel is some number that is exponentially bounded;ithe precise value
of [ will be made clear below. Assunié = bity(v) - - - bit;_1 (v). We readV to be factorized into blocks of
bits

V. = IMCJXYZB, (%)

where

— I €{0,1}* represents a prime number index,

— M € {0,1}7 represents$™ prime numbep;,

— C € {0, 1} represents some residue class modulp

— J € {0, 1} represents a pointer to some bit/Bf

— eachX,Y and Z consist of polynomially many bits (in) and represent the working tape of three
space bounded DTMs that we will comment on later in more Hetadl

— B € {0,1}"2" 1 with B = B’ for somez € {0,1}" and someB’ € {0,1}2" 1, B represents the
current input forl/, wherez is reserved to represent our inptstand whereB’ represents the counter
d from program in Figure 1 from above. The bloBk consists o2 + 1 bits since we want to be able

to test ifd = 22" .

Let us introduce some more notation for addressing leftrtstatting to count fron®)) and rightmost bit
positions in each of the above sequences of bifg.ifror each such sequenéelet ©.- and©_. denote
the respective positions of the leftmost and rightmost @iit® within the bit stringV’, e.g./. = o — 1
andC. = a + 5.

Important remark: Throughout the rest of this sectierwill denote an arbitrary natural number, more-
overI, M,C,J,X,Y,Z, and B will implicitly be coupled withv. Note that all of the bit strings have
polynomial length inn except forB. Moreover, we identify each of the blocks with the naturatniner
they represent.

A very simple but important gadget that we need is to decinlegéichh € {0, 1} if the i bit of v is b.



Lemma 11. For each bitb € {0,1} there exists a fixed CTL formulayi, such that the following is
computable in logarithmic space:

INPUT: ¢ € Nin unary.

OUTPUT: A SOC/Syit,; and some control staig ; such that

(T'(Sit,i), qoit,i(v)) = ity <= bit;(v) = b.

Proof. The SOCAS; ; has the two atomic propositions andr, and is depicted below:
_2i+1

),

r -
- Qoit,i ——— .7_2

The simple way to check if hiv) = 1 (resp. bif(v) = 0) is to repeatedly subtragt™! from v until no
longer possible and then to checRifcan (resp. cannot) be subtracted. Hence we put

wbiti = 71 AEF(m1 A 2EXT A EXT2) and
wbito = 71 AEF(T1 A 2EXT) A SEXT3).

a

Queries that we need to implement:We will implement the following five queries Q1 to Q5 by instais
of the model checking problem, where each query builds ot preceding queries.

(Q1) |When assuming’ < M, doesB = C mod M hold?‘
(Q2) |Is M the I prime number, i.eM = p;?
(Q3) [What is bity(B)?
(Q4) | Does(B[1,n], Bln + 1,n +2"]) € U hold?)
(Q5) | Doeszy € L hold?|

We implement each of the five queries by providing fixed CTlfalas and SOCA that can be computed
from z in logarithmic spaceEXPSPACE-hardness of the data complexity of CTL on SOCA will hence
follow from the implementation of Q5. First, let us give anplementation of Q1.

Lemma 12. There exists some fixed CTL formylgoq such that we can compute frarg in logarithmic
space some SOCHyoq and some control stat@neg such that(7 (Smod), gmod (v)) = ©mod if and only if
B = C modM.

Proof. The SOCASg contains the three atomic propositions p1, andp, and is depicted in Figure 2.
The CTL formulapmeq €Xpresses that we traverse the upper sequence of diamahtiteaeby repeatedly
subtractM from B. The number of diamonds both in the first and the second rowleguthe number of
bits of M and ofC'. In the upper row, one diamond corresponds to one hit/ofn case bit the rightmost
bit of M (in other words bitM_, of the counter) isl, which we can verify by a transition to the initial
control state of the SOCBg;t p/_. , We subtraceB+=+5-1 from B, otherwise we do not modify the counter
value. After that, we move on to the second diamond, whichesgnts the second rightmost bit &f,
and so on. Hence, traversing a cycle that starts and ends initial control stateynog Will correspond to
subtractingM/ once. Then we traverse the lower sequence of diamonds aildrgrsubtractC, but this
this time only once. Finally, after having traversed thedowequence of diamonds and seeing the atomic
propositionp,, we check ifB = 0 by trying to subtrac2®<. Finally, let us give the formulgmog:

emoa = E| N pi— EXepiti | U(p2 A -EXtt)
1€{0,1}
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Fig. 2. The SOCASmod
for checking if B = C mod M.
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We need the following proposition for implementing Q2. Iteqf is straightforward.

