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Abstract. We investigate the decidability and complexity of various model checking problems over
one-counter automata. More specifically, we considersuccinctone-counter automata, in which additive
updates are encoded in binary, as well asparametricone-counter automata, in which additive updates
may be given as unspecified parameters. We fully determine the complexity of model checking these
automata against CTL, LTL, and modalµ-calculus specifications.

1 Introduction

Counter automata, which comprise a finite-state controllertogether with a number of counter variables, are
a fundamental and widely-studied computational model. Oneof the earliest results about counter automata,
which appeared in a seminal paper of Minsky’s five decades ago, is the fact that two counters suffice to
achieve Turing completeness [19].

Following Minsky’s work, much research has been directed towards studying restricted classes of
counter automata and related formalisms. Among others, we note the use of restrictions to a single counter,
on the kinds of allowable tests on the counters, on the underlying topology of the finite controller (such as
flatness [8, 17]), and on the types of computations considered (such as reversal-boundedness [15]). Counter
automata are also closely related to Petri nets and pushdownautomata.

In Minsky’s original formulation, counters were represented as integer variables that could be incre-
mented, decremented, or tested for equality with zero by thefinite-state controller. More recently, driven by
complexity-theoretic considerations on the one hand, and potential applications on the other, researchers
have investigated additional primitive operations on counters, such as additive updates encoded in binary [3,
17] or even inparametricform, i.e., whose precise values depend on parameters [4, 14]. We refer to such
counter automata assuccinctandparametricrespectively, the former being viewed as a subclass of the
latter. Natural applications of such counter machines include the modeling of resource-bounded processes,
programs with lists, recursive or multi-threaded programs, and XML query evaluation; see, e.g., [15, 3, 6].

In most cases, investigations have centered around the decidability and complexity of thereachabil-
ity problem, i.e., whether a given control state can be reached starting from the initial configuration of
the counter automaton. Various instances of the reachability problem for succinct and parametric counter
automata are examined, for example, in [9, 12, 14].

The aim of the present paper is to study the decidability and complexity ofmodel checkingfor succinct
and parametric one-counter automata. In view of Minsky’s result, we restrict our attention tosuccinct one-
counter automata (SOCA)andparametric one-counter automata (POCA). On the specification side, we
focus on the three most prominent formalisms in the literature, namely the temporal logics CTL and LTL,
as well as the modalµ-calculus. For a counter automatonA and a specificationϕ, we therefore consider the
question of deciding whetherA |= ϕ, in case of POCA for all values of the parameters, and investigate both
thedatacomplexity (in which the formulaϕ is fixed) as well as thecombinedcomplexity of this problem.
Our main results are summarized in Table 1.

One of the motivations for our work was the recent discovery that reachability is decidable and in fact
NP-complete for both SOCA and POCA [12]. We were also influencedby the work of Demri and Gascon
on model checking extensions of LTL over non-succinct, non-parametric one-counter automata [9], as well
as the recent result of Göller and Lohrey establishing thatmodel checking CTL on such counter automata
is PSPACE-complete [11].

We note some interesting differences between our results and corresponding questions regarding finite
automata. For the latter, the (combined) model checking problems for CTL, theµ-calculus, and LTL are
respectively known to beP-complete, inNP ∩ coNP, andPSPACE-complete. Somewhat surprisingly, for



SOCA POCA

CTL, µ-calculus data

combined
EXPSPACE-complete Π0

1 -complete

LTL
data coNP-complete

combined PSPACE-complete coNEXP-complete

Table 1.The complexity of CTL, the modalµ-calculus, and LTL on SOCA and POCA.

SOCA and POCA, the complexity ordering is reversed and LTL becomes easier to model check than either
CTL or theµ-calculus.

On a technical level, the most intricate result is theEXPSPACE-hardness of CTL model checking
for SOCA, which requires several steps. We first show thatEXPSPACE is ‘exponentiallyLOGSPACE-
serializable’, adapting the known proof thatPSPACE is LOGSPACE-serializable. Unfortunately, and in
contrast to [11], this does not immediately provide anEXPSPACE lower bound. In a subsequent deli-
cate stage of the proof, we show how to ‘split’ the counter in order simultaneously to performPSPACE

computations in the counter and manipulate numbers of exponential size in a SOCA of polynomial size.
Our paper is organized as follows. In Section 2 we introduce general notations. Section 3 deals with

CTL and the modalµ-calculus. LTL model checking is content of Section 4. Finally, in Section 5 we give
conclusions.

2 Preliminaries

By Z we denote theintegersand byN = {0, 1, 2, . . .} the denote thenaturals. For eachi, j ∈ Z we define
[i, j] = {k ∈ Z | i ≤ k ≤ j} and[j] = [1, j]. For eachi, n ∈ N, let biti(n) denote theith least significant
bit of the binary representation ofn. Hencen =

∑

i∈N
2i · biti(n). By binm(n) = bit0(n) · · · bitm−1(n)

we denote the firstm least significant bits written fromleft to right. Whenm is not important we just write
bin(n). Let pi denote theith prime number for eachi ≥ 1, i.e. p1 = 2, p2 = 3 and so on. We define
log(n) = min{i ≥ 1 | 2i > n}, in other wordslog(n) denotes the number of bits that are needed to
representn in binary. All polynomialsp : N → N that occur in this paper are assumed to satisfyp(n) ≥ n

for eachn ∈ N. For each wordv = a1 · · · an ∈ Σn over some finite alphabetΣ and eachi, j ∈ [n] define
v[i, j] = ai · · · aj andv(i) = v[i, i].

Turing machines and complexity theory:In the following, we introducef(n) space-bounded determin-
istic Turing machines (DTMs) in a suitable way for proving lower bounds. These contain precisely one
input tape and one working tape. In our setting, the working alphabet is assumed to be{0, 1, ⊲, ⊳}, where
⊲ is theleft markerand⊳ is theright marker. The working tape of the initial configuration of such a DTM
on an inputw ∈ Σn is assumed to be⊲0f(n)⊳, whereas its input tape is⊲w⊳. Before we define DTMs, let
Υ = {−1, 0,+1} denote a set of directions.

Formally, af(n)-space bounded deterministic Turing machine (DTM)is a tupleM = (S,Σ, s0, F, µ),
whereS is a finite set ofstates,Σ is afinite input alphabetwith ⊲, ⊳ 6∈ Σ, s0 ∈ S is aninitial state, F ⊆ S

is a set offinal states, and withΣM = Σ ⊎ {⊲, ⊳} we have that

µ : S ×ΣM × {0, 1, ⊲, ⊳} → S × Υ 2 × {0, 1, ⊲, ⊳}

is thetransition function, whereµ(s, b1, b2) = (s′, δ1, δ2, b) means thatM is currently in states, its input
head readsb1, its working tape readsb2, andM changes to states′, moves its input head in directionδ1,
moves its working head in directionδ2, and writes the bitb. Moreover, we require thatM writes a marker
precisely when it reads a marker, more formally:b2 = m if and only if b = m for eachm ∈ {⊲, ⊳}. As
expected, aconfiguration ofM is a tuple(s, ⊲w⊳, ⊲w′⊳, i, j), wheres ∈ S is the current state,w ∈ Σn



is an input,w′ ∈ {0, 1}f(n) is the content of the working tape ofM, i ∈ [0, n + 1] is the current input
head position, andj ∈ [0, f(n) + 1] is the current working head position. We define thelanguageL(M)
ofM to consist of all wordsw ∈ Σ∗ such that theinitial configuration(s0, ⊲w⊳, ⊲0

f(|w|)⊳, 0, 0) reaches a
configuration(s0, ⊲w⊳, ⊲w′⊳, i, j) satisfyings ∈ F .

By LOGSPACE, PSPACE, andEXPSPACE we denote the class of all problems that can be decided
by DTM that is logarithmically, polynomially, exponentially space bounded, respectively. Recall thatΣ0

1

(resp.Π0
1 ) is the class of all languages that are (resp. whose complements are) recursively enumerable.