Proposition 13. The following problem is i?SPACE:
INPUT: bin(¢)$bin(m)
QUESTIONm = p;?

Lemma 14. There is some fixed CTL formu{gyime such that fromey we can compute in logarithmic
space some SOCHyime and some control statgime SUch that(T'(Sprime), gprime(v)) = @prime if and only
if M = PI-

Proof. By Proposition 13 there is som¢n) space-bounded DTM1 = (S, X, s, F, 1) over the alphabet
¥ = {0, 1, $} that decides, given bin)$bin(m), whetherm = p;, whereq is some polynomial. The idea
is to simulateM on inputz = I$M using X from (%) as a working tape. For this, we define our block
X to consistofl = ¢(|I| + |M|+ 1) = g(a + 3 + 1) many bits. Moreover, we assume w.l.0.g. thdts
behaviour on inpuf$ M is independent of the content of its initial working tapeisTéan be achieved by
adding extra states t&1 that first write0! onto the working tape. Hence, the initial configuration/eff

on inputz is (sg, >z<, >w<, 0, 0) for somew € {0, 1}'. Before we give our SOCABprime, We describe the
computation ofM on input/$ M as a pseudo program that terminates if and onlif= p;:

s € S;s:=sq, (currentstate of\1)
i€[0,a+p+2];i:=0; (currentinputhead position)
h € [0,1+41]; h:=0; (currentworking head position)
a€{0,1,%,>,<};a:=1; (currentinput symbol)
be{0,1,>,4};b:=p; (currentworking tape symbol)

while s ¢ F loop

> ifi=0
< fi=a+pF+2
a:=<% fi=a-+1
bit; (1) if i €[1,q]
bit;_,_1(M) otherwise
> if h=0
b:=<« ifh=101+1

bit,(X) otherwise
Let u(s,a,b) = (s',01,02,b").
if h € [1,1] then bit,(X) :=¥'; fi

s:=4g;

1:=1-+01;

h:=h -+ 69;
endloop

Let us describe our SOC8yime. The control state§ of Spiime Will contain
Sx[0,a+8+2] x[0,14+2] x{0,1,%,>,<} x {0,1,>,<}, where

the first component corresponds to the variahl¢he second component corresponds to the varigble
the third component corresponds to the varidhlehe fourth component corresponds to the variable
and finally the fifth component corresponds to the varidliéthe above program. Moreover, our SOCA
will contain the SOCASyit 1, Shit, 1 +1 - - - » Sbit,7_. 8NAShit, x ., Shit, X +1 - - - ; Sbit, x_. IN order to test if
certain bits in/ and X are set correctly. Hena@ contains the control statesic ;. , gbit, 7 +1 - - - , gbit, I
andeit,)Q: y Qbit, X = +1 - - -, Ghit, X, @S well.



We will provide the atomic propositior8 = { F), input work, input,, input, , worky, work; }, where

Qr = {(s,i,h,a,b) €Q|s € F},
Qinput = {Qbit,k | ke [Ic;I:]}a
Qwork = {@oitk | k € [Xe, X2},
Qinput, = {(s,4,h,a,b) € Q| a =0},
Qinput, = {(5,4,h,a,0) € Q |a =1},
Quwork, = {(s,4,h,a,b) € Q | b= 0},
Qwork, = {(s,4,h,a,0) €Q |b=1}.

We do not give all transitions d8pime, but illustrate some cases by way of example. Let us give the
outgoing transitions of the control state i, h,0,1), wherei € [I—,I.] andh € [X, X ], i.e. we
currently scan the™" bit of I and do not read a marker on our working tape. Moreover, letssarae
u(s,0,1) = (¢/,+1,—1,0), i.e. we change to staté, we move the input head to the right, the working
head to the left, and modify the current content on the warkape from1 to 0. We realize the latter

by subtractin@X+=*" from the counter, however we allow transitions to stdtési + 1,h — 1,a, b), for
eacha,b € {0, 1}, hence we guess the input tape symbol and the working tapbdlyohthe successor
configuration. The CTL formuleprime Will guarantee that our guessing was correct by accessingpathtrol
statesyi, Wherek € [Io, I ] U [M<, M=)

Shit, 7. +i Shit, X+

Ghit, I — +i Gbit, X — +h

input work

o

S,Z,h 0 1 input , work 1

2X¢+h
2X¢+h 2X¢+h

(s,i+1,h—1,0,0) (s,i+1,h—1,0,1) (s,i+1,h—1,1,0) (s,i+1,h—1,1,1)

input , work inputy , work 1 inputy , work input , work 1

The other cases can be dealt with analogously. Wegkt = (so,0,0,>,>). Our final formula is

vpime = E /\ (input, — EX(inputA ppit k) A (work,, — EX(work A vpitx)) | U F.
ke{0,1}

Let us now give an implementation of query Q3.