Transition systems: In the following, we fix a countable set of atomic propositionsP . A transition system
is a tupleT = (S, {Sρ | ρ ∈ P},→), whereS is a set ofstates, Sρ ⊆ S for eachρ ∈ P andSρ is
non-empty for finitely manyρ ∈ P , and finally→⊆ S×S is a set oftransitions. We prefer to use the infix
notations1 → s2 to abbreviate(s1, s2) ∈→. An infinite pathis an infinite sequenceπ = s0 → s1 · · · . For
each infinite pathπ = s0 → s1 → · · · andi ∈ N, we denote byπi the pathsi → si+1 · · · and byπ(i) the
statesi. Define thetrace ofπ asτ(π) : N → 2P whereτ(i) = {ρ ∈ P | si ∈ Sρ} for eachi ∈ N.

Succinct and parametric one-counter automata:A succinct one-counter automaton (SOCA)is a tuple
S = (Q, {Qρ | ρ ∈ P}, E, λ), whereQ is a finite set ofcontrol states, Qρ ⊆ Q for eachρ ∈ P andQρ is
non-empty for finitely manyρ ∈ P ,E ⊆ Q×Q is a finite set oftransitions, andλ : E → Z∪{zero} labels
the edges with decrements, increments, and zero tests. Aparametric one-counter automaton (POCA)is a
tupleP(X) = (Q, {Qρ | ρ ∈ P}, E, λ), where the first three components are same as for a SOCA, where
X is a finite set ofparameters over the natural numbers, and whereλ : E → (Z ∪ {zero} ∪ {◦x | ◦ ∈
{+,−}, x ∈ X}). For each assignmentσ : X → N the induced SOCAis defined asPσ = (Q, {Qρ |
ρ ∈ P}, E, λ′) whereλ′(e) = ◦σ(x) wheneverλ(e) = ◦x for some◦ ∈ {+,−} andλ′(e) = λ(e)
otherwise. IfX = {x} is a singleton, then we also writeP(x) for P(X). Thesizeof a POCA is defined as
|P| = |Q|+|X |+|E|·max{log(|a|) | a ∈ λ(E)∩Z}. Hence, we represent each appearing integer in binary.
The size of a SOCA is defined analogously. A SOCAS = (Q, {Qρ | ρ ∈ P}, E, λ) describes a transition
systemT (S) = (Q× N, {Qρ × N | ρ ∈ P},→), where for eachq1, q2 ∈ Q and eachn1, n2 ∈ N we have
q1(n1) → q2(n2) if and only if eitherλ(q1, q2) = n2 − n1, or (n1 = n2 = 0 andλ(q1, q2) = zero).

3 CTL Model Checking

In Section 3.1 we introduce the syntax and semantics of CTL. Since the upper bounds for the modalµ-
calculus follow from known results and since the lower bounds follow from CTL, we do not introduce
the modalµ-calculus formally. In Section 3.2 we state anEXPSPACE upper bound for the combined
complexity of CTL and the modalµ-calculus on SOCA and aΠ0

1 upper bound on POCA. In Section 3.3
we recall basic notions from complexity theory such as serializability and results on Chinese remainder
representation. In Section 3.4 we prove the main result of this section, namely that the data complexity of
CTL on SOCA isEXPSPACE-hard. Finally, we prove aΠ0

1 lower bound for the data complexity of CTL
on POCA in Section 3.5.

3.1 CTL: Syntax and Semantics

Formulasϕ of CTL are given by the following grammar, whereρ ranges overP :

ϕ ::= ρ | ¬ϕ | ϕ ∧ ϕ | EXϕ | E(ϕUϕ) | E(ϕWUϕ)

We have the following abbreviations:ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 → ϕ2 = ¬ϕ1 ∨ ϕ2, tt = ρ ∨ ¬ρ for
some atomic propositionρ ∈ P , andEFϕ = E(ttUϕ). Thesizeof a CTL formula is inductively defined
as follows:|ρ| = 1 for eachρ ∈ P , |¬ϕ| = |EXϕ| = |ϕ|+1, |ϕ1 ∧ϕ2| = |E(ϕ1Uϕ2)| = |E(ϕ1WUϕ2)| =
|ϕ1| + |ϕ2| + 1. Given a transition systemT = (S, {Sρ | ρ ∈ P},→), a states ∈ S, and some CTL
formulaϕ, define(T, s) |= ϕ by induction on the structure ofϕ as follows:



(T, s) |= ρ ⇐⇒ s ∈ Sp for eachρ ∈ P

(T, s) |= ϕ1 ∧ ϕ2 ⇐⇒ (T, s) |= ϕ1 and(T, s) |= ϕ2

(T, s) |= ¬ϕ ⇐⇒ (T, s) 6|= ϕ

(T, s) |= EXϕ ⇐⇒ (T, t) |= ϕ for somet ∈ S with s→ t

(T, s) |= E(ϕ1Uϕ2) ⇐⇒ ∃s0, · · · , sn ∈ S, n ≥ 0 : s0 = s, (T, sn) |= ϕ2 such that

∀i ∈ [0, n− 1] : (T, si) |= ϕ1 andsi → si+1

(T, s) |= E(ϕ1WUϕ2) ⇐⇒ (T, s) |= E(ϕ1Uϕ2) or

∃s0, s1, . . . ∈ S : ∀i ≥ 0 : (T, si) |= ϕ1 andsi → si+1

Let us define theCTL model checking problemon SOCA and POCA respectively.

CTL MODEL CHECKING ON SOCA

INPUT: SOCAS = (Q, {Qρ | ρ ∈ P}, E, λ), q ∈ Q, n ∈ N in binary, and a CTL formulaϕ.
QUESTION: (T (S), q(n)) |= ϕ?

CTL MODEL CHECKING ON POCA

INPUT: POCAP(X) = (Q, {Qρ | ρ ∈ P}, E, λ), q ∈ Q, n ∈ N in binary, and a CTL formulaϕ.
QUESTION: (T (Pσ), q(n)) |= ϕ for everyσ : X → N?

3.2 Upper bounds

Let us first state upper bounds on model checking CTL and the modalµ-calculus on SOCA.One-counter
automata (OCA)are SOCA in which the numbers that occur in the transition labels are represented in unary
instead in binary. The following theorem gives an upper bound on model checking themodalµ-calculus
on OCA. Consult [1] for more details on the modalµ-calculus.

Theorem 1 ([21]).The combined complexity of the modalµ-calculus on OCA is inPSPACE.

Since every SOCA can be transformed into an exponentially larger OCA and since each CTL formula can
be translated into an alternation-freeµ-calculus formula with a linear blowup, the following corollary is
immediate.

Corollary 2. The combined complexity of CTL and the modalµ-calculus on SOCA is inEXPSPACE.

The following upper bound for CTL on POCA is straightforward.

Corollary 3. The combined complexity of CTL and the modalµ-calculus on POCA is inΠ0
1 .

Proof. Let P(X) = (Q, {Qρ | ρ ∈ P}, E, λ) be a POCA,q ∈ Q, andn ∈ N, andϕ be a formula. From
Corollary 2 it follows that for each givenσ : X → N the question(T (Pσ), q(n)) |= ϕ is a decidable
predicate. Hence, the question if(T (Pσ), q(n)) |= ϕ for eachσ : X → N is aΠ0

1 -predicate since we can
encode the set of all such assignments into the naturals via Gödel encoding. ⊓⊔

3.3 Serializability and Chinese remainder representation

For a languageL ⊆ Σ∗ let χL : Σ∗ → {0, 1} denote thecharacteristic function ofL, i.e.χL(x) = 1 if
x ∈ L andχL(x) = 0 otherwise, for eachx ∈ Σ∗. We define thelexicographic order onn-bit stringsas
�n⊆ {0, 1}n × {0, 1}n, wherex � y if and only if binn(x) ≤ binn(y), e.g.101 �3 011.

Definition 4. Let C be a complexity class. We say a languageL is C-serializable via some languageR ⊆
{0, 1}∗ if there is some polynomialp(n), and some languageU ∈ C such that for allx ∈ {0, 1}n

x ∈ L ⇐⇒ χU

(

x, 0p(n)
)

· · · χU

(

x, 1p(n)
)

∈ R,

where with ‘· · · ’ we refer to�p(n) in each of the second components.



The following theorem was proven in [10].

Theorem 5 (Theorem 22 in [10]).For everyL in PSPACE there is some regular languageR such thatL
is logspace-uniformlyAC0-serializable viaR.

As an immediate consequence, we obtain the following corollary.

Corollary 6. For everyL in PSPACE there is some regular languageR such thatL is LOGSPACE-
serializable viaR.

We remark that our definition of serializability is adopted from [10] and differs slightly from the standard
notion as used in [5, 13, 23]. We aim at lifting Corollary 6 viaan appropriate notion of serializability to
EXPSPACE.

Definition 7. Let C be some complexity class. A languageL is exponentiallyC-serializable via some lan-
guageR ⊆ {0, 1}∗ if there is some polynomialp(n) and some languageU ∈ C such that for allx ∈ {0, 1}n

x ∈ L ⇐⇒ χU

(

x, 02p(n)
)

· · · χU

(

x, 12p(n)
)

∈ R,

where with ‘· · · ’ we refer to�2p(n) in each of the second components.

The following proposition is folklore and immediate.

Proposition 8. Let L ⊆ Σ∗ be in EXPSPACE. Then there is some polynomialq such that the padded
language{x$2q(|x|)

| x ∈ L} ⊆ (Σ ⊎ {$})∗ is in PSPACE.

Theorem 9. For every languageL in EXPSPACE there is some regular languageR such thatL is expo-
nentiallyLOGSPACE-serializable viaR.

Proof. Let L ⊆ Σ∗ be some language inEXPSPACE. Then by Proposition 8 for some polynomialq the
languageL′ = {x$2q(|x|)

| x ∈ L} is in PSPACE. Due toLOGSPACE-serializability ofPSPACE by
Corollary 6, there exists some polynomialp′, some regular languageR′ and someU ′ ∈ LOGSPACE such
that for eachy ∈ (Σ ⊎ {$})∗ we have

y ∈ L′ ⇐⇒ χU ′

(

y, 0p′(|y|)
)

· · · χU ′

(

y, 1p′(|y|)
)

∈ R′, (1)

where ‘· · · ’ refers to the lexicographic order�p′(|y|). To prove the lemma we have to find some regular
languageR, some polynomialp and someU ∈ LOGSPACE such that for allx ∈ Σ∗ we have

x ∈ L ⇐⇒ χU

(

x, 02p(|x|)
)

· · · χU

(

x, 12p(|x|)
)

∈ R,

where here ‘· · · ’ refers to the lexicographic order�2p(|x|) . For now, we choosep sufficiently fast growing,
let us postpone this to the end of the proof. Let us describe the languageU and consider inputs(x,w) with
x ∈ Σn andw ∈ {0, 1}2p(n)

; moreover lety = x$2q(|x|)

be the padding ofx. Our languageU consists of
all such pairs(x,w) such thatw can be factorized asw = bz0l for someb ∈ {0, 1} and somel ≥ 0 such
thatb = 0 or (y, z) ∈ U ′. Roughly speaking, the goal ofU is to simulateU ′ on the corresponding padded
word, however the length of the second componentw has to be a power of two, in other words the lastl

bits ofw contain redundant information. We will be able to filter out this redundant information via the bit
b. Let us make this more precise. Let

γ′ = χU ′

(

y, 0p′(|y|)
)

· · · χU ′

(

y, 1p′(|y|)
)

and

γ = χU

(

x, 02p(|x|)
)

· · · χU

(

x, 12p(|x|)
)

.

Then by definition ofU , the first2 · p′(|y|) bits ofγ are1γ′(1)1γ′(2) · · · 1γ′(p′(|y|)), where the remaining
bits ofγ are all0. Hence, when readingγ in pairs of bits, precisely when the first of the two bits is set to1
we read some relevant information.



We have to give some regular languageR such thatγ′ ∈ R′ if and only if γ ∈ R. Recall that regular
languages are closed under shuffle product|| and homomorphisms. We defineR = ϕ(R′||{a}∗), where
ϕ : {0, 1, a} → {0, 1}∗ is the following homomorphism:ϕ(a) = 00, ϕ(0) = 10, andϕ(1) = 11.

As expected, we choosep to be an arbitrary polynomial satisfying2p(n) ≥ 1 + p′(2q(n) + n) for all

n ≥ 0. Finally, let us show thatU is in LOGSPACE. Let (x,w) be an input toU and let againy = x$2q(|x|)

be the padding ofx. Then it is straightforward to decide in logarithmic space if w can be factorized as
w = bzv such thatb ∈ {0, 1}, |z| = p′(2q(|x|) + |x|) andv ∈ {0}∗. The only thing that might remain
to be verified in logarithmic space is whether(y, z) ∈ U ′, which in turn boils down to simulating some
logarithmic space bounded TM forU on input(y, z). But this is possible since|y|+ |z| ≤ 2 · (|x|+ |w|) as

|y| + |z| = |x| + 2q(|x|) + p′(2q(|x|)+|x|) ≤ 2 · p′(2q(|x|) + |x|) ≤ 2 · 2p(|x|) ≤ 2 · (|x| + |w|).

⊓⊔

Chinese remainder representation:For everym,M ∈ N we denote byCRRm(M) the Chinese remain-
der representationof M as the Boolean tuple(bi,c)i∈[m],0≤c<pi

, wherebi,c = 1 if Mmodpi = c and
bi,c = 0 otherwise. The following theorem tells us that in logarithmic space we can compute the binary
representation of a natural number that is given in Chinese remainder representation. It is a consequence of
the result that division is in logspace-uniformNC1, proven in [7].

Theorem 10 ([7] Theorem 3.3).The following problem is inLOGSPACE:
INPUT: CRRm(M), j ∈ [m], b ∈ {0, 1}.
QUESTION: bitj(M mod2m) = b?

3.4 EXPSPACE-hardness of the data complexity of CTL on SOCA

In the rest of this section, we give the proof ofEXPSPACE-hardness of the data complexity of CTL on
SOCA. LetL ⊆ {0, 1}∗ be an arbitrary language inEXPSPACE. Then by Theorem 9, there is some
regular languageR ⊆ {0, 1}∗ such thatL is exponentiallyLOGSPACE-serializable viaR. Hence there is
some languageU ∈ LOGSPACE and some polynomialp such that for allx ∈ {0, 1}n we have

x ∈ L ⇐⇒ χU

(

x, 02p(n)
)

· · · χU

(

x, 12p(n)
)

∈ R, (2)

where ’· · · ’ refers to the lexicographic order�2p(n) on the bit strings on the right-hand side.
For the rest of this section, let us fix an inputx0 ∈ {0, 1}n. LetN = p(n) and letA = (Q, {0, 1}, q0, δ, F )
be some deterministic finite automaton withL(A) = R. Let us briefly recall whatA consists of:Q is a
finite set ofstates, {0, 1} is the input alphabet, q0 ∈ Q is the initial state, δ : Q × {0, 1} → Q is the
transition function, andF ⊆ Q is the set offinal states. Let us describe equivalence (2) differently: We
havex0 ∈ L if and only if the program in Figure 1 returnstrue.

q ∈ Q; q := q0;
d ∈ N; d := 0;
b ∈ {0, 1};
while d 6= 22N

loop

b := χU (x0, bin2N (d));
q := δ(q, b);
d := d+ 1;

endloop

return q ∈ F ;

Fig. 1.A program that returnstrue if and only if x0 ∈ L

Our goal is to mimic the execution of the program in Figure 1 bya fixed CTL formula and by a SOCA that
depends on our inputx0. Before we start with the reduction, let us discuss the obstacles that arise:



(A) We need some way of storingd on the counter. Of course there are a lot of ways to do this, butsince
we want to access all bits ofd in the assignmentb := χU (x0, bin2N (d)), the most natural way is
probably to representd in binary. However, for this2N bits are required. More problematically, we
need to be able to check ifd is equal to22N

. This cannot be achieved by a transition in a SOCA that
subtracts22N

, since the representation of this number requires exponentially many bits inn.
(B) As in [11], a solution to obstacle(A) is to stored in Chinese remainder representation with the first2N

prime numbers. A polynomial number of bits (inn) suffice to represent each of the occurring prime
numbers, but we need exponentially many of them. Thus, we cannot equip a polynomial size SOCA
with transitions for each prime number, simply because there are too many of them.

(C) The assignmentb := χU (x0, bin2N (d)) implies that we need to simulate on the counter a logarithmi-
cally space bounded DTM for the languageU on an exponentially large input (inn). Speaking in terms
of the input sizen, this means that we need to provide polynomially many bits onthe counter that can
be used to describe the working tape for this DTM. However, weneed to provide some on-the-fly
mechanism for reading the input.

To achieve this, let us give a high-level description of how we proceed. In a first step, we carefully design
a data structure on the counter and describe the intuition behind it. In a second step, we give five queries
which we aim at implementing via fixed CTL formulas and by SOCAthat can be computed fromx0 in
logarithmic space.