Lemma 15. For each bitb € {0, 1} there exists a fixed CTL formulagt;, such that fromz, we can
compute in logarithmic space some SO§#y and some control statgsr such that T (Sgir), geir(v)) E
e, If and only if bit;(B) = b.



Proof (Sketch)By Lemma 14, there is a fixed CTL formulayime such that we can compute from

a SOCASprime that allows to check i = p;. Moreover, by Lemma 12 there is a fixed CTL formula
Ymod @and a SOCASoq¢ that allows to check whetheB = Cmod M. In other words, we can deal
with the Chinese remainder representationBofbut our goal is to access the tH& bit in the binary
representation aB. So let us assume th&t = CRR g (B) = (bi,c)1<i<k,0<c<p; iS the Chinese remainder
representation aB. Note that we do not havR stored anywhere on the counter. However, the bit strings
I andC serve as pointers to access thebhjt: of R. By Theorem 10, givefR (on-the-fly by our pointers

I and C), our bit stringJ, and the bith, we can decide if bjt(B) = b in logarithmic space. So let
M = (S, X, sg, F, 1) be somék - log(m) space-bounded Turing machine machine for this, wherel

is some constant. Hence, in order to decide if @it) = b we need to simulatd1 on input(R, J, b). For
this we store the space that requires on our reserved sequence of Bitfom (%), henceY” consists

of | = k-log(|RJb]) = O(B? + a + 1) = O(N?) many bits. The definition of SOCAgr ;, works
analogously to the construction 8fiime in the proof of Lemma 14 i.e. we introduceSgr , control states
that remember the current bit of the input head, the currgrafithe working head, and the position of
the working head. The only difference is that a pointer toitipait head cannot be completely stored in
the control states. As mentioned above, for this we empleybthblocks! andC, and also the sequence
M for storing theI™ prime number. In order to obtain it -, we allow transitions to our SOC8moq
(which we can compute in logarithmic space fregiby Lemma 12) and checking (i) via the fixed formula
©prime Whetherd = p;, and then (ii) via the fixed formulameq WhetherB = C mod M. Pointers to
the remaining parts of the input fov1, namelyJ andb, can directly be handled by the control states of
Seit 5, in analogy to the proof of Lemma 14. By way of example we eixptae behavior oSgir when the
input head ofM currently scans bit; o of R and when getting to the successor configuration requires
moving the input head to the left. Then we simply decrendghy 1 which corresponds to subtractigg«=
from the counter. If, howeve€] currently equal®, we need to decremeitoy 1, overwrite M with prime
pr_1, and finally overwriteC' with p;_; — 1. Decrementing by 1 can simply achieved by subtractifg-
from the counter. Overwritind/ with primep;_; can be done by repeatedly subtractinffom A (i.e.
subtracting2™«= from the counter) until/ equalsp;_1; checking ifM = p;_, can be done via the fixed
CTL formulapprime and the SOCAS,rime by Lemma 14. The other cases work analogously. O

The following lemma implements query Q4.

Lemma 16. For eachb € {0, 1} there is some fixed CTL formua;;, such that fromc, we can compute
in logarithmic space some SOG# and some control statg; such that(T'(Sy), gu (v)) = ¢u, if and
only if b = xp(B[1,n], Bln + 1,n + 2V]).

Proof (sketch)The proof is similar to the proof of Lemma 15. Sinbeis in LOGSPACE, there is some
k-log(m)-space bounded Turing machine that decidewherek > 1 is some constant. In order to decide
if b= xu(B[1,n], B[n+ 1,n + 2"]) we need to simulaté/ on input(B[1,n], B[n + 1,n + 2V]). We
store the space thatt requires on its working tape in the sequence of Bitsom (%), henceZ consists
of k - log(n + 2V + 1) = O(N) many bits. We use the bit sequentas a pointer for accessing bits Bf
For reading the/™" bit of B we make use of the CTL formulagt , and use the SOCBgt from Lemma
15. The rest of the proof follows along the same lines as theff Lemma 14. O

The following lemma implements query Q5 and conclude&KeSPACE-hardness of the data complexity
of CTL on SOCA.