The data structure and how to access it:LetK = n+2N +1 denote the number of bits that are required
to store an input forU plus one. Letα = logK denote the number of bits that we require for storing a
pointer to an input forU and letβ be the number of bits that suffice for storing theK th prime. Hence
α = O(N) and by the Prime Number Theorem, it follows thatβ ∈ O(log(K log(K))) = O(N). The
numberα and such a sufficiently large numberβ can be computed fromx0 in logarithmic space.

Let us describe how we will interpret the counter in our reduction. Assume that the counter value is
v ∈ N. Instead of treatingv as a natural number, we are interested only in thel least significant bitsV of
the binary representation ofv, wherel is some number that is exponentially bounded inn; the precise value
of l will be made clear below. AssumeV = bit0(v) · · · bitl−1(v). We readV to be factorized into blocks of
bits

V = I M C J X Y Z B, (⋆)

where

– I ∈ {0, 1}α represents a prime number index,
– M ∈ {0, 1}β representsI th prime numberpI ,
– C ∈ {0, 1}β represents some residue class moduloM ,
– J ∈ {0, 1}α represents a pointer to some bit ofB,
– eachX,Y andZ consist of polynomially many bits (inn) and represent the working tape of three

space bounded DTMs that we will comment on later in more detail, and
– B ∈ {0, 1}n+2N+1 with B = xB′ for somex ∈ {0, 1}n and someB′ ∈ {0, 1}2N+1,B represents the

current input forU , wherex is reserved to represent our inputx0 and whereB′ represents the counter
d from program in Figure 1 from above. The blockB′ consists of2N + 1 bits since we want to be able
to test ifd = 22N

.

Let us introduce some more notation for addressing leftmost(starting to count from0) and rightmost bit
positions in each of the above sequences of bits inV . For each such sequenceΘ let Θ⇐ andΘ⇒ denote
the respective positions of the leftmost and rightmost bitsof Θ within the bit stringV , e.g.I⇒ = α − 1
andC⇐ = α+ β.

Important remark: Throughout the rest of this sectionv will denote an arbitrary natural number, more-
over I,M,C, J,X, Y, Z, andB will implicitly be coupled withv. Note that all of the bit strings have
polynomial length inn except forB. Moreover, we identify each of the blocks with the natural number
they represent.

A very simple but important gadget that we need is to decide, for eachb ∈ {0, 1} if the ith bit of v is b.



Lemma 11. For each bitb ∈ {0, 1} there exists a fixed CTL formulaϕbit,b such that the following is
computable in logarithmic space:

INPUT: i ∈ N in unary.
OUTPUT: A SOCASbit,i and some control stateqbit,i such that

(T (Sbit,i), qbit,i(v)) |= ϕbit,b ⇐⇒ biti(v) = b.

Proof. The SOCASbit,i has the two atomic propositionsτ1 andτ2 and is depicted below:

τ1 τ2
qbit,i •

−2i+1

−2i

The simple way to check if biti(v) = 1 (resp. biti(v) = 0) is to repeatedly subtract2i+1 from v until no
longer possible and then to check if2i can (resp. cannot) be subtracted. Hence we put

ϕbit,1 = τ1 ∧ EF(τ1 ∧ ¬EXτ1 ∧ EXτ2) and

ϕbit,0 = τ1 ∧ EF(τ1 ∧ ¬EXτ1 ∧ ¬EXτ2).

⊓⊔

Queries that we need to implement:We will implement the following five queries Q1 to Q5 by instances
of the model checking problem, where each query builds on topof its preceding queries.

(Q1) When assumingC < M , doesB ≡ C modM hold?

(Q2) IsM theI th prime number, i.e.M = pI?

(Q3) What is bitJ(B)?

(Q4) Does(B[1, n], B[n+ 1, n+ 2N ]) ∈ U hold?

(Q5) Doesx0 ∈ L hold?

We implement each of the five queries by providing fixed CTL formulas and SOCA that can be computed
from x0 in logarithmic space.EXPSPACE-hardness of the data complexity of CTL on SOCA will hence
follow from the implementation of Q5. First, let us give an implementation of Q1.

Lemma 12. There exists some fixed CTL formulaϕmod such that we can compute fromx0 in logarithmic
space some SOCASmod and some control stateqmod such that(T (Smod), qmod(v)) |= ϕmod if and only if
B ≡ C modM .

Proof. The SOCASmod contains the three atomic propositionsρ0, ρ1, andρ2 and is depicted in Figure 2.
The CTL formulaϕmod expresses that we traverse the upper sequence of diamonds and thereby repeatedly
subtractM fromB. The number of diamonds both in the first and the second row equalsβ, the number of
bits ofM and ofC. In the upper row, one diamond corresponds to one bit ofM . In case bit the rightmost
bit of M (in other words bitM⇒ of the counter) is1, which we can verify by a transition to the initial
control state of the SOCASbit,M⇒ , we subtract2B⇐+β−1 fromB, otherwise we do not modify the counter
value. After that, we move on to the second diamond, which represents the second rightmost bit ofM ,
and so on. Hence, traversing a cycle that starts and ends in our initial control stateqmod will correspond to
subtractingM once. Then we traverse the lower sequence of diamonds and similarly subtractC, but this
this time only once. Finally, after having traversed the lower sequence of diamonds and seeing the atomic
propositionρ2, we check ifB = 0 by trying to subtract2B⇐ . Finally, let us give the formulaϕmod :

ϕmod = E





∧

i∈{0,1}

ρi → EXϕbit,i



U(ρ2 ∧ ¬EXtt)

⊓⊔



Sbit,M⇒
Sbit,M⇒−1 Sbit,M⇐

qmod

•

•

ρ1

ρ0

qbit,M⇒ qbit,M⇒−1qbit,M⇒−1 qbit,M⇐

•

•

ρ1

ρ0
•

• •

•

ρ1

ρ0
•

•· · ·
0

0

−2B⇐+β−1

0

0
0

0
0

0
0

0

0

−2B⇐+β−2

0

0

0

−2B⇐

0

0

Sbit,C⇒
Sbit,C⇒−1 Sbit,C⇐

•

0

•

•

ρ1

ρ0

qbit,C⇒ qbit,C⇒−1qbit,C⇒−1 qbit,C⇐

•

•

ρ1

ρ0
•

• •

•

ρ1

ρ0
•

•

•

−2B⇐

ρ2· · ·
0

0

−2B⇐+β−1

0

0
0

0
0

0
0

0

0

−2B⇐+β−2

0

0

0

−2B⇐

0

Fig. 2. The SOCASmod

for checking ifB ≡ C modM .



We need the following proposition for implementing Q2. Its proof is straightforward.

Proposition 13. The following problem is inPSPACE:
INPUT: bin(i)$bin(m)

QUESTION:m = pi?

Lemma 14. There is some fixed CTL formulaϕprime such that fromx0 we can compute in logarithmic
space some SOCASprime and some control stateqprime such that(T (Sprime), qprime(v)) |= ϕprime if and only
if M = pI .

Proof. By Proposition 13 there is someq(n) space-bounded DTMM = (S,Σ, s0, F, µ) over the alphabet
Σ = {0, 1, $} that decides, given bin(i)$bin(m), whetherm = pi, whereq is some polynomial. The idea
is to simulateM on inputz = I$M usingX from (⋆) as a working tape. For this, we define our block
X to consist ofl = q(|I| + |M | + 1) = q(α + β + 1) many bits. Moreover, we assume w.l.o.g. thatM’s
behaviour on inputI$M is independent of the content of its initial working tape: This can be achieved by
adding extra states toM that first write0l onto the working tape. Hence, the initial configuration ofM
on inputz is (s0, ⊲z⊳, ⊲w⊳, 0, 0) for somew ∈ {0, 1}l. Before we give our SOCASprime, we describe the
computation ofM on inputI$M as a pseudo program that terminates if and only ifM = pI :

s ∈ S; s := s0; (current state ofM)
i ∈ [0, α+ β + 2]; i := 0; (current input head position)
h ∈ [0, l+ 1]; h := 0; (current working head position)
a ∈ {0, 1, $, ⊲, ⊳}; a := ⊲; (current input symbol)
b ∈ {0, 1, ⊲, ⊳}; b := ⊲; (current working tape symbol)

while s 6∈ F loop

a :=































⊲ if i = 0

⊳ if i = α+ β + 2

$ if i = α+ 1

biti(I) if i ∈ [1, α]

biti−α−1(M) otherwise

b :=











⊲ if h = 0

⊳ if h = l + 1

bith(X) otherwise
Let µ(s, a, b) = (s′, δ1, δ2, b

′).
if h ∈ [1, l] then bith(X) := b′; fi

s := s′;
i := i+ δ1;
h := h+ δ2;

endloop

Let us describe our SOCASprime. The control statesQ of Sprime will contain

S × [0, α+ β + 2] × [0, l + 2] × {0, 1, $, ⊲, ⊳}× {0, 1, ⊲, ⊳}, where

the first component corresponds to the variables, the second component corresponds to the variablei,
the third component corresponds to the variableh, the fourth component corresponds to the variablea,
and finally the fifth component corresponds to the variableb of the above program. Moreover, our SOCA
will contain the SOCASbit,I⇐ , Sbit,I⇐+1 . . . , Sbit,I⇒ andSbit,X⇐ , Sbit,X⇐+1 . . . , Sbit,X⇒ in order to test if
certain bits inI andX are set correctly. HenceQ contains the control statesqbit,I⇐ , qbit,I⇐+1 . . . , qbit,I⇒
andqbit,X⇐ , qbit,X⇐+1 . . . , qbit,X⇒ as well.



We will provide the atomic propositionsP = {F, input,work, input0, input1,work0,work1}, where

QF = {(s, i, h, a, b) ∈ Q | s ∈ F},

Qinput = {qbit,k | k ∈ [I⇐, I⇒]},

Qwork = {qbit,k | k ∈ [X⇐, X⇒]},

Qinput0 = {(s, i, h, a, b) ∈ Q | a = 0},

Qinput1 = {(s, i, h, a, b) ∈ Q | a = 1},

Qwork0 = {(s, i, h, a, b) ∈ Q | b = 0},

Qwork1 = {(s, i, h, a, b) ∈ Q | b = 1}.

We do not give all transitions ofSprime, but illustrate some cases by way of example. Let us give the
outgoing transitions of the control state(s, i, h, 0, 1), wherei ∈ [I⇐, I⇒] andh ∈ [X⇐, X⇒], i.e. we
currently scan theith bit of I and do not read a marker on our working tape. Moreover, let us assume
µ(s, 0, 1) = (s′,+1,−1, 0), i.e. we change to states′, we move the input head to the right, the working
head to the left, and modify the current content on the working tape from1 to 0. We realize the latter
by subtracting2X⇐+h from the counter, however we allow transitions to states(s′, i + 1, h − 1, a, b), for
eacha, b ∈ {0, 1}, hence we guess the input tape symbol and the working tape symbol of the successor
configuration. The CTL formulaϕprime will guarantee that our guessing was correct by accessing the control
statesqbit,k wherek ∈ [I⇐, I⇒] ∪ [M⇐,M⇒].

Sbit,I⇐+i

qbit,I⇐+i
input

Sbit,X⇐+h

qbit,X⇐+h
work

(s, i, h, 0, 1) input0, work1

(s, i+ 1, h− 1, 0, 0)
input0, work0 input0, work1 input1, work0 input1, work1

(s, i+ 1, h− 1, 0, 1) (s, i+ 1, h− 1, 1, 0) (s, i+ 1, h− 1, 1, 1)

−2X⇐+h

−2X⇐+h

−2X⇐+h

−2X⇐+h

0
0

The other cases can be dealt with analogously. We putqprime = (s0, 0, 0, ⊲, ⊲). Our final formula is

ϕprime = E





∧

k∈{0,1}

(inputk → EX(input∧ ϕbit,k)) ∧ (workk → EX(work∧ ϕbit,k))



 U F.

Then(T (Sprime), qprime(v)) |= ϕprime if and only if I$M ∈ L(M) if and only ifM = pI . ⊓⊔

Let us now give an implementation of query Q3.

Lemma 15. For each bitb ∈ {0, 1} there exists a fixed CTL formulaϕBIT,b such that fromx0 we can
compute in logarithmic space some SOCASBIT and some control stateqBIT such that(T (SBIT), qBIT(v)) |=
ϕBIT,b if and only if bitJ(B) = b.



Proof (Sketch).By Lemma 14, there is a fixed CTL formulaϕprime such that we can compute fromx0

a SOCASprime that allows to check ifM = pI . Moreover, by Lemma 12 there is a fixed CTL formula
ϕmod and a SOCASmod that allows to check whetherB ≡ Cmod M . In other words, we can deal
with the Chinese remainder representation ofB, but our goal is to access the theJ th bit in the binary
representation ofB. So let us assume thatR = CRRK(B) = (bi,c)1≤i≤K,0≤c<pi

is the Chinese remainder
representation ofB. Note that we do not haveR stored anywhere on the counter. However, the bit strings
I andC serve as pointers to access the bitbI,C of R. By Theorem 10, givenR (on-the-fly by our pointers
I andC), our bit stringJ , and the bitb, we can decide if bitJ(B) = b in logarithmic space. So let
M = (S,Σ, s0, F, µ) be somek · log(m) space-bounded Turing machine machine for this, wherek ≥ 1
is some constant. Hence, in order to decide if bitJ (B) = b we need to simulateM on input〈R, J, b〉. For
this we store the space thatM requires on our reserved sequence of bitsY from (⋆), henceY consists
of l = k · log(|RJb|) = O(β2 + α + 1) = O(N2) many bits. The definition of SOCASBIT,b works
analogously to the construction ofSprime in the proof of Lemma 14 i.e. we introduce inSBIT,b control states
that remember the current bit of the input head, the current bit of the working head, and the position of
the working head. The only difference is that a pointer to theinput head cannot be completely stored in
the control states. As mentioned above, for this we employ the bit blocksI andC, and also the sequence
M for storing theI th prime number. In order to obtain bitbI,C , we allow transitions to our SOCASmod

(which we can compute in logarithmic space fromx0 by Lemma 12) and checking (i) via the fixed formula
ϕprime whetherM = pI , and then (ii) via the fixed formulaϕmod whetherB ≡ C modM . Pointers to
the remaining parts of the input forM, namelyJ andb, can directly be handled by the control states of
SBIT,b, in analogy to the proof of Lemma 14. By way of example we explain the behavior ofSBIT when the
input head ofM currently scans bitbI,C of R and when getting to the successor configuration requires
moving the input head to the left. Then we simply decrementC by 1 which corresponds to subtracting2C⇐

from the counter. If, however,C currently equals0, we need to decrementI by 1, overwriteM with prime
pI−1, and finally overwriteC with pI−1−1. DecrementingI by 1 can simply achieved by subtracting2I⇐

from the counter. OverwritingM with primepI−1 can be done by repeatedly subtracting1 fromM (i.e.
subtracting2M⇐ from the counter) untilM equalspI−1; checking ifM = pI−1 can be done via the fixed
CTL formulaϕprime and the SOCASprime by Lemma 14. The other cases work analogously. ⊓⊔

The following lemma implements query Q4.

Lemma 16. For eachb ∈ {0, 1} there is some fixed CTL formulaϕU,b such that fromx0 we can compute
in logarithmic space some SOCASU and some control stateqU such that(T (SU ), qU (v)) |= ϕU,b if and
only if b = χU (B[1, n], B[n+ 1, n+ 2N ]).

Proof (sketch).The proof is similar to the proof of Lemma 15. SinceU is in LOGSPACE, there is some
k · log(m)-space bounded Turing machine that decidesU , wherek ≥ 1 is some constant. In order to decide
if b = χU (B[1, n], B[n + 1, n + 2N ]) we need to simulateM on input〈B[1, n], B[n + 1, n + 2N ]〉. We
store the space thatM requires on its working tape in the sequence of bitsZ from (⋆), henceZ consists
of k · log(n+ 2N + 1) = O(N) many bits. We use the bit sequenceJ as a pointer for accessing bits ofB.
For reading theJ th bit of B we make use of the CTL formulaϕBIT,b and use the SOCASBIT from Lemma
15. The rest of the proof follows along the same lines as the proof of Lemma 14. ⊓⊔

The following lemma implements query Q5 and concludes theEXPSPACE-hardness of the data complexity
of CTL on SOCA.