Lemma 17. There is some fixed CTL formulg, such that fromey we can compute in logarithmic space
some SOCA [, and some control statg, such that{7T'(Sy), ¢1.(0)) | ¢ if and only ifzy € L.

Proof. First note that our CTL formuleg;, will be evaluated in statey, (0). Recall that our bit sequende
has lengthu+ 2 + 1 whereB is factorized a3 = 2B’ for somer € {0,1}" and some3’ € {0,1}2" +1,
The SOCASy, and the CTL formulay;, will mimic the execution of the program from Figure 1. In the b
string z we store the value,. The bit stringB’ represents the variabikof the program, hence we will
initialize B’ with 0. Note that incrementing®’ by 1 corresponds to addin2®=*" to the counter. Thus,
checking whenl become2” for the first time boils down to checking when thet 2V + 15t bit of B



becomesd for the first time. By Lemma 15 the CTL formulast,; and the SOCASgr allow to test if the
J" bit of B equalsl. Therefore we store it the number + 2V 4+ 1. The following claim tells us that we
can test whether we have initialized the counter correliflyproof is simple and therefore omitted.

Claim: There is a fixed CTL formulai,i such that fromey we can compute in logarithmic space some
SOCASinit and some control statg; such that( 7 (Sinit), ginit (v)) = @init if and only if J = n + 2N +1
andB = 202" +1.

Recall thatd = (@, {0, 1}, g0, 9, F') is the deterministic finite automaton of the program in Feglithat
needs to be simulated. Let us, before givilyg define the auxiliary SOCA 4 to be connected with the
control stateq;; of Sy and with the control stategt of Sgr along with the additional control states
S = @ x {0, 1} and the following transitions:

(0.5) 27 (5(a.0), 1), (b)) Sger, and  (g.0) Squ  foreachh, b e {0,1}.

Moreover,S 4 contains the atomic propositiofibitg, bit;, F'}, whereSyi;, = Q x {b} for eachb € {0,1}

andSr = F x {0,1}. Before givingyy,, let us depict our SOCA,, which has two additional labefsand
init:

+1 init

Qinit Sinit
0
O 0 .p/
(

qr
/”

quO) (qu 1)

Sa

Let us define the auxiliary formula = EXygr that allows to test iB’ = 22" Our final formula is

o, = EF | pAEX(init A ginit) NE | =X A /\ bit, — EXoup | U (X A F)
be{0,1}

We haver, € L if and only if the program from Figure 1 returmsue if and only if (T'(S1.), ¢ (0)) = ¢r.
O

Theorem 18. The data and combined complexity of CTL and the mpetaiculus on SOCA iEXPSPACE-
complete.

3.5 II?-Hardness of the Data Complexity of CTL on POCA

In this section we show that there already exists a fixed CTintda for which model checking of POCA
is I17-hard. We reduce from the complement of the emptiness profetwo-counter automatavhich
is XY-complete [19]. Similar to a SOCA, two-counter automatois a tupleA = (Q, E, \), whereQ is a
finite set ofcontrol statesE C @ x @ is a set okedgeshowever\ : E — {zeroy, zeros} U{add;(a) | j €
{1,2},a € {—1,1}}. Theconfiguration graph induced bé is defined to b&7(A) = (Q x N x N, —),
where(p, i1,i2) — (q,%1 + d1,i2 + d2) if and only if the following conditions are all satisfied:

- (p.q) € E,
— A(p, ¢) = add,(a) impliesd; = a andds_; = 0 for eachj € {1, 2}, and



— A(p, q) = zero; impliesd; = i; = 0 andds_; = 0 for eachj € {1, 2}.
Let us define the following problem.

EMPTINESS FOR TWGCOUNTER AUTOMATA

INPUT: Two-counter automatoh = (Q, E, A), control stateg, g1 € Q.
QUESTION: Are therem,n € N such tha{gg, 0,0) —* (g1, m,n) in G(A)?