Lemma 17. There is some fixed CTL formulaϕL such that fromx0 we can compute in logarithmic space
some SOCASL and some control stateqL such that(T (SL), qL(0)) |= ϕL if and only ifx0 ∈ L.

Proof. First note that our CTL formulaϕL will be evaluated in stateqL(0). Recall that our bit sequenceB
has lengthn+2N +1 whereB is factorized asB = xB′ for somex ∈ {0, 1}n and someB′ ∈ {0, 1}2N+1.
The SOCASL and the CTL formulaϕL will mimic the execution of the program from Figure 1. In the bit
stringx we store the valuex0. The bit stringB′ represents the variabled of the program, hence we will
initialize B′ with 0. Note that incrementingB′ by 1 corresponds to adding2B⇐+n to the counter. Thus,
checking whend becomes22N

for the first time boils down to checking when then + 2N + 1st bit of B



becomes1 for the first time. By Lemma 15 the CTL formulaϕBIT,1 and the SOCASBIT allow to test if the
J th bit of B equals1. Therefore we store inJ the numbern+2N + 1. The following claim tells us that we
can test whether we have initialized the counter correctly.Its proof is simple and therefore omitted.

Claim: There is a fixed CTL formulaϕinit such that fromx0 we can compute in logarithmic space some
SOCASinit and some control stateqinit such that(T (Sinit), qinit(v)) |= ϕinit if and only if J = n+ 2N + 1

andB = x00
2N+1.

Recall thatA = (Q, {0, 1}, q0, δ, F ) is the deterministic finite automaton of the program in Figure 1 that
needs to be simulated. Let us, before givingSL, define the auxiliary SOCASA to be connected with the
control stateqU of SU and with the control stateqBIT of SBIT along with the additional control states
S = Q× {0, 1} and the following transitions:

(q, b)
+2B⇐+n

−−−−−−→ (δ(q, b), b′), (q, b)
0
−→ qBIT, and (q, b)

0
−→ qU for eachb, b′ ∈ {0, 1}.

Moreover,SA contains the atomic propositions{bit0, bit1, F}, whereSbitb = Q× {b} for eachb ∈ {0, 1}
andSF = F ×{0, 1}. Before givingϕL, let us depict our SOCASL which has two additional labelsρ and
init:

Sinit

SA

ρ

init

qL •

qinit

(q0, 0) (q0, 1)

+1

0

0

0 0

Let us define the auxiliary formulaχ = EXϕBIT that allows to test ifB′ = 22N

. Our final formula is

ϕL = EF



ρ ∧ EX(init ∧ ϕinit) ∧ E



¬χ ∧
∧

b∈{0,1}

bitb → EXϕU,b



 U (χ ∧ F )





We havex0 ∈ L if and only if the program from Figure 1 returnstrue if and only if (T (SL), qL(0)) |= ϕL.
⊓⊔

Theorem 18. The data and combined complexity of CTL and the modalµ-calculus on SOCA isEXPSPACE-
complete.

3.5 Π
0

1
-Hardness of the Data Complexity of CTL on POCA

In this section we show that there already exists a fixed CTL formula for which model checking of POCA
is Π0

1 -hard. We reduce from the complement of the emptiness problem for two-counter automata, which
isΣ0

1-complete [19]. Similar to a SOCA, atwo-counter automatonis a tupleA = (Q,E, λ), whereQ is a
finite set ofcontrol states,E ⊆ Q×Q is a set ofedges, howeverλ : E → {zero1, zero2}∪{addj(a) | j ∈
{1, 2}, a ∈ {−1, 1}}. Theconfiguration graph induced byA is defined to beG(A) = (Q × N × N,→),
where(p, i1, i2) → (q, i1 + d1, i2 + d2) if and only if the following conditions are all satisfied:

– (p, q) ∈ E,
– λ(p, q) = addj(a) impliesdj = a andd3−j = 0 for eachj ∈ {1, 2}, and



– λ(p, q) = zeroj impliesdj = ij = 0 andd3−j = 0 for eachj ∈ {1, 2}.

Let us define the following problem.

EMPTINESS FOR TWO-COUNTER AUTOMATA

INPUT: Two-counter automatonA = (Q,E, λ), control statesq0, q1 ∈ Q.
QUESTION: Are therem,n ∈ N such that(q0, 0, 0) →∗ (q1,m, n) in G(A)?

The idea of our reduction is as follows: Given a two-counter automatonA, we construct a POCAP(x)
with one parameter in such a way that the two counters fromA are encoded into the single counter from
P(x) as follows: for the counter valuen of P(x), we have thatn modx encodes the value of the first and
n div x encodes the value of the second counter ofA. Hence, testing the first counter for zero corresponds
to checking whethern ≡ 0 modx while testing the second counter for zero corresponds to checking
whethern ≥ x. Incrementation (resp. decrementation) on the first counter can be mimicked by adding
(resp. subtracting)1, whereas on counter two this corresponds to adding (resp. subtracting)x. Of course,
we need to ensure that we do not overflow. For example, ifn ≡ −1 modx and we would simulate to
increment the first counter in the above manner, this would correspond to setting the first counter to zero
and simultaneously incrementing the second counter. However, if the emptiness problem is solvable, thenx

can be instantiated with a large enough value such that such an overflow does not occur. Our CTL formula
will ensure that we do not overflow. Before we give the reduction from the emptiness problem for two-
counter automata, let us introduce some gadgets that we needin our reduction.

Lemma 19. There exists some fixed CTL formulaϕtest for which the following holds:

(1) There exists some fixedPOCAP 6≡0(x) with some control stateq6≡0 such that for eachσ : {x} → N

(Pσ
6≡0, q6≡0(n)) |= ϕtest ⇐⇒ n 6≡ 0 modσ(x).

(2) There exists some fixedPOCAP 6≡−1(x) with some control stateq6≡−1 such that for eachσ : {x} → N

(Pσ
6≡−1, q6≡−1(n)) |= ϕtest ⇐⇒ n 6≡ −1 modσ(x).

(3) There exists some fixedPOCAP<x(x) with some control stateq<x such that for eachσ : {x} → N

(Pσ
<x, q<x(n)) |= ϕtest ⇐⇒ n < σ(x).

Proof. We chooseϕtest = ¬EFρ, whereρ is an atomic proposition. Below we depictP 6≡0(x), P 6≡−1(x),
andP<x(x), respectively.

ρ
q6≡0 •

−x

zero
ρ

q6≡−1 • •

−x

+1 zero
ρ

q<x • •

−1

−x zero

Correctness of the lemma is immediate. ⊓⊔

Let us fix some instance of the emptiness problem for two-counter automata: Let〈A, q0, q1〉 be an instance
to the emptiness problem, whereA = (Q,E, λ) is some two-counter automaton. We will give a fixed CTL
formulaϕ such that from〈A, q0, q1〉 we can construct some POCAP(x) such that(q0, 0, 0) →∗ (q1,m, n)
for somem,n ∈ N if and only if (Pσ, q0(0)) |= ϕ for someσ : {x} → N.

The control states and transitions will ofP(x) can be described by the following graph transformation
rule that maps each pair of control states(p, q) ∈ E of A with λ(p, q) = l into corresponding control states
in P(x), by possibly accessing the different POCA of Lemma 19.

→֒p ql l
p • q

test(l)

0 up(l)

0



where

test(l) =











(P 6≡0(x), q6≡0) if l ∈ {add1(−1), zero1}

(P 6≡−1(x), q6≡−1) if l = add1(+1)

(P<x(x), q<x) if l = zero2,

and where

up(l) =











a if l = add1(a)

◦x if l = add2(◦1) for some◦ ∈ {+,−}

0 otherwise.

Let us moreover ensure that every control state of the kindqτ with τ ∈ {6≡ 0, 6≡−1,≥ x} has the labelρτ .
Before we give our final formula, let us introduce the following constraint formulas that guarantee that an
overflow never occurs:

ψ1 = add1(+1) −→ EX(ρ 6≡−1 ∧ ϕtest)

ψ2 = add1(−1) −→ EX(ρ 6≡0 ∧ ϕtest)

ψ3 = zero2 −→ EX(ρ<x ∧ ϕtest)

ψ4 = zero1 −→ EX(ρ 6≡0 ∧ ¬ϕtest)

Note that we do not need any constraint when changing the second counter. Let us introduce a labelf at
control stateq1. Our final CTL formulaϕ is

ϕ = E





∧

i∈[4]

ψi U f



 .

We have that(q0, 0, 0) →∗ (q1,m, n) for somem,n ∈ N in G(A) if and only if (T (Pσ(x)), q0(0)) |= ϕ

for someσ : {x} → N. We obtain the following theorem.

Theorem 20. The data and combined complexity of CTL and the modalµ-calculus on POCA isΠ0
1 -

complete.

4 LTL Model Checking

Formulas of LTL are inductively defined according to the following grammar, whereρ ranges overP :

ϕ ::= ρ | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ

The Boolean abbreviations and the formulatt are defined in the same way as in CTL. Thefinally modality
Fϕ is an abbreviation forttUϕ and theglobally modalityGϕ abbreviates¬F¬ϕ.

The semantics of LTL is given in terms of infinite paths in a transition system. LetT = (S, {Sρ | ρ ∈
P},→) be a transition system, letπ : s0 → s1 → · · · be an infinite path inT , and letϕ be an LTL formula,
we define(T, π) |= ϕ by induction of the structure ofϕ, whereρ ranges overP :

(T, π) |= ρ ⇐⇒ π(0) ∈ Sρ

(T, π) |= ¬ϕ ⇐⇒ (T, π) 6|= ϕ

(T, π) |= ϕ1 ∧ ϕ2 ⇐⇒ (T, π) |= ϕ1 and(T, π) |= ϕ2

(T, π) |= Xϕ ⇐⇒ (T, π1) |= ϕ

(T, π) |= ϕ1Uϕ2 ⇐⇒ ∃j ≥ 0 : (T, πj) |= ϕ2 and∀0 ≤ i < j : (T, πi) |= ϕ1

Let us now define the LTL model checking problem on SOCA and POCA.

LTL MODEL CHECKING ON SOCA

INPUT: SOCAS = (Q, {Qρ | ρ ∈ P}, E, λ), q ∈ Q, n ∈ N in binary, and an LTL formulaϕ.



QUESTION: (T (S), π) |= ϕ for every infinite pathπ with π(0) = q(n)?

LTL MODEL CHECKING ON POCA

INPUT: POCAP(X) = (Q, {Qρ | ρ ∈ P}, E, λ), q ∈ Q, n ∈ N in binary, and an LTL formulaϕ.
QUESTION: (T (Pσ), π) |= ϕ for everyσ : X → N and every infinite pathπ with π(0) = q(n)?

4.1 Upper bounds

A standard approach to LTL model checking is the automata-based approach, in which systems are modeled
as non-deterministic Büchi automata (NBA). Given an NBAA and an LTL formulaϕ, the idea is to translate
ϕ into an NBAA¬ϕ such thatA¬ϕ accepts all words that violateϕ. Then, by checking for emptiness of
the product automatonA′ = A ×A¬ϕ, it can be decided whether or notA generates traces that violateϕ.
Emptiness can be decided by checking for recurrent reachability of a control state in the transition system
induced byA′, which can be performed non-deterministically in space logarithmically in the size ofA′.
Vardi and Wolper showed in [22] that the size ofA¬ϕ is 2O(|ϕ|), which yields that checking for emptiness
of A′ is in PSPACE. ThePSPACE lower bound for finite state model checking was originally shown in
[18] and hence carries over to SOCA.

Constructing the product automaton of two NBA is a standard technique in model checking, see e.g. [2]
for a detailed treatment of this. Moreover, this construction can be adapted in a straight-forward way into
the setting of POCA by equipping a POCA with a set of final states and defining emptiness with respect
to Büchi acceptance condition in the standard way. For brevity, we do not give any further details. We
then have that given a POCAP, an LTL formulaϕ, a stateq andn ∈ N we can construct a POCAP′ as
the product ofP andA¬ϕ such that for all assignmentsσ we have thatP′ is empty with respect to Büchi
acceptence condition if and only if(T (Pσ), q(n)) |= ϕ. Moreover, the size ofP′ is 2O(|ϕ|)|P|.

It has been shown in [12] that checking emptiness with respect to Büchi acceptance condition iscoNP-
complete for both SOCA and POCA, and in [9] that it isNL-complete for OCA. We use these results in
order to establish upper bounds for our LTL model checking problems. Let us first consider the case of a
fixed formulaϕ. In the terminology of the previous paragraph,|P′| = O(|P|) and hence the data complexity
of LTL on SOCA and POCA is incoNP. The matchingcoNP lower bound of the data complexity of LTL
on SOCA follows from theNP-hardness of the reachability problem for SOCA.

Proposition 21. The data complexity of LTL model checking on SOCA and POCA iscoNP-complete.

As seen above, if bothP and the formulaϕ are part of the input then|P′| = 2O(|ϕ)·|P|, and hencecoNEXP is
an upper bound for the combined complexity of LTL model checking on both SOCA and POCA. However,
we can improve this upper bound in the case of SOCA. Given a SOCA S, letm be the absolute value of
the maximal increment or decrement performed on the transitions inS and letS′ be the product automaton
of S andA¬ϕ. Let S′′ be obtained fromS′ by replacing every transition labeled withz with a sequence of
fresh transitions and control locations of lengthz, where each transition is labeled with+1 respectively
−1, depending on the sign ofz. We conclude that|S′′| = m · |S′| = m · 2O(|ϕ|) · |S|. Combining the
result from [9] together with the fact that LTL model checking of non-deterministic finite state automata is
PSPACE-hard [18], we obtain the following proposition.

Proposition 22. The combined complexity of LTL on SOCA isPSPACE-complete.

It remains to prove that the combined complexity of LTL modelchecking on POCA iscoNEXP-hard,
which we will show in the next section.

4.2 Combined Complexity of LTL on POCA

We are now going to showcoNEXP-hardness of LTL model checking on POCA via a reduction from (the
complement of)Succinct 3-SAT, which is aNEXP-complete problem [20]. An input ofSuccinct 3-SAT is
given by a Boolean circuitC that encodes a Boolean formulaψC in 3-CNF, i.e.ψC =

∧

j∈[0,M ](ℓ
j
1∨ℓ

j
2∨ℓ

j
3)

for someM = O(2|C|), andψC is free over Boolean variablesy1, . . . , yN for someN = O(2|C|). Let



j ∈ [0,M ] be the index of a clause encoded inbinaryandk ∈ {1, 2, 3}. On input(j · k), the output ofC is
(i · b), wherei ∈ [N ] is the index of the Boolean variable that appears in literalℓ

j
k, and whereb = 0 when

ℓ
j
k is negative andb = 1 whenℓjk is positive.

SUCCINCT 3-SAT

INPUT: Boolean circuitC
QUESTION: IsψC satisfiable?

In order to establishcoNEXP-hardness for the combined complexity of LTL model checking, given an
inputC of Succinct 3-SAT, we construct a POCAP(x) and an LTL formulaϕ such thatψC is satisfiable
if and only if there is an assignmentσ such that(T (Pσ), qstart(0)) |= ϕ for some distinguished stateqstart
of P(x).

First, let us provide a suitable encoding of truth assignments by natural numbers. The encoding we use
has also been employed for establishing lower bounds for model checking OCA [16]. Recall thatpi denotes
theith prime number. Every natural numberx defines a truth assignmentνx : {y1, . . . , yN} → {0, 1} such
thatνx(yi) = 1 iff pi dividesx. By the Prime Number Theorem,pN = O(N logN) and henceO(|C|) bits
are sufficient to representpN . Of course, since we need exponentially many prime numbers they cannot be
hard-wired intoP(x).

Sinc(j) SC(j · 2)

= (i · b)

SC(j · 1)

= (i · b)

SC(j · 3)

= (i · b)

Sprime(i) = pi

Sdivides(pi, x)

b = 0?

Snot divides(pi, x)

b = 1?

•qstart

+x

0

0

0

0

0

0

0

0 0

0

zero

Fig. 3.High-level description of the automatonP(x) used for the reduction.