The idea of our reduction is as follows: Given a two-countgommatonA, we construct a POCAR(z)
with one parameter in such a way that the two counters fAioare encoded into the single counter from
P(x) as follows: for the counter value of P(z), we have that modz encodes the value of the first and
n div x encodes the value of the second countek ofience, testing the first counter for zero corresponds
to checking whether, = 0 modz while testing the second counter for zero corresponds tckihg
whethern > z. Incrementation (resp. decrementation) on the first cow#e be mimicked by adding
(resp. subtracting), whereas on counter two this corresponds to adding (rebprasting)z. Of course,
we need to ensure that we do not overflow. For example, # —1 modz and we would simulate to
increment the first counter in the above manner, this woutdespond to setting the first counter to zero
and simultaneously incrementing the second counter. Heryéthe emptiness problem is solvable, then
can be instantiated with a large enough value such that suokieaflow does not occur. Our CTL formula
will ensure that we do not overflow. Before we give the recarcfrom the emptiness problem for two-
counter automata, let us introduce some gadgets that weémeedreduction.

Lemma 19. There exists some fixed CTL formuyla; for which the following holds:
(1) There exists some fix®ID CAP((x) with some control statg., such that for eaclsr : {z} — N
(PZo:g20(n)) E ¢rest <= n# 0 modo(z).
(2) There exists some fix€DCAP_; (x) with some control state_, such that for eaclr : {z} — N
(P%_1,q2-1(n)) F ¢rest <= n# —1modo(z).
(3) There exists some fix@®DCAP_,(z) with some control state.,, such that foreaclr : {z} — N

(]P)va Q<I(n)) ': Ptest — n < O'($)

Proof. We choosepies: = —EFp, Wherep is an atomic proposition. Below we depiko(z), Px_1(z),
andP_.(x), respectively.

—X —x -1
<_> zero +1 <—> zero O —T zero
Qz04>op q£—1 > e ) <z >~ o ~*
Correctness of the lemma is immediate. O

Let us fix some instance of the emptiness problem for two-tmautomata: LetA, qo, ¢1) be an instance
to the emptiness problem, whete= (Q, E, \) is some two-counter automaton. We will give a fixed CTL
formulay such that fromA, ¢, ¢1) we can construct some POQKA«z) such thafqg, 0,0) —* (¢1,m,n)
for somem,n € Nif and only if (P7, ¢o(0)) = ¢ for someos : {z} — N.

The control states and transitions willBfx) can be described by the following graph transformation
rule that maps each pair of control stafpsg) € E of A with \(p, ¢) = [ into corresponding control states
in P(x), by possibly accessing the different POCA of Lemma 19.

l
L g p 0 JLuw®

test(l)



where

(P2o(x), g0) if e {add;(—1),zeros}
test(l) = (]P)?—é_l(m), q;,—é_l) if = add1(+1)
(Pesz(x), g<x) if | = zeroo,

and where
a if l=addi(a)

up(l) = or if [=adds(ol)forsomeo € {+,—}
0  otherwise.
Let us moreover ensure that every control state of the gindith = € {£ 0, —1, > z} has the labeb..

Before we give our final formula, let us introduce the follagiconstraint formulas that guarantee that an
overflow never occurs:

0 add; (+1) — EX(pz—1 A Prest)
o = addi(—1) — EX(pz0 A @rest)
3 = zerog — EX(p<y A Prest)

o zero; — EX(pz0 A “prest)

Note that we do not need any constraint when changing thendezmunter. Let us introduce a labghat
control statey;. Our final CTL formulap is

p = E(/\ wiUf).
i€[4]

We have thatqg, 0,0) —* (q1, m,n) for somem,n € Nin G(A) if and only if (T (P“(x)), ¢ (0)) = ¢
for someo : {x} — N. We obtain the following theorem.

Theorem 20. The data and combined complexity of CTL and the medahlculus on POCA id19-
complete.

4 LTL Model Checking

Formulas of LTL are inductively defined according to thedaling grammar, wherg ranges ovepP:

o = plopleAp]|Xe|eUp

The Boolean abbreviations and the formtitaare defined in the same way as in CTL. Timally modality
Fy is an abbreviation fottUy and theglobally modalityGy abbreviates-F—y.

The semantics of LTL is given in terms of infinite paths in angition system. LeT” = (S,{S, | p €
P}, —) be atransition system, let: s) — s; — - -- be an infinite path if’, and lety be an LTL formula,
we defing(T, 7) = ¢ by induction of the structure af, wherep ranges oveP:

T Ep > (0)€s,
(TmE-e < Tm)FEe
(Tm)Eeing: < (T'm)E ¢rand(T,m) = @2
Tm) EXe = (T g
(T,7) = p1Upy <= i >0:(T,77) = prandv0 <i<j: (T,7%) E @1

Let us now define the LTL model checking problem on SOCA and ROC

LTL MODEL CHECKING ONSOCA
INPUT: SOCAS = (Q,{Q, | p € P},E,N), ¢ € Q,n € Nin binary, and an LTL formule.