Let us now take a look atP(x), which is sketched in Figure 3. It uses one parameterx and employs
several gadgets. The only gadgets manipulating the counterareSdivides andSnot divides. The remaining gad-
gets are designed such that they communicate via designatedpropositional variables, and not as in Section
3.4 with the help of the counter. First,P(x) loads the value of the parameterx on the counter. Think ofx
encoding a truth assignment ofψC. Next,P(x) traverses throughSinc, which initially chooses an arbitrary
indexj identifying a clause ofψC. Every timeSinc is traversed afterwards, it incrementsj moduloM + 1
and hereby moves on to the next clause. NowP(x) branches non-deterministically into a gadgetSC in order
to compute(i · b) from C on input(j · 1), (j · 2), resp.(j · 3). The indexi is then used as input to a gadget
Sprime, which computespi. Then if b = 0, it is checked inSnot divides thatpi does not divide the value of
x, and likewise inSdivides thatpi divides the value ofx if b = 1. For checking the latter, the counter needs
to be modified. After the checks have been finished, we restorethe valuex on the counter and the process
continues with clausej + 1 modM + 1.

It remains to show how the gadgets and the communication between them can be realized. The first
observation is that the computations ofSinc, SC andSprime can be realized by space bounded DTM using
no more thanp(|C|) tape cells for their in- and output tape for some polynomialp that is fixed onceC is
provided. Indeed, it is easily seen that incrementing modulo M + 1, evaluatingC and computing theith



prime number can be done by such a DTM. Thus, we now show how from a generic DTMM, we can
construct in logarithmic space a SOCASM and some LTL formulas that mimic computations ofM on
traces ofSM.

• q

•

•

...

•

•

•

ζ α

s0

s1

sk−1

sk

•

•

•

...

•

•

•

ih0

ih1

ihm

ihm+1

•

•

•

...

•

•

•

•

wh0

wh1

whn

whn+1

•

•

•

•

•

•

•

• . . . •

•

•

•

••

i1,1

i1,0

i2,1

i2,0

im,1

im,0

•

•

•

•

•

•

• . . . •

•

•

• •

••

•

w1,1

w1,0

w2,1

w2,0

wn,1

wn,0

γ β

Fig. 4.SOCASM for the simulation of space bounded Turing machines.

Let M = (S,Σ, s0, F, µ) be a DTM with a fixed input tape withm tape cells, andn working tape
cells, and letS = {s0, . . . , sk}. Figure 4 shows the SOCASM that we use for the simulation ofM. All
transitions ofSM are implicitly labelled with0. A simulation starts whenSM is entered at the location
labeled withζ and is finished when the location labeled withβ is reached.

The sequence of propositions occurring on a trace starting from and ending inq encodes a configuration
of M. In detail,si indicates thatM is in statesi; ihi that the input tape head scans celli; whi that the
working tape head scans celli; ii,b that theith bit of the input tape is set tob; andwi,b that theith bit of the
working tape is set tob, wherei is in the respective range andb ∈ {0, 1}.

Let us introduce some LTL formulas that allow for testing properties of the current configuration.
Think of all of them as being evaluated inq. The formulastatei = Xsi for eachi ∈ [0, k] expresses that the
current state issi. By the formulainheadi = XXXXihi we express that the input head is at positioni, where
i ∈ [m]. Similarly, define the formulaswoheadi, workj,b, andinputi,b for expressing that the working head
is at positioni, that theith bit of the input tape isb, and that thejth bit of the working tape isb, respectively,
wherei ∈ [m],j ∈ [n], andb ∈ {0, 1}.

The LTL formula below, assumed to be evaluated inα, ensures that the transition function is correctly
encoded into traces ofSM for statess ∈ S \ F whenever the input respectively working tape head does
not scan a start (⊲) respectively end marker (⊳):



∧

sl∈S\F

∧

i∈[m]

∧

j∈[n]

∧

b1,b2∈{0,1}

statel ∧ inheadi ∧ inputi,b1 ∧ woheadj ∧ workj,b2 −→

−→



(X(¬α ∧ ¬β)U(α ∧ succ(sl, i, j, b1, b2)) ∧
∧

j′ 6=j

∧

b∈{0,1}

(workj′,b ↔ (X¬αU(α ∧ workj′,b)))



 .

Here, wheneverµ(sl, b1, b2) = (sh, d1, d2, b), the formula

succ(sl, i, j, b1, b2) = stateh ∧ inheadi+d1 ∧ woheadj+d2 ∧ workj,b

guarantees that the correct bit is “written” to the working tape and that the state, the input head position,
and the working tape position of the next configuration seen indeed match the successor configuration. A
similar formula can be constructed for the case when one or both of the input or working heads point to a
start respectively end marker. Once we have reached a final statesi ∈ F , we require thatSM is left which
is expressed by the following formula when evaluated inq:

∧

si∈F

statei −→ (¬αUβ).

It is now easily seen that we can construct a formulaΦ that is derived from a conjunction of the formulas
from above such that the formulaG(α → Φ) constraints paths throughSM in such a way that their traces
yield the encoding of a valid computation ofM.

Let us now address towards ensuring that once we enterSM we initially traverse it in such a way that
the trace corresponds to an initial configuration ofM. The formula

G



ζ −→ X(state0 ∧ inhead1 ∧ wohead1 ∧
∧

1≤j≤n

workj,0)





makes sure that the heads of the input and working tape point to the first tape cell, that the working tape is
filled with 0s and that we are in the initial state. In case the input tape can be initialized with an arbitrary
content, we are done. Otherwise, suppose that we want to transfer the firstj bits of the output of a TM
M′ from its corresponding SOCASM′ to the input ofSM. For b ∈ {0, 1}, let b̄ = 0 if b = 1 andb̄ = 1
otherwise, and suppose that all atomic propositions are primed inSM′ . The formula

∧

1≤i≤j

b∈{0,1}

G((w′
i,b ∧ (¬α′Uβ′)) −→ (¬ii,b̄Uγ)

guarantees that we traverse through the firstj bits of the component ofSM representing the input tape of
M in the same way as we traverse the firstj bits of the working tape component ofM′ in SM′ when a
computation has finished. Coming back to Figure 3, we have thus seen how the SOCASinc, SC andSprime

and the communication between them can be realized. The onlymajor question left open is how we can
perform a divisibility respectively non-divisibility test of the counter value with a prime number computed
in Sprime. For this, let us consider the SOCASdivides from Figure 5.

One cycle throughSdivides subtracts some natural number of bit lengthl+1 from the counter. However,
in order to test for divisibility we need to make sure that we remain on the same path in every cycle. In the
CTL setting, this problem was resolved by branching into theadditional SOCASbit. In contrast, in LTL we
cannot branch, but use the propositionsρj,bj

, j ∈ [0, l], b ∈ {0, 1} in order to stay on precisely one path in
every cycle. Assuming that the numberp for which we want to test for divisibility with the current counter
value is encoded as a sequence of propositionswj,bj

of some SOCASM, the subsequent formula enforces
that we always subtractp in cycles ofSdivides:

G







∧

0≤j≤l

bj∈{0,1}

((wj,bj
∧ (¬αUβ)) −→ (¬ρj,b̄j

Uξ))
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Fig. 5. The SOCASdivides for testing the counter for divisibility with some natural number of bit lengthl + 1.

It is straight forward to derive a similar SOCASnot divides and an appropriate LTL formula for testing non-
divisibility of the counter value with a previously computed prime number. Finally, we can also adopt these
techniques in order to correctly handle the branching onb performed in Figure 3.

In summary, by taking the disjoint union of all the gadgets from Figure 3, their appendent LTL formula
that we described in this section, connecting the gadgets correctly and taking the conjunction of the relevant
LTL formulas, we can constructP(x) and an LTL formulaϕ in logarithmic space such that there is an
assignmentσ assigning a natural number tox such that(T (Pσ), qstart(0)) 6|= ϕ if and only if ψC given by
an inputC of Succinct 3-SAT is satisfiable.

Theorem 23. The combined complexity of LTL model checking on POCA iscoNEXP-complete.

5 Conclusion

In this paper, we have settled the computational complexityof model checking CTL and LTL on SOCA
and POCA with respect to data and combined complexity. Our proofs for providing lower bounds have
introduced some involved concepts and techniques, which webelieve may be of independent interest for
providing lower bounds for decision problems in the verification of infinite state systems.

An interesting aspect of future work could be the consideration of synthesis problemsfor POCA. Given
a POCAP(X) and an LTL formulaϕ, a natural question to pose is whether thereexists an assignment
σ such that(T (Pσ), π) |= ϕ for all infinite pathsπ starting in some state ofT (Pσ). For CTL, such a
problem is undecidable by Theorem 18, but we claim that it might be decidable for LTL. Moreover, the
CTL fragment EF seems to be a good candidate of a branching-time logic for which model checking on
POCA could be decidable, but this remains subject to furtherinvestigations.
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