QUESTION: (T'(S), w) = ¢ for every infinite pathr with 7(0) = ¢(n)?

LTL MODEL CHECKING ONPOCA

INPUT: POCAP(X) = (Q,{Q, | p € P}, E, )), g € Q,n € Nin binary, and an LTL formula.
QUESTION: (T'(P?), ) |= ¢ for everyo : X — N and every infinite path with 7(0) = ¢(n)?

4.1 Upper bounds

A standard approach to LTL model checking is the automassdbapproach, in which systems are modeled
as non-deterministic Buichi automata (NBA). Given an NBAnd an LTL formulap, the idea is to translate
p into an NBA A-, such thatd-, accepts all words that violate. Then, by checking for emptiness of
the product automatoA’ = A x A, it can be decided whether or ndtgenerates traces that violate
Emptiness can be decided by checking for recurrent realitiyadfia control state in the transition system
induced byA’, which can be performed non-deterministically in spaceafimically in the size of4’.
Vardi and Wolper showed in [22] that the sizef,, is 2°(¢1), which yields that checking for emptiness
of A" is in PSPACE. The PSPACE lower bound for finite state model checking was originallpwh in
[18] and hence carries over to SOCA.

Constructing the product automaton of two NBA is a standactinique in model checking, see e.g. [2]
for a detailed treatment of this. Moreover, this constauttian be adapted in a straight-forward way into
the setting of POCA by equipping a POCA with a set of final stated defining emptiness with respect
to Biichi acceptance condition in the standard way. Forityewe do not give any further details. We
then have that given a POCA an LTL formulay, a statey andn € N we can construct a POCR as
the product of? and A, such that for all assignmentswe have thal’ is empty with respect to Buchi
acceptence condition if and only(if’(P?), ¢(n)) |= ¢. Moreover, the size dP’ is 2°U¢D[P|.

It has been shown in [12] that checking emptiness with redpegiichi acceptance conditiondsNP-
complete for both SOCA and POCA, and in [9] that itN&-complete for OCA. We use these results in
order to establish upper bounds for our LTL model checkirabfams. Let us first consider the case of a
fixed formulap. In the terminology of the previous paragrafi| = O(|P|) and hence the data complexity
of LTL on SOCA and POCA is iroNP. The matchingoNP lower bound of the data complexity of LTL
on SOCA follows from theNP-hardness of the reachability problem for SOCA.

Proposition 21. The data complexity of LTL model checking on SOCA and POC#NB-complete.

As seen above, if both and the formula are part of the input theji?’| = 2°U%).|P|, and henceoNEXP is

an upper bound for the combined complexity of LTL model chieglon both SOCA and POCA. However,
we can improve this upper bound in the case of SOCA. Given a/S8det m be the absolute value of
the maximal increment or decrement performed on the tiansitnS and letS’ be the product automaton
of SandA-,. LetS” be obtained fron$’ by replacing every transition labeled withwith a sequence of
fresh transitions and control locations of lengthwhere each transition is labeled withl respectively
—1, depending on the sign af We conclude thalS”| = m - |S'| = m - 200U¢D . |S|. Combining the
result from [9] together with the fact that LTL model chedkiof non-deterministic finite state automata is
PSPACE-hard [18], we obtain the following proposition.

Proposition 22. The combined complexity of LTL on SOCREPACE-complete.

It remains to prove that the combined complexity of LTL modeécking on POCA isoNEXP-hard,
which we will show in the next section.

4.2 Combined Complexity of LTL on POCA

We are now going to shoaoNEXP-hardness of LTL model checking on POCA via a reduction fréme (
complement ofsuccinct 3-SAT, which is aNEXP-complete problem [20]. An input Buccinct 3-SAT is
given by a Boolean circuif that encodes a Boolean formuta in 3-CNF, i.eic = A ;o ar (61 V£ VE3)

for someM = O(2I%), andvyc is free over Boolean variables, . .., yx for someN = O(2/%). Let



J € [0, M] be the index of a clause encodedinaryandk € {1,2,3}. Oninput(j - k), the output ofC is
(i-b), wherei € [N]is the index of the Boolean variable that appears in litéfahnd wheré = 0 when

¢ is negative and = 1 when/J, is positive.
SUCCINCT 3-SAT

INPUT: Boolean circuitC
QUESTION: Is v satisfiable?

In order to establiskoNEXP-hardness for the combined complexity of LTL model checkigigen an
input C of Succinct 3-SAT, we construct a POCR(z) and an LTL formulap such that)c is satisfiable
if and only if there is an assignmemntsuch thatT(P?), gstart (0)) = o for some distinguished statg
of P(z).

First, let us provide a suitable encoding of truth assigrisiby natural numbers. The encoding we use
has also been employed for establishing lower bounds foefratecking OCA [16]. Recall that; denotes
thei™ prime number. Every natural numbedefines a truth assignmem : {y1,...,yn} — {0,1} such
thatv, (y;) = 1iff p; dividesz. By the Prime Number Theoremy = O(N log N) and henc&(|C|) bits
are sufficient to represeply. Of course, since we need exponentially many prime numhegsdannot be
hard-wired intaP(z).

0 b=07?
0 Sd|vndes pu )

\0> = ('L . b) p”me /
0
. \ b=17
no divides pu
+x Se(j - 3) -

(start

Zero

Fig. 3. High-level description of the automat@ix) used for the reduction.

Let us now take a look &k (x), which is sketched in Figure 3. It uses one parametand employs
several gadgets. The only gadgets manipulating the coaré8;iges aNdSiot_divides- 1he remaining gad-
gets are designed such that they communicate via desigp@aipdsitional variables, and not as in Section
3.4 with the help of the counter. Fird(z) loads the value of the parameteon the counter. Think of
encoding a truth assignment ¢f. Next,P(z) traverses throug8,., which initially chooses an arbitrary
indexj identifying a clause ofic. Every timeS;,. is traversed afterwards, it incremeptmoduloM + 1
and hereby moves on to the next clause. Nigw) branches non-deterministically into a gad§etn order
to computg(i - b) from C on input(j - 1), (5 - 2), resp.(j - 3). The indexi is then used as input to a gadget
Sprime, Which compute®;. Then ifb = 0, it is checked irfShot_divides thatp; does not divide the value of
x, and likewise irSqivides thatp; divides the value of if b = 1. For checking the latter, the counter needs
to be modified. After the checks have been finished, we retiterealuex on the counter and the process
continues with claus¢ + 1 mod M + 1.

It remains to show how the gadgets and the communicationdsgtihem can be realized. The first
observation is that the computationsSfc, S¢ andS,ime can be realized by space bounded DTM using
no more thamp(|C|) tape cells for their in- and output tape for some polynomitiat is fixed onceC is
provided. Indeed, it is easily seen that incrementing moddl+ 1, evaluatingC and computing the™



prime number can be done by such a DTM. Thus, we now show haw &generic DTMM, we can
construct in logarithmic space a SOGA, and some LTL formulas that mimic computations.ef on
traces ofS .
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Fig. 4. SOCAS \ for the simulation of space bounded Turing machines.
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Let M = (S, X, s0, F, u) be a DTM with a fixed input tape with- tape cells, and. working tape
cells, and letS = {sq, ..., sx}. Figure 4 shows the SOC8, that we use for the simulation o¥1. All
transitions ofS are implicitly labelled with0. A simulation starts wheB ., is entered at the location
labeled with¢ and is finished when the location labeled witlis reached.

The sequence of propositions occurring on a trace stantimgy &nd ending iy encodes a configuration
of M. In detail,s; indicates thatM is in states;; ih; that the input tape head scans delwh; that the
working tape head scans celli; , that the:™ bit of the input tape is set th andw; , that thei bit of the
working tape is set tb, wherei is in the respective range and {0, 1}.

Let us introduce some LTL formulas that allow for testing gedies of the current configuration.
Think of all of them as being evaluateddnThe formulastate; = Xs; for eachi € [0, k] expresses that the
current state is;. By the formulainhead; = XXXXih; we express that the input head is at positiomhere
i € [m]. Similarly, define the formulasohead;, work; ;, andinput, ,, for expressing that the working head
is at positior, that the;™ bit of the input tape i%, and that thg™ bit of the working tape i, respectively,
wherei € [m],j € [n], andb € {0,1}.

The LTL formula below, assumed to be evaluated.jrensures that the transition function is correctly
encoded into traces & for statess € S\ F whenever the input respectively working tape head does
not scan a start-j respectively end markes:



/\ /\ /\ /\ state; A inhead; A input; , A wohead; A work;p, —
si€S\F i€[m] j€[n] by,b2€{0,1}

— | (X(=a A =B)U(a A succ(sq, 4, §, b1, b2)) A /\ /\ (workj p < (X—aU(a A work;: p,)))
3'#35 be{0,1}

Here, whenevet(s;, b1, b2) = (sn, d1, d2, b), the formula
succ(ss, 4,7,b1,b2) = state, Ainhead;;q, A wohead;;q, A work; s

guarantees that the correct bit is “written” to the workiage and that the state, the input head position,
and the working tape position of the next configuration seeleéd match the successor configuration. A
similar formula can be constructed for the case when one tbr difidhe input or working heads point to a
start respectively end marker. Once we have reached a fatakstc F', we require tha$ 4 is left which

is expressed by the following formula when evaluateg:in

/\ state; — (—aUp).

s; EF

It is now easily seen that we can construct a formuthat is derived from a conjunction of the formulas
from above such that the formu« — @) constraints paths througdhy in such a way that their traces
yield the encoding of a valid computation 1.

Let us now address towards ensuring that once we &ntewe initially traverse it in such a way that
the trace corresponds to an initial configuratiom\df The formula

G | ¢ — X(stateg A inhead; A wohead; A /\ work; o)
1<j<n

makes sure that the heads of the input and working tape mothetfirst tape cell, that the working tape is
filled with Os and that we are in the initial state. In case the input tapebeanitialized with an arbitrary
content, we are done. Otherwise, suppose that we want tsféwatine firstj bits of the output of a TM
M’ from its corresponding SOCB (- to the input ofS y. Forb € {0,1},letb = 0if b = 1 andb = 1
otherwise, and suppose that all atomic propositions areqatiinS »4.. The formula

A GlWiy A (=a'UB") — (=i 5U7)

1<i<j

be{0,1}
guarantees that we traverse through the fitsits of the component d& », representing the input tape of
M in the same way as we traverse the firdiits of the working tape component @ft’ in Sy, when a
computation has finished. Coming back to Figure 3, we havedkan how the SOC8,, Sc andSyrime
and the communication between them can be realized. Thenoailgr question left open is how we can
perform a divisibility respectively non-divisibility tésf the counter value with a prime number computed
iN Sprime- For this, let us consider the SOCHiges from Figure 5.

One cycle througByqivides SUbtracts some natural number of bit lengyth1 from the counter. However,
in order to test for divisibility we need to make sure that wmain on the same path in every cycle. In the
CTL setting, this problem was resolved by branching intcettiditional SOCASy,;;. In contrast, in LTL we
cannot branch, but use the propositipis, , j € [0,1],b € {0,1} in order to stay on precisely one path in
every cycle. Assuming that the numbeior which we want to test for divisibility with the current aoter
value is encoded as a sequence of propositigns of some SOCAS o4, the subsequent formula enforces
that we always subtragtin cycles ofSqiviges:

Gl A\ ((Wis, A(=aUB)) — (=p; 5,U9))

0<5<t
b;€{0,1}



Fig. 5. The SOCASiides fOr testing the counter for divisibility with some naturalmber of bit length + 1.

It is straight forward to derive a similar SOCR\ot_divides @Nd an appropriate LTL formula for testing non-
divisibility of the counter value with a previously compdterime number. Finally, we can also adopt these
techniques in order to correctly handle the branching parformed in Figure 3.

In summary, by taking the disjoint union of all the gadgetsvrigure 3, their appendent LTL formula
that we described in this section, connecting the gadgetsaity and taking the conjunction of the relevant
LTL formulas, we can construd(x) and an LTL formulay in logarithmic space such that there is an
assignment assigning a natural number tosuch thai{T(P?), g«art (0)) [~  if and only if ¢ given by
an inputC of Succinct 3-SAT is satisfiable.

Theorem 23. The combined complexity of LTL model checking on POGANEXP-complete.

5 Conclusion

In this paper, we have settled the computational complefitpodel checking CTL and LTL on SOCA
and POCA with respect to data and combined complexity. Ooofgrfor providing lower bounds have
introduced some involved concepts and techniques, whichelieve may be of independent interest for
providing lower bounds for decision problems in the vertiima of infinite state systems.

An interesting aspect of future work could be the considenadf synthesis problenfsr POCA. Given
a POCAP(X) and an LTL formulap, a natural question to pose is whether thexests an assignment
o such that(T'(P?), ) = ¢ for all infinite pathsw starting in some state &f(P?). For CTL, such a
problem is undecidable by Theorem 18, but we claim that ithihize decidable for LTL. Moreover, the
CTL fragment EF seems to be a good candidate of a branchimgitigic for which model checking on
POCA could be decidable, but this remains subject to fuithestigations.
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